IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 14, NO. 8, AUGUST 2015 1

Cyber Security of Market-based Congestion
Management Methods in Power Distribution
Systems

Omniyah Gul M Khan, Student Member, IEEE, Ehab El-Saadany, Fellow, IEEE, Amr Youssef, Senior
Member, IEEE, and Mostafa F. Shaaban, Senior Member, IEEE

Abstract—As the penetration rate of flexible loads and Dis-
tributed Energy Resources in the distribution networks increases,
congestion management techniques that utilize Demand Side
Management (DSM) have been developed. These are indirect
methods that rely on information exchange between the Distri-
bution Network Operator, aggregators, and consumers’ meters
to encourage customers to change their demand to relieve con-
gestion. Cyber attacks against aggregators can compromise the
operation of DSM-based congestion management methods, and
hence, affect the security and reliability of electrical networks. In
this paper, the vulnerability of indirect congestion management
methods to Load Altering Attacks is studied. An optimization
algorithm is developed to determine the aggregators a cyber
attacker would compromise, via minimum alteration of their load
profiles, to cause congestion problems. The impact of such attacks
on congestion and consumers’ electricity bill is then studied. A
mitigation scheme is formulated to determine the most critical
aggregators in the network. The security of these aggregators is
then reinforced to mitigate such cyber attacks.

Index Terms—Cyber security, Load Altering Attack (LAA),
Congestion Management, optimization.

I. INTRODUCTION

HE increased number of power-hungry flexible loads,

such as Electric Vehicles (EVs) and Heat Pumps (HPs),
has changed the operating conditions of the distribution sys-
tem. Congestion, a condition caused as a result of the power
flow exceeding a network asset’s transfer capability, which was
not of concern in the past, might now occur. This is due to the
high power consumption of active loads and the weakening
correlation between electricity prices and demand resulting
from the increased penetration level of intermittent renewable
resources. Such congestions result in voltage violations and/or
thermal overloading, possibly damaging devices such as dis-
tribution transformers and feeders [1]. Thermal overloading
of distribution transformers and feeders causes an increase of

O. Gul M Khan is with the Electrical and Computer Engineer-
ing Department, University of Waterloo, Waterloo, ON, Canada (e-mail:
ogulmkhan@uwaterloo.ca).

E. El-Saadany is with the EECS Department at the Advanced Power and
Energy Center in Khalifa University of Science and Technology, Abu Dhabi,
UAE (e-mail: ehab.elsadaany @uwaterloo.ca).

A. Youssef is with the Concordia Institute for Information
Systems Engineering, Concordia University, Montreal, Canada (email:
youssef@ciise.concordia.ca)

M. Shaaban is with the Electrical Engineering Department, American
University of Sharjah, Sharjah, U.A.E (e-mail: mshaaban@aus.edu)

Manuscript received October 21, 2020; revised December 25, 2020 and
February 04, 2021; accepted February 28, 2021.

operating temperature affecting transformers aging (e.g., see
IEEE C57.91-201 [2] and IEC 60076-7 [3]).

For the Distribution Network operator (DNO), congestion
threatens its ability to provide reliable supply to the end
users. Conventionally, to avoid congestion, network assets
are reinforced, incurring a huge cost. To avoid or postpone
such costs, the DNO would generally employ its cost-free
methods, such as reconfiguration and reactive power control,
to manage congestion in the network. If these methods did not
succeed in eliminating the congestion, market methods using
Demand Side Management (DSM) would be employed. DSM
utilizes price-based or incentive-based methods to motivate
consumers to shift their flexible consumption to off-peak time
[4]. Price-based congestion management methods include Dy-
namic Tariff (DT) [5] and Distributed Dynamic Tariff (DDT)
[4]. Incentive-based methods include subsidy-based methods
[6] and conditional re-profiling products [7].

Market-based congestion management methods involve con-
sumers, aggregators, and the DNO, as shown in Figure 1.
Consumers are the owners of flexible and non-flexible loads
and they hire aggregators to represent their needs in the
electricity market. Aggregators are responsible for optimally
scheduling their customers’ flexible demand and representing
them in the electricity market. The DNO is responsible for
ensuring smooth power flow between suppliers and consumers
and making sure that there is no congestion in the network.

All DSM-based congestion management methods rely on
the communication between the DNO, aggregators, and con-
sumers’ meters in exchanging customers’ preferences, price
tariffs, and load schedules to relieve congestion [8], as il-
lustrated in Figure 1. This reliance on the two-way flow of
information between the different involved entities makes them
prone to cyber attacks. Any theft or alteration of data could
violate consumer privacy, cause economical damage, or even
electrical outages. Hence, studying the vulnerability of indirect
congestion management methods to cyber-attacks is vital.

The success of market-based congestion management meth-
ods relies on its cyber-security which needs to satisfy the
CIA triad. The CIA triad symbolizes the Confidentiality,
Integrity, and Availability of the cyber network which can
pose significant threats to the grid if security vulnerabilities are
not addressed. Confidentiality is needed to ensure authorized
access to sensitive information, such as consumers’ electricity
demand. Integrity refers to the assurance that information, such
as price signals sent to consumers meters, is authentic and not
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Fig. 1. Representation of DSM-based congestion management methods

corrupted. Finally, availability is the guarantee that authorized
users have access to the required services at all times. For
example, aggregators should be able to communicate their load
demand readily with the network operator [9].

Attacks on consumers’ meters and their communication
links have been studied in the literature, a summary of which
is illustrated in Table I. In [10] and [11], the impact of False
Data Injection (FDI) attacks on price and load signals in
a distribution system was studied. Denial of Service (DoS)
and FDI attacks were adopted in [12] to compromise Home
Energy Management Systems or its communication link with
the DNO. Load Altering Attacks (LAA) were studied in [13]
and [14]. Static LAA resulted in causing damage to network
equipment as a result of circuit overflow [13] while closed-
loop dynamic LAA had an impact on power system stability
[14]. Load Redistribution Attacks (LRDA) were simulated in
[15]. Different scenarios were simulated, representing various
levels of network information possessed by an attacker.

Attacking the DNO is not easy since its control center is
highly secure due to its significant role in the grid. Attacking
aggregators or their communication link with the DNO is
another aspect that can be utilized by a cyber attacker to affect
congestion. The unique position of aggregators in the network,
in terms of its connection to its DER equipment and the DNO,
has been established in [16]. Hence, the importance of study-
ing aggregators’ cyber security as their actions, if attacked,

TABLE I
LITERATURE REVIEW OF CYBER SECURITY OF CONSUMERS METERS

)
Aggregator A

[ Ref.] Attack [ Compromises | Impact
1. Price attack causes change in
EDI Price signal demand resulting in price change.
[10] and load data 2. Load attack results in wrong
demand causing price change.
. . Change in demand causing
Price received . o .. .
FDI instability, fluctuation in real-time
[11] by consumers .. Lo
pricing or voltage violations.
1. DoS Price signal 1. DoS causes load scheduling to
[12] 2. FDI and load data temporarily become ineffective.
2. FDI results in random load
schedules not reflecting market.
LAA Internet Circuit overflow causing damage
[13] connected loads to the utility and/or equipment.
Dynamic Vulnerable o
[14] LAA loads Power system stability.
Circuit overflow causing damage
[15] LRDA Smart Meters to the utility and/or equipment

could have a considerable risk on the ecurity of the grid. A
state-sponsored adversary can cause economic disruptions in
the country as a result of hiding existing congestions which
could result in load shedding. Attackers could also be hired
by competitors to cause high tariffs to be imposed on the
consumers due to unreal congestions encouraging them to
change their utility provider. However, to date, the impact
of cyber-attacking aggregators on market-based congestion
management techniques has not been studied.

Motivated by the research gap, the effect of compromising
aggregators and their communication link to the DNO on
market-based congestion management techniques is studied
in this paper. Load Altering Attacks (LAA) are modeled in
the day-ahead market to modify cyber attacked aggregators’
load profiles to cause or hide congestion in the distribution
network. LAAs, which is a type of False Data Injection
Attack (FDI), has been previously studied in the literature
[14] - [13]. However, the impact of LAAs on the power
system level was studied aiming to alter a certain volume of
flexible loads in the network to cause frequency instability and
circuit overflow in power systems. Hence, consumers smart
meters and the DSM-signals received were altered. However,
in this paper, the attack is assumed to target the day-ahead
market making the network operator not capable of using bad-
data detection techniques to detect the attack. The impact of
such a cyber attack in terms of congestion and congestion
tariffs is evaluated. To defend the electrical network against
such cyber attacks, a mitigation scheme is then developed.
Until recently, many studies have come up with mitigation
schemes to defend against FDI attacks in the smart grid. In
[17], a graphical approach was proposed to detect the most
critical meters in the network and mitigate against FDI attacks.
Optimization techniques were utilized in [18] and [19] to
develop its optimal mitigation scheme determining the least
number of sensor measurements that need to be protected.
Game theory has also been used to study data injection attacks
involving multiple adversaries [20]. A Stackelberg Game was
used to model the strategic interactions between the defender
and attackers aiming to identify the main network components
that need to be secured. It should be noted that FDI attacks are
dependent on an adversary’s knowledge of the system. Hence,
proactive methods attempting to change system characteristics,
either via changing topology or impedance perturbation, have
been developed in the literature. This adds an extra layer of
protection against FDI. In [21], strategic switching of network
topology has been proposed as a mechanism to mitigate
FDI attacks. In [22], an algorithm is modeled to determine
branches that need to be perturbed using Distributed Flexible
AC Transmission System (D-FACTS) devices to minimize the
possibility of stealthy FDI attacks. Feasibility and limitations
of proactive FDI detection scheme through branch impedance
perturbation was studied in [23]. However, existing literature
have not determined the critical aggregators in the distribution
network that needs to be secured against cyber attacks. In this
paper, Mixed Integer Non-Linear Programming (MINLP) is
used to model the mitigation scheme for single- and multiple-
point load altering attacks. The optimization problem is solved
using the Generalized Benders Decomposition (GBD) ap-
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proach to determine the critical aggregators in the network. A. Distributed Dynamic Tariff (DDT)

These aggregators are secured by the network operator to make
the grid more resilient to such cyber attacks.

The main contribution of this paper is, hence, to identify
cyber vulnerabilities of DSM-based congestion management
methods as a result of a LAA on aggregators and to develop
a mitigation scheme against such attacks. This contribution is
achieved by fulfilling the following objectives:

e Distributed and centralized market-based congestion
management techniques are studied. Vulnerability of Dis-
tributed Dynamic Tariff (DDT) congestion management
methods to cyber attacks is then assessed.

o Develop an attack model that achieves various adver-
sary objectives in compromising aggregators. The at-
tack model is formulated from the attacker’s perspective
minimizing the number of aggregators needed to be
compromised in the network.

o Develop a mitigation scheme to determine the critical
aggregators in the network to secure. The mitigation
scheme is prepared from the network operator’s perspec-
tive, assuming the worst case scenario, to secure the
aggregators in the network which if compromised would
result in a stealthy attack. The problem is formulated as
a MINLP and is solved using a decomposition technique.

o Verify the effectiveness of the proposed models by sim-
ulating the IEEE 33 bus network to evaluate a cyber
attack’s impact on congestion and congestion tariffs.

The remainder of the paper is organized as follows: Section II
introduces the DDT congestion management method and the
formulation of the LAA model. The IEEE 33 bus system is il-
lustrated as a case study in section III to demonstrate the effect
of attacks on the network. In section IV, a mitigation scheme
is proposed to determine the critical aggregators that need to
be secured in the network, followed by the conclusions.

II. MODELING OF A LOAD ALTERING CYBER ATTACK

To study the vulnerability of congestion management meth-
ods to cyber attacks, the Distributed Dynamic Tariff (DDT)
technique, proposed in [4], is initially simulated. The DDT
method is adopted in this paper due to its distributed nature
compared to the centralized dynamic tariff method [24] in
which the network operator is responsible for forecasting the
electricity prices and the flexible load in the network. However,
if the DNO’s forecast is inaccurate, then the congestion tariff
imposed would not be an effective solution for congestion
mitigation. On the other hand, in the DDT method, aggregators
are responsible for providing their load forecast to the network
operator, and hence, the DNO is not solely responsible for
determining the congestion tariff. This distributed calculation
of the congestion tariff increases the certainty and transparency
of the model. In this section, the DDT technique is briefly
explained before describing the attack model adopted. LAA
are then modeled to determine the aggregators that require
minimum scaling of their load portfolio to compromise to
achieve the objective of the cyber attacker.

In the DDT method [4], aggregators utilize quadratic opti-
mization to determine their customers’ optimal load schedule.
This load schedule should meet the consumers preferences
while minimizing their consumption cost. Hence, the resulting
aggregators’ optimal schedules can be represented as,

Pt = BE(PYM + P&, Va € N, Vi € Ny,

N (1)
Ve € Nm,Vt € Nr

where P, € RN is the load of bus i of aggregator a at
time t. N,, Ny and N,, are the set of aggregators, buses,
and customers in the distribution network. N is the total set
of time slots considered in the day-ahead market. F is the
customer-to-bus mapping matrix where £ € RN¢*Nm p? nf
and Pg ;f are the non-flexible and flexible loads of customer,
¢, of aggregator a at time ¢, where {P; nf P Sl e RNm,

The optimal load schedule of the aggregators, P}, are
forwarded to the DNO who is responsible for determining the
resulting congestion tariff, referred to as Distributed Dynamic
Tariff (DDT). The DNO determines the total complex power,
S; t, for each bus using both the flexible and non-flexible load
demands of the consumers. DC load flow analysis [4] is then
used to determine the voltage level of each bus and the power
flow in each line. The results obtained are compared with the
network limits to determine the extent to which the branch
thermal limit and the node voltage limits have been violated.
Capacity violation of a branch is represented using marginal
price );, while the violation of voltage limits is represented
using marginal price w;. Consequently, congestion tariff, r;,
is determined for each bus as shown in (2)-(4).

AAD =AM L a(F - FRet) Ve Ne ()

(k+1) (k)
Wiy &~ = Wiy

1 .V
+a(-1+ WRe(zsﬁ’”) + 0 ENT )
0

. Re(ZT :
A = DI 4 Bl ey

where £ is the iteration number, Agﬁﬁl) is the updated marginal
price based on how much the power, F; ;;, flowing at time,
t, has exceeded the branch (7, j) maximum power flow limit,
Froes. w§ﬁ+1) is the updated marginal price, V is the lower
voltage limit, V) is the voltage at node 0, « represents the step
size, Z is the partial nodal impedance matrix, and D represents
the bus to branch mapping matrix. Since the DDT method
imposes tariffs to decrease demand at congestion times, the
marginal prices are required to be non-negative. This iteration
continues between the DNO and the aggregators, who would
re-optimize their load schedule and communicate it back to
the DNO, until | rl(ffl) - rg? | converges to a small value.

B. Attack Model

For the DNO to determine the congestion tariff, consumers
need to submit their flexible load utilization preferences to
their respective aggregators. In turn, the aggregators need to
submit their day-ahead load schedules to the DNO. Hence, the
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communication network of the smart grid forms the basis of in-
formation exchange between the consumers’ smart meters, the
aggregators, and the network operator. As illustrated in Figure
1, Home Area Networks (HAN) are deployed at the lowest
level, within residential and commercial units, to connect the
various flexible and non-flexible loads of the consumers to
the smart meters. The Neighborhood Area Network (NAN) is
utilized to connect the aggregators to their customers’ smart
meters. And finally, Wide Area Networks (WANSs) are utilized
to facilitate communication between the aggregators and the
utility operator. Aggregators, hence, can communicate their
optimal load schedules to the DNO, which in turn, computes
and conveys the congestion tariff to them. Congestion man-
agement methods’ cyber reliance on the DNO’s control center,
the aggregators’ management systems, the consumers’ smart
meters, and the communication infrastructure makes these
points vulnerable to a cyber attack if not secured properly.

In this paper, the vulnerability of indirect congestion man-
agement methods to cyber attacking aggregators or their
communication link with the DNO, affecting the integrity of
aggregators load profiles is studied. The attack model involves
the following assumptions:

o The attacker has knowledge of subnetwork, S, of the
distribution system’s topology [25] [26].

« The attacker is assumed to have been eavesdropping on S
and hence, has knowledge of its historical load data [25].

o The attacker is capable of performing load flow analysis
to predict which aggregator to attack [27] [25].

o All aggregators are assumed to have no incentive to lie.

« All aggregators are equally prone to be attacked.

The main objectives of the attacker for compromising aggre-
gators can be summarized as follows:

« Create fake congestions causing the distribution network
operator to impose high congestion tariffs.

o Alter aggregators’ response to a congestion tariff imposed
resulting in fake congestion.

« Hide congestion from being detected in the day-ahead
market causing unresolved congestion in real-time.

Based on the aforementioned attack assumptions and objec-
tives, the following section explains the modeling of load
altering attacks compromising aggregators in the network.

C. Load Altering Attacks (LAA)

To determine possible congestions and calculate the con-
gestion tariff, the DNO relies on the load profiles, P, (1),
received from the aggregators in the network. In a LAA,
an attacker compromises N, aggregators of the existing N,
aggregators and changes their load profiles, P";, that is sent to
the DNO. The attacker is assumed to have been eavesdropping
on S and has collected enough historical data to determine
when a specific feeder is near congestion. The attacker then
formulates an optimal attack to minimize the number of
aggregators, IN., needed to be compromised by solving the
following mixed integer non-linear problem (MINLP):

min Z AC 5)

a€EN,

A® is a binary variable equal to 1 if aggregator a or it’s
link with the DNO is attacked and O otherwise. Moreover,
assuming a worst-case scenario in which an attacker has
knowledge of S and historical load forecast (e.g. a disgruntled
employee at the utility who has access to such information),
the attacker uses equality constraint (6) to perform power flow
analysis and compute the power flowing in each branch.
Nyus
Pl — PL(L+ AY) = Vi Y V;(Gijeosdiy + Bysind;)
J
Nous
Z_C’Ja - Z'I:a(]. + Ag’) = V; Z Vj(Gijsinéij - BijCOS(SZ'j)
J

(6)
where {Pf':l, ZGa} are the generated real and reactive power
at bus i of aggregator a, {PE,, Q{ja} are the load real and
reactive power, A¢ is the charige in aggregator’s a bus ¢ load
demand due to a cyber attack, V; is the voltage at bus i,
{Gij, B;j} are the conductance and susceptance of the (3, j)
element of the admittance matrix, and §;; is the difference
between voltage angles of bus ¢ and j. Moreover, equality
constraint (7) is used to optimally attack the load profiles of
the buses as follows,

Af = A°X{ Vi € Ng,Ya € N, %)

where X is the attack value for bus ¢. Since DSM-based
congestion management is performed day-ahead, the network
operator cannot use bad data detection and compare the power
flows with a real-time estimate or measurement to know if it’s
false data or not. Instead, to make sure that it does not raise
any alarms, constraints (8) and (9) are used as follows,

—y < X? <~,Vi € Ng,Va € N, ®)
0.95 <V; <1.05,i € Ny 9

where « is the maximum scaling factor of the compromised
aggregators’ load schedule. LAA causes congestion to increase
or decrease compared to reality based on the objective of
the attacker to increase or hide existing congestion. The
formulation of these two attack models is explained next.

1) Creating and/or Increasing Congestion

To cause and/or increase congestion in a feeder connecting
buses z and y in the distribution network, constraint (10) is
imposed to ensure that the power flowing in branch (z,y) is
larger than its maximum power flow limit P}

P> P fori=zand j =y (10)

Moreover, the lower limit of constraint (8) is set to zero to have
only positive scaling factors, X{. This ensures that the attack
is increasing the existing load profile, P;";, of the compromised
aggregator causing or creating congestion in branch (x,y).
Hence, MINLP (11) needs to be solved using peak time
data to obtain the minimum number of N, aggregators to com-
promise and their respective attack vectors, X/, for different

maximum scaling factors, ~y.

(1)
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The binary variable, A and the power flow constraints, causes
the non-convexity of (11). Hence, the results obtained can
represent a local optimal solution. However, a local optimal
solution is sufficient to achieve the objective of the attacker
to create a fake congestion impacting congestion tariffs. The
attacker hence compromises the resulting aggregators, V., and
scales their load profiles, Pgﬁa, using their corresponding attack
values obtained by solving (11). These load profiles are then
received by the DNO who then attempts to relieve the increase
in congestion seen as a result of the cyber attack by imposing
larger congestion tariffs, r; ;.

2) Hiding Congestion

An attacker is also capable of compromising aggregators’
load profiles such that congestion is masked. This would result
in the DNO not to take any corrective actions to resolve
existing congestion. No tariff is imposed to decrease demand
at peak times. Eventually, congestion needs to be dealt with
in real-time otherwise the network assets would be affected.
To perform such an attack, the attacker uses historical data
obtained from eavesdropping to determine the typical time in
which congestion is seen. The attacker determines the optimal
minimum number of aggregators to attack, N, solving the
following,

min Z A

12)

s.t.(6) — (7), and (9) (12a)
.P;ZGI -0 < Pi’j < Piv’njaz (12b)
— 4 < X% <0,¥i€ Ng,Ya €N, (12¢)

Inequality constraint (12b) has been added to obtain the
attack values for the compromised buses such that the power
flowing in the feeder of interest is less than its maximum limit
ensuring that congestion is not detected by the congestion
management program. However, to avoid the optimization
algorithm setting the power flowing in the main branch to
zero, parameter [ is added as a very small number to ensure
the stealthiness of the attack. Moreover, the attack value, X}
is limited to negative values to decrease the compromised
aggregators’ load profiles using (12c).

Solving MINLP (12), the resulting attack vectors, X7,
are used to modify the load profiles of the N. aggregators.
Being a non-convex problem, the results can represent a
local optimum solution. However, a locally optimal solution
suffices to achieve the objective of the attacker to hide existing
congestion affecting the effectiveness of the technique in
relieving congestion in the day-ahead market.

Figure 2 summarizes the process involved in calculating
congestion tariff. It also demonstrates the parallel work of the
attacker in compromising aggregators’ load profiles to achieve
its objective of faking or hiding congestion.

III. CASE STUDY

To simulate the DDT congestion management method, the
IEEE 33 bus system [28], illustrated in Figure 3, is utilized.
Having 32 load buses, the IEEE 33 bus system is represented
by nine aggregators having comparable loads. All the load
buses, except bus 23 and 24, are assumed to be residential,

Aggr a, Attacker determines N
determines P{, (1) and X¢

Aggregator, 3 Wes Attacker scales compromised
a, attacked? aggregator’s P{!; by X{'

No

PED sent to the DNO E.—

DNO determines

+ve X{ -ve X¢
Congestion Existing congestion is
created/increased hidden

I No DDT imposed I
|

—I Higher DDT imposed

Fig. 2. Flowchart of cyber attack on DDT-congestion management method

having both flexible and non-flexible loads. Residential base
load profiles are designed to have a maximum load equivalent
to the default loading of the IEEE 33 test bus system. Table II
represents the base load of the residential buses of the IEEE
33 bus system and the number of houses per bus. On the other
hand, residential flexible loads are represented by one EV and
one HP per house. Having the largest base load, load bus
23 and 24 were utilized as commercial buses consisting of
Fast Charging Direct Current (FCDC) EV charging parking
lots. These buses are represented by aggregators 6 and 7
respectively. Table III illustrates the various parameters needed
for simulating the operation of the HPs and EVs. Data obtained
from Toronto Parking Authority (TPA) [29] representing the
daily hourly arrival and departure times of combustion engine
cars in a commercial area parking lot in Toronto was used
to simulate the availability of EVs in the commercial lots.
In the absence of an EV from the lot, the EV was assumed
to be at home. A subset of the TPA data was utilized such
that the minimum parking duration exceeds the charging time
required. The initial state of charge (SOC) of each EV is
randomized to be uniformly distributed between 20% and 30%
and is assumed that the EV needs to be completely charged
on departure. Day-ahead electricity prices are obtained from
the PJIM market. GAMS [30] was used for executing the
optimizations, and MATLAB was used for determining the
congestion tariff imposed by the DNO to relieve congestion.

A. Choice of maximum scaling factor, y
Scaling factor, v (8), was used to limit the maximum change
in the load portfolio, P/, of the compromised aggregators.

22 3 24

25 26 27 28 29 30 31 32

16 17

Is
s | Aggregator 6
s | Aggregator 7
= Aggregator 8
Aggregator 9

IS
w
——* _|._
N —
-
o
-
o
.
v
.
e 53
——p—

12.66kv 18 19 20 21
Aggregator 1
Aggregator 2
Aggregator 3

e | Aggregator 4

Aggregator 5

Fig. 3. IEEE 33 bus system load buses divided among nine aggregators [28]
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TABLE 11
RESIDENTIAL BUS LOADING
No. of | Load || Bus | No. of | Load || Bus | No. of | Load
Houses | (kW) # | Houses | (kW) || # | Houses | (kW)

25 100 12 16 60 22 23 90
23 90 13 16 60 25 22 90
31 120 14 29 120 || 26 15 60
60 15 15 60 27 15 60
15 60 16 15 60 28 15 60
50 200 17 15 60 29 30 120
51 200 18 23 90 30 50
15 60 19 23 90 31 38 150
15 60 20 23 90 32 53
12 45 21 23 90 33 16 60

N K= N I S R N m:g
—
2

TABLE III
CASE STUDY PARAMETERS
[ Variable [ Value [ Variable [ Value |
COP 22 Residential Areas 1500-2500 sq.ft

Residential Height | 8.2 ft. Temperature Range 18-24°C

EV battery size | 36 kWh || Residential EV power 11 kW
FCDC EV power | 50 kW Initial SOC of EV 0.2-0.3
Power flow limit | 7.91 MW Voltage limits 0.95-1.05 pu

Simulations were carried out in MATLAB R2018a using a
PC with an Intel Core(TM) i7-4790 CPU, 3.6 GHz, and 8
GB RAM to study the effect of v on the convergence time
of the DDT congestion management method. As illustrated in
Table IV, v = 0 represents a system that is not compromised.
Time needed to determine congestion tariff was observed to
increase from 286 seconds, for v = 0, by 168% for v = 1, and
by 573.6% for v = 2. This increase is as a result of requiring
more iterations to shift the flexible demand of consumers to
other times while meeting their preferences. However, the
attacker only needed to compromise one aggregator to achieve
its objective. Larger values of scaling factors, (y > 1), would
result in larger attack values that would increase the chances
of being detected by the DNO. A scaling factor, v, less
than 0.05 was observed to not cause congestion while a
larger than 2 was observed to cause non-convergence of the
congestion management optimization problem. This results in
the congestion not being relieved from the network. To avoid
risking the stealthiness of LAA, the attack implemented should
not cause the loads to largely deviate from their original values
as it will raise alarms. Hence, v of 0.1 and 2 were chosen to
study the impact of a stealthy attack versus an extreme attack
on congestion in the network.

B. Creating and/or Increasing Congestion
Using historical data, the attacker is aware that the main
branch is near congestion at peak time. Utilizing peak time

TABLE IV
EFFECT OF ¥ ON CONVERGENCE TIME

Convergence| % Increase | No. of compromised
v time (sec) in time aggregators
285.843877 - -
0.1 422.279258 47.73% 3
0.5 509.393095 78.21% 1
1 766.977701 168.32% 1
2 1925.429139 573.6% 1

data, (11) is solved, for v = 0.1, to obtain the minimum
number of aggregators, V., to compromise and their respective
attack vectors, X;'. Aggregators 3, 6, and 7 were identified
as optimal aggregators to be compromised with maximum
attack values, X, of 0.0683, 0.0856, and 0.0964 respectively.
However, on changing v to 2, (11) resulted in compromising
only aggregator 7 with an attack value of 1.9981. These
attack values are then utilized to alter the load profiles of
the aggregators by A¢ (7) before being sent to the DNO to
determine the congestion tariff using (2)-(4).

Figure 4 depicts the effect of the LAA on the power flow
in branch (0 — 1) of the IEEE 33 bus system. As observed, in
the absence of an attack, the power flow in the main feeder is
already congested at time 12 as it is peak time and demand for
FCDC charging is high. For v = 0.1, the optimal attack values,
X, determined from solving (11), increases the aggregators
load profiles. Consequently, the power flow in branch (0 — 1)
increases, and the impact of the attack is significantly observed
between times 10 to 12 since the commercial bus is most
active at that time. As observed in Figure 4, congestion at
t = 12 is observed to increase, and a fake congestion is
created at t = 10 and 11 though the main feeder, in reality, is
not congested. This fake congestion would then be attempted
to be redistributed to other times using the congestion tariff
imposed. The aggregators would attempt to encourage the
consumers to shift their demand to other times. However, when
v = 2, altering the load profile of aggregator 7 by 1.9981 (the
attack value obtained solving (11)), resulted in a fake increase
in congestion at times 9 to 12. This unreal congestion has to be
dealt with by the DNO in the day-ahead market. Moreover, at
t = 12, the existing congestion increased drastically causing
the network operator to impose a much higher tariff if the
attack goes undetected. However, since the DNO would have
historical data and would perform short term load forecast, the
chances of such an attack being detected are high.

Figure 5 demonstrates the effect of the LAA on congestion
tariff, r; ¢, imposed by the DNO. In the absence of an attack,
the imposed tariff increases the price of electricity at ¢ = 12 by
16.6% to clear the congestion. Also, no tariff was imposed at
t = 10 and 11 since there was no congestion. However, a LAA
results in a higher DDT at congestion times to alleviate the

increased levels of feeder overload. A LAA, with v = 0.2,
11 T T

N0 DDT - No attack

NG DDT - With attack (+=0.2)
[ INo DDT - With attack (y=2)
= Power Limit

10

A III
-

Power Flow (MW)

» (3, o ~

|
|
|
|
[ ]

[ ]

[ ]

w
T

0 5 10 15 20 25
Time (hrs)

Fig. 4. Impact of a LAA on the loading of line 0-1



IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 14, NO. 8, AUGUST 2015 7

=@=No DDT

03 F s \With DDT - No attack

s With DDT - With attack (y=0.2)
With DDT - With attack (y=2)

0.25

02r

Price ($/kW)

0.15 -

O
1]
O
041 f
e 4 \ S
9 <

- -~
~ _~ 2 ~is

Bugs® -
< ~<

. . . 5]
10 15 20 25
Time (hrs)

o

0
Fig. 5. Impact of a positive attack value LAA on the electricity price

increases the imposed tariff by an unnecessary 14.4% at
t = 12. Customers, hence, have to pay a higher DDT of
0.0283/kW instead of 0.0153/kWW. Also, as a result of the
unreal congestion being created at ¢ = 10 and 11, a needless
tariff is imposed by the DNO to solve the fake congestion.
Customers who cannot change their demand from those times
now have to pay 8.82% and 10% more at t = 10 and 11
respectively. This corresponds to approximately an increase
of 0.018/kW. Customers are, otherwise, inconvenienced in
changing their demands to other times which in reality is
unnecessary. On the other hand, for a LAA with a v = 2,
the imposed DDT at ¢t = 12, increases the price by a
needless 237%. Customers, hence, have to pay a higher DDT
of 0.3053$/kW instead of 0.1063$/kW. Also, as a result of
fake congestion being created at t = 10 and 11, an unnecessary
tariff is imposed by the network operator. Customers now have
to pay approximately 170% more at ¢ = 10 and 11, which
corresponds to an increase of approximately 0.195$/kW.
Moreover, at t = 9, customers should now pay 142% more for
their demand which corresponds to an increase of 0.1818/kW.

C. Hiding Congestion

Using historical data, the attacker is assumed to be aware
that the main branch is congested at peak time corresponding
to t = 12. Hence, using peak time data, MINLP (12) is solved
to obtain the minimum number of aggregators to compromise
and their respective attack vectors, X;'. Note that in this case
scenario, negative -y values are adopted to ensure that the
compromised aggregators’ load is lower than reality causing
congestion to be masked. In our simulation, v = 0.1 is chosen
to avoid large differences from the original load profile and
not raise any alarms, ensuring the stealthiness of the attack.

Solving (12) for v = 0.1 results in identifying aggregators
3, 6, 7, and 9 that an attacker should compromise to hide
congestion. The maximum attack values, X, for the four
aggregators were determined as —0.0876, —0.0983, —0.0999,
and —0.0820 for aggregators 3, 6, 7, and 9 respectively. These
attack values are then utilized by the attacker to compromise
the aggregators’ load profiles by A¢ (7) for a = 3,6,7, and
9 to mask the existing congestion. All aggregators in the
network send their load profiles to the DNO who determines
the congestion tariff using (2)-(4). However, as a consequence

of the attack which decreased the compromised aggregators
load profiles, congestion of branch (0 — 1) of the IEEE 33
bus system at ¢ = 12 was successfully masked. The network
operator, seeing no congestion, does not impose any tariff.
In reality, a DDT of 16.6% of the electricity price should
have been imposed by the DNO to relieve the congestion that
was masked. Moreover, branch 0 — 1 was near congestion at
t = 10— 11. But, as a result of the LAA, the line is observed
to be less congested than reality. This will cause a problem in
real-time as customers have not been motivated to shift their
demand to off-peak times. The DNO has to then try to solve
the congestion otherwise network assets will get affected.

D. Computational Scalability

To test the effect of LAA on congestion management in
terms of scalability, the IEEE 70 bus system [31] was simu-
lated. The IEEE 70 bus system is an 11-kV radial distribution
system having 70 nodes and 79 branches. Similar to the
case study adopted, the system is represented using nine
aggregators responsible for comparable loads. All the load
buses except bus 57 are assumed to be residential, having both
flexible and non-flexible loads. Residential non-flexible base
load profiles are designed to have a maximum load equivalent
to the IEEE 70 bus system default loading. Residential flexible
loads are represented by one EV and one HP per house. Having
the largest base load, bus 57 is utilized as a commercial bus
consisting of FCDC EV charging parking lot with a maximum
capacity of 150 EVs. Table V illustrates the scalability study of
an attacker determining the optimal aggregators to attack in the
IEEE 70 bus system versus that of the 33 bus system. The case
studies were implemented on a PC with an Intel Core(TM)
17-4790 CPU, 3.6 GHz, and 8 GB RAM. As the number
of variables and constraints needed to be solved increased,
the time required by the attacker to determine the critical
aggregators in the network increased. However, since this
computation is executed offline in the day-ahead market, this
increase in time would not cause a problem to the attacker.

E. Discussion

Congestion management techniques dependence on the
communication infrastructure makes them vulnerable to cy-
ber attacks. A LAA can create or hide congestion. In the
event of a cyber attack compromising aggregators causing
fake congestion, congestion tariffs are imposed on consumers
increasing their expenditure on purchasing electricity. If the
cyber attack continues without it being detected, consumers
would be motivated to change their aggregator representative
to decrease their cost. On the other hand, a LAA that results
in not managing congestion in the day-ahead market, would
force the DNO to use active power control in the real-time

TABLE V
COMPUTATIONAL SCALABILITY OF LAA

[ Description [ IEEE 33 [ IEEE 70 |
No. of variables in (11) 4647 19623
No. of constraints in (11) 4582 19486

Execution time to determine aggregators to attack | 2.936 sec | 4.581 sec
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market. This results in shedding unnecessary loads to prevent
activation of protection devices, following National Electric
Code article 240 [32]. Load is disconnected from overloaded
buses at times when electricity demand is maximum, resulting
in dissatisfied customers [33]. Other attacks, such as denial-
of-service attacks and load replay attacks can compromise
the performance of such congestion management techniques.
However, due to limited space, vulnerability of congestion
management methods was demonstrated using only LAA.

IV. LAA MITIGATION SCHEME

In the previous sections, load altering attacks impacting
congestion management methods was introduced, modeled,
and simulated. In this section, a mitigation scheme, executed
by the DNO, is proposed to determine the impact that different
adversaries with varying intrusion capabilities can have on
congestion. An attack that can compromise only one aggrega-
tor would require a higher attack value to achieve its objective
risking the stealthiness of the attack. However, to compromise
multiple aggregators using low attack values, strong cyber
intrusion capabilities, as well as a larger effort, is needed to
avoid being detected. The LAA mitigation scheme proposed
identifies the critical aggregators in the network that would be
the first choice for an adversary to attack. The term “critical
aggregator” refers to aggregators that can be compromised
using minimal attack values to achieve the objective of a cyber
attacker while evading detection. A mixed-integer nonlinear
problem (MINLP) is proposed to determine the attack-prone
aggregators in the network. Generalized Benders Decompo-
sition (GBD) algorithm is then utilized to solve the problem.
The DNO would then increase the security enforcement of the
resulting critical aggregators and their communication links
preventing them from being compromised.

A. Optimization Problem Formulation

MINLP is used to determine the critical aggregators that
would be the first point of attack by an adversary aiming to
minimize attack values. Besides the constraints considered in
(11), equality constraint (13) is enforced to ensure that the
total number of compromised aggregators is equal to N..

ZA“:NC

a€EN,

13)

Hence, to determine the critical aggregators which would be
the first point of attack by an attacker that aims to create and/or
increase congestion, the following MINLP needs to be solved:

min 3 3 0
aEN, iENg

s.t. P > P fori=xzand j =y

and (6) — (9) and (13)

where the lower limit of v (8) is set to 0 to ensure the increase
in the load of the compromised aggregator. On the other hand,
to hide existing congestion, MINLP (14) is solved with the
upper limit of 7 (8) set to 0. This is done to ensure the decrease
in the profile, P}, of the compromised aggregator. Moreover,
the power flow inequality constraint is changed to ensure that

(14)

the power flow in the branch being attacked is lesser than
its maximum limit, P{’;ﬁ“'x. Figure 6 summarizes MINLP (14)
used to determine the critical aggregators in the network and
their corresponding attack values.

MINLP (14) is a non-linear and non-convex problem due
to: (i) non-linearity of equality constraint (7), (ii) non-linearity
and non-convexity of power flow equations (6), and (iii) non-
convexity caused by the binary variable, A%. This causes the
determination of a global solution for the optimization problem
difficult. These problems were tackled to succeed in obtaining
a global solution for the mitigation scheme proposed.

B. Linearization of the product of two variables

The equality constraint (7) is nonlinear due to it being the
product of a binary variable, A%, and a continuous bounded
variable, X. To linearize (7), the following constraints were
added to our MINLP formulation [34],

XP—(1-AYXF<A? < X!~ (1-AYXE  (15)
APXe < A% < A°XT (16)

where X¢ and X¢ represents the upper and lower limits of the
attack value, X*. Hence, if the binary variable A* = 1, then
equation (15) makes A¢ = X¢, and (16) enforces that A¢
is bounded within its limits. However, if the binary variable
A® = 0, then equation (16) makes A} = 0, and (15) enforces
the limits on X{. Thus, A = X A®. It should be noted that,
given v is a constant, for mitigating an attack that aims to
create congestion, X represents v while X¢ = 0. On the other
hand, for mitigating an attack that aims to hide an existing
congestion, Xil‘l = 0, while X¢ represents negative 7.

C. Power Flow Equations Relaxation

Researchers have proposed numerous relaxation and ap-
proximation methods to convexify power flow equations. Con-
vex relaxations increase the feasible space to include the non-
convex feasible space, providing a lower bound solution to the
non-convex problem (for a minimization) [35]. Moreover, con-
vex relaxations can be exact for certain optimization problems
making their solution globally optimal. However, the feasible
region of power flow approximations does not enclose the
feasible space of the non-convex problem. Hence, the global
optimality of an approximated power flow problem solution
cannot be guaranteed [36]. Semidefinite Programming (SDP)
Relaxation and Second-Order Conic Programming (SOCP)
Relaxations are the main methods utilized in the literature.
SOCP was utilized in this paper to convexify the power flow
equations due to the limited guarantee of the exactness of SDP

Branch thermal
limit: Pimj‘"‘

Max. attack
value: y

Historical loads,
P{,, at peak time

No. of aggregators
to compromise: N

‘ Mixed Integer Non-Linear Problem (14)

Aggregators to Attack value:
compromise: A® X7

Fig. 6. High level flowchart of inputs and outputs of mitigation scheme
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to only a certain class of problems with certain assumptions.
Moreover, SOCP has been demonstrated in the literature to
have a computational advantage over SDP [37].

SOCP relaxation of the power flow equations involves the
introduction of new variables representing the product of
voltages. Given voltage at bus ¢ is represented in rectangular
coordinates as V; = Vy; + jVy;, Vi € Ng, the squared voltage
magnitude is represented by c;;. New variables ¢;; and s;;
are introduced to represent the real and imaginary parts of
the product of voltages at bus ¢ and its conjugate at bus j
respectively, V{i,j} € Ny. Using these new variables, the
power flow equations (6) are changed as,

Npus

P — Pl =G + Z (CijGi,j - SijBi,j)
Jj#i

Npus (17)

QY —QF = —ciBii+ Y (— cijBij — SijGi,j)

i
The following constraints need to be added to the MINLP,

cij = ¢ji and s;; = —s;5,V{i,j} € B (18)
ci? + 535 = cicjy, Vi, j} € B (19)

where B is the set of lines in the sub-network. By changing
the equality constraint to inequality as illustrated in (20), the
power flow equations are a form of SOCP and are now convex.

cij® + si° < ciicyy,{i, j} € B (20)

Hence, replacing (6) with (17-18) and inequality constraint
(20) results in MINLP (21) that needs to be solved and checked
for exactness. If the solution for (21) satisfies (19) then the
solution is global.

min Z ZXZ“

a€EN, tENy
s.t. (9), (13), (15-16), (17-18), and (20)

21

D. Using Generalized Bender Decomposition (GBD)

To solve the MINLP (21), GBD [38] was utilized. The basic
idea in GBD is dividing the MINLP into two parts: the primal
and the master problem. The primal problem involves fixing
the y binary variables such that the problem is now only in the
x-space. y represents A® which is an array of IV, binary vari-
ables. x represents the n continuous variables in our optimiza-
tion problem. Hence, = = {P% QY P ;, A% X2, ¢ij, 8}
The MINLP is reduced now to a nonlinear problem that can
be solved using any of the commercial solvers to determine the
x continuous variables. The solution obtained from the primal
problem represents the upper bound solution for MINLP (21).
The master problem then utilizes the obtained Lagrange mul-
tipliers and the = variables solution from the primal problem
to change the problem to a MIP determining y. The solution
for the master problem would then represent the lower bound
of the global solution. The process is repeated between the
primal and the master problem until the sequences converge.
Figure 7 illustrates the steps involved in executing the GBD
algorithm to solve the optimization problem.

Initialize UB=° and y_"

Solve primal problem
to obtain z;,

[« ial Cut

Solve master problem
to obtain 6

2 -i\gilm fes sToP

Generate Feasibility Cut Generate Optimality Cut
| | = ]

Let K=K+1 and N
update yK+1

Fig. 7. Generalized Bender Decomposition Flowchart

E. Case Study Results

The proposed mitigation scheme was tested on the IEEE
33 case study which was assumed to be compromised using
LAAs. For identifying the most critical aggregator in the
network, N, (13) was set to 1. GBD resulted in identifying
aggregator 7 as the optimal aggregator to attack with a minimal
attack value, X, of 0.1762. Thus, to ensure a stealthy attack,
an adversary’s first choice of attack to cause congestion
during peak time is to attack aggregator 7. This is a realistic
choice since commercial bus 7 is at peak load at that time,
having an FCDC parking lot, compared to the other buses.
Hence, the security of aggregator 7 needs to be reinforced.
For a multi-point attack, where N, (13) was set to 2, GBD
resulted in identifying aggregators 6 and 7 as the optimal
choice for being compromised with a maximum attack value,
X7, of 0.095. On the other hand, for a multi-point attack
where N, = 3, aggregators 3, 6, and 7 were identified as
critical aggregators that would require the minimum amount
of load scaling of 0.054 to achieve a stealthy attack. All the
solutions obtained were observed to be exact on testing using
the equality constraint (19). Hence, security reinforcement of
aggregators 3, 6, and 7 would mitigate a LAA that aims to
create congestion in the network.

For an adversary that aims to hide congestion, the GBD
algorithm was executed on MINLP (21) with negative . Also,
the power flow in the branch is ensured to be lesser than its
maximum limit. For identifying the most critical aggregator
in the network, N, (13) was varied between 1 to 3. The
optimization problem resulted in identifying aggregator 7 as
the critical aggregator that needs to be secured in the event of a
single point attack. On the other hand, for a multi-point attack,
the optimization problem resulted in identifying aggregators 3,
6, and 7 as the three most critical aggregators in the network.
These aggregators are capable of achieving the objective of the
cyber attackers with an attack value, X, as low as —0.17.
All the solutions obtained were observed to be also exact
on testing using the equality constraint (19). Hence, security
reinforcement of aggregators 3, 6, and 7 would mitigate a load
altering cyber attack that aims to create congestion, increase
existing congestion, or hide congestion in the network.
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FE. Computational Scalability

To test the scalability of the proposed mitigation scheme,
the performance of the algorithm was tested on the IEEE 70
bus system [31]. As illustrated in Table VI, using GBD to
determine the critical aggregator in the network that needs to
be secured, the number of variables in the master problem
depends on the number of aggregators. In the current case
scenario, 9 aggregators were used to represent both networks.
Also, the number of variables and constraints in the primal
problem of the IEEE 70 system is nearly double that of the
IEEE 33 bus system. This, however, did not have a large effect
on the time required to determine the critical aggregators.

G. Discussion

To decrease the attack value, X, required to create or hide
congestion while ensuring its stealthiness, a multi-point attack
is more effective than a single point attack. In a multi-point
attack, the attacker is capable of distributing the change in load
needed to achieve its objective to more aggregators. However,
as the number of aggregators compromised increases, the
complexity of performing the attack without being detected
also increases. Hence, N, was restricted to only determining
the first three critical aggregators. Moreover, for a single point
attack, as the security of the first critical aggregator was rein-
forced, X required to compromise the second most critical
aggregator increases risking the stealthiness of the attack.
Aggregators 3, 6, and 7 were the adversary’s first choices
of attack. Hence, their security needs to be reinforced to
prevent LAA. Compromising other aggregators would require
the attacker to increase X' to larger values or increase the
aggregators compromised risking the stealthiness of the attack.
To simulate this scenario, a constraint was added to MINLP
(21) preventing aggregators 3, 6 and 7 from being identified
as critical. Instead, simulating a single-point attack, resulted in
identifying aggregator 4 as the next critical aggregator with an
attack value of 0.659. However, to compromise aggregator 7,
an attack value of 0.1762 was needed to achieve the objective
of the attacker. This increase in attack value by more than
200% would affect the stealthiness of the attack. For a multi-
point attack, aggregators 2, 3 and 4 were identified as the
next set of critical aggregators with a maximum attack value
of 0.09. Hence, the attack value increased by 66.67% which
increases the chance of it being detected by the DNO. This
mitigation scheme needs to be executed by the DNO whenever
a new aggregator is introduced in the network, or when any
of the aggregators have a major change in their loads (for
example installation of EV charging parking lots).

TABLE VI
COMPUTATIONAL SCALABILITY OF MITIGATION SCHEME

[ Description [ TEEE 33 [ IEEE 70 |

No. of variables to solve primal subproblem 398 818

No. of constraints to the primal subproblem 458 926

No. of variables to solve master problem to 9 9
Execution time 6.411 sec | 6.679 sec

V. CONCLUSION

The reliance of market-based congestion management meth-
ods on the communication layer makes them vulnerable to
cyber attacks, as investigated in this paper. The impact of
Load Altering Attacks (LAA) on such congestion management
techniques, as a result of attackers utilizing cyber vulnerabili-
ties, were studied. Two optimization problems were developed
to determine the minimum number of aggregators needed to
be attacked to create or hide congestion in the distribution
network. IEEE 33 bus system was used as a case study
to evaluate the impact of LAAs on network congestion and
electricity price. Mixed Integer Non-Linear Programming was
used to determine the aggregators to compromise to achieve
a cyber attacker’s objective. A stealthy attack that creates
and/or increases congestion, caused the DNO to impose a
congestion tariff higher by 14.4% to motivate consumers to
reduce their demand at congestion times. This tariff results
in larger electricity bills which eventually would be paid
by unhappy consumers. On the other hand, compromising
aggregators to hide congestion caused the DNO to not impose
any congestion tariff. This results in the network operator
having to deal with the congestion in real-time.

Cyber security of various entities involved in indirect con-
gestion management techniques is vital for congestion relief.
A mitigation scheme was developed to determine the critical
aggregators in the network that requires minimal attack values
to either fake or hide congestion. Security for these critical
aggregators needs to be reinforced to mitigate stealthy LAAs
in the day-ahead market. Future work aims to study the
effect of other attacks on DSM-based congestion management
methods and developing one mitigation scheme for all.
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