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Abstract 

Stress has a significant role in the development of a wide variety of mental, 

psychological, emotional, behavioral, and physical illnesses. Additionally, there is 

substantial evidence in the literature that stress impairs vigilance. Thus, early stress 

detection, vigilance enhancement, and stress mitigation may aid in the prevention of a 

wide range of diseases and improve human health. The purpose of this thesis is to 

examine the effects of binaural beat stimulation (BBs) on increasing alertness and 

reducing mental stress in the workplace. We devised an experiment in which 

participants were subjected to time pressure and negative feedback while completing 

the Stroop Color-Word Task (SCWT). Then, we used 16 Hz BBs to improve 

vigilance and reduce stress levels. Functional Near-Infrared Spectroscopy (fNIRS), 

salivary alpha-amylase, behavioral data, and subjective reactions were used to 

determine the levels of stress. We quantified the level of stress using statistical analysis, 

functional connectivity based on Partial Directed Coherence (PDC), Graph Theory 

Analysis (GTA) and Convolution Neural Network (CNN). We discovered that BBs 

substantially increased target detection accuracy by 11.05% (p<0.001), decreased effort 

and temporal demand, boosted performance, and decreased cortisol levels. The deep 

learning results indicated that the CNN technique combined with PDC features is 

capable of discriminating between four distinct mental states (vigilance, enhancement, 

stress, and mitigation) with an average accuracy of 70.62%, a sensitivity of 68.39%, 

and a specificity of 90.76%.  

Keywords: Mental stress; Vigilance enhancement; Stress mitigation; Stroop Color-

Word Task (SCWT); Functional connectivity; Cortisol level; Functional near 

infrared spectroscopy (fNIRS); Partial Directed Coherence (PDC); Convolutional 

Neural Network (CNN). 
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Chapter 1. Introduction 

In this chapter, we introduce the topic of stress assessment and mitigation. Following 

an overview of mental stress types, causes and associated illnesses, we introduce the 

thesis objectives and research contribution. Finally, the overall structure of the thesis is 

described. 

1.1 Overview 

Mental stress is widely considered to be one of the most challenging health problems. 

It is described as the human body's response, which is governed by the sympathetic 

nervous system (SNS) and the hypothalamus-pituitary-adrenocortical axis (HPA axis), 

to mental, physical, and emotional stimuli [1, 2]. This term can refer to internal 

(personality structure) or external (problem solving) issues that cause different 

physiological and negative emotional alterations [3]. Mental stress, in particular, has 

direct physiological consequences that contribute to a variety of illnesses such as 

cognitive difficulties, stroke, cardiovascular disease, speech abnormalities, and 

depression [4]. Furthermore, this complicated phenomena has indirect impact on the 

human body at several levels, including skin problems, lifestyle, insufficient sleep, and 

decision making [5-7]. Acute stress, episodic stress, and chronic stress are the three 

stress categories based on the duration of exposure to the stressor. Acute stress is caused 

by brief exposure and is not considered detrimental. Episodic stress occurs when the 

stimulus is more frequent over a shorter period of time [8]. Chronic stress is caused by 

long-term stresses and is thought to be the most damaging form [9]. Hence, early 

diagnosis of mental stress is an important component in the therapeutic intervention to 

prevent numerous health issues. 

1.2 Thesis Objectives 

Assessing mental stress is a difficult task because everyone handles stress differently 

[10]. The available techniques for detecting subjective experiences of mental stress are 

influenced by many systemic flaws, such as response bias (participants tend to respond 

properly using their preferred way). Similarly, the observed behavioral stress responses, 

such as body gestures and facial expressions, have some limitations due to conscious 

monitoring (purposed or slight). Neurologically, it is necessary to deliver appropriate 
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energy sources to muscles and nerve cells in order to serve adaptability to stress 

circumstances. As a result, the HPA axis (neuroendocrine unit consists of the 

hypothalamus, pituitary gland, and adrenal glands) stimulates the production and 

secretion of the three principal stress hormones (epinephrine, norepinephrine, and 

cortisol). Hence, according to Hellhammer et al.[11], cortisol levels are an 

acknowledged biomarker for quantifying stress levels. 

Significant relation between physiological signals and body vital functions such as 

electrocardiogram (ECG), blood volume pulse (BVP), electrodermal activity (EDA), 

and electromyogram (EMG) has been investigated [12, 13]. However, in terms of 

consistency, validity, and efficacy in evaluating mental stress, these biosignals are 

heavily influenced by a variety of circumstances (including stress) such as illnesses, 

humidity, and ambient temperature. As more than just a result, they are unable to build 

the best method for predicting stress levels. Therefore, different neuroimaging methods 

provide an important tool for estimating neurophysiological activity associated with 

stress stimuli. One of the most discussed neuroimaging modalities is 

electroencephalography (EEG). It measures brain electrical activity in milliseconds and 

reflects it in real time. Nevertheless, insufficient spatial resolution on the scalp, poor 

detection of brain activity below the top cortical layers, and the inability to detect the 

precise sites at which various neurotransmitters are present are regarded as the primary 

drawbacks of EEG [14, 15]. In contrast, functional near infrared spectroscopy (fNIRS) 

gives better spatial resolution than EEG (but temporal resolution is more limited) and 

better temporal resolution than fMRI (but spatial resolution is more limited) [16, 17]. 

The other research challenge in stress management is stress mitigation which refers to 

the intentional use of medical, therapeutic, or technological interventions to improve 

behavioral performance and cognitive processing [18]. Stress mitigation and 

performance enhancers can be applied in two ways. The first one involves disabled 

function that is treated by therapeutic methods. The second one is used to improve the 

cognitive capacities for subjects. 

As a result, this thesis covers two major issues that have a substantial impact on people's 

health. The first is detecting mental stress through physiological stress response 

analysis using fNIRS system. The second issue is determining the efficacy of using 
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binaural beat stimulation as a therapeutic factor in altering the cerebral hemodynamic 

response, which leads to vigilance enhancement and stress alleviation.  

1.3 Research Contribution 

The purpose of this study is to analyze the changes in cerebral connectivity of fNIRS 

signals between different brain regions as a result of using a stress-induced test. This 

mechanism, in particular, is based on variations in haemoglobin concentrations (brain 

connectivity) during various stress conditions. We propose that fNIRS signals could be 

utilized to categorize mental stress by detecting hemodynamic responses from the pre-

frontal cortex (PFC) which is very sensitive to stress, according to Arnsten et al. [19]. 

To put the theory to the test, a computerized version of the Stroop Color-Word Task 

(SCWT) is used to raise stress levels. Additionally, we hypothesize that binaural 

auditory beat stimulation might reduce mental stress. In this regard, we will investigate 

binaural beat stimulation at 16 Hz as a stress-reduction approach for synchronization of 

a specific brain rhythm. To quantify functional coupling between brain regions under 

the stress phases, a PFC hemodynamic signal is examined using an autoregressive 

model, which is the partial directed coherence (PDC) with graph theory analysis (GTA). 

Hence, the directionality of information flow between the two hemispheres under 

separate stress states would be reflected by analyzing the PDCs. The proposed 

procedure is depicted in Figure 1.1 as a flow chart. 

1.4 Thesis Organization 

The rest of this thesis is organized as follows: 

Chapter 2 provides an overview for the different methods that have been used in 

detecting and mitigating mental stress. Several behavioural, psychological and 

physiological techniques are discussed in addition to the fNIRS method and its relation 

to the other neuroimaging techniques in analysing brain activity. 

The proposed methodology is discussed in Chapter 3, specifically the experimental 

protocol to stimulate stress levels, the approach to recruiting and selecting subjects, the 

experiment apparatus to record fNIRS signals, the pre-processing algorithm, and the 

fNIRS data analysis based on functional connectivity. 

The fourth chapter presents a thorough analysis of the data linked to alpha amylase 

levels, behavioral data, subjective data, connectivity strength/directionality of 



18 
 

information flow, graph theory analysis measures, and applied deep learning. Full-scale 

GTA at the global level is performed in various auditory situations to investigate 

potential enhancement and mitigation effects. 

This thesis is concluded in Chapter 5 with a review of significant research findings and 

recommendations for future study areas. 

 

 
Figure 1.1: Flow chart of the various steps used for stress detection and fNIRS analysis. 
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Chapter 2. Background and Literature Review 

This chapter provides a comprehensive description of the approaches utilized in the 

identification and alleviation of mental stress. First, a general overview of several 

psychological, behavioural, and physiological approaches is provided. Then, a 

comparison of Functional Near-Infrared Spectroscopy (fNIRS) and other neuroimaging 

techniques is performed. Following that, a full overview of several strategies for 

cognitive enhancement and stress mitigation is explored. Finally, a variety of fNIRS 

research domains and criteria will be described.  

2.1 Mental Stress Assessment 

Several studies have been conducted to explain and analyze human bodily responses, 

including nervous system adaptation to deal with an impending threat (stressor). 

Many scholars have recently focused on acute stress and its consequences on 

psychological and mental aspects. Self-report questionnaires [20] such as the perceived 

stress scale [21], are the most commonly used approach for quantifying stress level. 

Various research have established questionnaire scores and self-report ratings as a 

ground truth that is used as a reference to explore the precise stress state level. The 

necessity for such testimony stems from some participants' subconscious behaviour 

(they cannot accurately identify their stress level) [22]. As a result, the fundamental 

drawback is its reliance on the participant (subjective technique) [23, 24]. 

Furthermore, different physical measurements, such as body motions, skin temperature, 

thermal infrared imaging, electromyogram, respiration rate, electrodermal activity, 

heart activity, and blood pressure, have been shown to indicate stress levels. According 

to various scholars, experiencing stressful conditions causes decreased movement of 

the upper limbs as well as greater head mobility and shaking [25-27]. Marazziti et al. 

[28] investigated higher temperature during stress phases, whereas Kaufman et al. [29] 

discovered that observed temperature varies among body sections. Recent research has 

used infrared thermal cameras to measure increased facial temperature, which is 

strongly influenced by increased blood flow during stress [30, 31]. Likewise, Pavlidis 

et al. [32] examined temperature variations in the periorbital region, whereas Hong et 

al. [33] and Engert et al. [34] offered different metrics for the forehead and nose, 

respectively. 
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Additionally, elevated stress levels stimulate the sympathetic nervous system (SNS), 

which regulates muscle activation and contraction. An electromyogram (EMG) could 

be used to measure muscular tension by detecting the action potential of the stimulated 

muscle [35]. Healey et al. [13], Lundberg et al. [36], Cacioppo et al. [37] and Wijsman 

et al. [38] have demonstrated enhanced muscular response due to triggered stress phases 

using Stroop Color-Word Task (SCWT) and mental arithmetic task by employing 

detectors placed on trapezius or forehead muscles. 

Similarly, monitoring the rate or amount of air that may be exchanged by the lungs is 

thought to be an indicator of mental stress [39]. Depending on the level of stress 

(relaxation or tenseness), this scenario will increase, reduce, or produce stoppage and 

arbitrary variations in respiration and breath rate [40-42]. In particular, Hosseini et al. 

[43] discovered that integrating breath rate data with other physiological markers 

improves stress detection accuracy. 

Electrodermal activity (EDA) is another physical measure used in stress detection that 

evaluates skin electrical activity in order to distinguish the conductivity level (CL) and 

conductivity response (CR). During stress recognition procedures, these two 

characteristics exhibit regular fluctuations. Several studies revealed effective increases 

in CL and CR levels during stress phases as a result of increased epidermal moisture 

[44-46]. 

As previously stated, mental stress triggers the SNS, which initiates the fight-or-flight 

response, resulting in increased blood flow and heart activity. The electrocardiogram 

(ECG) and its central contraction peak (QRS), which represent ventricular contraction, 

depict this activity. In the meantime, ECG analysis is performed by calculating heart 

rate (HR) (number of beats per minute) and heart rate variability (HRV) (the 

distribution of RR interval over time). Several studies used these simple and reliable 

magnitudes and found increased rhythm for HR and HRV [47-50]. Cardiac muscle 

contraction causes high pressure to build up in the arteries, which is measured by 

systolic (SBP) and diastolic blood pressure (DBP). Activated SNS during stressors 

causes vasoconstriction and increased cardiac output, indicating elevated blood 

pressure (hypertension). The main disadvantage is that it is highly sensitive to numerous 
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conditions (such as cardiovascular illness), making pressure measurement dependent 

on the type of stressor [51, 52]. 

Since stress originates in the amygdala, which influences the autonomic nervous system 

response, these assessments may yield positive results [53]. Nonetheless, physiological 

markers are influenced by a variety of factors (including stress), for example, measuring 

hormone levels (such as cortisol) is affected by circadian rhythm (its concentration 

changes throughout the day) [54, 55], physical activity affects salivary alpha amylase 

level [56, 57] and EDA is sensitive to skin disease and humidity [58]. 

On the other hand, many neuroimaging techniques, such as electroencephalography 

(EEG), positron emission tomography (PET), and functional magnetic resonance 

imaging (fMRI) are used for this purpose, but all of them have implementation 

difficulties in order to obtain accurate results, particularly when dealing with real-life 

stress monitoring [59-61]. EEG is one of the most often discussed neuroimaging 

technique. It measures the electrical activity of the brain in milliseconds and reflects it 

in real time. However, the main limitations of EEG are regarded to be low spatial 

resolution on the scalp, poor detection of neural activity that occurs below the upper 

cortex layers, and the inability to detect the exact places at which distinct 

neurotransmitters are located [14, 15]. Meanwhile, fMRI delivers striking views of 

cortical activity. Despite the high spatial resolution of fMRI, the images produced and 

the statistical methods utilized must be carefully analysed to avoid false positives. 

Moreover, fMRI is a relatively expensive technique with a low temporal resolution that 

has difficulty discriminating several events in a short period of time [62, 63]. In 

comparison, functional near infrared spectroscopy (fNIRS) promises an alternate 

method of detecting mental stress because it has better spatial resolution than EEG and 

better temporal resolution than fMRI [16, 17]. Conversely, only few researches have 

used this technique individually [64], while the majority have combined it with EEG 

and ECG [65, 66]. 

2.2 Functional Near Infrared Spectroscopy (fNIRS) 

FNIRS is a non-invasive technique for observing brain activity. It works by measuring 

changes in the cerebral hemodynamic response (blood flow and oxygenation) of an 

intact skull after infrared light with a wavelength of (650 – 950 nm) is applied to the 
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head via multiple light emitters [67, 68]. This wavelength range is chosen due to the 

prominent absorption of oxygenated (ΔHbO) and deoxygenated (ΔHbR) haemoglobin, 

which can be determined by measuring light scattering across brain areas as a result of 

specific neuronal activity [69]. The received signal strength will be determined in 

particular by photodetectors and emitters that establish channels for converting the 

fNIRS signal to changes in concentration of ΔHbO and ΔHbR [16]. In comparison to 

other neuroimaging techniques such as EEG, fMRI and PET, fNIRS has the fewest 

limitations and hence has the potential to be used as a substitute neurophysiological 

strategy for stress phase detection. Additionally, fNIRS systems have less needs, 

particularly for preparation and calibration, than conventional EEG systems [70]. 

Amidst having a higher temporal resolution than fMRI and PET, EEG measurements 

have a low spatial resolution [71]. Meanwhile, EEG mobility characteristics are fair in 

comparison to fMRI and PET mobility challenges, which need a highly regulated 

laboratory environment and strict criteria for study participation [72]. On the contrary, 

fNIRS is classified as a major system to analyse the cortex of the brain under mental 

stress and workload with reduced calibration efforts, high spatial resolution and low 

sample frequency (less than 20 Hz) [73-75]. The adaptability of various head positions 

with the customized fiber optics results in a minimal fNIRS setup effort [16]. It is also 

worth noting that although EEG signals are very susceptible to motion artifact (and 

hence require extra filtering, processing, and analysis), fNIRS motion artifact resistance 

ensures that the signal quality remains stable, while reducing the influence of artifacts 

[75]. Table 2.1 compares fNIRS, EEG and fMRI results based on past research. 

2.2.1 FNIRS studies 
There have been numerous neuroimaging studies that have used fNIRS as the principal 

method for identifying cortical activity utilizing a variety of characteristics, stressors, 

and brain areas. Using several virtual training scenarios, Shi et al. [80] explored the 

impact of mental stress on workers and found that there was a large increase in the 

prefrontal cortex connectivity, which was then used to detect stress at a rate of 80% 

accuracy. Meanwhile, Mucke et al. [81] used fNIRS and the Trier Social Stress Test 

(TSST) as a stressor to examine the impact of psychosocial stress on cognition. 

Furthermore, the results of Gurel et al. [82], Al-Shargie et al. [2, 83] and Shirvan et al. 

[84] convincingly proved the fNIRS’s capability as a crucial tool for early diagnosis 
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Table 2.1: Comparing fNIRS, EEG and fMRI neuroimaging techniques [75-79]. 

 

and stress quantification based on statistical analysis after utilizing an arithmetic task 

as a stressor. Likewise, other research used the fNIRS system in conjunction with an 

EEG system to enhance classification performance when identifying mental stress [85] 

and Alzheimer disease [86]. Similarly, the fNIRS approach has been used with people 

of various ages, such as monitoring new-born language development [87-89] or 

assessing employees' stress levels, decision making, and cognitive reaction in a 

construction site [90-92]. Meanwhile, a variety of research discussed cognitive testing 

[93], multimodal validations [94], clinical studies [95] and pediatric populations [96]. 

Besides that, some studies encountered problems, particularly for task conditions 

including range of motion [97] and real-world testing [98]. Additionally, one of the key 

stressors in correctly generating stress is the use of virtual reality (VR) technology, 

which is adaptable to a variety of events and tests [99-101]. Table 2.2 highlights several 

of these reviews that used the fNIRS approach to assess brain activity for various 

reasons. The table depicts the stressor used to induce stress, the neuroimaging technique 

used in conjunction with fNIRS, the brain region of interest, and the features used to 

analyze fNIRS signals. The outcomes of the study [80] established a negative 

correlation between individuals' performance and neurophysiological parameters such 

as gaze movement patterns. Amiyangshu et al. [102], on the other hand, discovered a 

positive link between cognitive load and attained performance score. Furthermore, the 

 fNIRS EEG fMRI 

Spatial resolution Moderate Poor Good 

Temporal resolution Moderate Good Poor 

Restriction of bodily 

movements Good Moderate Poor 

Continuous, long-time 

measurement Good Moderate Poor 

Application cost Good Good Poor 

Mobility Mobile Mobile Not mobile 
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strategy presented by Chan et al. [103] improved the differentiation approach for 

diagnosing Alzheimer's disease. The study [82] used a combination of fNIRS and 

photo-plethysmography and discovered many improvements in the categorization of 

different stressors. Meanwhile, Parent et al. [104] combined fNIRS and ECG to achieve 

the highest accuracy in measuring mental workload. According to one research [105], 

spatial overlapping is not required for maximal activation of the cortex and functional 

coherence.  

2.2.2 FNIRS connectivity features 
Feature extraction is a critical step in obtaining meaningful information about a signal, 

since it identifies required characteristics or feature vectors that represent a pattern 

vector [106, 107]. The fNIRS signal is composed of information from a dense network 

of linked neurons. Studying brain connections may thus give an accurate view of the 

brain's structure and how various areas communicate with one another. There are two 

types of brain connectivity: functional and effective [108, 109]. Functional connectivity 

(FC) is a term used to describe the connections between different parts of the brain 

based on the temporal coherence between the activities of multiple neurons. The cross 

correlation between the spike trains of neurons may be used to identify it. Numerous 

techniques for estimating functional connectivity have been developed, and all of them 

lead to the same conclusion: whether two or more brain units communicate or not. 

Effective connectivity, on the other hand, is the most basic circuit for describing a 

neuron's ability to maintain the same temporal relationship between two neurons as has 

been shown in experiments. It describes how the nervous system affects the rest of the 

body [110]. Functional connectivity has a non-directional and correlative character, 

while effective connectivity examines the directed effects between various brain areas. 

As a result, understanding functional connections across brain regions helps us 

understand functional connectivity under stress and under non-stress circumstances 

[111]. Brain activity could be represented as a network using fNIRS connectivity 

analysis, with nodes (vertices) linked through connections (edges) [112]. When doing 

a channel-by-channel analysis, the nodes correspond to the fNIRS channel and the 

connections  correspond to the calculated connectivities between pairs of channel 

signals. Depending on the connectivity metric used, the edges may be either directed or 

undirected. Graphs or adjacency matrices may be used to represent functional networks. 
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The effectiveness of each of these techniques of visualization is determined on the 

analysis's goals. Topological connections may be shown using graphical techniques 

because they retain information about the relative spatial positions of the nodes. 

Adjacency matrices, on the other hand, are more suited for vast networks, but they do 

away with any spatial characteristics [112]. It is worth noting that undirected edge 

networks contain symmetric adjacency matrices. To save just the most important edges, 

thresholding may be used once the connectivity network is constructed (either directed 

or undirected). After then, various graph-theoretic metrics may be used to describe the 

network's topological properties. 

2.3  Mitigation of Stress 

Because there aren't any well-established procedures for dealing with stress, stress 

management has remained marginal in medical practice despite the grave implications 

on the human body, particularly on the Autonomic Nervous System (ANS). Therefore, 

the purposeful use of medicinal, therapeutic, or technological interventions to improve 

behavioural performance and cognitive processing is referred to as stress mitigation 

[18]. Several studies in the literature have explored numerous cognitive enhancers that 

reduce mental stress. Some of these stress-reduction techniques are commonplace and 

are frequently incorporated into everyday living routines such as sports [113, 114], diet 

and herbal extracts [115], meditation [116], odor exposure [117, 118], yoga [119, 120], 

chewing gum [121], and caffeine [122]. The use of unusual methods for mitigating 

stress has also been documented in research like those that used cognitive workload 

modulation [123], video games [124, 125], transcranial current stimulation [126, 127], 

haptics [128-130], pharmaceuticals [131], and stress alleviating biofeedback [132, 133]. 

Thus, as an alternative, we can manage physiological changes and monitor stress 

mitigation in real time using the biofeedback (BFB) method. However, neurofeedback 

(NFB) method employs real-time recordings of brain activity to improve self-regulation 

of certain brain processes associated with behavior [134, 135]. EEG, fMRI, and fNIRS 

are the most widely utilized NFB methods [136]. The basic idea is that by brain training 

with such feedback, one may entrain, alter, and regulate neural activity. Nevertheless, 

due to a lack of efficient regulation of brain training activities, the majority of BFB and 

NFB research were scarcely transferred from cognitive neuroscience lab to real-life 
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practices. While these types of mitigation approaches provide real-time input, they are 

not appropriate for use in the workplace. 

Many studies have focused on utilizing auditory stimulation using binaural beats to 

enhance neural connectivity and reduce stress levels. Binaural beat stimulation (BBS) 

has been used in studies [137-139] to improve alertness. Meanwhile, Isik et al. [140] 

and Beauchene et al. [141] have shown that synchronization of brain signals and BBS 

causes particular changes in the mental and cognitive state. Similarly, Reedijk et al. 

[139] showed that BBS had a substantial influence on subject control and visual 

attention, whereas Lorenza et al. [142] discovered that BBS with a high frequency (40 

Hz) tend to diminish participants' attentional processing. High-frequency binaural beats 

are associated with alertness, while low-frequency beats are associated with mental 

relaxation, according to Vernon et al. [143]. Alternatively, Goodin et al. [144] 

discovered no improvement in the mental state or performance after using BBS. 

The purpose of this research is to analyse the changes in cerebral connectivity of fNIRS 

signals between different brain regions as a result of using a stress-induced test. This 

mechanism, in particular, is based on variations in haemoglobin concentrations (brain 

connectivity) during various stress conditions. We propose that fNIRS signals could be 

utilized to categorize mental stress by detecting hemodynamic responses from the pre-

frontal cortex (PFC) which is very sensitive to stress, according to Arnsten et al. [19]. 

To put the theory to the test, a computerized version of the Stroop Color-Word Task 

(SCWT) is used to raise stress levels. Additionally, we hypothesize that binaural 

auditory beat stimulation might reduce mental stress. In this regard, we will investigate 

binaural beat stimulation at 16 Hz as a stress-reduction approach for synchronization of 

a specific brain rhythm. To quantify functional coupling between brain regions under 

the stress phases, a PFC hemodynamic signal is examined using an autoregressive 

model, which is the partial directed coherence (PDC) with graph theory analysis (GTA). 

Hence, the directionality of information flow between the two hemispheres under 

separate stress states would be reflected by analysing the PDCs.
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Table 2.2: Previous fNIRS related studies. 

Ref Year Research field Stressor Method Region of Interest Features Notes 

[145] 2021 Stress-related 
Exhaustion Disorder 
(ED) 

Stroop-Simon 
test 

fNIRS Prefrontal cortex Statistical analysis ED patients perform 
similarly on behavioural 
measurements, they process 
information differently in the 
prefrontal cortex. 

[146] 2021 Stress effect on 
patients with Major 
Depressive Disorder 
(MDD) 

Trier Social 
Stress Test 
(TSST) 

fNIRS  
Heart rate  
Cortisol 

Bilateral dorsolateral 
prefrontal cortex (DLPFC), 
bilateral inferior frontal gyrus 
(IFG) and superior parietal 
lobule (SPL). 

Statistical analysis Prefrontal hypoactivity in 
stress mediates the 
development of affect-
driven rumination in MDD 
subjects. 

[147] 2021 Impact of COVID-
19 restrictions on 

mental health 

Videos fNIRS Frontal and occipital cortex General Linear Model 
(GLM) 

COVID-19 contributes in 
decreasing brain 
hemodynamics. 

[148] 2021 Workplace design-
related stress 

Montreal 
Imaging Stress 
Task (MIST) 

fNIRS  
EEG 

Prefrontal cortex Functional 
connectivity: Intersite 
phase clustering (ISPC) 

Decreased inter-hemispheric 
connectivity for  non-
ergonomic workstation 
group. 

[149] 2021 Effects on noisy 
workplace on brain 
activity 

Montreal 
Imaging Stress 
Task (MIST) 

fNIRS  
EEG 

Prefrontal cortex Statistical analysis Decreased oxygenated 
haemoglobin with high noise 
levels. 

[150] 2020 Mental stress for 
athlete 

Stimulation film fNIRS Prefrontal cortex Statistical analysis for 
the hemodynamic 
response 

- 
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[151] 2020 Quality analysis of 
HR derived from 
fNIRS in stress 
assessment 

MIST fNIRS 

ECG 

Prefrontal cortex Statistical analysis 

Independent 
Component Analysis 
(ICA) 

The extracted HR from 
fNIRS is brain-related 
response and it indicates 
mental stress 

[152] 2020 Workplace design-
related stress 

MIST fNIRS 

EEG 

Prefrontal cortex Canonical correlation 
analysis (CCA) 

CCA identified workstation 
types with a maximum 
accuracy of 98.8% with an 
improvement with 9.4% for 
fNIRS 

[80] 2020 Mental stress for 
workers 

Virtual training 
scenarios 

fNIRS  

eye tracking 

L/R dorsal lateral prefrontal. 

L/R primary motor. 

L/R premotor 

Functional 
connectivity: 

- Covariance of ΔHbO 

- Correlation 
coefficients 

Significant increases in 
connectivity strength. 

Random Forest 
classification 80.38% 

 

[103] 2020 Alzheimer Verbal fluency 
test (VFT) 

fNIRS Prefrontal cortex Functional 
connectivity: 

Pearson correlation 

(OMST, GCE) 

- 

[102] 2020 Cognitive lagging in 
working memory 

Visuo-spatial 
task 

fNIRS Prefrontal cortex Mean; variance; 
skewness; kurtosis of 
ΔHbO. 

Correlation (r) 

Ensemble classifier 

[82] 2019 Mental stress rest, mental 
arithmetic, and 
N-back memory 

Headband 
NIRS 

Prefrontal cortex Statistical: 

- ANOVA 

Random forest classifier 
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- Benjamini-Hochberg 

[2] 2019 Mental stress MIST fNIRS Right/dorsolateral Prefrontal 
cortex 

P-value / t-test  

topographical map 

- 

[86] 2019 Alzheimer Digit verbal 
span task 

fNIRS 

 EEG 

- Statistical analysis: 
GLM 

Connectivity: Phase 
Lag Index (PLI) 

Connectivity within the beta 
frequency range showed 
greater suppression in the 
AD group than in the healthy 
group. 

[104] 2019 Mental stress and 
workload 

n-back task 

Mental 
arithmetic 

fNIRS  

ECG 

Lateral/medial prefrontal 
cortex 

64 fNIRS features from: 

Average changes and 
slopes for HbO2 and 
HHb 

Naive Bayes classifier 47% 

[84] 2018 Mental stress Mental 
arithmetic task 

fNIRS - linear features 
(statistical). 

Non-linear: 
approximate entropy, 
fractal dimension, 
detrended fluctuation. 

- 

[105] 2018 Cortical activation/ 
connectivity 

Visuospatial 
working 
memory task 

fNIRS Front-parietal Wavelets transform 
coherence 

Coherence was greater 
within the parietal compared 
to prefrontal. 

[153] 2017 Reduce false 
discovery in static 
modes 

- fNIRS - Correlation, 
Prewhitened wavelet 

- 
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coherence, Preweighted 
correlation, 

Numerical Simulations 

[154] 2017 Study brain network Finger-tapping 
task. 

fNIRS Premotor, dorsolateral, 
orbitofrontal, motor 

Effective connectivity: 

Time-resolved partial 
directed coherence 

Specify the direction of the 
link between two regions of 
interest (gives info about 
dynamic, not only mean 
connectivity) 

[155] 2017 Mental workload Aircraft piloting 
tasks 

fNIRS Prefrontal cortex correlation analyses, 
ANOVA … Averaging 

- 

[85] 2016 Mental stress MIST fNIRS 

 EEG 

Salivary 

Prefrontal cortex Amplitudes of ΔHbO & 
ΔHb 

Topographical maps 

- Concentration change in 
O2Hb returns to their 
baseline at the end of rest 
condition. 

- SVM: 84.1% 

 

[156] 2016 Evaluate the 
feasibility of NIRS-
based EC BCIs 

Mental 
arithmetic 

fNIRS Prefrontal cortex Mean, average slope of 
the ΔHbO & ΔHb 

 

LDA 

75.60% closed eyes 

77.00% Open eyes 

[157] 2016 Compare the 
classification 
accuracies 

Mental 
arithmetic 

fNIRS Prefrontal cortex Mean, variance, 
skewness, kurtosis of   
ΔO2Hb 

SVM (89.80%) 

ANN (89.50%) 

KNN (69.70%) 
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[158] 2015 BCI/fNIRS relation Mental 
arithmetic 

fNIRS Prefrontal cortex 

Motor cortex 

Mean and slope of 
O2Hb 

- 

[159] 2014 BCI/fNIRS relation Mental 
arithmetic 

fNIRS Prefrontal cortex Mean value of O2Hb, 
HHb and Ht 

LDA (70.00%) 

 

[160] 2014 Hemodynamic 
activity 

SCWT fNIRS Prefrontal cortex Functional 
connectivity: Wavelets 
transform coherence 
(WTC)/ Spearman 
correlation. 

Effective connectivity: 
Granger causality 

Correlation results: greater 
negative correlation between 
response time and the left 
PFC 

[161] 2014 Mental workload Computer-
based piloting 
task. 

fNIRS  

HRV 

Prefrontal cortex Mean HbO2 
concentrations. 

ANOVA [processing 
load (low vs. high) and 
control difficulty (easy 
vs. hard)]. 

- 

[162] 2010 Resting state 
functional 
connectivity (RSFC) 

Motor-localizer 
task 

fNIRS Sensorimotor and auditory 
cortexes 

RSFC: 

-Seed-based correlation 
analysis 

- Data-driven cluster 
analysis. 

- 
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Chapter 3. Methodology  

This chapter goes into great depth and details the experimental procedure and how to 

elicit and alleviate stress. It also gives details on the technique used to choose and recruit 

individuals, the kind of stressor, the experimental equipments used to capture and 

record fNIRS and behavioral data, and the data analysis methods. 

3.1 Experimental Protocol 

3.1.1 Subjects 
Thirty healthy volunteers from the American University of Sharjah were recruited for 

the study (5 females and 25 males; aged between 20 and 41 years old). Eligible 

participants were healthy right-handed people with normal vision, hearing and color 

perception who have not used any long-term medicine or had any evidence of drug 

addiction, and who have not had any coffee, energy drinks or alcohol for at least 12 

hours before to the experiment. Everyone was seated in a plush chair in a cool area with 

plenty of ventilation. In addition to the detailed information on the task's purpose, each 

participant also saw PowerPoint slides with a brief summary of the experiment's 

process, as well as a statement stating that they had the right to quit the session at any 

time. Prior to the test, the individual signed a typed word file consent form with their 

name as a signature. To avoid the effects of circadian rhythm on cognitive function, the 

experiment was only conducted between 1 and 5 p.m [163]. The American University 

of Sharjah's Institutional Review Board authorized the study's protocol, which was 

created in accordance with the Helsinki Declaration. 

3.1.2 Mental stress task 
Stroop Color-Word Task (SCWT) was utilized as a stressor. It is based on the 

monitoring of six different color words that are shown in a random sequence ('Magenta', 

'Green', 'Yellow', 'Red', 'Cyan', and 'Blue'). The displayed word on the computer screen 

was printed in a different color ink than the meaning of the word, and the correct 

response is the color of the typed word (for example, the word "Blue" is written in 

yellow, therefore the correct answer is "yellow" word). In this incongruent example, 

subjects were supposed to call the ink color rather than reading the word. Hence, 

participants experienced this conflicting mental state by doing a less automatic activity 

(identifying the font color) while concealing the doubt generated by a more automated 
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one (naming the word) [164, 165]. Several literature reviews have applied SCWT to 

detect different cognitive functions such as processing speed [165], awareness [166], 

control/executive assessment [167], working memory [168] and cognitive flexibility 

[169]. Moreover, functional brain imaging investigations found that pre-frontal cortex 

(PFC) is the main influenced area by SCWT because of its functional asymmetry 

property [170]. 

In details, the SCWT was divided into two levels of complexity, each of which had the 

same length but related to a distinct level of stress. Vigilance level, included slow 

presentation for the questions/trials in which the respondent needs to reply as fast as 

possible but without automatically flipping the question. The recorded average time in 

answering the questions was lowered by 10/20% in the stress level which is utilized to 

put time pressure on the subject. SCWT was created and tracked using MATLAB 

software (R2020b, Natick, MA, USA). Figure 3.1 depicts the key phases that were 

presented during the task procedure. Each trial consists of a single word (with a random 

backdrop color) and six options from which to choose (answers and background are in 

different colours). Participants' responses should be rapid and precise (by left-clicking 

the mouse on one of the six answering buttons). Failure to answer or replying wrong 

within the allotted time would result in feedback to the participants on their 

performance, such as a message on the screen that said "Correct", "Incorrect", or "Time 

is out". Therefore, a dummy user performance indicator was displayed with each trial, 

suggesting poor performance by the participants in comparison to their peers. 

Consequently, while completing the SCWT, behavioral data such as detection accuracy 

and average reaction time was gathered. This data was collected in order to determine 

the levels of stress and stress mitigation. We used various markers to indicate the 

beginning and finish of the SCWT in each block and experiment condition. 

3.1.3 Salivary alpha amylase 
Many studies have found a link between mental stress and the levels of salivary alpha 

amylase (SAA). Catecholamines are present in SAA concentrations where Epinephrine 

(EPI) and Norepinephrine (NE) are the two most important catecholamines. During the 
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Figure 3.1: Phases of stroop color-word task. (a) welcoming message, (b) resting period, (c) stroop 
stimulus, (d) post-trial feedback. 

"fight or flight" response, EPI and NE are released into the circulation and saliva. This 

release generates a quantifiable quantity that can be extracted from SAA samples [171]. 

According to Chatterton et al. [171], salivary amylase concentrations predict plasma 

catecholamine levels and can be used as a stress indicator. Meanwhile, the findings of 

Rohleder et al. [172] revealed that when individuals were exposed to TSST stressors, 

their SAA levels rose and then decreased after waking. 

The amylase activity was measured using a hand-held monitor (COCORO meter, 

NIPRO, Osaka, Japan). The monitor measures amylase activity by evaluating reaction 

time. A disposable test strip plus a monitor comprise the hand-held monitor. The test 

strip is made up of a collection paper and an amylase reagent paper. Saliva was collected 

by dipping a salivary-sampling strip in saliva and placing it under the tongue for 40 

seconds. The strip was then immediately placed in an automated saliva transfer system, 

where it was compressed and converted into alpha-amylase test paper. The salivary 

intensity reading was then computed, and the level of stress was determined. We 

collected salivary alpha-amylase samples to ensure that the task generated stress was 

experienced by all individuals. Throughout the trial, each subject had five samples of 

salivary alpha-amylase collected. As a baseline sample, the first sample was taken prior 
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to the start of the experiment. The remaining four samples were taken immediately after 

each stress period. 

3.1.4 Binaural beat stimulation 
In this work, we employed binaural beat stimulation (BBS) to mitigate mental stress. 

We used stereo headphones (RZE-BT200H, Toshiba, Sharjah, United Arab Emirates) 

to simulate/present pure tones of 250 Hz and 266 Hz to the right and left ears of 

participants. The pure tones were interpreted as a 16 Hz binaural beat. Figure 3.2 

illustrates the auditory stimulation effects using binaural beats [173]. The tones were 

generated with the MATLAB program (R2020b, Natick, MA, USA) and played 

continuously during the SCWT stimuli. The volume of the audio stimuli was adjusted 

by the participants at the start of the experiment. Additionally, the sound intensity was 

adjusted to 60 decibels (dB), which is comparable to 48 decibels (dB) of normal 

hearing. In each block, the 16 Hz BB was shown continuously along with the 30 second 

SCWT. To guarantee that the maximum stimulus frequencies are considerably below 

the Nyquist rate, the audio tone was produced at a sampling rate of 48 kHz. 

 

Figure 3.2: Application of binaural beats.Carrier sinusoidal tones of 250 and 266 Hz generate a 16 Hz 
beat [174]. 

3.1.5 FNIRS recording system 
During the experiment sessions, brain activity (oxygenated and deoxygenated 

haemoglobin) was measured using fNIRS system NIRSport2 (NIRx Medical 

Technologies, NY, USA) with 20 channels (8 sources and 7 detectors). Emitters and 

detectors were designed to have a 3 cm distance between each other. Figure 3.3 depicts 

the experiment environment that included data collection and task configuration setup. 
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The infrared signal was produced at two wavelengths (760 nm and 850 nm) and 

captured using detectors with a sampling frequency of 10.17 Hz. Additionally, Figure 

3.4 illustrates the distribution of fNIRS optodes on the scalp (sources in red and 

detectors in green). To capture the fNIRS signals and verify that the NIRScap was 

appropriately placed on the participant's head, the Aurora acquisition program (Aurora 

2020.07, NIRx Medical Technologies, NY, USA) was utilized in a way that all sources 

and detectors are positioned as defined in the selected configuration similar to the 

Figure 3.4. 

An automatic signal optimization approach was applied before starting the test to ensure 

excellent signal quality and to establish the ideal brightness of the source for each 

channel. A number of variables were determined by the optimization step. These 

included signal level, source brightness, dark noise, and coefficient of variation (see 

Figure 3.5). Poor signal quality can be caused by a variety of factors, including the 

presence of hair, poor optode-skin contact, inappropriate cable positioning, and 

inadequate source-detector pair design. While data was being collected, changes in 

ΔHbO and ΔHbR concentrations were observed in real-time using several display 

modes. A parallel port interface was established between the fNIRS acquiring PC and 

the stimulus monitoring PC to get markers on the recorded signal to represent stress 

task state when switching between resting phase and questions phase. 

 

Figure 3.3: Experimental and data acquisition setup. The setup consists of two computers, one for 
monitoring and recording fNIRS signals and the another is to display the stroop task, NIRS device with 
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sources and detectors, NIRS cap with black cover cap and headphones.

 

Figure 3.4: Selected channel configuration. Eight sources (red) and seven detectors (blue) forming 20-

channels with six regions of interest over pre-frontal cortex area. 

 

Figure 3.5: fNIRS signal optimization by Aurora software.The average voltage level in each channel 
from a certain source to the detector can be marked as excellent (green), acceptable (yellow) or low 

(red). 



38 
 

 

3.2 Data Acquisition 

The research protocol was prepared in accordance with COVID-19's suggested 

preventive precautions and safety measures. Cleaning and preparing medical 

equipments (including fNIRS) necessitated adherence to a hygiene regimen suggested 

by the local institution and mandated by the local health authority. Meanwhile, the 

producer declared the efficacy of these disinfectants, as well as the exposure duration 

and concentration. To keep COVID-19 from spreading, participants and instructor 

maintained a social/physical distance of at least one meter. As a result, each subject 

was received a comprehensive description of how to conduct the experiment so that 

he/she would complete the entire experiment without direct interference from the 

researcher. The experiment took place at the American University of Sharjah's 

Biomedical Laboratory. Given that the experiment settings had a well-controlled 

environment with consistent temperatures and lighting conditions. Figure 3.6 shows the 

experiment protocol and the blocks arrangement for each level of the SCWT. 

At the beginning of the experiment, participants were encouraged to carefully read a 

script word file comprising an introduction and explicit instructions on how to complete 

the task. Candidates then went through the approval procedure and filled out health 

history forms. To increase the stability of the fNIRS signal, participants were asked to 

accomplish the stress task with minimal head and body movements. This experiment 

was completed in five main sessions. Subjects did the SCWT for 5 minutes without 

fNIRS recording in the first session (training phase) to become acquainted with the task, 

and feedback on performance was provided upon completion. fNIRS was acquired 

during the second session (vigilance phase) while participants performed a 10-minutes 

stroop task that consisted of 10 blocks of questions (each for 30 seconds) separated by 

resting periods (20 sec each). During this phase, participants were instructed to respond 

as quickly as possible (there is no time limit per question). In the third session 

(enhancement phase), participants were instructed to utilize the headphones to listen to 

the binaural beats while repeating the vigilance phase. Following that, the vigilance 

phase's average time to answer each question was decreased by 10/20% (negative 

feedback and time constrain). Here as consequence, the fourth session (stress phase) 
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was structured similarly to the vigilance phase (10 minutes of recording time) with 

restricted time per question. In the fifth session (mitigation phase), participants were 

asked to use the headphone to have binaural beats stimulation while repeating the stress 

phase. The four phases were presented randomly, with half of the participants starting 

with the Vigilance phase and the other half with the Stress phase. 

Complete procedures were scheduled on consecutive days, and the entire projected time 

for each participant, including introduction, preparation, and recording, was roughly 

one hour. Overall, each participant spent 15 minutes being introduced and trained, 10 

minutes completing out questionnaires and capturing salivary cortisol, and 40 minutes 

performing the SCWT while recording the fNIRS signal. This study's questionnaire was 

based on NASA's Task Load Index (TLX) [175]. Before and after each SCWT, all 

participants filled out a questionnaire. The TLX evaluated workload using five 7-point 

scales. For each point, increments of high, medium, and low estimates result in 21 

gradations on the scales. "Mental Demand," "Physical Demand," "Temporal Demand," 

"Performance," "Effort," and "Frustration" are among the items examined. 

 

Figure 3.6: Experiment procedure of mental stress detection study.(a) A complete experiment with 
almost one-hour duration including four levels of recordings (b) One stress level with 10 blocks, 

including questions for 30 sec and resting periods for 20 sec. 

3.3 Data Analysis 

3.3.1 Behavioral performance 
During the task, behavioral parameters such as the average reaction time and detection 

accuracy were estimated. The response time was determined by the amount of time 

each subject spends between the time the stimulus is displayed and their response is 
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given [80, 169]. Additionally, the monitored accuracy was calculated by dividing the 

number of right answers by the total number of color word questions that were 

displayed. It was important to assess the difference in the stroop effect between the 

various stress conditions in order to determine the association between brain activity, 

behavioral performance, and stress-related processing [160]. 

3.3.2 FNIRS pre-processing 
MATLAB NIRS Brain AnalyzIR Toolbox (developed by Atlassian Corp and 

Neuroimaging Tools & Resources Collaboratory) was used to extract the fNIRS data 

and translate them into a change in optical density [176]. The concentration variations 

of the HbO and HbR were then determined using Beer-Lambert law (MBLL) [177]. 

For movement artifact correction of sharp peaking signals, we employed Temporal 

Derivative Distribution Repair (TDDR) and principal component analysis (PCA). 

Hence, fNIRS signals were subjected to several pre-processing stages in order to 

eliminate signal drift, false-positive rates, arterial pulsation, noise, and motion artifacts. 

These stages included removing motion artifacts, filtering the signal with a bandpass 

filter (0.009 - 0.8 Hz), baseline rectification, and moving average. Furthermore, by 

determining the power spectral density of the fNIRS signals, 30 frequency values 

ranging from 0.01 to 0.3 Hz were recorded. 

3.3.3 Functional connectivity 
Partial directed coherence (PDC) is a multivariate auto regressive model (MVAR) that 

is used to estimate the time-dependent auto regressive (AR) coefficients that contribute 

to the directed effects of Granger causality on the information flow among fNIRS 

signals. Rather than merely describing mutual synchrony across brain areas, PDC 

informs us about the functional connectivity of the two brain regions under 

investigation. A sophisticated network will be established to depict the direction and 

weight of information flow between the fNIRS channels. As a result, a multivariate 

(complex network characteristics) level is favoured over a bivariate (connectivity 

between pairs of regions) and univariate (intra-regional connectivity). Assuming 𝑿𝑿(𝑡𝑡) 

is fNIRS signal with 20 channels (N) defined by 𝑿𝑿(𝑡𝑡) = [𝑥𝑥1(𝑡𝑡), 𝑥𝑥2(𝑡𝑡), … , 𝑥𝑥20(𝑡𝑡) ]𝑇𝑇, 

then the multivariate model of N fNIRS channels can be defined by Eq.1:
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 𝑿𝑿(𝑡𝑡) =  �𝑨𝑨𝑟𝑟(𝑡𝑡) 𝑿𝑿(𝑡𝑡 − 𝑟𝑟) + 𝑾𝑾(𝑡𝑡)
𝑟𝑟=𝑝𝑝

𝑟𝑟=1

 (1) 

where, 𝑾𝑾(𝑡𝑡) is a zero-mean white Gaussian noise, 𝑨𝑨𝑟𝑟(𝑡𝑡) is a matrix of time-varying 

MVAR parameters and 𝑝𝑝 is the model order which is set to be 6 in this analysis. More 

details about the PDC and model order can be found in the previous EEG studies [178], 

[169]. The appropriate model order 𝑝𝑝 was calculated by Akaike information criterion 

(AIC) represented by Eq.2: 

 𝐴𝐴𝐴𝐴𝐴𝐴(𝑝𝑝) = 2 𝑙𝑙𝑙𝑙𝑙𝑙 �𝑑𝑑𝑑𝑑𝑑𝑑 ��  �� + 
2 𝑁𝑁2𝑃𝑃
𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 (2) 

where 𝑑𝑑𝑑𝑑𝑑𝑑(∑  ) is the determinant of the covariance matrix of noise vector and 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

is the total number of fNIRS samples in all trials. The 𝑖𝑖 × 𝑗𝑗-coefficient matrix 𝑨𝑨𝑟𝑟 at the 

time lag 𝑟𝑟 is given by Eq.3: 

 𝑨𝑨𝑟𝑟 = �
𝑎𝑎11(𝑟𝑟) … 𝑎𝑎1𝑗𝑗(𝑟𝑟)
⋮ ⋱ ⋮

𝑎𝑎𝑖𝑖1(𝑟𝑟) … 𝑎𝑎𝑖𝑖𝑖𝑖(𝑟𝑟)
� (3) 

where the MVAR coefficient 𝑎𝑎𝑖𝑖𝑖𝑖 represents the effect of the time-series signal 𝑋𝑋𝑗𝑗(𝑡𝑡 −

𝑟𝑟) on 𝑋𝑋𝑖𝑖(𝑡𝑡). Once the coefficients of the MVAR model are adequately estimated, the 

difference between the N-dimensional identity matrix I and the Fourier transform of the 

coefficient series 𝑨𝑨𝑟𝑟 can be used to create a representation of Granger causality in the 

frequency domain, as follows: 

 𝑨𝑨�(𝑓𝑓) = 𝑰𝑰 − 𝑨𝑨(𝑓𝑓) = 𝑰𝑰 −  �𝑨𝑨𝑟𝑟𝑒𝑒−𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋
𝑃𝑃

𝑟𝑟=1

 (4) 

Knowing that, 𝑨𝑨(𝑓𝑓) is the frequency domain equivalent of the coefficient matrix 𝑨𝑨𝑟𝑟 

that is produced by applying the Fourier transform on each 𝑎𝑎𝑖𝑖𝑖𝑖(𝑟𝑟) of the matrix 𝑨𝑨𝑟𝑟. 

Then, PDC that indicates the direction and weight of information flow at frequency f 

from channel j to channel i within each time block (here, we have 10 blocks) was 

estimated by Eq.5: 

 𝑃𝑃𝑃𝑃𝐶𝐶𝑖𝑖,𝑗𝑗(𝑓𝑓) =  
�𝐴̅𝐴𝑖𝑖,𝑗𝑗(𝑓𝑓)�

�∑ 𝑨𝑨�𝑘𝑘𝑘𝑘∗ (𝑓𝑓)𝑨𝑨�𝑘𝑘𝑘𝑘(𝑓𝑓) 
𝑘𝑘

 
(5) 
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where 𝑨𝑨�𝑖𝑖,𝑗𝑗(𝑓𝑓) is the (𝑖𝑖, 𝑗𝑗)𝑡𝑡ℎ element of 𝑨𝑨�(𝑓𝑓). The PDC matrix data format is 4 × 30 × 

10 × 30 × 20 × 20, reflecting the stress phase × subjects × time blocks × frequencies × 

channels × channels, respectively. The PDC has a value between 0 and 1, with larger 

values indicating greater interaction between the two nodes. Figure 3.10 shows a block 

diagram of the many procedures involved in the analysis of fNIRS data, including pre-

processing and functional connectivity.  

3.3.4 Graph theory analysis 
Graph theoretical analysis (GTA) offers quantitative measures for analyzing the 

topological architecture of functional connectivity networks. There are N nodes and W 

weighted edges in a specified network or graph G; the graph theory analysis produces 

global and local network metrics. In our research, the nodes were the fNIRS channels, 

and the connections were determined by the PDC connectivity metric. The brain 

network parameters were calculated based on the matrices generated by PDC for each 

individual. Furthermore, neuroimaging data that estimates weak network connections 

may be noisy or inaccurate. As a result, network thresholding was often used before 

GTA in order to remove any weak spots and to bring attention to the connections that 

are significant [179]. When comparing networks with similar global densities across 

groups or circumstances, it was essential to compare networks with similar global 

densities [180]. As a result, the observed phenomena will not be skewed by an unequal 

distribution of network connections. Thresholds were used to maintain a specified 

number of the most important edges [181, 182]. Before the GTA, there was no standard 

for determining what a person should be paid. Instead, a 0–1 range with a 0.1–step was 

investigated. The graphical analytic measures in this study are based on the notions of 

node degree, node strength, clustering coefficient, and efficiency. The definitions and 

mathematical expression of these metrics are presented in further detail below. 

Nodal Degree (ND): ND is a metric of centrality that assesses the relevance of network 

nodes [183]. The local node degree 𝑑𝑑𝑖𝑖 is defined mathematically as the number of edges 

directly related to a certain node (excluding self-loops) normalized by the number of 

available edges: 

 
𝑑𝑑𝑖𝑖 =

1
𝑁𝑁 − 1

� 𝑎𝑎𝑖𝑖𝑖𝑖

 

𝑗𝑗≠𝑖𝑖∈𝑁𝑁

 (6) 
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where 𝑎𝑎𝑖𝑖𝑖𝑖 denotes the edge status between node i and node j (i.e., 𝑎𝑎𝑖𝑖𝑖𝑖 = 1 if the edge 

weight 𝑤𝑤𝑖𝑖𝑖𝑖 ≠ 0), and N is the total number of nodes in the network. A network's global 

node degree (the arithmetic mean of all node degrees) represents the overall density of 

connections and is commonly used to compare various networks. 

Nodal Strength (NS): It is the total of the edge weights that connect a node to the other 

nodes in a weighted network and is calculated using Equation (7). The network's 

average node strength is the arithmetic average of the strengths of all individual nodes 

in the network. In this example, node strengths aid in determining a specific region's 

participation and information flow in a functioning brain network [184]. 

 
𝑠𝑠𝑖𝑖 =

1
𝑁𝑁 − 1

� 𝑤𝑤𝑖𝑖𝑖𝑖

 

𝑗𝑗≠𝑖𝑖∈𝑁𝑁

 (7) 

Knowing that 𝑠𝑠𝑖𝑖 is the local node strength and 𝑤𝑤𝑖𝑖𝑖𝑖 is an element weight of the PDC 

matrix. 

Clustering Coefficient (CC): It is a network segregation metric that measures how 

well nearby nodes form full networks or cliques [183]. The local clustering coefficient 

𝐶𝐶𝑖𝑖 is determined for node i as the ratio of the sum of geometric means of all existing 

weighted triangles to the total number of triangles feasible. 𝐶𝐶𝑖𝑖, in particular, evaluates 

how efficiently the cluster of nodes interacts, and a high 𝐶𝐶𝑖𝑖 value corresponds to a high 

local efficiency of information transport. This may be represented mathematically in an 

undirected and weighted network as [184]: 

 
𝐶𝐶𝑖𝑖 =

∑ ∑ �𝑤𝑤𝑖𝑖𝑗𝑗𝑤𝑤𝑗𝑗ℎ𝑤𝑤ℎ𝑖𝑖�
1/3 

ℎ≠(𝑖𝑖,𝑗𝑗)∈𝑁𝑁
 
𝑗𝑗≠𝑖𝑖∈𝑁𝑁

𝑠𝑠𝑖𝑖(𝑠𝑠𝑖𝑖 − 1)
 (8) 

Network Efficiency (NE): The local node efficiency is a measure of functional 

integration that measures the extent to which individual nodes aggressively integrate 

specialized information from other dispersed nodes within the network [183]. This 

feature is defined by the idea of a route between nodes. Shorter routes indicate a greater 

possibility for integration and, as a result, a higher efficiency of information flow. The 

local efficiency 𝐸𝐸𝑖𝑖 is determined mathematically as the average of the reciprocal of the 

shortest routes between all nodes in the network [185]: 
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𝐸𝐸𝑖𝑖 =

1
𝑁𝑁(𝑁𝑁 − 1)

�
1
𝐿𝐿𝑖𝑖𝑖𝑖

 

𝑖𝑖≠𝑗𝑗∈𝑁𝑁

 (9) 

Knowing that 𝐿𝐿𝑖𝑖𝑖𝑖 is the length of the shortest path between nodes i and j. The Dijkstra 

method was used to find the shortest path between two nodes, with the total of the 

lengths of its constituent edges reduced [186, 187]. Edge lengths are the inverse of edge 

weights. Paths between unconnected nodes are often characterized as having unlimited 

lengths. 

Statistical analysis was carried out between the vigilance and stress levels, as well as 

between those phases and their respective BBS phases (vigilance/enhancement and 

stress/mitigation). We utilized paired t-tests to assess the connection metrics between 

stress and mitigation using the following criteria. To begin, we examined the 

connectivity measures 𝑑𝑑𝑖𝑖, 𝑠𝑠𝑖𝑖, 𝐶𝐶𝑖𝑖, and 𝐸𝐸𝑖𝑖 across vigilance and stress levels. Second, we 

compared the connectivity metrics in 𝑑𝑑𝑖𝑖, 𝑠𝑠𝑖𝑖, 𝐶𝐶𝑖𝑖, and 𝐸𝐸𝑖𝑖 between the vigilance and 

enhancement phases, as well as the stress and mitigation phases. If the test rejects the 

null hypothesis at the 5% level of significance, the result h is 1, otherwise it is 0. 

Additionally, the confidence interval and structural stats providing information on the 

test statistic are returned by the test. 

3.4 Classification Analysis 

A neural network is an adaptable system that learns through the use of linked nodes or 

neurons arranged in a layered structure similar to that of the human brain. The human 

nervous system has roughly 86 billion neurons that are linked by approximately 1014 −

1015 synapses. In Figure 3.7, a real neuron and a commonly used mathematical model 

are shown. Each neuron receives input signals through its dendrites and transmits them 

via its axon. The axon ultimately forks and links to the dendrites of neighboring neurons 

through synapses. As illustrated in the Figure 3.7, the signals traveling up the axons 

(e.g., 𝑥𝑥0) interact multiplicatively (e.g., 𝑤𝑤0𝑥𝑥0) with the dendrites of the other neuron, 

depending on the synaptic strength at that synapse (e.g., 𝑤𝑤0). The theory is that synaptic 

strengths (weights w) can be learned and that they govern the intensity of effect (and 

its direction: executory (positive weight) or inhibitory (negative weight)) exerted by 

one neuron on another. Dendrites transmit the signal to the cell body, where it is 

summed. If the total sum is more than a certain value, the neuron may fire, sending a 
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spike down its axon. It is assumed in the computational model that the exact timings of 

the spikes are irrelevant and that just the frequency of the firing transmits information. 

We simulate the neuron's firing rate using an activation function f, which indicates the 

frequency of spikes along the axon, based on this rate coding interpretation [188]. 

Numerous activation functions, such as sigmoid, tanh, and ReLU, are encountered in 

practice. Sigmoid compresses a real-valued input to a range between 0 and 1 (Eq.10). 

Tanh compresses a real-valued input to the range [-1, 1] (Eq.11). Rectified Linear Unit 

is abbreviated as ReLU. It accepts a real-valued input and sets the threshold to zero (in 

other words, it substitutes negative values with zero) (Eq.12). 

 𝜎𝜎(𝑥𝑥) =
1

1 + 𝑒𝑒−𝑥𝑥
 (10) 

 tanh(𝑥𝑥) = 2𝜎𝜎(2𝑥𝑥) − 1 (11) 

 𝑓𝑓(𝑥𝑥) = max (0, 𝑥𝑥) (12) 

Moreover, a neural network may be taught to detect patterns, categorize data, and 

predict future occurrences using data. Its behavior is determined by the manner in which 

its constituent components are linked and the strength, or weight, of those linkages. 

These weights are changed automatically during training in accordance with a defined 

learning rule until the artificial neural network successfully accomplishes the intended 

job. A neural network, which takes inspiration from biological nerve systems, utilizes 

basic components working in parallel to create many processing levels. An input layer, 

one or more hidden layers, and an output layer comprise the network. Each layer has 

multiple nodes, or neurons, and the nodes in each layer utilize the outputs of all nodes 

in the preceding layer as inputs, ensuring that all neurons communicate with one 

another through the various levels. During the learning process, the weight of each 

neuron is changed, and changes in the weight affect the intensity of the output from that 

neuron. As with other machine learning techniques, neural networks may be used for 

both supervised learning (classification, regression) and unsupervised learning (pattern 

recognition, clustering) [189]. 

Deep learning, on the other hand, is a subset of machine learning, which is a subset of 

artificial intelligence and statistics. In machine learning, the learning system establishes 

correlations between the data. Data is entered together with the associated outcomes. 
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This is the system's training. The machine learning system establishes relationships 

between the data and the outcomes and generates rules that become part of the system. 

When fresh data is provided, it is possible for new findings to emerge that were not 

included in the training set. Meanwhile, deep learning is a term that refers to neural 

networks that have several layers of neurons. The term "deep learning" connotes 

something more profound, and in popular literature, it is interpreted as implying that 

the learning system is a "deep thinker." In Figure 3.8, a single-layer and multilayer 

network are shown. Multilayer networks, it turns out, can learn things that single-layer 

networks cannot. A single layer multiplies the inputs by weights and then adds them 

together after going through a threshold function. The second layer of a multilayer or 

deep learning network is used to mix the inputs before they are output. There are more 

weights, and the network's increased connectivity enables it to learn and solve more 

complicated issues. Due to its ability to automate feature extraction, deep learning has 

become more prominent in the field of image and signal processing. Feature extraction 

with end-to-end deep learning algorithms, that extract features and learn classifiers 

jointly, is used in signal processing for better classification accuracy. Deep learning 

models, often outperform humans. Models are trained utilizing a huge amount of 

labelled data and multilayer neural network topologies [191, 192]. 

 

Figure 3.7: A cartoon illustration of a biological neuron (a) and its mathematical representation 
(b).[190] 

Several machine learning techniques, including k-nearest neighbors (KNN), linear 

discriminant analysis (LDA), and support vector machine (SVM), have been utilized in 

fNIRS research to differentiate between two distinct situations as stress/vigilance 

conditions [193-195]. The major limitations of these algorithms are the manual 

extraction and selection of features, which introduces uncertainty regarding the 

feature's suitability for the stated task. 
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Figure 3.8: Two neural networks. (a) Single-layer network, (b) Multilayer network (deep learning 
network).[192] 

Deep convolutional neural networks (CNN) are one of the popular deep neural 

networks. CNNs remove the requirement for manual feature extraction, which 

eliminates the necessity to identify image classification features. The CNN algorithm 

works by directly extracting characteristics from images. By automating the feature 

extraction process, deep learning models, such as those used in object categorization, 

become very accurate. Using tens or hundreds of hidden layers, CNNs learn to identify 

various characteristics in a picture. Each hidden layer enhances the complexity of the 

image features that have been learnt. For instance, the first hidden layer may learn how 

to identify edges, while the last one may learn how to detect more complicated forms 

that are unique to the geometry of the item being recognized [196, 197]. 

Furthermore, CNNs are intended to utilize a signal's spatial correlation, and since PDC 

matrices include information in the second dimension as well, the adoption of a 2D-

CNN architecture enables full exploitation of the features present in PDC matrices. A 

new CNN's architecture must be defined before it can be built and trained. The network 

design varies according on the kind and number of layers. The kinds and number of 

layers depends on the individual application or data. Classification networks, for 

example, often include a softmax layer and a classification layer, but regression 

networks must have a regression layer at the network's conclusion. A network with less 

than one or two convolutional layers may be adequate to learn from a modest quantity 

of grayscale picture data. On the other hand, with more complex data including millions 

of coloured images, a network with numerous convolutional and fully linked layers may 

be required. The following is a quick description of the most often employed layers 

[198, 199]: 

• The image input layer feeds pictures into a network and normalizes the data. 
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• The two-dimensional convolutional layer applies sliding convolutional filters to 

the two-dimensional input and is composed of the following components: 

o A collection of weights that is applied to an area in the picture is termed a filter. 

The filter iterates vertically and horizontally along the input picture, doing the 

same calculation for each area. To put it another way, the filter convolves  the 

input. 

o The step size with which the filter travels is termed a stride. 

o Dilated convolution is a kind of convolution in which the filters are extended 

by inserting gaps between the filter components. Increase the receptive field (the 

region of the input that the layer can view) of the layer using dilated 

convolutions without increasing the number of parameters or computation. 

o As the filter traverses the input, it utilizes the same set of weights and bias for 

convolution, resulting in the formation of a feature map. Each feature map is 

the product of convolution with a unique weight set and bias. As a result, the 

total number of feature maps equals the total number of filters. 

• A batch normalization layer individually normalizes a subset of data across all 

observations for each channel. To speed up training of the convolutional neural 

network and lower the susceptibility to network initialization, it is better to utilize 

batch normalization layers between convolutional layers and nonlinearities, such as 

ReLU layers. 

• A ReLU layer does a threshold operation to each input element, setting any value 

less than zero to zero. 

• A 2-D max pooling layer provides downsampling by splitting the input into 

rectangular pooling zones, then determining the maximum of each region. 

• A 2-D average pooling layer provides downsampling by splitting the input into 

rectangular pooling areas, then calculates the average values of each zone. 

• In a fully connected layer, the input is multiplied by a weight matrix and then a 

bias vector is added. As the name indicates, all neurons in a completely linked layer 

connect to all the neurons in the preceding layer. This layer aggregates all of the 

features (local information) gathered by the preceding layers throughout the image 

to detect the broader patterns. For classification challenges, the final fully connected 

layer combines the characteristics to categorize the images. 
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• A softmax layer converts the input to a softmax function. 

• The cross-entropy loss for classification and weighted classification tasks involving 

mutually exclusive classes is computed by a classification layer. 

The architecture of our proposed 2D-CNN is shown in Figure 3.9. It consists of three 

convolutional layers with batch normalization (BN), a global average pooling (GAP), 

and one fully connected layer. After each convolution layer, a Rectified linear unit 

(ReLU) layer is added as a nonlinear activation function [200]. Finally, a fully 

connected layer and binary Softmax regression are employed for classification. As 

shown in Figure 3.9, three convolution layers (CL) each include fifteen filters with 

dimensions of 1×3, 3×2, and 1×1, respectively. Following each CL, a batch 

normalization layer (BNL) is used to minimize the internal covariance shift. This 

decrease improves training speed and decreases the likelihood of data overfitting. The 

BNL output is then translated to positive real numbers using the ReLU layer, which is 

utilized to activate or deactivate nodes depending on the mapped value. The suggested 

network's design, configuration, and other trainable characteristics are described in 

Table 3.1. The proposed network's training parameters are set to their default settings 

as follows: the squared gradient decay factor is 0.999, the gradient factor is 0.9, the 

ADAM optimizer's denominator offset is 1 × 10−8 and the gradient threshold is 1, 

while the initial learning rate is 1 × 10−3; the learn rate drop factor and period are set 

to 0.4 and 5, respectively. Finally, the Softmax layer classifies each input into one of 

the C mutually exclusive classes using the cross-entropy (CE) loss function. 

 

Figure 3.9: CNN architecture for feature extraction and classification of PDC matrices for the four 
phases. Conv: Convolution, Vig: Vigilance, Enh: Enhancement, Str: Stress, Mit: Mitigation. 
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Table 3.1: The architecture of the proposed CNN network. 

Layer Name Type Activations Learnables Total 
Learnables 

1 imageinput 
20×20×1 images 
with ‘zerocenter’ 
normalization 

Image Input 20×20×1 - 0 

2 conv_1 
15 1×3 
convolutions with 
stride [1 1] and 
padding ‘same’ 

Convolution 20×20×15 Weights 
1×3×1×15 
Bias 1×1×15 

60 

3 batchnorm_1 
Batch 
Normalization 

Batch 
Normalizatio
n 

20×20×15 Offset 
1×1×15 
Scale 
1×1×15 

30 

4 relu_1 
ReLU 

ReLU 20×20×15 - 0 

5 conv_2 
15 3×2 
convolutions with 
stride [1 1] and 
padding ‘same’ 

Convolution 20×20×15 Weights 
3×2×15×15 
Bias 1×1×15 

1365 

6 batchnorm_2 
Batch 
Normalization 

Batch 
Normalizatio
n 

20×20×15 Offset 
1×1×15 
Scale 
1×1×15 

30 

7 relu_2 
ReLU 

ReLU 20×20×15 - 0 

8 conv_3 
15 1×1 
convolutions with 
stride [1 1] and 
padding ‘same’ 

Convolution 20×20×15 Weights 
1×1×15×15 
Bias 1×1×15 

240 

9 batchnorm_3 
Batch 
Normalization 

Batch 
Normalizatio
n 

20×20×15 Offset 
1×1×15 
Scale 
1×1×15 

30 

10 relu_3 
ReLU 

ReLU 20×20×15 - 0 

11 gap 
Global Average 
Pooling 

Global 
Average 
Pooling 

1×1×15 - 0 

12 fc 
4 fully connected 
layer 

Fully 
Connected 

1×1×4 Weights 
4×15 
Bias 4×1 

64 

13 softmax 
Softmax 

Softmax 1×1×4 - 0 

14 classoutput 
crossentropyex 

Classificatio
n Output 

- - 0 
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Figure 3.10: The processing flows of the approaches used to analyze fNIRS data. 
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Chapter 4. Results and Discussion 

This chapter studies the role of fNIRS in quantifying mental stress and the influence of 

auditory stimulation on individuals' behavioral performance and cortical connectivity 

while conducting the SCWT. The purpose of this study was to determine whether 

stimulation with binaural beats (BBS) could improve brain connectivity, vigilance 

performance, and stress reduction. The PDC connectivity maps were created under four 

different stress conditions, two of which included BBS. To recap, the Vigilance phase 

is the SCWT with slowly displayed questions that have been shown to cause low levels 

of stress. The Enhancement phase incorporates BBS into the preceding phase in order 

to determine its effect on vigilance enhancement. SCWT's Stress phase is represented 

by faster questions that induce stress. Mitigation phase involves the application of BBS 

in order to determine its influence on stress mitigation. Thus, we used statistical analysis 

to examine if auditory stimulation resulted in significant improvements in the cortical 

functional connectivity. Meanwhile, the effects of induced mental stress on alpha 

amylase levels, behavioral data, and subjective data were further explored.  

4.1 Alpha Amylase Levels 

Each subject had five salivary alpha-amylase samples taken throughout the experiment. 

The first sample was taken as a baseline sample before to the experiment's start. The 

remaining four samples were collected immediately following each phase. Figure 4.1 

depicts the results of salivary cortisol samples obtained five minutes before the 

experiment and immediately after the Vigilance, Enhancement, Stress, and Mitigation 

phases. The level of salivary cortisol increased from the Baseline to Vigilance and from 

the Enhancement to Stress phases, demonstrating that the SCWT elicited high levels of 

mental stress. By contrast, the phases containing BBS exhibited decreased amylase 

levels (Enhancement and Mitigation phases). To determine the significance of the 

differences between phases, a paired t-test was used. In particular, when compared to 

the Baseline phase (the phase with cortisol sample prior the experiment), the Vigilance 

and Stress phases demonstrated a statistically significant difference (p<0.001). This 

indicates SCWT's stress-inducing capability. Meanwhile, the ability of BBS to enhance 

vigilance was observed with p<0.001, and the same effect was observed for BBS to 
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alleviate mental stress (p<0.01). The recorded t-test results are displayed on the Figure 

4.1 with one and two asterisks indicating p<0.01 and p<0.001, respectively. 

 

Figure 4.1: Salivary cortisol level based on alpha amylase concentration. The asterisks indicate a 
significant difference between two phases (*:p<0.01, **:p<0.001). 

4.2 Behavioural Data 

The accuracy in response to the SCWT stimuli was measured to assess participant’s 

performance during the four phases. The behavioral data was collected during each 10 

min SCWT for the 30 subjects. The study indicated that the percentage of accuracy 

decreased considerably during the Stress phase but increased or remained high 

throughout the Vigilance, Enhancement, and Mitigation phases, as shown in Figure 4.2. 

The mean accuracies of answering SCWT questions were 94.99%, 95.96%, 60.52%, 

and 71.57% for the Vigilance, Enhancement, Stress, and Mitigation phases, 

respectively. Paired t-test between the Vigilance and Enhancement phases showed no 

change in performance (no effect for the BBS on enhancing vigilance with p=0.126). 

In contrast, statistical analysis between the Stress and Mitigation phases showed 

significant decrements under the BBS condition (p < 0:001). Also, differences between 

the accuracies scored under the vigilance and stress phases were notable with a 

significant decrease in answering accuracy (p<0.001). This shows that the SCWT used 

in conjunction with time pressure and negative feedback was effective in raising stress 

levels. 
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As a result, there is an evidence that binaural beat stimulation improves the behavioral 

performance in the form of properly answering questions by 11.05% between Stress 

and Mitigation phases. Meanwhile, this improvement was not seen in enhancing 

vigilance. 

 

Figure 4.2: The recorded accuracies in answering SCWT’s questions for the four stress phases. The 
asterisks indicate a significant difference between each two phases (**:p<0.001) 

4.3 Subjective Data 

NASA-TLX consisted of six subjective subscales, each of which should be reviewed 

prior to rating. As a result, participants were evaluated on a 100-point scale with 5-point 

increments for each task. The task load index was then calculated using these ratings. 

It was important to read the descriptions for each measurement to assist participants in 

responding correctly. NASA's Task Load Index scores were used to examine the 

subjective evaluation of stress level, and the results revealed a strong correlation 

between the task difficulty and the perceived stress level (pre- vs. post each phase). In 

general, high scores on all subscales (excluding Performance) were associated with 

high levels of stress, as evidenced by the Stress phase. Low subscale values, on the 

other hand, represented low levels of stress, which are considered as a result of BBS. 

This study found that SCWT had a great ability to inflict stress by recording the 

substantial increases (p<0.001) in the mental demand, temporal demand, effort, and 

frustration criteria between the baseline and stress phases. On the other hand, the effect 
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of BBS on enhancing vigilance was demonstrated by a significant decrease (p<0.05) in 

the temporal demand. Meanwhile, between the Stress and Mitigation phases, the effort 

and performance criteria showed significant decreases (p<0.05) and increases (p<0.01), 

respectively. Table 4.1 summarizes the total TLX mean assessment ratings after the 

four stress stages. A considerable change in mental demand, physical demand, temporal 

demand, performance, effort and frustration is shown in Figure 4.3 as the statistical 

analysis results illustrate. 

Table 4.1: Average TLX scores (Mean ± Standard deviation) for the four stress phases and the baseline 
phase. 

 Mental 
Demand 

Physical 
Demand 

Temporal 
Demand Performance Effort Frustration 

Baseline 20±16.12 19.06±21.54 28.75±21.01 64.68±34.37 33.75±27.53 20.62±14.47 

Vigilance 35.62±12.23 28.43±24.54 37.18±18.52 82.5±21.90 48.75±22.39 28.75±21.17 

Enhancement 33.12±21.36 29.68±29.00 25±20.16 86.87±21.97 43.12±25.48 26.25±26.04 

Stress 67.18±23.16 50.62±33.05 77.18±22.05 44.68±18.75 77.18±14.60 68.12±23.93 

Mitigation 61.56±24.81 50.31±28.89 67.81±25.09 71.56±17.00 67.5±20.33 55.93±31.04 

 

 

Figure 4.3: The average score for each NASA-determined criterion throughout the course of five 
phases. The asterisks indicate a significant difference between two phases (*:p<0.05, **:p<0.01, 

***:p<0.001). 
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4.4 PDC Functional Connectivity 

Partial directed coherence was used to reconstruct cortical connectivity networks in four 

different mental states. The subsequent subsections focus on detecting the induced 

stress by comparing the Vigilance and Stress phases, as well as on examining the BBS's 

proposed effect on boosting vigilance (by comparing the Vigilance and Enhancement 

phases) and on alleviating stress (comparing Stress and Mitigation phases). Figure 4.4 

depicts the connectivity network plots to demonstrate the variations between the four 

mental states in terms of functional connectivity for the 20 fNIRS channels. The edges 

denoted the grand average PDC weights over frequencies (30 frequencies ranging from 

0 to 0.3 Hz), blocks (10 SCWT blocks for each phase), and subjects (30 subjects). The 

decrease in PDC revealed a reduction in the network connecting the frontal lobes of the 

brain. PDC increases correlated with increased connection between frontal brain areas, 

and vice versa. As a result, the 1 PDC value at the top of the color bar represented an 

 

 

Figure 4.4: The average PDC connectivity map for the (a) Vigilance phase, (b) Enhancement phase, (c) 
Stress phase and (d) Mitigation phase. 
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increase in the weight of the information flow, while the PDC<1 suggested a drop in 

this flow. Many changes in connectivity between the four phases were apparent at first 

glance. Where exactly these significances occur will be determined by a subsequent 

statistical investigation. 

Following that, between each of the two phases, a PDC connectivity map was 

constructed by subtracting the PDC maps. As a result, examining these maps provided 

a clear explanation for the rise or decrease in connectedness and information flow. In 

addition, a paired t-test was used to find the h matrix, which depicted the matrix of null 

hypothesis values, between each of the two stages (p<0.05). Each PDC node (which 

represented the intersection of a sender fNIRS channel and a receiver fNIRS channel) 

was subjected to this statistical analysis in order to determine its involvement in 

connectivity under varying levels of stress. The three connectivity maps depicted in 

Figures 4.5, 4.6, and 4.7 were created for (Vigilance-Enhancement), (Stress-

Mitigation), and (Vigilance-Stress), respectively. In Figure 4.5, an increased alertness 

was observed primarily for channel 14, as evidenced by greater connectivity for this 

channel following BBS application, whereas the other channels demonstrated little or 

no connectivity change. Additionally, Figure 4.6 shows that BBS plays an important 

role in stress reduction by increasing PDC values during the Mitigation phase as 

compared to the Stress phase. According to Figure 4.7, the Stress phase had lower 

connectivity compared to the Vigilance phase, which was due to the time limits 

imposed by the SCWT. This map revealed variations in the PDC values between the 

two periods, while the t-test indicated that these differences were not statistically 

significant for the majority of nodes. 

The influence of connectivity threshold was next examined in order to determine which 

crucial threshold values best describe the connectivity change between the four stress 

stages. As the threshold for PDC changed, so did the general pattern seen in Figure 4.8 

for the average PDC. The phases that comprised BBS (Enhancement and Mitigation) 

demonstrated the highest PDC values across all thresholds up to 0.7. Likewise, the 

Stress phase showed the lowest PDC levels across the same threshold range. As soon 

as the 0.7 threshold was crossed, all four phases' mean PDC values were the same, and 

no longer significant differences in stress could be seen. Statistical analysis was created 
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Figure 4.5: The functional connectivity difference. (a) subtraction PDC map for Vigilance-

Enhancement with the hypothesis test results for each node, (b) the significant connectivities between 
the two phases. 

 
Figure 4.6: The functional connectivity difference. (a) subtraction PDC map for Stress-Mitigation with 

the hypothesis test results for each node, (b) the significant connectivities between the two phases. 

on each PDC node because, as earlier mentioned, it is vital to evaluate the influence of 

each fNIRS channel on sending and receiving information (p<0.05). There were 400 

intersection nodes in the connectivity network due to the 20 fNIRS channels being 

connected together. Figure 4.9 demonstrates the change in the number of crucial nodes 

between each two phases as a function of the applied threshold. Prior to and following 

application of the BBS, the maximum number of important nodes was observed 

(Vigilance Vs Enhancement, Stress Vs Mitigation). Between Vigilance and 

Enhancement Phases, the number of significant nodes dropped significantly, suggesting 

that most PDC values were fluctuating between thresholds of 0.1 and 0.2. Following 
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the previous approach, Figures 4.10, 4.11, and 4.12 show the difference in PDC 

connectivity between (Vigilance-Enhancement), (Stress-Mitigation), and (Vigilance-

Stress). Specifically, in addition to the paired t-test for every node, a threshold of 0.7 

was added to each map (p<0.05). As can be shown, the BBS played an important role 

in enhancing vigilance by recording elevated connectivity values for several 

ventrolateral channels, whereas channel 14 in the dorsolateral region showed lower 

connectivities with BBS. Similarly, the BBS in the right PFC showed considerable 

stress mitigation (high connection) compared to low connectivity values in the left 

ventrolateral area. 

 
Figure 4.7: The functional connectivity difference. (a) subtraction PDC map for Vigilance-Stress with 

the hypothesis test results for each node, (b) the significant connectivities between the two phases. 

 
Figure 4.8: The average PDC behavior with respect to the PDC threshold increases. 
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Figure 4.9: The number of significant PDC nodes between each two stress phases in relation to the 

PDC threshold grows. 

 
Figure 4.10: The functional connectivity difference with PDC threshold of 0.7. (a) subtraction PDC 
map for Vigilance-Enhancement with the hypothesis test results for each node, (b) the significant 

connectivities between the two phases. 

4.5 Graph Theory Analysis 

For the purpose of examining and quantifying cortical functional connectivity, a 

network graph theoretical analysis (GTA) was used. Networks of nodes and weighted 

edges were constructed using the PDC matrices. The global and local topology of 

functional connectivity networks were characterized using GTA depending on the 

concepts of node degree (ND), node strength (NS), clustering coefficient (CC), and 

efficiency (NE). To get the global versions of the nodes in the network's topology, we 

used the arithmetic means of their local versions. As a consequence, the comparison of 

the Alertness and Enhancement phases provided insight into BBS's capability to 
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improve vigilance. Furthermore, by comparing the Stress and Mitigation phases, the 

efficacy of BBS to reduce mental stress could be analyzed. Finally, the differences 

between the Vigilance and Stress phases were examined in order to validate the efficacy 

of SCWT to induce stress and the ability of fNIRS to measure it. 

 
Figure 4.11: The functional connectivity difference with PDC threshold of 0.7. (a) subtraction PDC 

map for Stress-Mitigation with the hypothesis test results for each node, (b) the significant 
connectivities between the two phases. 

 
Figure 4.12: The functional connectivity difference with PDC threshold of 0.7. (a) subtraction PDC 

map for Vigilance-Stress with the hypothesis test results for each node, (b) the significant 
connectivities between the two phases. 

4.5.1 Global network analysis 
Figures 4.13–4.16 compare the global ND, NS, CC, and NE of full-scale functional 

networks under the four stress conditions. The mean values are shown, with error bars 

representing the standard error around the mean. Meanwhile, to examine the influence 

of network threshold level, the estimated metrics were displayed against a complete 

threshold range of 0 to 1 with a 0.1 step. A paired sample t-test was used at each 
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Figure 4.13: A comparison of the full-scale network's global node degree between the phases (a) 
Vigilance/Enhancement, (b) Stress/Mitigation and (d) Vigilance/Stress. The mean values among 
participants are shown, with error bars representing the standard error. The asterisks indicate that 

cognitive state has a substantial influence (*:p<0.05, **:p<0.01, ***:p<0.001). 

threshold level to examine the statistical significance of differences between each two 

cognitive states. The asterisks on the graphs show that cognitive state has a significant 

influence (*:p<0.05, **:p<0.01, ***:p<0.001). ND values in the Enhancement phase 

were consistently high in Figure 4.13, showing a substantial effect for the BBS. In the 

threshold range (0.2-0.5), BBS was beneficial in mitigating stress (p<0.05), but it had 

no impact in the rest of the range (0.6-1). Additionally, ND showed no difference 

between the Vigilance and Stress phases for the threshold range (0-0.3) whereas it was 

significantly high in the Stress phases for the threshold range (0.4-0.7). Meanwhile, the 

only threshold value that exhibited a contrast effect for the ND between the two phases 

was the 0.8 threshold. As demonstrated in Figure 4.14, when network threshold rises, a 

slight decrease in the NS is noted throughout all four phases. This is to be expected 

because higher threshold levels account for a smaller number of edges. Additionally,  
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Figure 4.14: A comparison of the full-scale network's global node strength between the phases (a) 
Vigilance/Enhancement, (b) Stress/Mitigation and (d) Vigilance/Stress. The mean values among 
participants are shown, with error bars representing the standard error. The asterisks indicate that 

cognitive state has a substantial influence (*:p<0.05, **:p<0.01, ***:p<0.001). 

the influence of the BBS on  cognitive state was statistically significant throughout a 

low threshold range. Over the entire threshold range, the NS for the BBS phases 

(Enhancement and Mitigation) was substantially greater than that for the Vigilance and 

Stress phases. Meanwhile, statistical significance between the Vigilance and Stress 

phases became obvious for thresholds specified by 0.4-0.8. Figure 4.15 shows how the 

network's CC dropped significantly after the threshold value of 0.3. The clustering 

coefficients indicated substantial differences between Vigilance and Enhancement for 

the low and high threshold values (but not for the middle range values), while similar 

pattern was seen only for the first three thresholds between the Stress and Mitigation 

phases. On the other hand, across all thresholds, CC demonstrated no significant change 

between the Vigilance and Stress phases. Eventually, global efficiency findings showed 

the same effects by having a substantial influence on the BBS on increasing vigilance 

and reducing stress across many threshold values (mainly for the first half of the range).  
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Figure 4.15: A comparison of the full-scale network's global clustering coefficients between the phases 

(a) Vigilance/Enhancement, (b) Stress/Mitigation and (d) Vigilance/Stress. The mean values among 
participants are shown, with error bars representing the standard error. The asterisks indicate that 

cognitive state has a substantial influence (*:p<0.05, **:p<0.01, ***:p<0.001). 

When it came to the Vigilance and Stress phases, only 0.6 and 0.7 thresholds 

distinguished the NE from the rest of the group. 

4.5.2 Local network analysis 
The scalp maps of the full-scale local node degree, strength, clustering coefficient, and 

efficiency are shown in Figures 4.17–4.20. The mapped values are the overall average 

of all subjects. A paired sample t-test was used for each channel to evaluate the 

statistical significance of changes in local topology between the 

Vigilance/Enhancement and Stress/Mitigation phases. On the maps, asterisks (*) 

indicate a statistically significant difference (p < 0.05). The nodal degree for each phase 

is shown in Figure 4.17 for all twenty channels. Throughout the four phases, a high 

nodal degree was seen in the dorsolateral and left ventrolateral regions. Meanwhile, the 

significance of the negative t-test findings across many channels indicated a substantial 

difference between the Vigilance and Enhancement phases, suggesting the BBS' 
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Figure 4.16: A comparison of the full-scale network's global node efficiency between the phases (a) 

Vigilance/Enhancement, (b) Stress/Mitigation and (d) Vigilance/Stress. The mean values among 
participants are shown, with error bars representing the standard error. The asterisks indicate that 

cognitive state has a substantial influence (*:p<0.05, **:p<0.01, ***:p<0.001). 

essential function. Similarly, only three channels demonstrated this substantial impact 

of the BBS on relieving stress. The outcomes of the local nodal strength analysis are 

depicted in Figure 4.18, which show general full-scale increases in connectivity for the 

majority of channels over the four phases. Furthermore, under all conditions, there was 

substantial connectivity at the dorsolateral channels (i.e, 2, 8, 10 and 17). However, 

statistical analysis indicated a significant difference between the Vigilance and 

Enhancement phases for those channels, but not between the Stress and Mitigation 

phases. Almost all of the channels that shown a crucial difference in the local nodal 

degree between phases with/without BBS also demonstrated the same behavior with 

the local strength. Phase enhancement/mitigation demonstrated substantial increases in 

nearly all prefrontal brain channels using a paired sample t-test. According to paired t-

test results, the full-scale local clustering coefficient decreased throughout the 

Enhancement stage in the channels (2, 8, 10, and 17) as shown in Figure 4.19. 
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Figure 4.17: Scalp topography maps of local node degree in (a) Vigilance, (b) Enhancement, (c) Stress, 
and (b) Mitigation phases. The mapped values are the overall average of all subjects. The asterisks (*) 

indicate a statistically significant local difference (p < 0.05) between the two cognitive states. 

Intriguingly, functional segregation was found to be larger between the Vigilance and 

Enhancement phases than between the Stress and Mitigation phases. Similarly, as 

illustrated in Figure 4.20, the local efficiency displayed an increasing connection trend 

that was BBS-specific. 

4.6 Relationships between Functional Connectivity and Behavioral Responses 

In this part, we compared the changes in connectivity strength (Nodal Strength) to 

reaction accuracy (response accuracy to SCWT stimuli) and Cortisol levels across the 

four phases. To begin, we calculated the changes in strength between the two phases by 

subtracting the Vigilance group's strength from the Enhancement group's strength, the 

Stress group's strength from the Mitigation group's strength, and lastly, the Vigilance 

group's strength from the Stress group's strength. These subtraction operations were 

based on the one-versus-all principle. In this case, the average strength of each subject 

in the vigilance group may be deducted from the average strength of all other 

individuals in the enhancement group. The ultimate strength was then calculated using 

the weighted sum. Positive strength difference implied network enhancement, whereas 

negative degree indicated network impairments or decline. Second, identical to what 
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Figure 4.18: Scalp topography maps of local node strengths in (a) Vigilance, (b) Enhancement, (c) 
Stress, and (b) Mitigation phases. The mapped values are the overall average of all subjects. The 

asterisks (*) indicate a statistically significant local difference (p < 0.05) between the two cognitive 
states. 

 

 
Figure 4.19: Scalp topography maps of local node clustering coefficients in (a) Vigilance, (b) 

Enhancement, (c) Stress, and (b) Mitigation phases. The mapped values are the overall average of all 
subjects. The asterisks (*) indicate a statistically significant local difference (p < 0.05) between the two 

cognitive states. 
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Figure 4.20: Scalp topography maps of local node efficiency in (a) Vigilance, (b) Enhancement, (c) 

Stress, and (b) Mitigation phases. The mapped values are the overall average of all subjects. The 
asterisks (*) indicate a statistically significant local difference (p < 0.05) between the two cognitive 

states. 

was said previously, we determined the variations in SCWT accuracy by subtracting 

the recorded accuracy between each two phases. A positive difference in accuracy 

implied an improvement, whereas a negative difference suggested an impairment. 

Third, we determined the differences in cortisol levels between the two periods by 

subtracting the cortisol levels observed during each phase. Cortisol differences that are 

positive suggested deficits, whereas cortisol differences that are negative indicated 

enhancement. The results indicated that changes in strength were negatively correlated 

with cortisol levels and positively correlated with SCWT accuracy in the three instances 

investigated, as seen in Figures 4.21 and 4.22. The participants with the largest 

improvement in connection strength had a drop in cortisol levels and an increase in 

reaction accuracy to stimuli. This implies that the more connected the brain areas are, 

the greater the performance. 

4.7 Convolutional Neural Network 

The results acquired with Convolutional Neural Network (CNN) will be summarized 

in this section. To recap, three convolutional layers with fifteen filters were employed, 

as well as 5-fold-cross-validation (CV). The CNN was fed PDC matrices (each matrix 
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is 20×20 representing fNIRS channels × fNIRS channels) that also include stress phases 

(4 phases), frequencies (30 frequencies), SCWT blocks (10 blocks/trials), and subjects 

(30 subjects). 

 

Figure 4.21: Correlation graphs between participants' cortisol levels and nodal strength. The vertical 
axis indicates the values of the various graph metrics, while the horizontal axis indicates the cortisol 

level. 

 
Figure 4.22: Correlation graphs between participants' response accuracy and nodal strength. The 

vertical axis indicates the values of the various graph metrics, while the horizontal axis indicates the 
SCWT accuracy. 

CNN's analysis was conducted in three distinct ways. The initial analysis included CNN 

subject-independent analysis of all phases together (Vigilance, Enhancement, Stress 

and Mitigation). The PDC's six-dimensional matrix, which is 4×30×10×30×20×20 and 

represents task phases × subjects × blocks × frequencies × channels × channels, was 

translated to a three-dimensional matrix for each level. As a result, the Vigilance phase, 

for example, contained 9000 PDC maps (the 9000 came from the 30 subjects, 10 blocks 

and the 30 frequencies). Then four labels were used to indicate the four phases. The 

applied 5-fold CV results in 7200 PDC maps for training and 1800 PDC maps for 

validation for each phase. The accuracy, sensitivity, specificity, and precision obtained 

from training/testing the four phases are summarized in Table 4.2. Meanwhile, the 

confusion matrix for these results is depicted in Figure 4.23. The effectiveness of PDC 

and fNIRS to identify mental state is readily apparent when the largest portion of the 
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PDC maps is correctly matched to the phase associated. Likewise, the Vigilance and 

Mitigation phases produced the highest accuracy in correctly detecting the number of 

PDC maps that are supposed to be treated as Vigilance or Mitigation maps (out of the 

9000) achieving 79.9% and 74.78%, respectively. This confirms the BBS's potential to 

enhance vigilance and reduce stress levels. 

After that, CNN subject-independent analysis was used to compare each two phases 

together (binary analysis). Hence, the matrix for each phase had the same dimension as 

before which is 9000×20×20 that reflects 9000 PDC maps. The validation performance 

of the proposed CNN between each two phases is illustrated in Table 4.3. As indicated 

in the first two columns, the high records attained demonstrate BBS's capacity for 

enhancing vigilance and mitigating stress. Similarly, the Vigilance/Stress records 

indicate the SCWT's ability to induce stress as well as the fNIRS's ability to detect 

mental stress. The results depicted in Figures 4.24, 4.25, and 4.26 corroborate earlier 

findings by reaching the best accuracy for vigilance enhancement, stress reduction, and, 

to a lesser extent, stress induction/detection. 

On the other hand, CNN architecture was used also to classify the four phases 

(Vigilance, Enhancement, Stress, and Mitigation) for each subject (subject-dependent 

analysis) utilizing PDC connectivity maps. Table 4.4 highlights the performance in 

terms of the number of PDC matrices that truly match the related phase. For each 

subject, the 30 frequency bands and the 10 SCWT blocks were combined to generate 

300 PDC matrices per phase (where 240 of them were used for training and the 60 for 

validation). As a result, the maximum number of PDC matrices that can be recorded for 

any subject in each phase is 300. According to each subject's status, decisions were 

made in the areas of vigilance (V), enhancement (E), stress (S), and mitigation (M). 

The CNN results demonstrate the PDC's capacity to accurately reflect the nuances of 

each phase. The aforementioned findings corroborate the performance of BBS, SCWT, 

and fNIRS. 

Table 4.2: 5-fold cross validation performance of proposed CNN between the four phases 

Task phases Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) 
Vigilance 
Enhancement 
Stress 
Mitigation 

70.62 68.39 90.76 71.16 
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Figure 4.23: Confusion matrix for PDC matrices classification (9000 matrices per phase) 

 

Table 4.3: 5-fold cross validation performance of proposed CNN between each two phases 

 Vigilance Vs 
Enhancement 

Stress Vs 
Mitigation 

Vigilance Vs 
Stress 

Accuracy (%) 96.42 94.39 93.36 

Sensitivity (%) 95.96 94.33 93.57 

Specificity (%) 96.89 94.44 93.10 

Precision (%) 96.86 94.43 93.13 

 

 

Figure 4.24: Confusion matrix for PDC matrices classification between Vigilance and Enhancement 
phases (9000 matrices per phase) 
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Figure 4.25: Confusion matrix for PDC matrices classification between Stress and Mitigation phases 
(9000 matrices per phase) 

 

 

 
Figure 4.26: Confusion matrix for PDC matrices classification between Vigilance and Stress phases 

(9000 matrices per phase) 
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Table 4.4: CNN validation results for 300 PDC matrices per phase. Acc: Accuracy, Sen: Sensitivity, Spec: Specificity. 

 # of PDC matrices (out of 300) identified as: Acc 
(%) 

Sen 
(%) 

Spec 
(%) 

Subject Vigilance Acc (%) Decision Enhancement Acc (%) Decision Stress Acc Decision Mitigation Acc Decision 

1 296 98.67 V 295 98.33 E 299 99.67 S 300 100.0 M 99.17 98.67 99.56 

2 300 100.00 V 298 99.33 E 294 98.00 S 300 100.0 M 99.33 100.00 100.00 

3 300 100.0 V 300 100.0 E 300 100.0 S 300 100.0 M 100.0 100.0 100.0 

4 300 100.0 V 300 100.0 E 300 100.0 S 300 100.0 M 100.0 100.0 100.0 

5 295 98.33 V 300 100.0 E 297 99.00 S 300 100.0 M 99.33 98.33 100.00 

6 299 99.67 V 299 99.67 E 300 100.0 S 300 100.0 M 99.83 99.67 99.89 

7 290 96.67 V 280 93.33 E 296 98.67 S 281 93.67 M 95.58 96.67 99.67 

8 297 99.00 V 300 100.0 E 300 100.0 S 300 100.0 M 99.75 99.00 100.0 

9 300 100.0 V 300 100.0 E 300 100.0 S 300 100.0 M 100.0 100.0 100.0 

10 300 100.0 V 300 100.0 E 300 100.0 S 298 99.33 M 99.83 100.0 100.0 

11 297 99.00 V 288 96.00 E 300 100.0 S 300 100.0 M 98.75 99.00 100.0 

12 299 99.67 V 300 100.0 E 300 100.0 S 300 100.0 M 99.92 99.67 100.0 

13 298 99.33 V 297 99.00 E 298 99.33 S 298 99.33 M 99.25 99.33 99.33 

14 297 99.00 V 300 100.0 E 300 100.0 S 300 100.0 M 99.75 99.00 100.0 

15 300 100.0 V 296 98.67 E 297 99.00 S 299 99.67 M 99.33 100.0 99.56 
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16 298 99.33 V 299 99.67 E 289 96.33 S 300 100.0 M 98.83 99.33 99.89 

17 300 100.0 V 300 100.0 E 298 99.33 S 300 100.0 M 99.83 100.0 100.0 

18 299 99.67 V 292 97.33 E 298 99.33 S 299 99.67 M 99.00 99.67 99.78 

19 294 98.00 V 274 91.33 E 294 98.00 S 300 100.0 M 96.83 98.00 99.67 

20 293 97.67 V 300 100.0 E 287 95.67 S 288 96.00 M 97.33 97.67 99.67 

21 298 99.33 V 300 100.0 E 300 100.00 S 300 100.0 M 99.83 99.33 100.0 

22 300 100.0 V 291 97.00 E 300 100.00 S 300 100.0 M 99.25 100.0 100.0 

23 298 99.33 V 300 100.0 E 299 99.67 S 295 98.33 M 99.33 99.33 100.0 

24 293 97.67 V 284 94.67 E 296 98.67 S 300 100.0 M 97.75 97.67 100.0 

25 300 100.0 V 300 100.0 E 300 100.0 S 300 100.0 M 100.0 100.0 100.0 

26 297 99.00 V 294 98.00 E 293 97.67 S 287 95.67 M 97.58 99.00 99.22 

27 299 99.67 V 296 98.67 E 298 99.33 S 299 99.67 M 99.33 99.67 100.0 

28 299 99.67 V 300 100.0 E 300 100.0 S 300 100. M 99.92 99.67 100.0 

29 298 99.33 V 300 100.0 E 300 100.0 S 300 100. M 99.83 99.33 100.0 

30 297 99.00 V 296 98.67 E 300 100.0 S 300 100. M 99.42 99.00 100.0 
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Chapter 5. Conclusion and Future work 

This thesis examined two significant stress-related issues that are prevalent in a range 

of operational and industrial contexts. To begin, a quantitative method to stress 

evaluation was suggested based on graph theory analysis of fNIRS functional 

connectivity. Second, the efficacy of auditory stimulation in improving vigilance 

performance and mitigating stress was examined. The fNIRS data collection technique 

was based on a computerized version of the Stroop Color-Word Task (SCWT). Four 

scenarios based on SCWT and Binaural Beat Stimulation (BBS) were suggested as part 

of the experimental protocol: Vigilance (SCWT with no audio), Enhancement (SCWT 

with BBS), Stress (SCWT under time pressure with no audio) and Mitigation (SCWT 

with time pressure and BBS). A 10-minutes SCWT triggered each of the four stages. 

Cortical connection was modelled using the partial directed coherence value statistic, 

which was used throughout the Vigilance and Stress phases as well as the Enhancement 

and Mitigation phases. The connectivity networks were then subjected to extensive 

graph theory research in order to measure and compare their many topological 

properties. Finally, we used deep learning using a convolutional neural network (CNN) 

to validate BBS's capacity to increase alertness and reduce stress, as well as fNIRS's 

ability to identify stress levels. 

5.1 Major Findings 

The purpose of this research was to explore a new technique of stress detection and 

reduction based on functional near infrared spectroscopy and binaural beat stimulation. 

Furthermore, when time pressure was applied, the experimental findings demonstrated 

that the ten-minutes SCWT successfully produced stress in the cortical connections. 

The PDC statistic responded well to changes in stress levels, increased alertness, and 

reduced stress. Studying prefrontal cortex PDC networks revealed that alterations in 

functional connectivity during mental stress were confined to cortical regions and 

fNIRS channels. During each of the 10 block designs of the SCW, participants received 

binaural beat stimulation in both ears at the same time. Simultaneously with the SCWT, 

we monitored individuals' hemodynamic responses, stress hormone levels, and 

behavioral reactions. Subject-independent classification revealed an accuracy of 

96.42%, 94.39%, and 93.36% for detecting vigilance augmentation, stress mitigation, 
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and stress induction, respectively, utilizing GTA and PDC characteristics belonging to 

a single cortical area and frequency band. Cortical connection remained strong for the 

course of the audio-enhanced mental states. Additionally, substantial increases in 

participant performance were found when audio was used. BBS improved vigilance 

detection by an average of 11.51%, while stress mitigation detection improved by an 

average of 15.36%. Moreover, we discovered that stress raised salivary alpha amylase 

levels, which reduced after treatment with binaural beat stimulation. Similarly, we 

observed that accuracy in answering the SCWT question decreased substantially 

between Vigilance and Stress and rose significantly between Stress and Mitigation, 

suggesting gains in cognitive function. Stress hormone and behavioral responses show 

that the proposed binaural beat stimulation substantially reduces stress levels. Thus, the 

findings demonstrate that the proposed methodology is capable of quantifying many 

elements of cortical functional connectivity under a variety of stress conditions. To 

identify vigilance-enhancement and stress-mitigation with trustworthy accuracy, the 

topology of PFC connection patterns may be characterized as simple and dimension-

reduced indices. Finally, the findings demonstrate that auditory stimulation may 

improve cognitive processing and behavioral performance.  

5.2 Recommendations and Future Directions for Research 

It is important to highlight that the study's primary drawback is its small sample size, 

and the number of individuals included was deemed small to overcome biases resulting 

from individual variations. Our results will be more robust if we had a bigger sample 

size to work with. The following are some suggestions for further research based on 

this study: 

 The PDC has been shown to be effective in mental state discriminating settings 

as one of the best predictive functional connectivity estimators. While the PDC 

showed susceptibility to stress induction/mitigation, alternative estimators of 

functional connectivity may be worth investigating. 

 This study relied heavily on the processing of fNIRS data for stress evaluation. 

FNIRS is a relatively novel neuroimaging technique that has been utilized in 

investigations of alertness, mental fatigue, and emotions. It is possible, though, 

that other physiological and neuroimaging modalities will reveal more about 
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vigilance/stress' brain and physiological processes. Thus, researching stress 

through a multimodal neuroimaging approach would be advantageous. If this is 

the case, applying feature fusion techniques is anticipated to enhance the 

accuracy of identifying and mitigating stress. 
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