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Abstract 
Digital video forensics refers to the process of analysing, examining, evaluating and comparing a video for 

use in legal matters. In digital video forensics, the main aim is to detect and identify video forgery to ensure a video’s 

authenticity. When a video is edited, the original bitstream is first decoded, edited and then re-compressed. Therefore 

detecting re-compression in videos is a major step in digital video forensics. Video editing can be applied many times 

leading to multiple compressions. Thus, finding out the compression history of a video becomes an important mean 

for detecting any manipulation and thereby identifying the legitimacy of a video. In this work, we propose a machine 

learning approach to detecting double and triple compression in videos coded using the High Efficiency Video Coding 

(HEVC) format. Feature variables are extracted from Coding Units (CUs) and summarized into picture and Group of 

Pictures (GoP) feature vectors. Two classifiers are used for classifying videos into single, double and triple 

compression, namely; Random Forest (RF) and bi-directional Long Short-Term Memory (bi-LSTM). The latter 

classifier is important in digital video forensics as it exploits the temporal dependencies between feature vectors. In 

the experimental results, 127 video sequences are used for verifying the accuracy of the proposed solutions. Results 

are reported in terms of classification accuracy, confusion matrices, precision and recall. The experimental results 

revealed that both double and triple compression can be accurately detected using the proposed solutions with results 

superior to existing work. 
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1. Introduction 

The field of digital video forensics refers to the scientific analysis, examination, evaluation and comparison of 

video to be used in legal matters. A video needs to be first validated before being used in legal cases to ensure its 

authenticity and suitability to court. Because professional knowledge is no longer required to edit or manipulate digital 

videos, many research work focus on digital forensics with the focus of detecting video manipulation. For instance, 

passive or blind forensics tries to extract video features that differentiate between forged and unforged videos and 

possibly identify the location of forgery. 

Finding out the compression history of videos is one important way for identifying the authenticity and 

trustworthiness of a video. Over the past decade, several methods have been proposed by researchers in the forensics 

community for the detection of double compression in coded video sequences [1]. Multiple compressions occur when 

a video has undergone a series of compressions and decompressions. The number of compressions of a video sequence 

keeps on increasing every time the video undergoes any manipulation. This makes the efficient detection of double 

compression in videos significant in the field of digital forensics due to the underlying manipulation they may have. 

In addition, due to the existence of social media platforms, even the authentic videos can have traces of double 

compression despite having no manipulation undergone. This is because a second compression is automatically 

applied whenever a video is uploaded on a social media platform such as Facebook, Messenger, Twitter, Instagram or 

WhatsApp. As a result, this makes focusing solely on double compression detection not enough and thus there is a 

need for building reliable triple or even multiple compression detection techniques. Multiple studies have focused on 

double compression detection in videos while, to our knowledge, none of them addressed the issue of triple 

compression detection.  

The detection of double and triple compression in coded videos can be viewed as a pre-step for forgery detection 

after which the existence and type of forgery can be identified. The solution aims to identify the effect of having the 

same recompression bitrate on the detection of recompression in HEVC videos. In double compression detection, we 

classify the sequences as unforged which are the original sequences that have undergone single compression (Class 

1) and forged which are the sequences that have undergone two compressions (Class 2). Whereas in triple compression 

detection, three classes are used for classification with Class 1 representing the unforged samples, Class 2 representing 

the forged samples with two compressions and Class 3 representing the forged samples with 3 compressions. Machine 

and deep learning techniques are then used to report the classification accuracy, true positive and false negative rates 

of each of the conducted experiments.  

Therefore, the aim of this paper is to address the issue of both double and triple compression detection in HEVC 

videos as well as to propose a new set of features that can be used to improve the existing accuracies for double 

compression detection. We focus on the detection of recompression in HEVC coded videos with the same re-

compression bitrate. To the extent of our knowledge, only systems related to double compression detection of HEVC 

videos are reported in the literature. A number of parameters have been commonly used for double compression 

detection in HEVC videos such as the PU (Prediction Unit) type, the DCT coefficient and the TU (Transform Unit) 

type [2-5]. Multiple experiments were also conducted for double compression detection in shifted GoP structures 
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where I-pictures have been relocated after recompression. For such problem, the average prediction residual sequence 

was commonly used as the main feature for detection [6-8].  

To tackle the problem of double compression detection with the same recompression bitrate, Jiang et al. [9] 

proposed an efficient solution that uses the same re-compression bitrate and makes use of the GOP-based PU type 

statistics extracted from each picture. The solution relies on the temporal variation patterns of the PU type across 

GOPs in single and double compression instead of using separate pictures or the full video sequence as common with 

most other experiments in previous works. Three types of PUs are first extracted from the video sequences (Intra, 

Skipped, Predicted) and then the ratio of the Intra and Skipped PU types is calculated so that for each GOP unit, a PU 

sequence is generated. Then, for each GOP or PU sequence, the mean and standard deviation of these ratios are 

calculated to obtain the final PU-type statistic used for the re-compression detection. When the same re-compression 

bitrate is used, the proposed method achieves accuracies ranging from 93% to 96% with 93% for the lowest bitrate of 

800kbps. Likewise, the authors in [10] reported accuracies up to 93% when using the same re-compression bitrates. It 

was proposed to detect double compression in HEVC videos using the Sequence of Number of Prediction Units of its 

Prediction Mode (SN-PUPM). An SVM classifier is used and the period analysis method is implemented on each 

video sequence for the detection of double compression. The same GOP size has been used for single and double 

compression. In an experiment that uses the same re-compression bitrate for the detection of double compression, 

Liang et. al. [11] achieved accuracies ranging up to 87% for the same re-compression bitrates where they extracted a 

25-D feature using the histogram of the partition modes of PUs named as HPP features. The first PU in each GOP was 

used to extract PU information from which the 25-D HPP features are extracted. The HPP features of all GOPs of a 

video sequence are then averaged to obtain the final detection feature. Finally, an SVM classifier with a polynomial 

kernel was used with the 25-D HPP features used as an input to obtain the final detection accuracy.  

More recently, in [12] a one-class classification solution in proposed for detecting double compression of MPEG-

4 videos. This is needed when single compressed videos are not available for building a supervised learning system. 

In [13] an HEVC picture-wise double compression detection solution is proposed using a hybrid neural network. 

Feature variables are based on sizes of coding units and prediction modes. Using 32 YUV video sequences for training 

and 20 sequences for testing, the highest classification accuracy reported was 96.7%. In [14], a novel method based 

on the HEVC intra prediction mode is proposed for detecting double compression. The classification system is based 

on SVM and uses 136 YUV video clips for training and testing. Lastly, in [15], a novel double compression detection 

method for H.264 videos with fixed and adaptive GOP structure is proposed. The byte count of abnormal frames in 

video sequences and the last adaptive I-frames are combined to generate the features used for detecting double 

compression.  

Similar to [5], [9], [13] and [14], our work uses the HEVC video coding standard but extracts features at both 

picture and Group-of-Pictures levels. We propose classification systems using machine leaning and deep learning with 

a dataset consisting of 77 YUV video sequences for training and 50 sequences for testing. More importantly, our 

system addresses the problem of detecting double and triple compression. 
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2. The HEVC Compression Standard 

HEVC was developed with the main aim of addressing the current need for high resolution videos with an 

improved coding efficiency [16]. In HEVC, inter and intra picture prediction are implemented along with transform 

coding, motion estimation and motion compensation. In this work, we rely on the fact that HEVC is a lossy coding 

technique so we attempt to examine the effect of HEVC re-compression on the coding parameter information from 

which we can differentiate between single, double and triple compression [4]. The HEVC coding standard replaces 

the known macroblock structure in H.264 with a coding tree unit (CTU) consisting of LCUs (Largest Coding Units). 

These LCUs are divided into smaller sub-CUs in a recursive manner into 32x32, 16x16 or 8x8 blocks. These sub-CUs 

can be further divided into Prediction Units or PUs with sizes ranging from 4x4 to 32x32. The PUs represent the main 

block containing the prediction information, which is also sent to the decoder. PUs are divided into three main types, 

skipped PUs (S-PU), inter-predicted PUs (P-PUs) and intra-predicted PUs (I-PUs) [17]. In this work, statistics related 

to PUs and CUs are being used.  PUs are then divided into Transform Units or TUs, which are used as an input to the 

Discrete Cosine Transform. HEVC supports four transform sizes for each N x N TU where N = 4,8,16 or 32. In intra 

prediction mode, HEVC defines 35 different intra prediction modes in which the mode with the lowest cost (Rate 

Distortion cost) is chosen. The intra-prediction modes are categorized into three types, DC Prediction Mode, Planar 

Prediction Mode and Angular Prediction Mode. In inter-prediction, either Discrete Cosine Transform (DCT) or 

Discrete Sine Transform (DST) is applied on TUs. The transform is applied on the residual coefficients which are 

calculated by finding the difference between the predicted block and the current block in the spatial domain after 

which quantization and entropy coding are applied.  

3. Proposed System 

We propose a classification system for detecting double and triple compression of video. Each video can be 

classified as compressed once, twice or three times as illustrated in Fig. 1. To the best of our knowledge, the detection 

of triple compression is novel, where the system is trained on singly, doubly and triply compressed videos. 

 

Fig. 1 Overview of proposed classification system 
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In the rest of this section, we introduce the proposed picture-level and GoP-level feature extraction 

solutions followed by the proposed classification arrangements. 

3.1 Proposed feature extraction  

In this work, we propose two sets of features; picture-level and GoP-level features. For both feature sets, the 

features extracted are based on the 8 CU features as listed in Table 1. Such CU features can be summarized into picture 

or GoP level features. The CU-level features initially extracted are the number of sub-CUs in each 64x64 CU, the ratio 

of motion vector difference bits, the number of CU bits, the percentage of intra, skipped and inter sub-CUs, the energy 

of the prediction residual for the CU, and the quantization parameter (QP) of each CU.  

Table 1 Proposed features extracted from HEVC CUs 

Feature ID Feature Description 

1 Number of sub-CU partitions 

2 Ratio of MVD bits with reference to the total number of bits 

3 Number of CU bits 

4 Percentage of intra partitions in a CU 

5 Percentage of skipped partitions in a CU 

6 Percentage of inter (forward) partitions in a CU 

7 Energy of prediction residual of CU 

8 QP of CU 

These features are first extracted from the encoder for single, double and triple compression and are then 

summarized to obtain features on a picture level. The features obtained on a picture level are further summarized to 

obtain features for each video GoP. Fig. 2 presents an overview of the proposed feature extraction phase. 

Fig. 2 An Overview of the feature extraction phase 
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3.1.1 Picture-level Feature Set 

In the picture-level feature set, the CU features corresponding to each picture are combined together and used 

to calculate the final set of picture-level features using the equations in Table 2. The feature vectors are summarized 

on a picture-level, meaning that for all CUs of a given picture, the mean and standard deviation are calculated to obtain 

the value of the feature on a picture-level. The estimated PSNR for each picture is also calculated and added to the 

feature set [18].  

Table 2 Proposed Picture-level features 

Feature 

ID 

Feature Description 

1 Mean of CU quantization parameter  

2 Standard deviation of CU quantization parameter 

3 Mean of  number of sub-CU partitions 

4 Standard deviation of number of sub-CU partitions 

5 Mean of ratio of MVD bits 

6 Standard deviation of ratio of MVD bits 

7 Mean of number of CU bits 

8 Standard deviation number of CU bits 

9 Mean of percentage of intra partitions in a CU 

10 Standard deviation of percentage of intra partitions in a CU 

11 Mean of percentage of skipped partitions in a CU 

12 Standard deviation of percentage of skipped partitions in a CU 

13 Mean of percentage of inter partitions in a CU 

14 Standard deviation of percentage of inter partitions in a CU 

15 Mean of prediction residual energy of CU  

16 Standard deviation of prediction residual energy of CU 

 

The details of these feature variables are as follows. Feature ID-1 is computed using Equation (1): 

µq=1
N⁄ ∑ Qi(j)i

        (1) 

Where N is the total number of CUs per picture in the video sequence and Qi(j) is the quantization parameter of the 

ith CU in the current picture j. Using the same symbols of Equitation (1), feature ID-2 is computed using Equation 

(2): 

 𝜎𝑞 = √𝐸 [(𝑄𝑖(𝑗) − 𝜇𝑞)
2

]       (2) 

Where E denotes the expected value. 

Feature ID-3 is computer using Equation (3):  

µ𝑐𝑢𝑃𝑎𝑟𝑡𝑠=1
𝑁⁄ ∑ 𝐴𝑖(𝑗)𝑖

       (3) 

Where N is the total number of CUs per picture in the video sequence and Ai(j) is the number of sub-CUs of the ith 

CU in the current picture j. Using the same symbols of Equitation (3), feature ID-4 is computed using Equation (4): 
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  𝜎𝑐𝑢𝑃𝑎𝑟𝑡𝑠 = √𝐸[(𝐴𝑖(𝑗) − 𝜇𝑐𝑢𝑃𝑎𝑟𝑡𝑠)2]       (4) 

Feature ID-5 is computed using Equation (5): 

 µ𝑚𝑣𝑑=1
𝑁⁄ ∑ 𝑀𝑖(𝑗)𝑖

       (5) 

Where N is the total number of CUs per picture in the video sequence and Mi(j) is the ratio of MVD bits of the ith 

CU in the current picture j. Using the same symbols of Equitation (5), feature ID-6 is computed using Equation (6): 

𝝈𝒎𝒗𝒅 = √𝑬[(𝑴𝒊(𝒋) − 𝝁𝒎𝒅𝒗)𝟐]       (𝟔) 

Feature ID-7 is computed using Equation (7): 

µ𝒄𝒖𝑩𝒊𝒕𝒔=𝟏
𝑵⁄ ∑ 𝑩𝒊(𝒋)𝒊

      (𝟕) 

Where N is the total number of CUs per picture in the video sequence and Bi(j) is the number of CU bits of the ith 

CU in the current picture j. Using the same symbols of Equitation (7), feature ID-8 is computed using Equation (8): 

𝝈𝒄𝒖𝑩𝒊𝒕𝒔 = √𝑬[(𝑩𝒊(𝒋) − 𝝁𝒄𝒖𝑩𝒊𝒕𝒔)𝟐]        (𝟖) 

Feature ID-9 is computed using Equation (9): 

µ𝒄𝒖𝑰𝒏𝒕𝒓𝒂=𝟏
𝑵⁄ ∑ 𝑰𝒊(𝒋)𝒊

       (𝟗) 

Where N is the total number of CUs per picture in the video sequence and Ii(j) is the percentage of intra partitions of 

the ith CU in the current picture j. Using the same symbols of Equitation (9), feature ID-10 is computed using 

Equation (10): 

𝝈𝒄𝒖𝑰𝒏𝒕𝒓𝒂 = √𝑬[(𝑰𝒊(𝒋) − 𝝁𝒄𝒖𝑰𝒏𝒕𝒓𝒂)𝟐]      (𝟏𝟎) 

Feature ID-11 is computed using Equation (11): 

µ𝒄𝒖𝑺𝒌𝒊𝒑𝒑𝒆𝒅=𝟏
𝑵⁄ ∑ 𝑺𝒊(𝒋)𝒊

       (𝟏𝟏) 

Where N is the total number of CUs per picture in the video sequence and Si(j) is the percentage of skipped 

partitions of the ith CU in the current picture j. Using the same symbols of Equitation (11), feature ID-12 is 

computed using Equation (12): 

𝝈𝒄𝒖𝑺𝒌𝒊𝒑𝒑𝒆𝒅 = √𝑬 [(𝑺𝒊(𝒋) − 𝝁𝒄𝒖𝑺𝒌𝒊𝒑𝒑𝒆𝒅)
𝟐

]        (𝟏𝟐) 

Feature ID-13 is computed using Equation (13): 

µ𝒄𝒖𝑰𝒏𝒕𝒆𝒓=𝟏
𝑵⁄ ∑ 𝑷𝒊(𝒋)𝒊

       (𝟏𝟑) 

Where N is the total number of CUs per picture in the video sequence  and Pi(j) is the percentage of inter partitions 

of the ith CU in the current picture j. Using the same symbols of Equitation (13), feature ID-14 is computed using 

Equation (14): 

𝝈𝒄𝒖𝑰𝒏𝒕𝒆𝒓 = √𝑬[(𝑷𝒊(𝒋) − 𝝁𝒄𝒖𝑰𝒏𝒕𝒆𝒓)𝟐]       (𝟏𝟒) 

Feature ID-15 is computed using Equation (15): 

µ𝝐=𝟏
𝑵⁄ ∑ 𝑹𝒊(𝒋)𝒊

       (𝟏𝟓) 

Where N is the total number of CUs per picture in the video sequence and Ri(j) is the sum of absolute residual 

values of the ith CU in the current picture j. Using the same symbols of Equitation (15), feature ID-16 is computed 

using Equation (16): 

𝝈𝝐 = √𝑬[(𝑹𝒊(𝒋) − 𝝁𝝐)𝟐]       (𝟏𝟔) 
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3.1.2  GoP-level Feature Set 

The Group of Pictures or GoP-level feature set is calculated from the picture-level feature set previously 

discussed, such that the features of pictures belonging to each GoP are combined and used to calculate the final GoP-

level features. It is important to mention that throughout the experiments, the GoP size was set to 15 (each GoP 

contains 15 pictures) and thus each sequence of 100 pictures contains 7 GoPs or 7 feature vectors. Table 3 shows the 

equations used to calculate the feature variables are a GoP level.  

Table 3 Proposed GoP-level feature 

Feature 

ID 

Feature Name 

1 Mean of CU quantization parameter  

2 Standard deviation of CU quantization parameter 

3 Mean of  number of sub-CU partitions 

4 Standard deviation of number of sub-CU partitions 

5 Mean of ratio of MVD bits 

6 Standard deviation of ratio of MVD bits 

7 Mean of number of CU bits 

8 Standard deviation number of CU bits 

9 Mean of percentage of intra partitions in a CU 

10 Standard deviation of percentage of intra partitions in a CU 

11 Mean of percentage of skipped partitions in a CU 

12 Standard deviation of percentage of skipped partitions in a CU 

13 Mean of percentage of inter partitions in a CU 

14 Standard deviation of percentage of inter partitions in a CU 

15 Mean of prediction residual energy of CU  

16 Standard deviation of prediction residual energy of CU 

17 Mean of estimated PSNR 

18 Standard deviation of estimated PSNR 

 

The details of these feature variables are as follows. Feature ID-1 is computed using Equation (17): 

µq=1
G⁄ ∑ (1

N⁄ ∑ Qi(j))ij
       (17) 

Where N is the total number of CUs per picture in the video sequence and j is the index of picture in the current GoP 

(each GoP contains 15 pictures) . Qi(j) is the quantization parameter of the ith CU in the current picture j and G is 

the number of pictures per GoP. Using the same symbols of Equation (17), feature ID-2 is computed using Equation 

(18): 

σq = √E [(Qi(j) − μq)
2

]       (18) 

Where E denotes the expected value. 

Feature ID-3 is computed using Equation (19): 
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µcuParts=1
G⁄ ∑ (1

N⁄ ∑ Ai(j))ij
       (19) 

Where N is the total number of CUs per picture in the video sequence and j is the index of picture in the current 

GoP. Ai(j) is the number of sub-CUs of the ith CU in the current picture j and G is the number of pictures per GoP. 

Using the same symbols of Equation (19), feature ID-4 is computed using Equation (20): 

σcuParts = √E[(Ai(j) − μcuParts)2]       (20) 

Feature ID-5 is computed using Equation (21): 

µmvd=1
G⁄ ∑ (1

N⁄ ∑ Mi(j))ij
       (21) 

Where N is the total number of CUs per picture in the video sequence and j is the index of picture in the current 

GoP. Mi(j) is the ratio of MVD bits of the ith CU in the current picture j and G is the number of pictures per GoP. 

Using the same symbols of Equation (21), feature ID-6 is computed using Equation (22): 

σmvd = √E[(Mi(j) − μmvd)2]       (22) 

Feature ID-7 is computed using Equation (23): 

µcuBits=1
G⁄ ∑ (1

N⁄ ∑ Bi(j))ij
       (23) 

Where N is the total number of CUs per picture in the video sequence and j is the index of picture in the current 

GoP. Bi(j) is the number of CU bits of the ith CU in the current picture j and G is the number of pictures per GoP. 

Using the same symbols of Equation (23), feature ID-8 is computed using Equation (24): 

σcuBits = √E[(Bi(j) − μcuBits)2]       (24) 

Feature ID-9 is computed using Equation (25): 

µcuIntra=1
G⁄ ∑ (1

N⁄ ∑ Ii(j))ij
       (25) 

Where N is the total number of CUs per picture in the video sequence and j is the index of picture in the current 

GoP. Ii(j) is the percentage of intra partitions of the ith CU in picture j and G is the number of pictures per GoP. 

Using the same symbols of Equation (25), feature ID-10 is computed using Equation (26): 

σcuIntra = √E[(Ii(j) − μcuIntra)2]       (26) 

Feature ID-11 is computed using Equation (27): 

µcuSkipped=1
G⁄ ∑ (1

N⁄ ∑ Si(j))ij
       (27) 

Where N is the total number of CUs per picture in the video sequence and j is the index of picture in the current 

GoP. 
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Si(j) is the percentage of skipped partitions of the ith CU in picture j and G is the number of pictures per GoP. Using 

the same symbols of Equation (27), feature ID-12 is computed using Equation (28): 

σcuSkipped = √E [(Si(j) − μcuSkipped)
2

]       (28) 

Feature ID-13 is computed using Equation (29): 

µcuInter=1
G⁄ ∑ (1

N⁄ ∑ Pi(j))ij          (29) 

Where N is the total number of CUs per picture in the video sequence and j is the index of picture in the current 

GoP. 

Pi(j) is the percentage of inter partitions of the ith CU in picture j and G is the number of pictures per GoP. Using the 

same symbols of Equation (29), feature ID-14 is computed using Equation (30): 

σcuInter = √E[(Pi(j) − μcuInter)2]       (30) 

Feature ID-15 is computed using Equation (31): 

µϵ=1
G⁄ ∑ (1

N⁄ ∑ Ri(j))ij
       (31) 

Where N is the total number of CUs per picture in the video sequence and j is the index of picture in the current 

GoP.  

Ri(j) is the sum of absolute residual values of the ith CU in picture j and G is the number of pictures per GoP. Using 

the same symbols of Equation (31), feature ID-16 is computed using Equation (32): 

σϵ = √E[(Ri(j) − μϵ)2]       (32) 

Feature ID-17 is computed using Equation (33): 

µPSNR=1
G⁄ ∑ P(j))j

       (33) 

Where j is the index of picture j in the current GoP. P(j) is the estimated PSNR of picture j and G is the number of 

pictures per GoP. Lastly, using the same symbols of Equation (33), feature ID-18 is computed using Equation (34): 

σPSNR = √E[(P(j) − μPSNR)2]       (34) 

3.2. Classification 

As mentioned in the previous section, feature variables are extracted from coded HEVC CUs. The variables 

are then summarized into picture and Group of Pictures (GoP) level feature vectors. Classification is performed using 

a Random Forest classifier [19-22] as well as a bi-LSTM network [23, 24]. Fig. 3 shows the classification system 

setup used for both RF and LSTM classifiers. In the RF classifier, the feature vectors are normalized by computing 
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their z-scores. After the training phase is completed, test feature vectors are classified into single, double or triple 

compression (i.e three classification classes). This classification can be performed at a picture, a GoP or a video level. 

Results of both classifiers, and both feature sets for double and triple compression detection are reported in the 

experimental results section. 

Fig. 3 HEVC re-compression detection using the proposed classification solution 

 

3.2.1 Sequence-level classification using Random Forest (RF) 

Random Forests are part of the ensemble machine learning algorithms where a group of weak classifiers 

combine to form a strong classifier. The algorithm is based on the bagging approach where multiple decision trees are 

combined to create a new model with low variance in terms of classification and thus increase classification accuracy. 

The random forest approach is a combination consisting of a set of decision trees used for classification. The Random 

Forest is one of the most used machine learning algorithms as it is known to produce great classification results even 

without hyper-parameter tuning.  

In this work, the algorithm is trained and tested twice, once using the picture-level features and once using 

the GoP-level features. The obtained classification accuracies are on a picture-level and GoP-level but since we are 

interested in sequence-level accuracies, majority voting is then used. In sequence-level majority voting, each sequence 

is classified as single, double or triple compression based on the majority predicted label of its pictures in case of 

picture-level features and the majority predicted label of its GoPs in case of GoP-level features.  
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3.2.2 Sequence-level classification using a bi-LSTM Network  

Long Short-Term Memory networks, also known as LSTMs, are a special version of the Recurrent Neural 

Network or RNN used for the prediction of sequential data. The bi-LSTM is another version of the LSTM network 

where both previous and following data samples are used in the prediction of a current input. In other words, the bi-

LSTM relies on past and future data to predict current data. In our solution, we propose the use of the bi-LSTM 

network for recompression detection in HEVC coded videos using the fact that the features used to classify one picture 

will depend on that of the previous and future pictures.  

Picture-level and GoP-level features are extracted from the video sequences and used as input to the bi-LSTM 

network, directly producing the sequence level accuracies for re-compression detection. The diagram in Fig.4 

illustrates the network architecture. Basically, features are extracted on a picture-level and GoP-level from HEVC 

videos, after which the Sequence Input layer involves inputting the video sequences to the network. The bi-LSTM 

layer has hidden unites needed to exploit the temporal dependencies between the input feature vectors. The bi-LSTM 

layer is followed by a dropout layer that randomly sets input elements to zero with a 50% probability. This is need to 

reduce overfitting in the training process. Lastly, the output is fed into a fully connected layer with 3 classification 

classes. 

 

Fig. 4 Bi-LSTM Network Architecture 
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5. Experimental Setup and Results  

In this section, we introduce the video dataset used for training and classification, we introduce the 

experimental setup and present the experimental results. 

5.1 Dataset 

In the experiments conducted for HEVC double and triple compression detection, 26 YUV420 sequences are 

used, thirteen of which are 1080p and thirteen are 720p.  All the sequences used are collected from the online video 

test media database1.  

Table 4 presents a list of the YUV sequences used to generate the dataset, which is the same set of sequences 

used in [9]. To keep the spatial resolution the same for all the YUV sequences, the 1080p sequences are resized to 

720p (1280x720) in the spatial domain in a lossless manner so that there are no traces of lossy compression. Also, to 

increase the sample size, each YUV sequence is divided into multiple non-overlapping sequences consisting of 100 

pictures each. As a result, a total of 127 shorter YUV sequences are obtained which are then used throughout the 

experiments. To obtain double compressed videos, the raw YUV sequences are first compressed and then 

decompressed and re-encoded using the same bitrate. For triple compression, the same recompressions of double 

compression are conducted following by a third compression of the same bitrate as illustrated in Fig. 5  

 

Fig. 5 Preparing the video dataset with single, double and triple compression 

                                                           
1 YUV sequences available at the online database: http://media.xiph.org/video/derf/. 
 

http://media.xiph.org/video/derf/
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All the obtained video sequences from the re-compressions are divided into two groups for training and 

testing according to the splitting used in the previous work as shown in Table 5 [9]. This splitting structure ensures 

that no two YUV sequences originally belonging to the same sequence are included in both the training and testing 

datasets. As a result of the split, out of the 127 sequences, the training set will consist of 77 sequences and the testing 

set will consist of the remaining 50 sequences.  

For each class (i.e. single, double and triple compression), a total of 889 (127 sequences x 7 FVs) feature 

vectors are obtained which are divided into training and testing set such that the training set consists of 539 (77 

sequences x 7 FVs) samples and the testing set consists of 350 (50 sequences x 7 FVs) samples per class. The extracted 

GoP-level features are then used to train and test a Random Forest classifier and a bi-LSTM network. 

 

Table 4 YUV sequences used to generate the dataset 

1080p YUV Sequences 720p YUV Sequences 

blue_sky, crowd_run, pedestrian_area, riverbed, 

rush_field_cuts, rush_hour, snow_mnt, speed_bag, 

station2, sunflower, touchdown_pass, tractor, 

west_wind_easy 

ducks_take_off, FourPeople, in_to_tree, Johnny, 

KristenAndSara, mobcal, old_town_cross, park_joy, 

parkrun, shields, stockholm, vidyo1, vidyo3 

 

Table 5 YUV sequences used in training and testing  

Train Sequences Test Sequences 

stockholm, KristenAndSara, Johnny, shields, vidyo3, 

ducks_take_off, sunflower, rush_hour, crowd_run, 

rush_field_cuts, blue_sky, speed_bag, 

touchdown_pass, west_wind_easy, pedestrian_area, 

station2 

in_to_tree, park_joy, old_town_cross, vidyo1, parkrun, 

mobcal, FourPeople, snow_mnt, tractor, riverbed. 

 

5.2 Classification results 

This section discusses the results obtained from the proposed compression detection techniques. The 

proposed features are extracted from the videos of the above dataset and used for classifying a video into single, double 

and triple compression. The results are repeated using both of the classification arrangements introduced in Section 4. 

The double compression detection results have been compared to three of the existing solutions in literature. The 

performance measures used in all experiments are accuracy, precision and recall. The accuracy or classification rate 

refers to the percentage of correctly classified instances and is calculated using the equation below.  

 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
∗ 100% 

 

(35) 

 

Where TP refers to True Positive count, TN refers to True Negative count, FP refers to False Positive count 

and FN refers to False Negative count. Precision is a measure of exactness or quality. It is the percentage of test cases 

that are classified as X  and have a true label of X. It is also referred to as the exactness of a classifier and is calculated 

using the below equation.   
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

(36) 

Finally, recall is a measure of completeness or quantity. It is defined as the percentage of test cases that have 

a true label of X and are actually labelled as X and is calculated using the equation below.   

  `   𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
      (37) 

In this set of experiments, the results are reported for four different bitrates (800,1000,1200,1400) kbps. For 

each of the four bitrates, experiments are conducted for features extracted on a picture and a GoP level for each of the 

video sequences.  

The solver used for training the bi-LSTM network is the Adam optimizer with an initial learn rate of 1e-4 

and a mini batch size of 16. As for the Random Forest classifier, 20 trees are grown in the training and testing. 

Table 6 provides a detailed comparison between the results obtained by our proposed solution and the results 

found in existing literature. We presents results using our proposed picture-level and GoP-level feature extraction 

solutions. The results obtained from the proposed solution are noticeably higher than those reported in Jiang’s, Xu’s 

and Liang’s methods in [9], [10] and [11]. In Fig. 6, a comparison is done for the average accuracies obtained across 

each of the proposed and existing methods for the conducted experiments, showing that the highest average accuracy 

is obtained using the proposed GoP-level feature set and bi-LSTM network.  

Picture-level features using Random Forest classifier and bi-LSTM network produced good but lower results 

compared to GoP-level features. The highest results are obtained when using GoP-level features and bi-LSTM network 

where a 100% classification rate is obtained for all the different bitrates. This can be justified by the fact that GoP-

level features are richer than single picture-level features. Additionally, the use of bi-LSTM networks exploits the 

temporal dependencies between feature vectors in a video sequence. In the RF classifier on the other hand, a feature 

vectors is classified in isolation of surrounding feature vectors. 

Table 6 Classification results of double compression detection with comparison to existing work 

Bitrate PICTURE-LEVEL FEATURES GOP-LEVEL FEATURES EXISTING WORK 

B1,B2 Proposed 

Solution 

(RF) 

Proposed 

Solution (bi-

LSTM) 

Proposed 

Solution 

(RF) 

Proposed 

Solution 

(LSTM) 

Jiang 

Method 

[9] 

Xu 

Method 

[10] 

Liang 

Method 

[11] 

800,800 94% 98% 98% 100% 93% 92.5% 85% 

1000,1000 96% 96% 97% 100% 95% 93% 87% 

1200,1200 96% 96% 97% 100% 95.5% 92.5% 86.25% 

1400,1400 96% 96% 98% 100% 96% 92% 86.25% 

Average  95.5% 96.5% 97.5% 100% 94.88% 92.5% 86.13% 
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Fig. 6 A comparison of the average accuracies obtained for double compression detection 

 

In Table 7, the confusion matrices for the lowest bitrate (800 kbps) are reported for each of the four proposed 

methods as this bitrate is the most challenging amongst all. This is because low bitrates cause higher compression and 

higher information loss leading to less representative feature vectors.  

 

Table 7 Confusion matrices, precision and recall for double compression detection for bitrate=800 

  Confusion Matrix Precision Recall 

Picture-

level 

Features 

Proposed 

Solution 

(RF) 

 C1 C2 

C1 95.32 4.68 

C2 22.38 

 

77.62 

 
 

0.81 0.95 

Proposed 

Solution 

(bi-

LSTM) 

 C1 C2 

C1 48.00 

 

0.00 

C2 2.00 

 

50.00 

 

0.96 1 

GoP-level 

Features 

Proposed 

Solution 

(RF) 

 C1 C2 

C1 98.29 1.71 

C2 17.14 

 

82.86 

 
 

0.85 0.98 
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Proposed 

Solution 

(bi-

LSTM) 

 C1 C2 

C1 100.0 0.00 

C2 0.00 

 

100.0 

 
 

1 1 

 

The same experiments conducted for double compression detection are implemented again for double and  

triple compression detection with promising results being obtained for each of the four bitrates. To the best of our 

knowledge, no existing literature addresses the problem of detecting double and triple compression. Again, highest 

results were achieved when using GoP-level features and bi-LSTM network for classification with results ranging 

from 98% to 98.7%. Again, this can be justified by the fact that GoP-level features are richer than single picture-level 

features. Moreover, the use of bi-LSTM networks exploits the temporal dependencies between feature vectors in a 

video sequence. In the RF classifier on the other hand, a feature vectors is classified in isolation of surrounding feature 

vectors. 

Table 8 presents a detailed comparison of the results obtained for each of the four bitrates using the different 

feature sets and classifiers.  

Table 8 Results of detecting double and triple compression using three classes 

 FRAME-LEVEL 

FEATURES 

GOP-LEVEL FEATURES 

B1,B2,B3 Proposed 

Solution 

(RF) 

Proposed 

Solution 

(LSTM) 

Proposed 

Solution 

(RF)  

Proposed 

Solution 

 (bi-LSTM) 

800,800,800 82.67% 94% 76.67% 98% 

1000,1000,1000 79.33% 92% 84.00% 98.7% 

1200,1200,1200 75.33% 92.67% 86.67% 98.7% 

1400,1400,1400 80% 94% 82.67% 98.7% 

Avg. Accuracy 79.33% 93.17% 82.5% 98.55% 

Table 9 shows the confusion matrices, precision and recall obtained for the most challenging case with the 

lowest bitrate of 800 kbps.  
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Table 9 Confusion matrices, precision and recall for double and triple compression detection for bitrate=800 

  Confusion Matrix Precision Recall 

Picture-

level 

Features 

Proposed 

Solution 

(RF) 

 C1 C2 C2 

C1 95.84 3.50 0.66 

C2 21.68 53.46 24.86 

C3 8.18 40.36 51.46 
 

0.67 0.51 

Proposed 

Solution 

(bi-LSTM) 

 C1 C2 C2 

C1 33.30 0.00 0.00 

C2 0.00 27.30 0.00 

C3 0.00 6.00 33.30 
 

1 0.85 

GoP-level 

Features 

Proposed 

Solution 

(RF) 

 C1 C2 C2 

C1 98.29 1.43 0.29 

C2 19.43 61.43 19.14 

C3 6.29 37.43 56.29 

 
 

0.74 0.56 

Proposed 

Solution 

(bi-LSTM) 

 C1 C2 C2 

C1 33.30 1.30 0.00 

C2 0.00 31.30 0.00 

C3 0.00 0.70 33.3 
 

1 0.98 

Fig. 7 then shows a comparison for the average accuracies obtained for each method across the four different 

bitrates, indicating that the highest average accuracy for triple compression detection is also obtained when using 

GoP-level features and bi-LSTM deep learning network. 

Fig. 7 A comparison for the average accuracies obtained in double and triple compression detection  
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A 98% classification accuracy is achieved for the lowest and most challenging bitrate of 800 kbps and a 

98.7% accuracy is achieved for the remaining three bitrates. Despite the promising results obtained, the classification 

rate of double and triple compression detection is still lower than that of double compression detection in all the 

experiments conducted due to having three classes, making the classification more challenging. More specifically, in 

the detection of double compression only, the best classification accuracy at picture and GoP levels are 96.5% and 

100% respectively. Whereas, in the novel detection of double and triple compression, the best classification accuracy 

at picture and GoP levels are 93.2% and 98.6% respectively. Clearly, using three classes for double and triple 

compression detection instead of two will result in lower classification rates as distinguishing between the second and 

third compression becomes much more difficult compared to distinguishing between single (original) and triple 

compression. This evident from the results reported in the confusion matrices. The results obtained have not been 

compared to existing solutions as to the extent of our knowledge, no existing literature was found to tackle the problem 

of triple compression detection in HEVC coded videos. 

6. Conclusion  

In this work, we developed a system that improves on the existing solutions of double compression detection 

in HEVC videos. We also developed a novel system for double and triple compression detection with very promising 

results. Two feature sets have been used, picture-level and GoP-level features, and four different bitrates have been 

tested. The results obtained for double compression detection have been compared to three of the existing solutions in 

the literature. Highest results were achieved when using the GoP-level features where a 97.5% average accuracy is 

achieved using the RF classifier and a 100% average accuracy is achieved using the bi-LSTM network for double 

compression detection. The same experiments were conducted for triple compression detection where to the best of 

our knowledge, no existing solutions have been implemented to tackle this problem. The highest average accuracy of 

98.55% was achieved for triple compression detection when using the GoP-level features with a bi-LSTM network. 

Clearly, GoP-level features are richer than single picture-level features and use of bi-LSTM networks exploits the 

temporal dependencies between feature vectors in a video sequence. In the RF classifier on the other hand, a feature 

vectors is classified in isolation of surrounding feature vectors, which results in less accurate classification. From the 

results obtained, we can clearly state the effectiveness of the proposed solution for both double and triple compression 

detection in HEVC coded videos when having the same recompression bitrate.  
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