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Abstract— This paper proposes a novel concept, denoted as 

Virtual Charging System (VCS), for electric vehicles’ (EVs). In a 

conventional charging system (CCS) with a competitive 

environment, the competition between charging stations can 

utilize game theory as a price competition game model. On 

contrary, charging stations with different ownerships under the 

VCS umbrella will cooperate to act as one charging station for EV 

drivers in order to increase customer satisfaction and obtain more 

profits collectively and individually. The proposed VCS consists of 

three parts: participating charging stations, EVs contracting with 

the VCS, and finally the VCS operator. The operator is responsible 

for optimally routing the EVs to a suitable charging station within 

the VCS. A new formulation for implementing this novel concept 

is presented to allow interaction between various VCSs to 

maximize the profit gained by each VCS as well as minimize the 

transit charging time and cost for each customer as a measure 

representing customer satisfaction. Different case studies are 

introduced to evaluate the significance of the VCS concept. The 

performance of the VCS is compared to CCS, and the results show 

that VCS provides superior customer satisfaction and higher 

profit. 

Index Terms—Charging stations, electric vehicles, virtual 

charging system, game theory, price competition. 

I. INTRODUCTION

Electric vehicles (EVs) play a vital role in the future of 

transportation systems. Vehicle electrification is considered as 

an essential trend to reduce global warming. Various countries 

have announced roadmaps for electric vehicles (for example 

Scotland will dispose internal combustion engine (ICE) 

vehicles by 2032) [1]-[3]. Moreover, EVs became cost-

competitive with ICE vehicles, mainly due to the drop in battery 

price in the last few years. This has led to a continuous increase 

in EVs' share in the vehicle market [4]. Although EVs are an 

emerging trend, they suffer from long charging times, limited 

driving miles, and the insufficiency of infrastructure as well as 

their negative impact on the distribution network [5]-[7]. 

EVs’ drivers can charge their battery at either home, in 

parking lots, or at the charging stations. Both dc and ac chargers 

can be used to charge the EVs. The dc charger can be found 

mainly at the fast-charging stations and this is due to the high 

currents used in the charging process and high capital cost. On 

the contrary, ac chargers are installed at homes or in parking 

lots [8]-[10].  

In this context, charging of EVs at public charging stations 

becomes more attractive for several different reasons. The first 

is that the charging stations, as a commercial entity, purchase 

the electricity from the gird at a lower price compared to the 

EVs' owners charging at home. The second reason is that the 

charge of the battery may run out during the trip and the need 

for a charging station will be inevitable [11]. Therefore, it is a 

necessity to install an optimal number of charging stations and 

minimize the time of the charging process to encourage 

customers to utilize EVs and to minimize the use of diesel or 

gas vehicles [12].  

The relevant existing research considers the time of the 

charging process to be a major challenge and options are being 

explored to aminimize this time. The authors, in [12], 

considered smart charging options like ac charger, dc fast 

charger, and battery exchange in a specific charging station. 

Furthermore, they considered different prices for each option at 

the same charging station, and the charging option was selected 

aiming to minimize the waiting time and charging cost. The 

authors, in [13], suggested a framework to use the 

communication to share information such as electricity price, 

and time of arrival between the competing charging stations and 

EVs ' drivers for optimal power flow and EVs routing. The 

work, in [14], presented an approach for allocating the EVs 

charging stations on the highways. The approach utilized the 

coordination between the charging stations and EVs to reduce 

the travel time of PEVs using the A* search technique. The 

authors, in [1], presented a dynamic pricing strategy for 

charging stations to utilize renewable energy generation.  It was 

assumed that the EV’s driver will select the charging station 

based on the distance to each charging station as well as the 

charging price. Charging network operators (CNOs) were 

introduced in [15] to set a charging price mechanism for the 

charging stations. This price mechanism aimed to minimize the 

charging costs incurred by EV’s driver, the travel time, and the 

waiting cost. Moreover, it was assumed that CNO was aware of 

the travel plans of all EVs. The authors in [16] introduced the 

EV routing problem based on the time of use (TOU) electricity 

price. This problem was formulated in a similar manner to the 

travel salesman problem to minimize the charging cost and cost 

of reducing battery life due to fast charging. The authors in [17] 

introduced the Stackelberg game, formulated as a single leader 

and multi follower where the charging network operator was 

considered as the leader and the EVs were considered as the 

followers. This game aimed to set the charging price to 

maximize the profit gained by the charging stations and then the 

follower selects the charging station to charge at. The work in 

[18] presented a price competition method between charging

stations. Furthermore, the charging station demand was

considered to decrease linearly with the price increase. In [11],

a price competitive game between different charging station

was proposed. In this game, the EV’s driver selected the

charging station based on the charging price and the distance to
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the charging station. Furthermore, the authors of [11] assumed 

that the EVs were uniformly distributed, and all batteries have 

the same capacity. However, the impact of customers’ selection 

on the waiting time at each charging station for the upcoming 

customers and the characteristics of battery charging weren’t 

considered. In this context, the authors in [19] considered the 

effect of waiting time on customer selection in the price 

competitive game. They assumed that the customers selected 

the charging station based on the charging price, the distance to 

the charging stations, and the waiting time at the charging 

stations. The waiting time was determined based on 𝑀/𝐺/𝐾 

queue model although the authors assumed that the customers 

weren’t aware of other customers' behavior due to a lack of 

communication between them. The authors of [20] assumed 

that there is Charging Network Operator (CNO) owned EV 

public charging stations. This CNO is responsible for 

determining optimal charging prices and routing EVs drivers to 

a certain charging station. However, they assumed that EVs 

drivers cannot directly select the station to charge at it. The 

authors of [21] proposed a charging strategy based on price 

incentives for EVs while considering the spatial and temporal 

impact of EVs decisions. The work in [22] proposed a platform 

to route EVs drivers that considered the required energy to 

reach the station, the waiting time, the charging time, and the 

required energy to reach the required destination after the 

charging. However, these factors were considered as an extra 

cost for the charging process. The authors is [23] proposed a 

strategy to route EVs drivers to the charging station through 

minimizing the cost of the traveling distance and the charging 

cost while considering time-of-use energy prices, and EVs' 

energy consumption. 

Electric vehicles are an emerging trend, therefore, most of 

existing research focuses on facilitating the charging process of 

EVs to incentivize customers toward EVs through introducing 

new charging strategies to reduce the entire time of the charging 

process. The strategies presented in most of the literature focus 

either on satisfying customers’ requirements or increasing 

profits of charging stations as there is a competition between 

the profit obtained by the charging station and the customer 

satisfaction. Most of these strategies were based on the 

competition between charging stations and thus, the charging 

station may offer lower charging price to attract more 

customers. The main solution to the previous issue is to 

consider the cooperation between charging stations through an 

organized system to fulfills both the stations and customers’ 

requirements. However, limited research considered the 

cooperation between charging stations. The cooperation 

between the charging stations will allow them to only think 

about serving all customers, and hence, obtaining more profits.  

This paper proposes a new concept called virtual charging 

system (VCS). The new concept of VCS takes into 

consideration the cooperation between charging stations under 

different ownership in the same VCS. However, there is a 

competition between different VCSs. Furthermore, the 

charging stations contributing in VCS aim to maximize 

customer satisfaction through minimizing the entire time of 

charging process as well as their profit through serving all 

charging requests. We assume that this procedure is 

implemented centrally through a centralized operator. Through 

combined competition and cooperation, we will reach to the 

optimal solution that not only maximizes the profit but will also 

maximize customer satisfaction by reducing the entire time of 

the charging process. To realize this novel concept, a new 

formulation is introduced to optimally route EVs to suitable 

charging stations participating in VCS in the case of single VCS 

as well as multiple VCSs. The problem proposes a real-time 

solution for routing of EVs to optimal charging station 

participating in VCS. The main contributions of this paper can 

be summarized as follows: 

 We introduce the concept of VCS that takes into 

consideration the cooperation between charging stations 

under different ownerships in the same VCS.  

 The main role of VCS is to route the EV to the most 

suitable charging through computing all parameters based 

on deterministic models and the collected data from 

participating charging stations which share their 

information due to the absence of competition as they work 

under one umbrella. 

 A model for conventional charging system (CCS) is 

introduced in this paper to be used as a base case for a 

comparison with VCS.  

 Finally, we investigate the importance of coordination 

between various VCSs in order to increase the customer 

satisfaction and profit gained by each VCS. 
The rest of the paper is organized as follows: CCS is 

presented in Section II. The VCS and proposed methodology 

are explained in Section III and Section IV, respectively. The 

proposed methodology for coordination between different 

VCSs is explained in Section V. Results and multiple case 

studies are presented and discussed in Section VI. Finally, the 

conclusions are presented in Section VII. 

II. CONVENTIONAL CHARGING SYSTEM (CCS) 

In this section, the model of CCS is presented to be used as a 

base case for comparison with VCS. Each charging station in 

CCS competes with neighboring charging stations under 

different ownerships to attract more EVs by offering a lower 

price than the other stations. Therefore, we assume that there is 

price competition between different charging stations in order 

to set its price which maximizes the revenue. The price 

competition between different charging stations is formulated 

as an 𝑁-player non-cooperative game [11], [19]. This procedure 

can be implemented through two stages which run iteratively 

until convergence: 

 Stage 1: each charging station will determine its charging 

price at the beginning of each time segment independent of 

the behavior of the other charging stations. Each station 

will focus on achieving the highest profit based on the 

predicted EVs’ requests during this time segment while 

considering the impact of the price variations offered by 

the other stations on the EV’s decision. Moreover, each 

charging station will broadcast the variable day-ahead 

charging price. 

 Stage 2: every EV driver will select independently the 

charging station according to the EV location from 

different charging stations and the quoted charging price of 

each station. 
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As mentioned before, each charging station will set its 

charging price independently to attract more EVs and hence, 

maximize its profit. Thus, the competition includes: 

 Players: different charging stations in competition. 

 Strategies: set the charging price for EVs. 

 Payoff: the profit which the charging station will obtain. 

 Nash equilibrium: optimal stable charging price of each 

charging station.  

The payoff of charging station 𝑖 to maximize its profit 𝑅𝑖 
can be expressed as follows: 

max  𝑅𝑖(𝜌𝑖 , 𝜌−𝑖)       ∀ 𝑖 ∈ ℐ  

𝜌𝑖 ∈ {𝜌𝑖
𝑚𝑖𝑛 , 𝜌𝑖

𝑚𝑎𝑥} 
(1) 

where 𝑖 and ℐ = {1,2, … ,𝑁𝑐𝑠} are the index and the set of 

charging stations respectively, 𝜌
𝑖
 is the charging price of 

charging station 𝑖, 𝜌
−𝑖

 refers to the price of all charging stations 

except the charging station 𝑖, 𝑁𝑐𝑠 is the total number of charging 

stations in competition, and 𝜌
𝑖
𝑚𝑖𝑛, 𝜌

𝑖
𝑚𝑎𝑥 are the lower and upper 

limit of the charging price of charging station 𝑖. 

𝑅𝑖 depends not only on the charging price of charging station 

𝑖 but also it depends on the prices offered by the other charging 

stations as these prices affect the EVs’ decisions. The solution 

of the previous equation for each charging station will 

determine the Nash equilibrium which expresses the optimal 

charging price of each charging station 𝜌𝑖
∗ during each time 

segment 𝑡 ∈ 𝒯, where 𝑡 and 𝒯 = {1,2, … , 𝑁𝑡} are the index 

and the set of time segments respectively. 𝑁𝑡  is the total 

number of time segments throughout the day. The optimal 

charging price offered by a charging station will be affected by 

the charging prices offered by the other charging stations during 

this time segment, expected EVs’ requests during this time 

segment, the electricity price from the grid, and the distance 

from the current location of each EV to this charging station 

compared to the distances from the current locations of the EVs 

to the other charging stations where the charging station may 

reduce the cost to compensate the farthest distance of the 

customer. Therefore, 𝜌𝑖
∗ is determined numerically each time 

segment. The profit of the charging station each time segment 

can be expressed as follows: 

𝑅𝑖(𝑡) =∑𝐸𝑟𝑒𝑞(𝑐) ∗ 𝜌𝑖(𝑡)

𝑐∈𝒞

 (2) 

where 𝑐 and 𝒞 = {1,2,… , 𝑁𝑐} are the index and the set of 

customers respectively, 𝑁𝑐 is the total EVs select to charge at 

the charging station 𝑖 during time segment 𝑡, 𝐸𝑟𝑒𝑞(𝑐) is the 

required charging energy by customer 𝑐, and 𝜌
𝑖
(𝑡) is the price 

offered by charging station 𝑖 during time segment 𝑡.  

The required energy to be charged at each charging station 

depends on the charging price of the other charging stations as 

the price of the other stations affects the decision of EVs. We 

assume that each EV’s driver will select the charging station 

independent of the behavior of other EVs’ drivers and 

according to the distance from its current location to each 

charging station’s location which represents the travel time in 

addition to the charging price announced by each charging 

station. The waiting time at each charging station will not be 

considered in the driver’s decision as we assume that the 

customers aren’t aware of the choices or decisions of the other 

customers during this time step. Therefore, the EV’s driver will 

select the charging station 𝑖 which minimizes the following 

function: 

arg min
𝑖∈ℐ

[𝑤1 ∗ �̅�(𝑐,𝑖) + 𝑤2 ∗ �̅�𝑖(𝑡)]    (3) 

�̅�(𝑐,𝑖) =
𝑑(𝑐,𝑖)

𝑑𝑚𝑎𝑥
 (4) 

𝜌𝑖(𝑡) =
𝜌𝑖(𝑡)

𝜌𝑚𝑎𝑥(𝑡)
 (5) 

where, �̅�(𝑐,𝑖) is the normalized distance, 𝜌
𝑖
(𝑡) is the normalized 

price, 𝑑(𝑐,𝑖)is the distance from the current location of EV and 

the charging station 𝑖, 𝑤1,𝑤2 are the weighting coefficients for 

distance and price respectively which are assumed equally in 

this paper, 𝑑𝑚𝑎𝑥  is the distance from the current location of the 

EV to the farthest station, and 𝜌𝑚𝑎𝑥(𝑡) is the highest charging 

price among all charging stations during this time segment. 

III. PROPOSED VIRTUAL CHARGING SYSTEM 

This section will introduce the new concept of VCS. As 

mentioned earlier, there is no need for competition between 

charging stations participating in the same VCS. However, 

these charging stations under different ownership can cooperate 

together to serve the customers with a high level of customer 

satisfaction. This concept is similar to a virtual power plant 

where a set of distributed generators (DGs) and energy storage 

devices act together in the market as one power plant with 

defined hourly output. Hence, the charging stations under VCS 

will act as one station with respect to the customers as shown in 

Fig. 1. Furthermore, all charging stations participating in the 

same VCS will offer the same charging price as there is no need 

to vary the price to attract more customers due to the absence 

of competition between them as they work under one umbrella.  

The main objective of VCS is the optimal routing of the EVs to 

the suitable charging stations to increase the customer 

satisfaction and the profit obtained by VCS and hence the profit 

obtained by each charging station participating in the VCS. The 

VCS consists of three major parts which are the EVs’ drivers 

that are contracted with this VCS to charge their batteries, the 

charging stations participate in VCS, and finally the centralized 

operator as shown in Fig. 2. 

A. Electric Vehicles’ Drivers  

The EV driver will send a request through a mobile app when 

needed to charge the battery. This request will contain all 

required information to optimally route this EV to the most 

suitable charging station, which satisfies the customer’s 

requirements. This request contains the current SOC of the 

battery, battery’s capacity, and finally, the current location of 

EV to determine the driving time needed to reach each charging 

station while considering the traffic flow at this time segment. 

B. Charging Stations  

The second part of the VCS is the contributing charging 

stations. Each charging station will share its information with 

the centralized operator as there is no competition between 

these charging stations. Therefore, serving customers 

efficiently will benefit all stations. Moreover, increasing 

customer satisfaction and revenue are vital priorities for all 

charging stations. The shared information includes the number  
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Fig. 1. The proposed VCS concept. 

 

Fig. 2. The proposed framework of VCS. 

of bays available at the charging station, the type of chargers in 

this station and the number of occupied bays. However, the 

process of selecting the charging station to be used to charge an 

EV is not the responsibility of the charging stations rather it’s 

the centralized operator responsibility which will be explained 

in the next subsection.  

C. Centralized Operator 

The centralized operator is the vital link between the EVs’ 

drivers and the charging stations. Further, it is responsible for 

the communication between the EVs and VCS. This operator 

will be set by agreement between the participating charging 

station. The procedure implemented by the centralized operator 

is shown in Fig.3. Bi-directional communication between the 

centralized operator and EVs are needed. It receives a request 

from the EV owner including the current SOC, the location of 

the EV, and the battery capacity. Then, it calculates the travel 

time from the current location of EV to each charging station 

while considering the traffic flow and the maximum distance 

that the EV can travel before its battery runs out of charge.  

Moreover, there is another communication channel between the 

centralized operator and the charging stations participating in 

the VCS. The centralized operator of VCS receives information 

from the charging stations about the status of each charging 

station including the number of occupied bays. Then, it will 

implement the decision-making process to calculate the 

expected waiting time and the expected charging time at each 

charging station and finally, optimally route the EV to a suitable 

charging station based on the collected and calculated data. 

Finally, it will send the optimal route to the EV driver to the 

best charging station along with the expected waiting, charging 

durations and expected departure time if the battery is charged 

to the required SOC. If the EV owner approves the route, the 

process ends with the operator reserving a place for this EV in 

the queue for this specific bay and identifies the selected 

charging station to devote a bay for this EV. It is worth 

mentioning that the signals sent to the EVs drivers should be 

secured to avoid the possible cyber-attacks that may be applied 

to these signals, which may aim to cause traffic jams at certain 

places.
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Fig. 3. Flow chart of VCS Framework. 

IV. MATHEMATICAL MODEL OF ROUTING PROBLEM THROUGH 

VCS 

As mentioned before, we assume that there is no competition 

between the charging stations contributing in the VCS and they 

will cooperate. Hence, the charging stations will offer the same 

charging price. Furthermore, we assume that there is no 

coordination between different VCSs in this section. The 

optimal decisions include the EV route to the suitable charging 

station, which satisfies the requirements of the EV’s driver. 

Therefore, for the central operator to develop the optimal route 

for each EV, we develop a mixed-integer nonlinear 

programming (MINLP) formulation with the objective of 

maximizing the EV drivers’ satisfaction. The charging cost at 

each charging station isn’t considered in this decision-making 

process as the charging price is the same at all charging stations 

in the same VCS. The MINLP can be expressed as follow: 

min∑(𝑇𝑡𝑟(𝑐,𝑖) + 𝑇𝑤𝑎(𝑐,𝑖) + 𝑇𝑐ℎ(𝑐,𝑖)) ∗ 𝑥(𝑐,𝑖)
𝑖∈ℐ

, ∀𝑐 ∈ 𝒞 (6) 

𝑥(𝑐,𝑖) ∈ {0,1} (7) 

∑𝑥(𝑐,𝑖)
𝑖∈ℐ

≤ 1, ∀𝑐 ∈ 𝒞 (8) 

𝑏𝑖(𝑡) ≤ 𝑁𝑏𝑎𝑦𝑠(𝑖)    ∀𝑖 ∈ ℐ, ∀𝑡 ∈ 𝒯 (9) 

𝑏𝑖(t + 1) = 𝑏𝑖(t) +∑𝑥(𝑖,𝑐)
𝑐∈𝒞

 ,   ∀𝑡 ∈ {𝑡𝑐ℎ(𝑐)
𝑠𝑡𝑎𝑟𝑡: 𝑡𝑐ℎ (𝑐)

𝑒𝑛𝑑 } (10) 

where, 𝑇𝑡𝑟(𝑐,𝑖) is the travel time from the current location of 

customer 𝑐 to the charging station 𝑖, 𝑇𝑤𝑎(𝑐,𝑖) is the waiting time 

of customer 𝑐 at charging station 𝑖,  𝑇𝑐ℎ(𝑐,𝑖) is the charging time 

of customer 𝑐 at charging station 𝑖, 𝑥(𝑐,𝑖) is a binary variable 

indicating serve customer 𝑐 at charging station 𝑖, 𝑏𝑖(t) is the 

number of occupied bays at any time segment 𝑡 at charging 

station 𝑖, 𝑁𝑏𝑎𝑦𝑠 (𝑖) is the total number of bays available at 

charging station 𝑖, and 𝑡𝑐ℎ (𝑐)
𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑐ℎ (𝑐)

𝑒𝑛𝑑  are the start time and end 

time of the charging process of customer 𝑐, respectively.  

In the objective function (6), the summation of travel, 

waiting, and charging times of each customer is minimized. 

 𝑥(𝑐,𝑖) is a binary variable as expressed in (7). For, 𝑥(𝑐,𝑖) = 1, the 

customer 𝑐 is assigned to charging station 𝑖. In (8), each 

customer will be assigned to only one station if it will be served. 

Constraint (9) shows that the number of occupied bays should 

be less than or equal to the total number of bays available in the 

charging station 𝑖. Constraint (10) shows that if the customer 𝑐 

is assigned to the charging station 𝑖, so, the number of occupied 

bays at this charging station 𝑖 will increase by one during the 

charging period of customer 𝑐. 

A. Travel Time 

Travel time or driving time depends on the distance from the 

current location to the destination and traffic flow currently. 

The distance can be converted to time by dividing the distance 

by the average speed. The traffic flow can be considered in the 

average speed. The average speed is affected by the speed limit 

of the roads, traffic, and road conditions. This time can be 

expressed as follow: 

𝑇𝑡𝑟(𝑐,𝑖) =
𝑑(𝑐,𝑖)

𝑣𝑖(𝑡)|𝑡=𝑇𝑟𝑒𝑞(𝑐)
 (11) 

where 𝑣𝑖(𝑡)|𝑡=𝑇𝑟𝑒𝑞(𝑐)is the average speed from the current 

location of the customer to the charging station 𝑖 at request time 

of this customer 𝑇𝑟𝑒𝑞(𝑐). 

The distance to a specific charging station must be less than 

or equal to the maximum distance that the EV can travel 𝐷(𝑐)
𝑚𝑎𝑥 . 

This distance is based on the current SOC at the request time in 

order to make sure that the battery of EV will not run out of 

charge before arriving at the charging station. The maximum 

distance that the EV can travel according to its current SOC can 

be expressed as follow: 

𝑑(𝑐,𝑖) ∗ 𝑥(𝑐,𝑖) ≤ 𝐷(𝑐)
𝑚𝑎𝑥 (12) 

𝐷(𝑐)
𝑚𝑎𝑥 =

[𝑆𝑂𝐶𝑟𝑒𝑞 − 𝑆𝑂𝐶𝑚𝑖𝑛] ∗ 𝐸𝑐𝑎𝑝

𝐸𝑐𝑜𝑛
 (13) 

𝑆𝑂𝐶𝑚𝑖𝑛 = 1 −𝑀𝑂𝐷 (14) 

where, 𝑆𝑂𝐶𝑟𝑒𝑞  is the current SOC of battery in EV at request 

time, 𝑆𝑂𝐶𝑚𝑖𝑛  is the minimum acceptable SOC, 𝐸𝑐𝑎𝑝 is the total 

battery capacities in this EV, and 𝐸𝑐𝑜𝑛 is the energy 

consumption per unit distance in (𝑘𝑊ℎ/𝑘𝑚). This energy 

depends on several parameters as the distance between the 

current location of the customer and the charging stations, the 

traffic conditions to each charging station which reflects on the 

average speed, the ambient temperature, the current SOC of the 

battery, and driver habits.  However, it is assumed to be constant 

in this paper just for validation the proposed concept [24].  

Constraint (12) illustrates that the distance from the current 

location of customer 𝑐 to charging station 𝑖 must be less than or 

equal to the maximum distance that the customer can travel. 

Hence, if this distance is higher than the maximum distance, so 

𝑥(𝑐,𝑖) must be 0 and this means that this customer 𝑐 can’t be 

assigned to this charging station 𝑖; otherwise, 𝑥(𝑐,𝑖) may take a 

value of 1 or 0. In constraint (13), the maximum distance is 

determined based on the current 𝑆𝑂𝐶 and minimum 𝑆𝑂𝐶, 
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which depends on the maximum depth of discharge (𝑀𝑂𝐷), as 

in (14). 

B. Waiting Time 

The waiting time is determined based on the difference 

between the arrival time of customer 𝑐 at the charging station 𝑖 
and when there is an available bay. The availability of a bay is 

investigated when the number of occupied bays becomes less 

than the total number of bays available at this charging station. 

Therefore, this time can be formulated as follows: 

𝑇𝑤𝑎 (𝑐,𝑖) =   {
0 𝑏𝑖(𝑡𝑎𝑟𝑟(𝑐,𝑖)) < 𝑁𝑏𝑎𝑦𝑠(𝑖)

(𝑡|𝑏𝑖<𝑁𝑏𝑎𝑦𝑠(𝑖) − 𝑡|𝑎𝑟𝑟(𝑐,𝑖)) 𝑏𝑖(𝑡𝑎𝑟𝑟(𝑐,𝑖)) ≥ 𝑁𝑏𝑎𝑦𝑠(𝑖)
 (15) 

𝑇𝑤𝑎 (𝑐,𝑖) ∗ 𝑥(𝑐,𝑖) ≤ 𝑇𝑤𝑎
𝑚𝑎𝑥 (16) 

In (15), the waiting time of customer 𝑐 at charging station 𝑖 
will be zero if the number of occupied bays 𝑏𝑖(𝑡𝑎𝑟𝑟(𝑐,𝑖)) at the 

instant of customer 𝑐 arrival at the charging station 𝑖 (𝑡|𝑎𝑟𝑟(𝑐,𝑖)), 

is less than the total number of available bays at this charging 

station (𝑁𝑏𝑎𝑦𝑠(𝑖)). Otherwise, the customer 𝑐 will wait at this 

charging station until there is an available charging bay at this 

charging station (𝑡|𝑏𝑖<𝑁𝑏𝑎𝑦𝑠(𝑖)) which is investigated when the 

number of occupied bays (𝑏𝑖) is less than the total number of 

bays (𝑁𝑏𝑎𝑦𝑠(𝑖)) and thus, the waiting time of this customer is the 

difference between two times. In (16), the waiting time of 

customer 𝑐 at charging station 𝑖 should be less than or equal to 

the maximum allowable waiting time 𝑇𝑤𝑎
𝑚𝑎𝑥 . If the waiting time 

at a certain charging station is higher than the maximum waiting 

time, the customer can’t be served at this station and hence 𝑥(𝑐,𝑖) 

must be zero; otherwise, 𝑥(𝑐,𝑖) may be 1 or 0. 

C. Charging Time 

The charging time is the time needed to fully or partially 

charge the battery in EV. This time depends on the battery 

characteristics and the rating of chargers available at the 

charging station. The lithium-ion battery is the most employed 

battery in the majority of the EVs. This battery type 

distinguished by higher performance, efficiency, safety 

operation and moderate cost compared with the other types like 

the lead-acid battery. The major charging characteristics used 

to charge lithium-ion batteries divide the charging region into 

two regions, which are constant current and constant voltage 

regions. In the first region, the charger varies its voltage to 

maintain the constant current used to charge the battery. Then, 

the charger switches to a constant voltage region if the voltage 

reaches the rated voltage [25]. In the constant voltage region, 

the current decreases rapidly with increasing of SOC due to 

internal electrochemical characteristics of the battery. The 

relation between the maximum allowable charging power of the 

battery and the SOC of the battery can be approximated as 

follows [25]: 

𝑝(𝑆𝑂𝐶) = {

𝑃𝑟𝑎𝑡𝑒𝑑 𝑆𝑂𝐶 ≤ 𝑆𝑂𝐶𝑡𝑟
1 − 𝑆𝑂𝐶

1 − 𝑆𝑂𝐶𝑡𝑟
∗ 𝑃𝑟𝑎𝑡𝑒𝑑 𝑆𝑂𝐶 > 𝑆𝑂𝐶𝑡𝑟

 (17) 

where, 𝑃𝑟𝑎𝑡𝑒𝑑 is the rated power of charger, 𝑆𝑂𝐶 is the current 

state of charge of the battery, and 𝑆𝑂𝐶𝑡𝑟 is the transition SOC 

between constant current and constant voltage regions. In (17), 

the power is assumed to be constant in the constant current 

region as the voltage varies not obviously while the power is 

assumed to reduce almost linearly during the constant voltage 

region. 

For the charging power consumption, there are three 

scenarios depending on the SOC at arrival and the desired SOC 

at departure with respect to 𝑆𝑂𝐶𝑡𝑟. In this paper, we consider 

only one scenario where the initial SOC at arrival (𝑆𝑂𝐶𝑎𝑟𝑟) is 

less than 𝑆𝑂𝐶𝑡𝑟, while the desired SOC is higher 𝑆𝑂𝐶𝑡𝑟. 

Therefore, the battery will be charged through two regions 

which are constant current and constant voltage regions. Thus, 

the SOC at any time instant can be expressed as follow: 

𝑆𝑂𝐶(𝑡) =

{
 
 

 
 𝑆𝑂𝐶𝑎𝑟𝑟 +

𝑃𝑟𝑎𝑡𝑒𝑑 𝑡

𝐸𝑐𝑎𝑝
𝑡 ≤ 𝑡𝑐𝑐

(𝑆𝑂𝐶𝑡𝑟 − 1) exp(
−𝑃𝑟𝑎𝑡𝑒𝑑

(1 − 𝑆𝑂𝐶𝑡𝑟)𝐸𝑐𝑎𝑝
(𝑡 − 𝑡𝑐𝑐)) + 1 𝑡 > 𝑡𝑐𝑐

 (18) 

where 𝑡𝑐𝑐 is the required time to reach 𝑆𝑂𝐶𝑡𝑟 from 𝑆𝑂𝐶𝑎𝑟𝑟  in 

the constant current (cc) region. It can be calculated as follow: 

𝑡𝑐𝑐 =
(𝑆𝑂𝐶𝑡𝑟 − 𝑆𝑂𝐶𝑎𝑟𝑟) ∗ 𝐸𝑐𝑎𝑝

𝑃𝑟𝑎𝑡𝑒𝑑
 (19) 

The charging power of the battery can be obtained as a 

function of time by substituting equation (18) into equation (17) 

and can be written as follow: 

𝑝(𝑡) = {

𝑃𝑟𝑎𝑡𝑒𝑑 𝑡 ≤ 𝑡𝑐𝑐

𝑃𝑟𝑎𝑡𝑒𝑑 ∗ exp(
−𝑃𝑟𝑎𝑡𝑒𝑑

(1 − 𝑆𝑂𝐶𝑡𝑟) ∗ 𝐸𝑐𝑎𝑝
(𝑡 − 𝑡𝑐𝑐)) 𝑡 > 𝑡𝑐𝑐

 (20) 

Finally, the charged time utilized in the proposed model 

considers the actual characteristics of lithium-ion batteries. 

Therefore, the charging time composes of two components. The 

first term is the time required to charge SOC from 𝑆𝑂𝐶𝑎𝑟𝑟 to 

𝑆𝑂𝐶𝑡𝑟 while the second term ∆𝑡 is the time required to charge 

the battery from 𝑆𝑂𝐶𝑡𝑟 to desired SOC (𝑆𝑂𝐶𝑑𝑠).  The charging 

time can be expressed as follow: 

𝑇𝑐ℎ(𝑐,𝑖) = 𝑡𝑐𝑐 + ∆𝑡 (21) 

∆𝑡 =
(1 − 𝑆𝑂𝐶𝑡𝑟) ∗ 𝐸𝑐𝑎𝑝

𝑃𝑟𝑎𝑡𝑒𝑑
∗ ln(

1 − 𝑆𝑂𝐶𝑡𝑟
1 − 𝑆𝑂𝐶𝑑𝑠

) (22) 

For fairness, we assume that the customer will continue 

charging its battery to the desired SOC if there are no waiting 

customers at this charging station. However, the customer with 

SOC higher than or equal 𝑆𝑂𝐶𝑡𝑟 will have the choice to 

continue charging to the desired SOC with a higher price or stop 

charging in case of existence of other customers in the waiting. 

Charging in this region will utilize the charging station’s 

facilities without a significant income to the charging station 

due to the low charging rate. This will encourage customers to 

opt for partial charging and leave early. Therefore, this 

procedure can provide an effective solution to the problem of 

long waiting times. Hence, the following constraints will be 

added to our model. 

𝜌(𝑐,𝑖) = {
𝜌 𝑆𝑂𝐶(𝑡) ≤ 𝑆𝑂𝐶𝑡𝑟

𝜌 + 𝑤𝑖 ∗ ∆𝜌 𝑆𝑂𝐶(𝑡) > 𝑆𝑂𝐶𝑡𝑟
 (23) 

𝑤𝑖 ∈ {0,1} (24) 

where, 𝜌(𝑐,𝑖) is the charging price of customer 𝑐 at charging 

station 𝑖, 𝜌 is the price offered by the charging stations, 𝑤𝑖  is 

binary value represents the waiting index at charging station 

𝑖 which is 0 when no customers are waiting at this charging 

station and 1 otherwise, ∆𝜌 is the price increase when there are 
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waiting customers at this charging station and the SOC of the 

customer charging at this charging station is higher than 𝑆𝑂𝐶𝑡𝑟. 

Finally, if the customer selects to stop charging due to the 

increase in the price, the SOC of this customer will be updated 

according to (25) and the waiting time of the customers in the 

queue will be updated according to (15): 

𝑆𝑂𝐶𝑑𝑝 = (𝑆𝑂𝐶𝑡𝑟 − 1) ∗ exp(
−𝑃𝑟𝑎𝑡𝑒𝑑

(1 − 𝑆𝑂𝐶𝑡𝑟) ∗ 𝐸𝑐𝑎𝑝
(𝑡𝑑𝑟 − 𝑡𝑐𝑐)) + 1 (25) 

where, 𝑆𝑂𝐶𝑑𝑝 is SOC when the customer will leave the 

charging station, and 𝑡𝑑𝑟  is the charging duration of this 

customer. 

V. COORDINATION BETWEEN VCSS 

In this section, we assume that there is a competition/ 

coordination between different VCS with neighboring charging 

stations. This coordination can be represented by routing 

customer in a contract with a certain VCS to another VCS in 

exchange for a fraction 𝛾 of the profit. Therefore, the objective 

function in (6) should be modified to include both the profit 

gained by the VSC and customer satisfaction. Hence, the 

objective function can be rewritten as in (26) to increase the 

profit gained by VCS such that minimizes the travel, waiting, 

and charging times of customers. The VCS will take the whole 

profit if the customer is assigned to a charging station 

participating in this VCS. However, the VCS will take a portion 

of this profit if the customer is assigned to a charging station 

not participating in this VCS, as in (27). Constraint (28) 

indicates that the travel penalty factor of charging station 𝑖 
regarding customer 𝑐 depends on the travel time of this 

customer to this charging station and the minimum travel time 

of this customer to the nearest charging station. Therefore, the 

penalty factor of travel time is zero, if the customer is assigned 

to the nearest station; otherwise, it will be more than zero. 

Similarly, the penalty factors regarding the waiting time and 

charging time are determined according to constraints (29)-

(30). 

max∑[𝐸𝑟𝑒𝑞(𝑐) ∗ 𝜌(𝑐,𝑖) ∗ 𝑟(𝑐,𝑖) − (𝜑𝑡𝑟 (𝑐,𝑖) + 𝜑𝑤𝑎 (𝑐,𝑖)
𝑖∈ℐ

+ 𝜑𝑐ℎ (𝑐,𝑖))] ∗ 𝑥(𝑐,𝑖) , ∀𝑐 ∈ 𝒞 

(26) 

𝑟(𝑐,𝑖) = {
1 𝑖 ∈ 𝑉𝐶𝑆
𝛾 𝑖 ∉ 𝑉𝐶𝑆

 (27) 

𝜑𝑡𝑟 (𝑐,𝑖) = 𝛼 ∗ (𝑇𝑡𝑟(𝑐,𝑖) − 𝑇𝑡𝑟 (𝑐)
𝑚𝑖𝑛 ) (28) 

𝜑𝑤𝑎 (𝑐,𝑖) = 𝛼 ∗ (𝑇𝑤𝑎(𝑐,𝑖) − 𝑇𝑤𝑎 (𝑐)
𝑚𝑖𝑛 ) (29) 

𝜑𝑐ℎ (𝑐,𝑖) = 𝛼 ∗ (𝑇𝑐ℎ (𝑐,𝑖) − 𝑇𝑐ℎ (𝑐)
𝑚𝑖𝑛 ) (30) 

where, 𝐸𝑟𝑒𝑞(𝑐) is the requested energy by customer 𝑐, 𝜑𝑡𝑟 (𝑐,𝑖), 

𝜑𝑤𝑎 (𝑐,𝑖), 𝜑𝑐ℎ (𝑐,𝑖) are the penalty factors due to travel, waiting 

and charging times, respectively, 𝛼 is a penalty constant in $/hr, 

𝑇𝑡𝑟(𝑐)
𝑚𝑖𝑛  is the travel time from the current location of customer 𝑐 

to the nearest charging station to its location, and  𝑇𝑤𝑎 (𝑐)
𝑚𝑖𝑛  and 

𝑇𝑐ℎ (𝑐)
𝑚𝑖𝑛  are the minimum waiting time and minimum charging 

time for a customer 𝑐 among all the charging stations. 

VI. RESULTS AND DISCUSSIONS 

In this section, three case studies are presented and discussed 

to evaluate the performance of the proposed VCS concept. In 

the first case study, the results obtained from the price 

competition game model are presented to be utilized as a base 

case to compare the CCS with the VCS. The results obtained 

from the proposed single VCS are illustrated in the second case 

study. Finally, the interaction between several VSCs is 

demonstrated in the third case study. Different classes of EVs 

with various capacities are considered in these case studies 

according to the actual classes in the electric vehicles market as 

illustrated in Table I. These classes are selected to cope with the 

rating of chargers shown in Table II.  In all the case studies, we 

consider a time segment of 5 minutes, which corresponds to a 

total of 𝑁𝑡 = 288 time segments representing the day. The 

prediction of the EV arrivals to the parking lots is assumed to 

be an input to the study and is out of the scope of this paper. 

The problem is solved using MATLAB software and the 

General Algebraic Modeling Software (GAMS). GAMS has 

different solvers, the Branch-And-Reduce Optimization 

Navigator (BARON) is used to solve the proposed optimization 

problem. 

A. Case study 1: CCS 
In this case, we assume that there are three charging stations 

in competition to attract more EVs to gain more profit. First, the 
actual arrivals to a parking lot in Toronto, Canada obtained 
from Toronto Parking Authority (TPA) shown in Fig. 4 is used 
to solve the game model, which generates the charging price of 
each charging station, where we assumed that the charging 
stations may reduce charging price up to 25% to attract more 
customers. The total customers’ requests during this day are 
721 customers. Furthermore, we assume that each charging 
station has to keep its electricity price fixed for at least a half-
hour. The three charging stations are equipped with type three 
chargers as illustrated in Table II. The charging price for the 
next day obtained from the game model is broadcasted to 
customers through a Mobile application as shown in Fig. 5. 
Then, the customers will select the charging station according 
to the quoted charging price and the distance to the charging 
station. Table III illustrates the number of served customers, 
average waiting time, the maximum waiting time, and finally 
the profit obtained by all charging stations. 

B. Case study 2: single VCS 

This case study represents the cooperation of the charging 

stations under a single VCS based on the same assumptions in 

the first case study. First, the constraint related to the maximum 

waiting time in (16) will be disabled to compare the results 

obtained from both cases to have a fair comparison as the 

maximum waiting time isn’t considered in CCS. 

The decision-making process of the proposed VCS involves 

three stages collecting the requests from the customers, 

information from the charging stations, and then decides the 

optimal decision. The simulation results in Table III indicate 

that the average waiting time in the case of VCS is reduced by 

7.8% compared to that in CCS. In addition, the total profit 

obtained by VCS is increased by 13.93% while serving 100% 

of total customers. This indicates the superiority of VCS over 

the CCS as the coordination between the charging stations 

contributing in VCS leads to increased revenue while satisfying 

the customers’ requirements by decreasing the overall time of 

charging process for each customer including travel, waiting, 

and charging times. Therefore, compared to the competition, 

cooperation between charging stations can be useful for both 

charging stations owners and customers.  
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TABLE I 
DIFFERENT EV CLASSES [26]-[29] 

Class  Battery Capacity (kWh) EV Range (miles) 

Nissan LEAF 40 149 

Nissan LEAF PLUS 62 226 

Chevrolet Bolt  66 238 

Ford Focus  33.5 115 

BMW i3 42 153 

Mercedes-Benz B-Class 28 87 
 

TABLE II 

RATING OF RAPID CHARGER IN CHARGING STATIONS  [30]-[31] 

Supply Type AC/DC Charger Rating 

3 phase, 60 A per phase 

 

AC 43 kW 

3 phase, 120 A DC 50 kW 

 

3 phase, 125 A DC 62.5 kW 

 
Fig. 4. Hourly-based Customers’ requests during the next day. 

TABLE III 

RESULTS OBTAINED IN CASE OF CCS AND SINGLE VCS 

Parameters 
CCS Single VCS: Disable 𝑇𝑤𝑎

𝑚𝑎𝑥 constraint  Single VCS: Enable 𝑇𝑤𝑎
𝑚𝑎𝑥 constraint 

Station 1 Station 2 Station 3 Station 1 Station 2 Station 3 Station 1 Station 2 Station 3 

Number of served 
customers 

227 250 244 271 226 224 258 216 202 

Customers not served ____ ____ 45 

Average waiting time 

(minutes) 
23.87 22 10.3 

Maximum waiting time 
(minutes) 

70 50 60 55 55 50 15 15 15 

Total Profit ($/day) 2466.44 2809.9 2762.7 

 
Fig. 5. The quoted charging price by charging station # a) 1 b) 2 c) 3 in case of 

CCS. 

 
Fig. 6. Hourly-based Customers’ requests for the second VCS. 

After comparing the results with CCS, the constraint related 

to maximum waiting time in (16) will be enabled as it is not 

rational for a customer to wait a long time (55 minutes) at fast-

charging stations. The maximum allowable waiting time at any 

charging station is limited to be 15 minutes. The new results 

obtained from the proposed model are dedicated in Table III. 

The results show that the average waiting time for all customers 

is reduced by 56.85% compared to that in CCS, while the total 

profit is increased by 12.01%. However, this will result in some 

customers not served (6.24% of total customers). On the other 

hand, increasing the maximum allowable waiting time will 

increase the served customers and will also increase the waiting 

time and thus, decreasing customer satisfaction. Therefore, the 

existence of non-served customers and the necessity of 

decreasing waiting time show the need for coordination 

between various VCSs to serve all customers with a high 

satisfaction level which is described in the next subsection.  

C. Case study 3: Interaction between several VCSs 

This case study represents the coordination of several VCS 

based on the same assumptions used in CCS as well as enabling 

the constraint regarding the maximum waiting time. 

Furthermore, we assume that the centralized operator belonging 

to a specific VCS can assign a customer to a charging station 

belonging to another VCS in exchange for a proportion of the 

profit. Furthermore, the actual arrival to the same parking lot in 

Toronto, Canada for another day shown in Fig. 6, is used as the 

customers’ requests for the second VCS2. The total customers’ 

requests during this day for the second VCS are 682 requests. 

The main aims are to reduce the whole time of the charging 

process and increase the profit of VCS1. The modified 

proposed model presented in section V which allows 

coordination between various VCSs is applied. The results for 

VCS1 with and without coordination with the second VCS are 

shown in Table IV. The results demonstrate that all customers 

belonging to each VCS are served due to coordination between 
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two VCS despites the maximum allowable waiting time 

restriction. Moreover, the average waiting time is reduced by 

43.78% which have a great impact on motivating customers 

toward EVs, while the revenue obtained by the first VCS is 

increased by 15.1% compared to that in CCS. In this case, the 

profit gained by a specific VCS composed of three components 

as illustrated in Table IV. The first component (A) is the profit 

gained through serving its customers which represents 96.21% 

of total profit, while the second component (B) is the portion of 

the profit gained by assigning some of its customers to be 

served by the other VCS (1.33% of total profit), and finally, the 

third component (C) is the profit gained through serving 

customers belonging to the other VCS after deducting the profit 

portion granted to the other VCS (2.46% of total profit). The 

results indicate that the coordination between VCSs leads to 

more profit for both VCS and serve all customers with high 

customer satisfaction. Therefore, these results show the 

importance of coordination between various VCSs.  

VII. CONCLUSIONS 

This paper proposes a new concept of VCS, which is similar 

to VPP in the power system. The charging stations contributing 

in VCS cooperate rather than compete with high customer 

satisfaction by minimizing the entire time of the charging 

process. A formulation based on the new concept is proposed 

with the aim of optimally routing the customers to a suitable 

charging station that satisfies the customer requirements. 

Furthermore, we propose coordination between various VCSs,  

TABLE IV 

RESULTS OBTAINED IN CASE OF COORDINATION BETWEEN TWO VCSS 

Parameters 

Case 2: No coordination between 

different VCSs 
Case 3: Coordination between different VCSs 

VCS1: Enable 𝑇𝑤𝑎
𝑚𝑎𝑥 constraint VCS 1: Enable 𝑇𝑤𝑎

𝑚𝑎𝑥 constraint VCS 2: Enable 𝑇𝑤𝑎
𝑚𝑎𝑥 constraint 

Station 1 Station 2 Station 3 Station 1 Station 2 Station 3 Station 1 Station 2 Station 3 

Number of served 

customers belonging to 

VCS 1 258 216 202 251 217 206 19 18 10 

VCS 2 NA 13 2 10 211 236 210 

Customers not served 45 ------- ------- 

Average waiting time (minutes) 10.3 10.45 9.24 

Total profit due to  

Serve its customers (A) 2762.7 2731.4 2384.76 

Assign its customers to 
another VCS (B) 

NA 34.88 18.18 

Serve customers from 

another VCS (C) 
NA 72.712 139.52 

Total Profit 2762.7 2839 2542.46 

where the VCS can assign its customers to another VCS in 
exchange for a percentage of the profit. Therefore, a new 
formulation based on the interactions between various VCSs is 
presented to reduce the waiting time for each customer, which 
is a vital concern in the fast-charging stations while achieving 
more profit by each VCS. Several case studies are investigated 
to evaluate the performance of the proposed model. The 
competition between various charging systems in CCS is 
simulated and utilized as a base case for comparison with other 
case studies which are single VCS and interaction between 
various VCSs. The results show that profit obtained by a single 
VCS is increased by 12.01% compared to the profit obtained in 
the case of CCS with a reduction in the average waiting time by 
56.85% while serving 93.76% of total customers. Whereas the 
interaction between various VCSs allows to serve all customer 
with a high level of customer satisfaction. The results indicate 
that the coordination between various VCSs leads to an increase 
in the profit obtained by each VCS by 15.1% and reduction in 
the waiting time by 43.78% compared to that in CCS while 
serving all customers' requests. 
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