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Abstract—Unlike the existing research that focuses on detecting
electricity theft cyber-attacks in the consumption domain, this
paper investigates electricity thefts at the distributed generation
(DG) domain. In this attack, malicious customers hack into
the smart meters monitoring their renewable-based DG units
and manipulate their readings to claim higher supplied energy
to the grid and hence falsely overcharge the utility company.
Deep machine learning is investigated to detect such a malicious
behavior. We aim to answer three main questions in this paper:
a) What are the cyber-attack functions that can be applied by
malicious customers to the generation data in order to falsely
overcharge the utility company? b) What sources of data can
be used in order to detect these cyber-attacks by the utility
company? c¢) Which deep machine learning-model should be
used in order to detect these cyber-attacks? Our investigation
revealed that integrating various data from the DG smart meters,
meteorological reports, and SCADA metering points in the
training of a deep convolutional-recurrent neural network offers
the highest detection rate (99.3%) and lowest false alarm (0.22%).

Index Terms—Distributed generation, electricity theft, deep
machine learning, hyper-parameter optimization.

I. INTRODUCTION

Electricity theft represents a pressing problem that has
brought enormous financial losses to electric utility companies
worldwide. In the United States alone, $6 billion worth of
electricity is stolen annually [1]. Traditionally, electricity theft
is committed in the consumption domain via physical attacks
that includes line tapping or meter tampering.

The smart grid paradigm opens the door to new forms of
electricity theft attacks [2], [3]. First, electricity theft can be
committed in a cyber manner. With the advanced metering in-
frastructure (AMI), smart meters are installed at the customers’
premises and regularly report the customers’ consumption for
monitoring and billing purposes. In this context, malicious
customers can launch cyber-attacks on the smart meters to
manipulate the readings in a way that reduces their electricity
bill [1]. Second, the smart grid paradigm enables customers
to install renewable-based distributed generation (DG) units
at their premises to generate energy and sell it back to the
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grid operator and hence make a profit. This includes photo-
voltaic (PV) solar cells and wind turbines. In this context,
two approaches are adopted when renewable DG units are
integrated in the power grid, namely, the net metering system
and the feed-in tariffs (FITs) policy. In the net metering
system, the excess generation from the DG can be stored
as future credit for customers. On the other hand, in the
FIT policy, which is referred to as clean energy cashback,
customers sell all their generated energy to the grid and get
paid in exchange. The incentives offered by the FIT programs
are more effective compared with net metering for promoting
renewable energy. As such, this program is adopted in several
countries worldwide including UK, Canada, Japan, China,
Australia, etc. [4]. Hence, FIT requires two meters to be
installed in the customer premises, one meter is a selling
meter that monitors the energy generated from the DG unit,
which is directly injected (sold) to the grid, and the other
meter is a buying meter that monitors the consumption. Thus,
consumption and generation can be charged independently. In
this two-metering system, malicious customers can manipulate
the integrity of the reported energy generation data to claim
higher supplied energy to the grid and hence falsely overcharge
the electric utility company. Such a malicious act is possible
due to the weak authentication firmware that is installed in the
majority of smart meters deployed worldwide. In specific, a
malicious customer gains entry to the firmware via the ANSI
optical port of the smart meter using software tools such
as Termineter [5] - [7]. While several research works have
investigated electricity theft cyber-attacks at the consumption
domain, such a research problem is not well investigated in
the DG domain and requires a better attention.

Limited research works in literature investigate electricity
theft detection in the generation domain [6], [8], while various
research works focus on detecting electricity thefts in the con-
sumption domain [1], [9] - [18]. Among existing techniques,
machine learning-based methods offer promising detection
performance [1], [11] - [18]. Adopting a data-driven approach
to detect such malicious attacks in the generation domain is
highly motivated as the utility companies are only aware of
the DG unit capacity and not necessarily the panel/turbine
type and its relevant characteristics [20]. However, it should be
highlighted that detecting electricity theft in the DG domain
differs from detecting it in the consumption domain as the
cyber-attack functions applied at the consumption domain aim
to reduce the electricity bill of the malicious customers. On
the other hand, the cyber-attack functions applied at the DG
units aim to claim a higher supplied energy to the grid.
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Unfortunately, the existing research work on electricity theft
in DG units either do not present such cyber-attack functions
[8] or assume that the attacker is aware of the detection
mechanism in place to launch its attacks [6]. Hence, novel
cyber-attack functions that do not assume the knowledge of
the detection mechanism need to be introduced in order to
develop a malicious dataset that mimics the theft behavior
at the DG’s side. Furthermore, the problem in hand offers
rich data sources that can be used in order to detect the
theft behavior. Various data sources can be used to detect
electricity theft at renewable-based DGs including the en-
ergy generation profile, meteorological data, and the readings
from the supervisory control and data acquisition (SCADA)
metering points that monitor various electrical parameters in
distribution systems. Further investigations are required to
assess the performance improvement in detecting electricity
theft in the generation domain when all such data sources are
integrated since this is not well studied in existing research,
e.g., [6] and [8]. Finally, while time-series-based techniques
are adopted for electricity theft detection in the consumption
and generation domains, these are usually presented in the
context of developing anomaly detectors, e.g., based on least
squares with moving time-windows [8] or auto-regressive
integrated moving average (ARIMA) [6] models, that are
trained only on the benign dataset. On the other hand, when
developing classifiers that are trained on both benign and
malicious samples to detect electricity theft in the consumption
domain, support-vector-machine (SVM) and other shallow
classifiers are usually adopted, which does not account for the
time series nature of the data. Hence, further investigations
are required to develop deep learning-based classifiers that
capture the complex patterns and temporal correlation within
the generation profile, meteorological data, and SCADA meter
readings to yield better detection performance for electricity
theft in the generation domain.

In this paper, we aim to answer three main questions
relevant to electricity theft detection in renewable-based DG
units, namely, a) What are the cyber-attack functions that can
be applied to the generation data in order to falsely overcharge
the electric utility company? b) What sources of data can
be used in order to detect these cyber-attacks by the utility
company? c¢) Which deep machine learning-model should be
used in order to detect these cyber-attacks? To address these
questions, this paper presents the following contributions:

o We propose a set of cyber-attack functions that manipu-
late the benign data of the DGs’ smart meters in a manner
that mimics electricity theft by malicious customers. We
focus our attention in this paper on solar energy-based
DG units. The extension of the cyber-attack functions
and the rest of the analysis to consider other renewable
energy sources, €.g., wind energy, is straight forward.

o We investigate the adoption of various data sources to
detect electricity theft cyber-attacks in the solar panels.
These data sources include in addition to the DG’s smart
meter data, meteorological (solar irradiance) data, and
SCADA metering data. In order to establish a dataset
for the benign data, we simulated an IEEE 123-bus test

system using practical load and irradiance data for 1 year.
Then, the proposed cyber-attack functions are applied on
the benign dataset to develop a malicious dataset.

e In order to develop a deep learning-based electricity
theft detection system, we have investigated the appli-
cation of deep feed forward, deep recurrent, and deep
convolutional-recurrent neural networks. The detector
is trained using benign and malicious datasets. Hyper-
parameter optimization is applied to define the optimal ar-
chitecture for the detector. The detector developed herein
is a general detector trained using datasets obtained from
all the DGs in the system, and hence, the detector can be
used to detect the presence of electricity theft cyber-attack
for any DG unit in the system. Moreover, we investigate
the integration of various data sources (i.e., DG smart
meter readings, irradiance data, and SCADA meter read-
ings) to further enhance the detection performance. The
proposed detection architecture achieves detection rate of
99.3% and false alarm rate of 0.22%.

The rest of this paper is organized as follows. Section
IT reviews the related work. The preparation of benign and
malicious datasets is discussed in Section III. The detection
approach is explained in Section IV. Simulation results and
discussions are presented in Section V. Finally, conclusions
are drawn in Section VL.

II. RELATED WORK

Limited research work exists on electricity theft detection
at the generation domain. Specifically, [8] investigates the
detection of electricity theft in PV solar panels by developing
an anomaly detector based on the least squares approach and
a moving time window. Furthermore, [6] presents a set of
optimal cyber-attack functions on the DG units while assuming
that the attacker is aware of the detection mechanism. The
developed detectors in [6] are based on ARIMA models,
Kullback-Leibler divergence (KLD), and principle component
analysis (PCA). Most of the relevant works address electricity
theft detection in the energy consumption domain.

Data driven solutions have been popular in detecting elec-
tricity theft in the consumption domain because of the vast
streams of data that are obtained from the smart meters
deployed at the customers premises. Many of these works
rely on commonly used data-driven machine learning tech-
niques that classify customers based on their load profile into
honest and malicious customers. For instance, in [12], a feed
forward neural network with single hidden layer is adopted
for electricity theft detection using the load profiles of the
customers, which reported a classification accuracy up to 70%.
An SVM-based classifier is developed in [13] with a fuzzy
inference system as a post-processing stage, resulting in a
detection accuracy of 72%. In [14], an electricity theft detector
is proposed based on an SVM, which results in a detection
accuracy of 86.43%. The electricity theft detector in [15]
adopts a graph-based approach that implements optimum path
forest with a reported detection accuracy of 89%. The work
in [16] adopts a two-step approach based on decision trees
and SVM to detect electricity thefts, leading to a classification



accuracy of 92.5%. The work in [1] relies on an SVM-based
classifier and presents a wide range of electricity theft cyber-
attacks, which improved the classification accuracy to 94%
with 11% false alarm rate, leading to a highest difference
of 83%. The aforementioned works utilize shallow machine
learning techniques and thus cannot fully capture the various
consumption patterns observed in the complex structure of
the power metering data. To further enhance the detection
accuracy, deep machine learning techniques can be adopted.
The work in [17] adopts a deep recurrent neural network
(RNN) classifier based on a gated recurrent unit (GRU) that is
able to capture the temporal correlation within the customer’s
load profile, resulting in detection rate of 92.5% and false
alarm rate of 5%, improving the highest difference to 87.5%.
Furthermore, [18] investigates stealth false data injection (FDI)
attacks for electricity theft in the consumption domain, where
a stack of restricted Boltzmann machines (RBMs) is imple-
mented in order to detect such malicious FDI attacks, which
results in a detection accuracy up to 96%.

III. DATA PREPARATION

This section describes how realistic benign and malicious
datasets are developed. Since this data is not publicly available,
realistic synthetic data is created. Real load profiles and solar
irradiance data are utilized to obtain the benign data, then a
set of cyber-attack functions are applied on the benign dataset
to obtain the malicious dataset. The benign and malicious
datasets will then be used to train the classifier.

A. Benign Dataset

One of the goals of this work is to investigate the integration
of different data sources in the training process of the deep
learning-based detector. These various data sources include
the readings from DG smart meters, meteorological data (solar
irradiance), and SCADA metering points. In order to create the
benign dataset that incorporates these readings, we simulate
the power flow within an IEEE distribution test system. Figure
1 presents the utilized 3-phase IEEE 123-bus test system.
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Fig. 1. IEEE 123 bus test system. Highlighted buses in red boxes are
monitored with SCADA metering points. The overall 9 allocated SCADA
meters provide maximum observability of the system [21].

It should be noted that all the residential customers are
considered to be located on buses 52 to 123; on the other
hand, the buses from 1 to 51 are dedicated for nonresidential

customers, which represents a practical scenario with a mixture
of residential and nonresidential units. The first step is to
specify the number of residential units, which is determined
based on average peak demand of 5 kW in the 3-phase test
system. Without loss of generality, only residential customers
are considered to have PV panels installed on their roof tops.
In order to present a realistic load profile per residential
household, real smart meter data from Ontario Canada is
utilized [19]. The dataset presents load profiles for customers
over the four seasons of the year with a consumption reading
reported every 60 minutes. The real load profiles are utilized
per residential household such that the aggregate load per
phase per bus does not exceed the peak demand of the IEEE
123-bus test system.

To incorporate renewable energy-based DG units within the
system, a penetration level of 30% is considered (i.e., 30% of
the residential customer peak demand). Historical irradiance
data from weather station, located in Ontario Canada, is
utilized. The solar irradiance readings (in kW/m?) are reported
at intervals of 60 minutes for 365 days. To specify the number
of panels installed per residential unit, an average PV capacity
that is randomly selected between 0.5 and 1.5 kW is consid-
ered per residential household, without loss of generality. The
PV capacity per residential household is divided by the panel
capacity to determine the number of installed panels per house-
hold. To simulate a realistic environment, 5 different types of
PV panels are considered, without loss of generality. Each
residential unit that is considered to install solar PV panels
is randomly assigned one panel type. Table I summarizes the
characteristic parameters of each panel type [4]. The PV panel
parameters in Table I are under standard test conditions (25
C) and are defined as follows: VMPP and I™MPP are voltage and
current at the maximum power point, respectively, /5¢ and
VOC are the PV panel short circuit current and open circuit
voltage at operation conditions, respectively, Tnoc stands for
the nominal cell operating temperature, which presents the
temperature reached by solar cells under nominal conditions
of 20° C and 0.8 kW/m? irradiance, K" and K are the voltage
and current temperature coefficients, respectively, and the PV
capacity Cpy is the maximum power generated by the PV
panel. Given the panel-related characteristics and the solar
irradiance values, the corresponding solar energy generation
profile for each panel type, and hence for each residential
customer, can be determined. Define the following terms at
a specific day d € D and specific hour ¢ € T for a given
panel type k: T°!! is the cell temperature of the PV panel, 74
is the ambient temperature, ST is the solar irradiance, and
F'F is the fill factor of the PV panel. Hence, the generated
power P,S}t/_ 4 can be calculated as follows [4]:

T; — 20
Tl = Tl =20
RS = St x (RE(1+ KT 4 — 25)/100)),
Vidra = V(L + KX(TE5 y — 25)/100), 1)
MPP o, 7MPP
FFy = ¢ oC Igc )
Vs x Iy

PV oC e
Peia=FF x Vg <15 g



TABLE I
CHARACTERISTIC PARAMETERS OF SOLAR PV PANELS
Panel Type 1 2 3 4 5
VMPP (V) 72.9 30.2 49.2 40.2 47
TMPP (A) 5.97 8.11 1.78 6 2.88
VoCT (V) 85.6 37.8 61 50.7 61.3
I5C (A) 6.43 8.63 1.98 6.7 3.41
KY (% °K) || -0.0027 | -0.0033 | -0.0027 | -0.003 | -0.003
K' (% °K) 0.05 0.06 0.04 0 0.07
Troc (°C) 45 46 45 47 45
Cpy (kW) 0435 0245 | 0.0875 | 023 | 0.135

Given the load and generation profiles for each bus, the
IEEE 123-bus test system is simulated to specify the power
flows and voltages, which present the readings provided by
the SCADA metering points. The objective here is to capture
the relationship between the SCADA meter readings and the
PV energy generation profile, which will be used later for
theft detection. The SCADA readings in the form of voltage,
current, and power are affected by the injection from the PV
units installed in the downstream. Denote the total number of
PV panels of type k installed by the customers on bus ¢ and
phase p as Ni" . The aggregate generated power P} i pot,d O

k,i,p*
bus ¢ and phase p at time t and day d is given by

PV _ § : ,4D
Pi,p,t,d -

where Sy, is the base power for the system in kVA and
PP t 4 is given by (1). The non-linear power flow equations
are descrlbed as follows

L _
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where ¢ and j are bus indices, p; and py are phase indices,
Pi(,]pl,t 4 and Q?,pht’ 4 are the generated active and reactive
power in per unit at bus ¢ for phase p; in time ¢ at day
d, respectively, P, Zl +.a 18 the generated PV active power,
PLpl,t7 4 and Qi) 1.4 are the load active and reactive power in

,
per unit, respectively, V; p, +.q and ; , ¢ 4 are the magnitude
in per unit and angle of the voltage at bus ¢ and phase p;,
respectively, and Y; ; ,, p, and 0; ; ,, », are the magnitude in
per unit and angle of the admittance element in the branch
admittance matrix, respectively.

In a practical setting, not every bus in the power grid is
monitored by a SCADA metering point. Only a subset of
buses is monitored. The number and location of the SCADA
metering points are determined with the objective of achieving
maximum observability for the entire system. By adopting
the SCADA metering optimal allocation approach described
in [21], the number of SCADA metering points that achieves

S$in(0; j.py ps + Gips.t.d

maximum observability is found to be 9 meters whose loca-
tions are highlighted in Figure 1.

From the discussion above, the following matrices present
the benign dataset: the solar energy generation profile E as
described by (1), the solar irradiance profile R as given by
St y» and the SCADA meter power flow readings for the
selected 9 buses P as given by (3). Each of these matrices
presents a reading every 60 minutes over 365 days. For each
matrix, the rows present a full day sample and the columns
present a time-instant (60 minutes-separated) within the day.

B. Malicious dataset

One of the challenges that face this research work is
the absence of data that is needed to develop the desired
classifier. In the previous subsection, we have implemented
a realistic simulation environment to create a benign dataset
that represents various data sources. In this subsection, a set
of cyber-attack functions will be applied on the benign dataset
in order to create the malicious dataset. The cyber-attack
functions manipulate the benign data in a way that mimics the
malicious customer behavior. As the malicious customer does
not have access to the solar irradiance data and the SCADA
metering data, the cyber-attack functions are applied only on
the solar energy generation profile. The customer has access
to the smart meter attached to the solar panel, which is not the
case for the weather station that reports the solar irradiance
data and the SCADA metering points monitoring the buses.

The objective of the cyber-attack functions that manipulate
the reported energy generation profile is to claim higher
injected energy to the power grid. We introduce the four
cyber-attack functions listed in Table II. The first cyber-attack
function f; (E; 4) implements a partial increment attack, where
a malicious customer reports an incremental percentage (1+a)
of the actual generated energy E; 4 (e.g., reporting 120% of the
actual generation). The second function f5(E} 4) presents also
a partial increment attack, however, the incremental percentage
changes from time instant to another and from day to day
(1 4+ ay,q). The third attack function f3(E;4) represents a
minimum generation attack, where a malicious customer sets
a minimum reporting value (f;4) for the generated energy
(for instance, ;4 = 20% of the peak generation is reported
whenever the actual generated energy equals zero). The fourth
cyber-attack function fy(E; ) is a peak generation attack,
where a malicious customer reports only the highest energy
generation value once reached. It should be highlighted that
the aforementioned attack functions are generic regardless of
the type of renewable energy source.

Each cyber-attack function is applied on the solar energy
generation profile matrix E, which results in four malicious
matrices. The concatenation of the benign and malicious solar
energy generation profiles presents the entire dataset X where
each row gives a sample energy generation profile over the
day. Each sample is associated with a label that equals ‘0 if
the sample is benign and equals ‘1’ if the sample is malicious.
The label column vector associated with X is denoted by Y.
As we have four times malicious data than the benign one, the
trained classifier will be a biased one. To avoid this, the minor



(benign) class is over-sampled using the adaptive synthetic
sampling approach (ADASYN) [22]. The balanced dataset is
then normalized in order to bring the values of all the features
to a common scale. The normalized dataset X presents a zero
mean and unit variance and is associated with the labeling
vector Y. The data is then split into two disjoint sets with
ratio 2:1, namely train data Xz with label Y ; and test data
Xt with label Ygr.

TABLE 11
PROPOSED CYBER-ATTACK FUNCTIONS FOR ELECTRICITY THEFT ON
RENEWABLE-BASED DG UNITS.

Attack Type
Partial Increment Attack
Partial Increment Attack
Minimum Generation Attack
Peak Generation Attack

Mathematical Representation
filBra) =0+ )Eraq
fo(Bra) = A+ asd)Era
f3(Eta) = Be.a+ Fra
fa(Et,a) = max(Fy 4, Fy_1,4)

IV. DESIGN OF ELECTRICITY THEFT DETECTOR

In this section, we aim to develop a classifier that can detect
cyber-attacks targeting the integrity of the readings about the
amount of generated energy. The detector design is based on
deep neural networks that can capture complex representative
patterns within the data. Three structures are investigated for
the detector, namely, deep feed forward, deep recurrent, and
deep convolutional-recurrent neural networks.

A. Training Stage

1) Deep Feed Forward Neural Network-based Detector:
The deep feed forward neural network presents the simplest
implementation of the detector and offers the lowest computa-
tional complexity. It consists of an input layer, a set of hidden
layers, and an output layer. Using X, the input layer consists
of 24 neurons that are fed with the readings of the generated
energy over the day, i.e., x4 € X. The hidden layers present
L layers each with N neurons. The output layer has 1 neuron
to represent the two classes, i.e., benign sample y = ‘0’ or
malicious sample y = ‘1’.

The weight matrix W' defines the weight wim, of the
connection from neuron 7’ in layer [ — 1 to neuron n in layer
1. The bias vector of layer [, b!, defines the bias b, of neuron n
in layer [. Let 2z, = >, wl ,al7! + bl denote the weighted
sum of inputs to neuron n, where a' = o(z') and o(-) is
an activation function. The training of the detector aims to
find the model parameters W' and b’ denoted by ©, which is
achieved by minimizing the cross-entropy

-1
min €' = —— zq) In(a2)+
i o] %;{y( a) In(ay)

(1= y(za)) In(1 = ay)},
where |Xig| denotes the number of training samples and
y(z4) denotes the label corresponding to sample x,4. Iterative
gradient descent is used to solve the minimization in (4). Let
I denote the number of iterations. The entire training set is
divided into equal-sized M mini-batches. Algorithm 1 de-
scribes the training stage of the feed forward neural network-
based detector assuming a stochastic gradient descent (SGD)

“4)

optimization. In Algorithm 1, two stages are implemented in
each iteration. The feed forward stage determines the predicted
output vectors. The back propagation stage then determines the
gradient of the cross-entropy of (4) as a function of an error
term A [23]. The gradient then is used to update the weights
and bias values in each iteration. The following symbols are
used in Algorithm 1: 5/, represents partial derivative with
respect to a, o’(z'(z)) denotes the reciprocal of the partial
derivative of 2! with respect to a!, ® is the Hadamard product,
and T represents the transpose operation.

Algorithm 1: Deep Feed Forward-based Detector
Training
Initialization: Weights W' and biases b’ for all [,

1=1
while ¢ £ I do

Initialize: m =1

while m # M do
for each training example x4 in mini-batch m

do
Feed forward:
Compute: z'(z) = w'a!~!(z) + b' and
a(z) =o(Z(z)) VI=2,...,L
Back propagation:
Compute: Al (z) = v,0(z) © o' (25 (z))
and
Al(z) = (@ )TAH (2)) @ o (2} ())
Vi=L—-1,...,2
end for
Weight and bias update:
w=w'— £ > Al(z)(a'(z))" and
o= — LY Al(z)
end while
end while
Output: Optimal parameters W' and b' for all layers

2) Deep Recurrent Neural Network-based Detector: De-
spite offering lower computational complexity, the deep feed
forward neural network-based detector does not exploit the
temporal correlation present in the input data. The energy
generation profile represents a time-series data that is best
handled using a recurrent neural network (RNN)-based clas-
sifier, which can further enhance the detection performance.
To overcome the vanishing gradient problem while learning
temporal correlation over long intervals, a variant of the RNN,
namely, a gated recurrent unit (GRU)-based RNN, is utilized
[23]. The input layer of the GRU-based classifier consists of
24 neurons that are fed with the daily energy generation profile
x4 € X. The input layer is followed by L hidden GRU layers,
and each layer presents N neurons (units). Except for the last
GRU layer, each layer accepts and produces a sequence vector.
The output layer presents 1 neuron: y = ‘0’ and y = ‘1’ for
a benign and a malicious sample, respectively.

Each layer [ presents an output vector o' with o' = 4. A
hidden GRU layer [ defines the following parameters:

o Input at time step ¢: This is denoted by oi_l and results
from the previous layer [ — 1.



Algorithm 2: Deep GRU RNN-based Detector Train-
ing
Initialization: Weights U(l.), W(l.), V(l > and bias bl(_)
Vi,i=1
while ¢ £ I do
Initialize: m =1
while m # M do
for each training example x4 in mini-batch m

do
Feed forward:

for each recurrent layer | do
for each time step t do

Zb = o(ol71UL —l—st WL b
rh=o(ol™ 1Ul +st W+ b
hl
tanh( +(sk_, @r )Wh—l—bﬁl)

=(1- ) Ohl+2 o5,

0é+ = (Visl + b))

end for

end for

Back propagation:
Compute: vU(z.)C(xd), vv(z.)C(a:d),

VW(I_)C(JM), and Vbi_)c(xd)

end for

Weight and bias update:
U(l = U(l) — K 2 VUé)C(xd)
‘/( ) = Vl % Za V‘/(L»C’(xd)
W() = Wl — 2 Vwl C(»Td)
=t~ % 5 vy Claa)

end while
end while

Output: Optimal U(l.), W(l,), V(l,), and bl(.) vi.

o Hidden state at time step ¢: This is denoted by s. and it
represents the memory that is computed using the hidden
state s\ | of the same layer at the previous time step.

o Update gate at time step ¢: This is denoted by z! and

represents a combination of the new input oifl and
the previous memory s, ,, given by z! = o(ol U +

st WL+bl), Ul and W! are learnable weight matrices,
bl is a bias vector, and o(-) is an activation function.

« Reset gate at time ¢: This is denoted by ! and it specifies
the contribution of the memory s. ; to the next state
hi. We have v} = o (ol 'U! + s}, W! +bL) and b} =
tanh(o, U} +(sk_, ©rHW} +bL), UL, WL UL, and W}
are weight matrices and b. and b}, are bias vectors.

The next state is then calculated as st+1 (1 Aont+oe
s, and the output is given by o}, , = (V!si ; + b)), where
V! and b are learnable weight matrix and bias, respectively.
The objective of the detector’s training stage is to learn the
parameters U (l , W(l_), V(l_), and bl(i) that lead to the desirable
output y(xz4) for input x4. This is achieved by minimizing the
cross-entropy function presented in (4). The solution of such a
minimization follows a similar approach as described for the
feed forward neural network, however, the back propagation

here is essentially a back propagation through time (BPTT).
The training process is described in Algorithm 2.

3) Deep Convolutional-Recurrent Neural Network-based
Detector: The RNN (GRU)-based architecture captures the
temporal correlation within the data. However, to further
enhance the detection performance, the RNN-model can be
fed with more relevant features rather than just raw data as
described in the previous subsection. Towards this objective,
a hybrid convolutionl neural network (CNN) and RNN is
tested for the detector’s architecture. This structure consists
of 1-dimensional (1-D) convolutional and max-pooling layers
followed by a stack of layers of GRUs. The convolutional
layer consists of number of learnable filters that are used
to extract features from the input. Such filters are small in
size and extract features with strong dependency patterns. The
max-pooling layer then compresses the output from the con-
volutional layer in order to retain the most relevant features.
In that sense, the 1-D convolutional and max-pooling layers
act as a trainable feature extractor and the GRU layers further
learn the temporal relationship within the extracted features.
The architecture is know as C-RNN.

The input layer applies 1-D convolution on the energy
generation profile z4 € X that presents 24 readings per sample
day. The output of this convolutional layer is x. = x4 F. + b,
where F, and b, are learnable square filter matrix and bias,
respectively. This output is then fed to the max-pooling layer,
resulting in 2, = maxpool(x.), which is then fed to the GRU
layer. Hence, the input to the first GRU layer 0! = 2. Then,
L hidden GRU layers, each consists of N neurons (units),
are introduced followed by an output layer that consists of
1 neuron representing benign y = ‘0’ or malicious y = ‘1’.
Figure 2 illustrates the detector’s architecture.

The objective of the detector’s training stage is to learn the
parameters F, and b, of the convolutional layer along with
the parameters of the GRU layers described in the previous
subsection, namely, U(li), W(l_), V(l_), and bl(.), that lead to
the desirable output y(z4) for input x4. This is achieved by
minimizing the cross-entropy function presented in (4), which
can be done following an Algorithm similar to Algorithm 2
that also incorporates the convolutional layer (x, = x4F, + b,
and zm, = maxpool(z.)) in the feed forward stage right before
the For-loop of the RNN.

4) Performance Evaluation of the Detection Performance:
Let TP, TN, FP, and FN denote true positives, true negatives,
false positives, and false negatives, respectively. TP means that
the sample is malicious and it is detected as malicious, TN
means that the sample is benign and detected as benign, FP
means that the sample is benign and detected as malicious,
while FN means that the sample is malicious and detected
as benign. The following metrics are defined to evaluate the
performance of the detector: (a) The detection rate (DR),
which is also referred to as recall or sensitivity, measures the
fraction of correctly detected malicious samples. Hence, DR =
TP/(TP + FN); b) The false alarm (FA) measures the fraction
of benign samples that are falsely identified as being malicious.
Thus, FA = FP/(FP + TN); c¢) The highest difference HD = DR
— FA; d) The precision (PR) measures the fraction of correctly
detected malicious samples from all samples. Hence, PR=
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Fig. 2. Illustration of the C-RNN-based detector’s architecture.

TP/(TP+FP); e) F1 score, F1 = (2 x PR x DR)/(PR + DR);
f) Receiver operating characteristic (ROC) curve, which plots
the TP versus the FP and hence the detection performance is
demonstrated by the area under the curve (AUC).

B. Optimization of Hyper-parameters

The previous algorithms specify the parameters of the
detector in terms of the weight matrices and bias values. Other
hyper-parameters remain to be specified such as the number of
hidden layers L, number of neurons within each hidden layer
N, the type of optimizer used in determining the parameters O,
and the activation functions Ay and Ag, for hidden and output
layers, respectively. Optimal choice of such hyper-parameters
can significantly improve the detection performance. To avoid
the computational complexity of an exhaustive grid search,
in this paper, a random grid search is used instead to reach
sub-optimal hyper-parameters efficiently. Let £, N, O, and
A denote uniform distributions of number of hidden layers,
number of neurons, optimizer, and activation functions. Al-
gorithm 3 presents random search of hyper-parameters using
the uniformly distributed sets over the training data X using
K-fold cross validation.

C. Integration of Multiple Data Sources in the Training

The detection models discussed in the previous subsections
are trained using only the smart meter data reporting the
PV generation profile per household. To further enhance the
detection performance, various data sources can be integrated
to train a more efficient detector. This is especially true
when the integrated data sources are beyond the access of
malicious users, and hence, the samples from such data
sources are always benign. The data sources considered in this
paper include meteorological (solar irradiance) data that are
made available from weather stations, and SCADA metering
points monitoring the buses within the power grid. Hence, the
trained detector will learn the correlation between the reported
PV generation profile samples and the solar irradiance and
SCADA metering data. For instance, it is naturally expected
that the PV generation profile of solar PV panels follows the

T

Recurrent Layers

Algorithm 3: Random Search-based Hyper-parameter
Optimization

Initialization: Weight and bias values, ¢ = 1
while ¢ £ I do
L[i] < L,N[i] «+ N,O[i] < O, Afi] + A
for each XTR and XTST in K-folds(Xz) do
Solve Algorithm 1 for deep feed forward-based
detector or Algorithm 2 for deep
GRU-RNN-based detector or the modified
Algorithm 2 for deep C-RNN using the
sampled hyper-parameters and record the
DR[7] and FA[:].
end for
Record the average DR and FA values across all

folds.
end while

Output: Optimal hyper-parameter values that yield
highest DR and FA performance.

solar irradiance profile. Hence, there should exist a relationship
between these two temporal sequences that can be exploited
to better inform the theft decision. Similarly, SCADA meter
readings can be utilized to enhance the detection performance
by capturing the temporal correlation between the PV gener-
ation profile and the net power flow within the grid.

To reuse the detection model developed in previous sub-
sections using single data source (and to determine the per-
centage performance improvement), the embedding obtained
from such a model is merged (concatenated) with the solar
irradiance data (R). A set of dense layers are then stacked
to capture the relationship between the embedding of the PV
generation profile and the solar irradiance data, and hence,
classify the input PV generation profile as benign or malicious
sample. To include the SCADA meter readings, principle
component analysis (PCA) is first applied on the readings from
the 9 meters (P) in order to capture the most relevant features
in a one-column vector (f’). Then, the embedding obtained
from the PV generation profile is merged (concatenated) with
irradiance data (R) and SCADA meter reading (13) followed



GRU
Layer

Max Pool
Layer

Convolution

Layer

PV Generation

Embedding of PV Generation Profile

Output

Layer

Concatenation

Solar Irradiance
Data

Embedding of PV Generation Profile

: J Y
T [PPOIN

C [PPON

Concatenation

SCADA Meter
Readings

Output

€ |2POIN

Layer

Fig. 3. Illustration of integration of different data sources within the model’s training.

by a set of stacked dense layers to capture the relationship
between the embedding of the PV generation profile, solar
irradiance data, and the SCADA meter readings to classify
the PV generation profile as benign or malicious sample.
The complete architecture is illustrated in Figure 3. Model
1 (M1) in Figure 3 incorporates a single data source, namely,
the PV generation profile. Model 2 (M2) integrates both
the embedding of the PV generation profile and the solar
irradiance data. Model 3 (M3) integrates the embedding of
the PV generation profile, the solar irradiance data, and the
SCADA meter readings. Hyper-parameter optimization is also
applied on the extra added layers for M2 and M3.

V. SIMULATION RESULTS
A. Implementation Details

For data preparation, the IEEE 123 bus test system dis-
cussed in Section IIl is implemented using a simulation
environment that integrates both MATLAB and GAMS to
solve the unbalanced power flow of the IEEE 123-bus for a
period of one year. A for loop is included in the MATLAB
to provide the load and generation data at each hour of
the day to the GAMS program that solves the non-linear
power flow equations. For the training and testing of the
machine learning models, keras sequential API [24] is utilized
when a single data source is used. Keras functional API
[25] is utilized when various data sources are integrated. For
hyper-parameter optimization, the following parameters are
used in Algorithm 3: £ = {2,3,4}, N' = {64,128,256},
A = {Relu, Elu, Tanh, Sigmoid}, © = {RMSProp, ADAM,
SGD, AdaGrad, AdaDelta, AdaMax, NADAM}.

B. Single Data Sources Models

This subsection investigates the detector’s training using a
single data source, namely, PV generation profile. The objec-
tive is to judge which of the deep learning models presented in
Section IV.A offers the best detection performance. Further-
more, the performance of the proposed deep learning-based
detection schemes is compared with shallow classification
based on an SVM model and time-series anomaly detection

TABLE III
OPTIMAL HYPER-PARAMETERS OF THE NEURAL NETWORK MODELS

Hyper-parameters
Model L N O AH Ao
DNN 8 | 128 Nadam Sigmoid | Sigmoid
GRU 4 64 Adagrad Tanh Sigmoid
CNN + 1 64 | Rmsprop Relu
GRU 4 64 | Rmsprop Tanh Sigmoid

based on an ARIMA model. For the SVM-based classifi-
cation benchmark, the classifier is trained on both benign
and malicious PV energy generation profile and presents a
class label as the output. For the ARIMA-based anomaly
detection scheme, the model is trained only on the benign
PV energy generation profile to learn the ARIMA model
parameters that can predict the future generation profile while
minimizing the error between the predicted and actual values.
Then, the anomaly detector is tested on both benign and
malicious datasets. Whenever the error between the predicted
and reported generation profile is larger than a threshold, a
malicious sample is detected. Table III presents the results of
hyper-parameter optimization for the different deep learning
detection models, using Algorithm 3. Hyper-parameter opti-
mization of the SVM classifier yields C' = 10 and RBF Kernel.

Table IV summarizes the detection performance of the
deep learning-based classifiers following the optimal hyper-
parameters in Table III. As demonstrated in Table IV, the
hybrid C-RNN detector offers the best detection performance
among the other architectures. This is due to the fact that
the C-RNN detector is trained on the most relevant features
as extracted by the CNN while the GRU learns the tem-
poral correlation within the data that distinguishes benign
and malicious samples. Detection errors occur since we have
various panel types (hence, various forms of benign PV
generation profiles) and cyber-attack functions (hence, various
forms of malicious samples). These factors could confuse
the detector in discriminating benign from malicious samples.
However, the reported detection and false alarm rates by the
proposed detector demonstrate high detection performance.
Furthermore, comparison results with a shallow classifier



TABLE IV
DETECTION PERFORMANCE OF THE PROPOSED DETECTORS IN
COMPARISON WITH SVM AND ARIMA-BASED DETECTORS

TABLE VI
DETECTION PERFORMANCE OF THE MODELS IN FIGURE 3.

Test Results
Model DR FA HD PR Fl1
DNN 90% 2% 88% 97.8% | 93.8%
GRU 91% 1.6% | 89.4% | 98.3% | 94.4%
C-RNN | 94.6% | 2.6% 92% 98.7% | 96.2%
SVM 88.3% | 3.4% | 84.9% | 96.4% 92%
ARIMA 83% 22% 61% 75.5% 80%
TABLE V
OPTIMAL HYPER-PARAMETERS OF THE MODELS IN FIGURE 3
Hyper-parameters
Model L N AH AO
M1: CNN + 1 64 | Rmsprop Relu
GRU 4 | 64 | Rmsprop Tanh Sigmoid
M2: CNN + 1 | 64 | Rmsprop Relu
GRU + 6 | 64 | Rmsprop Tanh Sigmoid
Dense 3 | 64 | Rmsprop | Sigmoid
M3: CNN + 1| 64 Adam Relu
GRU + 4 | 64 Adam Sigmoid | Sigmoid
Dense 3 | 64 Adam Sigmoid

Test Results
Model DR FA HD PR F1
Ml 94.6% | 2.6% 92% 97.4% 96.2%
M2 99.1% | 0.9% 98.2% | 99.13% 99%
M3 99.3% | 0.22% | 99.08% | 99.77% | 99.55%
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(SVM) and time-series anomaly detection (ARIMA) reveals
performance improvement in detection rate from 83 — 88% to
94.6% (improvement up to 11.6 — 6.6%). This is mainly due
to the fact that deep machine learning techniques can better
capture the complex patterns within the data, which further
yield better detection performance. The high false alarm rate in
the ARIMA model, and thus the lower detection performance
compared with all other models, is due to the fact that the
ARIMA model is trained only on the benign dataset while all
other models including the shallow SVM classifier is trained
on both benign and malicious datasets.

C. Integration of Multiple Data Sources

Since the hybrid C-RNN detector presents the best perfor-
mance among other architectures, the C-RNN model is then
tested for the integration of multiple data sources. The optimal
hyper-parameters of the three models, namely M1, M2, and
M3, illustrated in Figure 3 are summarized in Table V. Using
such hyper-parameters, the detection performance of the three
models is presented in Table VII. The ROC curve for the
model with best detection performance (M3) is given in Figure
4. It is observed that the integration of the solar irradiance
data within the model’s training enhanced the HD from 92%
to 98.2%. The incorporation of the SCADA meter reading
further enhanced the HD to 99.08%. Such improvement in
results is due to the fact that the detector has successfully
learnt the relationship between the PV generation profile, solar
irradiance data, and SCADA meter readings, which results in
further improvement in the detection performance.

D. Robustness of the Detection Scheme

This subsection investigates the robustness of the proposed
detection scheme against new cyber-attack functions. We
consider in this subsection model M3 as it presents the
highest detection performance. Three train and test cases are

False Positive Rate

Fig. 4. ROC curve for model M3 presented in Figure 2.

introduced. In the first case (C1), the detector is trained on
benign PV generation data, solar irradiance data, SCADA
meter readings, and the malicious dataset is based only on
a single cyber-attack function, namely fi(E; 4). In the testing
phase, the detector’s performance is examined against all
malicious and benign PV generation profiles. Hence, this case
represents a scenario where the detector is tested against
three new cyber-attack functions that are not part of the
training dataset. The second case (C2) considers two cyber-
attack functions, namely, fi(E; ) and fo(Ey q), to create the
malicious dataset of the training phase while the detector’s
performance is tested against all malicious and benign PV
generation profiles. The last case (C3) considers three cyber-
attack functions, namely, f1(E;q), f2(Erq), and f3(Eyq),
to create the malicious dataset of the training phase, while
the detector’s performance is tested against all malicious
and benign PV generation profiles. The performance results
are summarized in Table VII. Such results demonstrate the
robustness of the proposed detection scheme as the detector
maintains a high detection performance even when new cyber-
attacks are introduced in the testing stage. This is because
the detector managed to generalize its learning experience
to capture the main distinctive patterns in the benign PV
generation profile and its relationship with solar irradiance data
and SCADA meter readings, which is then used to detect new
(unseen) cyber-attacks.

VI. CONCLUSION

This paper investigated electricity theft detection in renew-
able energy-based DG units. A set of cyber-attack functions
were introduced to manipulate the integrity of the readings
of the injected power from the DG units in order to falsely
overcharge the electric utility company. These cyber-attack
functions include partial increment, minimum generation, and



TABLE VII
DETECTION PERFORMANCE OF M3 IN FIGURE 3 AGAINST NEW (UNSEEN)
CYBER-ATTACKS.

Test Results
Case DR FA HD PR FI
Cl 97.38% | 2.8% | 94.58% | 97.9% | 97.6%
C2 97.7% 0.9% 96.8% 99.1% | 98.4%
C3 98.4% 0.7% 97.7% 99.3% | 98.8%

peak generation attacks. Our investigations revealed that a
hybrid C-RNN deep learning architecture offers the best detec-
tion performance among different deep learning-based models.
Optimal selection of hyper-parameters is investigated using a
random grid search approach. Our studies also demonstrated
that the detection performance can be significantly enhanced if
multiple data sources are integrated while training the detector.
In specific, the integration of the PV generation profile, irradi-
ance data, and SCADA meter readings presented a detection
rate of 99.3% and false alarm of only 0.22%. Furthermore, the
robustness of the proposed detector is demonstrated against
new cyber-attacks that were not present in the detector’s
training stage.
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