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Abstract—Most of the existing research focuses on electricity 

theft cyber-attacks in the consumption domain. On the contrary, 

a high penetration level of distributed generators (DGs) may result 

in increased electricity theft cyber-attacks in the distributed 

generation domain, which is the focus of this paper. In these 

attacks, malicious customers can hack into the smart meters 

monitoring their DG units, which are usually photovoltaic (PV), 

and manipulate their readings to report higher injected energy to 

the grid and claim more profit under feed-in tariff programs. This 

paper proposes a data-driven approach based on machine 

learning to detect such thefts. We adopt an anomaly detection 

approach where a theft detection unit (TDU) based on a regression 

tree model is designed to detect suspicious data. Historical records 

of solar irradiance, temperature, and smart meter readings are 

utilized in the training stage of the detector. The probability 

density function of the error between the actual readings from DG 

meters and the predicted generation by the regression model is 

utilized as a metric to detect suspicious data. Several theft 

scenarios are used to assess the performance of the TDU. 

Furthermore, a comparison study with other detectors is 

presented to demonstrate the superiority of the proposed TDU. 

Index Terms—Cyber-attacks, electricity theft, machine 

learning, photo-voltaic, smart grid. 

I. INTRODUCTION

Electricity theft is a vital problem that has resulted in huge 

financial losses for utility companies in many countries 

worldwide [1], [2]. According to the Federal Bureau of 

Investigation (FBI) and International Utilities Revenue 

Protection Association, energy theft causes financial losses to 

the electric utility estimated at $6 billion, in the U.S. Electricity 

theft in the consumption domain is usually committed by 

conventional tampering of energy meters or rewiring the grid 

connection. Smart grids keep growing and consequently 

resulting in new forms of energy theft [3], [4]. Advanced 

metering infrastructure (AMI) is the backbone of smart grids. It 

consists mainly of smart energy meters with advanced 

communication capabilities [5]-[7]. Malicious customers can 

launch cyber-attacks on these meters to manipulate their 

reported consumption and hence reduce their bills.  

In this context, the smart grid paradigm encourages 

customers to install their own distributed generation (DG) units 

to generate energy, sell it back to the grid, and then gain a profit. 

DG units are usually photovoltaic (PV) panels. Feed-in tariffs 

(FITs) policy and the net metering system are two approaches 

adopted by the electric utilities to encourage the customers to 

invest in renewable energy technologies. In the net metering 

system, customers feed the excess of the generated solar energy 

to the grid and receive a reduction on the next bill [8]. Hence, 

the net metering system requires only one bidirectional meter 

as shown in Fig. 1(a). On the contrary, FIT is referred to as clean 

energy cashback, where customers sell all generated energy 

from PV and get paid for this energy from the grid [9]. The FIT 

policy is more attractive than the net metering system to 

encourage customers to produce green energy [10]. The FIT 

scheme requires two meters. One meter is dedicated to 

monitoring the energy generated from PV, which is the selling 

energy to the electric utility, and the other meter is dedicated to 

monitoring the energy consumed by the customer, as shown in 

Fig. 1(b). In FIT policy, malicious customers can exploit the 

electric utility through manipulating the reported energy 

generation data to claim higher energy generation injected to 

the grid and hence gain more profits. The weak authentication 

firmware installed in most of these meters is the main reason 

for such theft cases where the customers have access to the 

firmware using the ANSI optical port of these smart meters 

[12]-[14].  

Electricity theft detection has been previously investigated 

by researchers. However, the scope of most of the previous 

research work did not consider electricity theft in the distributed 

generation domain [15], [16], which is considered a pressing 

problem. The main difference between cyber-attacks applied at 

the consumption domain or applied at the distributed generation 

domain is that in the consumption domain, these attacks aim to 

reduce the consumption bill. On the other hand, the attacks in 

the distributed generation domain aim to increase the reported 

generation energy injected to the grid to claim more profits. The 

work in [15] presented a detector based on the least square error 

(LSE) and a moving time window to detect the theft in PV 

panel’s generation. In [16], the authors presented a detector 

based on Auto Regression Integrated Moving Average 

(ARIMA) and Kullback-Leibler divergence (KLD) to detect the 

manipulation in PV readings. 

On the contrary, most of the existing research focused mainly 

on electricity theft detection in the consumption domain [1], 

[17]-[23]. The work in [17] presented a detector based on an 

artificial neural network (ANN) to detect suspicious load 

profiles of customers. They assumed several scenarios of cyber-

attacks like assuming the attacker will reduce the consumption 

by a random amount for each time slot or will reduce the 

consumption by a fixed number for a specific period. In [18], 

an electricity theft detector based on random matrix theory 

(RMT) with cost-effective Distributed Meter Data Management 

(DMDM) solution was developed. The authors in [1] used some 

classification and clustering techniques to find the probability 

of energy theft and suspicious clients were identified by 
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(a) (b) 

Fig. 1. Grid-connected PV systems (a) Net metering scheme and (b) FIT scheme [11]. 

monitoring abnormalities in consumption patterns. In [19], non-

technical losses (NTL) problem was presented, where a fraud 

detection model (FDM) based on support vector machine 

(SVM) was developed to extract suspicious customers based on 

an irregular consumption pattern. In [20], a detection technique 

based on partially observable Markov decision process 

(POMDP) and Bollinger bands were presented. In [21], an 

energy theft detection scheme was proposed using energy 

privacy preservation in the smart grid network. Furthermore, 

the combined convolutional neural networks (CNN) technique 

was utilized to detect abnormal measurements within smart 

meter data.  The authors in [22] presented a comprehensive top-

down scheme based on a decision tree (DT) and a SVM. In [23], 

the authors studied stealth false data injection (FDI) attacks in 

the consumption domain. It presented a set of restricted 

Boltzmann machines (RBMs) to detect such theft attacks.  

The work in [24] introduced extreme learning machine to detect 

which busses of a power system are under FDI attacks. 

Furthermore, a recovery strategy was introduced to address the 

detected erroneous data. The authors of [25] proposed a 

machine learning framework based on two-stage approach to 

identify and locate the cyber-attacks on the control systems in 

the distribution domain. The work in [26] introduced a 

federated deep learning algorithm to detect false data in 

industrial systems. Moreover, the authors of [27] used a feed-

forward deep neural algorithm based on wrapper feature 

extraction unit while authors of [28] used a cloud-based cyber-

physical intrusion detection algorithm. The authors of [29] 

proposed a sequential ensemble detector based on a deep auto-

encoder with attention (AEA) to detect various cyberattacks.  

This paper focus is detecting electricity theft cyberattacks in 

the distributed generation domain by developing a theft 

detection unit (TDU) to detect suspicious data flow to increase 

the reported injected energy under the FIT programs. More 

specifically, the proposed TDU tackles the theft incidents 

caused by cyberattacks to manipulate the PV smart meters 

readings installed at the customer’s premises. 

Our early work in [30] focused on developing supervised 

learning classifiers that are trained (and tested) on both benign 

and malicious data. Moreover, [30] assumes that a malicious 

database already exists or can be synthetically created to train 

the detector However, malicious data may not be known in 

advance during the training stage of the detector, which is 

especially true for zero-day attacks, which are the attacks never 

happened before. Hence, in this work, we aim to develop an 

unsupervised anomaly detector that is trained only using benign 

data, which can be collected by the operator during the system 

normal operation but can be tested on both benign and 

malicious data. Such an anomaly detector overcomes the 

challenge associated with the availability of malicious data 

during the detector’s training stage and it stands robust against 

zero-day attacks. Moreover, malicious data are not known until 

they are detected to be used in the training stage. However, all 

malicious data points used in training of the classifier detectors 

presented in the literature are based on a simulated dataset, i.e., 

not based on real practical data accurately collected from the 

system under attack.  Therefore, it is better to develop an 

unsupervised anomaly detector based on benign data only, 

which tries to capture the characteristics of benign data, and 

then it can detect any deviation from this benign data. 

Therefore, our proposed detector compared to our previous 

work depends on different assumptions and different data 

availability like the unavailability of malicious data.  

The main contributions of this work are summarized as 

follows: 

 We have investigated an anomaly detector. This detector is 

trained only on benign data. However, it can be tested on 

both benign and malicious data. Therefore, the developed 

detector is a general detector that can be used to detect the 

presence of electricity theft cyber-attack for any PV unit in 

the system under any cyber-attack functions.  

 We investigate the integration of various data sources to 

develop a machine learning-based electricity theft detection 

system to detect electricity theft cyber-attacks in solar 

panels. These data sources include the readings from PV 

smart meters and meteorological data. 

 The proposed anomaly-based TDU presents two sub-stages 

during training, first a regression stage and an error 

extraction stage. In the regression sub-stage, the predicted 

energy generation is specified based on a regression tree. 

Then, a probabilistic measure is carried out at the error 

extraction stage to aid in the theft decision. 

 In the error extraction sub-stage, the proposed detector relies 

on the probability density function (PDF) of the error 

between the reported readings from PV meters and the 

predicted energy. Thus, the proposed TDU presents not just 

a classification but a probabilistic measure of the 

suspiciousness of the malicious data during the test 

(deployment) stage. 

 Simulation results are carried out to evaluate the 

performance of the proposed TDU and compare its 

performance against other detectors based on SVM, 

ARIMA, and LSE models. 

The rest of the paper is organized as follows: The problem 

statement and proposed methodology are explained in Section 

II. Results and multiple case studies are presented and discussed 

in Section III. Finally, the conclusions are presented in Section 

IV. 
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II. PROBLEM STATEMENT AND PROPOSED METHODOLOGY 

The objective of this research is to develop a machine 

learning-based TDU to detect the suspicious data flow reported 

by the customers following the procedure shown in Fig. 2. In 

this section, we present the data preparation stage, the training 

stage, and the theft detection mechanism. 

A. Data Preparation 

One of the purposes of this work is to integrate data sources 

in the training process of the machine learning-based detector. 

These data sources include the readings from PV smart meters 

and meteorological data (solar irradiance and temperature). 

Moreover, PV smart meters are mainly affected by the injection 

from the PV units installed in the downstream, and this assists 

in confronting the dynamics of the power system. The first and 

vital step as shown in Fig. 2 is to gather and prepare these data 

to feed it to the regression model to learn the behavior of the 

PV panels. Regression is used to find the relationship between 

one or multiple independent variables called predictors and a 

single dependent variable called the response or target variable. 

As shown in Fig. 2, three independent variables will be used as 

the predictors to predict a single dependent variable or response 

variable. The three predictors are time, solar irradiance, and 

ambient temperature while the reading from PV smart meters is 

considered as the response variable.  

In order to create the required data set that includes these 

readings, historical solar irradiance and temperature data from 

a weather station in Toronto, Canada are utilized. In this 

research, we study the behavior of 𝑁𝐶  customers with different 

number of panels and types of panels. To simulate realistic 

cases, 𝑁𝑃𝑉 different PV panels types are considered [31] with 

different capacities and characteristics, as shown in Table I, 

where 𝑁𝑃𝑉 = 11. To investigate the robustness and 

generalization ability of the proposed TDU,  𝑁𝑃𝑉 − 1 types will 

be used for training and a completely different one will be used 

for testing to prove that our method is general and can work on 

any panel type, even ones that it was not trained on. These types 

are randomly assigned to each one of the 𝑁𝑐 customers 

following a discrete uniform distribution. Also, to specify the 

installed capacities, the number of PV panels installed per 

customer is randomly selected from 𝑁𝑝𝑎𝑛𝑒𝑙
𝑚𝑖𝑛  to 𝑁𝑝𝑎𝑛𝑒𝑙

𝑚𝑎𝑥  panels 

following the same distribution.  

The generated power from the PV panels and hence the 

output energy for each customer can be calculated using the 

historical data and the parameters of panel-related 

characteristics, which represent the readings provided by the 

PV smart meters. The output power for each customer should 

be calculated to be used in the training of the proposed TDU in 

the next step and considered as virtual historical data of the PV 

smart meter readings. Using the datasheet characteristics of the 

PV panels, which are shown in Table I, the historical solar 

irradiance, temperature data, and the relations (1)-(5) [32], the 

output powers profile of each type of the PV panels can be 

generated. 

𝑇CELL = 𝑇A +
𝑆(𝑇NOCT − 20)

0.8 kW/m2
 (1) 

𝐼PV = 𝑆[𝐼SC(1 + 𝐾I(𝑇CELL − 25))] (2) 

𝑉PV = 𝑉OC(1 + 𝐾V(𝑇CELL − 25)) (3) 

𝐹𝐹 =
𝑉MPP𝐼MPP

𝑉OC𝐼SC
 (4) 

𝑃PV = 𝐹𝐹 𝑉PV 𝐼PV, (5) 

TABLE I 
CHARACTERISTICS OF THE 11 PV PANELS 

Type 
Max Power 

(W) 

𝑻𝐍𝐎𝐂𝐓 

(oC) 
𝑰𝐌𝐏𝐏 (A) 𝑽𝐌𝐏𝐏 (V) 𝑽𝐎𝐂 (V) 𝑰𝐒𝐂 (A) 

1 435 45 5.97 72.9 85.6 6.43 

2 245 46 8.11 30.2 37.8 8.63 

3 87.5 45 1.78 49.2 61 1.98 

4 230 47 6 40.2 50.7 6.7 

5 135 45 2.88 47 61.3 3.41 

6 240 47 4.86 49.38 59.23 5.44 

7 245 47 4.95 49.51 59.45 5.54 

8 250 47 5.01 49.91 59.92 5.61 

9 255 47 5.09 50.11 60.36 5.70 

10 260 47 5.17 50.30 60.36 5.79 

11 265 47 5.25 50.48 60.60 5.88 
 

where, 𝑇𝐶𝐸𝐿𝐿 is the cell temperature; 𝑇𝐴 is the ambient 

temperature; 𝑆 is the solar irradiance; 𝑇𝑁𝑂𝐶𝑇  is the nominal 

operating cell temperature at 20°c and 0.8 kW/m2 irradiance; 

𝐼𝑃𝑉 and 𝑉𝑃𝑉 are the current and the voltage of the PV module; 

𝐾𝐼  𝑎𝑛𝑑 𝐾𝑉 are the current and the voltage temperature 

coefficients;  𝐼𝑀𝑃𝑃  𝑎𝑛𝑑 𝑉𝑀𝑃𝑃 are the current and the voltage of 

PV module at maximum power; 𝐹𝐹 is the fill factor, and 𝑃𝑃𝑉 is 

the output power.  

The parameters in Table I are not available for the electric 

utility except for the PV panel capacity. This motivates data-

driven approaches to detect electricity theft at the generation 

side. 

The readings of PV smart meter must be normalized to the 

installed capacity of each customer to avoid any sort of bias and 

produce to have proper training. Fig. 3(a) shows a sample of the 

output power waveform on the same day for two customers 

with type 1 and type 2 PV panels before normalizing, whereas 

Fig. 3 (b) and (c) shows the normalized output power.  

Moreover, all the zero generated power data points at night, 

where the irradiance is zero, are removed from the data. 

Detecting a theft during night does not need a smart classifier; 

in addition, the existence of these data points produced huge 

bias in the TDU, which should not be a basis for performance 

evaluation. 

Finally, the outcomes from the data preparation stage are the 

three predictors, readings of PV smart meters, and the installed 

capacity for each customer, as shown in the top section of Fig. 

2. 

 

B. Regression Model Training 

The model should learn how to predict the readings of PV 

smart meters given the three predictors. Hence, the second step 

is training the regression model with the historical datasets of 

PV generation, as shown in the left-side of Fig. 2. In this 

research, historical data of solar irradiance and temperature on 

an hourly basis are utilized to generate virtual historical data of 

PV smart meter readings at these conditions as mentioned 

before. The detector is only trained using benign data as it is 

difficult to get real malicious data, which makes this anomaly 

detector more robust against zero-day attacks.  
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Fig. 2. The Proposed methodology flowchart. 

   
(a) (b) (c) 

Fig. 3. (a) Output power of 2 different customers’ installed panels, (b) and (c) the normalized output power of the same panels. 

 

The dataset is divided into two subsets. The first subset with 

the known predictors and known response for the first 𝑵𝐏𝐕 − 𝟏 

PV panel types is used to train different regression models, as 

shown in Fig. 2. The second subset will not be utilized in the 

training stage and will be used later in the testing stage to 

investigate the generalization ability of the proposed TDU.  

K-fold cross-validation is used in the training stage of the 

regression models and will be discussed in the following 

subsection. Various regression models are investigated during 

the training stage such as linear regression, SVM regression, 

and DT regression. The validation error of each model will be 

utilized to select the best regression model to be used in the 

TDU. Hence, the model with the least error will be selected for 

developing the proposed detector. 

1) K-fold Cross-Validation 

K-fold cross-validation is one of the statistical techniques 

used to evaluate and estimate the misclassification error in 

machine learning models [33]. This technique is widely used 

for its simplicity; besides, it can prevent overfitting. In K-fold 

cross-validation, the dataset assigned for training is divided into 

K folds. K-1 folds are used to train the model while a single fold 

is used to test the model. This procedure is repeated multiple 

times with different folds to ensure that each fold has been used 

exactly once to validate and test the model. In this research, 5-

fold cross-validation method is utilized in the training stage, 

where the dataset assigned for training has been divided into 5 

equal folds. The cross validation is used to compare different 
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models for regression. Then, we choose a model and perform 

anomaly detection on the data subset not used in this stage. 

2) Regression models 

Different regression models are utilized in the training stage 

to select the best model for the proposed TDU. The major 

models investigated in this work are linear regression, SVM, 

and DT. 

a) Linear Regression 

The objective of linear regression is to make the best possible 

fit regarding the relationship between the predictors and the 

response variable. A nonlinear relationship can be investigated 

between the predictors and response variable. However, the 

relationship between the response variable and the regression 

model coefficients should be linear. The function representing 

the response or target as a function of predictors can be written 

as follows: 
𝑃 ̂ = 𝛽𝑇𝑥 + b, (6) 

where �̂� is the predicted response or target which is the 

predicted output power from PV; 𝑥 = [𝑥1 𝑥2 𝑥3]T is a vector 

containing the three predictors which are temperature; 

irradiance; and time variables; T is the transpose operator; 𝛽 =
[𝛽1 𝛽2 𝛽3] and b (bias) represents the linear model coefficients 

to be determined. 
The model coefficients are obtained to minimize the LSE 

between the actual power and the predicted power as expressed 

in the following equation 

min(𝑃 − �̂�)
2

= (𝑃 − ( 𝛽𝑇𝑥 +  𝑏))2, (7) 

where 𝑃 is the actual output power from PV in (5).   

Different linear regression techniques are available. For 

example, stepwise regression systematically adds or removes 

variables in the linear regression model. The algorithm does this 

variable selection based upon their statistical significance in 

explaining the output variable. On the other hand, the robust 

linear regression is less affected by outliers in the data, whereas 

basic linear regression gives simply the least square fit, without 

other intricacies. 

b) SVM Regression 

In SVM regression, the same function used to predict the 

response variable in linear regression is utilized. However, an 

acceptable error is defined in the model, and SVM will 

determine proper line or hyperplane to fit all data. The objective 

of SVM regression is to minimize the squared coefficients, not 

the squared error. The predicted output with an acceptable 

error 𝜀, the objective function, and the error constraint can be 

expressed using equations (6) (8), and (9), respectively. 

min
𝛽

 (
1

2
 |𝛽 𝛽T|) (8) 

subject to: 

|𝑃 − �̂�| ≤  𝜀, (9) 

If no function exists to satisfy the previous constraints for all 

points, a slack variable, 𝜀𝑛 for data point 𝑛, can be added to each 

point. Then, the equations can be written as follow 

  min
𝛽

( 
1

2
 |𝛽 𝛽T| + 𝐶 ∑ 𝜀𝑛

𝑁

𝑛=1

 )   (10) 

subject to: 

|𝑃 − �̂�| ≤  𝜀 + 𝜀𝑛, (11) 

where 𝑁 is the total number of data points or observations and 

𝐶 is a regularization parameter. 

The previous objective function is mathematically simpler to 

solve in its Lagrange dual formulation. The Lagrange dual 

formulation is obtained from the original function by defining 

negative multipliers 𝛼𝑛 and  𝛾𝑛 for each data point or 

observation 𝑛. Therefore, the new minimization problem can be 

described as follows  

min
𝛼,𝛾

(
1

2
∑ ∑ (𝛼𝑛 − 𝛾𝑛)(𝛼𝑚 − 𝛾𝑚)𝑥𝑛𝑥𝑚

T + 𝜀 ∑(𝛼𝑛 + 𝛾𝑛)

𝑁

𝑛=1

𝑁

𝑚=1

𝑁

𝑛=1

+ ∑ 𝑃𝑛(𝛾𝑛 − 𝛼𝑛)

𝑁

𝑛=1

) 

(12) 

subject to: 

∑(𝛼𝑛 − 𝛾𝑛) = 0     ∀𝑛

𝑁

𝑛=1

 (13) 

0 ≤  𝛼𝑛 , 𝛾𝑛   ≤ 𝐵    ∀𝑛, (14) 

where 𝐵 is the box constraint. 

The modified function used to predict the response variable 

is described in (15), where 𝛽 =  ∑ (𝛼𝑛 − 𝛾𝑛) 𝑥𝑛
𝑁
𝑛=1 . 

 

𝑃 ̂ =  𝛽0 +  𝛽 𝑥T (15) 
  

c) DT Regression 

DT learning is considered a predictive modeling approach 

that is used as one of the supervised machine learning 

techniques. Both classification and regression problems can be 

addressed using the DT by splitting the data based on a learned 

set of parameters. The main idea is that the prediction space is 

divided into a homogenous subset (non-overlapping regions). 

Different algorithms are used to construct the decision trees and 

determine the number of regions. These include approaches 

such as classification and regression tree (CART) and Iterative 

Dichotomiser 3 (ID3).  

The basic idea in learning a DT for regression is that the 

prediction space is divided into 𝑀 regions during training, 

where 𝑀 is determined to minimize some error metric. A 

popular error metric is the mean square error (MSE) between 

the predicted responses and the actual responses. During 

testing, the same regions are then used for prediction.  

In our case, we have three predictors: temperature, 

irradiance, and time. We can store this information in the form 

of a three-dimensional vector for each data point, 𝑥 =
[𝑥1 𝑥2 𝑥3]T. Here, T denotes a transpose. If �̂�𝑚 is the predicted 

response or target (i.e. predicted output power from PV) for a 

point in a region 𝑚 and 𝑃𝑖,𝑚 is the actual response (i.e. actual 

output power from PV) for the ith input point lying in the region 

𝑚, we seek to form a partition of the three-dimensional space 

(as we have three predictors in our problem) which minimizes, 

𝑚𝑖𝑛 ∑ ∑(𝑃𝑖,𝑚 − �̂�𝑚)2

𝑖∈𝑚𝑚

 (16) 

where 𝑖 denotes the index for training points and 𝑚 ∈
{1,2, … , 𝑀} is the index of regions. 

When training begins, the algorithm for learning the decision 

tree looks at the entire training set and then chooses the 

dimension (predictor) 𝑗 and a split (threshold) 𝑠 to split the 

three-dimensional space into two disjoint regions; one region 
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contains the data points whose dimension 𝑗 has the value less 

than or equal to 𝑠 and the other region contains the points whose 

dimension 𝑗 has the value greater than 𝑠. This choice of 

dimension 𝑗 and split 𝑠 is made so as to minimize, 

∑ (𝑃𝑖,𝑚 − �̂�𝑚)2

𝑖:𝑥𝑗 ≤ 𝑠

+ ∑ (𝑃𝑖,𝑛 − �̂�𝑛)2

𝑖:𝑥𝑗 > 𝑠

 (17) 

where �̂�𝑚 denotes the predicted value for the points in region 

𝑚 (for which 𝑥𝑗  ≤  𝑠) and �̂�𝑛 denotes the predicted value for 

the region 𝑛 (for which 𝑥𝑗 >  𝑠), and 𝑃𝑖,𝑚 and 𝑃𝑖,𝑛 are the actual 

response values for the data points in the two sub-regions. The 

predicted values for the regions 𝑚 and 𝑛, i.e. �̂�𝑚 and �̂�𝑛, are 

essentially the average of the response values of the training 

points in the two respective regions. For instance for a region q, 

the predicted value for this region, �̂�𝑞 , can be given as,   

�̂�𝑞 =
1

𝑁𝑞
∑ 𝑃𝑖,𝑞

𝑖∈𝑞

 (18) 

where, 𝑁𝑞 is the number of training points in region 𝑞 and 𝑃𝑖,𝑞 

is the actual response value for training point 𝑖 in this region. 

Each of the two regions, 𝑚 and 𝑛, can then be further split 

into further sub-regions, so as to minimize the overall training 

error in (16). If these regions are not further subdivided into 

other regions, they are known as leaves, otherwise, they are 

known as nodes, which are then up for further sub-division. 

This process of training is also known as growing a DT.  

Theoretically, one can keep on doing the sub-division 

process, until each leave contains only one data point or until 

all the data points in each leave have the same response value. 

This would result in a zero-training error. However, this may 

lead to over-fitting and the model may not be able to generalize 

well on the unseen testing data. Hence, one can use a validation 

set to decide to which level of sub-division one needs to go, to 

achieve a good performance on the testing set. This may lead to 

different types of DTs, such as coarse, medium, and fine DTs. 

The difference between coarse, medium, and fine DTs is that 

they respectively have few, medium, and many numbers of 

leaves that allow low, medium, and high model flexibility. 

When we get a test point, we take the grown (trained) DT, 

follow a sequence of steps, based upon the sequence of splits in 

the DT, to decide which leaf does the test point falls in. We then 

assign the response value in that leave to the test point (this is 

essentially the average of the response values of training points 

in the leave during training). Here, we have described the 

CART approach for growing a regression DT. Similar ideas 

apply to other learning algorithms as well. For further details, 

the readers are referred to [34].  

C. Theft Detection Mechanism 

The theft detection decision is developed based on the PDF 

of the error between the predicted output power and the actual 

one, as shown in left-side of Fig. 2. The distribution of the error 

is identified to be used as a detection metric. A limit or 

threshold that indicates the acceptance range will be defined. 

Therefore, if the prediction error with respect to the customer's 

data is found to be beyond this limit or threshold, which 

represents a very small percentage of occurrence and unlikely 

to happen, then this reported data by the customer is suspicious. 

The main focus of this research is only on the positive 

probability indicating that the customer is reporting an injection 

more than the actual generation from PV. 

As aforementioned, the probability of the error between the 

predicted output power and the PV meter readings will be 

utilized as a detection metric in the proposed TDU. Hence, the 

objective of this step is to fit this error extracted from the 

regression models with a proper PDF. To choose the best PDF, 

we look into the maximum likelihood for each type. Maximum 

Log-likelihood estimation is used to find the set of parameters 

θ̂ that maximizes the probability of occurrence of the data point 

xn, as in (19). 

𝜃 = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝜃

 ∑ 𝑙𝑜𝑔 [𝑃𝑟(𝑥𝑛|𝜃)]𝑁
𝑛=1  , (19) 

where 𝑃𝑟(𝑎) is the probability of event 𝑎. 

Finally, to classify a customer, the reported output power 

from the smart meter will be compared to the predicted output 

power. The error between the measured output and the 

predicted output will be checked using the fitted PDF on the 

extracted error from the training data and an alarm will be 

triggered to indicate that theft is detected if the probability of 

occurrence of this error or higher is below a certain threshold. 

The larger the error, the smaller its probability to occur, which 

indicates suspicious data. 

III. RESULTS AND DISCUSSIONS 

In this section, we present and discuss the results of some 

case studies to evaluate the performance of the proposed TDU 

using MATLAB. Various regression models are trained and the 

root-mean-square-error (RMSE) of each model is determined 

as shown in Fig. 4 for five-fold cross-validation as discussed 

earlier to select the most proper model to be used in developing 

the proposed TDU. 48 points for each customer from 𝑁𝑐 = 400 

customers are utilized to form a benign dataset used in training 

and testing of the proposed TDU. This benign dataset is divided 

into two sets. One set is used in the training stage of the 

proposed unsupervised anomaly detector while the other set is 

used in the testing stage of the proposed detector. 17712 benign 

samples are used in the training stage. Whereas, 8928 samples 

which represent the remaining benign data points and malicious 

datapoints after applying different cyber-attacks scenarios 

explained in the next subsection are used to test the performance 

of the proposed TDU. According to the RMSE, the fine tree 

model presents the best regression model as illustrated in Fig. 

4, which is used for the TDU. Further, the error between the 

actual and predicted response is fitted with various distribution 

functions, as shown in Fig. 5. Comparing the likelihood or the 

log-likelihood (LL) of each distribution function to get the best 

fit, Beta distribution presents the best (highest) log-likelihood 

(LL = 37452.5) compared to 35635.9, and 37136.9 for Normal 

and Weibull distributions, respectively. Therefore, the 

regression and error extraction sub-stages of the proposed TDU 

are based on the fine tree algorithm and Beta distribution 

function, respectively.  

A. Cyber-attacks functions 

One of the challenges facing this research is the lack of data 

needed to represent malicious customers. In this research, an 

anomaly detector is developed where benign data is utilized 

only during the training stage. The detector tries to learn the 

normal patterns within benign data, and hence, can detect any 
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suspicious deviations from this normal pattern as a sign of 

malicious behavior. However, in order to test the proposed 

TDU against honest and malicious customers, cyber-attack 

functions/scenarios need to be introduced to manipulate the PV 

smart meter readings in a way that imitates the theft behavior 

by malicious customers. Hence, a set of cyber-attack functions 

will be launched on the PV smart meter readings to generate 

synthetic malicious data to be used during the testing stage of 

the TDU. The cyber-attack functions claim higher PV energy 

generation supplied to the electrical grid to gain more profits. 

Three cyber-attack functions, illustrated in Table II, are 

introduced. The first cyber-attack function performs a static 

percentage attack, in which the malicious customer manipulates 

the meter reading and reports an increase in the generated 

energy by a fixed percentage (𝒇𝟏) of the actual generated energy 

𝑬𝐏𝐕 (for example, reporting 110% of the actual generation 

where 𝒇𝟏 = 𝟏𝟎%). The second cyber-attack function 

implements a dynamic percentage attack, in which the 

malicious customer reports a random increase in the generated 

energy by a random percentage (𝒇𝟐(𝒕, 𝒅)) of the actual 

generated energy to make it difficult for the electric utility to 

recognize the abnormality. The third attack function 

implements a positive shift attack, where a malicious customer 

reports an increase in the generated energy by adding a fixed 

value 𝒖 to the actual generated energy. Thus, the reported 

generation energy will be 𝒖 when the actual generation is zero. 

However, in this case study similar to the previous cases, all the 

data points during the night are removed to detect the 

performance of the proposed TDU where detecting a theft 

during the night does not need a smart classifier. Moreover, the 

customers may increase the generation by a specific value 

during the daytime only and then remove this value at the night 

to avoid detection. 

After developing the TDU, a threshold value should be 

introduced.  Selecting the value of threshold will affect the TDU 

decision since selecting high value may result in detecting the 

honest customer as a malicious customer and vice versa. The 

threshold value corresponds to the probability that more than a 

certain error magnitude (between the predicted and actual 

power) is likely to be observed in the training dataset as shown 

in Fig. 6. A threshold corresponding to y% would mean that y% 

is the probability of observing an error magnitude more than a 

certain amount 𝑒𝑦. If the probability of the error calculated for 

a customer falls below y%, then the customer is flagged 

malicious. The more it falls, the customer becomes more 

suspicious to be stealing.  

To find a proper value for the threshold, the set of data used 

in the training is fed to the TDU to predict the output power. 

Then, the predicted output power is compared with the reported 

readings from PV meter for different cases representing honest 

customer and static percentage attack with various attack levels 

𝑓1 to represent malicious customers.  Then, the error of each 

case, as well as PDF of the error are determined. Finally, the 

threshold value is investigated to determine its impact on the 

decision of TDU for pre-known cases. As aforementioned, the 

training of the TDU is based solely on the benign data. The 

malicious data is introduced here only for testing the detector's 

performance. Table III shows the effect of varying the threshold 

value on the TDU decision. The results in Table III reveal that 

the best threshold values can be selected are 5% to 10%. 

 
TABLE II  

PROPOSED CYBER-ATTACK FUNCTIONS 

Attack Type Representation 

Static percentage attack 𝐸reported = (1 + 𝑓1) 𝐸PV 

Dynamic percentage attack 𝐸reported = (1 + 𝑓2(𝑡, 𝑑)) 𝐸PV 

Positive shift attack 𝐸reported =  𝐸PV + 𝑢 

Fig. 4. RMSE of regression models. 

 
Fig. 5. Fitting of the error PDF 

 
Fig. 6. Fitting of the error PDF 

TABLE III  
DECISIONS OF TDU BASED ON THRESHOLD VALUE VARIATIONS 

 
Threshold percentage (y%) 

20% 15% 10% 5% 1% 

S
ta

ti
c
  

a
tt

a
c
k

 %
 0 %  Alarm Alarm No Alarm No Alarm No Alarm 

2.5 % Alarm Alarm Alarm Alarm No Alarm 

5 % Alarm Alarm Alarm Alarm Alarm 

10 % Alarm Alarm Alarm Alarm Alarm 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Support Vector Machine

Decision Tree: Fine Tree

Decision Tree: Medium Tree

Decision Tree: Coarse Tree

Linear Regression

Interaction Linear Regression

Robust Linear Regression

Stepwise Linear Regression

RMSE
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B. Case 1: Honest Customers 
As mentioned in Section III-A, the second subset curtailed 

from the original dataset will be utilized to evaluate the 
performance of the proposed TDU. First, the three predictors of 
the curtailed data points: temperature, irradiance, and time are 
fed to the proposed TDU to predict the output power. Then, the 
PV smart meter reading that represents an honest customer is 
compared with the predicted output power results from the 
proposed model. Finally, the error is fitted to the Beta 
distribution and then compared with the selected threshold. Fig. 
7(a) illustrates the probability of this error. As shown in Fig. 
7(a), the periodic shape is the error for 10 consecutive days 
excluding the zero generation at night as explained before. It 
was observed that the error increases for honest data, i.e. the 
probability decreases, as the PV output increases in the middle 
of the day. This error is lower when the PV output is lower and 
it should be zero when the PV output is zero, which was 
excluded.  

Overall, the results of observing this customer for 10 days 
illustrate that the probability of the error is above the selected 
threshold, which is set to 5% in this case. Consequently, the 
TDU will detect this customer as an honest customer. 

C. Case 2: Static Percentage Attack  
In this case, static percentage attacks with different attack 

levels are applied to the PV smart meter readings to represent 
electricity theft by malicious customers. As aforementioned in 
the previous case, the three predictors will be fed first to the 
TDU and then the predicted power generated by TDU will be 
compared with the reported PV smart meter readings after 
applying cyber-attacks to these readings. Fig. 7(b)-(d) shows 
the probability of error occurrence with different attack levels. 
As shown, the error increases at the middle of the day, i.e. 
probability decreases, when the theft becomes significant. The 
probabilities below the threshold indicate that this injection is 
unlikely to happen. Therefore, the proposed TDU will be able 
to detect such thefts. The higher the amount of theft, the lower 
the probability falls, which can be used as a measure of the theft 
attack severity. 

D. Case 3: Dynamic Percentage attack 
  In this scenario, a dynamic percentage attack criterion will be 
applied to the PV smart meters reading. The dynamic 
percentage attack’s level (𝑓2(𝑡, 𝑑)) is generated from the 
standard uniform distribution on the open interval (0,1). The 
predicted power from TDU is compared with the manipulated 
PV smart meter readings. Fig. 7(e) shows the probability of the 
error in this case. The results reveal the ability of TDU to detect 
also this malicious data as many data points have a very low 
probability less than the selected threshold. 

E. Case 4: Positive shift attack 

In this scenario, a constant value is added to the PV smart 
meter readings. The attack’s level 𝑢 is selected to be 1% of the 
peak value of PV smart meter readings. The probability of the 
error between the predicted power and the manipulated PV 
smart meter readings in this scenario is illustrated in Fig. 7(f). 
Unlike the previous cases of using a percentage attack, the 

probability of the error in this case is very low during low PV 
generation periods, which is expected and easily detected. 

F. Performance Evaluation of the Proposed TDU 
To evaluate the performance of the proposed TDU, 100 

samples representing honest customers, and 100 samples for 
malicious customers are fed to the proposed TDU. The 
malicious dataset is developed based on the three cyber-attack 
functions. The following performance metrics are evaluated to 
investigate the performance of the proposed TDU as in (20) - 
(25). 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒) =   
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (20) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =   
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (21) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =   
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (22) 

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑉𝑎𝑙𝑢𝑒 (𝑁𝑃𝑉) =   
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 (23) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =   
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (24) 

 

𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚 (𝐹𝐴) = 1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 
(25) 

 
where 𝑇𝑃 is true positives, which means the sample is malicious 
and TDU detects it as malicious; 𝐹𝑁 is false negatives, which 
means the sample is malicious and TDU detects it as honest; 
𝑇𝑁 is true negatives, which means the sample is honest and 
TDU detects it as honest; and 𝐹𝑃 is false positives, which 
means the sample is honest, and TDU detects it as malicious. 
The performance of the proposed TDU is compared with SVM, 
ARIMA, and LSE detectors to demonstrate the superiority of 
the proposed TDU. The detectors based on SVM and LSE are 
trained in a similar manner of our proposed TDU. On the 
contrary, the training of the detector based on ARIMA model is 
implemented in a different way. First, the PV smart meter 
readings for a certain period of the year and the three predictors 
are used to estimate the ARIMA model parameters. Then, the 
ARIMA model is used to forecast the PV generation at another 
period; then, the error is used to make the detection decision. 
Table IV illustrates confusion/matching matrix for various 
detectors which provides a summary of the performance of each 
detector for all samples. Each row represents the actual state of 
the various samples while each column represents the predicted 
state of all samples. This matrix is used to determine the 
proposed indices shown in (20)-(25). The undetected attack 
samples are static percentage attacks with 2.5% attack level in 
which the malicious customer manipulates the meter reading 
and reports an increase in the generated energy by a fixed 
percentage (2.5%) of the actual generated energy (reporting 
102.5% of the actual generation) as the error between the 
predicted and actual power is so small and thus the probability 
of this error is high and above the threshold value. Table V 
illustrates the detection performance for the proposed TDU and 
the other detectors. 
  
 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

9 

   
(a) Honest customer (b) Static percentage attack of 2.5% (c) Static percentage attack of 5% 

   
(d) Static percentage attack of 10% (e) Dynamic percentage attack (f) Positive shift attack 

Fig. 7. Probability of error occurrence of different case studies: (a) honest customer, (b), (c), (d) Static percentage attacks criterion is applied, 𝑓1= (b) 2.5 %, 

(c) 5 %, and (d) 10 %, (e) Dynamic percentage attack, and (f) Positive shift attack. 

TABLE V 
DETECTION PERFORMANCE OF THE PROPOSED TDU IN COMPARISON WITH 

SVM, ARIMA AND LSE 

 Performance Parameters 

Model Sens. Spec. Prec. NPV Accur. FA 

TDU 94.5% 88.5% 89.15% 94.15% 91.5% 11.5% 

SVM 99% 63% 72.8% 98.44% 81% 37% 

ARIMA 100% 67% 75.19% 100% 83.5% 33% 

LSE 91.5% 66.5% 73.2% 88.67% 79% 33.5% 

 
The LSE detector has the worst performance in sensitivity, 

NPV, and accuracy.  Also, it has the second-worst performance 
in the other metrics, as shown in Table V. On the other hand, 
the detectors based on ARIMA and SVM offer efficient 
detection of malicious customers with high 𝑇𝑃 and low 𝐹𝑁, 
which is reflected in their high performance regarding 
sensitivity and NPV metrics. However, these detectors offer 
inaccurate performance regarding honest customers with low 
𝑇𝑁 and high 𝐹𝑃, compared to the proposed TDU. Thus, the 
specifity and the precision of the TDU are superior. Overall, the 
proposed TDU offers the best detection performance compared 
to SVM, ARIMA, and LSE detectors regarding the most 
performance metrics like specificity, precision, accuracy, and 
false alarm. Having various panel types and various forms of 
malicious samples could confuse the detector in distinguishing 
between honest and malicious customers. However, the 
evaluation performance reported in Table V deduces a high 
detection performance of the proposed TDU when it comes to 
detection accuracy, false alarm rates, precision, and specificity.  

IV. CONCLUSIONS 

This paper proposes an anomaly detector to detect electricity 
theft in the distributed generation domain, where this detector 
is trained only on benign data. Therefore, the anomaly detector 
is robust against zero-day attacks.  

In this work, historical records of solar irradiance and 
temperature data are utilized to generate virtual historical data 

of PV smart meter readings to create the required dataset used 
in the training and testing stages of the proposed TDU. Several 
regression models are trained using the datasets. The regression 
model with the least RMSE, which is a DT model, is selected 
to be used in developing the proposed TDU. Hence, the 
proposed TDU is developed based on a fine DT to detect the 
suspicious data reported by the customers. The probability of 
the error between the actual and predicted response, which is 
found to follow Beta distribution function, is used by TDU as a 
detection metric to distinguish between honest and malicious 
customers by defining a desired threshold value. Furthermore, 
the robustness of the proposed TDU is evaluated against a new 
dataset that is not used in the detector’s training stage, where a 
completely different panel type is introduced and different 
cyber-attack scenarios are applied to benign data to represent 
the suspicious data reported by malicious customers. Moreover, 
the performance of the proposed TDU is compared with other 
detectors based on SVM, ARIMA, and LSE to demonstrate the 
potential of the proposed TDU. Simulation results revealed that 
the proposed TDU offers a superior detection performance. 
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