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Abstract 

 

Industrialization has brought wealth, prosperity, and abundance to many nations. 

However, it has had many drawbacks on people’s health and the environment. Several 

paradigms have been proposed and implemented in an effort to suppress and reverse 

the adverse impacts of human activities and industrialization. A popular approach is the 

circular economy (CE). CE is a waste conservative model that limits resources uptake, 

waste generation and energy consumption. The implementation of today’s top-notch 

technologies such as Industry 4.0 tools is a necessity to enable the transition from the 

conventional linear economy to the CE. Moreover, to ease this transition, it is important 

to be able to assess the circularity of different products and processes along the way. 

Most available assessment procedures lack comprehensiveness and objectivity due to 

complexities such as the quantification processes of qualitative data, the extensive use 

of linguistic terms that represent data and the uncertainties associated with them, and 

the difficulty in combining more than one indicator in case of similarity, dependency, 

or both. The aim of this thesis is to firstly present a thorough review on the applications 

of cyber-physical systems within each of the CE stages and highlight their contribution 

to the attainment of the different sustainable development goals through several 

practical examples. Secondly, it presents a comprehensive CE assessment framework 

that can assess the circularity of developed and developing countries, different 

industries, wide range of processes, and different products, of both private and public 

sectors on a micro, meso, and macro levels. This is achieved through a step-by-step 

indicators selection procedure and the combination of fuzzy logic and multi-criteria 

decision-making methods which deliver a CE assessment that eliminates previously 

mentioned problems and result in an unbiased realistic ranking of alternatives. The 

presented framework is implemented to assess the circularity of Friction Stir Back 

Extrusion against conventional extrusion methods. Results show a higher circularity 

score for the FSBE (48.9%) over conventional extrusion methods (4.78%), validating 

the applicability of the proposed CE assessment framework. 

Keywords: Circular economy; Cyber-physical systems; Industry 4.0; Sustainable 

development goals; Fuzzy logic; Multi-Criteria Decision-Making (MCDM) 

Methods; Sustainable Development; Sustainability.  
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Chapter 1. Introduction 

1.1. Introduction 

This chapter provides a brief introduction about the concept of circular economy (CE) 

and its significance in the contribution to the attainment of the Paris agreement and the 

sustainable development goals (SDGs) set by the United Nations (UN). This will be 

followed by two sections highlighting firstly, the thesis objective, secondly, the 

research contribution. While the last section of this chapter will present the thesis 

organization. 

1.2. Overview 

The world’s population has drastically increased over the course of the past few 

decades. It is estimated that the population will reach 8.5 billion by 2030 and 10.9 

billion by 2100 [1]. Subsequently, this fast-paced population growth contributes to a 

substantial increase in energy demand and consumption. Energy consumption is 

projected to increase by 50%, reaching approximately 900 quadrillion British thermal 

units (Btu) by 2050 as seen in Figure 1 [2]. 

 

Figure 1: Global primary energy consumption by world region in 2019 [2] 

Human activities have caused an estimated 1.0°C of global warming above pre-

industrial levels [3]. The concentration of CO2 in the atmosphere has been increasing 

since industrialization. Countries such as China, India and the USA attract most of the 

global industries, which explains the huge amount of CO2 produced by these nations as 
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seen in Figure 2. This slight increase in the Earth’s temperature has melted ice caps 

causing extreme weather conditions and changed rainfall patterns across the globe [4]. 

 

Figure 2: Annual CO2 emissions in 2018 by country [4] 

In general, energy used in the industrial sector was responsible for about 24.4% of the 

global greenhouse gas (GHG) emissions in 2016. It is followed by transportation 

accounting for 16.2% [5]. Global warming can cause floods in some places and extreme 

drought in other places. It threatens marine life and biodiversity, leads to deterioration 

of food security situations, and causes population displacement [6].  

Another problem associated with industrialization and human activities is waste 

generation. In 2018, the USA landfilled about 146.2 million tons of municipal solid 

waste (MSW). Food waste accounted for the largest portion with about 24% of the total 

waste followed by plastics, paper, and paperboard [7]. 

One of the most prominent strategies to limit and reverse the severe effects of climate 

change and the impacts of waste accumulation is the adoption of a circular economy 

(CE). In the traditional “one-way” or in other words, “linear” manufacturing model, 

raw materials are used to manufacture goods that are sold, used, and then discarded as 

waste to landfills [8]. Environmental benign manufacturing processes and systems have 
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been adopted to reduce the impact of manufacturing on environment [9]-[34]. However, 

more efforts are needed to combat climate change and preserve resources.  

In contrast, the CE model is a waste conservative model that is defined as “An Industrial 

system that is restorative or regenerative by intention and design” [35]. CE focuses on 

achieving prosperous economic development while protecting the environment by 

saving resources through recycling. It also takes social aspects into consideration [36, 

37]. Similarly, the United Nations defined sustainable development (SD) as “meeting 

the needs of the present without compromising the ability of future generations to meet 

their own needs” [38]. In 2002, economic development, social development and 

environmental protection were defined during the World Summit on SD as the three 

main sustainability pillars [39]. Since both CE and SD share the same goals, CE could 

be defined as a condition for SD in general [40, 41, 42]. Studies suggest that the 

transition to CE and its implementation in the manufacturing industry would contribute 

to the making of new business opportunities as well as representing a new sustainable 

growth path [37]. Consequently, CE practices can potentially save around 80% to 90% 

of raw materials and energy consumption when compared to the linear model [43]. 

Economically speaking, CE practices can potentially cut product costs by 25% to 30% 

[43]. An optimistic study revealed that the implementation of CE practices in Europe 

could have an annual benefit of around 1.8 trillion Euros by 2030 [44]. 

Correspondingly, the rise in the demand of sustainable products driven by the reduced 

prices would create more job opportunities in the sustainable sector [45]. These 

promising figures have caused many countries, such as China, Japan, Canada, the 

United States and Brazil, to aim at attaining sustainable development goals (SDGs) by 

implementing CE across their different industries and sectors [46]. 

1.3. Thesis Objectives 

Driven by the urgent need to decrease resources uptake and waste generation, and to 

significantly lower our greenhouse gases emissions, the main objective of this thesis is 

to present innovative solutions that facilitates and eases the world’s transition from 

linear to circular economies. Firstly, this thesis will focus on presenting models and 

solutions based on industry 4.0 to enable a smooth CE transition that aims to achieve 

the different SDGs set by the UN. Moreover, it will focus on developing a 

comprehensive multi-level CE assessment framework and tool that is capable of 
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assessing the circularity of different products, companies, industries or even countries 

using subjective and objective means of assessment. Moreover, it can point out areas 

of improvement towards circularity. This thesis will focus in incorporating artificial 

intelligence in the form of fuzzy logic to ease the quantification process and promote 

autonomy to reduce errors and subjectivity as well as provide users with reliable and 

realistic results. 

1.4. Research Contribution 

The contributions of this research work can be summarized as follows:   

• Presented a thorough review on the implementation and integration of CPSs in 

each of the CE stages, highlights the SDGs that would be achieved as a result. 

• Developed a novel illustrative House of Sustainability that summarizes the 

relationship between sustainable development (SD), Circular economy (CE), 

Industry 4.0 (I4.0), and the Sustainable development goals (SDGs). 

• Presented a review on the current state of the CE assessment tools. 

• Developed a comprehensive multi-level circular economy assessment 

framework that can be used for private and public sectors. 

• Developed a first of a kind AI – fuzzy logic enabled CE assessment tool that 

promotes autonomy and reduce errors. 

• Compared the circularity of conventional extrusion methods to friction stir back 

extrusion (FSBE). 

1.5. Thesis Organization 

The following sections of the thesis are organized as follow: Chapter 2 presents a 

review on the role of the implementation of an important I4.0 tool, CPSs, in the enabling 

of CE. This is carried out by discussing each stage of the CE separate sections 

throughout the chapter. Moreover, the chapter shows how the implementation of CPSs 

within each stage contributes to the attainment of different SDGs. Finally, the chapter 

highlights the need of a CE assessment tool. This assessment tool is developed and 

discussed in detail in Chapter 3. The implementation of the developed framework is 

carried out in Chapter 4. Finally, Chapter 5 concludes the thesis and summarizes the 

future work.   
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Chapter 2. Cyber-Physical Systems as an Enabler of Circular Economy to 

Achieve Sustainable Development Goals: A Comprehensive Review 

This chapter presents a thorough review on the applications of cyber-physical systems 

within each of the CE stages, the contribution of different CPS technologies to the 

sustainable development goals (SDGs), and the current state of the CE assessment tools. 

The contribution of different CPS tools to each CE stage is demonstrated through 

several practical examples. In addition, this work reveals how the different CPS 

technologies applications contribute to the attainment of different SDGs set by the 

United Nations. Lastly, it highlights the need of a comprehensive CE assessment tool 

through a literature review on the available frameworks. 

2.1. Circular Economy 

A general CE model is presented in Figure 3. CE can be divided into five stages with 

design and transportation being a common interconnecting stage among all the 

individual stages. The five stages are: sourcing, manufacturing, distribution, use, and 

recovery. However, this paper will include design as a stage which is in place prior to 

manufacturing. Each stage plays an important role in keeping the model circular; 

“leakages” in any of the stages cause a discontinuity, defeating the purpose of the 

circular paradigm. Over the past few years, the implementation of the CE paradigm 

throughout industries has led to the emergence of new supporting technologies that 

have eased the adoption of sustainable manufacturing measures into the CE cycle. This 

type of manufacturing is known as circular manufacturing (CM) [42].  

Similarly, different stages in the economy need to undergo technological updates to 

ease their transformation from a linear economy to a CE. There has always been a need 

to develop all outdated technologies into smart ones. Machines are now required to 

understand and interpret the physical world and to perform tasks flawlessly for better 

service. For that to happen, there should be a system that would obtain information 

from the physical world and translate it in a way that can be understood by machines in 

their cyber world. Fortunately, these types of systems exist and are called cyber-

physical systems (CPSs). In general, Industry 4.0 (I4.0) tools, such as CPSs, the Internet 

of things (IoT), augmented reality, big data, simulation, autonomous robots, cloud 

computing, additive manufacturing, cyber-security, and artificial intelligence can be 

key enablers for CE. Several papers joined more than one I4.0 tools together to increase 
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the capabilities of different processes. For example, dyeing processes were updated to 

save energy using different I4.0 tools [47]. Another paper reviewed smart machining 

processes using machine learning [48]. 

 

 

Figure 3: A general circular economy (CE) model [49] 

2.2. House of Sustainability 

The shared goals of the confluence and integration of CE and I4.0 can be illustrated 

using the House of Sustainability shown in Figure 4. People are considered the 

foundation of the sustainability house, while the purpose is what drives people towards 

their goals. The incorporation of different I4.0 tools within the CE builds a strong 

support that different SDGs can lean on. These goals are the building blocks of 

sustainable development (SD). Together, they achieve different attributes of the three 

pillars of SD: environmental, economic, and social. The House of Sustainability 

provides a clear picture of how I4.0 and CE complement each other. Without the 
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supporting I4.0 tools, CE is not sufficient to achieve SD. Similarly, incorporating I4.0 

tools into a linear economy will not achieve SD. 

 

Figure 4: House of Sustainability 

2.3. Literature Review 

Several papers review the implementation of I4.0 tools in the CE. Very few however 

link the integration of I4.0 technological tools into the CE to the achievement of SDGs. 

Almost none present a comprehensive review in terms of the CE stages while linking 

them to the possible SDGs achieved. Table 1 presents different review papers that 

directly mentions the implementation of different I4.0 tools into the CE. The table 
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presents the I4.0 tools mentioned in the review papers, the CE stages targeted, and the 

SDGs achieved if any.  

Firstly, Kerin and Pham [50] reviewed the literature on the emerging digital 

technologies of I4.0 in remanufacturing. As a conclusion, it was found that such an 

implementation of I4.0 technologies, mainly IoT, VR and AR, contribute to the 

achievement of goals 9.4 and 12.5 of the SDGs. A similar approach was illustrated by 

Dantas et al.  [51] in a paper that presented a review on how the combination of CE and 

I4.0 contributes towards achieving different SDGs. The authors reviewed papers in 

terms of CE practices and not CE stages. As a result, some stages were missed such as 

the sourcing and the usage stages. Out of the 50 papers reviewed, 42 directly addressed 

a CE practice, and 17 out of these 42 papers discussed an I4.0 tool. 

Generally, the authors did not capture all CE stages due to the nature of the review that 

focuses on CE practices rather than CE stages individually. On the other hand, Gupta, 

Kumar and Wasan [52] presented a range of I4.0 technologies implemented on 3 CE 

stages which are the manufacturing, usage, and recycling stages. However, SDGs were 

not covered in the review. Moreover, Leng et al. [53] reviewed different aspects of the 

manufacturing stage focusing on blockchain technologies individually, with no 

reference to the SDGs achieved. Sarc et al. [54] also reviewed the implementation of 

various I4.0 technologies in waste management but without including SDGs in the 

review. Another review by Khan Ahmad, and Majava [55] mapped I4.0 to CE and 

sustainable business model perspectives. 

However, CE was discussed from the implementation perspective and not from stages 

point of view. Also, SDGs were not discussed in this review. Overall, it can be clearly 

noticed that reviews focusing on the implementation of I4.0 tools in the CE fail to 

capture either all CE stages or does not incorporate SDGs. Due to the vast amount of 

I4.0 present, it is very hard to capture how the implementation of these technologies in 

different CE stages achieve different SDGs. Hence, to present a novel review on the 

topic, this paper reviews possible ways the integration of one I4.0 tool, the cyber-

physical systems (CPSs), into each of the CE stages facilitates the achievement of 

different SDGs. Also, it highlights the need of a comprehensive CE assessment tool, 

and reviews some of the tools presented in the field and literature. 
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Table 1: List of review papers on the implementation of I4.0 in CE 

Source Industry 4.0 Tool CE Stage 

 

SDGs 

 

Kerin and Pham 

[50] 

AI, AM, AR, VR, 

IoT 
Manufacturing 9.4, 12.5 

 

Sarc et al. [54]. 

 

IoT, CPSs, 

Blockchain, AI 

Recycling (Waste 

Management) 
Not Included 

Dantas et al. [51] 

AM, AI, 

Blockchain, IoT, 

Simulation, CPSs, 

Cybersecurity, AR 

CE Practices in: 

Design, 

Manufacturing, 

Distribution, 

Recycling 

7, 8, 9, 11, 12, 13 

Gupta, Kumar, 

and Wasan [52] 

IoT, Bigdata, Smart 

factory, Cloud 

computing, AM, 

CPSs 

Manufacturing, 

Usage, Recycling 
Not Included 

Leng et al. [54] Blockchain Manufacturing Not Included 

Khan, Ahmad, 

and Majava [55] 

I4.0-based 

technologies 

CE 

implementations: 

Smart 

cities/factories, 

supply chains 

Not Included 

 

2.4. Cyber-Physical Systems 

As Figure 5 illustrates, CPSs can be defined as systems that “consist of computation, 

communication and control components tightly combined with physical processes of 

different domains such as mechanical, electrical, and chemical” [56]. CPSs enhance the 

potential of physical systems by interacting with physical processes using deeply 

embedded computations and communications that control and monitor physical 

processes through feedback loops. This allows physical processes to affect 
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computations and vice versa [57]. In other words, CPSs provide a real time linkage 

between humans and physical or production systems. This linkage is created using 

sensors, actuators, and computers through a network [58].  

 

Figure 5: Cyber-physical system (CPS) components [59] 

There are six main components needed to fully develop CPSs. These components are 

sensors and actuators that are used to interact with the physical world; a power supply, 

as well as analog and digital hardware components, such as power electronics and 

digital convertors, respectively, a network; and lastly, the heterogeneous software 

microprocessors or microcontrollers that are used for software execution. Due to their 

flexibility, CPS technologies define the newest ongoing industrial revolution by their 

enormous application domains. Such applications include but are not limited to 

communications, consumer services, energy, infrastructure, healthcare, manufacturing, 

robotics, military, and transportation. 

Throughout the literature, authors often discuss IoT and CPSs as interchangeable 

concepts. This is due to the overlap between these two concepts. IoT is when the 

“virtual world of information technology integrates seamlessly with the real world of 

things” [60]. Moreover, IoT involves three main steps that occur iteratively in the 

following order: sensing, thinking, and acting [61]. The aforementioned points apply to 

CPSs as well. However, the major difference between these two concepts is the use of 

the internet. The IoT relies on the internet to link between the virtual and the physical 
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worlds. In contrast, CPSs can use either the internet or a feedback loop. Hence, it is safe 

to say that IoT is a special class of CPS that only uses the internet. However, since this 

is debatable, this paper will focus mainly on CPSs using feedback loops with only some 

examples requiring a minimum use of the internet. 

The CE paradigm is presented as a solution to tackle previously mentioned drawbacks 

of human activities in general and industrialization in particular. Moreover, I4.0 

describes an innovative manufacturing path that transforms conventional 

manufacturing to a more sustainable and conservative model by utilizing different 

technological tools. Both concepts were coined separately on different occasions but 

due to their shared goals, many papers [62, 63, 64, 65, 66, 67] have connected I4.0 to 

CE. As of yet, no one has established a comprehensive connection among and between 

all CE stages with a specific I4.0 tool. Instead, they have focused on only one stage, 

mainly manufacturing or logistics, while keeping the rest of the CE model unchanged. 

In contrast to the conventional CE model, which does not include I4.0 tools, this paper 

presents an up-to-date version of the CE paradigm that exhibits how sustainability can 

be achieved across different CE stages by implementing one of the most important I4.0 

enablers, CPSs. This is presented by highlighting how CPSs impact each stage of the 

CE. In addition, the relevant SDGs that are achieved through the CPS enabled CE are 

revealed and discussed. 

2.5. Intra-Impact 

This section discusses how CPSs can be embedded into each stage of the CE model. 

This highlights the potential of CPSs for enhancing each stage of the CE in terms of 

efficiency and sustainability. 

2.5.1 Sourcing 

Sourcing is the first stage of the CE. Most of the raw materials needed by manufacturers 

are obtained through the use of different extraction processes in the sourcing stage. The 

main challenges faced in this stage are the excessive exhaustion of raw materials, the 

environmental impact, as well as the health risks involved in the extraction process. The 

implementation of different I4.0 enablers, such as IoT and big data, play an important 

role when it comes to the optimization of resources and decision-making processes. 

However, this section will present how CPSs alone could impact resource mining. 
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2.5.1.1. Autonomous mining operations 

CPSs can be harnessed to tackle health risks posed during mining and other methods of 

extracting resources. For example, toxic levels of arsenic present in gold mining areas 

in the Amazon pose health risks to miners and locals [68]. To reduce human exposure 

to arsenic, CPSs could be implemented to automate some of the mining tasks. In his 

paper, Wang et al. [69] presented the Human-Robot collaborative assembly. This 

system was originally proposed for manufacturing facilities. With minor modifications, 

the Human-Robots assembly can be employed and directed throughout dangerous 

mining processes, thus creating a safer working environment, and reducing the hazards 

that the miners are exposed to. It also provides an equal opportunity for laborers since 

physical work would be minimal as the operation of such robots is relatively easy.  

2.5.2  Design 

Constant design improvements and a tailored customer experience are the new focus of 

many industries [70]. For these reasons, it was essential to allocate I4.0 tools in the 

design of products. CPSs can be used extensively to aid designers by providing them 

with data that can be used in predicting their design performances or by presenting 

different designs using previous knowledge. 

2.5.2.1. Design information feedback system 

One of the most promising of the proposed approaches for the enhancement of product 

designs is through “the information feedback, provided through CPSs within 

production facilities” [71]. In this approach, data gathered in the production phase is 

transformed into usable knowledge for design improvement. Figure 6 presents an 

approach which begins with sensors and ends with design rules. To explain further, the 

authors’ approach is to use CPS sensors to gather data which is then classified so that 

weaknesses or failures within the process can be identified. Hence, CPSs can provide 

information about irregularities in the process as well as distinct failure states. Through 

the use of a knowledge base that contains an existing correlation between failure and 

cause, a reported failure state and its root causes can be deduced. The cause is then 

assigned to the feature responsible for the cause through another knowledge base. 

Created by engineers and designers, the last knowledge base provides information on 

how to avoid detected failures throughout the process of production. 
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Figure 6: Knowledge feedback to a design process via CPS [71] 

2.5.2.2. Testing and simulation assistance in product design 

It is important for designers to be able to test their designs before they are produced. 

For this reason, it is necessary to develop testing and simulation equipment and 

procedures that accomplish this task in the safest, cheapest, and most timely fashion.  

Well-known aircraft testing platforms were made possible by CPSs. One of these 

platforms is the wind-tunnel, which is a widely employed technique used for testing 

full or scale model components and guides detailed design decisions in thermal-fluid 

systems [72]. There are various types of wind tunnels, each equipped with a different 

set of sensors for obtaining data. For example, climate tunnels, which are used to 

simulate different environmental conditions, are equipped with different sensors than 

those of smoke tunnels, which are used for flow visualization. Stability tunnels, which 

are used to study flight dynamics, require different sensors than icing tunnels, which 

study the effects of ice formation on aircraft wings [72]. A knowledge of the forces 

exerted on aircraft bodies is critical to aerospace designs; hence, piezoelectric sensors 

are attached to the aircraft body to measure the dynamic and the quasi-static forces 

exerted on the aircraft body at different locations.  

Moreover, acoustic pressure microphones are used to measure dynamic and acoustic 

pressure in aircraft and rocket applications [73]. These sensors, along with cameras, 

angle encoders, motors and other components are illustrated in Figure 7. They equip 

designers with valuable and critical data without the need to implement a test on the 

actual aircraft; instead, a scaled model is used. This cuts down the costs and eliminates 

different hazards caused by design failures. 
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Figure 7: Wind tunnel equipped with cameras and sensors representing a CPS 

2.5.2.3. Design for manufacturing and assembly 

Design for manufacturing and assembly (DFMA) is a method of designing products 

that aims to ease the manufacturability and assembly of the components of the product. 

The main aim of DFMS is to reduce the materials used and the labor costs, which in 

return reduces the overall costs of the product assembly and the production. CPSs can 

assist with the decisions made by the designers. As seen in Figure 8, the manufacturing 

for assembly (MFA) procedure is carried out in five main steps. Firstly, designers work 

on reducing the number of parts required for the initial design. Secondly, the required 

or practical parts are determined and counted. Afterwards, the overall product quality 

is determined based on the product requirements. In the next step, the designers 

determine the proper assembly methods. Lastly, the design is finalized and executed for 

production. During the aforementioned process, many decisions are made by the 

designers. These decisions are based on specific criteria, constraints, material 

properties, and other considerations. This process would require lots of planning time, 

and would result in human errors, production costs for any faulty designs, and the 

operating time for the machines. To avoid this, an architecture similar to the “design 

information feedback system” could be utilized, in which data presented in the 

“Knowledge” section of Figure 8 is interpreted by CPSs consisting of software 

applications, embedded sensors, and feedback loops. The CPSs then make a series of 

decisions, which include the following: identifying parts that can be standardized; 

identifying quality opportunities where quality could be compromised if possible; 

identifying handling opportunities based on the availability of machines and assembly 

lines; identifying insertion opportunities; identifying opportunities to reduce secondary 

operations, such as welding; and finally, analyzing data to present the new design. 
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These decisions are then presented to the designers for a final decision. As a result, 

manufacturers save substantially on costs that were previously spent on product design 

[74, 75]. 

 

Figure 8: Design for manufacturing and assembling the CPS 

2.5.3 Manufacturing 

Manufacturing is an integral part of CPSs; for example, the integration of CPSs in 

manufacturing produces cyber-physical production systems (CPPSs). These systems 

combine the advancements in communication and information technologies as well as 

those in computer science with advances in manufacturing science technology and the 

integration of production logistics [56]. In other words, “CPPSs consist of autonomous 

and cooperative elements and sub-systems that are connected based on the context 

within and across all levels of production, from processes through machines up to 

production and logistics networks” [76]. The use of CPSs could solve many critical 

challenges in manufacturing, such as quality control, defect prediction, energy 

consumption, machine health monitoring, and the increasing need for direct human – 

machine collaboration and most importantly the making of smart factories [77, 78, 79]. 

2.5.3.1. Quality control and quality assurance 

Quality control (QC) and quality assurance (QA) are procedures carried out by 

manufacturers on their products and processes respectively to ensure adherence to 

standards and quality criteria, and to meet the requirements of customers and clients. 
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Internally, manufacturers should assess the quality of their product after each stage 

preventing defective products from passing into the next stage. Lee et al. [80] proposed 

an “architecture framework to implement the CPPSs cooperating with other 

manufacturing information systems for quality prediction and operation control in 

metal-casting processes” [80]. For example, engine pistons are made from aluminum 

that is firstly heated and melted inside a furnace where additional elements are added 

to form an alloy. The molten alloy is then injected into a casting machine where it 

undergoes cooling and solidification and is transformed into a cast. This is followed by 

other stages, such as heat and surface treatments, machining and finally, assembly. To 

save time and prevent unnecessary machine operation hours, CPSs could be 

implemented to detect defects after each stage to automatically prevent defective 

products from going onto the next stage using machine vision [81]. According to Lee 

et al. [80], the main product defects in the aforementioned manufacturing process are 

generated in the metal casting process where more than 90% of these defects are due to 

cold shuts and bubbles. Knowing that these defects are mainly caused by temperature 

variations throughout the process, the authors proposed a CPS consisting of a K-type 

thermocouple sensor attached to the mold and connected to the controllers to collect 

the temperature of the casting process, combined with a programmable logic controller 

that collects other operational data, such as the time taken for the casting process to be 

completed. Data collected over a period of time was processed using a series of software 

that was able to achieve a defect prediction rate of 90% and reduce the total monthly 

operating hours by 18.5%.  

Externally, products are either tested individually or in batches after reaching the final 

form depending on their applications. Highly sophisticated products that have critical 

applications are usually tested individually to prevent any failures due to manufacturing 

faults and defects throughout its life span. For this reason, testing strategies similar to 

those of the wind tunnel highlighted earlier are used. However, due to the high cost of 

this technique and its very low efficiency in mass production testing, other forms are 

being implemented that provide autonomous testing and elimination of defective 

products. Another strategy is product health monitoring, which will be highlighted in 

section 2.5.3.3. 
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2.5.3.2. Quality control and quality assurance 

Machine health monitoring in manufacturing facilities is essential for quality assurance 

and accuracy of the manufacturing parts [82]. Any unpredicted or sudden breakage of 

tools may cause a huge disturbance along the production line. Caggiano et al. [83] 

proposed a cloud-based CPS architecture for machine smart monitoring that aims to 

detect tool wear and tool breakage. Such systems can be divided into a cyber-physical 

based part and a cloud-based part, which will be discussed in a later section. The cyber-

physical part consists of the physical machines including the tools used and the sensors. 

These sensors are usually dynamometers for measuring forces, accelerometers for 

measuring vibrations, electric current sensors, etc. These sensors are fitted to capture 

information for tool condition monitoring, such as the lathe-mounted multiple sensor 

system used for turning process monitoring [83]. Tool wear can be recognized by 

accelerometers that detect the increasing amplitude of vibrations that is caused by the 

accumulation of tool wear. Moreover, tool breakage can be also detected using an 

accelerometer attached at the tool shank, which has been proven to be the most suitable 

place for the sensor attachment. The accelerometer is very sensitive and could easily 

detect a change in the contact between the tool tip and work piece. A similar approach 

by Villalonga et al. [83] includes the design of a condition-based monitoring 

architecture for CNC machine tools. This approach provides solutions to monitor the 

machine’s elements and components and predicts failure patterns during the life cycle 

of the machine tool. 

2.5.3.3. Product health monitoring 

Product maintenance is one of the key factors to increasing the life span of any product. 

Automotive manufacturers set fixed time intervals for customers to bring in their cars 

for maintenance regardless of the condition of the car. This is considered a safety 

measure that is not only implemented in the automotive industry but also in the 

aerospace industry. Health monitoring of aircrafts is very critical and directly 

contributes to the safety of air travel. Yet many accidents occur due to faults and defects 

that are not discovered during maintenance. For example, an investigation of a fighter 

aircraft crash by Ejaz et al. [84], discovered that the crash was due to the failure of the 

compressor rotor. A crack had initiated from machining marks on the disk then 

propagated along the machining mark causing fatigue.  
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A similar accident occurred due to fatigue in the central ball bearing of the compressor 

region that had been inspected five hours prior to the incident.  The inspection showed 

that the “parameters measured was within the specified limits” [85].  

The aerospace industry has had very noticeable improvements throughout the past 

decade. As seen earlier, inspection is not enough to label an aircraft safe to takeoff. CPS 

systems are now being implemented to provide pilots with real-time aircraft data 

monitoring. For example, Takeda et al. [86] proposed fiber Bragg grating (FBG) 

sensors for the long- term health monitoring of large-scale composite wing structures. 

By using FBG sensors, “the barely visible impact damages could be detected because 

the shape of the spectrum is severely distorted by the strain change due to the 

occurrence of damages”. Applying CPSs not only on aircrafts but on any fatigue 

exposed structure could substantially decrease the risk of structural failure and allow 

real-time data to be presented to service centers. This means that aircrafts could be 

taken to maintenance centers whenever CPSs assess that it is required. As a result, this 

could prevent many accidents such as those mentioned earlier. Also, different methods 

combining CPSs and AI for product inspection has been proposed such as using 

convolutional neural network (CNN) for inspecting method for defective casting 

products [87]. 

2.5.3.4. Smart factories 

Manufacturing is one of the highest energy consuming stages throughout the CE model. 

Currently, manufacturers are strongly leaning towards the adoption of energy saving 

strategies [88, 89, 90, 91]. One way of approaching a low power consumption 

manufacturing model can be through CPSs. For example, a proposed CPS based on 

multi-agent system (CPMAS) technology produced an intelligent demand-side 

management system that was able to reduce power consumption by 35% in the month 

of July in a building of approximately 2800 m2. The proposed system relies intensively 

on the feedback loop of the CPS. The proposed system is composed of four different 

areas each with a specific task. These areas are the user area, the interface area, the 

analysis area, and the knowledge area. In general, sensors in the user area monitor the 

rooms and send data to the corresponding room agent in the interface area. This acts as 

an interface between the room and the system by producing detailed data of the user’s 

habits. The data is then sent to the interface area where it is evaluated for the extraction 
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of additional information. A proposed solution is then presented by each agent 

accordingly. If a critical condition is detected, it will be sent to the analysis area for the 

coach agent to evaluate proposed solutions and choose the most suitable one, which is 

sent back to the interface area. Lastly, the knowledge area stores the data related to 

power consumption, which includes solutions as well as the user’s preferences from 

both areas, to deduce additional information [92]. Such systems can be implemented in 

manufacturing facilities on a larger scale that takes into consideration all the power 

equipment used in manufacturing as well as power consumption habits, such as cooling, 

heating, and lighting. Depending on the need, different sensors are placed in the user 

area, which contains rooms or sections in the manufacturing facility. The main task of 

the sensors is to obtain data from each room or section, such as recording temperatures 

throughout the day, measuring the light intensity and recording the user’s preferences 

at different times. As mentioned earlier, the collected data is then sent to the 

corresponding room agent in the interface area that acts as an interface between the 

room and the system by producing detailed data of the workers’ habits such as the 

preferred temperature, the light intensity, and the working times. The obtained data is 

then sent to the interface area where it is evaluated for the extraction of additional 

information, such as the number of people available at a specific time of the day. 

Moreover, CPS manufacturing architecture could provide self-predicting and self-

aware machine health monitoring systems. This architecture acquires data needed to 

generate meaningful information and provide a decision-making process for the end 

user [64]. Hence, machine health monitoring data can be obtained directly from 

machines. These data are processed, and a proposed solution is then presented by each 

agent accordingly. For example, when the number of people in the room changes, the 

solution is to increase or decrease the cooling or heating depending on the season; when 

no people are in the room, the electricity is turned off, and so on. In the case of a critical 

condition being detected, such as a sudden breakdown of a machine, information is sent 

to the analysis area for the coach agent to evaluate proposed solutions. The coach agent 

chooses the most suitable solution and sends it back to the interface area, which acts 

accordingly by either solving the problem if it is solvable or involving a human factor 

by automatically emailing or messaging the designated engineers or supervisors on duty 

and notifying them about the critical case. Overall, this could substantially reduce the 

amount of energy by omitting the human factor from controlling the power 
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consumption and relying on the smart CPS to optimize the use of energy without 

affecting the comfort of the employees. Moreover, machine health monitoring allows 

for early machine diagnoses that provide time for the manufacturers to find solutions 

and avoid delays that could be caused if the machines were to suddenly stop working 

due to undetected problems. Figure 9 presents a general model that is based on [92] 

using a schematic of the proposed agency with an emphasize on other CPS components, 

such as self-aware, self-predicting sensors, actuators, as well as a feedback loop [64]. 

 

Figure 9: Proposed CPS of a manufacturing facility based on the model proposed in [92] 

2.5.3.5. Smart manufacturing performance measurement 

Smart manufacturing requires smart systems. CPSs are considered smart systems that 

integrate smart software applications with information and communication 

technologies that simultaneously optimize different performance metrics to deliver on-

time, customized, high-quality products. In order to test and quantify the “smartness” 
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of a manufacturing facility, specific performance metrics should be measured. Such 

performance criteria are productivity, quality, agility, and sustainability [93]. Most of 

these performance metrics can be easily collected and recorded using different types of 

sensors that can routinely collect all kinds of operational level data. This enables 

factories to have a real-time assessment of their production systems. Moreover, it is 

now possible to quantify the sustainability of manufacturing processes using CPSs that 

obtain the different measurements indicated by the “Standard Guide for the Definition, 

Selection, and Composition of Key Performance Indicators to Evaluate Environmental 

Aspects of Manufacturing Processes”. Integrated CPSs then interpret the data and 

prepare a detailed report that includes all the parameters as well as efficiency scores of 

different manufacturing processes, for manufacturers to act upon, so they can increase 

their sustainability score. 

2.5.3.6. Human-robot collaboration  

Many manufacturing tasks require the collaboration of humans and robots. This has 

been increasingly implemented in many assembly lines. Sometimes human brains are 

needed to perform some tasks. However, humans lack precision. To have both human 

brains and precision at the same time, CPSs could be the best solution manufacturers 

could use. For example, a symbiotic human–robot collaboration is another 

implementation of CPSs in manufacturing. In this situation human-robot interactions 

and collaborations are made possible in areas such as dynamic task planning. Robots 

can be instructed by humans using gestures, signs, or speech during tasks such as 

collaborative assembly. As a result, resource efficiency and productivity are enhanced 

[57, 69].  

2.5.3.7. Autonomous mobile material handling vehicles 

Moving parts and materials to their assigned assembly station in a safe and timely 

manner is one of the challenging logistical problems for most assembly lines and 

systems. Mass customization has made that task even more challenging since the right 

part should be delivered to the right assembly line at the right time. This task would 

require a huge labor force as well as sophisticated scheduling that is very hard to 

achieve manually [94]. CPSs provide a solution in the form of autonomous mobile 

material handling vehicles that are widely referred to as “Automatic Guided Vehicles” 

(AVGs). These autonomous vehicles are being implemented and are almost a standard 
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device in most assembly lines. Generally, automating material logistics and scheduling 

in an assembly line ensures safe material handling, a fast response to customized orders, 

and achieves zero errors if correctly operated. There are many types of AVGs in the 

market today and each type carries out different tasks in a manufacturing facility. For 

example, there are automated lift trucks, platform AVGs, heavy load AVGs and AVGs 

for the automation of assembly lines. Similarly, autonomous vehicles are being widely 

used in warehouses for product distribution. 

Some other applications of CPSs in manufacturing are cyber-physical modules for 

machine tools, plug-and-work applications, automated generation of process plans, 

scheduling with alternative routings in CNC workshops, adaptive scheduling through 

product-specific emergence data, cyber-physical support for maintenance strategies, 

and cross-company information exchange for an adaptive production control based on 

early warning information [76]. It can be noted that the number of applications of CPS 

in manufacturing is unlimited. This is mainly due to the flexibility of these systems. 

2.5.4 Distribution 

As mentioned earlier, distribution is an essential stage in any economy whether it is 

linear or circular. Suppliers must distribute their products in a timely manner without 

any delays. Many distributers already use different CPSs, such as on-time tracking 

systems. However, there is room for more. Most difficulties faced by distributers 

involve complex distribution and transportation networks, such as prior planning for 

drivers, and heavy traffic that can cause delays. These factors have a great impact on 

the environment and product distribution management. 

2.5.4.1. Using unmanned aerial vehicles in distribution 

To solve traffic jams for short distance deliveries, unmanned aerial vehicles (UAVs), 

more commonly called “drones,” are a typical CPS  [95] that can be used over short 

distances for low weight distributions. Using drones in deliveries eliminates many of 

the negative impacts a normal delivery would have on the environment. UAVs 

operating with clean energy, such as solar energy, would reduce carbon dioxide 

emissions caused by conventional means of delivery as well as save substantial time 

during peak hours [96]. The main problem associated with drone delivery systems is 

due to the limited payload. The payload is the load that the drone can lift. Usually, 

drones with a higher payload are bigger and more costly and their risk of falling or 
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failing suddenly makes them unreliable for deliveries. Currently, Amazon aims to 

implement drone deliveries for packages that weigh 5 pounds (2.268 kg) or less, with 

an estimated delivery time of 30 minutes [97]. The technology is still in the research 

phase and has many constraints, such as regulations, safety, and most notably, the 

design of the drone itself. However, research in this field is evolving quickly with 

encouraging results that indicate that this promising technology might revolutionize 

logistics.  

2.5.4.2. Data communication virtual platform 

Other challenges faced by suppliers and distributers are the complex production and 

transportation networks and the occurrence of disturbances. To overcome these 

problems, Farzzon et al. [98] presented a CPS improved supply chain model. The model 

highlights the use of CPSs in “data’s communication virtual platform” which aims to 

represent a common world for suppliers, manufacturers, and distribution centers, 

permitting them to access different data regarding supply and demand as well as the 

available stock. In the proposed model the data flow between different stages of the 

distribution stage is facilitated by CPSs by providing a common data center. 

2.5.4.3. Path decision ant colony algorithm 

Another way of implementing CPSs in logistics is through the use of a CPS-oriented 

intelligent logistics path decision system [99]. The proposed system uses an algorithm 

called an “ant colony algorithm” (ACA). The system is derived from the behavior of 

ants foraging. Basically, ACA mimics how ants work using distribution centers as an 

ant nest where each ant is a distribution vehicle and the food for the ants serves as a 

distribution node. Ants determine the next distribution node based on the concentration 

of pheromones and the visibility of the path: the higher the visibility and the 

concentration of the pheromones, the shorter and more optimal the path is. Based on 

this, P indicates the probability of the next node being selected. A larger P indicates a 

greater possibility of being selected and a greater possibility of forming an optimal path. 

It should be noted that the virtual pheromones used in the algorithm have the same 

volatility as the pheromones released by ants. If a specific path is not being selected 

often, the pheromones will slowly evaporate leaving very low concentrations. This 

indicates that the path needs to be eliminated since it is not accessed often. In contrast, 

there will be more pheromones on a frequently accessed path, which indicates that this 
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path is more convenient and more likely to become a distribution node. Similarly, ACA 

bases its selection of the optimal distribution path through different positive feedbacks.  

The collected positive feedbacks provide an iteration of the optimal. In the end, the 

optimal path is chosen by finding the optimal solution for the optimal choice of the 

logistics distribution path [99]. Through the use of such an algorithm, distributers could 

easily overcome the complexity of transportation routes saving substantial time, cutting 

down costs, and reducing greenhouse gas emissions. 

2.5.5 Usage 

Similar to manufacturing, consumers experience a handful of CPSs throughout their 

daily lives. The main purpose of using CPSs on the consumer level is to enhance their 

experiences with products by omitting simple but time-consuming tasks. Not only that, 

but CPS could also aid people with extensive spinal injuries by helping them to easily 

interact and merge with today’s world of fast-growing technologies. Furthermore, CPSs 

provide a new means of health monitoring strategies in the form of portable devices. 

CPSs also help connect the usage stage to the rest of the CE stages, since most of the 

time the CE cycle ends at this stage due to the very limited interaction between 

consumers and other CE stages. 

2.5.5.1.  Neuralink 

People with extensive spinal injuries face many difficulties when interacting with 

today’s technologies. Most of the time, simple tasks such as typing are considered 

difficult if not impossible. However, to make this possible, a bridge is needed to connect 

people with their devices without having them use their hands. For example, a person 

would be able to type without using the keyboard, would move the cursor without 

moving or touching the mouse, or even drive a car by just thinking about it. CPS has 

changed this from science fiction to reality. This can now be done using EEG-based 

non-invasive brain interfaces using neural implanting that would allow people to do 

various tasks by just thinking about them [52]. Announced by Facebook, the “typing-

by-brain” project promises to enable people to type a 100 words per minute [100], in 

contrast to the record of eight words per minute accomplished by Stanford University 

using a brain-computer interface [101]. Another initiative is the “Neuralink,” which has 

an initial goal of helping people with extensive spinal injuries regain control of 

computers and mobile devises. In doing so, it Is hoped that various neurological 
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disorders can be treated, and people will be able to communicate easily through text or 

speech synthesis, while sensory and movement function is restored and new ways of 

interactions both between humans and between humans and technology are created. 

This is accomplished through micron-scale threads that are inserted into areas of the 

brain that control movement. Each thread contains many electrodes and connects them 

to an implant called the Link, which is a sealed device that processes, stimulates, and 

transmits neural signals [102]. The potential implementations of such CPSs are 

enormous. For example, people could drive cars using their brains, which would 

significantly reduce the driver’s reaction time since the car would respond directly to 

the driver’s thoughts. When the technology is ready, it could be easily implemented in 

electric cars. Moreover, simple tasks such as recording an event on a calendar, 

controlling the TV, lights, heating, cooling etc. would be just a thought away. 

2.5.5.2. Portable health monitoring devices 

Nowadays, sensors can be embedded into very small devices such as watches. Watches 

with sensors and computing capabilities are labeled as smart watches. Through these 

watches, a person can obtain a continuous reading of their sweat glucose [103] and 

measurements of physiological parameters, such as heart rate, galvanic skin resistance, 

and temperature [104]. As well they can monitor health in home-based dementia care 

[105], monitor respiratory rate and body position during sleep [106], monitor symptoms 

in advanced illness [107], and even detect the early symptoms of COVID-19 [108]. The 

capabilities of these devices are endless and are only constrained by innovations in the 

electromechanical field. 

2.5.5.3. Adaptable electronics 

Smart electronics, such as televisions, smart phones, smart fridges, and smart homes, 

can easily adapt to the person using them. Motion sensors and accelerometers in smart 

phones detect and record movements throughout the day. This data is interpreted and 

is used to customize user experiences. For example, a smart phone is capable of 

understanding that you are having lunch by obtaining your location, the time of day, 

and your usual activities during the same time on previous days. Your phone could then 

send you a notification reminding you that it is lunch time and could even suggest a 

restaurant. The same applies to smart televisions that suggest movies based on previous 

activity and recorded preferences. Machine learning facilitated by CPSs provides a new 
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means of people-machine interactions in the effort to create a smoother and friendly 

user experience. 

2.5.6 Recycling 

To maintain the circular nature of the economy, recycling should be optimized to return 

as much material as possible into the economy and reduce outputs to landfills. There 

have been many proposed waste collection processes that implement CPSs.  Different 

papers have proposed CPS-based smart waste collection systems that integrate cyber 

and physical spaces to compute, control and communicate all components of waste 

management, while  others have proposed CPS-based recovery methods for waste 

electrical and electronic equipment (WEEE) [109] [110]. Initially, a “digital twin” 

method was proposed by NASA [109]. Simply stated, “It indicates the simulation of an 

(aerospace) vehicle or system that uses the best available physical models, sensor 

updates, fleet history, etc.”  The main point of using a digital twin in WEEE 

management is to merge data from the physical world and the software system in the 

cyber world. However, the proposed idea requires an interactive collaboration between 

all stages of the CE with almost all Industry 4.0 enablers working simultaneously to 

serve its purpose. Hence this topic will be discussed further in the inter-impact section 

of this paper. Another approach aims to deploy CPS components, such as sensors and 

actuators, to improve the end-of-life processing of electrical and electronic equipment 

(EEE) [110]. This approach mainly relies on sensors, such as radio frequency 

identification tags (RFID), to allow the monitoring of waste throughout the waste 

management process. 

2.5.6.1. Radio frequency identification (RFID) waste sorting system 

A full automation of the recycling process would require very smart and adaptive 

technologies. Waste sorting is a critical part in recycling. Each type of material needs 

to be treated differently. Aluminum cans are melted at very high temperatures, while 

doing the same to plastics poses high environmental and health risks due to the 

poisonous fumes that are emitted. Hence, it is critical to sort materials before applying 

any specific treatments. For that reason, radio frequency identification can be used. 

RFID is a tag that is very flexible and can vary in size and shape. These tags can store 

data that can be read when scanned by an RFID reader. RFID readers can be attached 

to sorting machines, which can then read the data from each object to identify its 
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material, thus making it easier for the machine to sort. For example, aluminum cans can 

be easily identified. WEEE can also be easily identified. Organic materials will not 

usually have these chips so it can be sent directly to farmers to use as fertilizers. 

Moreover, this also ensures that medical waste is treated separately and with extra care 

and that industrial materials are returned to manufacturers for remanufacturing and 

reuse. There are available waste sorting techniques and machines; however, these 

machines are not efficient when exposed to mixed waste and only work with bulk. 

Hence, CPSs would provide an easily implemented and efficient solution for waste 

sorting and management. 

2.6. Sustainable Development Goals 

Sustainable development goals (SDGs) are 17 interlinked goals set by the United 

Nations in 2015 and are designed to “promote prosperity while protecting the planet. 

They recognize that ending poverty must go hand-in-hand with strategies that build 

economic growth and address a range of social needs including education, health, social 

protection, and job opportunities, while tackling climate change and environmental 

protection” [111]. Summarized in Table 2, this section presents how each technology 

discussed earlier within each CE stage contributes to different SDG. 

2.6.1 Sourcing 

The automation of mining in the sourcing stage directly achieves the third goal as its 

main goal is to ensure a safe working environment by eliminating risk factors in the 

mining process. The implementation of CPSs in the sourcing stage also contributes to 

the eighth goal as it eradicates forced labor, slavery, and human trafficking by 

eliminating the human factor in the mining process. As a result, it promotes decent work 

and economic growth. It also directly achieves the ninth goal of industry: innovation 

and infrastructure. An important advantage for automation of the mining stage is a 

significant reduction in inequality, mainly in the form of gender inequality, as the 

physical factor, in which males usually dominate, is eliminated since the mining 

processes are controlled through computers. Hence, automation of the mining stage has 

a direct impact on fifth SDG goal as well. 
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2.6.2 Design 

The design stage targets several SDGs as it determines how the product will be 

manufactured, used, and disposed. Firstly, the design information feedback system 

achieves the ninth goal of Industry, innovation and infrastructure, and the twelfth goal 

of reasonable consumption and production since data and knowledge is used to verify 

the final design of the products before approval; thus, fewer malfunctioning products 

are manufactured. Energy savings, cost reductions, and an increase in the lifetime of 

the products and goods are achieved. As a result, it indirectly contributes to attaining a 

sustainable environment, which is the eleventh SDG. Similarly, testing and simulation 

assistance in product designs achieve the same goals. The use of simulations reduces 

emissions caused by actual testing of sophisticated products such as planes or cars. 

Most of the time, individual parts can be tested in a controlled environment without the 

need of real-time operation. This directly contributes to the thirteenth goal of climate 

action. Design for manufacturing and assembly also targets the 9th, 11th 12th and 13th 

goals for similar reasons. In addition, through the elimination of many unnecessary 

materials and manufacturing processes, the stress on the environment is reduced, thus 

indirectly contributing to the 14th and 15th goals of life below water and life on land, 

respectively. Moreover, it provides the easiest, cheapest, and most efficient route for 

product manufacturing and assembly contributing directly to the decent work and 

economic growth. Overall, the design stage in a CE can achieve at least seven of the 

SDGs. 

2.6.3 Manufacturing 

The manufacturing stage contributes to the most goals among the CE stages. it is safe 

to say that all the CPS technologies in this stage achieve the ninth goal. It can be 

observed that the implementation of CPSs in this stage contributes either directly or 

indirectly to the good health and well-being of employees and customers, thus 

achieving the third goal. Similar to automation in the sourcing stage, manufacturing 

process automation also contributes to the fifth and tenth goals of gender equality and 

reduced inequalities, respectively. Moreover, since smart factories and smart 

performance measurements serve the same purpose, both achieve the same SDGs which 

are the 3rd, 7th, 9th, 11th, 12th, and 13th goals, while indirectly contributing to the 14th and 

the 15th goals. This is mainly due to the intense reliance of smart factories on clean 
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energy for operations. As well, this can be integrated into smart and sustainable cities, 

with reasonable on-demand production that include highly efficient and clean 

production systems. This reduces greenhouse gas emissions and subsequently, the 

stress on life both on land and below the water. Overall, applying CPSs in 

manufacturing in a CE can achieve at least ten of the SDGs. 

2.6.4 Distribution 

Similar to the manufacturing stage, the ninth SDG can also be considered a common 

achievable goal among the implementation of different CPSs in the distribution stage. 

Moreover, the use of UAVs eliminates inequalities as its operation can be done using 

controllers or built-in algorithms, which can be handled by people with disabilities. If 

UAVs use electricity generated from clean energy, they will directly achieve goals 14, 

15 and 16. To continue, the path decision of the ant colony algorithm chooses the most 

convenient, safest and shortest paths for drivers to follow, thus achieving the 3rd, 13th, 

14th, and 15th SDGs. In addition to the ninth SDG, the data communication virtual 

platform achieves the eleventh goal through enabling a common data sharing platform 

that allows multiple vendors and distributors to manage inventories in a sustainable 

manner. 

2.6.5 Usage 

Several CPSs can be deployed to achieve certain SDGs at the usage stage. For example, 

Neuralink and different portable health monitoring devices directly contribute to the 

third SDG of good health and wellbeing. Neuralink and adaptable electronics can also 

contribute to the fourth SDG if utilized in education by either helping people with 

severe spinal injuries with their education or personalizing education based on a pupil’s 

needs and interests.  With regards to the product, however, the user determines if it will 

achieve different SDGs by how it is used and disposed of. This is unlike the service 

point of view discussed earlier, in which the technology determines the goals to be 

achieved. 

2.6.6 Recycling 

The projected recycling stage would serve its purpose by returning the materials into 

the CE. The use of RFID tags could significantly enhance and increase the efficiency 

of the recycling process, which would directly contribute to the enhancement of the 
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circular economy and achieve the eleventh SDG: sustainable cities and communities. 

Recycling also contributes to the thirteenth SDG (climate action) by reducing mining 

and different manufacturing processes needed to make new products. Eventually, 

greenhouse gas emissions would be lowered and waste disposal in the seas decreased, 

protecting the lives of different species under the sea and on land as targeted in the 

fourteenth and fifteenth SDGs. 

Table 2: SDGs achieved by the implementation of different CPSs along with each of the CE stages 

((x) - Directly achieved (0) - Indirectly achieved). 

 

 



43 

 

2.7. CE Assessment Tool 

The adoption of an I4.0 enabled CE has been proven to be an effective solution in 

tackling many of modern-day accumulated complications caused by industrialization 

and human activities since the first industrial revolution in the 17th century.  

Many developed countries have shifted from the linear conventional economy model 

to a CE model. With its economic, social, and environmental benefits, many developing 

nations are to follow. With such foundations, nations could easily improve their wealth, 

prosperity, and abundance. However, to what extent can the implementation of these 

tools contribute to the CE? 

As reviewed earlier, I4.0 effectively contribute to the circularity of the economy [112]. 

Many other procedures, standards, and factors also play an important role in 

determining the circularity of the economy. However, depending on each individual 

case, some factors may impact the circularity more than other. As stressed by the 

economist Peter Drucker, improvement, or manageability of a system, implies the 

measurability of that system [113]. In order to be able to capture the progress made 

towards circularity, an assessment tool should be established. For it to be effective, it 

should be able to measure the effectiveness of the CE of a wide range of sectors. So far, 

there are no common accepted procedures to measure CE performance [114].  

Literature shows that deep research on CE assessment tools and indicators is still 

lacking [115]. Also, there is a need to establish a set of indicators to monitor the 

transition to CE [116]. Very few CE indicators frameworks are available, most of them 

fail to capture some important dimensions such as policy implementation towards CE 

[117]. Literature lacks a comprehensive scaling/rating system that accounts for all CE 

dimensions including non-manufacturing ones such as customers’ contributions, 

policies, regulations, and technological advancements.  

An effort was made by Sassanelli et al. [118] to highlight different assessment tools in 

a systematic literature review that showed some potential in this field. However, none 

of the presented assessment procedures are comprehensive, many fail to capture all the 

dimensions of the CE at once, and many others are subjective. To illustrate, there are 

several tools intended to assess the CE performance on different scales. A well-known 

tool is Circulytics® by the Ellen Macarthur Foundation [119]. The tool measures the 
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CE performance of company’s material and water flow and other services provided 

along with energy use. This tool however is a company-level (micro-level) measuring 

tool and cannot be implemented on other CE levels such as the macro and meso levels. 

Also, the tool requires direct input from users, which adds an undesirable level of 

subjectivity to the results.  

Another assessment tool is the Cradle to Cradle Certified® by the Cradle-to-Cradle 

Products Innovation Institute [120]. Similarly, the tool is used to assess products made 

for the CE (micro level) and cannot be used on the macro or meso levels. Moreover, 

the tool lacks flexibility even on the product level as it does not assess products that 

consumes nuclear energy or uses non-renewable resources. Another tool proposed by 

Chun-rong & Jun, 2011., assesses regional CE based on matter element analysis [121]. 

Like the previous tools, it only assesses CE on a meso scale and uses a basic grading 

system. IFIXIT is another tool that assesses the repairability of mobile devices, which 

directly contributes to the recycling stage of the CE, based on a specified criterion. This 

score however cannot be used individually to assess circulatory of mobile devices but 

gives valuable insights on whether the device can fit into a CE or not. Table 3 presents 

the previously discussed assessment tools along with their limitations.  

2.8. Summary 

This chapter highlighted the need of an assessment tool that measures the circulatory 

on different scales of the economy (micro, meso and macro). It can be concluded that 

the area of CE assessment tools lack the following: 1) A comprehensive I4.0 tools guide 

to facilitate and ease their implementation along the CE; 2) A universal tool to assess 

the readiness of a facility or a country to adopt a CE model and grade it based on the 

efficiency of adoption, the overall products quality of the products, and the potential 

improvements, and 3) A set of measures and standards to qualify SDG achievements 

and act as a guideline for different operations. This will be achieved through the 

development of a comprehensive multi-level CE assessment framework in the next 

chapter of this thesis. 
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Table 3: CE assessment tools available and their limitations 

Source Assessment tool Limitations 

Ellen MacArthur 

Foundation [119] 
Circulytics® 

- Not a comprehensive 

tool, compatible for 

measuring companies CE 

performances only 

(Micro-Level) 

Cradle to Cradle Products 

Innovation Institute  [120] 

Cradle to Cradle 

Certified® 

- Not a comprehensive 

tool, compatible for 

measuring products CE 

performances only 

(Micro-Level) 

- Does not assess products 

that consumes nuclear 

energy or uses non-

renewable resources 

(Chun-rong & Jun, 2011) 

[121] 

Evaluation of Regional 

Circular Economy Based 

on Matter Element 

Analysis 

- Not a comprehensive 

tool, compatible for 

measuring CE 

performances regionally 

only 

- Basic grading system 

IFIXIT  [122] IFIXIT 

- Measures mobile 

devices circulatory only 

(Micro-Level) 

- Cannot be used alone to 

assess the circulatory of 

the devices. 
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Chapter 3. A Multi-Level Circular Economy Assessment Framework for the 

Private and Public Sectors   

The aim of this chapter is to present a comprehensive CE assessment framework that is 

capable of assessing the circularity of 1) developed and developing countries, 2) 

different industries, 3) wide range of processes and 4) different products, of both private 

and public sectors on a micro, meso, and macro levels. This is achieved through a step-

by-step indicators selection procedure and the combination of fuzzy logic and multi-

criteria decision-making (MCDM) methods which deliver a superior methodology in 

CE assessment that can easily eliminate previously mentioned problems and result in a 

realistic and an unbiased ranking of alternatives.  

3.1. Introduction  

Many factors such as global warming, environmental pollution, and resources scarcity 

caused a fast based trend in the transition from linear to circular economies. However, 

to adequately achieve the intended economic, environmental, and social goals of the 

CE, the development of an assessment tool and a monitoring structure are critical to 

ease progresses measurability towards circularity [123]. So far, there are no common 

accepted procedures to measure CE performance [114]. Literature shows that advanced 

research on CE assessment tools and indicators is lacking [115]. Also, there is a need 

to establish a set of indicators to monitor the transition to CE [116]. Very few CE 

indicators-based frameworks are available, most of them were unable to capture some 

important dimensions such as policy implementation towards CE [117]. Literature 

lacks a comprehensive scaling/rating system that accounts for all CE dimensions 

including non-manufacturing ones such as customers’ contributions, policies, 

regulations, and technological advancements. An effort was made by Sassanelli et al. 

[118] to highlight different assessment tools in a systematic literature review that 

showed some potential in this field. However, none of the presented assessment 

procedures captures all the dimensions of the CE at once. To illustrate, there are several 

tools intended to assess the CE performance on different scales. A well-known tool is 

Circulytics® by the Ellen Macarthur Foundation [119]. The tool measures the CE 

performance of company’s material and water flow and other services provided along 

with energy use. This tool however is a company-level (Micro-level) measuring tool 

and cannot be implemented on other CE levels such as the macro and meso levels. Also, 
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the tool requires direct input from users, which adds an undesirable level of subjectivity 

to the results. Another assessment tool is the Cradle to Cradle Certified® by the Cradle-

to-Cradle Products Innovation Institute [120]. Similarly, the tool is used to assess 

products made for the CE (Micro level) and cannot be used on the macro or meso levels. 

Moreover, the tool lacks flexibility even on the product level as it does not assess 

products that consumes nuclear energy or uses non-renewable resources. Hence, a 

comprehensive CE measuring or rating system is needed to allow companies, firms, 

sectors, and countries improve their circulatory on a micro, miso, or a macro scale, as 

well as provide standardize data collection and information management sharing 

systems that would ease the collaborations between different firms along the CE cycle 

and allow for an easy, comprehensive and a standardized assessment procedure. 

As highlighted earlier, a predefined standard set of indicators for either a macro, meso 

or a micro level CE is very challenging to be achieved. This is mainly due the unlimited 

variety of scopes, goals, characteristics, and challenges different countries, firms, 

enterprises, and products have. However, the proposed framework addresses this gap 

by providing the user with a step-by-step procedure that accounts for different 

dimensions that any country, industry, or product may require whether it is applied to 

a private or public firms, to guide the user with choosing and using a tailored set of 

indicators that correctly assess the CE performance of the assessed body. Unlike other 

frameworks presented earlier, the proposed framework provides flexibility in indicators 

selection while eliminating subjectivity and randomness through the predefined 

constrains that lies within the scope of each defined level. Moreover, it incorporates 

fuzzy logic and rule based expert systems to facilitate the merging between related 

indicators which provide users with realistic scores and drastically decrease 

uncertainties that lies within linguistic terms and values obtained from the indicators. 

Finally, the proposed framework uses a combination of different multi-criteria decision 

making (MCDM) methods to obtain the final score and accordingly, selects the best 

alternative. The framework presented is intended to add on to the available 

sustainability frameworks used in the industry by providing a complementary 

assessment procedure that measures the CE performances of different processes and 

products on a wide scale for different industries from developed or developing countries 

and on both private and public sectors. 
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3.2. Framework Development 

As mentioned earlier, the main aim of this paper is to develop a comprehensive CE 

assessment framework that is characterized by its flexibility, ease of use, as well as 

accuracy in determining the most suitable alternative among processes or products that 

best follows the conventional five-stages CE model. As presented in Figure 10, the 

framework is composed of four stages. In the first stage, users are required to collect 

four sets of indicators. These indicators should be able to distinctly define the level of 

the product or process based on a three levels scale: macro, meso and micro as explained 

in section 3.4.1. The next set of indicators are directly related to the industry the 

assessed product or process is involved in as presented in section 3.4.2. Afterwards, 

indicators that directly emphasize on CE model practices and stages are defined. These 

indicators can be obtained from literature, organizations, experts or previously used 

life-cycle-assessment and other similar approaches as it will be highlighted in section 

3.4.3. Lastly, different sustainable development goals achieved by the process, or the 

product are listed. Depending on the relative importance of the goal to the assessed 

field, scores are assigned on a scale of [0,1].  

In the second stage, fuzzy logic is implemented on the different indicators collected 

earlier to automate the process of converting qualitative and quantitative indicators to 

scores. Moreover, fuzzy logic gives users flexibility in their choices of indicators with 

the help of membership functions. Most importantly, the rule-based expert system 

implemented in the fuzzy inference system (FIS) allows the merger of many related 

indicators into one score as presented in section 3.5.  

Assigning weight of indicators takes place in the third stage where either subjective or 

objective weight assignment methods are used. If subjectivity is to be avoided, the 

entropy method is used to determine the weights. On the other hand, when users require 

experts to assign the weights, then the analytical network process (ANP) is used. Lastly, 

different MCDM methods are used to normalize, assess, and aggregate the results and 

produce final scores for the different alternatives to be ranked based on their final 

circularity scores. 
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Figure 10: Circular Economy (CE) Assessment Framework 

3.3. Choosing the Correct Indicators 

After the required indicators are defined and selected, data obtained from each of the 

selected indicators are classified into two main groups, quantitative and qualitative. 

Qualitative indicators measure amounts and quantities in units. While qualitative 

indicators measure change over time against certain preset criteria [124]. For example, 

the amount of greenhouse gases emitted during a process is a quantitative indicator that 

is measured in cubic meter. Likely, the power consumption of a factory is also a 

quantitative indicator that is measured in kilowatts. On the other hand, qualitative 

indicators are a measure of people’s perception about the measured parameter such as 

the quality of work, product’s performance or improvements in research and 



50 

 

development across a firm or within a country [125]. Unlike quantitative indicators, 

qualitative indicators cannot be directly measured using conventional measurements 

instruments as they do not necessary involve enumeration. Instead, measuring 

qualitative indicators require different collection strategies such as surveys, historical 

data, and experts’ opinions. Indicators can be further broken down into other advanced 

groups. For example, qualitative indicators can be categorized into two sub-groups that 

are open-ended qualitative indicators, which are based on the respondents’ opinions on 

the qualities of the project that they deem to be important, and focused qualitative 

indicators which focus on specific qualities of interest. Another type of indicators are 

the compound indicators. A compound indicator is one that has a standard in it that 

needs defining and assessing. For instance, finding the number of projects completed 

that meet a specific criterion is an example of compound indicators. Moreover, scale 

and indices indicators are ones that combine many indicators into one such as the 

human development index. 

Lastly, proxy indicators are approximate indicators that are not precise such as the 

satisfaction level of people living in a certain area [125]. Figure 11 summarizes the 

different types of indicators that users of the proposed framework should consider to be 

able to obtain a comprehensive choice of indicators set. 

 

Figure 11: Types of indicators that are to be selected for the CE assessment, obtained from [126] 
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The indicators are then further filtered bases on a checklist to end up with clear 

indicators only. A set of indicators should follow the following criteria before being 

approved to be used [125]: 

➢ Targeted: The set contains indicators that defines the 4 four “Ws” that are: 

1. What is Changing? (Element of Change) 

2. Who is involved in changing? (Targeted group) 

3. Where is the action or change happening? (Location or level) 

4- When is the change happening? (Timeframe) 

➢ Measurable: All indicators should be easily measurable and have the 

following: 

1. Specific units of measurement 

2. Allow comparison 

3. Qualitative indicators should have defined qualities using words like 

“successful, appropriate, effective.” 

➢ Reliable 

1. Information used are from credible sources 

2. Minimum assumptions are used and are clearly stated 

3. Slight to no variation in information collected by different people for the same 

purpose 

4. Direct connection between the indicator and its collected information 

➢ Feasible 

1. Indicator’s information could be obtained 

2. Verification of the information is doable 

➢ Utility in decision-making 

1. Indicators are linked to key factors 
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2. Indicators’ information have major impact on decisions 

3.4. Collecting Data and Defining Indicators 

3.4.1 Level definition 

The first step in the assessment procedure is to determine the level of the economy of 

the assessed body. Based on that, a tailored level-based indicator set is selected for the 

assessment. As mentioned earlier, the CE can be graded over three different levels: 

micro level, meso level and macro level. Determining the level of the CE is very 

important as it supports the classification of the different available indicators. This eases 

the assessment procedure by eliminating unnecessary indicators. Also, it eases 

standardization efforts by designating a specific organizational body to select and set 

standard indicators for each specific level. The definition of each level slightly varies 

in literature. The following sections of the paper define a clear criterion distinguishing 

between each level, which allows users of the proposed framework to correctly define 

the level of the assessment and the designated indicators. 

3.4.1.1. Micro level 

Minor operations and final products should be taken into consideration to correctly 

assess CE performances. The micro-level scale considers specific processes at a 

company or a local level, it also considers individual substances and products [127]. 

The main aim of micro-level indicators is to describe the performance of a company or 

product from an environmental, economic, and social perspectives. Due to the small-

scale micro level indicators are applied on, they can provide detailed analysis on 

specific material category or emission [127]. The assessment is carried out based on the 

micro-level indicators for the following categories of activities on a company scale: 

➢ Consumption of resources (Primary & Secondary) 

➢ Production of goods 

➢ Processes 

➢ Services 

➢ Value added and jobs 

➢ Corporate R&D  
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➢ Waste disposal  

➢ Air emissions 

As well as the following categories on a product scale: 

➢ Products overall sustainability 

➢ Products overall performance 

3.4.1.2. Meso level 

The meso level CE covers a range of practices applied within the economy. This covers 

different industries, branches of production and categories of consumption [128]. 

Indicators of the meso level focuses on detecting the activities of a specific consumption 

domain or sector [128]. For example, indicators detect the level of waste materials, 

efficiency of the production processes and the pollution caused by a specific sector. In 

other words, meso level indicators focuses on assessing the performance of plants or 

industrial parks. The assessment is carried out based on the meso level indicators for 

the following categories of activities in on an industrial park scale: 

➢ Primary resources consumption (Raw Materials) 

➢ Secondary resources consumption (Recycled Materials) 

➢ Utilization of resources 

➢ Waste disposal or treatment 

➢ Air Emissions 

3.4.1.3. Macro level 

Most of the CE practices such as recycling, repairing, reuse, remanufacturing, and 

refurbishment take place within national boundaries. Nevertheless, the incorporation of 

CE within international trade is as significant as the practices mentioned earlier. The 

Macro level of the CE focuses on the exchange of sources (Materials) between the 

environment and the economy, and the exchange of products, on international trade 

[116]. In other definitions, the Macro level also addresses general CE activities of a 

nation [129]. Further details of the different economic activities withing the nation is 

addressed through the meso level CE as mentioned earlier. The assessment is carried 

out based on the macro level indicators when materials and goods fall under one or 

more of the following categories of international trades: 
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➢ Primary resources (Raw Materials) 

➢ Secondary resources (Recycled Materials) 

➢ Manufactured goods 

➢ Used (Second hand or refurbished) goods 

➢ Waste and scrap 

As well as the following categories on a national scale for the overall: 

➢ Extraction of resources 

➢ Consumption of resources 

➢ Utilization of resources 

➢ Waste disposal or treatment 

➢ Air emissions 

Figure 12 presents the classification of the macro, meso, and micro levels across the 

economy.  

 

Figure 12: Macro, Meso and Micro Levels Classification 
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3.4.1.4. Level-based indicators 

The user is then required to choose the correct set of indicators that should cover 

environmental, economic, and social aspects. If the assessed body is covered by one or 

more than one category, the user should select indicators that are related to these 

specific categories. Generally, indicators can be classified into five categories. The five 

different categories are: economic indicators, input indicators, output indicators, 

consumption indicators and, the capita figures indicators category [128]. However, the 

capita indicators category falls under the macro level only since this level consider cities 

and countries hence the capita set of indicators present a way of comparing regions and 

cities without being influenced by their sizes or demographics. The five different 

categories are presented in Figure 13. 

 

Figure 13: The five main categories of levels' Indicators 

For each of the five categories, the user of this framework should include indicators 

that are classified as either environmental, economic, or social. Sometimes, indicators 

may fall under more than one category at once. The indicators falling under each of the 

five categories varies from one level to another. Table 4 presents examples of indicator 

sets for each level. 

3.4.2 Industrial category indicators 

The next set of indicators users of the proposed framework are encouraged to gather 

and utilize are the ones that directly represents the industrial category of the assessed 

object. To further assist users of the proposed CE assessment procedure, it is advised 

to use industry taxonomies based geographical location. For example, if the CE 

assessment is carried on in North America, the North American Industry Classification 

System (NAICS) is used to accurately classify the assessed object [135]. However, if 

the geographical location is not supported by any classification systems, then the United 
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Nations Standard Products and Services Codes (UNSPSC) is to be used [136]. Table 5 

summarizes some of the most common industry taxonomies form some geographical 

locations. 

 

Table 4: Different sources of Level indicators in literature 

Level Source 

Number of 

Indicators / Built in 

Indicators 

(Assessment tool) 

Micro 

IFIXIT [130] Built-in Indicators 

Saidan et al. [131] 20 Indicators 

Ellen MacArthur Foundation 36 Indicators 

Summa Circular Economy Policy Research 

Centre [128] 

7 Indicators 

Cradle to Cradle Certified® [120] Built-in Indicators 

Meso 

Geng et al. [132] 12 Indicators 

Saidan et al. [131] 16 Indicators 

Geng et al. [129] 38 Indicators 

Summa Circular Economy Policy Research 

Centre [128] 

10 Indicators 

Macro 

Geng et al. [132] 22 Indicators 

CTI TOOL [133] 10 Indicators 

Summa Circular Economy Policy Research 

Centre [128] 

9 Indicators 

Haas et al. [134] 13 Indicators 

Saidan et al. [131] 19 indicators 
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Table 5: Common industry taxonomies based on geographical locations 

 

After the industry is clearly defined, users collect indicators that fall under the defined 

industry. Several industry-tailored indicators are found in literature. For example, 

M.Elhuni and Ahmed proposed a set of key performance indicators (KPIs) for 

evaluating the sustainable production in the oil and gas sector [137]. Furthermore, 

D’Adamo et al. [138] proposed two versions of an indicator that measures the socio-

economic performance of bioeconomy sectors. The first version considers all bio-based 

sectors, while the other focuses on manufacturing and bio-energy sectors. Similarly, 

other KPIs where identified in different other sectors such as for the healthcare facilities 

maintenance [139], automotive components’ manufacturing organization [140], and for 

industrial supply chains [141]. 

3.4.3 Circular economy indicators 

Circular economy (CE) is a waste conservative model that is defined as “An Industrial 

system that is restorative or regenerative by intention and design” [35]. CE aims on 

protecting the environment while achieving a prosperous economic development and 

taking into consideration social aspects [142, 143]. This is mainly achieved by focusing 
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on recycling, re-use, repair and remanufacture. As well as by developing new systems 

and business models and changing consumption patterns [127]. 

Generally, for a product or a process to be regarded for a CE model they have to undergo 

five main and two interconnecting stages. The main five stages are: sourcing, 

manufacturing, distribution usage and recovery. The interconnecting stages are 

designing and transportation. In order to adequately conduct a CE assessment, there 

should by a clearly defined indicators that directly corresponds to the CE model.  

For example, the integration of industry 4.0 tools such as cyber-physical-systems, cloud 

computing and internet of things, is an important factor in determining the compatibility 

of the assessed product or process to the CE model.  

Other CE indicators may be directly related to the connection between different stages 

of the CE. For example, the manufacturing and recycling facilities represent two 

different stages in the CE model. Both stages are strongly encouraged to be connected 

to facilitate a smooth on-demand flow of recycled materials from the recycling to the 

manufacturing facilities. CE indicators can be unlimited; hence, it is suggested that can 

be obtained either from literature or from experts in the field. For example, several 

indicators are presented to measure the performance of a product with respect to CE 

principals [144].  

Moreover, the Ellen MacArthur Foundation presented different indicators that focuses 

on measuring material circularity [119]. Also, other indicators that mainly focuses on 

life cycle assessments can also be used as they share the same concept of evaluating 

products based on different sustainability dimensions, with the CE. De Pascale et al. 

[145] reviewed 61 different indicators that can be utilized in the presented framework. 

In the assessment procedure, the intended goals are defined in the fuzzy logic system 

with at least three membership functions (Low, Medium, High). Fuzzy rule system is 

then implemented, and a score is obtained. This process will be further illustrated in 

section 3.5. 

 



59 

 

 

Figure 14: The United Nation's (UN) 17 sustainable development goals [111] 

3.5. Collecting Data and Defining Indicators 

The assessment procedure is divided into four steps presented in Figure 15. Firstly, 

users and policy makers determine whether a set of dependent or indented indicators 

better suit their assessed subject. For dependent indicators or a mix of dependent and 

independent indicators, fuzzy logic is to be used as illustrated in section 3.5.1.  

However, if all indicators are independent (or dependency is not important according 

to policy makers), then users can directly move to the second stage where weights are 

assigned to indicators. Like the first step, the CE assessment framework users determine 

whether policymakers and experts should be involved in the weight’s assignment or 

not. 

If weights’ assignment is subjective (policymakers and experts’ opinions are involved) 

then the Analytical Hierarchy Process (AHP) is to be used as illustrated in section 

3.5.2.1. Otherwise, for objective weight assignment, the entropy method is to be used 

as presented in section 3.5.2.2. In the third step, the obtained values are normalized 

using either TOPSIS, GRA or COPRAS methods or using all the three methods for 

comparison. Finally, results are aggregated, and the alternatives are ordered in 

descending order of scores and the alternative with the highest score is chosen as the 

best that fits in a CE. 
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Figure 15: CE Assessment procedure 

3.5.1 Fuzzy logic 

In this framework, fuzzy logic or fuzzy sets are used as the first step in assessing 

alternatives based on chosen CE indicators. In general, “a fuzzy set is a class of objects 

with a continuum of grades of membership [146].” On the other hand, in a classical or 

a crisp set, each member of the set is given a value of one. While nonmembers are given 

a value of zero as illustrated in the following equation where A represents the crisp set 

and x represents an element. 
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𝐴 (𝑥 ∈ 𝐴) or 𝐴 (𝑥 ∉ 𝐴) (1) 

Then the membership function or sometimes referred to as the characteristic function 

can be defined as follows: 

𝜇𝐴(𝑥) = 1 𝑖𝑓  (𝑥 ∈ 𝐴) and  𝜇𝐴(𝑥) = 0 𝑖𝑓  (𝑥 ∉ 𝐴) (2) 

However, in a fuzzy set, an element belongs to a fuzzy set by a degree of membership, 

where each element is mapped to real numbers between and including zero and one by 

a membership function as follow [147]: 

𝜇𝐴(𝑥): 𝑋 → [0,1] (3) 

Where, 

𝜇𝐴(𝑥) = 1 if 𝑥 is totally in 𝐴 (4) 

𝜇𝐴(𝑥) = 0 if 𝑥 is not in 𝐴 (5) 

0 < 𝜇𝐴(𝑥) < 1 if 𝑥 is partially in 𝐴 (6) 

 

Hence, this allows a continuum of possible choices [148]. To further explain, 𝜇𝐴(𝑥) 

denotes a membership function of set A that defines fuzzy set A of universe X. For 

example, the element x of universe X belongs to the set A by some degree. This degree 

carries a value between zero and one and is called the degree of membership that is 

𝜇𝐴(𝑥) [148].  

Fuzzy sets can be very handy when dealing with qualitative indicators where 

membership functions (MFs) can represent these indicators using linguistic terms. For 

example, consumers’ satisfaction level can be described using three MFs such as (Not 

satisfied, partially satisfied, and very satisfied) along a normalized scale [0,1].  

Since the same term may vary in meaning between people, each MF spans over a 

specific range on the normalized scale. For example, the MF of “Partially satisfied” is 

a triangular MF spanning from 0.2 to 0.8 as seen in Figure 16. The values assigned and 

the type (shape) of the membership function can be determined from literature or by 

experts from the designated fields. 

MFs illustrated earlier are called triangular MFs. Depending on the experts, the type of 

the MF can be changed based on the need and the type of indicator which is done using 
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any fuzzy inference system (FIS). After setting up the indicator (Input) with the desired 

MFs, experts then setup the output, which are the assessment score.  

 

Figure 16: Membership function plots 

Similarly, the assessment score (output) can be built using three triangular MFs that are 

(Low, Average, and High). Consumers’ satisfaction level (input) is then linked with the 

assessment score (output) using a set of rules. The number of rules needed for the FIS 

is determined using the following equation: 

𝑛 = 𝑚𝑖 (7) 

Where n is the number of rules, m is the number of membership functions and i is the 

number of inputs. An example of the rules used would be as follow: 

1. If consumers’ satisfaction level is “Not Satisfied” then Score is “Low”. 

2. If consumers’ satisfaction level is “Partially satisfied” then Score is “Medium”. 

3. If consumers’ satisfaction level is “Satisfied” then Score is “High”. 

Later, the FIS aggregates and de-fuzzy the system to obtain a result using different 

aggregation and defuzzification methods that are predefined by the user. The result of 

the system is a numerical score with its range predefined by the user in the fuzzy 

inference system (FIS). 

In general, fuzzy systems have a strong ability in dealing with uncertainties, it also 

reduces subjectivity in the assessment of qualitative indicators. Increasing the number 
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of linguistic terms improves the accuracy of the scoring as it provides the users with a 

wider range of choices that translates to more membership functions and hence, more 

rules defined in the expert system. Moreover, it allows the implementation of 

interdependencies across indicators. This can be simply done by adding inputs to the 

FIS and adjusting the rules based on the interdependencies. For example, there are 

several indicators corresponding to recycling. End-of-life index, recycling desirability 

and material circularity, could be selected to represent the recyclability of a product. 

However, since the three indicators are very similar yet very important, their scores can 

be easily merged into one score using a rule-based FIS as seen in Figure 17. 

 

Figure 17: The combination of three interdependent indicators, the end-of-life index set at 0.697, 

recycling desirability set at 0.3221 and material circularity set as 0.322, each consisting of three 

membership functions (low, medium, high) 

3.5.1.1. Fuzzy inference system 

In this proposed framework, it is suggested to use Matlab FIS with its default settings 

for the (Mandani) method where maximum aggregation technique and center of gravity 

(COG) method for defuzzification are used. 

The previous illustrated procedure is used for every indicator, or to groups of indicators 

(for interconnections) denoted by (I1, I2, I…, Iw) where w represents the number of 

indicators or grouped indicators. The results are n scores that are denoted as (S11, S12, 

S…, Srw), where r is the number of alternatives and w is the number of indicators or 
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grouped indicators for the different alternatives denoted as (A1, A2, A…, Ar) where r is 

the number of alternatives. The following sections describes the next steps of assigning 

weights, normalization and obtaining the final CE score of the different alternatives. 

 

Figure 18: Score matrix obtained using fuzzy logic 

3.5.2 Assigning weights to indicators 

The next step is to assign weights to each indicator. Weights can be determined using 

subjective and objective weight defining methods. Several weighing techniques can be 

used while implementing the CE assessment framework. For example, if experts’ 

opinions on the indicator is an important factor to the framework users, then a subjective 

weight determination method such as the analytical hierarchy process (AHP) or the 

analytical network process (ANP) are used. On the other hand, if the CE framework 

users are to avoid subjectivity, then objective wight determination methods are to be 

used such as the entropy method. Another possible approach is using a combination of 

both subjective and objective methods. 



65 

 

3.5.2.1. Analytical hierarchy process (AHP) 

The AHP generally consists of three main steps namely, decomposition of the problem, 

comparative judgment, and generation of priorities [149]. The main aim of the AHP 

method is to develop a hierarchical structure with the main goal at the top level, the 

criteria, or attributes (Indicators) are placed at the second level and the alternatives at 

bottom level. For this framework, no priorities are generated since the AHP method is 

used to define weights only. The first step in the AHP is to build an importance matrix 

PAHP (w*w) with the indicators aligned in the first row and the first column in the same 

order as seen in Figure 19. 

 

Figure 19: AHP Importance Matrix 

Policymakers and experts then decide the comparative relative importance of among 

indicators. Same indicators will have a relative importance of 1 as illustrated in the 

importance matrix in Figure 19. Other indicators are given a number from 2 to 9 and 

reciprocals are given to same indicators when order is switched as seen in Table 6.  

Table 6: AHP intensity of importance table [149] 
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These values represent the relative importance of one alternative when compared to 

other keeping one indicator fixed [150]. A normalized element is then obtained using 

the following equation: 

𝑟𝑖𝑗 =  
𝑝𝑖𝑗

∑ 𝑒𝑖𝑗
𝑤
𝑖=1

 (8) 

Where 𝑝𝑖𝑗 is an element of the original matrix PAHP (w*w) and the denominator is the 

summation of all the elements in the respective column. Finally, the weight vector is 

obtained using the following equation: 

𝒘 =
1

𝑁 ∑ 𝑟𝑖𝑗
𝑁
𝑖=1

  (9) 

Where N is the number of alternatives [150]. 

3.5.2.2. Entropy method (objective). 

As mentioned earlier the entropy method is used when objective assessment is required 

as it assigns weights based on the indicator’s real value [151]. The first step is the 

normalization of the fuzzy score matrix obtained in figure (8). This is done using the 

following equation:  

𝑁𝑟𝑤 =  (𝑆𝑟𝑤) (∑ 𝑆𝑟𝑤

𝑛

𝑟=1
)⁄  (10) 

Where Nrw are the normalized values and n is the number of alternatives. The following 

step is computing the entropy value using the following equation: 

𝑒𝑤 = −ℎ ∑ 𝑁𝑟𝑤 ln 𝑁𝑟𝑤
𝑛
𝑟=1   (11) 

Where ℎ =
1

ln(𝑛)
 . Finally, the weight vector is computed as follow: 

𝒘𝑟 =
1−𝑒𝑤

∑ (1−𝑒𝑤)𝑚
𝑟=1

  (12) 

3.5.3 Assigning weights to indicators 

Weight vectors obtained through either the AHP or the entropy method is then applied 

to the normalized matrix obtained after applying either the TOPSIS, GRA, or the 

COPRAS methods. Also, all three methods could be applied, and the final results are 

compared to validate the final choice. 
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3.5.3.1. Grey relation analysis (GRA) 

The GRA is a quantitative method that help in decision making based on the degree of 

relation between two different sequences. Results of this method is obtained by testing 

the degree of difference or the degree of similarity between the sequences [152]. 

The GRA mainly consists of four steps. Firstly, the grey relation generating followed 

by the reference sequence definition, grey relation coefficient calculation and lastly, 

grey relation grade calculation [153]. 

1. Grey relational generating 

The first step is the grey relation generation in which the attributes are all scaled into 

[0,1] using the following equation: 

𝑥𝑖𝑗 =
𝑦𝑖𝑗 − 𝑀𝑖𝑛{𝑦𝑖𝑗 , 𝑖 = 1,2, … , 𝑟}

𝑀𝑎𝑥{𝑦𝑖𝑗 , 𝑖 = 1,2, … , 𝑟} − 𝑀𝑖𝑛{𝑦𝑖𝑗 , 𝑖 = 1,2, … , 𝑟}
 (13) 

for i = 1, 2, …, r   j = 1,2, …, w 

Where r is the number of alternatives and w is the number of indicators. Since all scores 

obtained from the fuzzy logic, they are considered beneficial values, i.e. preferred to be 

larger. 

2 Reference sequence definition 

The reference square definition step aims to find an alternative whose values are the 

closest to one for all of its performance values. However, since this will rarely be the 

case, a reference sequence X0 is defines as (x01, x02, …, x0j, …, x0n) = (1,1,…,1,…,1), 

and then aims to find the alternative whose comparability sequence is the closest to the 

reference sequence [153] 

3 Grey relational coefficient calculations 

In this step the grey relation coefficient is calculated, this is basically the closeness of 

xij to x0j where the greater the grey relation coefficient the closer their values are. This 

coefficient is calculated using the following equation: 

𝛾(𝑥0𝑗 , 𝑥𝑖𝑗) =
𝛥min + 𝜁𝛥max

𝛥𝑖𝑗 + 𝜁𝛥max
 (14) 

for i = 1, 2, …, r   j = 1, 2, …, w 
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Where 𝛾(𝑥0𝑗 , 𝑥𝑖𝑗) is the grey relation coefficient between xij and x0j and, 

𝛥𝑖𝑗 = |𝑥𝑖𝑗 − 𝑥0𝑗| (15) 

𝛥min = 𝑀𝑖𝑛(𝛥𝑖𝑗 , 𝑖 = 1, 2, … , 𝑟; 𝑗 = 1, 2, … , 𝑤) (16) 

𝛥max = 𝑀𝑎𝑥(𝛥𝑖𝑗 , 𝑖 = 1, 2, … , 𝑟; 𝑗 = 1, 2, … , 𝑤) (17) 

  

ζ is used to enlarge or compress the range of the grey relation coefficient and is called 

the distinguishing coefficient. 

4 Grey relational grade calculations 

The final step of the GRA method is to calculate the grey relation grade to obtain a 

single index that is used to rank the alternatives. This is done using the following 

equation: 

Γ(𝑋0, 𝑋𝑖) =  ∑ 𝑤𝑗𝛾(

𝑛

𝑗=1

𝑥0𝑗 − 𝑥𝑖𝑗) for 𝑖 = 1, 2, … , 𝑟) (18) 

Γ(𝑋0, 𝑋𝑖) represents the level of similarity between the comparability sequence and the 

reference sequence, while 𝒘𝒋 is the weight of the indicator j that take numbers from 1 

to w (number of indicators) that is previously found using either the AHP or the entropy 

method. 

3.5.3.2. Technique for order preference by similarity to the ideal solution (TOPSIS) 

The first step in the Technique for order preference by similarity to the ideal solution 

(TOPSIS) is normalization of the score matrix using the following equation: 

𝑥̅𝑟𝑤 =
𝑥𝑟𝑤

√∑ 𝑥𝑟𝑤
2𝑚

𝑤=1

 (19) 

Where m is the number of alternatives. Next, the weight of each indicator is multiplied 

by the normalized alternative values to obtain the weighted normalized decision matrix 

(WNDM). Using the WNDM, the ideal best (𝑉𝑤
+) and the ideal worst (𝑉𝑤

−) which are 

the best and worst scores respectively are obtained for each indicator. 

The next step is calculating the Euclidean distance from the ideal best (𝑆𝑟
+)and ideal 

worst (𝑆𝑟
−) using the following equations: 
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𝑆𝑟
+ = [∑(𝑉𝑟𝑤 − 𝑉𝑤

+)2

𝑚

𝑤=1

]

0.5

 (20) 

𝑆𝑟
− = [∑(𝑉𝑟𝑤 − 𝑉𝑤

−)2

𝑚

𝑤=1

]

0.5

 (21) 

Finally, the performance score is calculated using the following equation: 

𝑃𝑟 =  
𝑆𝑟

−

𝑆𝑟
+ + 𝑆𝑟

−
 (22) 

The alternatives are then ranked based on their scores where the highest score is ranked 

as the best alternative and the second highest as the second and so on. 

3.5.3.3. Complex proportional assessment method (COPRAS) 

s Another possible method of finding the final CE assessment score is the COPRAS 

method. It is an easy-to-use method that consists of 7 simple steps described below: 

Step (1) The decision matrix is prepared in the following format: 

𝑋 = [

𝑚11 𝑚12 ⋯ 𝑚1𝑤

𝑚21 𝑚22 ⋯ 𝑚2𝑤

⋮ ⋮ ⋯ ⋮
𝑚𝑟1 𝑚𝑟2 ⋯ 𝑚𝑟𝑤

] (23) 

Note that the decision matrix is the fuzzy logic score matrix obtained in Figure 18 where 

r is the number of alternatives and w is the number of indicators. 

Step (2) Normalization of the decision matrix 

The decision matrix is then normalized using the following equation: 

𝑥̅𝑖𝑗 =
𝑚𝑖𝑗

∑ 𝑚𝑖𝑗
𝑟
𝑖=1

 ; 𝑖 = 1, 2, …, r  and 𝑗 = 1, 2, …, w (24) 

Step (3) Weighted normalized value calculation 

The next step is calculating the weighted normalized value using the weights obtained 

in section (5.2) using the following equation: 

𝑥̂𝑖𝑗 = 𝑥̅𝑖𝑗 × 𝒘𝑗; 𝑖 = 1, 2, … , 𝑟 and 𝑗 = 1, 2, … , 𝑤 (25) 

Step (4) Sum 𝑃𝑖 calculations 
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𝑃𝑖 = ∑ 𝑥̂𝑖𝑗

𝑘

𝑗=1

 (26) 

Where 𝑃𝑖 is the relative weight of each process. 

Step (5) determine the optimality criterion 

𝐾 = 𝑚𝑎𝑥𝑃𝑖; 𝑖 = 1, 2, … , 𝑟 (27) 

Step (6) Utility degree 

Calculating utility degree is done using the following equation: 

𝑁𝑖 = (𝑃𝑖/𝑃𝑚𝑎𝑥) × 100% (28) 

Step (7) Ranking 

The final step is ranking the process in descending order based on the values obtained 

from step (6). 

  



71 

 

Chapter 4. Case Study 

The presented framework developed in Chapter 2 is implemented to assess the 

circularity of Friction Stir Back Extrusion (FSBE), an “extrusion process is a 

manufacturing process used to produce fine grained tubular structures based on severe 

plastic deformation”, against conventional extrusion methods [29, 154]. The 

investigation will be carried out on Mg AZ31 tubes. 

4.1. Procedure 

The first step is to select applicable indicators as described in section 3.4 while making 

sure all indicators are applicable to the selection criteria illustrated in section 3.3. The 

intention of this assessment is to test the circularity of a process, which falls under the 

description of a micro-level process. Hence, possible choices of micro-level indicators 

may be the carbon dioxide emissions, energy cost, and labour cost. Also, since the 

FSBE is a manufacturing process, the industry indicators selected are related to the final 

manufactured product which are the toughness, ultimate tensile strength, yield strength 

and ductility. The CE indicators chosen are production speed, job satisfaction, injury 

rate and energy consumption. Lastly, the main goal achieved by the FSBE is mainly the 

9th SDG. All indicators selected are summarized in Figure 20. 

 

Figure 20: Selected circular key indicators 

The next step is applying fuzzy logic since the indicators are qualitative and 

quantitative. Three membership functions are defined for each indicator which are: low, 



72 

 

medium, and high. An example of the indicators membership functions as well as the 

scales used is presented in Figure 21 and the values assigned are presented in Table 7.  

 

Figure 21: Membership functions of the Energy Consumption indicator with a range of [0 1] (kWh) 

Table 7: List of indicators used in the assessment and the ranges used 
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The indicators are quantified using different quantification methods as highlighted in 

literature [29, 154, 155]. The values obtained are presented in Table 8. 

Table 8: Indicator's values for extrusion and FSBE [29] 

 

4.2. Results 

Values are entered to the FIS in Matlab and the following results are obtained: 

Table 9: Fuzzy Scores obtained using Matlab FIS 

 

The next step is assigning weights to the indicators. This is done using the entropy 

method and the weights obtained for each indicator are as follow:  

Table 10: Weights obtained using entropy weight method 

 

Lastly, by implementing the GRA method for normalization and aggregation, the 

following circularity scores are obtained per indicators’ set:  

Table 11: Final CE scores obtained using GRA method 
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The results show a better circularity for the FSBE over conventional extrusion. Hence, 

FSBE is the better option for extrusion processes in manufacturing facilities compiling 

with or aiming to be a part of the CE. Also, it can be noticed that the impact of SDGs 

is made evident in the developed framework. Taking SDGs into consideration is an 

important factor in determining the circularity of any process or a product due to their 

comprehensive criteria that covers almost all dimensions of sustainable development. 

Hence, circularity cannot be achieved without achieving at least one SDG. Removing 

SDGs from the assessment procedure lowers the circularity score of the FSBE from 

0.490 to 0.181 and increases the extrusion’s score from 0.048 to 0.064. hence, when 

comparing circularity alternatives that achieve different SDGs are given a higher score 

compared to others that do not achieve any. 
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Chapter 5. Conclusion and Future Work 

This thesis presented a review on the implementation and integration of CPSs in each 

of the CE stages, highlighted the SDGs that would be achieved as a result, and reviewed 

the current state of the CE assessment tools. The findings on the implementation of 

CPSs in the CE are presented below: 

➢ All six stages of the CE have a great potential to integrate CPSs within them. 

➢ Autonomous mining in the sourcing stage provides a safe and efficient working 

environment and achieves five different SDGs. 

➢ There are many possible implementations of CPSs in the design stage, such as 

in design information feedback systems, in testing and simulation assistance in 

product designs, and in designs for manufacturing and assembly. These systems 

directly achieve five SDGs and indirectly achieve two SGDs. 

➢ The impact of CPSs in the manufacturing stage is enormous with vast room for 

implementation, such as in smart factories, QC and QA, health monitoring of 

machines and products, and many more. More than half of the SDGs can be 

achieved through the implementation of different CPSs in this stage. 

➢ The integration of CPSs in the distribution stage can result in several 

implementations, such as the development of the path decision ant algorithm, 

UAVs, and virtual data communication platforms. Together, these applications 

contribute to seven different SDGs. 

➢ In the usage stage, the implementation of CPSs can be at the product level or 

the consumer level. Some of these applications include adaptable electronics 

and portable health monitoring devices. Four different SDGs are achieved 

through the applications presented. 

➢ Using RFID in recycling would facilitate the connection between this stage and 

different stages along the CE. On its own, it achieves five different SDGs.  

Moreover, it is critically important to establish an assessment tool and a monitoring 

structure to ease processes and products’ progresses measurability towards circularity. 

Many factors should be taken into consideration when establishing comprehensive 

assessment tools such as the ability to conduct the assessment on a micro, meso, and 
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macro levels. Hence, the proposed CE assessment framework in Chapter 3 presents a 

step-by-step indicators selection procedure that would allow a flexible choice of 

indicators while maintaining the CE model structure. Simultaneously, it mitigates flaws 

within indicators and produce credible assessment scores by involving different 

dimensions and scales within the CE. 

Different MCDM methods are involved in the CE assessment framework, where two 

pathways are demonstrated. Also, Fuzzy logic was incorporated in the assessment 

procedure. The assessment framework proposed has the following capabilities:  

➢ Assessing the circularity of developed and developing countries, different 

industries, and numerous processes and products whether it is for private or 

public sectors. 

➢  Assessing the circularity on different levels (Micro, Meso, and Macro). 

➢ It offers users flexibility in defining indicators while limiting uncertainties 

that arise from the linguistic variables used.  

➢ The rule-based expert system presented allows policymakers and experts to 

apply their knowledge and expertise throughout the assessment procedure.  

➢ Depending on the preferences of the stakeholders, the framework allows 

subjective, and objective means of weight assignment to the indicators. As 

a result, the scores can be influenced throughout the different assigned fuzzy 

rules and MCDM methods used if needed.  

This gives the demonstrated framework a wide scope of applications that ranges from 

internal audits to facilities, processes, and products’ planning and designs on different 

levels.  

Lastly, to validate the proposed framework, a case study was conducted in Chapter 4 to 

compare the circularity of FSBE to conventional extrusion processes. The results 

showed that FSBE fits better in a CE than conventional extrusion scoring 0.490 and 

0.0478 respectively. The scores also demonstrated the importance of SDGs when it 

comes to circularity which further validates the proposed framework that aims to 

highlight the importance of achieving SDGs. 



77 

 

As future work, it is important to establish indicators’ databases by experts of different 

industries to support and ease the transition to CE. Furthermore, there is a need to 

provide a similar review on other I4.0 tools as these technologies have wide 

applications and capabilities that have not been fully investigated on the CE scale. Also, 

to further improve the demonstrated CE assessment framework, engaged governments, 

organizations, and policymakers are encouraged to standardize different sets of 

indicators based on their leading domestic industries to involve local expertise. 

Moreover, there should be different means of data sharing platforms to establish 

international sets of indicators for global processes and products to ease assessment 

procedures. Also, the time factor is suggested to be included within indicators to give 

an updated circularity score for time-dependent variable indicators. 

To further enhance the credibility and reliability of the CE tool’s circularity results, the 

micro, meso, and macro levels should be all taken into consideration. Unlike the 

example used earlier, a more comprehensive product would not give realistic results if 

their indicators were not fully explored, or in other words, indicators do not cover all 

the framework stages mentioned earlier. A promising example would be assessing the 

circularity of the automotive industry. This can be conducted on three types of vehicles 

that are: conventional internal combustion engine vehicles, battery electric vehicles, 

and fuel cell electric vehicles. Such an assessment would open many research areas by 

pointing out different zones of improvements along and beyond vehicles’ life cycles.  
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