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Abstract 

 

Stochastic photovoltaic (PV) modeling is essential for the long-term planning of 

renewable power generation. One of the most prevalent problems that PV systems face 

is the accumulation of dust on the PV panel surface that negatively impacts the output 

power. Wind speed along with other weather variables including relative humidity, 

temperature, and precipitation are some of the major factors that contribute to dust 

accumulation. Unlike the available models in the literature, this thesis presents a novel 

dynamic model of the PV output power profile considering the effect of dust 

accumulation using a Markov chain model. The proposed model is composed of three 

stages and it incorporates the seasonal variations in the weather conditions as well as 

the desired cleaning frequency, which affects the overall energy yield of the PV system. 

The first stage is the data acquisition and processing stage where the raw data is 

discretized and categorized. The second stage utilizes the outcome of the first stage in 

a Markovian Chain model, which is the core of the overall model. The third and final 

stage is the cumulative distribution function generation, which is generated using the 

probability mass function output of the Markov Chain simulation. The outcome of the 

model can be described as virtual scenarios, which can help the investors to decide on 

the optimal size of the PV system and the optimal cleaning frequency for each season 

subject to some constraints. The model outcome shows an error of less than 5% when 

compared to actual data collected from the field without cleaning. Various case studies 

are presented to show the effectiveness of the proposed model and its benefits.     

 

Keywords: Stochastic modeling, weather effects on PV, Markov chain, photovoltaic, 

planning. 
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Chapter 1. Introduction 

 

In this chapter, we provide a short introduction about the existing issues related 

to dust accumulation specifically in desert climates like in the Middle East where this 

problem has grown a lot over the past few years. Then, we present the way this issue is 

tackled as well as the research contribution. Finally, a general organization of the thesis 

is presented.  

1.1. Overview 

The recent growth in solar energy in the Middle East and specifically the United 

Arab Emirates (UAE) has led to numerous solar plants being installed in the region. 

This includes the Shams Solar Power Station and the Masdar 10MW Solar Photovoltaic 

Farm in Abu Dhabi, the Mohammed Bin Rashid Al Maktoum Solar Park in Dubai, and 

much more [1]. However, a common concern in almost every power plant within the 

region is the development of dust on the solar panel surface, especially during summer. 

Whether it is through a sandstorm or other climate-related variables, dust is known to 

negatively impact solar panel performance [2]. This is because the formation of dust on 

the surface of the solar panel prevents the device from absorbing the sunlight it needs 

to later convert to energy. Considering that some of the best commercial solar panels 

have an efficiency level close to 30%, even the slightest negative impact on a solar 

panel will greatly impact its output performance [3]. This is considering that the solar 

panel is continuously tracking the sun and, if not, the likelihood of the solar panel 

performing even poorer is much higher. 

Consequently, there is a greater need for cleaning to mitigate the issue of dust 

on solar panels. Currently, there are numerous cleaning technologies that have been 

implemented not only within the UAE but also around the world. However, as water is 

a scarce resource and continuous cleaning will be costly from a labor and resource point 

of view, it is important to optimally manage the best way to clean solar panels while 

using minimal resources. Hence the need for a model for dust accumulation that can 

help determine the optimal cleaning frequency for solar panels depending on the season. 

1.2.  Thesis Objectives 

Driven by the developing interest in renewable energy and specifically in solar 

energy in the United Arab Emirates, the need to tackle the issue of dust on solar panels 
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has grown over the past few years. In desert climates like the Middle East, the likelihood 

of dust negatively impacting the behavior of solar panels is extremely high. As a result, 

there is a great need to consider the impact of dust on solar plants long term planning. 

Thus, the main objective of this thesis is to develop an accurate model that considers 

the stochastic nature of PV including dust accumulation. The model should also be able 

to consider the recommended cleaning action on a PV farm and the corresponding 

response on output power.  

1.3. Research Contribution 

The contributions of this research work can be summarized as follows:   

• The development of a novel model for the stochastic nature of PV performance 

including the effect of dust accumulation using meteorological data.  

• The development of a unique mechanism in the model that depicts dust 

accumulation levels at different cleaning frequencies in the PV system. 

1.4.  Thesis Organization 

The rest of the thesis is organized as follows: Chapter 2 provides background 

about the factors affecting dust accumulation on solar panels and the effectiveness of 

the various cleaning techniques on solar panels. The employed methods and algorithms 

to develop the proposed model are discussed in Chapter 3. Chapter 4 presents a power 

profile generation mechanism that uses the results of the model proposed in Chapter 3. 

Chapter 5 discusses the results of the simulation, model validation, and the optimal 

planning of the model on a case study. Finally, Chapter 6 concludes the thesis and 

outlines future work.  
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Chapter 2. Background and Literature Review 

 

In this chapter, we discuss the negative impact of dust on solar panels and the 

different cleaning methods that are currently being implemented in the region to tackle 

the situation. After that, the related work to PV modeling including dust is discussed.  

2.1.  Popularity of Solar Energy  

 

 With research associated with renewable energy growth over the last few 

decades, there is a growing level of the popularity associated with sustainable energy. 

This has partly been due to the realization that fossil fuels will no longer support the 

energy demand of people in the future and there is a need to limit or reduce the amount 

of fossil fuels that are currently being burned. Not just that, but the negative impact that 

fossil fuels have on the environment has been well documented to cause climate-related 

concerns and, most famously, global warming. Hence, there is a pushed need for the 

photovoltaic industry to grow with the recognition that solar energy, one of the easiest 

to implement forms of renewable energy, having the potential to form as one of the 

world’s main forms of electrical energy production [4]. A reflection of this view can be 

seen in the actions of China who, in 2018, have installed close to 45 GW of solar power 

plants and has had its total solar energy capacity grow close to 176 GW [5]. When 

discussing solar panel technology itself, silicon crystalline PV modules are arguably 

the most common and most widely used solar panels in the world. At the same time, 

emerging solar panel technologies that use different materials, which are cheaper have 

also begun to emerge in the market including amorphous silicon, copper indium 

selenide, and cadmium telluride.  

At the same time, with a steady increase in the prices associated with electricity 

around the world, solar panels could provide residential house owners and companies 

a cheaper alternative for acquiring energy. This is especially popular in regions where 

grid implementation of electrical energy is possible, which would therefore allow for 

residential owners to implement solar panels on their rooftops, which could supply 

power to the household during hours when the electricity price is high [6]. In such cases, 

the operation of a solar panel would also require a battery that could be used to store 

the energy the solar panel generates in the morning hours. This is already being 

implemented in countries like Germany where building-integrated photovoltaics 
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(BIPV) and rooftop installations of solar panels have been growing in popularity. For 

the residents of Germany, there has been a major reduction in their energy bills due to 

this change [7]. While the optimal generation of solar panels is dependent upon several 

factors including the location of the sun, weather variables, intensity of the solar 

irradiance, and load demand, the general consensus is that solar energy helps reduce the 

overall cost of energy especially when paired with a storage system. However, it is 

important to note that the uncertainty related to PV performance models in terms of 

how much specific external technologies impact solar panels is far too high even today. 

Existing research related to solar panels has largely centered on the performance of the 

solar module and not necessarily the performance of the overall system [8].   

2.2. Factors Affecting the Dust Accumulation on Solar Panels 

When discussing dust and its impact on solar panels, there is no doubt that the 

performance drop of solar panels with the existence of dust on its surface is large. When 

dust forms on the surface of solar panels, the solar panels ability to produce electricity 

is hindered by the trouble it has absorbing and receiving the sunlight being shone on 

top of it. When this occurs, there is a drop in current output and that will inevitably lead 

to a drop in power output. The major downside to this when ignoring the performance 

of the solar panel is the economic loss that photovoltaic power plants can suffer from 

after investing a lot of money in installing the solar panels. Even the smallest of 

particles sizes, categorized as less than 500 μm, is labeled as enough dust to negatively 

impact solar panel performance [9]. The size and frequency of dust accumulation is 

largely dependent upon the region where the solar panel is located. For example, in 

Colorado, a dust accumulation rate of 150 mg·m2 was measured after only after a few 

days in summer [9] while in Egypt it was close to 150–300 mg·m2 [10]. The evident 

difference in the results for the two countries was clear and it is mainly dependent upon 

the weather conditions of the two areas. Egypt, when compared to Colorado, is much 

drier and surrounded by a desert environment, which makes it far more prone to dust 

than Colorado. In fact, in 2018, an experimental study on the performance of solar 

panels after 70 days of not cleaning it [11]. Results from his findings showed that the 

dust surface density had increased dramatically and the reduction in overall output 

power was close to 25%.  
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One of the most common concerns related to dust accumulation is how strongly 

it is dependent on weather variables as well as the size of the particle [12-13]. This 

indicates that the rate of dust accumulation will only be much higher if the source of 

the dust particles is closer to the solar panel and, with further distance, the rate of dust 

accumulation will correspondingly decrease [14]. Dust deposition on the surface of a 

solar panel can occur in various weather conditions as well with the first of them being 

dry conditions. In drier conditions, airborne particles locate themselves on the surface 

of the PV when there is a clear absence of water. In such conditions, dust atoms adhere 

to the solar panel surface mainly due to adhesive forces. However, in wet conditions, 

the dust particles stick to the surface of the solar panel due in the presence of fog, rain, 

and snow, which can make their contamination even more problematic for solar panels. 

During clear weather conditions, solar panel performance is ideal and only with dust 

will its performance begin to degrade assuming that the panel is tracking the sun at all 

times. However, with adverse weather conditions, the performance drop off of solar 

panels is inevitable and, combined with dust accumulation that might contain sticky 

dust particles that are hard to remove from the surface of the panel, dust accumulation 

is a major source of this. There are times when the atmospheric dust is pushed onto the 

surface of the solar panel simply because of the existence of fog or through water 

droplets, which contaminate the surface of the solar panel. Additionally, a study was 

done on the effect of dust on the output of a PV and it showed that PV output energy 

can also be dependent upon the number of pollutants in the air with greater number of 

pollutants leading to an increased likelihood of poorer PV performance [15]. Overall, 

dust accumulation or soiling is generally an unavoidable factor that will continue to 

negatively impact solar power performance. Only with an optimal cleaning method and 

schedule can solar panels continue to operate at their optimum level.  

At the same time, it is important to consider that dust accumulation on solar 

panels might be based on the size of the dust itself and the tilt angle of the solar panel 

[16-17]. With a more favorable angle for dust to land and remain on the surface, more 

dust could form on top of a solar panel, which would therefore require more cleaning 

and higher costs. For particles in Colorado, the maximum rate of disposition was close 

to 150 µm dust particles when it was tilted close to 155◦ the deposition rate is 9.78%. 
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2.2.1. Dust characteristics. The rate of dust accumulation varies depending 

upon the characteristics of dust that is being deposited on the surface of the solar panel. 

If the dust particle that is being deposited is less than 1 μm, categorized as fine dust 

particles, they will tend to stay and accumulate on the surface of a solar panel much 

faster than dust particles that are 5 μm in size, which are considered coarse dust particles 

[18]. At the same time, the different particles that are larger in diameter get effected 

much easier by other impacts like inertia and gravity, which could either increase or 

decrease the rate of dust accumulation. Often, this also involves multiple forces 

including van der Waals forces, cohesive forces and electrostatic forces. Furthermore, 

dust particles that have any sort of charted electrostatic property accumulate much 

faster than dust particles that have neutral electrostatic properties [19]. In addition, 

research has also been done on the impact of dust on different PV devices, specifically 

the polycrystalline, monocrystalline and amorphous silicon types, while taking into 

consideration the different types of dust as an influencing factor [20]. The study 

concluded that dust samples that are larger in size allow more light to pass and dust 

with a more diagonal shape and are more angular than others have better optical 

properties than those with spheroid or elliptical shapes. At the same time, other studies 

considered the impact of bird droppings on PV performance as well when taking into 

account the various tilt angles in correlation with the likelihood of the bird dropping 

pattern [21]. The study indicated that at an angle of 40o, there is a very low chance of 

bird dropping to form on the surface of the solar panel with an angle of 0o associated 

with the highest rate of disposition. When they studied the relationship between tilt 

angle and dust accumulation, it was revealed that there is a decrease of dust 

accumulation with an increase in tilt angle with 37.63%, 14.11%, and 10.95% with 

respect to 0o, 25o, and 45o tilt angles.  

2.2.2. Wind. Wind is one of the most fundamental aspects of influencing dust 

accumulation. Through wind, dust particles can transport themselves hundreds of 

kilometers and reach a surface to land upon. Wind influences dust accumulation 

negatively and positively by removing and depositing dust. The dust properties and 

wind velocity determine the influence of wind over dust accumulation and that changes 

depending upon the location [22]. The rate of dust accumulation is reduced on a PV 

module because of the wind blowing when the module is put at a particular orientation 

and tilt angle [23]. Moreover, other research states that wind has a negative impact on 
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soiling as it promotes the spread of dust particles in the atmosphere, which leads to 

increased surface deposition [24]. Additionally, studies on the effect of wind velocity 

and solar panel surface orientation in relation to dust accumulation show that dust 

accumulation increases with an increase in wind speed [25]. Furthermore, dust also 

affects the transmittance levels of PV, which can be measured by noting on glass the 

amount of dust on the surface of a solar panel [26]. In fact, in a study done in Egypt for 

over a year, the results showed that degradation was dependent on the tilt angle where 

the maximum degradation was observed at a horizontal position and minimum at the 

vertical position 

2.2.3. Temperature and relative humidity. Temperature and relative 

humidity are weather variables that can significantly influence dust accumulation on a 

solar panel. The relative humidity is considered to become higher at night as there is an 

increase in the content of water vapor in the air. As a result, when there is any sort of 

contact with a surface at lower temperatures, there will be condensation, which will 

result in water droplets that will help dust particles stick to the solar panels due to 

capillary forces [27-28]. Additionally, approximately 40%–80% relative humidity 

increases adhesion between the water droplets and dust particles close to 80% [29]. 

This indicates that relative humidity increases the likelihood of dust particles gathering 

on to the surface of solar panels. As a result, the only way to solve such an issue would 

be through continuous cleaning of a module over time [30]. Research on the effect of 

dust on solar panel performance when considering both temperature and relative 

humidity was performed in Qatar for two years. Results showed that there was close to 

a 50% degradation of power because of an eight-month exposure of the solar panel to 

the open environment without any cleaning [31-32]. In fact, research on the seasonal 

effect of dust deposition on PV performance in the UAE showed that the glass 

transmittance reduction is higher during summer and approximately 10% and 6% 

during the winter [33]. In addition to that, 70% of the efficiency degradation was 

recorded when the module was not cleaned for over a year [33].   

2.3. Cleaning Methods 

The current existing technologies around the world vary in their method of 

cleaning solar panels and, with it, the cost associated with its overall operation and 

maintenance. The benefits and drawbacks of each type of cleaning method as well asan 
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overview of some of the most common cleaning techniques are discussed in this 

section.  

2.3.1. Manual cleaning method. This method requires a human to 

manually clean the surface of a solar panel using either a mop or using wipers with or 

without any sort of support. In this cleaning technique, the quality of the cleaning 

surface depends highly upon the visual judgment of an individual. The likelihood of all 

the dust particles being removed from the surface of the solar panel depends on the 

person cleaning to notice if the panel is dust-free or not. In this case, the cleaning 

process is generally categorized as being extremely challenging and tedious especially 

in solar plants where the solar panels are installed at a certain height. Consequently, 

manual cleaning is labeled as not only being tough to operate but also extremely time-

consuming due to the need for a worker to go to every single solar panel and clean every 

part of it. At the same time, given that certain solar panels might be installed at heights, 

there is also the risk of laborers hurting themselves during the cleaning process in the 

case of climbing up or down a structure [34]. When specifically discussing the cleaning 

method, the person cleaning the solar panel simply uses a cleaning fluid, often a gel-

like substance that is rubbed on the surface of the solar panel along with water. 

However, the drawback of continuously rubbing the surface of the solar panel is the 

damage that can be caused by continuous cleaning over an extended period of time and 

the likelihood of the surface transparency to reduce if the cleaning process is not 

optimal. Consequently, there is also the risk of physical damage occurring on the solar 

panel [35].  

2.3.2. Vacuum suction cleaning method. Another common cleaning process 

is the vacuum suction cleaning process where a device is used to create a small vacuum 

that can suck dirt and dust. The general purpose of this device was to clean floors, 

window panes, and related equipment and so its introduction in the field of cleaning 

solar panels has reaped many benefits. Firstly, there is no use of water, which makes 

this cleaning technique extremely attractive from a resource point of view as water is a 

resource that is generally not desired to use unless necessary for cleaning. Also, when 

discussing the cleaning device itself, the vacuum cleaning motor operates off of a 

battery and a motor, which helps create the suction pressure required to remove dust 

and dirt off of the surface of a solar panel [36]. However, a downside of this cleaning 
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process is the fact that while dust can be eliminated from the general surface of the solar 

panel, the accumulated dust in the sides and corners of the solar panel is extremely 

difficult to get rid of. With continuous dust accumulating at the corners or sides of a 

solar panel, this could prove to be problematic as it could cause more dust to 

accumulate, hence cleaning occurring more often, and a higher cost for labor to clean 

the solar panels. Therefore, there is a need to properly use the device and to tilt it in 

ways to get as much dust off of the surface of the solar panel as possible. Another 

downside to this cleaning process is the possibility of causing scratches on the surface 

of the solar panel as large scratches can impact the effectiveness of the absorption of 

solar energy in a solar panel as the panel itself could be damaged [36]. 

2.3.3. Automatic wiper based cleaning method. The automatic wiper-based 

cleaning method is another popular cleaning technology that has been implemented in 

some places around the world. This simply consists of the use of a rubber wiper and 

water, along with a spray for the water, so that cleaning can be performed. The overall 

cleaning process resembles the cleaning method for the front glass in a vehicle where 

an automatic mechanism is used to operate the task. However, in this case, the wipers 

are connecting not at the bottom but on one side of the solar panel and they simply glide 

and clean the solar panel while brushing off and cleaning off the air [37]. While this 

method is also battery powered like the vacuum cleaning method, it has a drawback 

where the use of water puts this technology at a disadvantage. While the wipers are 

generally going to be placed on either end of a row of solar panels connected together 

in a solar plant, the overall cleaning process might become tedious if there are several 

solar panels spread out or not necessarily attached together. As a result, the cleaning 

wipers would have to be attached and detached from the sides of the solar panel every 

time there would be a need for cleaning. In addition, when using water, there is always 

the risk of creating mud or small deposits of mud that, if not cleaned properly, would 

be more problematic than small dust particles on the surface of a solar panel [37].   

2.3.4. Electrostatic precipitator cleaning method. One of the most 

upcoming and effective cleaning methods is the electrostatic precipitator (EP) cleaning 

method. Considering that the previously mentioned cleaning methods have the 

likelihood of causing a solar panel mechanical damage, scratches on its surface, 

possible mud formation, and even possible dust deposits on the sides of the solar panel 
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from the cleaning, this method is completely non-contact. Based primarily off of 

electrostatic charges, this cleaning method is unique in the sense that there is no contact 

being made with the surface of the solar panel. Essentially, the EP cleaning method is 

able to effectively clean and protect the surface of a solar panel while protecting it from 

any physical damage that other cleaning methods are at risk of causing. Overall, this 

cleaning process is a device that pushes off the dust particles available on the surface 

of the solar panel through a force that is induced from an electrostatic charge. Small 

transparent electrodes that are placed on the solar panels obtain a signal generally from 

an Arduino controlled signal once the microcontroller obtains information regarding a 

change in weight of the solar panel itself [38]. As accumulated dust can be identified 

through the weight it causes a solar panel to increase by, the Arduino sends a signal to 

the electrostatic precipitators to induce a negative charge on the dust particles that are 

on the surface of the solar panel. After that, the dust particles are gathered at the positive 

electrode after they are attracted to it and they are then pushed away and off the surface 

of the solar panel. Consequently, without using any water or contact in any way, the EP 

cleaning method is one of the most effective and harmless methods of cleaning a solar 

panel for optimal cleaning results [38].  

2.4. Related Work 

When it comes to related work, the modeling of PV and dust accumulation has 

been carried out through numerous techniques depending on the complexity of the 

model and the assumptions made. When it comes to modeling PV energy production 

alone, it has often been performed by clustering daily values of solar irradiance together 

or by using monthly-hourly data to guarantee greater precision [39]. In most research 

cases, solar irradiance is generally modeled statistically as a beta distribution [40]. At 

the same time, other research has modeled global solar irradiance through exponential, 

Weibull, gamma, normal, log normal, beta, or geometric distributions [41-42].  

Some models have taken into consideration the importance of temperature and 

how it impacts temperature where mean temperature data is used. Those models are 

based on Monte Carlo simulations (MCS) and they take into consideration the random 

behavior of solar irradiance with historical mean temperature data [43-44]. However, 

there is a lack of modeling temperature from a probabilistic perspective, which makes 

this approach less accurate. Other models have used solar irradiance and air temperature 
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data for short-term forecasting using a power probability density function (PDF) that is 

based on a Bayesian autoregressive time-series (BATS) model [45]. Such a model relies 

on predicting the clearness index and an MCS for the power distribution function when 

it came to the random sampling associated with the clearness index [46]. The downfall 

to this approach is that the likelihood of error due to representing power through the 

nonlinear relationship between the clearness index and power is high.  

However, an accurate model of PVs cannot be done without taking into 

consideration the numerous weather factors that impact it and, specifically, dust 

accumulation. A common way of modeling dust accumulation levels, as seen in [47], 

is by directly looking at the PV output and, using historical data, predicting the level of 

dust that accumulates on the surface of the panel based on losses. Other models rely on 

MCS for stochastically generating possible soiling profiles on a daily basis for a specific 

length of time [48]. In addition, some research recommends the use of a fixed rate 

precipitation estimate to calculate dust accumulation as it depends on soiling rate, 

cleaning threshold, and refractory periods of time [49]. Dust accumulation modeling 

has also been performed using particulate matter concentration values like in [50-51] 

where a specific particulate matter could help predict future precipitation patterns using 

historical data. Particulate matter and the period in, which the climate is dry have been 

seen as two variables most affecting soiling rates [52-53]. In such studies, the 

correlation of particulate matter concentration and soiling desperation rates often exists 

but not in other climate conditions.  

 PV yield can also be used to model dust accumulation and PV soiling loss as 

in [54] using the stochastic rate and recovery (SSR) method, which is based on a Monte 

Carlo simulation. However, this method lacks the use of historical precipitation data, 

which makes this method less reliable when considering the behavior of dust in reality. 

Dust accumulation rates along with soiling rates have also been modeling in [55] as the 

slope of the daily soiling ratio using the Theil-Sen estimator assuming a dry period of 

at least 14 days. While this model is more accurate than using a least-squared regression 

model, it fails to take precipitation into account. Another model discussed in [56] that 

models PV and dust accumulation based on soiling rates is the Fixed Rate Precipitation 

(FRP) model where it extracts a daily soiling profile from a PV assuming that the soiling 

rate is fixed between rainfall events. However, the rate of dust accumulation is never 
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fixed as the weather variables surrounding the PV at any time can either increase or 

decrease the rate of dust accumulation that occurs.  

Overall, while the modeling of dust as a constant factor may fit certain research 

criteria, a more realistic approach would be to model dust as a variable that changes in 

terms of time when considering PV loss. In models like [57] and [58], dust is considered 

as a constant that does not vary with time. However, a more accurate model of dust and 

its impact on PV performance would be to vary dust based on time. Models of dust 

behavior in [59] suggest that dust accumulation increases and eventually after reaching 

a certain dust level, the accumulation rate decreases. Only through cleaning a solar 

panel manually, automatically, or through weather factors such as rain can a panel’s 

dust level on its surface decrease. While certain models like [60] relied upon particulate 

matter (PM) concentrations, namely PM10 and PM2.5, there are far more weather 

factors like rain, wind speed, relative humidity, and much more that must be taken into 

consideration. Other models in [61] relied more on the static settling velocity (SSV) of 

dust particles along with the angle of inclination of the PV panel to model dust 

accumulation. While both of those factors are significant in modeling dust, those 

models have not been tried in drier climates where rain, which is a major influencing 

factor for the SSV, is less frequent. Moreover, dust particle sizes vary depending upon 

the geographical location of the PV and more test locations would have to be tried out 

to further verify the accuracy of these models [62].  

Consequently, there is a lack of literature on the modeling of dust accumulation 

and its corresponding losses on PV performance as a function of time. Dust 

accumulation cannot accurately be modeled as a static carriable as its value increases 

or decreases with time depending mainly upon numerous weather variables. The 

absence of such an approach facilitates the need to model dust in terms of time, 

preferably per hour to get more accurate results so that soiling loss can more accurately 

be modeled.  
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Chapter 3. Proposed Model 

 

In this chapter, we will discuss the proposed model shown in Figure 3.1 that has 

three stages and uses historical data related to the behavior of solar irradiance, 

temperature, and rate of dust accumulation. The first stage is the data acquisition and 

processing stage where the raw data is discretized and categorized in a unique way. 

This would allow it to be inputted into the second stage, which is where the Markov 

chain model is used. The third and final stage is the cumulative distribution function 

generation, which is generated using the probability mass function output of the Markov 

Chain simulation. The proposed model is then used to generate virtual scenarios. 

3.1. Historical Input Data 

The primary inputs to the proposed model shown in Figure 3.1 are the PV power 

measurements and climate data for 𝑁𝑦 years of hourly historical data. This includes 

data regarding ambient temperature (𝑇ambient), solar irradiance (𝑆𝐼), dust accumulation 

(𝐷acc), and rate of dust accumulation (𝑅𝐷𝐴). Sample dataset values for 𝑆𝐼, 

𝑇ambient, 𝐷acc, can be seen in Appendix A. While other factors including wind speed, 

relative humidity, and precipitation are also valid weather variables to include, the data 

for dust accumulation would account for any changes in the previously mentioned three 

weather variables. Furthermore, 𝑅𝐷𝐴 was calculated using the dust accumulation data 

by noting the change in dust levels at any given hour to the one succeeding it. 

Additionally, as the panels were initially clean, dust levels began at zero. At this point, 

we have four data sets, which include 𝑇ambient, 𝑆𝐼, 𝐷acc, and 𝑅𝐷𝐴.  

 

Figure 3.1: Overall System Model Flowchart 
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3.2. Stage 1: Data Acquisition and Processing 

To analyze and use the hourly data for a set number of years, 𝑁y, the 

discretization of each datapoint was necessary so that it could then be used in the 

Markov chain model. Consequently, the most efficient way to discretize the data and 

cluster them based on the centroids was using the k-means clustering algorithm, which 

is based on the squared error function in (1). 

arg min
𝑆

= ∑ ∑ ∣∣ 𝑥 − μi ∣∣2 

𝑥 ∈𝑆i

𝑘

𝑖=1

 

 

(1) 

Assuming there is a set of data from 𝑥1, 𝑥2, …  𝑥n, then the k-means clustering 

partitions the n observations into k sets 𝑆 =  {𝑆1,  𝑆2,  . . . ,  𝑆k} where μi is the mean of 

points in Si. To model the weather variables accurately, the data was discretized and 

clustered into 𝑁D different states, which is the number of dust accumulation states. Each 

of the weather variables used in the Markov chain have a varying number of states into 

which they are clustered to make the simulation more realistic. In this model, NRDA is 

the number of states for the rate of dust accumulation, 𝑁SI is the number of states for 

solar irradiance, and 𝑁T is the number of states for temperature. By increasing the 

number of states that the data is clustered into, the level of complexity of the simulation 

increases and it becomes more realistic. The four data sets of 𝑇ambient, 𝑆𝐼, 𝐷acc, and 𝑅𝐷𝐴 

were then discretized and after that the primary and secondary categorization is 

performed as follows 

3.2.1. Primary categorization. The four data sets are then categorized 

according to the season such that the model could account for seasonal differences in 

weather variables. Each data set is categorized as follows. The 𝑇ambient  data set is 

organized in matrix 𝑇 = [ 𝑇𝑖,ℎ], the 𝑆𝐼 data set in matrix 𝑆𝐼 = [ 𝑆𝐼𝑖,ℎ], the 𝐷acc data set 

in matrix 𝐷 = [ 𝐷𝑖,ℎ], and the 𝑅𝐷𝐴 data set in matrix 𝑅𝐷𝐴 = [ 𝑅𝐷𝐴𝑖,ℎ]. The element 

of each of the matrices is based on 𝑖 ∈ ℐ, where 𝑖 is the days in the original data and ℐ 

is the original data set, and ℎ, which is the hour of the day that ranges from 1 to 24. 

When categorizing these data sets further according to the four seasons, the 

𝑇ambient  seasonal data  is organized in matrix 𝑇𝑠 = [ 𝑇𝑖,ℎ
𝑠 ], the 𝑆𝐼 data set in matrix 

𝑆𝐼𝑠 = [ 𝑆𝐼𝑖,ℎ
𝑠 ], the 𝐷acc data set in matrix 𝐷𝑠 = [ 𝐷𝑖,ℎ

𝑠 ], and the 𝑅𝐷𝐴 data set in matrix 

𝑅𝐷𝐴𝑠 = [ 𝑅𝐷𝐴𝑖,ℎ
𝑠 ]. In this case, sample 𝑖 ∈ ℐ𝑠 ⊂ ℐ, where ℐ𝑠 is the seasonal data and is 
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90 ×  𝑁𝑦 and 𝑠 represents the seasons ranging from 1 to 4. At this point, there are a 

total of 16 × 24 data sets in total and 4 × 24 data sets for each season. 

3.2.2. Secondary categorization. The seasonal data sets 𝑇ambient, 𝑆𝐼, and 

𝑅𝐷𝐴 are then categorized further to 𝑁D groups, as shown in Figure 3.2, based on the 

dust level in the first hour of the day assuming that the dust level would not change for 

the rest of the day. By doing this, the 𝑇ambient  seasonal data would then be represented 

in matrix 𝑇𝑠,𝑑 = [ 𝑇𝑖,ℎ
𝑠,𝑑], the 𝑆𝐼 data set in matrix 𝑆𝐼𝑠,𝑑 = [ 𝑆𝐼𝑖,ℎ

𝑠,𝑑], and the 𝑅𝐷𝐴 data set 

in matrix 𝑅𝐷𝐴𝑠,𝑑 = [ 𝑅𝐷𝐴𝑖,ℎ
𝑠,𝑑]. As previously mentioned, sample 𝑖 ∈ ℐ𝑠 ⊂ ℐ and would 

represent the number of days, ℎ would represent the number of hours from 1 till 24, 𝑠 

would represent the seasons from 1 till 4 and 𝑑 would represent the dust level from 1 

till 𝑁𝐷. At this point, there are 12 × 𝑁𝐷 data sets and 3 × 𝑁𝐷 data sets per season. 

 

Figure 3.2: Seasonal Data Organization 

In other words, for any day 𝑖 in season 𝑠, the 𝑇ambient, 𝑆𝐼, and 𝑅𝐷𝐴 are 

categorized together if the dust level in the first hour of day 𝑖 for that season matches 

the dust level in the 𝐷𝑠 matrix. If so, the data elements of the first hour and the following 

24 data point from matrices 𝑇𝑠, 𝑆𝐼𝑠, and 𝑅𝐷𝐴𝑠are categorized together to form matrices 

𝑇𝑠,𝑑, 𝑆𝐼𝑠,𝑑, and 𝑅𝐷𝐴𝑠,𝑑, respectively. In total, 25 data points were taken with the first 

24 data points representing the day in focus and the first hour of the following day is 

the 25th data point that will be used in the next stage. 

To analyze all the data together and not separately as three different matrices, it 

was important to put all the data under a single matrix. Hence to generate an overall 
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multi-state model, the three variables affecting the PV are combined into one matrix 

𝑀𝑠,𝑑  = [ 𝑀𝑖,ℎ
𝑠,𝑑]. Each element of matrix 𝑀𝑠,𝑑 is composed of an element from each of 

the matrices 𝑇𝑠,𝑑, 𝑆𝐼𝑠,𝑑, and 𝑅𝐷𝐴𝑠,𝑑. The three matrix elements are then replaced with 

an equivalent system state value and stored in a single element in 𝑀𝑠,𝑑. The total 

number of system states that describe all possible conditions should be 

𝑁SYS =  𝑁SI ×  𝑁T ×  𝑁RDA (2) 

  

Each data point would hold a value from 1, … , 𝑁SYS that would correspond to a 

specific state for 𝑁SI, 𝑁T, and 𝑁RDA. By doing so, the 𝑁v different weather variables, in 

this case four, could later be analyzed inside a single matrix. We assume there is no 

correlation between these random variables occurring at a certain hour of a certain 

season at the same dust level. 

3.3. Stage 2: Markov Chain Model   

While there are numerous stochastic modeling techniques used in research for 

PV modeling forecasting, one of the most common is the Markov chain model. While 

every forecasting model has its own advantages in solving complex real-world 

problems, the Markov process is commonly used when modeling dynamic stochastic 

systems and the state transitions that exist in complex stochastic systems. A Markov 

chain model is a discrete-time stochastic process that models how a random variable 

change at discrete points of time. The Markov chain model has therefore been employed 

in this thesis to model the behavior of numerous weather factors and their impact on 

dust accumulation to analyze the performance of a PV. 

The discrete-time Markov chain 𝑀(𝑡) is a discrete time stochastic process based 

on the idea that each time step 𝑡 is occupied by one state 𝐸μ in a series of states defined 

as 𝐸1,…,𝐸N. Each of those states is defined stochastically on the basis of only the 

previous state and this satisfies the Markov property. In other words, the probability 

distribution of any state at any time step of 𝑡 +  1 is dependent on the state 𝑡 and not 

dependent upon the previous states that lead to the state at time 𝑡. More importantly, 

the state transition that occurs between time step 𝑡 and 𝑡 +  1 is independent of time. 

The time steps involved in the entire process can be defined from 𝑡 = 1, … , 𝑇 with 𝜇 =

1, … , 𝑁 representing the index of which state the Markov chain is in. After that, the 

transition matrices must be generated. As the Markov process moves from time step 𝑡 
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to the next time step at 𝑡 +  1, the state of the process at time 𝑡 +  1 can be determined 

from the state at time step 𝑡 using the transition probabilities given as 

𝑃μv(𝑡) ≡ 𝑃𝑟𝑜𝑏 (𝑋t+1 = 𝐸v |𝑋t =  𝐸μ) (3) 

  

It is important to note that (3) satisfies the Markov property that the state at any 

time instant 𝑡 + 1 is only dependent on the state at time t. Using this, the transition 

matrices 𝑃, which are square matrices, can be generated with dimension 𝑁 ×  𝑁. For 

each 𝑁D for dust accumulation, there are 24 different Markov transition matrices with 

each matrix representing the transition from a specific hour of the day to the following 

hour. As there are now 24 transition matrices for each dust level for each season, the 

total number of Markov transition matrices, 𝑀TMT, can be calculated from the following 

𝑀TMT =  24 ×  4 ×  𝑁D  (4) 

  

The transition matrices each have dimensions 𝑁SYS × 𝑁SYS, with the columns 

and rows representing the different system map values. Each element with the transition 

matrix 𝑃 represents the probability of state 𝑣 occurring at time slot 𝑡 + 1 given that the 

previous state at time slot 𝑡 is considered as 𝜇. The way the probabilities for each matrix 

value were calculated using the maximum likelihood 𝑀L can be expanded to reach  

𝑀L =
𝑛μv

∑ 𝑛μp𝑝
  

 

 

(5) 

  

where 𝑛μv is the number of transitions from state 𝜇 at the time instance 𝑡 till time 

instance 𝑡 + 1. The maximum likelihood estimate is used to calculate the probability 

that is the frequency of occurrences divided by the total number of possible 

occurrences. To guarantee that each transition matrix was calculated accurately, the 

sum of each row for the transition matrices had be equal to 1 as it is an important 

characteristic of the Markov model. 

3.4. Stage 3: Cumulative Distribution Function Generation 

Using the transition probability matrices, the cumulative distribution function 

(CDF) could be created that would later be used for generating virtual scenarios. The 

CDF of a random variable 𝑋, when plotted, would form a staircase plot with the CDF 

of any random variable flat between 𝑥k and 𝑥k+1. The probability mass function (PMF), 
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which is the data from the Markov transition matrices, is used to develop the CDF 𝐹X 

as follows: Using (6), the CDF of the Markov transition matrices can be determined.  

𝐹X(𝑥) = ∑ 𝑃X(𝑥k)

xk≤x

  (6) 

   

3.5. Virtual Scenarios Generation 

With the transition matrix CDF’s created, the next step was to create virtual 

scenarios to accurately understand the behavior of dust accumulation as seen in Figure 

3.3. Assuming there are Nscenarios that are to be modeled, the dimensions of the virtual 

scenarios matrix will be 8760 × Nscenarios with the columns representing each hour of 

the day for a complete year. It is important to note that the first column of the virtual 

scenarios matrix will be calculated differently than the rest of the columns as it is not 

based on any previous information from any hour before that first day. Therefore, for 

the first hour of the first day for each row of the virtual scenario matrix, the initial data 

was converted into a transition matrix without any separation based on correlating it 

with any level of dust accumulation. After that is done, it is also converted into the 

system map that is then systematically placed as the first column of the virtual scenario 

matrix.  

With the first column of the virtual scenario calculated, the remaining parts of 

the virtual scenarios were calculated with the information from the transition matrix 

CDF’s and the first column of the virtual scenario matrix. Depending upon the value of 

the first number in the first column of the virtual scenario matrix, the corresponding 

row for the transition matrix CDF for hour 1 to hour 2 would be focused on. After that, 

a uniformly distributed random number between 0 and 1 was generated and depending 

upon that value, the corresponding two numbers around that uniformly distributed 

random number is selected. For every uniformly distributed random number, there will 

be a number less than and greater than it in the transition matrix CDF. Between the two 

numbers, the number that is greater than it is chosen and selected as the second row 

value in the second column of the virtual scenario matrix. This is because the values in 

the second column represent the transition from hour one to hour two of the first day 

that is virtually generated. A similar process is followed for the remaining hours of the 

day and for every hour of each day for the year. An important aspect of the virtual 

scenario design is also the implementation of a cleaning pattern within the virtual 
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scenarios. Given the solar panels are cleaned every Nclean days throughout the year, the 

first column after the Nclean day uses information for the first, or otherwise, clean dust 

level that will correspond to the first dust state. As the dust accumulation, which is 

monitored as increasing throughout the virtual scenarios is studied, the corresponding 

transition matrix with a different dust level is chosen. After each hour of the virtual 

generation, the dust level is measured, using information from the rate of dust 

accumulation, to determine if the dust level has entered another category of dust states. 

If this occurs, a different hourly transition for a different dust state transition matrix is 

used to continue. 

 

Figure 3.3: Output of Overall System Model: Virtual Scenarios. 
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Chapter 4. Power Profile Generation Mechanism   

 

In this chapter, the model proposed in Chapter 3 is used to develop the power 

profile of a PV. To perform this, a relationship between dust accumulation and the 

power output was developed that was then applied to the virtual scenarios as seen in 

Figure 4.1. 

 

Figure 4.1: Relationship Between Dust Accumulation and Solar Irradiance Received 

Flowchart. 

4.1. Proposed Mechanism 

The virtual scenarios generate dust accumulation values that can be converted 

to the output power of a PV. To perform this, a relationship must be developed between 

dust accumulation and power output. Existing relations for the module short-circuit 

current (𝐼𝑠𝑐), module open-circuit voltage (𝑉𝑜𝑐), and the PV maximum power output 

(𝑃𝑚𝑎𝑥𝑖𝑚𝑢𝑚) in [45] were modified and can be seen below. 

 

𝐼𝑠𝑐 = 𝐼𝑠𝑐𝑠𝑡𝑐
× (1 + 𝐾𝑖𝑠𝑐 × (𝑇𝑐𝑒𝑙𝑙 − 𝑇𝑠𝑡𝑐)) ×

𝑆𝑅

𝑆𝑠𝑡𝑐
 

(7) 
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𝑉𝑜𝑐 = 𝑉𝑜𝑐𝑠𝑡𝑐
× (1 + 𝐾𝑣𝑜𝑐 × (𝑇𝑐𝑒𝑙𝑙 − 𝑇𝑠𝑡𝑐)) 

  

 

𝑇𝑐𝑒𝑙𝑙 = 𝑇𝐴 + 𝑆𝑅 × (
𝑁𝑂𝐶𝑇 − 𝑇𝑁𝑂𝐶𝑇

𝑆𝑁𝑂𝐶𝑇
) 

  

 

𝑃𝑚𝑎𝑥 = 𝐹𝐹 × 𝐼𝑠𝑐 ×  𝑉𝑜𝑐  × 𝑁𝑃𝑉𝑀𝑜𝑑𝑢𝑙𝑒𝑠 

 

 

  

 

 

(8) 

 

 

(9 ) 

 

(10) 

where 𝐼𝑠𝑐𝑠𝑡𝑐
 represents the short-circuit current at standard test conditions, 𝐾𝑖𝑠𝑐 the 

temperature coefficient for of 𝐼𝑠𝑐, 𝑇𝑐𝑒𝑙𝑙 the temperature of the cell, 𝑇𝑠𝑡𝑐 the temperature 

at standard test conditions, 𝑆𝑅 the solar irradiance received, 𝑆𝑠𝑡𝑐  the solar irradiance at 

standard test conditions, 𝑉𝑜𝑐𝑠𝑡𝑐
 the open-circuit voltage at standard test conditions, 𝐾𝑣 

the temperature coefficient for 𝑉𝑜𝑐, 𝑁𝑂𝐶𝑇 the nominal operating cell temperature, 

𝑇𝑁𝑂𝐶𝑇 the temperature at the nominal operating cell temperature, 𝑆𝑁𝑂𝐶𝑇 the solar 

irradiance at that specific nominal operating cell temperature, 𝐹𝐹 the fill factor, and 

𝑁𝑃𝑉𝑀𝑜𝑑𝑢𝑙𝑒𝑠 the number of PV modules. The temperature relation in (7) is integrated in 

(8) and (9) so that  𝐼𝑠𝑐 and 𝑉𝑜𝑐 would only be in terms of 𝑇𝐴 and 𝑆𝑅. Then, the 𝐼𝑠𝑐 and 

for 𝑉𝑜𝑐 relations are substituted into (10), where the 𝐹𝐹 and 𝑁𝑃𝑉𝑀𝑜𝑑𝑢𝑙𝑒𝑠 are also fixed 

variables, to determine 𝑃𝑚𝑎𝑥 as seen below with 𝐶 representing a constant that is 

generated during the re-arranging process.  

𝑃𝑚𝑎𝑥 = 𝑇𝐴
2 × 𝑆𝑅 × 𝐶 

  

(11) 

At this point, there is a single equation to calculate 𝑃𝑚𝑎𝑥 that is only in terms of 

𝑇𝐴 and 𝑆𝑅. Therefore, (11) can now be rewritten to solve for 𝑆𝑅 with 𝑇𝐴 and 𝑃𝑚𝑎𝑥 being 

required for it as seen below. 

𝑆𝑅 =
𝑃𝑚𝑎𝑥

𝑇𝐴
2 × 𝐶

 

  

(12) 

Using (12) and data from 𝑁𝑦 years of historical data regarding 𝑇𝐴 and 𝑃𝑚𝑎𝑥, 

𝑆𝑅 can be calculated. In this case, 𝑃𝑚𝑎𝑥 would represent the power that the solar panel 

is generating over the course of 𝑁𝑦 years of historical data. The reason this information 

is relevant is because solar panels generally have built-in methods to determine the ideal 

solar irradiance available at a certain time of the day. However, when considering the 

existence of dust, the solar irradiance absorbed by the solar panel is not what the 

reference cell on the solar panel would suggest as it would be less. Therefore, given 
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𝑃𝑚𝑎𝑥 generated by a solar panel and the corresponding 𝑇𝐴 for 𝑁𝑦 years of historical 

data, the actual 𝑆𝑅 that is unknown can be determined. After determining what 𝑆𝑅 is, it 

can be compared to 𝑆𝑖𝑑𝑒𝑎𝑙, the optimal solar irradiance assuming no dust from a 

reference cell, to determine solar irradiance percentage loss 𝑆𝑙𝑜𝑠𝑠. 𝑆𝑙𝑜𝑠𝑠 can then be 

plotted versus dust accumulation for 𝑁𝑦 years of historical data to determine a 

relationship between the two and can be seen in Figure 4.2. 

 

 

Figure 4.2: Percentage Loss in Solar Irradiance Versus Dust Accumulation. 

 

As seen in Figure 4.2, as dust accumulation increases, the percentage loss in 

solar irradiance 𝑆𝑙𝑜𝑠𝑠 also increases. After determining the best fit curve to represent 

the relationship between 𝑆𝑙𝑜𝑠𝑠 and dust accumulation, which is through a quadratic 

equation, an overall relationship connecting dust accumulation and power output can 

be established. The implementation of this can be seen in Figure 4.3, Figure 4.4, Figure 

4.5, and Figure 4.6 where the power output of a PV for 𝑁y years of historical data across 

a year can be seen and is represented by 𝑃𝑎𝑐𝑡𝑢𝑎𝑙. It is important to note that in this 

specific case, there is no cleaning done and dust is expected to accumulate naturally on 

the panel over time for the entire year. 𝑃𝑖𝑑𝑒𝑎𝑙 represents solar panel power output 

assuming that it receives maximum solar irradiance with no dust, which is recorded by 

the reference cell on the panel and calculated using (7-10). Across the entire year, the 

average percentage difference is as high as 62.7% between 𝑃𝑎𝑐𝑡𝑢𝑎𝑙  and 𝑃𝑖𝑑𝑒𝑎𝑙.  
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Figure 4.3: Power Output of Solar Panel Under Ideal, Actual, and Model Conditions 

During the Spring Season. 

 

 

Figure 4.4: Power Output of Solar Panel Under Ideal, Actual, and Model Conditions 

During the Summer Season. 

 

  

Figure 4.5: Power Output of Solar Panel Under Ideal, Actual, and Model Conditions 

During the Autumn Season. 
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Figure 4.6: Power Output of Solar Panel Under Ideal, Actual, and Model Conditions 

During the Winter Season. 

 

As expected, there is a huge difference between the actual power output of the 

panel and the ideal power output of the panel assuming no dust and no hindrance to 

overall solar irradiance. Now, using the relationship determined earlier between 

𝑆𝑙𝑜𝑠𝑠 and dust accumulation, existing data for dust accumulation and maximum solar 

irradiance from the reference cell for the same panel can be used to determine 𝑆𝑙𝑜𝑠𝑠 for 

any data set. Using the calculated 𝑆𝑙𝑜𝑠𝑠, 𝑆𝑅 can be determined. Using 𝑆𝑅 with 𝑇𝐴, 𝑃𝑚𝑎𝑥 

can then be calculated and is represented by 𝑃𝑚𝑜𝑑𝑒𝑙 in the figure above. Across the 

entire year, the difference between 𝑃𝑚𝑜𝑑𝑒𝑙 and 𝑃𝑎𝑐𝑡𝑢𝑎𝑙 is 2.08% and that highlights the 

accuracy of the relationships determined earlier between dust accumulation and 𝑆𝑙𝑜𝑠𝑠. 

This also supports that overall relationship determined between dust accumulation and 

power output of a solar panel is also accurate.  
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Chapter 5. Results and Analysis 

 

In this chapter, the simulation results achieved for the virtual scenarios 

generated is presented. An entire year with two different cleaning scenarios is studied 

and the dust accumulation for different seasons in the year is analyzed. 

5.1. Simulation Results 

 The carried out investigated two seasons, summer and winter, while varying the 

cleaning frequencies. The reason summer and winter were chosen, as opposed to 

including spring and autumn, is that the weather variables in both of those seasons are 

close to completely opposite. Hence, a clear difference in the behavior of weather and, 

consequently, a difference in dust accumulation is hypothesized. The virtual scenarios 

that were generated were focused over a 90 day period that is close to a 3 month period 

that would account for a complete season. More specifically, the winter season was 

specified from 90 days after December 1 and the summer season would begin from 90 

days after June 1. The five cleaning frequencies would range from cleaning every one 

week to cleaning every five weeks. With the summer season in focus, each of the five 

different cleaning frequencies spread over a 2160-hour time period, or 90 days, can be 

seen in Figure 5.1, Figure 5.2, Figure 5.3, Figure 5.4, and Figure 5.5. With PV panel 

cleaning occurring every week, the maximum the dust level reached was 6.0785 mg 

with an average dust accumulation of 1.9240 mg overall. For cleaning every two weeks, 

the maximum the dust level reached was 6.4206 mg with an average dust accumulation 

of 2.5347 mg. With cleaning every three weeks, the maximum dust level was 6.7535 

mg and the average dust accumulation level was 2.5704 mg. Increasing the cleaning 

frequency to be every four weeks pushed the maximum dust level to be 7.0889 mg and 

the average dust level to be 2.7221 mg. Lastly, with a cleaning frequency of every five 

weeks, the maximum dust level was 7.9116 mg and the average dust accumulation level 

was 3.6672 mg.  

Similarly, the results for simulating the winter season can be seen in Figure 5.6, 

Figure 5.7, Figure 5.8, Figure 5.9, and Figure 5.10. Once again, the cleaning frequency 

is varied while the maximum and average dust level is studied. With a cleaning 

frequency of every week, the maximum dust level reached was 2.7246 mg with an 

average dust accumulation level of 0.7839 mg.  
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Figure 5.1: Virtually Generated Dust Accumulation on Solar Panels During the 

Summer Season with Cleaning Every 7 Days. 

 

Figure 5.2: Virtually Generated Dust Accumulation on Solar Panels During the 

Summer Season with Cleaning Every 14 Days. 

 

 

Figure 5.3: Virtually Generated Dust Accumulation on Solar Panels During the 

Summer Season with Cleaning Every 21 Days. 
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Figure 5.4: Virtually Generated Dust Accumulation on Solar Panels During the 

Summer Season with Cleaning Every 28 Days. 

 

Figure 5.5: Virtually Generated Dust Accumulation on Solar Panels During the 

Summer Season with Cleaning Every 35 Days. 

 

For cleaning occurring every two weeks, the maximum dust level reached was 

3.2258 mg with an average dust accumulation level of 0.8267 mg. With a cleaning 

frequency of every three weeks, the maximum dust level increased to 4.1370 mg and 

the average dust accumulation level also increased to 1.2431 mg. Increasing the 

cleaning frequency by another week resulted in the dust level to remain fairly the same 

at 4.0536 mg with the average dust level also not changing significantly at 1.4115 mg. 

With cleaning every five weeks, the maximum dust level increased to 4.5734 mg and 

the average dust accumulation level increased slightly to 1.4792 mg.  

A summary of the results for both the maximum and average dust levels across 

the summer and winter seasons for five different cleaning frequencies can be seen in 

Table 5.1 and Table 5.2 where the cleaning frequencies are compared.  
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Figure 5.6: Virtually Generated Dust Accumulation on Solar Panels During the 

Winter Season with Cleaning Every 7 Days. 

 

 

Figure 5.7: Virtually Generated Dust Accumulation on Solar Panels During the 

Winter Season with Cleaning Every 14 Days. 

 

 

Figure 5.8: Virtually Generated Dust Accumulation on Solar Panels During the 

Winter Season with Cleaning Every 21 Days. 
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Figure 5.9: Virtually Generated Dust Accumulation on Solar Panels During the 

Winter Season with Cleaning Every 28 Days. 

 

 

Figure 5.10: Virtually Generated Dust Accumulation on Solar Panels During the 

Winter Season with Cleaning Every 35 Days. 

 

As seen when comparing the cleaning frequency of the summer season with the 

winter season, the need to clean in the summer season is far greater with dust levels 

reaching over 4 mg more than in winter seasons. With cleaning every 5 weeks, the 

levels of dust during the summer reached a peak level of 7.9116 mg where, during the 

winter months, cleaning ever 5 weeks reaches a maximum of 4.5734 mg. This indicates 

that the need for cleaning is far greater in the summer season as the rate of dust 

accumulation is very close to double during the warmest season of the year. When 

comparing the average dust levels for both seasons, similar results can also be seen. 

The summer season has an average dust level close to 3.6672 when cleaning occurs 

every five weeks while the winter season has an average level of 1.4115. Evidently, the 

average dust level is over double during the summer season than it is in the winter 

season, which indicates a far greater dust accumulation rate and a greater need for 

cleaning. When analyzing this further, it would take cleaning to occur every one week 
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for the average dust level to drop close to the dust levels when cleaning occurs every 

five weeks in the winter season. If cleaning occurs every week in the summer, dust 

levels can drop significantly and the power losses that PVs face will be far less. In fact, 

the difference in the average dust level during the summer season for every week and 

every five weeks is 1.7432 mg. When comparing this to the winter season, the 

difference between the two extremes of cleaning frequency is less than half at 0.6276 

mg. Evidently, there is a far greater benefit of cleaning every week in the summer than 

there is in the winter as dust accumulation levels would decrease by close to 2 mg on 

average and that will make a huge difference to overall PV performance. Consequently, 

cleaning does not have to occur anywhere near as frequently during the winter season 

as the difference in average dust levels is far less. 

Table 5.1: Maximum Dust Levels Across the Summer and Winter Season for Five 

Different Cleaning Frequencies. 

Cleaning Frequency Summer Winter 

Every 7 Days 6.0785 mg 2.7246 mg 

Every 14 Days 6.4206 mg 3.2258 mg 

Every 21 Days 6.7535 mg 4.1370 mg 

Every 28 Days 7.0889 mg 4.0536 mg 

Every 35 Days 7.9116 mg 4.5734 mg 

 

Table 5.2: Average Dust Levels Across the Summer and Winter Season for Five 

Different Cleaning Frequencies. 

Cleaning Frequency Summer Winter 

Every 7 Days 1.9240 mg 0.7839 mg 

Every 14 Days 2.5347 mg 0.8267 mg 

Every 21 Days 2.5704 mg 1.2431 mg 

Every 28 Days 2.7221 mg 1.4115 mg 

Every 35 Days 3.6672 mg 1.4792 mg 

 
 

5.2. Model Validation 

The virtual scenarios generated depict results for dust accumulation throughout 

the year that must be validated. To carry out the process of validating dust accumulation 

levels, the mean value of dust accumulation for each hour of each season was gathered 

from the virtual scenarios and the 𝑁y years of historical data. It is important to note that 

the virtual scenarios generated were done assuming no cleaning was done throughout 

the year. This is because the existing 𝑁y years of historical data is of dust accumulation 
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with no cleaning. The mean values were then plotted together for an entire year and can 

be seen in Figure 5.11, Figure 5.12, Figure 5.13, and Figure 5.14 where there is a 

seasonal variance between the mean values of the levels of dust accumulation. An 

important observation is the large increase in dust accumulation levels between the 

seasons as is visible from the spring season to the summer season and other seasons.

 

Figure 5.11: Dust Accumulation Mean Comparison for Spring Season 

 

Figure 5.12: Dust Accumulation Mean Comparison for Summer Season 
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Figure 5.13: Dust Accumulation Mean Comparison for Autumn Season 

 

Figure 5.14: Dust Accumulation Mean Comparison for Winter Season 

 

The reason behind this large increase is because the first hour of summer 

represents the mean value of dust accumulation for every first hour of the day over the 

entire season. In order to interpret the results of the mean values of dust accumulation 

for the virtual scenarios and the 𝑁y years of historical data, the error percentage between 

the mean values was calculated for the entire year. Over the course of the year, the 

average error percentage was 4.57% and the maximum error percentage was 9.78% and 

that highlights the acceptable accuracy of the model. 
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5.3. Optimal Planning of Model 

 

The proposed model can be implemented into a PV power plant of different 

sizes after which the financial benefits of using the model can be seen. To highlight 

these benefits, a case study was developed for a 100 MW PV power plant. The objective 

of this case study is to implement the model to understand what the recommended 

cleaning frequency would be in different seasons. As the virtual scenarios can be used 

to model what dust levels would be in different seasons and the corresponding output, 

the model was used to depict the output power of a 100MW PV plant under five 

different cleaning frequencies. Table 5.3 summarizes the parameters of the case study 

that were used to get a cost estimate. 

Table 5.3: Parameters for Cleaning a 100 MW PV Power Plant. 

Parameter Value 

Power Plant Size (MW) 100 

)2Power Plant Area (m 717,949 

Module efficiency 14% 

Cost of Water ($/liter) 0.0024 

)2Water Consumption (liter/m 0.5 

Time to Clean 1 Panel (min) 0.5 

Labor Rate ($/hr) 4.45 

)2Cost of Other Materials ($/m 0.0053 

Capital Equipment ($) 90,000 

Consumable & Maintenance Cost ($/hr) 7 

Allocated Capital Cost ($/hr) 3.12 

/hr)2Automated Cleaning Rate (m 4460 

 

5.3.1. Cleaning cost per cycle for different cleaning methods. The first step 

to calculating the cost estimate of cleaning was to determine the overall cost of a single 

cleaning cycle for the entire PV power plant based on the different cleaning methods. 

There were five different cleaning frequencies that included daily, weekly, biweekly, 

monthly, and no cleaning. The parameters that were varied in this case study was the 

cleaning frequency and the method of cleaning. In terms of the method of cleaning, 
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there was automated and manual cleaning. All costs related to cleaning were acquired 

from an existing case study in [46] 

Starting with manual cleaning, the cost of water, labor, and other materials was 

calculated to reach a total sum of $17,921 per cleaning cycle. It is important to note that 

in this calculation, there is no inclusion of any capital cost as this is not automated 

cleaning. For automated cleaning, costs were divided into either running or capital 

costs. With the running costs calculated first, the total automated running costs when 

including water, labor, and other materials is $2,344 while the automated total capital 

cost is $57,620 

5.3.2. Levelized cleaning costs. To calculate the yearly cleaning cost 

depending on the different frequencies, the levelized cleaning cost of the different 

cleaning frequencies must first be calculated. To do that, the levelizing factor (𝐿𝐹) was 

first calculated using 

𝐿𝐹 = ((1 + 𝑑′)𝑛𝑙𝑜𝑎𝑛 − 1

𝑑′(1 + 𝑑′)𝑛𝑙𝑜𝑎𝑛
) × ( 𝑑(1 + 𝑑)𝑛𝑙𝑜𝑎𝑛

(1 + 𝑑)𝑛𝑙𝑜𝑎𝑛 − 1
)  

  

(13) 

𝑑′ =
𝑑 − 𝑒

1 + 𝑒
 

  

(14) 

where 𝑑 represents the nominal discount rate without escalation which is 5%, 𝑒 

the escalation rate which is 1%, and 𝑛𝑙𝑜𝑎𝑛 the loan term which is 20 years. The 𝐿𝐹  can 

now be multiplied with the total cleaning cost per cycle for both cleaning types and 

with the cleaning frequency as well. The results of the levelized cleaning cost based on 

cleaning frequency for a year can be seen in Table 5.4 where the variance of cleaning 

frequency is observed for both the automated and the manual cleaning method that was 

analyzed earlier. 

Table 5.4: Levelized Cleaning Cost Based on Cleaning Frequency. 

Cleaning Frequency Manual Cleaning Automated Cleaning 

Daily $7,158,522 $994,074 

Weekly $1,019,844 $191,033 

Biweekly $509,922 $124,327 

Monthly $235,349 $88,408 
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As see in Table 5.4, the cost for using automated cleaning is far cheaper no 

matter what the cleaning frequency is. Consequently, only the automated cleaning 

option will be used in further calculations. 

5.3.3. Cost analysis. The proposed model can now be implemented by varying 

the cleaning frequency while calculating the average energy as seen in Table 5.5. 

Table 5.5: Average Energy in MWH for Different Seasons Depending on Cleaning 

Frequency. 

Cleaning 

Frequency 

Spring Summer Autumn Winter 

Daily 18,232 35,683 34,451 13,138 

Weekly 16,562 32,193 30,943 11,860 

Biweekly 15,419 30,642 29,276 11,203 

Monthly 14,336 28,500 26,867 10,351 

None 12,815 24,742 23,845 8,946 

 

With the cost of electricity assumed set at $60 per MWh, the levelized annual 

per season can be calculated without any cleaning cost and can be seen in Table 5.6. 

Table 5.6: Levelized Annual Per Season in US Dollars. 

Cleaning 

Frequency 

Spring Summer Autumn Winter Total 

Daily 1,197,187 2,343,047 2,262,175 862,665 6,665,076 

Weekly 1,087,494 2,113,939 2,031,824 778,766 6,012,025 

Biweekly 1,012,487 2,012,075 1,922,365 735,654 5,682,583 

Monthly 941,383 1,871,421 1,764,197 679,668 5,256,670 

None 841,509 1,624,618 1,565,752 587,424 4,619,305 

 

Using the levelized cleaning costs based on cleaning frequency calculated 

earlier, the total net profit including cleaning costs can be seen in Table 5.7. 

Table 5.7: Total Net Profit in US Dollars. 

Cleaning 

Frequency 

Spring Summer Autumn Winter Total 

Daily 948,669 2,094,528 2,013,657 614,147 5,671,002 

Weekly 1,039,736 2,066,181 1,984,066 731,007 5,829,992 

Biweekly 981,406 1,980,994 1,891,284 704,572 5,558,256 

Monthly 919,281 1,849,319 1,742,095 657,566 5,168,262 

None 841,509 1,624,618 1,565,752 587,424 4,619,305 

Maximum 1,039,736 2,094,528 2,013,657 731,007 5,878,930 
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As seen in Table 5.7, depending upon the season, certain cleaning frequencies 

would be more profitable. In this specific case with the cost of electricity set at $60 per 

MWh, weekly cleaning would be the ideal cleaning frequency in spring, daily cleaning 

in the summer and autumn season, and weekly cleaning again in the winter season. If 

the same cleaning frequency was followed for every season, profits would not be 

maximized. The final row of Table 5.7 indicates the maximum values for each of the 

seasons to get the highest net total profit. The percentage difference between the highest 

net total profit by choosing the optimal cleaning frequency in different seasons and by 

keeping the same cleaning frequency for the entire year is 3.53%, 0.98%, 5.45%, 

12.08%, and 21.42% for daily, weekly, biweekly, monthly, and no cleaning 

respectively. For the case of no cleaning, which has the highest percentage difference, 

that is a loss of $1,259,625. Even by keeping monthly cleaning for the entire year, the 

loss amount is as large as $710,667. Hence, there is a need to optimally choose the ideal 

cleaning frequency depending upon the season and not the same cleaning frequency for 

the entire year. Overall, the maximum total net profit is an acceptable and realistic 

amount for a 100 MW PV power plant. In addition, depending upon the Feed-in tariff 

(FIT), the recommended cleaning frequency depending upon the season would change 

to maximize profit. To understand this further, a summary of the result of varying FIT 

can be seen in Table 5.8. 

Table 5.8: Recommended Cleaning Frequency for Different Seasons for Varying FIT. 

FIT 

($/MWh) 

Recommended Cleaning Frequency to 

Maximize Profit 

Spring Summer Autumn Winter 

40 Weekly Weekly Weekly Weekly 

60 Weekly Daily Daily Weekly 

80 Weekly Daily Daily Weekly 

100 Weekly Daily Daily Weekly 

120 Daily Daily Daily Weekly 

140 Daily Daily Daily Weekly 

160 Daily Daily Daily Daily 

 

As seen in Table 5.8, the recommended cleaning frequency when the price of 

electricity was $40 was weekly cleaning for all seasons throughout the year for 

maximum profit. As the price of electricity increased, the recommended cleaning 

frequencies for the summer and autumn season became daily. This pattern remained the 
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same until the cost of electricity was $120 where the spring recommended cleaning 

frequency became daily. Finally, at an electricity cost of $160, the cleaning frequency 

for all seasons became daily.  

In terms of a comparison, Table 5.7 indicates how the 100 MW PV plant would 

have varying degrees of financial benefit depending on the cleaning frequency they use 

over an entire year. As the objective of the case study was to vary the cleaning 

frequencies in a 100MV PV plant, the benefits of implementing the proposed model 

can be seen from a financial point of view. If the 100MW PV farm was to maintain the 

same cleaning frequency with electricity costing $60 per MWh for an entire year, it 

would not maximize its net profit. With a weekly cleaning frequency, the 100 MW PV 

farm would make $5,829,992 total net profit. Similarly, with a daily, bi-weekly, 

monthly, or no cleaning, the PV farm would make $5,671,002, $5,558,256, $5,168,262, 

and $4,619,305 respectively. However, after implementing the model, Table 5.7 

indicates that by varying the cleaning frequency in different seasons, a higher total net 

profit can be made. In this case, if the spring season is cleaned on a weekly basis, the 

summer and autumn seasons cleaned daily, and the winter season cleaned on a weekly 

basis, a higher total net profit of $5,878,930 can be achieved. A further comparison can 

be made after interpreting the results of varying the cleaning cost as seen in Table 5.8. 

If the cost of electricity was cheaper at $40 per MWh, all four seasons of the year would 

have to be cleaned on a weekly basis to maximize the total net profit. However, if the 

cost of electricity was to increase till $80 or $100 per MWh, the spring and winter 

season would have to be cleaned on a weekly basis while the summer and autumn 

season would have to be cleaned on a daily basis. When increasing the cost of electricity 

to $120 or $140 per MWh, the spring, summer, and autumn season would have to be 

cleaned on a daily basis while the winter season would have to be cleaned on a weekly 

basis to maximize net profit. Lastly, by increasing the cost of electricity to $160 per 

MWh, all four seasons in the year would have to be cleaned on a daily basis to maximize 

net profit. Consequently, the benefit of the proposed model can be seen in the net profit 

gains that a PV farm can make. Without the proposed model, a fixed cleaning frequency 

over an entire year would not maximize the net profit gains of a PV farm. However, 

with the model, the projected output power of a PV farm under different cleaning 

frequencies can be calculated. Using this information, the optimal cleaning frequency 

for different seasons for varying rates of electricity can be selected to maximize the 
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total net profit of a PV farm. Overall, the benefits of the proposed model can be seen in 

the financial profit that PV farms can make by varying the cleaning frequency 

depending upon the season rather than maintaining a fixed cleaning frequency or having 

no cleaning at all. 
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Chapter 6. Conclusion and Future Work 

 

There has been a need for modeling dust accumulation as a function of time and 

not a fixed variable in order to model dust accumulation more accurately. By 

introducing the impact of solar irradiance, temperature, relative humidity, precipitation, 

and wind speed, the proposed model was able to better mimic the realistic behavior of 

dust accumulation in different seasons in a year. As a result, the thesis was able to 

address what was lacking in literature today by modeling dust as a function of time. In 

addition, the virtual scenarios generated were able to show that dust accumulation 

would increase and at certain times decrease as well depending upon weather variables 

depending upon the season of the year. As the Markov chain model was based off a 

finite number of states based on the amount of data, increasing the number of states 

would make the virtual scenarios more accurate. At the same time, by including more 

historical data to base the Markov chain model off, more accurate results would be 

possible as the transition probability matrices would have more data points to generate 

individual probabilities. More importantly, by analyzing the behavior of dust 

accumulation and how it increases or decreases based on the season of the year, it is 

clear that the drier and warmer climates of the year require more frequent cleaning. The 

average dust level and peak dust accumulation levels that were achieved during the 

summer season were almost double when compared to the winter season. 

Consequently, there is a far greater difference in dust accumulation levels when 

cleaning every one week to cleaning every five weeks during the summer season when 

further highlights the greater need for clean PV panels more often during the summer. 

Furthermore, the thesis also developed an accurate relationship between the output 

power of a PV and dust accumulation. Using information from dust accumulation that 

the proposed model can generate, accurate power levels for a PV can be determined. 

Additionally, after implementing the proposed model in a case study for a 100 MW PV 

power plant, results showed that depending upon the cost of electricity, the need for 

cleaning at different frequencies could profit PV power plants more or less. By 

allocated all resources towards automated cleaning, as it was shown to be more 

economical than manual cleaning, a PV power plant could maximize profit by 

determining which frequency they would want to clean in a specific season. If there 

was no cleaning, the PV power plant would lose as much as $1,259,625 assuming the 
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cost of electricity was $60 per MWh. If cleaning was implemented and it was monthly 

cleaning for the entire year, the PV power plant would still lose as much as $710,667. 

Consequently, there is a need to choose the optimum cleaning frequency, which the 

proposed model is able to do, depending upon the season to maximize net profit.  

In terms of recommendations for future work, it is important to note that the 

proposed model only included data for solar irradiance, ambient temperature, dust 

accumulation, and rate of dust accumulation. While other factors including relative 

humidity, wind speed, and precipitation are also important for dust accumulation, their 

data was assumed to be imbedded within the data for dust accumulation as noted in 

Section 3.1. Consequently, including separate data for relative humidity, wind speed, 

and precipitation along with dust accumulation would further improve the accuracy of 

the model. In addition, other factors including dust particle size, PV tilt angle, and 

pollutants in the environment can also be taken into consideration as they also dictate 

the behavior of dust accumulation. Therefore, by including the aforementioned factors 

affecting the behavior of dust, the proposed model would more accurately depict dust 

accumulation on a PV. The resulting output of the improved model would decide better 

when to optimally clean large PV systems that suffer greatly from dust like in the 

Middle East depending on the season.    
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Appendix A 

 

Figure 3.4: Historical Hourly Data for Solar Irradiance in Spring Season for One 

Year. 

 

 

Figure 3.5: Historical Hourly Data for Solar Irradiance in Summer Season for One 

Year. 

 

 

Figure 3.6: Historical Hourly Data for Solar Irradiance in Autumn Season for One 

Year. 
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Figure 3.7: Historical Hourly Data for Solar Irradiance in Winter Season for One 

Year. 

 

 

Figure 3.8: Historical Hourly Data for Ambient Temperature in Spring Season for 

One Year. 

 

 

Figure 3.9: Historical Hourly Data for Ambient Temperature in Summer Season for 

One Year. 
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Figure 3.10: Historical Hourly Data for Ambient Temperature in Autumn Season for 

One Year. 

 

 

Figure 3.11: Historical Hourly Data for Ambient Temperature in Winter Season for 

One Year. 

 

 

Figure 3.12: Historical Hourly Data for Dust Accumulation in Spring Season for One 

Year. 
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Figure 3.13: Historical Hourly Data for Dust Accumulation in Summer Season for 

One Year. 

 

 

Figure 3.14: Historical Hourly Data for Dust Accumulation in Autumn Season for 

One Year. 

 

 

Figure 3.15: Historical Hourly Data for Dust Accumulation in Winter Season for One 

Year. 
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