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Mathematical modeling has been used to simulate the interaction of chemotherapy and immunotherapy drugs intervention
with the dynamics of tumor cells growth. This work studies the interaction of cells in the immune system, such as
the natural killer, dendritic, and cytotoxic CD8+ T cells, with chemotherapy. Four different cases were considered in
the simulation: no drug intervention, independent interventions (either chemotherapy or immunotherapy), and combined
interventions of chemotherapy and immunotherapy. The system of ordinary differential equations was initially solved using
the Runge-Kutta method and compared with two additional methods: the Explicit Euler and Heun’s methods. Results
showed that the combined intervention is more effective compared to the other cases. In addition, when compared
with Runge-Kutta, the Heun’s method presented a better accuracy than the Explicit Euler technique. The proposed
mathematical model can be used as a tool to improve cancer treatments and targeted therapy.
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INTRODUCTION
Cancer is the second most common cause of death in the
United States, with approximately 1.9 million new cancer
cases expected to be diagnosed (excluding basal cell and
squamous cell skin cancers) and around 608,570 cancer-
related deaths in 2021 [1]. Cancer is a complex metabolic
disorder characterized by the uncontrolled growth and
spread of abnormal cells. Although the causes of can-
cer are not completely understood, inherited genetic muta-
tions and lifestyle factors (e.g., tobacco use, poor diet, and
excess body weight) increase the risk of developing can-
cer. Currently, several methods can be used to treat cancer,
including [2–6]:
(1) Surgery works best for non-metastatic solid tumors. It
can be used to remove the entire tumor, parts of the tumor,
or ease cancer symptoms.
(2) Chemotherapy uses drugs to stop or slow the growth
of cancer cells. Although chemotherapy is a widespread
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and effective way for cancer treatment, its main limitation
is its non-specificity as chemotherapeutic agents attack
both healthy and cancerous cells. Damage to healthy cells
may cause side effects, such as mouth sores, nausea, and
hair loss.
(3) Hormone therapy involves slowing or stopping the
spread of cancers that use hormones to grow by blocking
the body’s ability to produce these particular hormones.
This approach is prevalent for breast and prostate cancer.
(4) Immunotherapy works by boosting the patient’s
immune system. The immune system is a biological sys-
tem that protects the organism against diseases and infec-
tions by identifying foreign matter such as tumor cells.
Immunity can be innate or adaptive, with phagocytic cells
such as lymphocytes, natural killer (NK) cells, dendritic
cells (DCs), and cytokines all fall under the umbrella of
innate immunity and are essential in tumor recognition.
NK cells play a crucial role in destroying tumor cells
before replication and growth, whereas DCs, also known
as antigen-presenting cells (APC), help in activating the
immune system by presenting antigens to CD8+ helper T
cells that activate CD4+ helper T cells. Once activated,
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CD4+ helper T cells secrete chemokines that enhance the
immune response. Immunotherapy helps these elements of
the immune system to better act against cancer.
(5) Radiation therapy uses high doses of radiation to kill
cancerous cells and shrink tumors.
(6) Stem cell transplant can help cancer patients recover
their ability to produce stem cells after treatment with very
high doses of radiation therapy, chemotherapy, or both.
It is also a recommended approach when dealing with
blood-related cancers, such as leukemia, due to the graft-
versus-tumor effect that can occur after allogeneic trans-
plants. Graft-versus-tumor occurs when white blood cells
(WBCs) from the donor (the graft) attack any cancer cells
that remain in the graft-recipient’s body after high-dose
treatments.
(7) Targeted therapy is a type of cancer treatment that
targets proteins that control how cancer cells grow, divide,
and spread. Most targeted therapies involve either small-
molecule drugs or monoclonal antibodies (mAbs).

Modeling of Tumor Growth
Several tumor-growth models have been developed to bet-
ter understand the dynamics and evolution of tumors.
Many studies applied ordinary differential equations
(ODEs) to describe changes in the tumor burden (e.g.,
tumor volume, tumor size) and drug effect, allowing
the rationalization of personalized treatments for cancer
patients and overcoming cancer drug resistance. Basic
mathematical functions such as linear, exponential, logis-
tic, Gompertz, or a combination of exponential and linear
models are commonly used to characterize natural tumor
growth. The growth rate is assumed to be constant in lin-
ear models but proportional to tumor burden in exponential
models. Real-life biological changes in the tumor growth
rate can be represented with logistic and Gompertz mod-
els, where the Gompertz model considers the reduction of
growth rate with time. In contrast, the logistic model con-
siders the environment’s carrying capacity, which limits
the growth. Basic functions from previous work describing
natural tumor growth are presented below, where kg and d
represent the growth rate and death rate constants, respec-
tively; T represents tumor burden, and Tmax is the carrying
capacity.
Linear growth

dT

dt
= kg

dT

dt
= kg−d ·T

(1)

Exponential growth

dT

dt
= kg ·T

dT

dt
= kg ·T −d ·T

(2)

Logistic growth

dT

dt
= kg ·T ·

(
1− T

Tmax

)
(3)

Gompertz growth

dT

dt
= kg ·T · ln

(
Tmax

T

)
(4)

More advanced models incorporate additional parame-
ters such as drug concentration, tumor shrinkage rate con-
stant, time, location, etc. Some ODE models incorporate
biological factors and processes, including the relationship
between the immune system (e.g., cytotoxic T lympho-
cytes) and the cancer growth rate of patients undergoing
immunotherapy. Such model-based approaches provide an
opportunity to better understand cancer evolution, investi-
gate treatment optimization, overcome cancer drug resis-
tance, and even predict tumor dynamics [7]. Currently,
there is a growing trend towards the use of fractional cal-
culus to model tumor behavior [8–10]. Fractional models
are characterized by an arbitrary order of differentiation or
integration, and have inherent attributes that may improve
ODE-based tumor models.

Tumor Growth Modelling for Chemotherapy
Chemotherapy is defined as the use of drugs to kill can-
cer cells. Many studies have investigated the response of
different cancer types to various chemotherapeutic agents.
Peng et al. [11] conducted a study focused on evaluating
the performance of quantitative contrast-enhanced ultra-
sonography (CEUS) to assess the response of a cervical
tumor to neoadjuvant chemotherapy (NACT). The CEUS
model compared different parameters related to tumor
response, such as maximum intensity (IMAX), rise time
(RT), time-to-peak (TTP), and mean transit time (MTT).
These parameters were compared between the cervical
tumor and myometrium (reference zone) using a software
called Sonolive. The study reported that the quantitative
CEUS showed significant changes in cervical tumor per-
fusion after one cycle of NACT; for example, a consid-
erable decrement was observed for the IMAX correlated
with better tumor perfusion response. In another study, Pat-
wardhan et al. [12] discussed multidrug resistance (MDR)
as one of the major obstacles that limit the success of
cancer chemotherapy. The study adopted a Flutax-2 and
spectrometry model to directly measure the cellular efflux
of tumors in vivo. It was thought that this approach would
provide a better estimation of the cellular flux than the
estimation of MDR1 mRNA and P-glycoprotein levels in
samples stored or embedded. The study characterized drug
resistance to decide on the best drug for cancer patients.
Results showed that the study successfully measured cel-
lular transportability, including efflux and accumulation
for various cancer types; for example, the analysis suc-
cessfully detected an increment in the accumulation and
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a decrement in the efflux of NCI/ADR-RES cells treated
with verapamil.

Zhao et al. [13] evaluated the predictive value of
immunohistochemical or fluorescence in situ hybridization
(HER IHC or FISH) positivity in tumor response to HER2
targeted therapy. The experiment was performed by tak-
ing biopsies of 76 HER2+ breast cancer patients who had
received chemotherapy and neoadjuvant HER2 targeted
therapy. The results of the univariate analysis showed that
some characteristics of the tumor (small size, low nuclear
grade, high Ki67, HER2 IHC 3+, homogenous strong
HER2 IHC staining, high HER2/CEP17 ratio, and high
HER2 copy number) are highly associated with pCR/RCB-
I which led them to the conclusion that the HER2
IHC pattern is highly associated with tumor response to
neoadjuvant chemotherapy. Anaya et al. [14] evaluated
chemotherapy concentration at the tumor site and the asso-
ciated treatment response for patients with colorectal can-
cer liver metastases, using a mathematical model. Results
showed that the estimated tumor-site chemotherapeutic
concentration (eTSCC) decreased with a quadratic decre-
ment from TRG= 1 to TRG= 5 (p< 0.001). In addition,
Koziol et al. [15] used a dynamic model of cancer growth
using three types of interacting cell populations: tumor
cells, healthy host cells, and immune effector cells. The
model of tumor growth took into consideration the het-
erogeneity of the tissue based on the interaction between
various cell types. The results showed that there is a cor-
relation between theoretical and empirical knowledge of
tumor growth. The study used an explicit delay differential
equation model to show the major features of the Sime-
oni ODE model by evaluating mammary tumor growth in
mice. The study reported that the Simeoni tumor growth
function alters between exponential and linear growth
where the alteration did not pass any plateau phase. Aghaei
et al. [16] employed a dataset for breast MR images of
151 cancer patients before neoadjuvant chemotherapy was
used. Patients had received either a complete response
(CR) or a partial response (PR) to chemotherapy based on
the RECIST criterion. A computer-aided detection (CAD)
scheme and an artificial neural network (ANN) were used
to differentiate between the CR and PR cases. The results
showed that high accuracy was obtained using ten different
features for the classification between CR and PR. Finally,
Ledzewicz et al. [17] employed a Gompertz growth model
for cancer cells and calculated the optimal control and
corresponding responses. The study targeted reducing the
tumor volume by giving small dosages. Results showed
that the PR provided better responses as it led to tumor
volume shrinkage.

Tumor Growth Modelling for Chemotherapy and
Immunotherapy
Immunotherapy treatment relies on enhancing the immune
system in such a way that it is capable of identifying and

killing tumor cells. Some research studies have combined
both chemotherapy and immune therapy to enhance the
tumor response to treatment. Alvarez et al. [18] proposed a
nonlinear mathematical model to simulate the response of
cancer to immunotherapy based on the phenotypic hetero-
geneity of tumor cells and the differences in immunogenic-
ities. The study examined the effect of immunotherapy on
the expression of cell surface receptors, growth, angio-
genic, proliferative, and immunogenic factors. The model
adopted by this study revealed a phenomenon related to
tumor dormancy, robustness, immunoselection over tumor
heterogeneity, referred to as “cancer immunoediting.” The
adopted model also helped quantitatively describe cancer
immunoediting within the context of sensitivity to the ini-
tial conditions, which helped quantify some of the mech-
anisms underlying tumor dynamics. Admon et al. [19]
developed a mathematical model to study, predict, and
control tumor growth. The ODEs used in this study mod-
eled the effect of combining immunotherapy and certain
anticancer drugs on tumor cells, with a special focus on
the stability analysis at the tumor site. Specific parameters
that reflect the stability of the tumor after treatment were
measured, and the results showed that when the combina-
tional treatment was administered, the tumor growth region
decreased, and tumor cells in the interphase and metaphase
stages of the cell cycle decreased by 1.27% and 1.53%,
respectively. Moreover, Pinho et al. [20] utilized a model
based on five ODEs to study the interactions between nor-
mal cells, cancer cells, endothelial cells, chemotherapeu-
tic agents, and anti-angiogenic agents in tumor growth.
The study reported that combining anti-angiogenic and
chemotherapeutic agents helped slow down cancer growth
and led to a larger reduction in tumor size than with
chemotherapy alone.
Unni and Seshaiyer [21] developed a mathematical

model to study the interactions between tumor and
immune cells (NK cells, DCs, and cytotoxic CD8+ T
cells). The analysis focused on the effect of immunother-
apy and chemotherapy on tumor growth. Stability analysis
results conducted on this model provided insight into the
interactions between tumor cells, the immune system, and
drug response systems. The study also reported that the
joint use of tumor-infiltrating lymphocytes (TIL) therapy
and chemotherapy played an essential role in controlling
tumor growth. Robertson-Tessi et al. [22], developed a
model to quantitatively assess the effect of the adaptive
immune system on anti-tumor chemotherapy or chemo-
immunotherapy. The adopted model examined the interac-
tion between tumors and the adaptive immune system, in
addition to the controllability of tumors through the inter-
play of cytotoxic, cytostatic, and immunogenic effects of
chemotherapy. The changes in the growth rate and anti-
genicity were studied by examining cytotoxic and helper
T cells, T regulatory cells (Tregs), DCs, memory cells,
and several key cytokines. The study reported that the
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tumor response to treatment depends entirely on the bal-
ance between immunosuppressive and immunostimulatory
effects. The response can alter based on innate tumor
characteristics such as growth rate and antigenicity. Cur-
tis and Frieboes [23] developed a model to evaluate the
response of tumors to the combination of chemotherapy
and immunotherapy, focusing on non-small cell lung can-
cer (NSCLC). The parameters were set to simulate a
NSCLC nodule being treated with paclitaxel (PTX). Their
findings showed that the system was capable of exploring
variations in therapy parameters, including dosing, drug
strength, and effect, and their combination across various
immuno- and chemotherapeutics.
The purpose of this study is to simulate four cases of

tumor growth: with chemotherapy, with immunotherapy,
with both chemotherapy and immunotherapy, and with-
out any drug intervention. Three different approaches were
used to solve the ODEs. The original approach obtained
from literature is assumed to be the optimal approach,
while the two other methodologies will be compared with
the actual outcome.

METHODOLOGY
In this study, we mathematically modeled the interaction
between growing tumor cells and the immune system. Our
models considered four cell populations: tumor cells T �t�,
natural killer cells N�t�, dendritic cells D�t�, and cyto-
toxic CD8+ T cells L�t�. We selected these immune cells
because they are the most relevant in cancer immunother-
apy; NK cells and CD8+ T-cells are known to kill tumor
cells, while dendritic cells are antigen-presenting cells that
help stimulate and activate the immune system [21, 24].
Incorporating each cell type involved in fighting cancer
would be ideal; however, this would lead to extremely
complex models that would be computationally costly
[25]. The ODEs used to express the dynamic changes of
those parameters over time were obtained from literature
as follows:

dT

dt
= aT �1−bT �− �c1N − jD+kL�T

−KT z�M�T (5)

dN

dt
= s1+

g1NT 2

h1+T 2
− �c2T −d1D�N

−KNz�M�N − eN (6)

dD

dt
= s2− �f1L+d2N −d3T �D

−KDz�M�D− gD (7)

dL

dt
= f2DT −hLT −uNL2+ r1NT + p1LI

g1+ I

−KLz�M�L− iL+ vL (8)

dM

dt
= vM�t�−d4M

dI

dt
= vI �t�−d5I

(9)

The five ODEs presented above have been used in mod-
eling tumor growth. The following sections will explain
the components of each equation. The ODEs presented
above could be related in real life; however, for the sake
of simplifying the model, the interactions between these
cell populations are out of the scope of this analysis.

Modeling Tumor Cells
As mentioned earlier, biological models can be best rep-
resented by a logistic growth model aT �1−bT �, where
a and b denote the growth of tumor cells impacted
by the interactions of N, D, and L with tumor cells,
separately. Equation (5) includes the competition term
−�c1N + jD+kL�T , where j is the interaction between T
and D cells, c1 is the interaction between T and N, while
k is the interaction between T and L, the estimated values
of which are presented in Table I. In general, the effect of
a chemotherapeutic drug is found by multiplying the value
of the kill parameter K�·� by z�M�, which represents the
effectiveness of the drug during certain cell cycle phases.

Table I. Description and value of parameters.

Parameter (unit) Description Estimated value

a (day−1) Tumor growth rate 4�31×10−1

b (cells−1) Tumor-carrying
capacity estimated

2�17×10−8

c1 (cells−1) NK cell tumor cell kill
rate estimated

3�5×10−6

c2 (cells−1day−1) NK cell inactivation
rate by tumor cells

1�0×10−7

d1 (cells−1) Rate of dendritic cell
priming NK cells

1�0×10−6

d2 (cells−1) NK cell dendritic cell
kill rate

4�0×10−6

d3 (cells−1) Rate of tumor cells
priming dendritic
cells

1�0×10−4

e (day−1) Death rate of NK cell 4�12×10−2

f1 (cells−1) CD8+ T cell dendritic
cells kill rate

1�0×10−8

f2 (cells−1) Rate of dendritic cells
priming CD8+ T cell

0.01

g (cells−1) Death rate of dendritic
cells

2�4×10−2

h (cells−1day−1) CD8+ T inactivation
rate by tumor cells

3�42×10−10

i (day−1) Death rate of CD8+ T
cells estimated

2�0×10−2

j (cells−1) Dendritic cell tumor kill
rate

1�0×10−7

k (cells−1) NK cell tumor cell kill
rate

1�0×10−7

s1 (cells−1) Source of NK cells 1�3×104

s2 (cells−1) Source of dendritic cell 4�8×102
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By default, when there is no drug administered or no tumor
present, �dT /dt�= 0.

Modeling Natural Killer Cells
NK cells are assumed to have a constant source (s1). To
model these cells (as seen in Eq. (6)), the parameters g1
and h1 expressing the recruitment of N by T cells are
considered. In addition, the growth of N cells while being
impacted by T cells with a kill rate (c2), and by D cells
with a kill rate (d1) are also considered; along with the
natural death of N (−eN ).

Modeling Dendritic Cells
Dendritic cells with a constant source of D cells (s2) also
interact with L cells (f1), and proliferate with the tumor
(d3). The death of these cells by N cells is denoted by d2

and g, respectively. All of these parameters are expressed
in Eq. (7) to model D cells.

Modeling Cytotoxic CD8+ T Cells
Cytotoxic CD8+ T cells are tumor-specific cells that play
a major role in the immune system in the presence of
tumors. These cells are activated via an interaction rate
of D and T (f2), and naturally die at a rate of (−iL).
The concentration of immunotherapy drug in the blood-
stream is denoted by (I ), in which the activation of L cells
by IL-2 immunotherapy is described as: �pILI�/�gI + I�.
Equation (8) models the L cells, where the second term
(−hLT ) represents the competitive interaction between L
and T cells, the third term (uNL2� describes changes in D
cell activity and levels, while the (r1NT � term describes
D cells recruitment.

Modeling Drugs and Vaccine Intervention
The administration of immunotherapy through TIL drugs
is denoted by vL, which is included in Eq. (8), while
chemotherapy drug intervention is denoted by vM . The
elimination of immunotherapy and chemotherapy drugs
from the body over time is expressed in Eq. (9) as d5I

and d4M , respectively. The dynamics of the concentra-
tion of drugs in the bloodstream are given by dM/dt =
vM�t�−d4M , for chemotherapy, and dI/dt = vI �t�−d5I

for immunotherapy.

Stability Analysis
When there is no drug intervention, Eqs. (5)–(8) will be
equal to zero at the equilibrium point. At tumor-free con-
ditions (T = 0�, Eq. (6) becomes:

N ∗ = s1
e−d1D

∗ (10)

where e−d1D
∗ > 0

Since CD8+ T cells are only activated where there is a
tumor; therefore, Eq. (6) becomes:

N = gD∗ − s2
d2D

∗ (11)

By substituting (10) and (11), the resulting equation is:

s1
e−d1D

∗ = gD∗ − s2
d2D

∗

gd1D
∗2− �s2d1+d2s1+ eg�D∗ + es2 = 0

To solve for D, use the quadratic formula where a= gd1,
b = d1s2+d2s1+ eg, and c = es2

D∗
1�2 =

�d1s2+d2s1+ eg�±
√
�d1s2+d2s1+ eg�2−4ges2
2gd1

(12)
where d1s2+d2s1+ eg ≥√

4ges2
To match real-life conditions, e−d1D

∗ > 0 and d1s2+
d2s1+eg ≥√

4ges2. This condition satisfies Eqs. (11) and
(12). In other words, under tumor-free equilibrium condi-
tions, the critical points for NK cells’ death rate, e, and
the source term are:

e = d1D
∗

s1 =
√
4ges2− �d1s2+ eg�

d2

= 2
√
ges2− �d1s2+ eg�

d2

Linearization of the ODE System
To linearize the system of ODEs presented above without
drug intervention, a Jacobian matrix was used.

⎡
⎢⎢⎣
a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

⎤
⎥⎥⎦

From Eq. (5):

a11 = a−2abT ∗ − c1N
∗ − jD∗ −kL∗

a12 =−c1T
∗

a13 = jT ∗

a14 =−kT ∗

From Eq. (6):

a21 =
2g1N

∗h1T
∗

�h1+T �2
− c2N

∗

a22 =−c2T
∗ +d1D

∗ − e

a23 = d1N
∗

a24 = 0
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From Eq. (7):

a31 = d3D
∗

a32 =−d2D
∗

a33 =−�f1L
∗ +d2N

∗ −d3T
∗ + g�

a34 =−f1D
∗

From Eq. (8):

a41 = f2D
∗ −hL∗ + r1N

∗

a42 = uD∗2+ r1T
∗

a43 = f2T
∗

a44 =−�hT ∗ +2uN ∗L∗ + i�

Considering the equilibrium tumor-free critical points,
the matrix elements that will equal zero are: a12, a13, a14,
a24, a42, and a43. The remaining elements are calculated
and arranged in matrix A.

A=

⎡
⎢⎢⎢⎢⎢⎢⎣

a−c1N
∗−jD∗ 0 0 0

2g1N
∗h1T

∗

�h1+T �2
−c2N

∗ d1D
∗−e d1N

∗ 0

d3D
∗ −d2D

∗ −�d2N
∗+g� −f1D

∗

f2D
∗+r1N

∗ 0 0 −i

⎤
⎥⎥⎥⎥⎥⎥⎦

Where,

B =
[
d1D

∗ − e d1N
∗

−d2D
∗ −�d2N

∗ + g�

]

The determinant must be calculated to find the eigenvalues
�, where det�A−�I�= 0

det

⎡
⎢⎢⎢⎢⎢⎢⎣

a−c1N
∗−jD∗−� 0 0 0

2g1N
∗h1T

∗

�h1+T �2
−c2N

∗ d1D
∗−e−� d1N

∗ 0

d3D
∗ −d2D

∗ −�d2N
∗+g�−� −f1D

∗

f2D
∗+r1N

∗ 0 0 −i−�

⎤
⎥⎥⎥⎥⎥⎥⎦

Yielding:

�a− c1N
∗ − jD∗ −���−i−��det�B−�I�= 0

The trace and determinant for matrix B are:

tr�B�= �d1D
∗ − e�− �d2N

∗ + g�

det�B�= d1d2N
∗D∗ − �d1D

∗ − e��d2N
∗ + g�

The eigenvalues are: �1 = a− c1N
∗ − jD∗ and �2 = −i,

where �1 < 0 to stabilize the tumor-free equilibrium, and
�3 and �4 are the roots of the equation:

�2−���d1D
∗ − e�− �d2N

∗ + g��+d1d2N
∗D∗

− �d1D
∗ − e��d2N

∗ + g�= 0

Or �2− tr�B��+det�B�= 0
Since e − d1D

∗ > 0, then the trace and determinant
for matrix B should satisfy the conditions: tr�B� < 0 and
det�B� > 0.

ODE Methods Used
Runge-Kutta 4th Order Method
This numerical method consists of an ODE that defines
the value of �dT /dt� with an initial value of t�0� = t0.
The goal is to find an unknown value function t at any
given point T, where t represents time and T represents the
number of tumor cells under different scenarios, such as
no drug administered, immunotherapy alone, chemother-
apy alone, and the combination of immunotherapy and
chemotherapy. As seen below, formulas are used to com-
pute the next value of Ti+1 from the previous value Ti. The
values of = 0�1�2�3 � � ��t− t0�/	t , where 	t is a time
step and 	t = Ti+1/T0.

Ti+1 = Ti+
1
6
�	T1+2	T2+2	T3+	T4�

	T1 = 	tf �ti� Ti�

	T2 = 	tf

(
ti+

	t

2
� Ti+

	T1
2

)

	T3 = 	tf

(
ti+

	t

2
� Ti+

	T2
2

)

	T4 = 	tf �ti+	t� Ti+	T3�

T1 presents the slope at the beginning of the interval
(Euler), T2 presents the slope at the midpoint of the interval
between t and T1, T3 presents the slope at the midpoint of
the interval between t and T2, while T4 presents the slop
at the end of the interval. In our analysis, we used the
built-in MATLAB function ODE45, where the local error
is on the order of O�h5� while the total error accumulates
on the order of O�h4�.

Explicit Euler Method
Using the forward finite difference O�h�, is the best way to
present a time-independent variable, keeping in mind that
the obtained solution will not give an exact result but will
provide specific T values for all grid points 	t. As seen
below, Eq. (13) was used to compute the solution using
Ti where Ti ≡ T �t = ti�. The step size 	t was assumed
to be constant as a simplification and was then given by
	t = ti− ti−1.

Ti+1−Ti
	t

= f �Ti� ti� (13)

Although the Explicit Euler is the simplest method for
solving 1st order differential equations, it is limited by
being conditionally stable. To resolve this issue, setting
�G� ≤ 1 will render it stable. Using Eq. (14), we computed
the condition for Explicit Euler to be stable by;

Ti+1−Ti
	t

=−
Ti (14)

Ti+1 =−
Ti	t+Ti (common factor)

Ti+1 = �1−
	t�Ti

G (amplification factor)

G ≤ 1 or 
	t ≤ 2

6 J. Biomed. Nanotechnol. 17, 1–14, 2021
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Heun’s Method
Heun’s method is based on Euler’s method [26]; however,
the latter provides a higher accuracy in comparison with
the Euler explicit, which will be proven below in Figure 2.

Figure 1. MATLAB code used to conduct analysis.

Heun’s method improves the slope estimation and involves
the determination of two derivatives for the interval, one
at each start point and endpoint. Then, the two derivatives
are averaged to obtain an improved estimate of the slope.

J. Biomed. Nanotechnol. 17, 1–14, 2021 7
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It is a modified Euler with T predictor based on the explicit
method and a T corrector that presents a generic equation:

T c
i+1 = Ti+

	t

2
�fi + f

p
i+1� (15)

RESULTS AND DISCUSSION
The mathematical modeling of tumor growth and therapy
helps us analyze the complex interactions between can-
cer cells, chemotherapy and immune cells with the objec-
tive of developing more efficient therapeutic modalities. In
this study, we developed a system of ODEs to study the
interactions between tumor cells and immune cells as well
as chemotherapy. The system of ODEs was solved using
three different methodologies, namely, the Runge-Kutta
(RK) method, which was assumed to yield accurate values
and accordingly was used as a reference, the Explicit Euler
method, and Heun’s method. The results obtained using
Euler’s explicit and Heun’s methods were then compared
to the results obtained from the RK, and the percentage
error for each was computed (the MATLAB code used to
conduct the numerical analysis is given by Fig. 1). The
estimated values of parameters used in the calculation are
presented in Table I (as reported in the literature). Other
initial conditions used were:
• The effect of immunotherapy through TIL drug inter-
vention VL is equal to 1×106, and chemotherapy drug VM

is equal to 1.
• The level of chemotherapy drug kill terms (K) depends
on how much cell division and growth are disrupted. If
K = 0, the drug term will cancel out. For computational
purposes, the drug kill term for the chemotherapeutic drug,
dendritic cells, NK cells, and CD8+ T cells, respectively,

Table II. Results using Runge-Kutta method.

n �t T (No drug) T (Immunotherapy) T (Chemotherapy) T (Immunotherapy & Chemotherapy)

0 0 100 100 100 100
1 0.5263 124.6796 124.5076 123.3744 123.2046
2 1.0526 153.5408 152.6986 148.1197 147.3137
3 1.5789 186.8072 184.5169 174.2171 172.1153
4 2.1052 224.5982 219.7436 201.6078 197.358
5 2.6315 266.9075 257.9791 230.1745 222.7372
6 3.1578 313.5809 298.6397 259.7386 247.9006
7 3.6841 364.302 340.9627 290.0667 272.4628
8 4.2104 418.5833 384.0268 320.8812 296.0237
9 4.7367 475.7648 426.7837 351.8717 318.1891
10 5.263 535.0229 468.1015 382.7089 338.5885
11 5.7893 595.3871 506.8183 413.0554 356.8912
12 6.3156 655.7677 541.7979 442.5777 372.8185
13 6.8419 714.9898 571.9911 470.9558 386.1527
14 7.3682 771.8355 596.4882 497.8916 396.7419
15 7.8945 825.0895 614.569 523.1157 404.502
16 8.4208 873.5863 625.7366 546.3932 409.4145
17 8.9471 916.257 629.7406 567.5265 411.5225
18 9.4734 952.1707 626.5836 586.3581 410.9249
19 9.9997 980.5713 616.5119 602.7713 407.7679

were set to KT = 9×10−2, KD = 6×10−2, KN = 6×10−2,
and KL = 6×10−2.
• Time discretization 	t will be set to 0.5263 (days) for
the proper visualization of changes in tumor cells, with a
Tmax = 10 days.

The percentage error to compare both the Explicit Euler
method (%E1) and Heun’s method with the RK method
(%E2) was calculated using the following two equations:

%E1 =
∣∣∣∣T1−T2

T1

∣∣∣∣∗100 (16)

%E2

∣∣∣∣T1−T3
T1

∣∣∣∣∗100 (17)

where T1, T2, T3 are the values for tumor cells when the
system is solved via the RK, Explicit Euler, and Heun’s
methods, respectively. Tables III and IV present the values
of tumor cells (T ) for the 4 cases investigated. The values
in Table II, calculated using the RK method, are used as a
reference to compare the results obtained from the Explicit
Euler method (Table III) and Heun’s method (Table IV),
where the percentage errors for each were additionally cal-
culated.
Figure 2 shows the tumor growth over time when: (1)

there is no drug, (2) immunotherapy was administered, (3)
chemotherapy was administered, and (4) a combination
of chemotherapy and immunotherapy was administered.
From Figure 2, it can be seen that the growth of tumor cells
decreased over time when the combinational therapy was
used, indicating that this modality was the optimal can-
cer treatment. Figure 3 shows the percentage error when
comparing Euler Explicit and Heun’s with the reference
RK method. The Heun’s method has a second-order error

8 J. Biomed. Nanotechnol. 17, 1–14, 2021
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Figure 2. Modeling tumor dynamics using RK, Euler Explicit, and Heun’s methods.
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Figure 3. Percentage error of comparing Euler explicit and Heun’s methods with the RK method.
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Table V. Percentage error of explicit Euler using half the step
size �t.

Percentage error with Percentage error with
�t = 0.5263 �t = 0.2632

0 0
0.4224 0�2212
0.7234 0�3806
0.9474 0�5001
1.1115 0�5879
1.2233 0�6478
1.2880 0�6828
1.3113 0�6960
1.2993 0�6907
1.2585 0�6704
1.1958 0�6389
1.1180 0�5997
1.0314 0�5560
0.9421 0�5110
0.8553 0�4672
0.7760 0�4273
0.7084 0�3932
0.6561 0�3667
0.6221 0�3494
0.6090 0�3424

O(h2), whereas the Euler Explicit method has a first-order
error O(h). Accordingly, Heun’s method yielded lower per-
centage errors, meaning that the results were more accurate
(closer to the true values obtained using the RK method).
In order for Euler’s method to yield a similar accuracy
to the RK method, smaller step sizes are required. For
instance, if Euler’s accuracy must be improved a hundred-
fold, it will need a hundred times as many steps, whereas
Heun’s method would need only ten times as many steps
to achieve a similar result. As seen in Table V above,

Table VI. Comparing tumor cells values (Immunotherapy & Chemotherapy intervention).

n T (RK) true value T (explicit Euler) % Error (explicit Euler) Tc (Heun’s method) % Error (Heun’s method)

0 100 100 0 100 0
1 123.2046 122.6842 0.4224 123.1241 0.0653
2 147.3137 146.2481 0.7234 147.1451 0.1144
3 172.1153 170.4847 0.9474 171.851 0.1536
4 197.358 195.1643 1.1115 196.9926 0.1851
5 222.7372 220.0125 1.2233 222.2686 0.2104
6 247.9006 244.7076 1.2880 247.3297 0.2303
7 272.4628 268.8899 1.3113 271.7931 0.2458
8 296.0237 292.1776 1.2993 295.2612 0.2576
9 318.1891 314.1848 1.2585 317.3415 0.2664
10 338.5885 334.5396 1.1958 337.6647 0.2728
11 356.8912 352.9011 1.1180 355.9009 0.2775
12 372.8185 368.9731 1.0314 371.7719 0.2807
13 386.1527 382.5147 0.9421 385.0601 0.2829
14 396.7419 393.3484 0.8553 395.6139 0.2843
15 404.502 401.3629 0.7760 403.3487 0.2851
16 409.4145 406.5141 0.7084 408.2459 0.2854
17 411.5225 408.8227 0.6561 410.3482 0.2854
18 410.9249 408.3686 0.6221 409.7539 0.2850
19 407.7679 405.2844 0.6090 406.6089 0.2842

when the step size decreased from 	t0�5263 → 0�2632
the percentage error decreased as well. However, this may
not always be the case, if too many small step sizes are
used, errors might start to accumulate, and the estimated
result may begin to diverge from the actual value. In addi-
tion, the conditioned stability when using Euler’s method
(Table VI) must be taken into account. The percentage
error for the explicit Euler method, at first, increased from
counter n= 0 up to n= 7, then continued decreasing until
the Tmax was reached. These fluctuations show stability
problems. Unlike Heun’s method which is unconditionally
stable.
While mathematical models like the one we have devel-

oped and analyzed in this study have provided useful
insights on the effectiveness of chemotherapy and immune
therapy in treating cancer, there is still a great deal of
research needed to enhance existing models and get them
to a stage/phase where they can be incorporated into clini-
cal work. For instance, there is still much that is not under-
stood about tumor biology; in addition, cancer cells display
a lot of phenotypic and genotypic variation, which intro-
duces further complexity to any developed model [27].
With regard to immune cell components and their interac-
tions with cancer cells, modeling using only one immune
cell type yields models of limited utility and biological rel-
evance, some models, similar to the one developed in this
paper, incorporate several immune cell types to produce
more realistic models. However, the more components
introduced, the more complex it becomes, rendering it
more computationally challenging and costly. The advent
of omic data and machine learning has promise in address-
ing this issue. Moreover, further research is needed to
understand the interactions between treatment modalities,
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i.e., chemotherapy and immune therapy [27–29]. Another
challenge for the practical application of these models is
the collection of clinical data. Diagnostic data of cancer
patients usually includes imaging and biopsy results; how-
ever, to assess the interactions and success of combination
therapy (e.g., chemotherapy and immunotherapy), more
complex information is needed. Even if such information
were available, it would still be a challenge to incorpo-
rate into the models as meaningful parameters. Combina-
tions of model systems would be one way to approach
this issue, but that does not necessarily provide an ultimate
solution [27, 28]. Expansion of the model to include addi-
tional patient tumor-specific information, such as genomic,
transcriptomic and metabolomic data, might enhance sys-
tem predictivity. In spite of these challenges, the ever-
expanding biological knowledge of tumor-immune cell
interactions coupled with the continuous advances in com-
putational analysis paint a hopeful future for the practical
application of relevant mathematical models with the ulti-
mate goal of improving cancer therapies.

CONCLUSION
In this work, we developed a mathematical model to inves-
tigate the interactions between immune and tumor cells,
study the effect of different treatments on tumor growth, as
well as compare different mathematical approaches com-
monly used in modeling tumor growth, namely the Runge-
Kutta method, the explicit Euler’s method and Heun’s
method. Moreover, a stability analysis of the developed
ODEs is provided to ensure the results are meaningful near
the equilibrium point. Our results showed that the com-
bination of immunotherapy and chemotherapy decreased
tumor growth, and that the Heun’s method provided the
closest accuracy to the true value given by the Runge-
Kutta output. Future work may include a system of partial
differential equations that models the fluid transport in the
tumor region and helps the drugs target the tumor cell, as
well as a study of the interactions between the investigated
cell populations, and how their interactions would affect
the developed model.
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