
Abstract—This paper proposes a new approach for optimal 

operation of an Electric Vehicle (EV) battery-swapping station 

(BSS) based on Rolling-Horizon optimization (RHO). The BSS has 

several swapping bays such that each can accommodate an EV for 

swapping single or multiple battery units. The proposed BSS 

model considers serving different types of EVs using a 

heterogeneous battery stock. The charging of the depleted 

batteries (DBs) is performed using continuously controlled 

variable chargers which makes it more flexible for providing grid 

services. While previous studies focused on day-ahead modeling of 

BSSs, our study considers BSS dynamic scheduling. The goal is to 

maximize the daily profit using an RHO mechanism to provide 

optimal swapping and charging/discharging processes. The 

problem is defined as mixed-integer nonlinear programming 

(MINLP), then it’s linearized into a mixed-integer linear problem 

(MILP) to reduce the computational complexity. To predict the 

EV's swapping demand, a long short-term memory (LSTM) 

recurrent neural network is utilized as a time series forecasting 

engine. The proposed model is validated through a set of case 

studies comparing the LSTM-based RHO mechanism versus 

unscheduled operation and day-ahead scheduling. Simulation 

results demonstrate that the proposed dynamic scheduling 

mechanism increases the profit between 10% and 25.7% 

compared to the day-ahead scheduling. Furthermore, the number 

of EVs served using the proposed approach increases between 

11% and 14% compared to the day-ahead model. 

Index Terms— Battery swapping stations, battery to grid, EV 

charging stations, electric vehicles, LSTM, MILP, rolling-horizon 

optimization. 

NOMENCLATURE 

A. Acronyms

BSS Battery Swapping Station 

B2G Battery to Grid 

B2B Battery to Battery 

DB Depleted Battery 

FCBI Fully Charged Battery Inventory 

G2B Grid to Battery 

RHO Rolling Horizon Optimization 

SOC State of Charge 
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B. Sets:

𝐵 Set of batteries 

𝐾 Set of chargers 

𝑇 Set of time slots 

𝑇𝛽
𝑎𝑟𝑣 A subset of time slots for the EV arrivals at each bay 

𝛽 

𝑇𝛽
𝑎𝑟𝑣′ A complementary subset representing the time slots 

without EV arrivals at each bay 𝛽 

𝑇𝑚,𝛽
′ A subset of time slots 𝑇 representing the time slots at 

which there are no EV arrivals requesting type m 

batteries at bay 𝛽 

𝑈 Set of swapping bays 

𝜓𝑚 Group of the set 𝐵 representing batteries of type-𝑚  

𝜆𝑗 Group of the set 𝐾 representing chargers of group-𝑗 

C. Parameters:

c𝜏
𝑔𝑟 Time-of-use electricity price in ¢/kWh 

c𝑘𝑊ℎ Price of the energy swapped in  ¢/kWh 

C𝑏
swap Fixed price in cents for replacing battery 𝑏 

𝐶𝐷𝐸𝐺 Cost of battery degradation 

𝒞𝑏 Charging/discharging cycles of each battery 

DOD𝑚𝑎𝑥 Maximum depth of battery discharge in % 

e𝑏
𝑚𝑎𝑥 Maximum capacity of battery 𝑏 in kWh 

ω A percentage shaping the charging characteristics 

N𝜏,𝛽
𝑢𝑛𝑖𝑡𝑠 The number of battery units requested by an EV 

N𝑗
𝑐ℎ The number of chargers available in group 𝑗 

p𝑐
𝑀𝐴𝑋𝑑 Maximum battery discharging rate in kW 

p𝑐
𝑀𝐴𝑋𝑐 Maximum battery charging rate in kW 

P𝑀𝐴𝑋−𝑇𝐹 The power limit from/to the grid through the power 

transformer in kVA 

soc𝜏,𝛽
𝑒𝑣 State of charge of the arriving EVs DBs at time 𝜏 and 

bay 𝛽 

soc𝑏
0 Initial SOC of each battery at the beginning of the 

simulation 

soc𝑏
𝑚𝑎𝑥 Maximum SOC of any battery 𝑏 

𝜁 A percentage of the maximum battery capacity 

∆soc𝑏
𝑑𝑒𝑔 Degradation in the battery SOC 

∆t The time step in hours 

η𝑐ℎ The efficiency of charging 

η𝑑𝑐ℎ The efficiency of discharging 

E. F. El-Saadany, Director of the Advanced Power and Energy Center, 

EECS Department, Khalifa University, Abu Dhabi, UAE (e-

mail:ehab.elsadaany@ku.ac.ae).  
This work was supported by the American University of Sharjah under Grant 

FRG19-L-E37 and in part, the theory development was supported by project 

CIRA-013-2020, Khalifa University. 

Ahmed A. Shalaby, Mostafa F. Shaaban, Senior Member, IEEE, Mohamed Mokhtar, Member, IEEE, 

Hatem H. Zeineldin, Senior Member, IEEE and Ehab F. El-Saadany, Fellow, IEEE. 

A Dynamic Optimal Battery Swapping 

Mechanism for Electric Vehicles using an 

LSTM-based Rolling Horizon Approach  

“© 2022 IEEE.  Personal use of this material is permitted.  Permission from IEEE must be obtained for all other uses, in any current 
or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective 
works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.”
              https://doi.org/10.1109/TITS.2021.3138892

https://doi.org/10.1109/TITS.2021.3138892


μ𝑏
𝑑𝑒𝑔

 Battery degradation price 

  

D. Variables:  

𝐶𝐺2𝐵 Cost of purchasing energy from the grid 

𝑐ℎ𝜏,𝑏 Charging status of battery 𝑏 at time 𝜏 (1 if charging, 

0 otherwise) 

𝑀𝜏,𝛽 Decision binary variable for serving an EV at time 𝜏 
and bay 𝛽  (1 if served, 0 otherwise) 

𝒩𝐵𝐴𝑇−𝑆𝑊 The total number of batteries swapped at the BSS 

𝒩𝑠𝑒𝑟𝑣𝑒𝑑 The total number of EVs served at the BSS  

𝑂 The total profit of the BSS. (objective function 

variable) 

𝑝𝜏,𝑏
𝑐ℎ  Charging power of battery 𝑏 during time slot 𝜏 

𝑝𝜏,𝑏
𝑑𝑐ℎ Discharging power of battery 𝑏 during time slot 𝜏 

𝑃𝜏
𝑛𝑒𝑡−𝑇𝐹 The net power flow through the BSS transformer 

𝑅𝑠 Revenue from swapping 

𝑅𝐵2𝐺  Revenue from selling energy to the grid 

𝑠𝑜𝑐𝜏,𝑏 State of charge of battery 𝑏 at the end of time slot 𝜏 

∆𝑠𝑜𝑐𝜏,𝑏
𝑠𝑤𝑎𝑝

 The difference in SOC between a customers' DB and 

the swapped charged battery 

𝑠𝑤𝜏,𝑏,𝛽 Swapping status of battery b at time 𝜏 and bay 𝛽 (1 if 

swapped, 0 otherwise) 

𝑧𝜏,𝑏,𝛽 Intermediate variable replacing the product of a 

binary variable and a positive variable 

  

E. Indices:  

𝑏 Index of batteries 

𝑐 Index of chargers 

𝑗 Index of the group of chargers 

𝑚 Index of battery type 

𝛽 Index of swapping bays 

𝜏 Index of time 

I. INTRODUCTION 

he future of Electric vehicles (EVs) is evolving rapidly, due 

to the impact of EVs on reducing greenhouse emissions and 

reliance on fossil fuels. The number of EVs in the United States 

is expected to reach 18.7 million by 2030 that is 7 % of the 

expected available vehicles on road in 2030 [1]. Some 

governments have already taken action to revolutionize their 

roads. The UK government has launched a plan named ‘road to 

zero’ such that all the vehicles on the roads will be zero 

emissions by 2040 [2]. However, there are still some factors 

affecting the fast deployment of EVs, such as the availability of 

the EV charging infrastructure [3], the EV's limited driving 

range, and the EV charging time. Some companies have already 

started to produce EVs with an extended driving range (e.g., 

Tesla Model S “402 miles” and Tesla Model 3 “322 miles” [4]). 

The fact is that in real-world usage this range is much lesser. 

Nowadays, two methods have been proposed to extend the EV 

driving range: battery swapping stations (BSS) and EV 

hybridization with an internal combustion engine vehicle [5]. In 

this research, our main focus is to tackle the issue of the EV's 

long charging times by using battery swapping stations. 

The idea of the BSS is based on replacing an EV depleted 

battery (DB) with a charged one in just a few minutes. 

Compared to charging EVs at charging stations, the BSS 

provides a much faster alternative service. For instance, it 

would take a fast-charging station around 80 minutes to fully 

charge the Tesla Model S battery [6]. Whereas, it takes only 12 

minutes to swap a battery in a typical EV BSS in Shandong 

province of China [7]. It can be noticed that the BSS is being 

recently introduced in the literature and in the market due to its 

tremendous benefits. In [8] the authors focused only on the 

business aspect of the BSS. In fact, this technology requires an 

operational model in order to provide optimal scheduling for it 

and to generate profits while meeting the swapping demand. 

The main idea is to design the BSS station and model its daily 

operation as in [9] and [10]. Furthermore, this could be 

developed into a BSS planning model over multiple years as in 

[11]. The BSS is also capable of providing grid ancillary 

services such as discharging to the grid. This can be typically 

done by scheduling the charging/discharging of the BSS based 

on the electricity prices [12]. In this regard, the BSS sells 

electricity at high prices during the day and purchase it at a low 

price while meeting the swapping demand.  

Some studies considered the operation of the BSS with 

renewable generation to minimize the operational costs as 

shown in [10], [13], and [14]. In [10] the authors highlight the 

impact of introducing PV-based BSS systems on the BSS daily 

profit. Researchers in [13] proposed a model for a BSS coupled 

with PV generation and the power grid considering the 

uncertainties from the swapping demand and PV generation. A 

PV-based BSS is modeled in [14] by considering the service 

availability and self-consumption of PV. Regardless of the 

impact of PV on reducing operational costs, these studies 

ignored the difficulty of installing renewable energy 

infrastructures in urban cities. Also, few BSS models studied 

the BSS operation while coupled with a micro-grid (MG). In 

[15] the authors considered the conflicting objectives of the MG 

and the BSS. Recently, Mingfei Pan has incorporated a BSS 

with networked nano-grids [16]. 

Most of the BSS models considered that charging of the 

batteries occurs at the BSS station. However, some researchers 

combined both operations of BSS and battery charging stations 

(BCS). In [17], the BSS is only used as a store, and DBs are 

charged at a BCS before being delivered to the BSS. To 

combine both BSS and BCS operations, modeling the 

transportation system for the batteries is required. In this paper, 

the charging of the batteries is done locally at the BSS, thus, 

modeling of the battery logistics is not needed. The BSS models 

presented in the literature were not limited to electric cars only. 

In [7] an operation model for a BSS serving electric buses is 

proposed. Whereas, in [6] a study has been investigated on a 

BSS serving electric taxis only in an urban city. The model in 

[6] is based on some unrealistic assumptions, for instance, it 

was assumed that the BSS is operating only from 9.00 a.m. to 

8.00 p.m., thus, limiting its operation. Hence, the BSS proposed 

in this paper is operating during the whole day and it’s capable 

of serving several types of EVs. Many authors considered a 

constant charging rate in the modeling of BSS systems. 

Undoubtedly, the usage of constant rate chargers that are 

controlled using conventional on/off control techniques is 

easier to be modeled. Very few works utilized continuously 

controlled chargers, which makes it more flexible to provide 

grid services [18]. Therefore, a combination of variable rate 

charging and the battery charging characteristics are accounted 
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into our proposed model. In [19] different charging control 

methods have been proposed considering providing ancillary 

services to the grid. 

BSS scheduling and operation is presented as a large size 

mixed-integer nonlinear optimization problem (MINLP). 

Recently, heuristic optimization algorithms have shown 

reasonable results in solving such problems as shown in [9], 

[11], and [20]. The authors in [9] developed an integrated 

algorithm that is used to solve the optimization problem of a 

BSS using genetic algorithms (GA), particle swarm 

optimization (PSO), and differential evolution (DE). In [11] a 

heuristic technique is used to solve the optimization problem 

using differential evolution enhanced by fitness sharing which 

is faster to solve compared to other evolution algorithms. In 

[20] a hybrid algorithm of PSO and GA is introduced to solve 

the BSS problem. Since there’s no guarantee that heuristics will 

result in an optimal solution, an exact optimization approach is 

used in this research. In [12] the authors represented their BSS 

problem as a mixed-integer linear programming (MILP) and 

solved it using an exact approach. Research effort has also been 

placed to solve large-scale optimization problems that 

accommodate nonlinearities. In [18] a generalized benders 

decomposition algorithm is used to solve the problem by 

dividing each sub-problem into multiple independent quadratic 

programming problems.  

One of the approaches used for optimal scheduling is the 

rolling horizon predictive technique [21]-[23]. In [21] the 

rolling horizon mechanism is used for optimal control of an 

energy storage unit in a grid-connected microgrid. In [22] an 

online model predictive controller is demonstrated for a micro-

grid with plug-in EVs. Also, Alison O'Connell [23] presented a 

rolling horizon optimization method that focuses on controlling 

the rate and times at which EVs charge. For the BSS models, 

the majority of research work preferred modeling the system as 

a day-ahead problem. In this regard, the model is based on EV 

appointments and the customers place their swapping requests 

a day in advance, thus, restricting the BSS scheduling. Whereas, 

the rolling horizon/window optimizer utilizes dynamic 

forecasting to forecast the swapping demand, therefore, it is 

more robust to uncertainties. In a real BSS system, this 

methodology is much better than offline approaches as it 

utilizes the predicted data to develop optimal dynamic 

scheduling. In this research, we employ a rolling horizon 

optimization (RHO) mechanism that establishes a dynamic 

optimization environment. Meanwhile, the RHO mechanism 

optimizes the system over shorter time intervals which reduces 

the computational time. The RHO is based on utilizing a 

forecasting engine to forecast data for a future time interval. 

The forecasted data such as the EVs swapping demand are 

updated on each roll/iteration during the scheduling interval. 

Various research efforts have been carried out towards 

forecasting the EV arrivals and their charging demand at EV 

charging stations. In terms of time series forecasting, there are 

several methods used for predicting future time intervals. In 

[24] and [25] the authors utilized the Autoregressive Integrated 

Moving Average (ARIMA) method as their forecasting engine. 

Also, time series forecasting using deep learning is one of these 

methods that could be used for predicting future time steps. 

Unlike backpropagation neural networks and convolutional 

neural networks, recurrent neural networks (RNN) are capable 

of taking a sequence of data and predicting a future sequence. 

RNNs has also the capability of updating the network state with 

the observed values instead of the predicted values [26] – [27]. 

The LSTM network is an evolution of the conventional RNN 

[28]. The empirical studies conducted in [28] show that time 

series forecasting using the LSTM outperforms the traditional 

ARIMA model. For example, The LSTM improves the average 

prediction accuracy by 85 % compared to the ARIMA method. 

Hence, we used the long-short term memory (LSTM) as our 

forecasting engine to forecast the EV battery swapping demand. 

While most of the BSS models in the literature assumed that the 

BSS provides this service for a single battery type, very few 

research work introduced battery heterogeneity into BSSs 

modeling. In [29] the authors assumed a heterogeneous battery 

stock with some impractical assumptions. For example, it was 

assumed that the customers submit a battery swapping request 

 
TABLE I 

A COMPARISON HIGHLIGHTING THE CHARACTERISTICS OF THIS RESEARCH 

Features BSS Operation Models in Previous Literature 
BSS in this 
Research 

 [16] [6] [13], [14], and [20] [18] [12] and [15] [11] [7] [9] [10] [17] [29]  

Battery Degradation             

Battery heterogeneity             

Battery Charging 
Characteristics 

            

Charging Scheduling (G2B)             

Discharging to grid (B2G)             

Different Chargers             

Multiple BSSs             

Single BSS             

Variable Charging Power             

 



and specify the battery type in advance. Hence, this system is 

not flexible and lacks dynamicity. 

Based on the aforementioned discussion, it’s clear that the BSS 

operations modeling is still in its primitive phase as more 

research about dynamic scheduling is required. Table I 

summarizes the characteristics of this research work concerning 

other literature works. As shown in Table I, this research 

integrates several features into the BSS operation at once 

compared to some other literature. From the table, it can be seen 

that most of the researchers considered a single battery type, 

whereas, few works only introduced multiple battery types. 

Therefore, we formulated a generalized model taking into 

account the battery heterogeneity.  

In this paper, a new problem formulation for the dynamic 

operation of a BSS is proposed which makes it much closer to 

practical operation. Furthermore, a comprehensive study that 

compares the day-ahead operation, the rolling horizon dynamic 

operation, and the BSS unscheduled operation is presented. The 

main contributions of this research work are summarized as 

follows: 

 The diversification of the arriving EV type is adopted 

in this model by introducing multiple units and sizes 

of batteries. Hence, the BSS can serve an EV 

requesting single or multiple battery units (e.g. 

electric buses, trucks, or even large size electric cars). 

 To the best of the authors’ knowledge, this is the first 

model that assesses the BSS optimization problem 

dynamically using an RHO mechanism while 

employing an LSTM recurrent neural network as a 

time series forecasting engine to predict the future 

EV’s swapping demand. 

The rest of the paper is organized as follows. A general 

description of the proposed BSS system is presented in section 

II. In section III, the mathematical formulation and the model 

details are explained. Demand forecasting and the RHO 

mechanism are illustrated in section IV. A set of case studies 

and the simulation output are presented in section V. 

Additionally, a detailed comparison between case studies and 

an analysis of the proposed approach are given in section VI. 

Finally, Section VII presents conclusions and future work. 

II. THE STRUCTURE OF THE PROPOSED BSS SYSTEM 

A general framework of the proposed BSS system is 

illustrated in Fig. 1. The BSS consists of five main parts, 

namely, i) The power system, ii) The charging partition, iii) The 

fully charged battery inventory (FCBI), iv) The swapping bays, 

and v) The BSS control center. 

A. Details of the system model 

In this paper, a fully automated swapping system using 

robots is proposed. Once a battery is fully charged it's 

automatically transferred to the FCBI. The BSS model is 

mainly providing service to EVs by unloading the DBs from the 

arriving EV and replacing it with a fully charged one from the 

FCBI. The BSS can also provide the service by swapping a 

partially charged battery directly from the charging racks. The 

minimum state of charge (SOC) of a partially charged battery 

cannot be less than a certain threshold 𝜁. The BSS has a number 

of swapping bays Nbay, each is defined with index 𝛽. Some 

bays are specified for EVs requesting a single battery unit, 

while some other bays are used to serve EVs requesting more 

than one battery unit (e.g. Electric busses or trucks). 

Meanwhile, the BSS has a heterogeneous battery stock that has 

different battery types 𝜓𝑚 for serving different types of EVs.  

The types of EV batteries can vary due to the different 

manufacturers and models. To avoid problems such as 

compatibility which is one of the main concerns for lithium-ion 

batteries, the BSS has different groups of DC chargers 𝜆𝑗. Each 

group of chargers are specified for a certain battery type and has 

the same rating. These chargers are advanced chargers that 

charge/discharge with a continuously controlled power to get 

more flexibility while supplying energy to the grid. Hence, the 

proposed BSS system fully utilizes the battery-to-grid (B2G), 

grid-to-battery (G2B), and battery-to-battery (B2B) concepts 

and efficiently provides grid ancillary services. Additionally, 

the BSS has a control center that is responsible for taking the 

optimal decisions of charging/discharging/swapping processes. 

Furthermore, the control center continuously monitors the BSS 

demand, the number of charged batteries in stock, the SOC of 

the batteries, and the price of electricity. 

B. Assumptions 

The following assumptions are made for the proposed BSS 

system: 

 It is assumed that batteries are owned by the BSS so 

that it’s responsible for their charging/discharging, 

state of health, and degradation.  

 A heterogeneous battery inventory is proposed for 

serving different EV models from different 

manufacturers. Meanwhile, it’s assumed that different 

EV types from the same manufacturer such as cars, 

buses, or trucks can use single or multiple units of a 

unified battery type.  

 A fully automated swapping system is assumed with a 

proposed swapping service time under 10 minutes. 

 
Fig. 1. The proposed BSS system structure. 

 

 

 



III. OPTIMIZATION MODEL 

In this section, an MINLP optimization model is formulated 

for the BSS optimal operations scheduling. The model is then 

linearized into a MILP to reduce the computational complexity. 

A. The BSS mathematical model 

The optimization model is given in (1)-(28) for batteries 𝑏 ∈
𝐵 = {1,2, … , N𝑏𝑎𝑡}, swapping bays 𝛽 ∈ 𝑈 = {1,2, … , N𝑏𝑎𝑦}, 
chargers 𝑐 ∈ 𝐾 = {1,2, … , N𝑐ℎ}, type of batteries 𝜓 =  {𝜓1,

𝜓2, … , 𝜓𝑚  }, and a group of chargers 𝜆 =  {𝜆1, 𝜆2, … , 𝜆𝑗}, 

where [𝜓1 ∪ 𝜓2 ∪ …∪ 𝜓𝑚 = 𝐵], [𝜓1 ∩ 𝜓2 ∩ …∩ 𝜓𝑚 = {𝜙}], 

[𝜆1 ∪ 𝜆2 ∪ …∪ 𝜆𝑗 = 𝐾],[𝜆1 ∩ 𝜆2 ∩ …∩ 𝜆𝑗 = {𝜙}]; where 𝑚 

and 𝑗 are the indices of battery types and chargers groups 

available at the BSS respectively. A group of chargers has 

chargers of the same type and characteristics. Each group of 

chargers is assigned to a certain battery type. In the following 

formulation chargers of group 𝜆𝑗 is assigned to the battery type 

𝜓𝑚, where (𝑚 = 𝑗). The number of chargers in each group 𝜆𝑗 

is N𝑗
𝑐ℎ. In the objective function (1), the profit of the BSS is 

represented as the difference between the total revenue and the 

total costs. The total revenue of the BSS is represented as the 

revenue from the battery swapping to the customers 𝑅𝑠 and the 

revenue from selling energy to the grid 𝑅𝐵2𝐺.  The costs in the 

system are mainly the cost of energy purchased from the grid to 

charge the batteries 𝐶𝐺2𝐵 and the battery degradation cost C𝐷𝐸𝐺. 

𝑂𝐵𝐽𝐸𝐶𝑇𝐼𝑉𝐸 →  𝑚𝑎𝑥
𝐹
(𝑂) ,

𝑂 = 𝑅𝑠 + 𝑅𝐵2𝐺 − 𝐶𝐺2𝐵 − C𝐷𝐸𝐺
} (1) 

𝑅𝑠 =

{
 
 

 
 ∑ ∑ ∑ 𝑠𝑤𝜏,𝑏,𝛽

(𝛽∈𝑈)(𝑏∈𝐵)(𝜏∈𝑇)

× c𝑏
swap

+ ∑ ∑
𝑒𝑚𝑎𝑥𝑏
100

× ∆𝑠𝑜𝑐𝜏,𝑏
𝑠𝑤𝑎𝑝

 × ckWh

(𝑏∈𝐵)(𝜏∈𝑇) }
 
 

 
 

 (2) 

𝑅𝐵2𝐺 = ∑ ∑ ∆t × c𝜏
gr
(ηdch × 𝑝𝜏,𝑏

𝑑𝑐ℎ)

(𝑏∈𝐵)(𝜏∈𝑇)

  (3) 

𝐶𝐺2𝐵 = ∑ ∑ ∆t × c𝜏
gr
(
𝑝𝜏,𝑏
𝑐ℎ

ηch
 )

(𝑏∈𝐵)(𝜏∈𝑇)

  (4) 

Subject to: 

∆𝑠𝑜𝑐𝜏,𝑏
𝑠𝑤𝑎𝑝

= ∑ (𝑠𝑜𝑐𝜏−1,𝑏 − soc𝜏,𝛽
ev ) × 𝑠𝑤𝜏,𝑏,𝛽

(𝛽∈𝑈)

 

∀(𝜏 ≠ 1) ∈ 𝑇, ∀ 𝑏 ∈ 𝐵, 

 (5) 

∆𝑠𝑜𝑐𝜏,𝑏
𝑠𝑤𝑎𝑝

= ∑ (soc𝑏
0 − soc𝜏,𝛽

ev ) × 𝑠𝑤𝜏,𝑏,𝛽
(𝛽∈𝑈)

 

(𝜏 = 1) ∈ 𝑇, ∀ 𝑏 ∈ 𝐵, 

 (6) 

𝑐ℎ𝜏,𝑏 + ∑ 𝑠𝑤𝜏,𝑏,𝛽
(𝛽∈𝑈)

 ≤ 1                 ∀𝜏 ∈ 𝑇, ∀ 𝑏 ∈ 𝐵, (7) 

𝑠𝑜𝑐𝜏,𝑏 = 𝑠𝑜𝑐𝜏−1,𝑏 +
(𝑝𝜏,𝑏

𝑐ℎ − 𝑝𝜏,𝑏
𝑑𝑐ℎ ) × ∆t

e𝑏
max × 100%

− ∆𝑠𝑜𝑐𝜏,𝑏
𝑠𝑤𝑎𝑝

 

∀(𝜏 ≠ 1) ∈ 𝑇, ∀ 𝑏 ∈ 𝐵, 

 (8) 

𝑠𝑜𝑐𝜏,𝑏 = soc𝑏
0 +

(𝑝𝜏,𝑏
𝑐ℎ − 𝑝𝜏,𝑏

𝑑𝑐ℎ ) × ∆t

e𝑏
max × 100%

− ∆𝑠𝑜𝑐𝜏,𝑏
𝑠𝑤𝑎𝑝

   (𝜏 = 1) ∈ 𝑇, ∀ 𝑏 ∈ 𝐵, 

 (9) 

(soc𝑏
𝑚𝑎𝑥 − DODmax) ≤  𝑠𝑜𝑐𝜏,𝑏 ≤ soc𝑏

𝑚𝑎𝑥 

∀𝜏 ∈ 𝑇, ∀ 𝑏 ∈ 𝐵, 
(10) 

𝑠𝑜𝑐𝜏−1,𝑏  ≥ 𝜁 × ∑
     

𝑠𝑤𝜏,𝑏,𝛽  
(𝛽∈U)

   ∀(𝜏 ≠ 1) ∈ 𝑇, ∀ 𝑏 ∈ 𝐵, (11) 

soc𝑏
0  ≥ 𝜁 × ∑

     
𝑠𝑤𝜏,𝑏,𝛽  

(𝛽∈𝑈)

          (𝜏 = 1) ∈ 𝑇, ∀ 𝑏 ∈ 𝐵.  (12) 

The decision variable vector 𝐹 = [𝑝𝜏,𝑏
𝑐ℎ , 𝑝𝜏,𝑏

𝑑𝑐ℎ , 𝑐ℎ𝜏,𝑏 , 𝑠𝑤𝜏,𝑏,𝛽]
𝑇

 

includes the variables for batteries charging/discharging and 

swapping processes. In (2) the binary variable 𝑠𝑤𝜏,𝑏,𝛽 

represents the status of the battery 𝑏 at any time 𝜏 and swapping 

bay 𝛽 such that it’s 1 if a battery is swapped and 0 otherwise. 

The pricing of the swapping service is divided into two parts: 

a) fixed price per replacement of a battery unit b) price per kWh 

exchanged with the customer. Therefore, the revenue from 

swapping 𝑅𝑠 is achieved from the submission of two terms as 

shown in (2). In (3) and (4) the cost of energy charged from the 

grid and the income from energy discharged to the grid is 

calculated based on the electricity price. Equations (5) and (6) 

calculate the drop in the SOC of a certain battery b if it’s 

replaced by a DB of an EV arriving with soc𝜏,𝛽
ev  at any time 𝜏. If 

a battery 𝑏 is not swapped at any swapping bay 𝛽 at time 𝜏, 
therefore, the values of the variables 𝑠𝑤𝜏,𝑏,𝛽 and ∆𝑠𝑜𝑐𝜏,𝑏

𝑠𝑤𝑎𝑝
 are 

0. Constraint (7) ensures that any battery at any time 𝜏 is either 

swapped at any swapping bay 𝛽 if 𝑠𝑤𝜏,𝑏,𝛽  is 1 or charging at 

the charging racks if the binary variable 𝑐ℎ𝑡,𝑏 is 1. Thus, both 

charging and swapping processes cannot occur at the same time 

for the same battery. Furthermore, a certain battery 𝑏 cannot be 

replaced at two different swapping bays at the same time slot as 

there is a submission on the 𝛽 index as shown in (7). The 

batteries are stored at the FCBI if the binary variables 𝑠𝑤𝜏,𝑏,𝛽 

and 𝑐ℎ𝑡,𝑏 are both zeroes and if its SOC is 100%.  

In (8) and (9) the SOC of each battery 𝑏 at any time 𝜏 is 

calculated while considering the SOC at the end of the previous 

time slot 𝜏 − 1 and the charging & discharging power 

efficiencies ηch & ηdch. As shown in (10), the SOC of any 

battery in the BSS cannot be discharged more than the 

maximum depth of discharge DOD𝑚𝑎𝑥. Also, the SOC cannot 

exceed soc𝑏
𝑚𝑎𝑥 = 100%. The proposed BSS model provides 

the option for swapping partially charged batteries from the 

charging racks. Equation (11) is used to satisfy the option of 

flexible SOC by serving partially charged batteries to 

customers. In (11), any battery at the BSS is eligible for 

swapping if it maintains a SOC equal to or above a certain 

threshold 𝜁. As a result, if a customer arrives with a DB at a 

time 𝜏, the SOC of the served charged battery at the end of time 

slot 𝜏 − 1 has to be above the threshold 𝜁. Similarly, equation 

(12) ensures that the initial soc𝑏
0  for any battery at the BSS at 

the beginning of the day is above the threshold 𝜁 if this battery 

is to be swapped at the first time slot (𝜏 =  1). 

The BSS model also offers serving multiple batteries for EVs 

requesting more than one battery unit as in (13) and (14): 

∑ 𝑠𝑤𝜏,𝑏,𝛽
(𝑏∈𝐵)

 = N𝜏,𝛽
units ×𝑀𝜏,𝛽         ∀𝑡 ∈ 𝑇𝛽

𝑎𝑟𝑣, ∀ 𝛽 ∈ 𝑈, (13) 

𝑠𝑤𝑡,𝑏,𝛽  = 0                    ∀𝜏 ∈ 𝑇𝛽
𝑎𝑟𝑣′ , ∀ 𝑏 ∈ 𝐵, ∀ 𝛽 ∈ 𝑈, (14) 



where [𝑇𝛽
𝑎𝑟𝑣 ∪ 𝑇𝛽

𝑎𝑟𝑣′ = 𝑇]; [𝑇𝛽
𝑎𝑟𝑣 ∩ 𝑇𝛽

𝑎𝑟𝑣′ = {𝜙}].  

At any time slot τ only one customer can swap single or 

multiple battery units at the same bay 𝛽. Constraint (13) states 

that EVs arriving at bay 𝛽 and time 𝜏 requesting N𝜏,𝛽
𝑢𝑛𝑖𝑡𝑠 units of 

batteries for swapping could be served or not; where 𝑀𝜏,𝛽 is a 

binary variable equal to 1 if the EV is served and 0 otherwise. 

Equation (14) sets the variable 𝑠𝑤𝜏,𝑏,𝛽 to zero at the time slots 

without any arrivals 𝑇𝛽
𝑎𝑟𝑣′  at bay 𝛽.  

In (15) and (16), the total number of EVs served and batteries 

swapped are calculated respectively as follows: 

𝒩𝑠𝑒𝑟𝑣𝑒𝑑 = ∑ ∑
∑ 𝑠𝑤𝜏,𝑏,𝛽𝑏∈𝐵

N𝜏,𝛽
𝑢𝑛𝑖𝑡𝑠

(𝛽∈𝑈)(𝜏∈𝑇)

              ∀N𝜏,𝛽
𝑢𝑛𝑖𝑡𝑠 ≠ 0,  

(15) 

𝒩𝐵𝐴𝑇−𝑆𝑊 = ∑ ∑ ∑ 𝑠𝑤𝜏,𝑏,𝛽
(𝑏∈𝐵)(𝛽∈𝑈)(𝜏∈𝑇)

 (16) 

The net power flow at the BSS 𝑃𝜏
𝑛𝑒𝑡−𝑇𝐹 should not exceed 

the transformer rated power P𝑀𝐴𝑋−𝑇𝐹  as shown in (17). 𝑃𝜏
𝑛𝑒𝑡−𝑇𝐹 

is calculated at any time 𝜏 as the difference between the total 

charged and discharged power from all the batteries as defined 

in (18). 

−P𝑀𝐴𝑋−𝑇𝐹 ≤ 𝑃𝜏
𝑛𝑒𝑡−𝑇𝐹 ≤ P𝑀𝐴𝑋−𝑇𝐹                ∀𝜏 ∈ 𝑇, (17) 

𝑃𝜏
𝑛𝑒𝑡−𝑇𝐹 = ∑ 𝑝𝜏,𝑏

𝑐ℎ −

(𝑏∈𝐵)

𝑝𝜏,𝑏
𝑑𝑐ℎ                           ∀𝜏 ∈ 𝑇. (18) 

B. Charging Characteristics Modeling 

To fully utilize the benefits from the grid services, variable-

rate chargers for charging Lithium-ion (Li-ion) batteries are 

considered in this model. Furthermore, the charging 

characteristics of Li-ion batteries are considered for the model 

to be close to practical operation. The typical charging 

characteristics of a Li-ion battery cell are shown in Fig. 2. As 

shown in the figure, the charging starts with a constant power 

until the SOC reaches a certain percentage ω % before it 

decreases exponentially [9]. This is known as a constant-

current/constant-voltage charging strategy [9]. In this model, 

continuously controlled variable chargers are used. Thus, a 

combination between the variable charging and the constant-

current/constant-voltage charging strategy is implemented. In 

our proposed BSS model, the charging power curve in Fig. 2 is 

considered as the upper limit for charging. The combination of 

(19) and (20) models the charging characteristics for li-ion 

batteries as they define the bounds on the charging power. The 

charging characteristics are modeled as a function of the battery 

SOC as it decreases exponentially less than p𝑐
𝑀𝐴𝑋𝑐  when the 

SOC exceeds a certain ω% as shown in (19). In (21) the power 

discharged from any battery should be less than the upper limit 

p𝑐
𝑀𝐴𝑋𝑑. The parameters p𝑐

𝑀𝐴𝑋𝑐  and p𝑐
𝑀𝐴𝑋𝑑 are set according to 

the group of chargers 𝜆𝑗 assigned to each battery type 𝜓𝑚 ; 

recall, in this model, we assign (𝑚 = 𝑗). 

0 ≤ 𝑝𝜏,𝑏
𝑐ℎ ≤ (p𝑐

𝑀𝐴𝑋𝑐 × 𝑒

𝜔−𝑠𝑜𝑐𝑡,𝑏
P𝑐
MAXc

) × 𝑐ℎ𝜏,𝑏 

∀𝜏 ∈ 𝑇  ∀𝑏 ∈ 𝜓𝑚  ∀𝑐 ∈  𝜆𝑗   ∀(𝑚 = 𝑗) ∈ 𝜓, 

(19) 

0 ≤ 𝑝𝜏,𝑏
𝑐ℎ ≤ p𝑐

𝑀𝐴𝑋𝑐 × 𝑐ℎ𝜏,𝑏 

∀𝜏 ∈ 𝑇  ∀𝑏 ∈ 𝜓𝑚  ∀𝑐 ∈  𝜆𝑗   ∀(𝑚 = 𝑗) ∈ 𝜓,  
(20) 

0 ≤ 𝑝𝜏,𝑏
𝑑𝑐ℎ ≤ p𝑐

𝑀𝐴𝑋𝑑 × 𝑐ℎ𝜏,𝑏       

∀𝜏 ∈ 𝑇  ∀𝑏 ∈ 𝜓𝑚  ∀𝑐 ∈  𝜆𝑗   ∀(𝑚 = 𝑗) ∈ 𝜓, 
(21) 

C. Battery Heterogeneity  

Unlike most of the BSS models that consider a single battery 

type, the proposed BSS framework introduces battery 

heterogeneity to provide a realistic model for the BSS 

operation. Thus, multiple battery capacities are considered in 

the optimization framework in order to unify battery 

management and achieve global gains. 

In (22) the subset 𝑇𝑚,𝛽
′   represents the time slots at which no 

EV arrivals are requesting a battery of type 𝜓𝑚 at any swapping 

bay 𝛽. Batteries at the BSS of type 𝜓𝑚 can’t be swapped at 𝑇𝑚,𝛽
′  

by setting 𝑠𝑤𝜏,𝑏,𝛽  = 0 at these time slots. Due to the different 

types of batteries available, each type 𝜓𝑚 is assigned for a 

group of chargers 𝜆𝑗, where (𝑚 = 𝑗). In (23) the total number 

of batteries of a certain type 𝜓𝑚 that can be charged at the same 

time are restricted to the number of chargers N𝑗
𝑐ℎ in group 𝜆𝑗 

assigned to this type 

𝑠𝑤𝜏,𝑏,𝛽  = 0        ∀𝜏 ∈ 𝑇𝑚,𝛽
′  ∀ 𝑏 ∈ 𝜓𝑚  ∀𝑚 ∈ 𝜓  ∀ 𝛽 ∈ 𝑈, (22) 

 

∑ 𝑐ℎ𝜏,𝑏
(𝑏∈𝜓𝑚)

 ≤  N𝑗
ch
                ∀𝜏 ∈ 𝑇  ∀(𝑚 = 𝑗) ∈ 𝜓, (23) 

where (𝑇𝑚,𝛽
′ ⊂ 𝑇) for the time slots at which there are no EV 

arrivals requesting type m batteries at bay 𝛽. 

D. Battery Degradation Effect 

The batteries in the BSS undergo many charging/discharging 

cycles which reduce the battery lifetime and result in decreasing 

the maximum capacity of the battery. In this research paper, the 

battery characteristics are highly dependent on the number of 

cycles, as illustrated in [30], whereas, other battery chemistries 

are highly sensitive to the DOD𝑚𝑎𝑥 [31]. The degradation in a 

certain battery SOC is calculated as a function of the number of 

cycles as shown in Appendix A. 

In the BSS operation model, it’s very likely for any battery 

at the BSS to suffer a negligible degradation in its SOC in just 

one day. So, the battery degradation effect is more significant 

in the BSS planning problems. However, the degradation in the 

battery SOC is considered in this model to achieve a more 

realistic profit. In the BSS operation model, the total daily 

battery degradation cost C𝐷𝐸𝐺 is the minimum cost in the  

system. Also, its variation is minor with the charging 

scheduling in daily operation models. Hence, for simplicity, the 

 
Fig. 2. Charging characteristics of a Li-ion battery cell. 
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battery degradation cost is calculated for the obtained number 

of cycles after solving the optimization model. Furthermore, 

embedding its calculations within the optimization model will 

not result in a much-enhanced solution and it would rather 

increase the model nonlinearity. 

E. Model Linearization 

To decrease the computational complexity, some constraints 

are linearized. Equation (5) performs the multiplication of a 

positive variable and a binary variable 𝑠𝑜𝑐𝜏−1,𝑏 × 𝑠𝑤𝜏,𝑏,𝛽 which 

is linearized as shown in (24)-(27). The nonlinear term in (5) is 

replaced by a positive variable 𝑧𝑡,𝑏,𝛽 which equals to 𝑠𝑜𝑐𝜏−1,𝑏 

from (26) and (27), if 𝑠𝑤𝜏,𝑏,𝛽 = 1. Whereas, if 𝑠𝑤𝜏,𝑏,𝛽 = 0, the 

variable 𝑧𝜏,𝑏,𝛽 is forced to 0 from (25) and (26) since it’s a 

positive variable.  

Equation (19) is linearized by (28) which is a linear fitting 

for the exponential term, where 𝛼 and 𝛾 are the coefficients of 

the linear fit, and these coefficients change based on the charger 

rating and characteristics. The effect of linearization is further 

tested on one of the case studies that are presented later in 

section V. 

∆𝑠𝑜𝑐𝜏,𝑏
𝑠𝑤𝑎𝑝

= ∑ (𝑧𝜏,𝑏,𝛽 − soc𝜏,𝛽
ev × 𝑠𝑤𝜏,𝑏,𝛽)

(𝛽∈𝑈)

 

∀(𝜏 ≠ 1) ∈ 𝑇, ∀ 𝑏 ∈ 𝐵, 

(24) 

𝑧𝜏,𝑏,𝛽 ≤ 𝑠𝑤𝜏,𝑏,𝛽 × soc𝑏
𝑚𝑎𝑥   ∀𝜏 ∈ 𝑇𝛽

𝑎𝑟𝑟, ∀ 𝑏 ∈ 𝐵, ∀ 𝛽 ∈ 𝑈, (25) 

𝑧𝜏,𝑏,𝛽 ≥ 𝑠𝑜𝑐𝜏−1,𝑏 − (1 − 𝑠𝑤𝜏,𝑏,𝛽) × soc𝑏
𝑚𝑎𝑥 

∀(𝜏 ≠ 1) ∈ 𝑇, ∀ 𝑏 ∈ 𝐵, ∀ 𝛽 ∈ 𝑈, 
(26) 

𝑧𝜏,𝑏,𝛽 ≤ 𝑠𝑜𝑐𝜏−1,𝑏             ∀(𝜏 ≠ 1) ∈ 𝑇, ∀ 𝑏 ∈ 𝐵, ∀ 𝛽 ∈ 𝑈, (27) 

𝑝𝜏,𝑏
𝐶 ≤ −𝛼𝑠𝑜𝑐𝜏,𝑏 + 𝛾                                   ∀𝜏 ∈ 𝑇, ∀𝑏 ∈ 𝐵. (28) 

IV. ROLLING HORIZON PREDICTIVE SCHEDULING 

The idea of rolling horizon optimization is to consider 

forecasted data over a limited horizon in addition to the 

currently available information to develop optimal decisions. 

The rolling horizon mechanism can be implemented by 

defining three horizons—namely, the scheduling horizon (𝑇), 
the control horizon (𝑪), and the forecasting horizon (𝒖) [32]. 

For a BSS, at each time slot 𝜏, the optimization model considers 

the current EV arrivals at the control horizon and the forecasted 

arrivals at future time slots 𝜏 + 𝒖 over the scheduling period 𝑇 

as presented in Fig. 3 where 1 ≤ 𝒖 ≤ 𝑁𝑇 − 1; 𝑁𝑇 is the number 

of time slots in the scheduling horizon. 

A. LSTM Forecasting Engine 

In the proposed operation mechanism, a forecasting engine is 

required to forecast the swapping demand for future time slots. 

The forecasting is mainly done based on the historical data of 

the EV arrivals. To forecast the number  of  EV arrivals  at  each 

time slot through the day, RNNs is an efficient time series 

forecasting engine that allows feeding values forward in time 

since it uses not only the input data but also the previous outputs 

for making the current prediction. However, it's very hard to 

train and forgettable so we used an evolution of the RNN which 

was introduced by Hochreiter and Schmidhuber [33]. This 

network has a gated memory unit for neural networks and it is 

capable of learning  long-term  dependencies  and  remembering  

 
     Fig. 3.  The rolling horizon optimization mechanism 

 
     Fig. 4. The structure of the LSTM cell. 

information for long periods of time. Fig. 4 shows the LSTM 

repeating module at time 𝜏. 
The LSTM network has memory blocks called cells and 3 

gates managing the memory contents, each gate is a logistic 

function with weighted sums. Equations (29), (30), and (31) 

represent the forget gate, input gate, and output gate of each 

memory block at time 𝜏 respectively. The sigmoid function in 

each decides about the data that will be omitted from each cell. 

For a memory block, with 𝐽 number of memory cells and an 

input activation vector of 𝑋𝜏 ∈ 𝑅
𝐼 , the output activation vector 

is 𝑂𝜏 ∈ 𝑅
𝐽, and the current state vector is 𝐶𝜏 ∈ 𝑅

𝐽. 

The input gate decides which new inputs flow into the cell 

state. The forget gate determines which values from the old 

output to forget and which values remain by looking at the 

current input (𝑋𝜏) and the previous output (ℎ𝜏−1). Whereas, the 

output gate decides about values to be executed and it’s 

determined by utilizing the state vector from the previous step 

𝐶𝜏−1. An intermediate state vector 𝐶�̂� ∈ 𝑅
𝐽
 is calculated in (32) 

and considered as a candidate state vector. Equation (33) is 

responsible for updating the current cell state which is equal to 

the values omitted from the previous cell state plus the new 

candidate values entering the cell state. The LSTM performance 

is evaluated using the root mean square error (RMSE) as in [26]. 

The output values from the output gate are enhanced and 

produced in a filtered version ℎ𝜏 ∈ 𝑅
𝐽 as shown in (34). 

𝑓𝜏 = 𝜎(𝑊𝑓 × +𝑈𝑓 × ℎ𝜏−1 + 𝑏𝑓) (29) 

𝑖𝜏 = 𝜎(𝑊𝑖 × 𝑋𝜏 +𝑈𝑖 × ℎ𝜏−1 + 𝑏𝑖) (30) 

𝑂𝜏 = 𝜎(𝑊𝑜 × 𝑋𝜏 +𝑈𝑜 × ℎ𝜏−1 + 𝑏𝑜) (31) 

𝐶�̂� = 𝑡𝑎𝑛ℎ(𝑊𝑐 × 𝑋𝜏 +𝑈𝑐 × ℎ𝜏−1 + 𝑏𝑐) (32) 

𝐶𝜏 = 𝑓𝜏⊗𝐶𝜏−1 + 𝑖𝜏⊗𝐶�̂� (33) 



ℎ𝜏 =  𝑂𝜏⊗ 𝑡𝑎𝑛ℎ(𝐶𝜏) (34) 

where 𝑏𝑓, 𝑏𝑖, 𝑏𝑜 and 𝑏𝑐 are the corresponding bias of 𝑓𝜏, 𝑖𝜏, 𝑂𝜏, 

and 𝐶�̂� respectively. 𝑊𝑓, 𝑊𝑖 , 𝑊𝑜, and 𝑊𝑐  represent the 

corresponding input weight matrices having (𝐽 × 𝐼) 
dimensions. Whereas 𝑈𝑓, 𝑈𝑖, 𝑈𝑜, and 𝑈𝑐 are matrices with 

dimensions (𝐽 × 𝐽) and represent the recurrent connections. The 

sign ⊗ is used as an indication for element-wise multiplication. 

The sigmoid function (𝜎) and the hyperbolic tangent function 

are defined in (35) and (36) as follows: 

𝜎(𝒁) =  
1

1 + 𝑒−𝒁
 

(35) 

tanh(𝒁) =
𝑒𝒁 − 𝑒−𝒁

𝑒𝒁 + 𝑒−𝒁
 

(36) 

B. Proposed BSS Dynamic Scheduling Mechanism 

The framework combining the LSTM and the RHO is further 

detailed in lines 1-13 in Algorithm 1 and in Fig. 5 as well. The 

algorithm starts by taking the historical data of the EV arrivals 

as an input; then it initializes the length of the control horizon, 

forecasting horizon, and scheduling horizon. The control 

horizon contains the current EV arrivals at the BSS, whereas, 

the forecasting horizon contains the predicted arrivals. The 

LSTM forecasting engine utilizes the historical arrivals data to 

predict future time slots as shown in lines 4-10 in algorithm 1. 

The algorithm then uses a certain solver to solve the 

optimization problem over the interval 𝑪 + 𝒖 as shown in the 

flow chart in Fig. 5. 

Finally, the values of the control horizon variables are saved, 

and a new iteration starts while updating the historical data with 

the actual arrivals in 𝑪. The optimization horizon keeps rolling 

until the scheduling horizon is completed and the program 

terminates. To establish the dynamic scheduling mechanism, 

optimization and forecasting are implemented in two 

interdependent software programs. As shown in Fig. 5, the 

RHO framework is implemented in MATLAB, whereas, each 

optimization iteration in Fig. 3 is solved using GAMS [34]. 

 

Algorithm. 1: Pseudocode for the LSTM-based RHO 

Input: Historical EV arrivals data and current EV arrivals 

Output: RHO scheduling for the BSS operations 

Initialize 𝑪, 𝒖, 𝑁𝑇, and the length of the training set (𝑄) 

1: for 𝜏 = 1: ( 𝑁𝑇 − 1)  do 

2:    Update the system state with the EV arrivals 𝑁𝜏
𝑎𝑟𝑟 in 𝑪 

3:       LSTM Forecasting for the interval 𝜏 + 𝒖: 

4:           Data preprocessing (e.g. normalize the training set)            

5:   Create the input sequence and train LSTM: 

6:          𝑋𝑇={𝑋𝜏−𝑄, ⋯,𝑋𝜏−2, 𝑋𝜏−1}={𝑁𝜏−𝑄
𝑎𝑟𝑟 , ⋯ , 𝑁𝜏−2

𝑎𝑟𝑟 , 𝑁𝜏−1
𝑎𝑟𝑟}  

7:          Predict output sequence 𝑂              LSTM(𝑋): 

8:          𝑂𝑇 = {𝑁𝜏
𝑎𝑟𝑟, 𝑁𝜏+1

𝑎𝑟𝑟 ,⋯ , 𝑁𝜏+𝒖
𝑎𝑟𝑟} = {𝑂𝜏 , 𝑂𝜏+1⋯ ,𝑂𝜏+𝒖} 

9:           Evaluate the forecasting performance using RMSE 

10:         Update the training interval 𝑄 ≔ 𝑄 + 𝑪 

11:   Run BSS scheduling model over the horizon 𝑪 + 𝒖 

12:   Save the decision variables 𝐹 for the period 𝑪 

13:end for 

 
     Fig. 5.  Proposed LSTM-based RHO algorithm structure. 

V. CASE STUDIES AND SIMULATION 

This section carries out a set of case studies that show the 

effectiveness of the proposed dynamic scheduling mechanism. 

The cases presented in this study are mainly: the BSS 

unscheduled operation, day-ahead scheduling, and RHO 

scheduling. In all cases, the simulation is applied to a BSS 

serving two types of batteries with ratings of 16 kWh and 42 

kWh. Additionally, two types of chargers are available at the 

BSS with ratings of 8 kW and 25 kW. The model is defined as 

a MILP; it is implemented in GAMS 30.3.0 and solved using 

the commercial mixed-integer linear solver CPLEX [34]. The 

LSTM network is trained and implemented using MATLAB 

[35]. The swapping service is provided within 10 minutes, thus 

the simulation is tested over 144-time slots equivalent to the 24 

hours of the day. Table II defines the parameters used in the 

simulation. The parameters are mainly the prices of the 

swapping services, the operation costs, limitations on 

charging/discharging, and limitations on the power exchange 

with the power grid. The actual EV arrivals and the electricity 

TABLE II 

PARAMETERS OF THE BSS SIMULATION 

Parameters Value 

𝑏 ∈ 𝜓1 indices   𝑏 =  [1 − 30] 
𝑏 ∈ 𝜓2 indices  𝑏 =  [31 − 60] 

c𝑏
𝑠𝑤𝑎𝑝

 500 ¢ ∀𝑏 ∈ 𝜓1, 1200 ¢ ∀𝑏 ∈ 𝜓2 

c𝑘𝑊ℎ 50 ¢/kWh 

DOD𝑚𝑎𝑥 80% 

e𝑏
𝑚𝑎𝑥 16 kWh ∀𝑏 ∈ 𝜓1, 42 kWh ∀𝑏 ∈ 𝜓2 

𝜔 70% 

N𝑐ℎ 26; N1
𝑐ℎ = N2

𝑐ℎ=13 

No. of batteries (N𝑏𝑎𝑡𝑡)  60; 30 of type 𝜓1+ 30 of type 𝜓2   

No. of bays (N𝑏𝑎𝑦) 3 

No. of EV arrivals 150  

p𝑐
𝑀𝐴𝑋𝑐, p𝑐

𝑀𝐴𝑋𝑑 8 kW ∀𝑐 ∈ 𝜆1, 25 kW ∀𝑐 ∈ 𝜆2. 

Batteries of type 𝜓1 Charged with chargers group 𝑐 ∈ 𝜆1 
Batteries of type 𝜓2 Charged with chargers group 𝑐 ∈ 𝜆2 

P𝑐ℎ
𝑔𝑟𝑖𝑑

, P𝑑𝑐ℎ
𝑔𝑟𝑖𝑑

 429 kW 

soc𝑏
0 100 % 

𝜁 90 % 

∆t 1/6 

η𝑐ℎ, η𝑑𝑐ℎ 0.94 

μ𝑏
𝑑𝑒𝑔

 4200 ¢ ∀𝑏 ∈ 𝜓1, 1600 ¢ ∀𝑏 ∈ 𝜓2 

 

 



price (Cgrid) are presented in Fig. 8 and Fig. 11, respectively. 

In figures (3-5, and 8) an EV requesting a type 𝜓𝑚 battery at 

the 𝛽 th bay is denoted by EV type 𝜓𝑚 at 𝛽. 

A. Day-Ahead Scheduling for a Small Battery Inventory. 

This is an illustrative case study with few batteries and EVs 

that validates the optimization model and ensures meeting the 

constraints in section III. The same values of the parameters 

from Table II are used. However, for simplicity,  the number of 

batteries is reduced to three units: two of type 𝜓1 and one type 

𝜓2. Also, only 1 charger is available for each battery type. Six 

customers arrived at different swapping bays and different time 

slots of the day. In all case studies presented in this section, EVs 

requesting more than one battery unit are marked in black on 

the figures and arrive at the third bay (𝛽 =  3). In Fig. 6, 

batteries with indices (𝑏 =  1 & 2) are of type 𝜓1, whereas 

batteries with index (b = 3) are of type 𝜓2. Day-ahead 

scheduling is applied on the assumed EV arrivals in Fig. 6. For 

day-ahead scheduling, it should be assumed that batteries have 

the same SOC conditions at the beginning and at the end of the 

day. However, most of the literature work using the day-ahead 

model disregarded charging the batteries at the end of the day 

as in [12]. Hence, all the batteries are depleted, thus, achieving 

a high profit but the next day will start with a different initial 

SOC for the batteries. Hence, in the day-ahead case, it is 

assumed that the day starts and ends with charged batteries 

having a SOC greater than or equal to 90%. Therefore 

constraint (37) is added for charging the batteries at the end of 

the day at 𝜏 = 144 to SOC 90% or above. Thus, ensuring 

batteries are charged before the beginning of the next day. 

𝑠𝑜𝑐𝜏=144,𝑏  ≥ 90%                                   ∀ 𝑏 ∈ 𝐵.   (37) 

In Fig. 6, the sudden drop in a certain battery SOC indicates 

swapping this battery with the depleted one of the arriving EV. 

In all case studies, the EV arrivals highlighted in yellow 

represent served customers. EVs arriving at 4:10 AM and 5:50 

AM request type 𝜓2 batteries and it can be seen that only 

batteries with index (𝑏 = 3) swapped. Whereas, the rest of EVs 

arrivals request type 𝜓1 batteries and could only be swapped 

with batteries (𝑏 = 1) or (𝑏 =  2). 
It can be observed that the SOC of batteries swapped at any 

time 𝜏 is greater than or equal to the threshold (𝜁 =  90%) at 

the end of the previous time slot 𝜏 − 1 before swapping. Since 

there’s only one charger available for type 𝜓1 batteries, 

therefore (𝑏 = 1) and (𝑏 =  2) cannot be charging at the same 

time; one is charging while the other is constant and vice-versa. 

The large EV arriving at 4:50 PM requests 2 battery units of 

type 𝜓1, thus the optimization solver favored swapping 2 units 

to this customer and rejected the customer requesting one unit 

at 4:30 PM. A total profit of $71.73 is obtained for this simple 

illustrative case while using the linearized constraints (24) – 

(28). Whereas, a total profit of $70.76 is obtained without 

linearization, which is 1.35 % lesser. Hence, the linearization 

effect is very minor and it doesn’t sacrifice any of the system 

functionalities. In the non-linearized case, a global optimization 

solver is employed to solve the proposed MINLP using a 

branch-and-reduce optimization navigator (BARON) solver 

19.12.7 [34]. Using this solver to solve the non-linearized 

version of the case studies presented in the following 

subsections is computationally expensive. 

B. Unscheduled Operation with a Greedy Algorithm (case 1)  

This case study represents the base case for a BSS operating 

without optimization. The idea is mainly based on serving a 

customer by swapping his DB with a charged one if available, 

otherwise, batteries are either charging or stored at the FCBI. 

Hence, the batteries, in this case, are charged as soon as possible 

and discharging to the grid is excluded. The algorithm used in 

this case is considered as a greedy algorithm as it tends to serve 

more customers by charging DBs immediately after the 

swapping process as shown in Fig. 7. Meanwhile, the 

discharging to the power grid is disabled in order to keep 

batteries charged to serve more customers. The greedy 

algorithm used in this case is presented in Appendix B.  

The parameters in Table II are used in this case study. Fig. 7 

shows the SOC for a sample of three batteries during the day. 

For comparison, the EV arrivals used in this case are the same 

actual EV arrivals in cases 2 and 3. In Fig. 7, it can be seen that 

the batteries are charging as soon as possible to serve more 

customers while disabling the discharge option. The hourly 

profit, in this case, is presented in Fig. 8, the profit in red is a 

negative profit due to replenishing the energy of the two DBs 

received from the two customers arriving at the beginning of 

the day. Meanwhile, there are no EV arrivals at these time slots 

to achieve revenue from swapping. This operation resulted in a 

total daily profit of $1963.8, 150 customers were served, and 

162 batteries were swapped. 

 
Fig. 7.  (a) The SOC and the type of EVs arrivals, and (b) the SOC of a 

sample of three batteries in the unscheduled operation case of BSS. 
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Fig. 6.  Day-ahead scheduling for a small battery inventory 
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C.  Day-ahead Scheduling with EV Appointments (case 2) 

In this case study, day-ahead scheduling is applied on the 

same actual EV arrivals data in the unscheduled operation and 

the rolling horizon scheduling cases. In the day-ahead mode of 

operation, these EV arrivals are considered as swapping 

requests placed in advance. Thus, each customer reserves an 

appointment for swapping at a specific time. The day-ahead 

optimization simulation is applied to the 144-time slots of the 

day and an optimal profit that maximizes the daily profit was 

obtained. Fig. 9 shows the SOC for a sample of three batteries 

during the day. The simulation starts with fully charged 

batteries. It’s clear from Fig. 9 and Fig. 10 that the customers 

arriving at the end of the day will not be served since all 

batteries are charging to achieve a SOC above 90% at the end 

of the day according to (37). The high energy consumed at the 

end of the day to charge all the depleted batteries before the next 

day resulted in a negative profit at the last two hours as shown 

in Fig. 10. The day ahead scheduling resulted in a total daily 

profit of $1792.5 while serving 136 customers and swapping 

142 battery units. In Fig. 11, the total B2G, G2B, and B2B 

power of the BSS at any time during the day is represented. 

Additionally, it can be observed that more energy is sold to the 

grid at the highest electricity price.  

An extended version of the day-ahead case is capable of 

achieving a higher profit by eliminating the constraint (37). 

This solution doesn’t account for keeping the batteries charged 

before the beginning of the next day. In this case, it should be 

assumed that the BSS receives newly charged batteries at the 

beginning of the next day that were previously charged 

elsewhere. Thus, the solution, in this case, is considered as an 

ideal solution as it utilizes the actual information of the 

swapping demand and the electricity price for the whole day. 

Although this case is impractical, it results in a total profit of 

$2289.76 which is the highest possible profit that could be 

achieved by the proposed BSS model.  

D. Rolling Horizon Scheduling (case 3) 

This case study assesses the BSS dynamic scheduling using 

a rolling horizon optimization environment. The scheduling 

horizon is 24 hours of the day. The control horizon is the 10 

minutes one-time slot that has the actual EV arrivals, whereas a 

forecasting horizon of 6 hours is used. Forecasting is carried out 

for each battery type independently. This Model utilizes 

historical data of EV arrivals in an EV parking lot in Toronto, 

Ontario, Canada. These data are obtained from Toronto parking 

authority. In Fig. 12, the LSTM network utilizes the historical 

data of four consecutive days of the EV arrivals requesting 

battery type 𝜓1 to forecast future arrivals. The historical data of 

the EV arrivals were recorded every 10 minutes. The LSTM 

network state is continuously updated with the actual EV 

arrivals in the control horizon to update the forecasting horizon 

as illustrated previously in section IV. For comparison, the 

actual EV arrivals data are the same data used in cases 1 and 2. 

The RHO simulation is applied to 37-time slots on each 

roll/iteration. Each single time slot represents the 10 minutes 

control horizon, whereas 36-time slots represent a 6 hours 

forecasting horizon. A total number of 144 optimization 

iterations are performed using the RHO algorithm for a 

complete day. The RHO runs continuously since the time 

horizon keeps rolling while forecasting new arrivals and 

ensuring that the swapping conditions are met. As a result, the 

proposed RHO mechanism doesn't need to force batteries to be 

charged at the end of the day such as in the day-ahead model. 

 
Fig. 9.  (a) The SOC and the type of EVs arrivals, and (b) the SOC of a 

sample of three batteries in the day-ahead operation of the BSS. 

 
Fig. 10. The profit and the number of EV arrivals at each hour in the 

day-ahead operation case study. 

 
Fig. 11. Total energy charged/discharged from the power grid and battery 

to battery energy exchange in the day-ahead operation case study. 
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Fig. 8. The profit and the number of EV arrivals at each hour in the 

unscheduled operation case study. 
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The day-ahead model is less flexible and lacks dynamicity since 

it’s based on appointments. Unlike day-ahead operation, the 

RHO provides a dynamic scheduling environment that is robust 

to uncertainty. Additionally, RHO iterations continue 

scheduling for the new day after the day ends while always 

ensuring the SOC of the charged batteries is above 90% prior 

to swapping according to (11) in section III. Hence, RHO serves 

end-day customers as shown in Fig. 13 and Fig. 14.  

As shown in Fig. 15, The B2G discharge at the beginning of 

the day took place since the forecasting horizon initially 

contained few arrivals during the first few iterations. Hence, it 

results in a high revenue from discharging. As the window rolls, 

more customers appear on the forecasting horizon and the 

batteries are charged in advance in order to serve the forecasted 

customers. This is also reflected in Fig. 14 as a high profit at the 

beginning of the day followed by a negative profit due to 

charging the batteries when the customers showed up in the 

forecasting horizon. The RHO served 149 customers by 

swapping 158 battery units and resulted in a total daily profit of 

$2128.1 which is more than the previous cases. 

In Fig. 16, the charging characteristics of one of the batteries 

at the BSS are illustrated. The figure presents the plot of the 

energy and the charging power of a battery of type 𝜓1with index 

(𝑏 =  25). It can be seen that the battery is charged with a value 

less than or equal to the maximum charging limit until its SOC 

reaches 70%. When the SOC threshold ω exceeds 70 % there’s 

a kind of exponential decrease from the maximum charging rate 

in the constant voltage charging mode. This proves that the 

results satisfy the constraints governing the charging 

characteristics of Li-ion batteries. 

VI. RESULTS AND ANALYSIS 

In this section, a detailed comparison between the results of 

different case studies is presented. Additionally, an analysis has 

been conducted for the proposed RHO approach that shows the 

effect of using different forecasting intervals on the system. The 

numerical results used in this section verify the efficacy of the 

proposed approach and show how it outperforms other existing 

approaches. Finally, we concluded our analysis with some 

policy implications that were proposed based on the obtained 

results. 

A. Comparison between Different Case Studies 

In this subsection, a comparison between the obtained results 

of the three previous case studies is presented in Table III and 

Fig. 17. As shown in Table III, RHO scheduling (case 3) 

resulted in the highest profit, whereas the day-ahead scheduling 

(case 2) has the lowest profit. It can be also seen that the revenue 

from swapping in the unscheduled operation (case 1) has the 

highest value due to its greedy algorithm that tends to serve 

more customers. 

For all the cases, it can be noticed that the charging of the 

batteries has the highest cost 𝐶𝐺2𝐵 as it represents 86% - 88% 

of the total cost. The cost of energy in case 1 is 804.52 $/day, 

 
Fig. 12.  Forecasting for the EV arrivals requesting a certain type of 

battery. 

 
Fig. 13.  (a) The SOC and the type of EVs arrivals, and (b) the SOC of a 

sample of three batteries in the rolling horizon scheduling case of BSS. 

 
Fig. 14. The profit and the number of EV arrivals at each hour in the 

rolling horizon operation case study. 
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Fig. 15.  Total energy charged/discharged from the power grid and battery 

to battery energy exchange in the RHO operation case study. 

 
Fig. 16.  The charging power and energy are stored inside batteries with 

an index (b=25). 

 

 

 



which is higher than the other cases due to charging the DBs as 

soon as possible. Whereas, the day-ahead model has the lowest 

charging cost of 704 $/day as it observes the electricity price for 

the whole day, unlike the RHO that observes it only for the 

forecasting interval. 

In terms of the revenue from selling energy to the power grid 

𝑅𝐵2𝐺 , case 3 sells 62.9 % more energy than case 2, whereas it’s 

0 in case 1 as discharging to the grid is excluded in this case. In 

general, it can be noticed that the income from selling energy to 

the grid is much lesser than that from the swapping service since 

the price of the swapping service is higher. Thus, it’s very likely 

for the optimization solver to favor swapping over selling 

energy to the grid. 

Case 3 resulted in a higher profit that is 18.7 % more than 

case 2 and the number of batteries swapped increased by 11.3% 

as well. It can be observed from Fig. 17 that the number of 

customers served in the RHO case is nearly the same as the 

unscheduled operation, however, RHO is economically better 

due to the benefits from discharging to the power grid. In 

conclusion, the comparison shows that the dynamic scheduling 

in case 3 outperforms cases 1 and 2. 

B. Rolling Horizon Optimization Analysis 

To highlight the characteristics of the RHO mechanism, the 

effect of different lengths of the prediction horizon has been 

considered. In Fig. 18, the output of different lengths of the 

rolling window is displayed to validate the robustness of this 

optimization technique with our proposed BSS framework. 

Furthermore, a perfect information solution of profit $2252 is 

included at which the forecasting horizon is equal to the 

scheduling horizon. This solution is used as a reference as it 

indicates the highest profit that could be achieved using the 

RHO scheduling.  

As shown in Fig. 18, the RHO scheduling (case 3) 

outperforms cases 1 and 2 when the forecasting horizon exceeds 

three hours. Furthermore, the sharp rise in the profit curve in 

the first few hours is due to the small prediction horizon. For 

instance, in a one-hour rolling window, all batteries tend to 

swap and discharge at the first iteration to maximize the profit. 

Hence, for the next iterations of the rolling window, one hour is 

not enough to replenish the energy of the batteries to generate 

profits within this window resulting in a small profit.  

The longer the prediction horizon, the higher the daily profit 

obtained since more future information is available to solve the 

optimization problem. Finally, compared to the day-ahead 

scheduling the RHO scheduling results in an increased profit 

ranging between 10 % and 25.7 % depending on the length of 

the rolling horizon. 

C. Policy Implications 

For the BSS models to succeed, fast public and energy 

policies are required [36] – [37]. Therefore, we concluded our 

analysis with some policy implications that were proposed 

based on the obtained simulation results. Firstly, public policy 

action is required to encourage the development of the 

standards for the battery shape, mechanical insertion of 

batteries, and electrical connection. It’s suggested that battery 

manufacturers unify a standard battery pack for each EV 

Company. Such that, for the same EV manufacturer, a small EV 

takes one pack, whereas, a large truck or a bus takes multiple 

packs. 

Secondly, standards will be required for the swapping 

stations, for example, approved equipment will be crucial for 

consumer confidence since charged batteries must be sorted out 

as EV-ready (those that meet the applicable minimum 

standards), fit for reuse, or to be recycled. In this regard, the 

government should encourage stakeholders to work together. 

The charging equipment, on the other hand, must satisfy both 

the demand for electric vehicles and the grid limitations. In 

general, demonstration of the most appropriate of the various 

operating and regulatory models requires public policy. 

In the end, the BSS technology leads to acceleration of 

transportation electrification allowing the mobility demand to 

become a flexible decarbonized power system with high power 

TABLE III 
OPTIMIZATION  OUTPUT  COMPARISON BETWEEN DIFFERENT CASE 

STUDIES 

Output 
Unscheduled 

Operation 

Day-ahead 

Operation 

RHO  

Operation 

Unit 

𝑂 1963.8 1792.5 2127.5 $/day 

𝑅𝑠 2877 2311 2491 $/day 

𝑅𝐵2𝐺 0 283 461 $/day 

𝐶𝐺2𝐵 804.52 704 717 $/day 

C𝐷𝐸𝐺 108.7 97.4 107.5 $/day 

𝒩𝑠𝑒𝑟𝑣𝑒𝑑  150 136 149 Unit 

𝒩𝐵𝐴𝑇−𝑆𝑊 162 142 158 Unit 

 

 
 

Fig. 17. Comparison between the outputs of different case studies. 

unscheduled operation case study. 
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Fig. 18. The effect of the length of the rolling horizon on the BSS profit. 
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and high storage capacity as well. This technology also 

increases energy efficiency since slower battery charging leads 

to lower energy losses and reduces battery degradation. This, 

together with the decarbonization of the power system makes 

the BSS a very attractive solution. 

VII. CONCLUSION 

Battery Swapping Stations (BSS) provide a fast alternative 

service compared to charging EVs at the charging stations. In 

this paper, a new model for the dynamic operation of the BSS 

is presented. The goal of the model is to provide optimal 

dynamic scheduling of the batteries at the BSS using an LSTM-

based RHO mechanism. The batteries at the BSS are scheduled 

to operate in B2G, G2B, and B2B modes. Battery heterogeneity 

and the diversification of the EV types are adopted in this 

model. Hence, the battery management is unified which 

obviously achieved global gains. Furthermore, variable-rate 

chargers are used instead of traditional constant current 

chargers to fully utilize the grid services. Moreover, detailed 

modeling of the charging characteristics is considered. The 

optimization problem of the BSS is modeled as an MINLP then 

it’s linearized into a MILP and solved using an exact 

optimization approach. The simulation results show that the 

proposed RHO dynamic scheduling offers economic benefits, 

ensures reliability, and is more robust to uncertainty. Compared 

with unscheduled and day-ahead operations, the dynamic RHO 

model of the BSS resulted in higher profits. Accordingly, the 

following conclusions are obtained: 

 The operations scheduling of the BSS using the LSTM-

based RHO mechanism increased the profit between 

10% and 25.7% compared to the conventional 

scheduling methods 

 The RHO mechanism can serve between 11% and 14% 

more customers than the conventional scheduling 

methods 

As a result, the dynamic mechanism introduced in this paper 

outperforms the day-ahead scheduling approach and serves as 

future guidance for BSS operators. It’s worth highlighting that, 

the work investigated in this research relies in its main 

operation on smart communication devices that communicate 

between the BSS control center, the swapping bays and the 

charging racks to achieve a fully automated swapping 

environment. In this regard, this system can be further enhanced 

by combining it with the connected vehicles technology in the 

intelligent transportation systems to collect real-time 

information on each EV, process it, and analyze it. Hence, 

providing more convenient services to BSSs and EV owners by 

efficiently relieving congestion on some routes and power 

plants. As a result, future research studies can focus on planning 

of several BSSs while considering the effect of traffic flow. 

Moreover, the allocation of the BSSs and their impact on the 

distribution networks can be investigated while considering 

uncertainties. 

APPENDIX A 

LI-ION BATTERY DEGRADATION MODEL 

The degradation in the battery SOC in our model is 

calculated as a function of the number of cycles [38]. The 

decrease in the SOC of a certain battery 𝑏 when this battery 

encounters several charging cycles 𝒞𝑏 is calculated as follows: 

∆soc𝑏
deg

= −8.954 × 10−10 × 𝒞𝑏
3 + 7.883 × 10−7 ×

𝒞𝑏
2 − 2.814 × 10−4 × 𝒞𝑏                                      ∀𝑏 ∈ 𝐵,                                (38) 

Equation (39) approximates the number of charging cycles 

as the total number of swaps, such that a battery encounters a 

charging cycle before swapping with a DB. The summation of 

the binary variable 𝑠𝑤𝜏,𝑏,𝛽 over all the swapping bays and the 

time 𝑇, results in the total number of swaps for battery 𝑏. Thus, 

we have 

𝒞𝑏 ≅ ∑ ∑ 𝑠𝑤𝜏,𝑏,𝛽
(𝛽∈𝑈)(𝜏∈𝑇)

                                ∀𝑏 ∈ 𝐵, (39) 

The degradation effect is added to the formulation by 

subtracting the degradation cost from the total revenue as 

shown in (1). The total daily degradation cost for all the 

batteries available at the BSS calculated in (40), as follows: 

C𝐷𝐸𝐺 = − ∑ 100 % × ∆soc𝑏
𝑑𝑒𝑔

 ×  μ𝑏
𝑑𝑒𝑔

(𝑏∈𝐵)

 (40) 

where μ𝑏
𝑑𝑒𝑔

 is the degradation cost for each battery 𝑏. 

APPENDIX B 

GREEDY BATTERY SWAPPING ALGORITHM 

The greedy battery swapping algorithm is presented in 

Algorithm 2. This algorithm is described as a greedy algorithm 

as it’s designed to swap batteries and charge the depleted ones 

as soon as possible. We implemented this algorithm in order to 

simulate the BSS unscheduled daily operation. The algorithm is 

mainly based on goal programming such that it solves the 

problem using two objective goals. The first goal is to maximize 

the revenue from swapping 𝑅𝑠 while considering the actual EV 

arrivals at each time slot 𝜏.  Whereas, the second goal is to 

maximize the total charging power from all the batteries. The 

maximum number of batteries swapped 𝒩𝐵𝐴𝑇−𝑆𝑊 is saved from 

  

Algorithm. 2: greedy battery swapping algorithm 

Input: Actual EV arrivals at each time slot 𝜏 

Output: Swapping and charging batteries as soon as possible 

1:   for 𝜏 = 1: 144 do 

2:          goal 1: 

3:             𝑂𝐵𝐽𝐸𝐶𝑇𝐼𝑉𝐸 → 𝑚𝑎𝑥
𝐹
(𝑅𝑠) 

4:             subject to: Constraints (5) – (28) 

5:             save the number of batteries swapped 𝒩𝐵𝐴𝑇−𝑆𝑊 

6:          terminate goal 1  

7:         goal 2: 

8:             fix 𝒩𝐵𝐴𝑇−𝑆𝑊 in goal 2 with the value from goal 1    

9:             𝑂𝐵𝐽𝐸𝐶𝑇𝐼𝑉𝐸 → 𝑚𝑎𝑥
𝐹
(∑ 𝑝𝜏,𝑏

𝑐ℎ
𝑏∈𝐵 ), 

10:           subject to: Constraints (5) – (28) 

11:        terminate goal 2 

11:      save 𝐹 at time 𝜏  

13: end for 



goal 1 to be fixed in goal 2, thus, ensuring maximum battery 

swapping at time 𝜏. With this algorithm, we model the 

instantaneous actions taken by the BSS operator which are 

mainly maximizing the swapping revenue and charging all the 

possible DBs. 
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