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Abstract 

 

As transportation electrification increases globally, new technologies emerged in the 

past few years to meet the growth of the electricity demand. A mobile energy storage 

system (MESS) could provide several services to the distribution systems such as 

reactive power support, renewable energy integration, peak shaving, and load leveling. 

In addition, an MESS can be utilized to support electric vehicles (EVs) charging in 

different parking lots (PLs), which is the main focus of this thesis. The task of multiple 

stationary storage units can be achieved using a single MESS with a relatively lower 

cost. In this thesis, a new dynamic optimal dispatch strategy for MESS is proposed to 

support several charging stations sharing the same geographical area. The objective of 

the proposed approach is to optimally dispatch the MESS in conjunction with optimal 

EVs charging to minimize the total operation cost and address the extra demand of PLs. 

Different case studies are provided on the IEEE 38-bus system and a real radial feeder 

in Ontario, Canada to test the proposed approach. In the second phase of this research, 

a new approach is proposed for the optimal resource allocation for an MESS fleet 

owned by multiple PLs sharing the same geographical area and sharing its capital and 

operational cost. The aim is to optimally decide on the number of MESSs and their 

battery bank capacities that should be used in order to serve charging stations 

participated in the project. The optimization includes practical constraints for battery 

dynamics. Comparative case studies showed the effectiveness of the proposed 

algorithms. 

 

 

 

Keywords: Mobile Storage Unit; Battery-based energy storage system; Electric 

Vehicles; Charging stations; Mathematical Modeling and Programming. 
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1. Chapter 1. Introduction 

1.1. Overview 

Due to the exponential increase in transportation electrification and the trend of 

going green, the electricity demand is rapidly increasing. Distribution systems are 

witnessing high demand that might not be able to accommodate, especially in the urban 

areas that require a relatively high cost to upgrade the grid infrastructure. The 

exponential market growth of electric vehicles (EVs) reflects a high demand, which is 

projected to reach up 27 million units in 2030 compared to 3.5 million in 2020 [1], this 

is due to many reasons such as the reduction in CO2 emissions, the possibility of using 

the batteries as storage elements, and the significant reduction of batteries prices [1-2]. 

This dramatic increase in EVs will result in huge challenges to the reliability of power 

systems to address this demand since EVs will represent large loads and could further 

result in significant stress on the distribution systems [2]. As a result, the EVs’ charging 

behavior control is a must. On the other hand, higher penetrations will cause a voltage 

rise during low demand hours [3] and EV charging coordination may be the solution to 

decrease the voltage fluctuation. Electric utilities must conduct proper management for 

EVs by applying Demand Side Management (DSM) programs which proved their 

effectiveness in load shifting to off-peak times and peak shaving, EVs might be a 

burden or a plus depending on the charging behavior.  

1.2.  Thesis Motivation  

Future power grids will witness a shift in focus to install Energy Storage 

Systems (ESS) since it can introduce flexibility to the system. ESS could be used 

efficiently to increase the proper use of modern energy resources including Renewable 

Energy Resources (RES) by contributing to almost stable power output and storing 

extra unused power to avoid curtailment, which can accommodate the increasing 

demand of power without compromising on the minimization of CO2 emissions. The 

installation of ESS can also provide voltage support through VAR compensation [4]. 

We are at the very primitive stages of using ESS and maximizing its benefits. It was 

the norm in all previous studies to provide a stationary solution either by coordinate the 

EV charging or using stationary suppliers like Distributed Generation (DG) units and 

batteries. However, using a Mobile Energy Storage System (MESS) will lead to a 
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significant reduction in the implementation cost. Especially if multiple parking lots are 

sharing the same geographical area.  

1.3. Research Contribution 

The listed points summarize the thesis contribution as follows:   

• Proposing a new approach to optimally dispatch an MESS in conjunction with 

optimal EV charging to address the extra demand of distributed EV charging 

stations, 

• Developing a new integrated scheduling and sequencing approach to decide on 

the optimal order and the period spent at each PL , 

• Constructing a detailed simulation of a typical distribution system to show the 

effectiveness of the proposed approach, 

• Proposing a planning algorithm for several MESSs to serve multiple EVs 

charging stations while accounting for the uncertainties, and 

• Applying a probabilistic model to generate various virtual scenarios of PV 

output power using limited historical data. 

1.4.  Thesis Organization 

The chapters of this thesis are organized as follows:  

• Chapter 2 discusses the background and literature related to the EVs demand 

solutions, MESS previous work, and implementation of different DTSP models. 

• Chapter 3 presents the integration of an MESS to support and serve multiple 

EVs charging stations. 

• Chapter 4 discusses the optimal dispatch of a mobile storage unit to support 

EV charging stations. 

• Chapter 5 proposes optimal planning of several MESSs to serve multiple EVs 

charging stations. 

• Chapter 6 concludes these presented algorithms along with ideas for future 

work.  
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2. Chapter 2. Background and Literature Review 

To fully understand the motivation, objectives, and the purpose of the work 

done in this research, we must have a clear vision of the components and the 

technologies that have emerged recently which made the designing and modeling of 

MESS is necessary. In this chapter, an overview of EVs' demand accommodation will 

be summarized in order to give the reader a better understanding of the full system. The 

light must be shed on ESS technology and its benefits, especially MESS which is the 

main focus of this thesis. The definition, types, and variants of DTSP are discussed as 

well. 

 

Figure 2.1 Modeled battery costs related to increasing EV sales [5]. 

2.1. Electric Vehicles (EVs) 

The new evolving technologies of smart grids across the world will enhance the 

utilization of electric vehicles as part of the grid. EVs can be a burden or a plus 

depending on the charging behavior. One of the most important aspects of EVs evolving 

is the possibility of using its batteries as storage elements. Through the concept of 

vehicle-to-grid (V2G), EVs will act as a part of the storage system connected to the 

network and providing power where the vehicle is located. The V2G concept will allow 

the EVs to trade power with the grid during on-peak and off-peak hours. For instance, 

a vehicle can charge during off-peak hours and discharge its power during the on-peak 

time of the day. This will result in a benefit for the EV owner since he might get some 

profit, in addition to helping the grid to supply the power in peak hours. This idea will 

be a great addition to the power systems due to the rapid increase in EVs sales in the 

last 10 years. This increases due to many reasons, for example, the trend of going green, 
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minimizing CO2 emissions, and the batteries dropping prices. Figure 2.1 shows a 

comparison of the number of EVs compared to the price of batteries. It is extremely 

important to mention that this cycle depends mainly on the driving profile of the owner 

which is might not suitable for everyone. 

Like MESS, EVs can be used in order to participate in grid activities and supply 

power in on-peak demand and selling prices time; however, using EVs will not be 

reasonable due to uncontrollable availability time [6]. Also, the unwillingness of all the 

EVs owners to participate in the grid [7]. Moreover, a high number of EVs is required 

to replace only one MESS truck. EVs can be categorized into three groups: Battery 

Electric Vehicle (BEV), Hybrid Electric Vehicle (HEV), and Fuel Cell Electric Vehicle 

(FCEV). The characteristics and differences of each type are as follows: 

• Battery Electric Vehicle (BEV): All the power demanded functions of the 

vehicle are supplied through a full electrical propelling system, unlike the other 

types mentioned below. The battery capacity of this type of vehicle determines 

the mile range which should be increased in order to meet all demands. A 

properly designed charging station is used in order to fully charge this battery 

type. The most popular example developed by Tesla Motors, which provides a 

driving range of 300 mi per charge and consists of a Li-ion battery pack [8]. 

 

• Hybrid Electric Vehicles (HEV): This type of vehicle act like an electrical 

machine, it has a battery to store energy and an internal combustion engine that 

produces the main source of power [9]. There are different levels of HEVs like 

Micro HEV which has a limited power electric machine used as a starter only. 

It increased the fuel economy from 2% to 10% using this technique. The Mild 

HEV adds up another level to the previous one which a boost function to the 

vehicle, resulting in a supplementary torque during the breaking or acceleration 

process. Fuel economy has shown a 10% to 20% improvement. The fully hybrid 

vehicle implements a full electric traction system inside the vehicle resulting in 

a zero-emission automobile. The fuel economy at this level reached up to 50%. 

Finally, the Plug-in HEV uses an external charging station to fully charge the 

battery. The internal combustion engine can be used to charge the battery as 

well, but if ICE is not charging the battery, the fuel economy can record 100% 
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improve which makes this level of HEV a very important topic to focus on in 

the market. 

 

• Fuel Cell Electric Vehicle (FCEV): This type can be considered as a variation 

of BEV since the fuel cell can work as a generator using hydrogen as fuel and 

oxygen as oxidant while storing the energy in the battery. Many fuel sources 

can be used, for example, alcohols and hydrocarbons. But hydrogen is preferred 

due to that its byproduct is just water plus it has a high energy density [8]. 

A summary of the different types of EVs is presented in Table 2.1. 

Table 2.1 Summary of EV specifications [9]. 

 Energy Source ESS Characteristics 

HEV 

Gas stations 

electric grid charging 

stations 

Fuel tank 

battery 

Low emissions 

High fuel economy 

BEV 
electric grid charging 

stations 
Battery 

Zero emissions 

Independent of fossil fuels 

FCEV 
Hydrogen 

other possible fuels 

Hydrogen 

tank 

battery 

Zero emissions 

Independent of fossil fuels (if not 

using gasoline to produce H2) 

 

2.2. Energy Storage Systems (ESS) 

ESS plays a vital role in the electric network, especially in the case of smart grid 

technologies implementation. As seen in Figure 2.2, the cost associated with different 

battery types has dropped through the past few years and it is expected to decrease more 

and more during the next few years. ESS can be categorized based on different criteria. 

It can be subcategorized based on the form of stored energy; i.e., mechanical, chemical, 

or electrical. While electrical storage can be subdivided into magnetic energy storage 

and electrostatic storage, mechanical storage also can be divided into potential energy 

storage and kinetic energy storage [10]. Another criterion is the charging/discharging 

time. The centralized bulk units can store a high amount of energy reaching up to 

hundreds of megawatts for more than 8 hours, known as long-term ESS. On the other 
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hand, the short-term ESS is used for a shorter time with a relatively smaller energy 

amount [10]. 

 
Figure  2.2 Price drop for different types of batteries [11]. 

Some types of ESS are briefly discussed below: 

• Battery Energy Storage System (BESS): This is the most common form of ESS, 

batteries can vary in their storage capacities taking into consideration other 

factors based on different applications. Lead Acid batteries, Lithium-Ion 

batteries, and Oxy-Hydroxide batteries are examples of BESS. 

• Compressed Air Energy Storage (CAES): Energy is stored in form of air during 

off-peak hours. When demand is high, compressed air is heated to move a 

turbine shaft and generate the required power at that time. 

• Flywheel Energy Storage System (FESS): In this type, energy is stored in form 

of kinetic (mechanical) energy. A large rotating wheel forms the flywheel and 

the amount of energy stored changes linearly with the rotational speed and with 

the inertia of the flywheel. 

The ESS units are widely used due to several benefits, they can reduce the 

dependency on fossil fuels, providing the required power without compromising on 

minimizing the CO2 emission, participating in cost reduction by supplying power in 

on-peak demand, and resulting in avoiding the extra generators at this time, helping 

distribution and transmission networks to be more stable, and maximizing the usage of 

the existing generating units and RES units in particular [12]. A summary of important 

characteristics of different types of ESSs are summarized in Table 2.2. 
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Table 2.2 Characteristics of different ESS types [13]. 

Type 

Energy 

Efficienc

y (%) 

Energy 

Density 

(Wh/kg

) 

Power 

Density 

(W/kg) 

Cycle life 

(cycles) 

Self-

Discharg

e 

Pb-Acid 70-80 20-35 25 200-2,000 Low 

Ni-Cd 60-90 40-60 140-180 500-2,000 Low 

Ni-MH 50-80 60-80 220 <3,000 High 

Li-ion 70-85 100-200 360 500-3,000 Med 

Li-polymer 70 200 250-1,000 >1,200 Med 

NaS 70 120 120 2,000 - 

VRB 80 25 80-150 >16,000 
Negligibl

e 

EDLC 95 <50 4,000 >50,000 Very high 

Pumped hydro 65-80 0.3 - >20 years 
Negligibl

e 

CAES 40-50 10-30 - >20 years - 

Flywheel (steel) 95 5-30 1,000 >20,000 Very high 

Flywheel 

(composite) 
95 >50 5,000 >20,000 Very high 

 

2.3. Mobile Energy Storage Systems (MESS) 

The ESS can be mobilized in order to serve different locations at different times, 

in that can it called MESS. It is a transportable energy system that provides several 

benefits to the grid. The most common type of batteries used for MESS is Lithium-ion 

to store and carry power along with other different components which could include 

the following: 

• Other Generation Sources: Like Diesel Generators, Fuel cells, or PV panels. 

• Power Electronic Circuits: Converters and inverters are needed in the 

conversion process from DC (RES outputs) to AC currents to serve the required 

loads. 

• Energy Management Systems (EMS): In the case of multiple storage elements, 

an EMS would be useful to control the power flow and maximizing power 

usage. 

• Mobility: Different kinds of mobility could be used; however, it could be a 

normal ESS fixed on a truck or on a shipping container to achieve mobility. 
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Different companies are providing commercial mobile energy storage units with 

an output power of different ratings like 100, 1000, and 5000 kW. Various projects 

around the world have used MESS. Toshiba and the Spanish Company Gas Natural 

Fenosa have tested Toshiba’s BESS which consists of lithium-ion battery packs 

providing 500 kW of power. They studied the effect of the system on voltage and 

frequency stability of the grid at different sites as well as peak shaving capability [14]. 

2.3.1 Benefits of MESS. Being able to travel and connect to the grid at different 

times and locations is a great advantage that provides various services to the grid. 

Besides the relatively lower cost of MESS that can replace multiple stationary ESS, a 

few benefits are listed below. 

           2.3.1.1 Voltage support. Maintaining a stable voltage level within the 

system’s limits is a crucial aspect of a stable power system. The centralized generation 

sources can supply the compensation of the extra reactive power required by inductive 

or capacitive loads. The most common power factor correction method is using 

capacitor banks, but the problem can be seen in the power loss since capacitor banks 

withdraw a huge amount of current while operating. The installation of ESS can be used 

in this manner but it is really expensive to install many ESSs; however, MESS can do 

the job of multiple stationary ESS since it can change location easily and serve as 

needed. 

           2.3.1.2 RES balancing. It is well known that RES units can provide a 

clean source of energy, but it faces some problems when being part of the system. The 

control process of the output is really difficult [15]. PV output could vary a lot due to 

the effect of shading, and strong winds can affect the output of a wind generator. This 

problem results in unstable output power from these units. As a solution, RES units 

often come with ESS installed in order to store the unused generated power. This 

combination can guarantee an almost constant output power. However, providing a 

suitable ESS can add to the costs of the systems especially with the increased 

penetration of RES generators. The increased demand for MESS and PEV will reflect 

a reduction in the price of these units and making them more economically attractive 

than the normal stationary ESS. MESS can be located on the buses that have RES 

generators to offset their production. 
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2.3.2 Applications of MESS. MESSs are used in many applications, a brief 

of each application is summarized as follows: 

           2.3.2.1 Peak shaving. Peak shaving refers to any method used to reduce 

the power consumption during the peak hour in order to maintain a better peak-to-

average ratio. Prior to the DG units, utilities would build a new power plant in order to 

serve during this short-time demand. Instead, utilities might force customers to cut 

down their loads in these peak hours or charge a higher cost for example. However, this 

is a huge problem for customers, especially in industrial areas. A mobile DG unit might 

be the perfect solution in this case since it can travel to serve during these on-peak 

hours. 

           2.3.2.2 Short-term events. Many events are placed in order to take place 

once a year or festivals that expect many visitors during a short period. Those events 

last for few hours and required a huge amount of power to supply the needed demand. 

An MESS can take place in order to provide the necessary power to hold these events 

without stressing the grid. 

           2.3.2.3 Remote areas or refugee camps. Due to wars, more and more 

people are seeking refuge in United Nations camps. Since these camps usually built-in 

areas away from transmission lines and distribution networks, a standalone MESS is an 

excellent solution to provide such areas with the required power for a limited period of 

construction or power outage. It might be a great solution for construction sites that 

requires a lot of energy 24 hours a day while building a new city for example away 

from distribution lines. 

           2.3.2.4 Natural disaster crisis. The number of natural disasters is 

increasing over time; floods, earthquakes, wildfires, cyclones, hurricanes. The 

occurrence of those events can cause severe damage to the urban area’s generation units 

and infrastructure which might directly affect the recurring process and leave millions 

of people in a complete blackout. MESS in this case can help supply specific areas until 

the main grid is back in action. The mobility aspect is beneficial in this case since 

multiple areas can be served accordingly upon need. 
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2.4. Demand Side Management (DSM) 

Demand Side Management is usually used to refer to a group of actions 

specifically designed to control and manage a utility’s energy consumption and power 

demand in order to get a more reliable demand curve that increases the reliability and 

stability of generation and distribution systems. The aim is to modify the demand 

profile concerning the overall consumption curve. To engage a DSM program, a 

detailed analysis should take place first to highlight the areas of improvement 

possibilities. In case a not feasible supply or not sufficient reduction cost achieved, the 

on-site installation of the following can take place: 

• Batteries (BESS) 

• Mobile Energy Storage System (MESS) 

• RES units (photovoltaic, wind) 

• Cogeneration systems. 

DSM can be used in order to accomplish different load shaping objectives, such as peak 

clipping or shifting. Another objective is to get a flexible load shape or applying 

strategic conservation or load grwth as seen in Figure 2.3. 

 

Figure 2.2 Basic load shaping techniques [16]. 

 

2.5. Literature Review 

To understand the work being done in this field until now, a search was 

conducted to further enrich our thought in applying our methodology in the three 

different fields involved in this research. First, we will explore some EVs demand 

solutions to accommodate this increasing power demand. Followed by a related work 
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of MESS and application. Finally, different variants and definitions of DTSP will take 

place. 

2.5.1  EVs demand accommodation. As EVs are increasing dramatically in 

the market, it requires a lot of power in order to charge these EVs which puts stress on 

the distribution network. Recently, several researchers have studied multiple solutions 

to reduce the peak hour demand and improve power quality (e.g., line flow constraint, 

transformer capacity constraint, etc). To minimize EVs charging effect on customer 

preferences, a demand response strategy is proposed in [17]. In [18], EVs are used to 

reduce the demand at peak hours as a bidirectional power source. However, this strategy 

raised a concern about the battery wear and the effect of using EVs for providing base-

load power which is discussed in [19]. Vehicle-to-grid (V2G) strategy proposed in [20] 

is a solution that is not considered in this paper. In [21], an adaptive EV charging 

scheduling framework is proposed while satisfying network constraints. A management 

scheme for effective installation and utilization of photovoltaic (PV) is discussed in 

[22]. 

In [23], a single house case study is presented to implement DSM using EV 

batteries as storage elements. In [24], a multi-objective optimization problem is 

formulated based on a heavy communication between the hub and the distribution 

utility to optimally coordinate EVs charging. The impact of demand response strategies 

on smart households’ load took place in [25] applying the optimal appliance scheduling 

considering electricity price variations. A decentralized fuzzy-based controller is 

introduced in [26] in order to coordinate the charging of EVs that meet the constraints.  

In [27], a hierarchical distributed energy management for EV charging stations is 

proposed aimed to maximize the charging power. Two different energy management 

schemes are proposed in [28] and [29] aiming to reduce the load demand and load 

fluctuations on the system by optimizing EVs charging power. An algorithm aiming to 

reduce the operational cost while maximizing customer satisfaction by scheduling the 

charging and discharging operations is proposed in [30]. It is an optimization and 

control algorithm for charging stations equipped with PV generation and fixed energy 

storage that tries to balance the supply and demand by scheduling the charging and 

discharging operations. In [31], a stochastic dynamic energy management and pricing 

scheme for EV charging stations deals with uncertainties-charging demand is 



24 

 

presented. Considering energy storage systems and renewable energy integration, the 

provided deals with uncertainties-charging demand and electricity price fluctuation. 

Authors of [32] proposing an energy storage management scheme using a hybrid 

optimization algorithm that depends on varying electricity prices. A charging station 

utilized with PV panels, energy storage systems (ESS), and fuel cell systems is 

presented in [33] with an algorithm for economic dispatch. 

2.5.2  MESS related work. Like MESS, EVs can be used in order to 

participate in grid activities and supply power in on-peak demand and selling prices 

time; however, using EVs will not be reasonable due to uncontrollable availability time 

[34]. Also, the unwillingness of all the EVs owners to participate in the grid [35]. 

Moreover, a high number of EVs is required to replace only one MESS truck. In terms 

of MESS, several investigations took place by Electric Power Research Institute (EPRI) 

[36]. An energy management system for MESS is proposed in [14], which controls the 

dispatching of the MESS and scheduling the truck position. The truck provides several 

services. For example, load shifting, power balancing, and improving demand 

management results. An operation strategy of MESS is presented in [37] which uses 

progressive hedging (PH) algorithm. The battery exchange stations (BESs) could be an 

alternative solution to accommodate EVs' demand and reduce the operational cost; 

however, it outperforms the conventional charging station [38] in the absence of the 

MESS which is not the case in this paper. 

2.5.3  DTSP review. We are proposing a MESS owned by and serves multiple 

utilities sharing the same geographical area in order to shave the peak demand and 

minimize the operational cost. To optimally schedule and dispatch MESS, a Dynamic 

Travel Salesman Problem (DTSP) should be implemented. The deterministic Travel 

Salesman Problem (TSP) and its various types have been extensively studied due to its 

important applications in real-world problems (e.g., telecommunications, neuroscience, 

and logistics) [39]. However, considering arriving times has been limited in the 

literature and the definition of dynamicity varies among the researchers. In [40], 

dynamicity has been defined as introducing traffic jam to the distance matrix, which 

makes the distance matrix varies for each time segment. In [41], the author defined 

dynamicity as the ability to add and remove cities (nodes) while solving the DTSP on 

account of varied conditions. [42] proposes a DTSP with stochastic release dates which 
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means that goods have been supplied to customers after being arrived at the depot. The 

uncertainty of the arrival times of the goods is the main factor for an efficient 

distribution process. Authors of [43-44] studied the stochastic TSP with time window 

constraints (STSPTW) depending on stochastic generated travel and service times. A 

DTSP is formulated and well-explained in order to be used in a search-and-rescue 

application proposed in [45]. 
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3. Chapter 3. A Mobile Energy Storage Unit Serving Multiple EVs Charging 

Stations 

The algorithm presented in this chapter aims at integrating a mobile energy 

storage system shared by multiple EVs charging stations that are located in the same 

geographical in order to reduce their peak demand level, which represents a huge part 

of their monthly operational cost. These PLs having different peak times, which justify 

the application of a portable ESS (i.e., MESS) to defer the network upgrade and meet 

the PL demand. Having an MESS that able to move between different locations and 

from one bus to the other, supplying multiple loads at different times will help reduce 

the power drawn from the grid. Furthermore, it can be used in serving EV charging 

stations due to the uncontrolled peak demand period. EVs cannot be easily controlled 

since the customer can require power at a different time with different daily profiles. 

Another solution that provides similar grid services like the MESS is aggregated 

EVs which does not require any initial cost investment; however, the availability time 

of the aggregated EVs in PLs is uncontrollable [46] which questions the reliability of 

the model. Moreover, not all EV owners are willing to participate in such a process. 

Besides, a large number of EVs is required in order to supply the same power as a single 

MESS. The following assumption are made in this formulation: 

• Customers' requirements are received day-ahead . 

• Visiting order of the charging station is known based on the forecasted load 

profile. 

3.1. Problem Formulation 

To model the problem, the time horizon is defined as 24-time slots a day, each 

slot is one hour span and represented as a set 𝑡 = {1,2, 3...,24}. Transportation time 

between PLs includes moving between one PL and another, traffic, connecting, and 

disconnecting times.  

The objective function is defined in (3.1), which aims at minimizing the total 

drained power by the PLs to charge the arrival EVs, as follows: 

min
 
∑(∑(𝐶𝑡

𝑔𝑟𝑖𝑑
 × 𝑃𝑖,𝑡

𝐸𝑉−𝑇𝑜𝑡𝑎𝑙)

𝑡

)

𝑖

 (3.1) 

where 𝐶𝑡
𝑔𝑟𝑖𝑑

 is the grid cost that varies at each time interval and the total power 
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consumed by EVs at each bus and each time interval is represented by 𝑃𝑖,𝑡
𝑒𝑣. 𝑖 is the 

location of the PL. 

3.1.1 Power flow constraints. The well-known nonlinear power flow 

equations are presented in (3.2) and (3.3), in which 𝑷𝒊,𝒕
𝒆𝒗 is added as a load the specified 

buses, as follows: 

𝑃𝑖,𝑡
𝐺 − 𝑃𝑖,𝑡

𝐿

𝑉𝑖,𝑡
=∑ 𝑉𝑗,𝑡(𝐺𝑖,𝑗 𝑐𝑜𝑠 𝛿𝑖,𝑗 + 𝐵𝑖,𝑗 𝑠𝑖𝑛 𝛿𝑖) 

𝑗

, ∀𝑖, 𝑡 (3.2) 

𝑄𝑖,𝑡
𝐺 − 𝑄𝑖,𝑡

𝐿

𝑉𝑖,𝑡
=∑ 𝑉𝑗,𝑡(𝐺𝑖,𝑗 cos 𝛿𝑖,𝑗 + 𝐵𝑖,𝑗 sin 𝛿𝑖)

𝑗

, ∀𝑖, 𝑡 (3.3) 

where 𝑖 and 𝑗 denote bus indexes, 𝑃𝑖,𝑡
𝐿  and 𝑄𝑖,𝑡

𝐿  represent the real and reactive load 

powers, respectively, 𝑃𝑖,𝑡
𝐺  and 𝑄𝑖,𝑡

𝐺   are the real and reactive generated power, 

respectively, 𝐺𝑖,𝑗  and 𝐵𝑖,𝑗 represent conductance and susceptance between buses 𝑖 and 

𝑗, and 𝑉𝑖,𝑡 and 𝛿𝑖 represent the voltage and angle level. 

The voltage levels have to be maintained within the acceptable limits as 

expressed in (3.4). Also, the thermal line limits impose an upper limit on the line current 

magnitude as in (3.5), as follows: 

𝑉𝑚𝑖𝑛 ≤ 𝑉𝑖,𝑡  ≤ 𝑉𝑚𝑎𝑥            ∀ 𝑖, 𝑡 (3.4) 

𝐼𝑖,𝑗,𝑡  ≤  𝐼𝑖,𝑗
𝑚𝑎𝑥 (3.5) 

where 𝑉𝑚𝑖𝑛 and 𝑉𝑚𝑎𝑥 are the minimum and maximum permissible voltage levels in 

p.u., respectively; 𝐼𝑖,𝑗
𝑚𝑎𝑥 and 𝐼𝑖,𝑗,𝑡 is the maximum allowable current and the actual 

current at time 𝑡 through the line between buses 𝑖 and 𝑗, respectively.  

3.1.2 EV demand constraints. EVs charging process is presented using (3.6) 

for each PL. The power delivered to each EV at each time slot depends on the 

availability of the car in the first place which is indicated by 𝑳𝒐𝒈𝒊𝒄(𝒏, 𝒕), i.e., if 

𝑳𝒐𝒈𝒊𝒄(𝒏, 𝒕) = 𝟏, then the car is available in the PL at time 𝒕 as illustrated in (3.7). 

Equation (3.8) ensures that every EV is receiving the pre-required demand, while (3.9) 

computes the total demand of each charging station, as follows: 

𝑃𝑛,𝑡
𝐸𝑉 ≤ 𝐿𝑜𝑔𝑖𝑐(𝑛, 𝑡) × 𝐶ℎ , ∀ 𝑛, 𝑡 (3.6) 

𝐿𝑜𝑔𝑖𝑐(𝑛, 𝑡) =  {
1  , 𝐴𝑟𝑟𝑖𝑣𝑎𝑙 ≤ 𝑡 ≤ 𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒

0  , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 (3.7) 
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𝐸𝑛
𝐸𝑉−𝑟𝑒𝑞

=∑𝑃𝑛,𝑡
𝐸𝑉

𝑡

 , ∀ 𝑛 (3.8) 

𝑃𝑖,𝑡
𝐸𝑉−𝑇𝑜𝑡𝑎𝑙 =∑𝑃𝑛,𝑡

𝐸𝑉

𝑛

 , ∀ 𝑖 ∈ 𝕀𝑒𝑣, 𝑡 (3.9) 

where 𝐶ℎ is the maximum available charging rate and 𝑛 is the total number of arrival 

cars in each PL. 𝑃𝑛,𝑡
𝐸𝑉 is total power delivered to each car 𝑛 at each time slot 𝑡. 

𝐸𝑛
𝐸𝑉−𝑟𝑒𝑞 denotes the demand for each EV. 𝑃𝑖,𝑡

𝐸𝑉−𝑇𝑜𝑡𝑎𝑙 denotes the total consumed power 

in each PL. 

The state of charge (SOC) of each EV is updated with the charging energy as in 

(3.10) and (3.11): 

𝑆𝑂𝐶𝑛,𝑡
 = 𝑆𝑂𝐶𝑛,𝑡−1

 + ∆𝑆𝑂𝐶𝑛,𝑡
  (3.10) 

∆𝑆𝑂𝐶𝑛,𝑡
 =

𝑃𝑛,𝑡
𝐸𝑉  ×  ∆𝑇

𝐸𝑛𝐵𝐴𝑇
 (3.11) 

where 𝑆𝑂𝐶𝑛,𝑡
  is the SOC at time 𝑡 for each EV; ∆𝑆𝑂𝐶𝑛,𝑡

   the change in the SOC due to 

charging; ∆𝑇 is the time segments in hours; 𝐸𝑛
𝐵𝐴𝑇represents the battery capacity in kWh. 

3.1.3 Mobile storage modeling. MESS will supply power only if it is 

available at the PL; it should visit each location only once. A binary variable is 

introduced to represent the location of the MESS at each time slot, 𝒙𝒎,𝒕 as shown in 

(3.12), where 𝒎 =  {𝟏, 𝟐, . . . , 𝑵𝒎} and 𝑵𝒎 is the total number of charging stations. 𝑻𝒕 

is another binary variable representing the traveling period. If it is equal to 1, then the 

MESS is moving from one spot to another, otherwise, it should be zero. The MESS 

should be available at a PL or traveling between PLs at each time segment. 

𝑥𝑚,𝑡 = {
1 ∶ 𝑖𝑓 𝐸𝑉 𝑖𝑠 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑒 𝑎𝑡 𝑃𝐿𝑚 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 (3.12) 

Equation (3.13) ensures that the MESS will be available at one location at a time 

and (3.14) signifies that the MESS should visit all the PLs during the day. 

∑𝑥𝑚,𝑡 + 𝑇𝑡
𝑚

= 1, ∀ 𝑡   (3.13) 

∑𝑥𝑚,𝑡 + 𝑇𝑡
𝑡

≥ 1, ∀ 𝑚 (3.14) 
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A new binary variable 𝑦𝑚,𝑡 is introduced in order to capture the change in the 

state of 𝑥𝑚,𝑡. As illustrated in (3.15), the variable 𝑦 computes the change of the present 

state of variable 𝑥 from the previous one. By allowing only two changes for each PL as 

presented in (3.16), we ensure only two state changes to take place and as a result, only 

one rising edge and one falling edge take place as illustrated in Figure 3.1. Equations 

(3.15) and (3.16) ensure that variable 𝑥𝑚,𝑡 have a rectangular pulse; however, the width 

of the rectangle (time spent at each PL) is to be optimized based on each PL demand. 

𝑦𝑚,𝑡 = (𝑥𝑚,𝑡 − 𝑥𝑚,𝑡−1)
2, ∀ 𝑚, 𝑡   (3.15) 

∑𝑦𝑚,𝑡
𝑡

= 2 , ∀ 𝑚 (3.16) 

After the departure of the first PL (first falling edge), the MESS should travel 

to the next station. A gap of the required traveling time between the falling edge of the 

first PL and the rising edge of the next PL should be considered to present a real logical 

scenario. Two binary variables called 𝑓𝑚,𝑡 and 𝑟𝑚,𝑡  are proposed in order to denote the 

fall and rise edge's timing of each PL. 

 

Figure 3.1 Capturing rising and falling edges of binary decision variable. 

Equation (17) ensures that 𝑓𝑚,𝑡 = 1 only at the falling edge of 𝑥𝑚,𝑡. The term 

(𝑥𝑚,𝑡 − 𝑥𝑚,𝑡−1) have three different possibilities, which are [-1, 0, and 1]. Constraint 

(3.17) guarantees that 𝑓𝑚,𝑡 = 1 if the value of (𝑥𝑚,𝑡 − 𝑥𝑚,𝑡−1) is [-1], which is the 

falling edge. Equation (3.18) ensures that 𝑓𝑚,𝑡 should have a value of 1 at least once, 
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which is at the falling edge. At this stage, the falling edge timing in captured in 𝑓𝑚,𝑡. 

−1 × 𝑓𝑚,𝑡 = 𝑓𝑚,𝑡 × (𝑥𝑚,𝑡 − 𝑥𝑚,𝑡−1) , ∀ 𝑚, 𝑡   (3.17) 

∑𝑓𝑚,𝑡
𝑡

= 1 , ∀ 𝑚 (3.18) 

In order to force the rising of the second PL (being available at the second 

station), the rising edge should take place after the falling edge of the previous station, 

considering the traveling and connecting/disconnecting time. This time is represented 

in the formulation as transient time (TT). Equations (3.19) and (3.20) ensure that 𝑓𝑚,𝑡 

and the next 𝑟𝑚,𝑡 are separated by a time interval equals to TT as illustrated in Figure 

3.1. At this stage, 𝑟𝑚,𝑡 = 1 after the previous falling edge timing plus the TT. The next 

step is to force the rising edge to take place at this captured time. 

𝑟𝑚+1,𝑡 = 𝑓𝑚,𝑡−𝑇𝑇 , ∀ 𝑚 𝑤ℎ𝑒𝑟𝑒 𝑡 > 𝑇𝑇   (3.19) 

∑𝑟𝑚+1,𝑡 

𝑡

= 0 , ∀ 𝑚 𝑤ℎ𝑒𝑟𝑒 𝑡 < 𝑇𝑇  (3.20) 

The truck is considered to be available at the next station by forcing the rising 

edge to take place at the specified 𝑡 in 𝑟𝑚,𝑡. This can be done using (3.21) that defines 

the rising time. Equation (3.22) ensures that only one rising edge can take place.  

 𝑟𝑚+1,𝑡 = 𝑟𝑚+1,𝑡 × (𝑥𝑚+1,𝑡 − 𝑥𝑚+1,𝑡−1) , ∀ 𝑚, 𝑡   (3.21) 

∑𝑟𝑚+1,𝑡
𝑡

= 1 , ∀ 𝑚 (3.22) 

The MESS is considered to be a battery-based truck, equations (3.23) and (3.24) 

represent the state-of-charge of the battery inside the truck, as follows:  

where 𝑆𝑂𝐶𝑡
𝑇 is the SOC of the MESS battery at time 𝑡; ∆𝑆𝑂𝐶𝑡

𝑇 is the change in the 

SOC due to charging, discharging, and traveling; 𝑃𝐶𝐻−𝑇 and 𝑃𝐷𝐶𝐻−𝑇 are the maximum 

charging and discharging rates, respectively; 𝐸𝑀𝐸𝑆𝑆 is the battery capacity in kWh. 

𝑆𝑂𝐶𝑡
𝑇 = 𝑆𝑂𝐶𝑡−1

𝑇 + ∆𝑆𝑂𝐶𝑡
𝑇 (3.23) 

∆𝑆𝑂𝐶𝑡
𝑇 =

(𝑃𝐶𝐻−𝑇 − 𝑃𝐷𝐶𝐻−𝑇)∆𝑇

𝐸𝑀𝐸𝑆𝑆
 (3.24) 
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3.1.4 Decision variables constraints. All decision variables constraints are 

mentioned in (3.25) - (3.27), where MDOD is the maximum depth of discharge for each 

battery. 

𝑃𝑛,𝑡
𝐸𝑉 , 𝑃𝑖,𝑡

𝐸𝑉−𝑇𝑜𝑡𝑎𝑙 ≥ 0 , ∀ 𝑛, 𝑖, 𝑡   (3.25) 

 (1 − 𝑀𝐷𝑂𝐷) ≤ 𝑆𝑂𝐶𝑛,𝑡
 , 𝑆𝑂𝐶𝑡

𝑇  ≤ 1 (3.26) 

𝑥𝑚,𝑡, 𝑦𝑚,𝑡, 𝑓𝑚,𝑡 , 𝑟𝑚,𝑡 ∈ {0,1}, ∀ 𝑚, 𝑡 (3.27) 

The previously mentioned set of constraints can be generalized to model any 

number of charging stations while taking the computational time and problem 

complexity into consideration. 

3.2. Case Studies 

The case study is modeled as mixed-integer-nonlinear programming (MINLP) 

problem in order to highlight its effectiveness and the possible contribution to the 

system. Simulation is conducted on the known IEEE-38 bus system, which can be seen 

in Figure 3.2. 

 

Figure 3.2 IEEE-38 bus system under study. 

The system contains 38 buses represented as a set 𝑖 =  {1,2,3, . . . ,38}. Each EV 

is assumed to visit the PL once a day and the required energy for each car is provided 

the day ahead. The maximum battery capacity is made to be 40 kWh just for simplicity 
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but it might be different for each EV. Each EV may require less than or up to this value. 

Three different PLs are examined in the study with the specification illustrated in Table 

3.1. The first PL is supplied from bus 9, while the second and third PLs are loaded on 

buses 18 and 36, respectively. The TT between each PL is calculated offline based on 

the distance between the buses and average truck speed. These values are in hours and 

it represents the traveling time, connecting, and disconnecting time. Figure 3.3 

represents the variant grid price over the day [57]. 

Table 3.1 Problem parameters. 

PLs specifications 

EVs battery cap. 40 kWh 

Maximum charging rate 9.6 kW 

Maximum depth of discharge 80% 

Chargers Available in PL1 121 

Chargers Available in PL2 144 

Chargers Available in PL3 168 

Maximum discharge rate of MESS 200 kW 

Total batteries capacity 4 MWh 

TT between PL1 and PL2 1 hour 

TT between PL2 and PL3 1 hour 

TT between PL1 and PL3 2 hours 

 

 

Figure 3.3 Grid price per hour for one day. 
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3.2.1 Case study 1. Case Study 1 represents the EVs demand from each PL 

without the integration of the MESS. Charging is uncontrolled and once the car is 

available at the station it starts charging (i.e., First-Come-First-Serve basis).       

As shown in Figure 3.4, the total power demand of each PL is presented, noting 

that different peaks at different times take place in this scenario. PL1 reports a peak 

load of 1.12 MW at 4:00 AM, PL2 has a peak load of 0.9 at 5:00 PM, and PL3 has 1 

MW at 10:00 AM. 

 

Figure 3.4 Power demand of each PL. 

3.2.2 Case study 2. The MESS is dispatched in order to serve the associated 

PLs. It is expected to visit PL1, followed by PL3 and then PL2 at the end, according to 

the peak times as per Figure 3.4 in case 1. 

 

Figure 3.5 Availability of MESS at each PL. 
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Figure 3.5 shows the availability of the truck at each PL as well as the traveling 

time, which is mentioned between each PL in Table 1, i.e., one means MESS is 

available at PL. The expected visiting order takes place which proves the functionality 

of the proposed approach. The MESS is available in PL1 from 11:00 AM until 8:00 

AM, then traveling to PL3 which will take 2 hours and will stay at PL3 until 1:00 PM. 

At the end, it arrives PL2 at 2:00 PM and stays until 11:00 PM. 

The power drained from the system by each charging station after the visit of 

the MESS is presented in Figure 3.6, which is, overall, less than the power consumed 

in the first case study. The discharging rate vs time at each PL is illustrated in Figure 

3.7, it decides to discharge with maximum discharging rate since the demand is high 

and there is available energy in the MESS’s battery, i.e., considering the maximum 

depth-of-charge. Finally, Figure 3.8 represents the state-of-charge (SOC) of the battery, 

noting that at the end of the day, 20% of the battery is maintained which achieves the 

MDOD limit.   

A summary of the total cost of all case studies is shown in Table 3.2. It turned 

out that, in case 1, the energy costs for PL1, PL2, and PL3 are $85.9157, $201.512, and 

$204.88, respectively, resulting in a total energy cost of $492.30. On the other hand, 

case 2 reports $62.84, $149.86, and $166.13 for PL1, PL2, and PL3, respectively, with 

a total energy cost of $378.847 and total savings up to 23% as illustrated in Table 3.2. 

 

Figure 3.6 Power demand of each PL after mobile storage visit. 
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Figure 3.7 Case 2 - MESS discharging rate. 

 

 

Figure 3.8 MESS results: battery SOC. 

 

Table 3.2 Summary of simulation results. 

 Case 1 Case 2 

Energy cost PL1 $85.9157 $62.847 

Energy cost PL2 $201.512 $149.869 

Energy cost PL3 $204.88 $166.13 

Total energy cost $492.308 $378.847 

Savings - 23.04% 
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3.3. Conclusion. Distribution networks will face many challenges owing to 

the rapid increase of EVs in the market and the increasing load demand to charge these 

EVs. Due to the uncertainty of these loads, many technical issues will arise such as 

congestion on the distribution side and voltage drops. The technology of storage 

systems is gaining a lot of attention and has been the focus of rigorous study. This paper 

proposes a scheduling algorithm for an MESS to address the increased demand of 

charging stations within a specific area. Two case studies were discussed to illustrate 

the contribution of the proposed algorithm. The proposed algorithm has successfully 

reduced the total operational cost of each one of the 3 PLs associated in the case study 

as shown by the reduction in the aforementioned costs of 23% in the simulation results. 

Additionally, if demand exceeds the generation limit, excess energy is required to fulfill 

that unmet demand which is readily supplied using MESS; whereas there would not be 

any avenue of supplying it without the proposed system. 
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4. Chapter 4. Optimal Dispatch of a Mobile Storage Unit to Support EV 

Charging Stations 

In this chapter, an MESS owned by and serves multiple utilities sharing the 

same geographical area in order to shave the peak demand and minimize the operational 

cost is conducted. The proposed system will dynamically dispatch the MESS to serve 

the associated PLs during the day in which these PLs will coordinate arrival EVs 

charging behavior to have the peak load at the time that the MESS is available at this 

particular PL. As shown in Figure 4.1, the algorithm has the choice to determine the 

order of visiting the PLs based on its coordinated load demand while satisfying all EVs 

requirements. The departure and arrival time between the PLs are separated by a gap 

called Transient Time (TT) which represents the traveling time considering the traffic, 

the speed of the MESS, connecting, and disconnecting time from the power system. 

The following section will contain a discussion about the problem formulation of day-

ahead scheduling of MESS to serve the requirements of different charging stations 

contributing with different percentages to the MESS's capital cost. 

 

Figure 4.1 Overall mapping scheme illustrating the overlaying of the geographical and electrical layers. 
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4.1. Problem Formulation 

Different models are integrated into the problem formulation in order to 

implement the proposed system, as depicted in Figure 4.2. The power flow model 

relates the line current, bus voltage, and power losses to the MESS power and location, 

while the MESS model represents the dynamicity in selecting the sequence of visiting 

the PLs. 

 

Figure 4.2 Proposed model structure. 

The objective function shown in (4.1) aims to minimize the total cost of the total 

drained power by the PLs to charge the arrival EVs and the total demand charges. As 

shown in (4.2), the historical peak demand 𝑃𝑖
𝑀𝐴𝑋−𝑇𝑎𝑟𝑔𝑒𝑡

 is used to calculate the demand 

charges, the extra peak demand charges are only considered for the power exceeds the 

𝑃𝑖
𝑀𝐴𝑋−𝑇𝑎𝑟𝑔𝑒𝑡

. The additional demand charges 𝐶𝑝𝑒𝑎𝑘 will be considered to be zero if the 

peak is not exceeding the historical peak demand, as follows:  

min
 
∑ (∑(𝐶𝑡

𝑔𝑟𝑖𝑑
 𝑃𝑖,𝑡
𝑒𝑣∆𝑡)

𝑡∈𝕋

+  𝐶𝑖
𝑝𝑒𝑎𝑘)

𝑖∈𝕀𝑒𝑣

 (4.1) 

𝐶𝑖
𝑝𝑒𝑎𝑘 = {

0         , ∀(𝑃𝑖
𝑒𝑣−𝑀𝐴𝑋 − 𝑃𝑖

𝑀𝐴𝑋−𝑇𝑎𝑟𝑔𝑒𝑡
) ≤ 0

𝐶𝑘𝑤(𝑃𝑖
𝑒𝑣−𝑀𝐴𝑋 − 𝑃𝑖

𝑀𝐴𝑋−𝑇𝑎𝑟𝑔𝑒𝑡
)   , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 , ∀𝑖 ∈ 𝕀𝑒𝑣 (4.2) 

where 𝐶𝑡
𝑔𝑟𝑖𝑑

  refers to the variable grid cost at each time interval; 𝑃𝑖,𝑡
𝑒𝑣  is the total power 

consumed by EVs at each bus and each time interval; 𝕋 is the set of all the time 

segments; 𝕀𝑒𝑣 is a subset of buses loaded by a PL; 𝐶𝑖
𝑝𝑒𝑎𝑘 is the total extra peak demand 

charges for charging stations on bus i; 𝐶𝑘𝑤 is the demand charges in $/kW; 𝑃𝑖
𝑒𝑣−𝑀𝐴𝑋 is 
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the peak demand of the charging stations on bus i; 𝑃𝑖
𝑀𝐴𝑋−𝑇𝑎𝑟𝑔𝑒𝑡

   is the historical 

recorded or targeted recorded peak demand. 

4.1.1 Power flow linearized constraints. The nonlinear power balance 

equations are presented in (4.3) and (4.4). The active power consumption at any bus 𝒊 

consists of the residential, commercial, and industrial customers, in addition to, the EV 

charging stations are articulated and defined in (4.5). The generated power at any bus 𝒊 

is the sum of the generated power from the DG units and the power consumed from the 

grid is given by (4.6): 

 

𝑃𝑖,𝑡
𝐺 − 𝑃𝑖,𝑡

𝐿 =∑𝑉𝑖,𝑡 𝑉𝑗,𝑡(𝐺𝑖,𝑗 𝑐𝑜𝑠 𝛿𝑖,𝑗 + 𝐵𝑖,𝑗 𝑠𝑖𝑛 𝛿𝑖) 

𝑗∈𝕀

, ∀𝑖, 𝑡 (4.3) 

𝑄𝑖,𝑡
𝐺 − 𝑄𝑖,𝑡

𝐿 =∑𝑉𝑖,𝑡 𝑉𝑗,𝑡(𝐺𝑖,𝑗 cos 𝛿𝑖,𝑗 + 𝐵𝑖,𝑗 sin 𝛿𝑖)

𝑗∈𝕀

, ∀𝑖, 𝑡 (4.4) 

𝑃𝑖,𝑡
𝐿 = 𝑃𝑖,𝑡

𝐿−𝑅 + 𝑃𝑖,𝑡
𝐿−𝐶 + 𝑃𝑖,𝑡

𝐿−𝐼 + 𝑃𝑖,𝑡
𝐿−𝐸𝑉    ∀𝑖, 𝑡

𝑃𝑖,𝑡
𝐿−𝑅 = 0 ∀ 𝑖 ∉ 𝕀𝑟𝑒𝑠

𝑃𝑖,𝑡
𝐿−𝐶 = 0 ∀ 𝑖 ∉ 𝕀𝑐𝑜𝑚

𝑃𝑖,𝑡
𝐿−𝐼 = 0 ∀ 𝑖 ∉ 𝕀𝑖𝑛𝑑

𝑃𝑖,𝑡
𝐿−𝐸𝑉 = 0 ∀ 𝑖 ∉ 𝕀𝑒𝑣 }

 
 

 
 

 (4.5) 

𝑃𝑖,𝑡
𝐺 = 𝑃𝑖,𝑡

𝐺𝑟𝑖𝑑 + 𝑃𝑖,𝑡
𝐷𝐺

𝑄𝑖,𝑡
𝐺 = 𝑄𝑖,𝑡

𝐺𝑟𝑖𝑑 + 𝑄𝑖,𝑡
𝐷𝐺
} (4.6) 

where 𝑖 and 𝑗 denote bus indices; 𝕀 is the set of all system buses; 𝑃 𝑖,𝑡
𝐿  and 𝑄 𝑖,𝑡

𝐿  represent 

real and reactive powers consumed at bus 𝑖 and time 𝑡, respectively;  𝑃 𝑖,𝑡
𝐺  and 𝑄 𝑖,𝑡

𝐺  are 

the real and reactive generated powers in p.u., respectively; 𝐺𝑖,𝑗 and 𝐵𝑖,𝑗 represent real 

and imaginary components of the 𝑖 − 𝑗 element in the Y-bus matrix; 𝑉𝑖,𝑡 and 𝛿𝑖 

represent the voltage magnitude in p.u. and angle, respectively;  𝕀𝑟𝑒𝑠, 𝕀𝑐𝑜𝑚, 𝕀𝑖𝑛𝑑, and 

𝕀𝑒𝑣 ⊂ 𝕀 are the subsets of the residential customers, commercial customers, industrial 

customers, and EV parking lots buses respectively; 𝑃𝑖,𝑡
𝐿−𝑅 is the power of the residential 

load and it is zero for all non-residential buses. Similarly, 𝑃𝑖,𝑡
𝐿−𝐶, 𝑃𝑖,𝑡

𝐿−𝐼, and 𝑃𝑖,𝑡
𝐿−𝐸𝑉 are 

the commercial, industrial, and EV parking lots power; 𝑃𝑖,𝑡
𝐺𝑟𝑖𝑑 and 𝑄𝑖,𝑡

𝐺𝑟𝑖𝑑 are the real and 

reactive injected powers from the grid, respectively; 𝑃𝑖,𝑡
𝐷𝐺  and 𝑄𝑖,𝑡

𝐷𝐺 are the real and 

reactive injected powers from the DG units, respectively. 

The linear power flow model proposed in [47] is used to reduce complexity and 
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save computational time. The linearized equations are provided in (4.7) and (4.8). 

(𝑃𝑖,𝑡
𝐿 − 𝑃𝑖,𝑡

𝐺 ) 𝑉𝑖,𝑡 +  2𝑃𝑖,𝑡
𝐺 − 2𝑃𝑖,𝑡

𝐿 =∑(𝑉𝑗,𝑡𝐺𝑖,𝑗 + 𝐵𝑖,𝑗𝛿𝑗)

  

𝑗∈𝕀

 (4.7) 

(𝑄𝑖,𝑡
𝐿 − 𝑄𝑖,𝑡

𝐺 ) 𝑉𝑖,𝑡 +  2𝑄𝑖,𝑡
𝐺 − 2𝑄𝑖,𝑡

𝐿 = −∑(𝑉𝑗,𝑡𝐵𝑖,𝑗 + 𝐺𝑖,𝑗𝛿𝑗)

  

𝑗∈𝕀

 (4.8) 

The voltage levels have to be maintained within acceptable limits as expressed 

in (4.9). Also, the thermal line limits impose an upper limit on the line current 

magnitude as in (4.10): 

                       𝑉𝑚𝑖𝑛 ≤ 𝑉𝑖,𝑡  ≤ 𝑉𝑚𝑎𝑥           ∀ 𝑖, 𝑡                                (4.9) 

                                           𝐼𝑖,𝑗,𝑡  ≤  𝐼𝑖,𝑗
𝑚𝑎𝑥                                                 (4.10) 

where 𝑉𝑚𝑖𝑛 and 𝑉𝑚𝑎𝑥 are the minimum and maximum permissible voltage levels in 

p.u., respectively; 𝐼𝑖,𝑗
𝑚𝑎𝑥 and 𝐼𝑖,𝑗,𝑡 is the maximum allowable current and the actual 

current at time 𝑡 through the line between buses 𝑖 and 𝑗, respectively. 

4.1.2 EV charging constraints. Equation (4.11) describes the total power for 

each charging station. The first term in (4.11) is the required EVs charging power; the 

second term is the power injected from the MESS to each PL. Charging decisions are 

restricted by the availability of the EV and it can take a value from zero up to the full 

charging rate as in (4.12), as follows: 

𝑃𝑖,𝑡
𝐿−𝐸𝑉 = (∑

𝑋𝑣,𝑖,𝑡
𝐸𝑉  𝑃𝑣

𝐶𝐻  

𝜂𝑐ℎ 𝑆𝑏𝑎𝑠𝑒

𝑣∈𝕍𝑖

) − 𝑃𝑖,𝑡
𝑀𝑆 , ∀𝑖 ∈ 𝕀𝑒𝑣, 𝑡 (4.11) 

𝑋𝑣,𝑖,𝑡
𝐸𝑉 ≤ 𝐴𝑣,𝑖,𝑡 , ∀𝑣, 𝑖, 𝑡 

0 ≤ 𝑋𝑣,𝑖,𝑡
𝐸𝑉 ≤ 1, ∀𝑣, 𝑖, 𝑡 

(4.12) 

where 𝑣 and 𝕍𝑖 are the index and the subset of chargers on bus 𝑖, respectively; 𝑋𝑣,𝑖,𝑡
𝐸𝑉  is 

the charging decision as a fraction of the charger capacity;  𝑃𝑣
𝐶𝐻 is the charger capacity 

in kW; 𝜂𝑐ℎ is the efficiency of charging; 𝑆𝑏𝑎𝑠𝑒 is the system base power in kVA for the 

per-unit system; 𝐴𝑣,𝑖,𝑡 is a binary parameter indicating whether charger 𝑣 on bus 𝑖 is 

occupied with an EV at time 𝑡, i.e. if 𝐴𝑣,𝑖,𝑡 = 1, then an EV is plugged into the charger; 

𝑃𝑖,𝑡
𝑀𝑆is the power injected from the MESS. 

The state of charge (SOC) of each EV is updated with the charging energy as in 
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(4.13) and (4.14). Equation (4.15) is used to ensure satisfying the pre-required demand 

for each EV. 

                       𝑆𝑂𝐶𝑣,𝑖,𝑡
𝐸𝑉 = 𝑆𝑂𝐶𝑣,𝑖,𝑡−1

𝐸𝑉 + ∆𝑆𝑂𝐶𝑣,𝑖,𝑡
𝐸𝑉                                         (4.13) 

                                 ∆𝑆𝑂𝐶𝑣,𝑖,𝑡
𝐸𝑉 =

𝑋𝑣,𝑖,𝑡
𝐸𝑉  𝑃𝑣

𝐶𝐻−𝐸𝑉∆𝑇

𝐸𝑣,𝑖
𝐵𝐴𝑇                                                (4.14) 

                                 𝑆𝑂𝐶𝑣,𝑖,𝑡
𝐸𝑉 ≤ 𝑆𝑂𝐶𝑣,𝑖

𝑅𝐸𝑄                                                   (4.15) 

where 𝑆𝑂𝐶𝑣,𝑖,𝑡
𝐸𝑉 is the SOC at time 𝑡 for each EV; ∆𝑆𝑂𝐶𝑣,𝑖,𝑡

𝐸𝑉  the change in the SOC due 

to charging; ∆𝑇 is the time segments in hours; 𝐸𝑣,𝑖
𝐵𝐴𝑇 is the battery capacity in kWh; 

𝑆𝑂𝐶𝑣,𝑖
𝑅𝐸𝑄

is the required SOC by each EV driver. 

4.1.3 MESS modeling. The trip plan of the MESS is exed in the next 

subsection in sequencing and scheduling modeling. Besides the trip plan, when the 

MESS is in transit or at any parking lot, the SOC of the MESS battery at each time 

segment is updated as in (4.16) and (4.17). It is affected by the injected energy and the 

MESS traveling consumption, as follows:  

𝑆𝑂𝐶𝑡
𝑀𝑆 = 𝑆𝑂𝐶𝑡−1

𝑀𝑆 + ∆𝑆𝑂𝐶𝑡
𝑀𝑆 (4.16) 

∆𝑆𝑂𝐶𝑡
𝑀𝑆 =

(𝑋𝑡
𝐶−𝑀𝑆 𝑃𝐶𝐻−𝑀𝑆 − 𝑋𝑡

𝐷𝐶𝐻−𝑀𝑆𝑃𝐷𝐶𝐻−𝑀𝑆 − 𝑃𝑡
𝑀−𝑀𝑆)∆𝑇

𝐸𝑀𝐸𝑆𝑆
 (4.17) 

Equation (4.18) maintains the battery limits, as follows: 

𝑆𝑂𝐶𝑀𝑆−𝑀𝐼𝑁 ≤ 𝑆𝑂𝐶𝑡
𝑀𝑆 ≤ 1.0 (4.18) 

where 𝑆𝑂𝐶𝑡
𝑀𝑆 is the SOC of the MESS battery at time 𝑡; ∆𝑆𝑂𝐶𝑡

𝑀𝑆 is the change in the 

SOC due to charging, discharging, and traveling; 𝑋𝑡
𝐶−𝑀𝑆 and 𝑋𝑡

𝐷𝐶𝐻−𝑀𝑆 are the charging 

and discharging decision variables, respectively; 𝑃𝐶𝐻−𝑀𝑆 and 𝑃𝐷𝐶𝐻−𝑀𝑆 are the 

maximum charging and discharging rates, respectively; 𝑃𝑡
𝑀−𝑀𝑆 is the power consumed 

due to traveling between PLs; 𝐸𝑀𝐸𝑆𝑆 is the battery capacity in kWh; 𝑆𝑂𝐶𝑀𝑆−𝑀𝐼𝑁is the 

minimum SOC of the MESS. 

The MESS is owned by different PLs contributing with different percentages to 

the capital cost of the MESS. According to this contribution, each PL should get an 

amount of the energy equivalent to its share as in (4.19), as follows: 

∑𝑃𝑖,𝑡
𝑀𝑆∆𝑇

𝑡∈𝕋

= 𝛾𝑖 ∑ (∑𝑃𝑖,𝑡
𝑀𝑆∆𝑇

𝑡∈𝕋

) , 𝑖 ∈ 𝕀𝑒𝑣
𝑖∈𝕀𝑒𝑣

   (4.19) 
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∑ 𝛾𝑖
𝑖∈𝕀𝑒𝑣

= 1 

where 𝛾𝑖 is the per-unit sharing of each charging station. 

4.1.4 Scheduling and sequencing modeling. The overall integrated 

scheduling and sequencing approach relies on decoupling the temporal and spatial 

elements of the problem. This is done by optimizing the durations of the visits. Then, 

the assignment of the PLs to the visiting order 1, 2, 3, …, 𝑵𝑷 as explained in Section 

4.1 and shown in Figure 4.1 is carried out. Thus, the first part that manages the duration 

of the MESS visits assumes a fixed order using the binary decision variable 𝑿𝒑,𝒕, where  

𝑿𝒑,𝒕 = 𝟏 indicates that the MESS is connected to parking lot 𝒑 at time 𝒕. A binary 

decision variable 𝑴𝒑,𝒕 is introduced to express the traveling phase between parking lots 

𝒑 and 𝒑 + 𝟏. At any time segment, the MESS can be either connected to a parking lot 

𝒑 or traveling between two PLs as in (4.20). The MESS should visit all the PLs as in 

(4.21) and it should also travel from all PLs except the last one as in (4.22). If the MESS 

leaves a parking lot, it cannot return to it again, as in (4.23). The constraint in (4.24) 

ensures that the MESS can be connected to parking lot 𝒑 only if it was connected to 

another parking lot 1, 2, …, 𝒑 − 𝟏 or the same parking lot 𝒑 at time 𝒕 − 𝟏 and the same 

holds for the traveling between the parking lots as in (4.25). Equations (4.26) and (4.27) 

ensure that a traveling phase takes place after visiting 𝒑 and before arriving at  𝒑 + 𝟏. 

∑𝑋𝑝,𝑡 + 𝑀𝑝,𝑡

𝑝∈ℙ

= 1 ∀𝑡 (4.20) 

∑𝑋𝑝,𝑡
𝑡∈𝕋

≥ 1 ∀𝑝 (4.21) 

∑𝑀𝑝,𝑡

𝑡∈𝕋

≥ 1  ∀𝑝 = {1,2, … ,𝑁𝑝 − 1} (4.22) 

𝑋𝑝,𝑡  ≤  𝑋𝑝,𝑡−1  ∀ 𝑝, 𝑡 (4.23) 

𝑋𝑝,𝑡 ≤∑𝑋𝑝,𝑡−1

𝑝

𝑝=1

 ∀𝑝, 𝑡 (4.24) 
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𝑀𝑝,𝑡 ≤∑𝑀𝑝,𝑡−1

𝑝

𝑝=1

 ∀𝑝, 𝑡 (4.25) 

𝑋𝑝,𝑡 −  𝑀𝑝,𝑡+1 ≤ 1    ∀𝑝 = {1,2, … ,𝑁𝑝 − 1}, 𝑡 (4.26) 

𝑀𝑝,𝑡 −  𝑋𝑝+1,𝑡+1 ≤ 1 ∀𝑝 = {2, … ,𝑁𝑝}, 𝑡 (4.27) 

where 𝑋𝑝,𝑡 is a binary variable indicating if the MESS is available at PL 𝑝 and 𝑀𝑝,𝑡 is 

a binary variable indicating if the MESS is traveling between PLs. 

The second part of the proposed sequencing and scheduling formulation is to 

decide the optimal sequence of visiting the actual PLs. Thus, another binary variable is 

introduced  𝐷𝑖,𝑝, where 𝐷𝑖,𝑝 = 0 ∀𝑖 ∉ 𝕀𝑒𝑣. For example, if 𝐷9,2 = 1, this means that the 

parking lot on bus 𝑖 = 9  will be the second parking lot, i.e., 𝑝 = 2, to be visited by the 

MESS. Each parking lot should be visited once as in (4.28) and each visit should be 

assigned one parking lot as in (4.29). The constraint in (4.30) ensures that the MESS 

can inject power at bus 𝑖 only if it is connected to the parking lot assigned to this bus. 

The power consumption during the traveling phase of the MESS is modeled by (4.31) 

taking into consideration the distance 𝑆𝑖,𝑗 between locations at buses 𝑖 and 𝑗 where 𝑖 ≠

𝑗 and the power consumption rate per km. 

∑ 𝐷𝑖,𝑝
𝑖∈𝕀𝑒𝑣

= 1 (4.28) 

∑𝐷𝑖,𝑝
𝑝∈ℙ

= 1 (4.29) 

𝑃𝑖,𝑡
𝑀𝑆 = 𝐷𝑖,𝑝 𝑋𝑝,𝑡( 𝑋𝑡

𝐷𝐶𝐻−𝑀𝑆𝑃𝐷𝐶𝐻−𝑀𝑆 − 𝑋𝑡
𝐶−𝑀𝑆 𝑃𝐶𝐻−𝑀𝑆) 

∀ 𝑖, 𝑡 
(4.30) 

𝑃𝑡
𝑀−𝑀𝑆 = ∑ ∑ ∑

𝑀𝑝,𝑡𝐷𝑖,𝑝 𝐷𝑗,𝑝+1 𝑆𝑖,𝑗  𝜌

∆𝑇
𝑝∈ℙ𝑗∈𝕀𝑒𝑣𝑖∈𝕀𝑒𝑣

 (4.31) 

where 𝐷𝑖,𝑝 is the binary variable that assigns each PL location to the optimal visiting 

order; 𝑆𝑖,𝑗 is the distance between two locations; 𝜌 is the consumption rate in kWh/km. 

4.1.5 Decision variables constraints. In this section, the variables constraints 

are illustrated as shown: 

  𝑃𝑣
𝐶𝐻 , 𝑃𝐷𝐶𝐻−𝑀𝑆, 𝑃𝐶𝐻−𝑀𝑆, 𝑃𝑡

𝑀−𝑀𝑆, ≥ 0         ∀ 𝑡 (4.32) 
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 ( 100 −𝑀𝐷𝑂𝐷 ) ≤  𝑆𝑂𝐶𝑡
𝑀𝑆, 𝑆𝑂𝐶𝑣,𝑖,𝑡

𝐸𝑉  ≤ 100         ∀  𝑡 (4.33) 

 𝑋𝑡
𝐶−𝑀𝑆, 𝑋𝑡

𝐷𝐶𝐻−𝑀𝑆, 𝑋𝑣,𝑖,𝑡
𝐸𝑉 , 𝑋𝑝,𝑡,𝑀𝑝,𝑡, 𝐷𝑖,𝑝  𝜖 {0, 1}         ∀  𝑖, 𝑝, 𝑡, 𝑣 (4.34) 

where MDOD is the Maximum depth of charge that maintains longer battery life. 

The previously mentioned set of constraints can be generalized to model any 

number of PLs. 

4.2. Simulations and Results 

To validate the proposed system, a mixed-integer nonlinear programming 

(MINLP) problem is modeled to highlight the contribution of the MESS. The 

simulations are conducted on a 36-bus real radial feeder located in Ontario, Canada [48] 

shown in Figure 4.3. This distribution system is rated at 16.185 MVA, a medium 

voltage of 16 kV, and extends for 30 kilometers. Line’s impedance and lengths are 

given in [48]. The daily load profiles, which are obtained for typical loads on a winter 

day [49], are broken into three categories. Industrial load on bus 4, commercial load on 

buses 7 and 36, and residential load on the remaining buses. The different daily load 

profiles can be seen in Figure 4.4 while the grid energy price [57] is shown in Figure 

4.5. To solve the optimization problem, the General Algebraic Modeling Software 

(GAMS) is used, which is a powerful, effective, and simple platform for power system 

optimization [50]. For the proposed approach, the BARON solver is used, which 

implements the branch-and-bound type of global optimization algorithms to guarantee 

the global optimal. 

The time horizon is divided into 24-time slots per day, each time slot is one hour 

span and represented as a set t = {1, 2, 3, ..., 24}. The system contains 36 buses 

represented as a set i = {1, 2, 3, ..., 36}. The assumption of each EV is coming to the 

PL once a day is made. The required energy for each EV is provided a day ahead and 

it should be delivered during the EV available time at the PL. The maximum battery 

capacity of each EV is assumed to be 90 kWh but it might be different for each EV. 

Each EV may request to get less than or up to this value. Three different PLs are 

examined in this study, the specifications of which are provided in Table 4.1. PL1 is 

supplied from bus 9, while PL2 and PL3 are loaded on buses 18 and 36, respectively. 

Several case studies are presented to investigate the effect of the proposed approach. 

The first case study is conducted on the PLs under an FCFS basis, where the charging 

requests are processed and executed by the order of their arrival, i.e., charging starts 
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once the EV is available at the PL. The second case study demonstrates the effect of 

EVs coordination on shaving the peak demand. The third case study focuses on the 

impact of integrating the MESS model. In all case studies presented, arbitrary historical 

peak demand for each PL to be 0.7, 0.8, 1 MW for PL1, PL2, and PL3, respectively, 

are assumed. 

 

Figure 4.3 Radial system under study. 

 

Figure 4.4 Different load profiles: A) Residential, B) Commercial, C) Industrial. 
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Figure 4.5 Grid price per hour for one day. 

Table 4.1 Simulation parameters. 

 PL-1 PL-2 PL-3 

Chargers available 50 50 75 

Maximum charging rate 22 kW 22 kW 22 kW 

Historical peak demand 0.7 MW 0.8 MW 1 MW 

Peak demand charge $9.1/kW 

 

4.2.1 Case 1: FCFS without MESS. In this case, we apply FCFS, where the 

EVs start to charge once they are plugged in until the delivery of required energy is 

done as described in [51]. Figure 4.6 presents the power consumed by each parking lot 

and the historical peak for each one. 

Three different peaks during different time segments took place. As shown in 

Figure 4.6, PL1 has a peak load of 0.93 MW at 2:00 PM and 3:00 PM, PL2 has 1.1 MW 

peak load at 7:00 AM and 8:00 AM and PL3 has 1.43 MW at 4:00 PM and 5:00 PM. 

All of them exceeds the 𝑃𝑖
𝑀𝐴𝑋−𝐻𝑖𝑠𝑡, by 32.2%, 37.5%, and 43%, respectively. This 

situation results in an extra demand charge of $2,138.5, $2,730, and $3,913 for PL1, 

PL2, and PL3, respectively, in addition to the charging cost. In the absence of the 

coordination and the MESS integration, the total extra demand charges are found to be 

$8,781.5 for the three PLs at the end of the day. In addition to the historical peak cost 

which is $22,750, the total encountered cost is found to be $31,979 as shown in Table 

4.3. 
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Figure 4.6 Case 1 - Power consumed by each PL under FCFS scheme. 

4.2.2 Case 2: EV coordinated charging without MESS. The coordination 

constraints are applied in case 2. EVs charging is optimized to ensure minimum total 

cost taking into consideration the charging cost and demand charges, the proposed 

approach coordinates the charging behavior to avoid higher peak value and to charge 

the EVs in the lowest price time if possible, considering the availability time of the 

EVs. Figure 4.7 shows the power consumed by each PL. Each PL has its historical or 

targeted peak demand, on which the peak demand charges are billed, as explained in 

the formulation. 

 

Figure 4.7 Case 2 - PLs power consumption with coordinated EV charging. 

As shown in Figure 4.7, the proposed coordination scheme succeeds in shaving 

the power peaks; however, it did not entirely remove the extra demand charges. The 
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peak in PL1 is not exceeding the 0.75 MW limit during the period from 12:00 PM to 

3:00 PM, which represents 7.14% (instead of 32.2% in the first case study) above the 

historical data and a demand charge of $466.37. This results in a reduction of 0.18 MW 

and a savings of $1,672.13 in PL1. PL2 and PL3 reported a peak load of 0.86 and 1.04 

MW, which represent 7.5% and 4% (instead of the previously obtained 37.5% and 43%) 

above the 𝑃𝑖
𝑀𝐴𝑋−𝑇𝑎𝑟𝑔𝑒𝑡

 and result in an extra demand charge of $517.56 and $364 and 

a total demand charge of $7,797.56 and $9,464, respectively. The peak periods of PL2 

and PL3 are taking place in the periods 7:00 AM and 4:00 PM till 10:00 AM and 7:00 

PM, respectively. This leads to a reduction of 0.24 and 0.39 MW and savings of 

$2,212.44 and $3,549 for PL2 and PL3, respectively. The total demand charges are 

reduced; however, the energy consumption cost is increased since some EVs have been 

coordinated to charge at a relatively higher price time to minimize the demand charges. 

Energy consumption costs are $495.56 in comparison to the $447.97 in Case 1 (i.e., 

10.9% increase). In the presence of EVs charging coordination, the total cost is found 

to be $24,573.49 for the three PLs. This is a reduction of 23.15% in the total cost from 

the previous case study. 

4.2.3 Case 3: EV coordinated charging with MESS. In this case study, the 

MESS is dispatched. The Nikola One truck [52] is selected and used since it has a 

payload capacity of 29,500 kg. The truck is loaded with 47 batteries that weigh a total 

of 25,380 kg and has a capacity of 4 MWh, each battery weighs 540 kg and has a 

capacity of 85 kWh, as discussed in Table 4.2. The cost of the truck can be shared with 

different percentages among a group of PLs based on their needs. In this case study, an 

equal share between charging stations is assumed for simplicity. The energy delivered 

to each PL is equal to or less than 33% of the possible supplied energy. The minimum 

battery’s SOC level is set to 20% to maintain a longer battery lifetime. And it is assumed 

to be 100% at the beginning of the day.  

As illustrated in Figure 4.8, dispatching the MESS succeeds in mitigating the 

extra demand charges completely and supply power to the EVs if it is available at the 

PL. For PL1, the peak demand does not exceed the 𝑃𝑖
𝑀𝐴𝑋−𝑇𝑎𝑟𝑔𝑒𝑡

, which is 0.7 MW and 

it resulted in shifting the peak period from 1:00 PM to 3:00 PM instead of 12:00 PM to 

3:00 PM. PL2 and PL3 did not exceed the 𝑃𝑖
𝑀𝐴𝑋−𝑇𝑎𝑟𝑔𝑒𝑡

 as well and maintained a peak 
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demand of 0.8 and 1 MW, respectively. This peak demand took place from 7:00 AM to 

8:00 AM for PL2 and from 4:00 PM to 6:00 PM for PL3. For all PLs, the extra demand 

charges equal to zero since no 𝑃𝑖
𝑀𝐴𝑋−𝑇𝑎𝑟𝑔𝑒𝑡

 has been exceeded, while the historical 

demand charges are $22,750. The operation cost is found to be $99.78, $85.23, and 

$185.204 for PL1, PL2, and PL3, resulting in a total operation cost of $370.21 for all 

PLs at the end of the day. 

Table 4.2 MESS specifications. 

MESS specifications 

Battery capacity 85 kWh 

Battery weight 540 kg 

Number of batteries 47 

Total batteries weight 25,380 kg 

Truck payload capacity 29,500 kg 

Total batteries capacity 4 MWh 

 

 

Figure 4.8 MESS results - Power consumed by each PL. 

The discharging rate at each PL (in Figure 4.9) varies according to the demand 

at each time segment and takes a value only if the truck is available at the PL. For PL1, 

the MESS is available from 11:00 AM to 3:00 PM and discharging with the maximum 

discharging rate of 200 kW during these four hours and delivering a total of 0.8 MWh, 

which represents 20% of the total capacity. PL2 receives a total power of 0.71 MW 
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from 6:00 AM to 10:00 AM, while PL3 share is 0.8 MW from 4:00 PM to 8:00 PM. 

The algorithm decides to visit PL2 first because its power peak takes place first 

followed by PL1’s and finally followed by PL3’s. Figure 4.10 represents the SOC of 

the battery, noting that the traveling consumption is taken into consideration assuming 

consumption of 1 kWh/km for the truck, an average speed of 60 km/h, and a 30-km 

distance between every two consecutive PLs. These assumptions result in 30 minutes 

of traveling time, the remaining time is assumed for the traffic and setup 

(connecting/disconnecting) routine. Transit times are expressed by the green color; 

traveling from PL2 to PL1 takes place from 10:00 AM to 11:00 AM, while traveling 

from PL1 to PL3 occurs between 3:00 PM to 4:00 PM. Up to 10:00 AM, the MESS is 

available at PL2 and after 4:00 PM the MESS is available at PL3. PL2 and PL3 receive 

17.75% and 20% of the battery capacity, respectively. The final SOC level is 40%. It is 

worth mentioning that these results depend on market prices, load demand, and traffic 

in the first place; different values of these study parameters will produce different 

results. 

 

Figure 4.9 MESS discharging rate. 

 

Figure 4.10 MESS results: battery SOC. 
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4.2.4 Results discussion. A summary of the total cost for all case studies is 

shown in Table 4.3. It turns out that the demand charges are relatively higher than the 

operating costs, avoiding these charges will result in huge savings. An extra demand 

cost of $8,781.5 is paid, which represents a 38.6% increase in demand charges in Case 

1. In Case 2, using EVs coordination partially shaves the PL peak demands and reduces 

the demand charges, achieving a total cost of $24,573.49 including an EV charging cost 

of $495.56 with extra demand charges of $1,327.93. Using the MESS along with the 

optimal EVs coordination results in a huge reduction in the total operation cost and the 

savings reach up to 27.7% in comparison with the base case.  

Table 4.3 Summary of simulation results. 

 Case 1 Case 2 Case 3 

Energy cons. cost $447.97 $495.56 $370.21 

Historical peak cost $22,750 $22,750 $22,750 

Extra peak charge $8,781.5 $1,327.93 0 

Total cost $31,979.47 $24,573.49 $23,120.21 

Savings - 23.15% 27.70% 

 

4.3. Conclusion 

Distribution systems are witnessing various challenges due to the rapid increase 

of EVs. Due to the uncertainty of EVs' charging profiles, many technical issues will 

take place. This chapter proposes a day ahead scheduling and dispatching of an MESS 

in conjunction with optimal EVs charging coordination shared by different PLs; each 

PL should coordinate its charging behavior to have the peak load while the MESS is 

available at the PL. An MINLP is formulated to minimize the total operation cost and 

demand charges while satisfying the EVs owners' requests. Different case studies on a 

real 36 buses radial feeder with real data are used to validate the results and highlight 

the contribution of the system. The usage of MESS reflected the minimum total 

operational cost among the discussed case studies while supplying the excess power 

that exceeds the maximum generation limits if any exists. The usage of the MESS 

results in savings that reach up to 27.7% in comparison with the base case. The 

proposed MESS has successfully achieved the objectives, taking into consideration the 

variants in distribution grids. 
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5. Chapter 5. Optimal Planning of Several MESSs to Serve Multiple EVs 

Charging Stations    

As discussed in the previous chapters, the integration of the MESS and RES 

technologies is providing a proactive solution to the existing grids to adapt to the 

increasing penetration of EVs charging power and the dramatically increasing 

electricity demand. As a result, this deployment creates great challenges as well as 

opportunities for distribution network planners and operators. In this chapter, an 

algorithm formulation is proposed for optimum planning of multiple MESS trucks 

shared among a group of charging stations in order to supply extra demand power and 

decrease the significant demand charges. The objective of the proposed approach is to 

replace the tasks of many stationary storage units with a lower number of mobile units 

that can serve multiple stations during the day. The algorithm optimizes the size and 

number of trucks required to achieve full supply of the demand and minimum costs for 

the charging stations' daily operation as well as maintain the maximum profit for the 

investor. The charging stations are considered to have a PV system that can help in 

supplying EVs charging demand. A Markov Chain Monte Carlo (MCMC) simulation 

model is utilized in order to consider uncertainties of PV output power. As the output 

PV power is time-dependent, i.e., the output of each hour directly depends on the output 

of the previous hour or state, the MCMC provides an effective modeling scheme to 

mimic a real-world generation scenario.  

 

5.1. Probabilistic Models. 

5.1.1 EV arrivals modeling. Characteristics of components such as the 

uncertain nature of RES output power generation should be modeled properly. To that 

end, a scenario-based approach is deployed in this formulation, where all components 

are developed based on the assumption that the year is represented by 4 different 

seasons and each season is represented by a weekday and a weekend. Using the Monte-

Carlo simulation, the historical data is used in order to get the parameter of the PDF 

that best fits the data using the maximum likelihood estimation (MLE) as described in 

Figure 5.1. Then the inverse CDF method is used to generate N virtual scenarios for 

each day to be used in the planning process. Figure 5.2 illustrates a sample of the EV 

arrivals generated scenarios. 
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Figure 5.1 Scenario-based EV arrivals model. 

 

Figure 5.2 EV arrival scenarios sample. 

5.1.2 PV modeling. PV output power is directly proportional to the solar 

irradiance and ambient temperature of the site as well as the module characteristics 

itself. Historical data is used to calculate the output power of these collected data. 

Output PV power is calculated for each time segment using the following (5.1) – (5.5): 
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𝑇𝑐 = 𝑇𝐴 + 𝑆𝐼𝑅 × (
𝑁𝑂𝐶𝑇 − 20

0.8
) (5.1) 

𝐼𝑦 = 𝑆𝐼𝑅 × [𝐼𝑆𝐶 + 𝐾𝑖(𝑇𝑐 − 25)] (5.2) 

𝑉𝑦 = 𝑉𝑂𝐶 −𝐾𝑣 × 𝑇𝑐 (5.3) 

𝐹𝐹 =
𝑉𝑀 × 𝐼𝑀
𝑉𝑂𝐶 × 𝐼𝑆𝐶

 (5.4) 

𝑃𝑜𝑢𝑡 = 𝑁𝑐𝑒𝑙𝑙 × 𝐹𝐹 × 𝑉𝑦 × 𝐼𝑦 (5.5) 

where 

 

𝑇𝑐 cell temperature in ℃ 

𝑇𝐴 ambient temperature in ℃ 

𝑆𝐼𝑅 solar irradiance in w/m2 

𝑁𝑂𝐶𝑇 nominal operating temperature of cell in ℃ 

𝐾𝑖 current temperature coefficient in A/℃ 

𝐾𝑣 voltage temperature coefficient in V/℃ 

𝐼𝑆𝐶  short circuit current in A 

𝑉𝑂𝐶 open-circuit voltage in V 

𝐼𝑀 the current at maximum power point in A 

𝑉𝑀 the voltage at maximum power point in V 

𝐹𝐹 fill factor 

𝑃𝑜𝑢𝑡 the output power of the PV module in W 

A defined number of discrete states are defined for SIR where each state 

represents a range of SIR. The MC simulation will not result in the best output for PV 

output power since there is no correlation on the temporal space, this is the reason 

behind using the MCMC simulation in PV modeling. In this method, a transition matrix 

T is built for each time segment in each day within each season. This will result in a 

total of 4 × 12 = 48 matrices. Each element 𝑇𝑥𝑦 in T represents the probability of state 
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𝑦 to take place at time segment t under the condition that the state at 𝑡 − 1 is known to 

be 𝑥 [53]. These conditional probabilities are calculated as in (5.6): 

𝑇𝑥𝑦 = 𝑃(
𝑍𝑡 = 𝑦
𝑍𝑡−1 = 𝑥

) =
𝑛𝑥𝑦
∑ 𝑛𝑥𝑦𝑘

, ∀ 𝑥, 𝑦 (5.6) 

where 𝑛𝑥𝑦 is the number of transitions from state 𝑥 at time 𝑡 − 1 to state 𝑦 at time 

segment 𝑡. After calculating all the transition matrices, the cumulative transition 

matrices Tc are obtained, the elements of which are defined as in (5.7). 

𝑇𝑐,𝑥𝑦 =∑𝑇𝑥𝑦

𝑦

𝑟=1

 , ∀ 𝑥, 𝑦 (5.7) 

Both types of matrices representing all possible states of SIR in the system 

which can be used to generate as many annual scenarios as needed using the inverse 

cumulative distribution function (CDF) method. The output states are mapped to the 

actual PV output power as a final step. As a result of the algorithm, any number of 

scenarios can be obtained using the limited historical data while ensuring that the 

scenarios are following the same distribution. The presented model is used to ensure a 

chronologically based change between the state as each state is directly dependent on 

the previous state. In this model of PV output power, many hours of the day can be 

neglected since there is no output power during the night, this might help in reducing 

the computational time and ensuring that the resulting scenarios are reliable. Transition 

matrices and cumulative transition matrices will have a probability of 1 for this state of 

zero output power since there is no other probability to generate any amount of power 

in the absence of sunlight. As PV output power directly depends on the SIR, it is also 

affected by the season of the year. Since some seasons receive a higher SIR range than 

the others, for example, spring. Figures 5.3 - 5.6 show a comparison between samples 

of real and generated scenarios data of PV generations output power during different 

seasons of the year. The MCMC model successfully mimicked the real data and can 

provide a pretty good estimation of PV power generation to be used in the planning 

problem. 

According to the comparison between the real and generated samples, the state 

probabilistic model is robust and can be used in case studies to mimic a real-world PV 

generation. 
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Figure 5.3 Comparison between real and generated scenario PV output power in winter. 

 

Figure 5.4 Comparison between real and generated scenario PV output power in spring. 
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Figure 5.5 Comparison between real and generated scenario PV output power in summer. 

 

Figure 5.6 Comparison between real and generated scenario PV output power in fall. 
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5.2. Problem Formulation 

To simplify the formulation, the following terminology is used. For any variable 

𝑥𝑡
𝑦

, 𝑥 is the variable name (e.g., 𝑝: power); 𝑦 represents the associated label/description 

(e.g., 𝐷𝐶𝐻: discharge); finally, 𝑡 is the indices associated to that variable (e.g., 𝑠: 

charging station index).  The objective function of this planning formulation is to find 

the optimum number of MESSs to be involved in the project as well as the optimum 

capacity of each MESSs’ battery packs while meeting all charging station power 

demand and minimize the operational costs and demand charges.  

The minimization of the total capital and operational costs of the project, since 

the income can be the fees paid by each charging station to be served by the MESS 

fleet, is the main objective. Then the profit can be calculated easily as the difference 

between costs and incomes. In this study, the participating charging stations are 

considered to finance the project. The objective function of the model illustrated in (5.8) 

represents the minimization of the annualized capital and operation cost of the project. 

To ensure that each of these costs is accurately represented, the capital costs are 

represented by equal annualized payments over the lifetime of the project, 𝑙𝑡, using the 

capital recovery factor (CRF) as in (5.9), while the levelization factor (LF) in (5.10) is 

used to represent all annualized operational costs to be paid in the future [54], as 

follows:  

min
 
𝐶𝑐𝑜𝑠𝑡 + 𝑂&𝑀𝑐𝑜𝑠𝑡 (5.8) 

𝐶𝑅𝐹 =  
𝑑(𝑑 + 1)𝑙𝑡

(𝑑 + 1)𝑙𝑡 − 1
 (5.9) 

𝐿𝐹 =  𝐶𝑅𝐹 ×
(𝑑′ + 1)𝑙𝑡 − 1

𝑑′(𝑑 + 1)𝑙𝑡
, 𝑑′ =

𝑑 − 𝑒

𝑒 + 1
 (5.10) 

where 𝑑 is the discount rate, 𝑑′ is the effective discount rate, and 𝑒 is the escalation 

rate. 

The annualized capital cost 𝐶𝑐𝑜𝑠𝑡 can be found using (5.11) which consists of  

1- The truck capital cost 𝐶𝐶𝑀𝑆 multiplied by the maximum number of trucks used 

in the daily operation algorithm. 

2- The battery capacity cost of each truck multiplied by the battery bank cost 

𝐵𝑐𝑜𝑠𝑡/𝑀𝑊ℎ. The parameter 𝛼𝑁 is set to compensate for the future battery 

extension or replacement cost; defined as reaching a certain number of cycles 
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𝑁 by the end of the project lifetime 𝑙𝑡 [55]. 

𝐶𝑐𝑜𝑠𝑡 = 𝐶𝑅𝐹 × [∑𝐴𝑘 × 𝐶𝐶
𝑀𝑆

𝑘

+∑𝐸𝑘
𝑀𝑆 × 𝐵𝑐𝑜𝑠𝑡/𝑀𝑊ℎ × (1 + 𝛼𝑁)

𝑘

 ] (5.11) 

𝑂&𝑀𝑐𝑜𝑠𝑡 =   𝐿𝐹 × [𝑀𝑐𝑜𝑠𝑡 + ∑ 𝑁𝑠𝑒
𝑑𝑎𝑦𝑠 (

5

7
× 𝐶𝑠𝑒

𝑑𝑎𝑖𝑙𝑦,𝑤𝑑
+
2

7
× 𝐶𝑠𝑒

𝑑𝑎𝑖𝑙𝑦,𝑤𝑒)

4

𝑠𝑒=1

] (5.12) 

 

The operation and maintenance costs 𝑂&𝑀𝑐𝑜𝑠𝑡 as shown in (5.12) consist of 

1- The daily operational cost of the weekdays 𝐶 𝑑𝑎𝑖𝑙𝑦,𝑤𝑑 and weekends 𝐶 𝑑𝑎𝑖𝑙𝑦,𝑤𝑒, 

where 𝑁𝑠𝑒
𝑑𝑎𝑦𝑠

 is the number of days in each season 𝑠𝑒. 

2- The fixed operational and maintenance cost 𝑀𝑐𝑜𝑠𝑡 consists of the drivers’ 

salaries and trucks’ maintenance cost. 

5.2.1 Operational algorithm of multiple MESSs. The objective function of 

the operational algorithm shown in (5.13) aims at minimizing the total cost of the total 

drained power by the PLs to charge the arrival EVs and the total demand charges for 

each charging station 𝒔. As shown in (5.14), the historical peak demand 𝑷𝒔
𝑴𝑨𝑿−𝑻𝒂𝒓𝒈𝒆𝒕

 

is used to calculate the demand charges, the extra peak demand charges are only 

considered for the power exceeds the 𝑷𝒔
𝑴𝑨𝑿−𝑻𝒂𝒓𝒈𝒆𝒕

. The additional demand charges 

𝑪𝒑𝒆𝒂𝒌 will be considered to be zero if the peak is not exceeding the historical peak 

demand, as follows:  

min
 
∑(∑(𝐶𝑡

𝑔𝑟𝑖𝑑
 𝑃𝑠,𝑡
𝑒𝑣∆𝑡)

𝑡∈𝕋

+  𝐶𝑠
𝑝𝑒𝑎𝑘)

𝑠

 (5.13) 

𝐶𝑠
𝑝𝑒𝑎𝑘 = {

0         , ∀(𝑃𝑠
𝑒𝑣−𝑀𝐴𝑋 − 𝑃𝑠

𝑀𝐴𝑋−𝑇𝑎𝑟𝑔𝑒𝑡
) ≤ 0

𝐶𝑘𝑤(𝑃𝑠
𝑒𝑣−𝑀𝐴𝑋 − 𝑃𝑠

𝑀𝐴𝑋−𝑇𝑎𝑟𝑔𝑒𝑡
)   , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 , ∀ 𝑠 (5.14) 

where 𝐶𝑡
𝑔𝑟𝑖𝑑

  refers to the variable grid cost at each time interval; 𝑃𝑠,𝑡
𝑒𝑣  is the total power 

consumed by EVs at each bus and each time interval; 𝕋 is the set of all the time 

segments; 𝐶𝑠
𝑝𝑒𝑎𝑘 is the total extra peak demand charges for charging stations 𝑠; 𝐶𝑘𝑤 is 

the demand charges in $/kW; 𝑃𝑠
𝑒𝑣−𝑀𝐴𝑋 is the peak demand of the charging stations 𝑠; 

𝑃𝑠
𝑀𝐴𝑋−𝑇𝑎𝑟𝑔𝑒𝑡

   is the historical recorded or targeted recorded peak demand. 

                       5.2.1.1 EV charging constraints. Equation (5.15) describes the total 

power for each charging station. The first term in (5.16) represents the required EVs 
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charging power; the second term is the power injected from the MESS to each PL. 

Charging decisions are restricted by the availability of the EV and it can take a value 

from zero up to the full charging rate as in (5.16), as follows: 

𝑃𝑠,𝑡
𝐿−𝐸𝑉 = (∑

𝑋𝑣,𝑠,𝑡
𝐸𝑉  𝑃𝑣

𝐶𝐻  

𝜂𝑐ℎ 𝑆𝑏𝑎𝑠𝑒

𝑣∈𝕍𝑠

)− 𝑃𝑘,𝑠,𝑡
𝐷𝐶𝐻−𝑀𝑆 − 𝑃𝑉𝑠,𝑡, ∀ 𝑠, 𝑡 (5.15) 

𝑋𝑣,𝑠,𝑡
𝐸𝑉 ≤ 𝐴𝑣,𝑠,𝑡 , ∀ 𝑣, 𝑠, 𝑡 

0 ≤ 𝑋𝑣,𝑠,𝑡
𝐸𝑉 ≤ 1, ∀ 𝑣, 𝑠, 𝑡 

(5.16) 

where 𝑣 and 𝕍𝑠 are the index and the subset of chargers of charging station 𝑠, 

respectively; 𝑋𝑣,𝑠,𝑡
𝐸𝑉  is the charging decision as a fraction of the charger capacity;  𝑃𝑣

𝐶𝐻 

is the charger capacity in kW; 𝜂𝑐ℎ is the efficiency of charging; 𝑆𝑏𝑎𝑠𝑒 is the system base 

power in kVA for the per-unit system; 𝐴𝑣,𝑠,𝑡 is a binary parameter indicating whether 

charger 𝑣 of charging station 𝑠 is occupied with an EV at time 𝑡, i.e. if 𝐴𝑣,𝑠,𝑡 = 1, then 

an EV is plugged into the charger; 𝑃𝑠,𝑡
𝑀𝑆is the power injected from the MESS. 

The state of charge (SOC) of each EV is updated with the charging energy as in (5.17) 

and (5.18). Equation (5.19) is used to ensure satisfying the pre-required demand for 

each EV. 

                       𝑆𝑂𝐶𝑣,𝑠,𝑡
𝐸𝑉 = 𝑆𝑂𝐶𝑣,𝑠,𝑡−1

𝐸𝑉 + ∆𝑆𝑂𝐶𝑣,𝑠,𝑡
𝐸𝑉                                         (5.17) 

                                 ∆𝑆𝑂𝐶𝑣,𝑠,𝑡
𝐸𝑉 =

𝑋𝑣,𝑠,𝑡
𝐸𝑉  𝑃𝑣

𝐶𝐻−𝐸𝑉∆𝑇

𝐸𝑣,𝑠
𝐵𝐴𝑇                                                (5.18) 

                                 𝑆𝑂𝐶𝑣,𝑠,𝑡
𝐸𝑉 ≤ 𝑆𝑂𝐶𝑣,𝑠

𝑅𝐸𝑄                                                   (5.19) 

where 𝑆𝑂𝐶𝑣,𝑠,𝑡
𝐸𝑉 is the SOC at time 𝑡 for each EV; ∆𝑆𝑂𝐶𝑣,𝑠,𝑡

𝐸𝑉  the change in the SOC due 

to charging; ∆𝑇 is the time segments in hours; 𝐸𝑣,𝑠
𝐵𝐴𝑇is the battery capacity in kWh; 

𝑆𝑂𝐶𝑣,𝑠
𝑅𝐸𝑄

is the required SOC by each EV driver. 

           5.2.1.2 Multiple MESSs formulation. The algorithm used in this 

formulation is different than the previously introduced model as this approach 

optimizes the number of MESSs to be dispatched to serve several charging stations 

involved in a pre-assigned agreement. There are three different binary variables are 

involved to represent this model. Ak represents the index of MESS out of k MESSs 

available to be dispatched during the day, this is equivalent to the minimum number of 
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trucks required to meet the daily demand of the assigned charging stations. Bk,s
  

represents the assignment of each charging station s to be served by MESS k. Finally, 

Ck,s,t
  to decide the availability of the MESS 𝑘 at charging station s at time segment t. 

The constraint in (5.20) states that each charging station 𝑠 will be assigned to 

be served by only one MESS. Constraints (5.21) - (5.23) ensure that all involved 

charging stations will be served by an MESS.  

∑ 𝐵𝑘,𝑠
 

𝑘 ∈ Κ 

= 1, ∀ 𝑠 (5.20) 

∑ 𝐵𝑘,𝑠
 

𝑠 ∈ ℵ 

≤ ℵ × 𝐴𝑘, ∀ 𝑘 (5.21) 

∑ 𝐶𝑘,𝑠,𝑡
 

𝑡 ∈ 𝕋 

≤ ℵ × 𝐵𝑘,𝑠
 , ∀ 𝑘, 𝑠 (5.22) 

∑𝐶𝑘,𝑠,𝑡
 

𝑘,𝑡

≥ 1, ∀ 𝑠 (5.23) 

where Κ is the maximum number of MESSs and ℵ is the total number of charging 

stations to be served. 

When the MESS is in transit or at any parking lot, the SOC of the MESS battery 

is updated as in (5.24) and (5.25) at each time segment. It is affected by the injected 

energy and the MESS traveling consumption, as follows:  

𝑆𝑂𝐶𝑘,𝑡
𝑀𝑆 = 𝑆𝑂𝐶𝑘,𝑡−1

𝑀𝑆 + ∆𝑆𝑂𝐶𝑘,𝑡
𝑀𝑆 (5.24) 

∆𝑆𝑂𝐶𝑘,𝑡
𝑀𝑆 =

( ∑ 𝑃𝑘,𝑠,𝑡
𝐶−𝑀𝑆

𝑠 − ∑ 𝑃𝑘,𝑠,𝑡
𝐷𝐶𝐻−𝑀𝑆

𝑠 − ∑ 𝑃𝑘,𝑠,𝑠′,𝑡
𝑇−𝑀𝑆

𝑠,𝑠′ )∆𝑇

𝐸𝑘
𝑀𝑆  (5.25) 

Equation (5.26) maintains the battery limits, as follows: 

𝑆𝑂𝐶𝑘,𝑡
𝑀𝑆−𝑀𝐼𝑁 ≤ 𝑆𝑂𝐶𝑘,𝑡

𝑀𝑆 ≤ 1.0 (5.26) 

where 𝑆𝑂𝐶𝑘,𝑡
𝑀𝑆 is the SOC of the MESS 𝑘 battery at time 𝑡; ∆𝑆𝑂𝐶𝑘,𝑡

𝑀𝑆 is the change in 

the SOC due to charging, discharging, and traveling; 𝑃𝑘,𝑠,𝑡
𝐶−𝑀𝑆 and 𝑃𝑘,𝑠,𝑡

𝐷𝐶𝐻−𝑀𝑆 are the 

charging and discharging rates of truck 𝑘 in charging station 𝑠 at time segment 𝑡, 

respectively; 𝑃𝑘,𝑠,𝑠′,𝑡
𝑇−𝑀𝑆  is the power consumed due to traveling between charging station 

𝑠 and charging station 𝑠′ for truck 𝑘 at time 𝑡; 𝐸𝑘
𝑀𝑆 is the battery capacity in kWh for 

each truck 𝑘; 𝑆𝑂𝐶𝑘,𝑡
𝑀𝑆−𝑀𝐼𝑁is the minimum SOC of the truck 𝑘. 



62 

 

The power delivered 𝑃𝑘,𝑠,𝑡
𝐷𝐶𝐻−𝑀𝑆 by truck 𝑘 to charging station 𝑠 at time 𝑡 depends 

on the availability variable 𝐶𝑘,𝑠,𝑡
  as illustrated in (5.27). The traveling time between the 

charging stations is merged in this model during the first discharging time segment, i.e., 

discharging power in charging station 𝑠 at 𝑡 = 1 will be less than the maximum possible 

discharging power 𝑃𝑘
𝐷𝐶𝐻−𝑚𝑎𝑥 by a factor 𝐹𝑠,𝑠′ to compensate for the traveling time. 𝐹𝑠,𝑠′ 

is a square matrix that has a diagonal of zeros, while the remaining elements are 

fractions between [0-1] depends on the distances between the charging stations. 𝑇𝑘,𝑠,𝑠′,𝑡
𝑀𝑆  

represents the fraction of the maximum possible discharging power to be discharged at 

charging station 𝑠 at 𝑡 = 1 as explained in (5.28). The explanation of how the binary 

variable 𝑥𝑘,𝑠,𝑠′,𝑡 captures the traveling time segment between charging stations 𝑠 and 𝑠′ 

is presented in (5.30) - (5.32). Equation (5.29) calculates the power drained from the 

tuck 𝑘 while traveling between charging stations 𝑠 and 𝑠′ for each time segment. This 

drained power is directly related to the distances between the charging stations, the 

traffic, and the speed of the truck. These factors can be considered together while 

developing the distance matrix 𝐷𝑠,𝑠′. 

𝑃𝑘,𝑠,𝑡
𝐷𝐶𝐻−𝑀𝑆 ≤ 𝑃𝑘

𝐷𝐶𝐻−𝑚𝑎𝑥 × 𝐶𝑘,𝑠,𝑡
  −∑𝑇𝑘,𝑠,𝑠′,𝑡

𝑀𝑆

𝑠′

 , ∀ 𝑘, 𝑠, 𝑡 (5.27) 

𝑇𝑘,𝑠,𝑠′,𝑡
𝑀𝑆 = 𝐹𝑠,𝑠′ × 𝑃𝑘

𝐷𝐶𝐻−𝑚𝑎𝑥 × 𝑥𝑘,𝑠,𝑠′,𝑡 ∀ 𝑘, 𝑠, 𝑠′, 𝑡 (5.28) 

𝑃𝑘,𝑠,𝑠′,𝑡
𝑇−𝑀𝑆 = 𝐷𝑠,𝑠′ × 𝑥𝑘,𝑠,𝑠′,𝑡 ∀ 𝑘, 𝑠, 𝑠′, 𝑡 (5.29) 

To capture the traveling time segment, the set of linear equations (5.30) - (5.32) 

are developed, as follows: 

𝑥𝑘,𝑠,𝑠′,𝑡 ≥ 𝐶𝑘,𝑠,𝑡
 + 𝐶𝑘,𝑠′,𝑡

 − 1 , 𝑤ℎ𝑒𝑟𝑒 𝑡 ≥ 2 (5.30) 

𝑥𝑘,𝑠,𝑠′,𝑡 ≤ 𝐶𝑘,𝑠,𝑡
  , 𝑤ℎ𝑒𝑟𝑒 𝑡 ≥ 2  (5.31) 

𝑥𝑘,𝑠,𝑠′,𝑡 ≤ 𝐶𝑘,𝑠′,𝑡+1
  , 𝑤ℎ𝑒𝑟𝑒 𝑡 ≥ 2 (5.32) 

These linear equations are replacing a single simpler but non-linear equation to 

keep the model linear. The previous set of constraints can be used to capture the change 

in the variable 𝐶𝑘,𝑠,𝑡
  (i.e., travel between charging stations) by each truck 𝑘 at time 𝑡. 

The previous explained linear operation model results in the total daily cost of the 

charging station served by multiple MESSs while meeting the EV’s charging demands 

and minimizing the demand charges for each charging station. 
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Figure 5.7 Solution approach. 

The problem formulated is divided into two problems, outer problem and inner 

problem. The inner problem is solving the daily operational algorithm using a 

deterministic approach under the GAMS environment, while the outer problem is 

solving for optimal sizes using a metaheuristic approach under the MATLAB 

environment. The operational model is fed with daily data for each season as illustrated 

in Figure 5.7, then the outputs as gathered for each scenario and evaluate the fitness 

function for all individuals. The last step is checking for the stopping criteria to 

terminate. The stopping criteria used is the change in the fitness function, if the change 

is less than a certain threshold, then the program stops. 

5.3. Case Study 

The MESSs’ algorithm is validated by simulating a case study involving five 

different charging stations assumed to participate in the project. The optimization inputs 

consist of the rated power of PV panels installed at each charging station and the 

MESSs’ input data are given in Table 5.1. The PV solar irradiance historical data 

utilized in the model is available in [56], while a real market energy price is taken from 

[57] and shown in Figure 5.8. In order to account for the transition phase of the MESSs’, 

the truck average speed is assumed 60 km/h, the traveling time between the charging 

stations in this case study is assumed to be equal for simplicity, which means equal 

distances between charging stations are considered. It is assumed that each charging 
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station has a PV plant that supports supplying the required demand. Six years of solar 

irradiance and temperature data are used in the algorithm to cover the whole planning 

horizon. In order to avoid increasing problem complexity, the k-means clustering 

method approximates the data to a defined number of states to be used in scenarios’ 

generation. 

For the MESSs, the lithium-ion battery is used due to its small size (i.e., high 

energy intensity) and long battery life. The storage life cycles are assumed to be 3000 

cycles during the planning period which is assumed to be 12 years. The yearly operation 

and maintenance cost is assumed to be 40k$/year including the drivers' salaries and 

insurance, this cost is per truck.  

Table 5.1 Optimization input parameters. 

Optimization input parameters 

𝐵𝑐𝑜𝑠𝑡/𝑀𝑊ℎ 600k$ 

𝐶𝐶𝑀𝑆 50k$ 

𝑑 4% 

𝑒 2% 

𝑀𝑐𝑜𝑠𝑡 40k$/year 

𝑙𝑡 12 years 

𝛼𝑁 15% 

 
Figure 5.8 Energy price. 

Figure 5.9.  shows the comparison of the total drained power of the grid for the 
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participating charging station with and without the integration of the MESSs, the fleet 

of MESSs manage to reduce the total power demand of the served charging station 

which will not only reduce the demand charges, but also will supply and extra required 

energy that exceeds the generation limits. It is shown that the huge saving takes place 

in the highest price hours (peak hours). The peak demand reduced from 2 MW in the 

absence of the MESSs to 1.62 MW. The model decides to use two MESSs as an optimal 

solution, MESS-1 to serve the third and fourth charging stations, while MESS-3 serves 

the first, second, and fifth charging stations as shown in Figure 5.8. 

 

 
Figure 5.9 Total charging stations power drained from the grid. 

To judge the dynamic performance of the model, a random day scenario, 

presented in Figures 5.10, 5.11, and 5.12, illustrates the SOC of the dispatched MESSs. 

MESS-3 discharged the full capacity and reached the minimum SOC which is 20%, 

while MESS-1 reached 52% of the total capacity. The green part on the figures shows 

the traveling phase of the MESS between parking lots; however, the energy 

consumption during the traveling is considered in the discharging rate of the first hour 

at each charging station as explained earlier in section 5.1. Table 5.2 shows the 

economic results and the savings results out of integrating the model.  
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Figure 5.10 Charging stations assigned to MESSs. 

 
Figure 5.11 MESS 1 - SOC. 

 
Figure 5.12 MESS 3 - SOC. 

The model decides to dispatch two MESSs out of the available, with 3.031-

MWh and 3.125-MWh capacity, respectively. Considering the capital costs mentioned 

in Table 5.1, the resulting battery bank cost and MESSs capital cost involved in the 
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project are $3,693,840 and $3,793,840, respectively. The demand charge rate is 

considered to be 9.1$/kWh, considering that, the annual operation cost without model 

integration is found to be $1,051,737.12. On the other hand, the annual operation cost 

taking into consideration the annualized capital cost and levelized daily operation cost 

is $963,480.07. As a result, $88,257.05 is saved which represents 8.39% total savings 

out of model integration. Besides the financial savings, the usage of these MESSs will 

allow the charging stations involved to accommodate higher penetration of EVs and 

supply the increasing charging demand, which will avoid or, at least, delay the upgrade 

of the system infrastructure. This can be concluded easily from the peak demand 

reduction of 19% as shown in Table 5.2. 

Table 5.2 Optimization results. 

Optimization results 

𝐴𝑘. {1, 0, 1, 0} 

𝐸1
𝑀𝑆. 3031.4 kWh 

𝐸3
𝑀𝑆. 3125 kWh 

Battery bank cost $3,693,840 

MESSs capital cost $3,793,840 

Peak reduction 19% 

Demand charge 9.1$/kWh 

Annual operating 

cost 

without MESSs $1,051,737.12 

with MESSs $963,480.07 

Annual savings $88,257.05 

Savings percentage 8.39% 
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6. Chapter 6. Conclusions  

 

6.1. Concluding Remarks 

This thesis proposes and discusses different approaches utilizing mobile energy 

storage technology in the power system. The primary objective in all the proposed 

approaches aims at minimizing the total operation cost while satisfying all EVs 

charging station demand. In addition to providing a solution to the necessary 

infrastructure upgrades to accommodate the increasing penetration of EVs.  

A solution to the existing charging stations is proposed in Chapter 3 which 

utilizes an MESS to serve charging stations. A couple of case studies were discussed in 

order to highlight the contribution of the proposed algorithm. The proposed algorithm 

has successfully reduced the total operational cost of the PLs associated with the case 

study. In Chapter 4, a dynamic optimization algorithm that controls the charging 

behavior of EVs and takes the MESS availability at each location into consideration is 

presented. It can be defined as a day ahead scheduling and dispatching of an MESS in 

conjunction with optimal EVs charging coordination shared by different PLs; each PL 

should coordinate its charging behavior to have the peak load while the MESS is 

available at the PL. An MINLP is formulated to minimize the total operation cost and 

demand charges while satisfying the EVs owners' requests. Different case studies on a 

real 36 buses radial feeder with real data are used to validate the results and highlight 

the contribution of the system. In Chapter 5, a planning algorithm is proposed that 

utilizes the integration of an optimum number and their battery bank capacities to serve 

to participate charging stations to accommodate for the increasing charging demand 

and minimize the total operation cost, taking into consideration all the assets, costs, and 

variabilities of the involved component. 

6.2. Future Work 

The following recommended research directions can be a suitable extension out 

of this thesis: 

1. Large scale implementation by expanding the serving fleet. 

2. The inclusion of a detailed transit delay model in the planning process of 

MESSs. 

3. The usage of the MESSs in voltage regulation and grid support at critical buses. 
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