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Abstract. The change of behaviors of prey in the form of vigilance signif-
icantly affects the dynamics of a predator-prey system. In this paper, we

consider a discrete-time predator-prey model, where the vigilance of prey acts

as a trade-off between the safety and growth rate of the prey. Mathematical
properties such as stability, permanence, both flip and Neimark-Sacker bifur-

cations of the model are investigated. Numerical simulations are carried out

to illustrate the analytical findings and to explore the impact of prey vigilance
on the dynamics of the system.

1. Introduction and the mathematical model. Predation is one of the key
forces that drive the evolution of a species [14]. The fear of predation hazard may
modify both the behavior and physiology of prey, and in the last three decades this
truth has become clear to the ecologists [11]. Recently, several authors studied the
role of predator’s fear on prey populations both theoretically and experimentally
[22, 15, 16, 23, 20]. In behavioral ecology, “How prey species thrive under predation
risk?” is one of the most investigated issues. The prey population uses different
types of anti-predator responses to reduce predation risk. Many researchers con-
sidered the vigilance of prey species as a part of anti-predator behavior [4, 21, 3].
Vigilance is an anti-predator behavior and a survival policy of the prey population
for examining the surroundings for predators, which is a common phenomenon in
population biology. The vigilance of the prey population can vary with group size,
location in a herd, presence of juveniles, etc [4]. Many studies showed that prey
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populations increase their vigilance when predation hazard is high. It is to be noted
that vigilance interferes with foraging activity and, as a result, the consumption rate
of food by prey decreases with an increase of vigilance. On the other hand, vigi-
lance reduces predation pressure and slows down the energy movement from prey
populations to the predator populations. Therefore, it is very important to study
how varied vigilance influences a predator-prey system. In literature, a few authors
studied the impact of prey vigilance on the dynamics of a system with the help of
mathematical modeling. Kimbrell et al. [9] studied the influence of vigilance on an
intraguild predation model. Recently, Malone et al. [12] studied the impact of prey
vigilance in a continuous-time Lotka-Volterra predator-prey model in the context
of inverted biomass pyramids. To the best of our knowledge, the literature lacks
studies that consider vigilance in discrete-time predator-prey models. In the present
study, we investigate the role of vigilance of prey on the dynamics of a discrete-time
predator-prey system.

To facilitate readers’ understanding, we describe each step of our model formula-
tion in detail. Here, first of all it is taken into account that the prey population show
logistic growth in the absence of predators and this logistic growth is determined
based on three factors, namely: a birth rate, a natural death rate and a depletion in
the growth rate due to intra-specific competition. So, the actual growth of the prey
population in discrete-time setup is presented by the following difference equation
[13]: {

xn+1 = xnexp
(
r − d− axn

)
, (1.1)

where xn denotes the density of prey population at the n-th generation, r is the
birth rate of prey, d represents the prey’s natural death rate, and the parameter a
is related to the intra-species competition.

Next, we consider the interaction among prey and predator species, which follows
Holling type-I response function and is described by the following pair of difference
equations: 

xn+1 = xnexp

(
r − d− axn − pyn

)
,

yn+1 = ynexp

(
µpxn −m

)
,

(1.2)

where yn denotes the predator population density at the n-th generation, p rep-
resents the predator’s maximum food intake (consumption) rate, µ (0 < µ < 1)
denotes the conversion efficiency from prey biomass to predator biomass, and m is
the predator’s mortality rate.

Further, we consider that prey uses vigilance as a survival strategy. So, our
discrete-time predator-prey model with the vigilance of prey takes the following
form: 

xn+1 = xn exp

[
r

1 + v
− d− axn

1 + v
− pyn
k + v

]
,

yn+1 = yn exp

[
µpxn
k + v

−m
]
,

(1.3)

Here, 1
k is the lethality of the predator in the absence of vigilance, and v denotes

the vigilance of the prey. As the strength of vigilance (v) increases, the predation
pressure on prey decreases. On the other hand, the intraspecific competition among
prey (a) and the birth rate of the prey (r) also decrease. In the model, vigilance
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plays a positive role for prey as it reduces the predation pressure as well as the
intra-specific competition but, on the negative side, it decreases the birth rate of
prey population.

In Section 2 of this paper, we investigate the equilibria and give some logically
valid parameter constraints. In Section 3, we study the stability and permanence
of the fixed points. Both flip and Neimark-Sacker bifurcations are investigated in
detail in Section 4. In Section 5, we present numerical simulations that illustrate
the mathematical properties and give further insight into the bifurcation, attractors,
and basins of attractions. Finally, we close the paper with a conclusion in which
some unanswered mathematical questions are posed.

2. Equilibria and parameter constraints. In our model as given in Eq. (1.3),
we have the parameters r, d, a, p,m, k > 0, v ≥ 0 and µ ∈ (0, 1). In this section, we
establish further sound constraints on the parameters. For our writing conveniences,
we define

f1(x) = exp

[
(r − ax)

1 + v
− d
]
, f2(x) = exp

[
µpx

k + v
−m

]
and g(y) = exp

[
− py

k + v

]
.

Thus, our model in System (1.3) becomes{
xn+1 = xnf1(xn)g(yn),

yn+1 = ynf2(xn).
(2.1)

Let R2
+ = {(x, y) : x, y ≥ 0}, and define L : R2

+ → R2
+ as L(x, y) = (xf1(x)g(y),

yf2(x)). Dynamics of Model (2.1) can be portrayed by the iterates of L. In the
absence of a predator, the prey follows the well-known Ricker model [19], which
has the trivial equilibrium x = 0, and the equilibrium x∗ = r

a −
d
a (1 + v). The

latter equilibrium is positive when v < r
d − 1. In our Model (2.1), we have the

trivial equilibrium, (0, 0), the predator-free equilibrium (x∗, 0) and the coexistence
equilibrium

(x̄2, ȳ2) =

(
m(k + v)

µp
,
k + v

p

[
rµp− am(k + v)

µp(1 + v)
− d
])

.

Observe that ȳ2 > 0 when

v <
(r − d)µp− amk

dµp+ am
, (2.2)

which can be assured when x̄2 < x∗. Fig. 1 illustrates the geometrical interplay
between x∗ and x̄2, ȳ2. The next result establishes our first natural confinement on
the parameters.

Proposition 1. Consider the model in System (2.1). Each of the following holds
true:

: (i) If v > r
d − 1, then both, the prey and predator are doomed to extinction.

: (ii) If x∗ <
m

a
(1 + v) < x̄2, then the predator is doomed to extinction.

Proof. (i) From the first equation in our model, we obtain xn+1 < xn for all n ≥ 0.
This implies xn → 0. From the second equation, there exists N > 0 such that yn+1 <

yn for all n > N. Thus, yn → 0. To prove (ii), observe that x∗ <
m

a
(1 + v) < x̄2,
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implies v >
r

m+ d
− 1 and

1 + v

k + v
<

a

µp
. Now, write xn+1yn+1 = xnynf1(xn)f2(xn)

g(yn). Since the given conditions make
r

1 + v
− d−m < 0 and

a

1 + v
− µp

k + v
> 0,

we obtain xn+1yn+1 < xnyn for all values of n. Thus, xnyn → 0. If xn → 0 or
yn → 0, then we obtain the result. Otherwise, there must be a sequence nk such
that xnk

goes to zero while ynk
does not. From the first equation of the system,

write

xnk+2 ≤ xnk
exp

[
2r

1 + v
− 2d

]
,

then multiply both sides by ynk
and take the limit for both sides to obtain limxnk+2

ynk
→ 0. This can be done for any finite integer i to obtain limxnk+iynk

→ 0. But
this contradicts the fact that xj+1 > xj when x∗ > 0 and xj is sufficiently small.
The vector field in Fig. 1 illustrates this fact. Therefore, we must have yn → 0, and
the proof is complete.

It is natural to expect that x∗ becomes positive before ȳ2. Indeed, we stress this
simple fact in the following proposition:

Proposition 2. If ȳ2 > 0, then x∗ > 0.

Proof. x∗ > 0 if and only if v < 1
d (r − d), and ȳ2 > 0 if and only if

v <
1

d+ am
µp

(r − d)− akm

dµp+ am
.

The latter condition on v is stronger than the first one. Thus, ȳ2 > 0 implies
x∗ > 0.

Based on Proposition 1, we avoid the trivial dynamics, and directly proceed
throughout this paper under the assumption x∗ > 0, i.e., v < r

d − 1. Let c1 be

selected so that tf1(t)g(c1(f2(t))−1) ≤ x̄2 for all t ≥ 0. This is possible because the
expression is bounded in t and decreasing in c1. Then define

M1 := max{xf1(x)} =
(1 + v)

a
exp

(
r

1 + v
− d− 1

)
,

Ω1 := {(x, y) : 0 ≤ y ≤ c1, 0 ≤ x ≤ x̄2} ,

Ω∞ :=

{
(x, y) : x ≥ 0, 0 ≤ y ≤ c1 exp[m− µpx

k + v
]

}
.

Furthermore, we add the following assumption on c1 :

max
t≥0

tf1(t)g
(
c(f2(t))−1

)
≤ f−1

2

(c1
c

)
for all 0 < c ≤ c1. (2.3)

Observe that when c = c1, the right-hand-side is x̄2, and a loose bound on the left-
hand-side can be tf1(t)g(c(f2(t))−1) ≤M1g(c(f2(t))−1) ≤M1. Now, we proceed to
establish conditions in which Ω1 and Ω∞ are invariant sets. A set B ⊆ R2

+ is called
positively invariant (or invariant for short) if L(B) ⊂ B.

Lemma 2.1. Let x∗ > 0. Each of the following holds true:

(i) If x̄2 ≥M1, then L(Ω1) ⊂ Ω1. Furthermore, the predator is doomed to extinc-
tion.
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x∗ x̄2
(a) Ω1

xn

yn

c1

x∗x̄2

ȳ2

(b) Ω∞

Figure 1. Figure (a) shows the region Ω1 when x̄2 ≥M1. Figure
(b) shows the region Ω∞ when x̄2 < x∗.

xn

yn

c1

c1
f2(0)

γc1 (t) =
(
t, c1

f2(t)

)

x̄2

Figure 2. This figure shows the geometric illustration for estab-
lishing a positively invariant region. The top blue line segment
represents L(γc1(t)), while the two other blue line segments repre-
sent L(γc(t)) for two random choices of c.

(ii) If Condition (2.3) is satisfied, then L(Ω∞) ⊂ Ω∞.

Proof. Since x∗ ≤ M1, it is obvious that x̄2 ≥ M1 implies x̄2 > x∗. Now, we verify
Part (i). We show that L(Ω1) ⊆ Ω1. Since

∇(xf1(x)g(y)) and ∇(yf2(x)) 6= (0, 0),

the maximum of the two components of L take place on the boundary ∂Ω1. Thus,
we test L(∂Ω1). L(0, y) = (0, ye−m) ∈ ∂Ω1. L(x, 0) = (xf1(x), 0) ∈ ∂Ω1 due to the



6 ZIYAD ALSHARAWI, NIKHIL PAL AND JOYDEV CHATTOPADHYAY

fact xf1(x) ≤M1 and the condition M1 ≤ x̄2. L(x̄2, y) = (x̄2f1(x̄2)g(y), y). Since

x̄2f1(x̄2)g(y) < x̄2f1(x̄2) < M1 ≤ x̄2 for all y ≥ 0,

we obtain L(x̄2, y) ∈ Ω1 for all 0 ≤ y ≤ c1. Next, L(x, c1) = (xf1(x)g(c1), c1f2(x)).
Since (x, c1) is above the Nullcline of the first equation in System (2.1), we obtain

xf1(x)g(c1) ≤ x ≤ x̄2 and c1f2(x) < c1f2(x̄2) = c1,

and consequently, L(x, c1) ∈ ∂Ω1. Observe that yn+1 ≤ yn for all (xn, yn) ∈ Ω1.
This leads to yn → 0.

To prove Part (ii), we let (s, t) ∈ Ω∞ and show that L(s, t) ∈ Ω∞. If (s, t) belongs
to one of the axes, then it follows from part (i). Let (s, t) ∈ Ω∞ without the axes.
The point (s, t) can be interpolated by a curve of the form γc(t) for some t > 0 and
0 < c ≤ c1. Thus, we focus on L(γc(t)) for all t > 0 and 0 < c ≤ c1. We have

L(γc(t)) =

(
tf1(t)g

(
c

f2(t)

)
, c

)
,

which is a horizontal line segment of finite length. As illustrated in Fig. 2, all we
need is to guarantee that L(γc(t)) does not bypass the upper curve γc1(t), i.e.,

tf1(t)g

(
c

f2(t)

)
≤ f−1

2

(c1
c

)
for all t > 0 and 0 < c ≤ c1. By our choice of c1 and Condition (2.3), the proof is
complete.

We close this section by discussing the notion of dissipation [6]. System (2.1) (or
equivalently the map L) is called point dissipative if it is ultimately bounded, i.e.,
if there is a bounded set B such that for all (x0, y0) ∈ R2

+, there exists N > 0 in
which Ln(x0, y0) ∈ B for all n > N. The system is called bounded dissipative if B
attracts every bounded set in R2

+. Because R2
+ is locally compact, then bounded

dissipative is equivalent to point dissipative. Based on Lemma 2.1, we have the
following result.

Theorem 2.2. Let x∗ > 0, and assume that x̄2 ≥ M1. System (2.1) is bounded
dissipative.

Proof. Obviously, for all values of the parameters, the prey is bounded from the
first equation, i.e., for all (x0, y0) ∈ R2

+, xn ≤ M1 for all n ≥ 1. The predator is
bounded as a consequence of the results obtained in Lemma 2.1.

3. Stability and permanence. In this section, we discuss the local stability of the
equilibria, verify the existence of a global attractor, and show permanence (uniform
persistence) [1]. Throughout this paper, we equip R2

+ with the Euclidean metric
‖ · ‖, and the distance d(·) between points, sets, or a point and a set is defined as
usual. We start with local stability.

3.1. Local stability. A nonempty invariant subset B of R2
+ is called locally sta-

ble if any neighborhood V of B contains a neighborhood U such that L(U) ⊂
V. B is called attracting set if there exists a neighborhood V of B such that
lim(d(B,Ln(V ))) = 0 as n → ∞. B is called locally asymptotically stable (LAS)
if it is locally stable and attractive. Here, our interest of B is limited to the equi-
librium points, and in this case, the eigenvalues of the linearized system are good
tools to characterized local asymptotic stability. Recall that Model (2.1) has the
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trivial equilibrium (0, 0), the predator-free equilibrium (x∗, 0) and the coexistence
equilibrium (x̄2, ȳ2). At an equilibrium point (x̄, ȳ), the Jacobian matrix

J(x̄, ȳ) =

[
(x̄f ′1(x̄) + f1(x̄))g(ȳ) (x̄f1(x̄))g′(ȳ)

ȳf ′2(x̄) f2(x̄)

]
has eigenvalues λ1 and λ2 that satisfy

λ1 + λ2 = Tr(J) and λ1λ2 = Det(J).

At (x̄, ȳ) = (0, 0), we obtain

λ1(0, 0) = exp

(
r

1 + v
− d
)

and λ2(0, 0) = e−m.

Under our parameter constraints, we have λ1(0, 0) > 1 and λ2(0, 0) < 1. At (x̄, ȳ) =
(x∗, 0), we obtain

λ1(x∗, 0) =1− ax∗

1 + v
= d+ 1− r

1 + v

λ2(x∗, 0) = exp

(
µpx∗

(k + v)
−m

)
= exp

(
µp(r − d(1 + v))

a(k + v)
−m

)
.

At (x̄, ȳ) = (x̄2, ȳ2), we obtain

J(x̄2, ȳ2) =

[
1− ax̄2

1+v − px̄2

k+v
pµȳ2
k+v 1

]
.

The trace and determinant are given by

T := Tr(J(x̄2, ȳ2)) = 2− ax̄2

1 + v
= 2− am

µp

k + v

1 + v
(3.1)

and

D := Det(x̄2, ȳ2) =1− ax̄2

1 + v
+

µp2

(k + v)2
x̄2ȳ2

=1− a

1 + v
x̄2 +

mp

(k + v)
ȳ2. (3.2)

Local stability of two dimensional systems can be classified based on the following
lemma [2].

Lemma 3.1 ([2]). Let (x̄, ȳ) be an equilibrium solution of a two dimensional discrete
system. If T is the trace and D is the determinant of the Jacobian matrix at (x̄, ȳ),
then each of the following holds true:

(i) (x̄, ȳ) is a sink if

−1 < D < 1 and −D − 1 < T < D + 1.

(ii) (x̄, ȳ) is a source if

D > 1 and −D − 1 < T < D + 1, or D < −1 and D + 1 < T < −D − 1.

(iii) (x̄, ȳ) is a saddle if |D + 1| < |T |.
(iv) (x̄, ȳ) is non-hyperbolic if

|T | = |D + 1|, or D = 1 and |T | ≤ 2.
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Denote X := a
1+v x̄2 and Y := mp

k+v ȳ2, then D > −1 translates into Y > X − 2,
D < 1 translates into Y < X, T > −D − 1 translates into Y > 2X − 4, and
T < D + 1 translates into Y + 2 > 2, which is always satisfied. Therefore, Lemma
3.1 can be deciphered based on the values of X and Y in Figure 3.

X

Y

Y
=
X

Y
=

2X
−

4

Y
=
X
−

2

−2

2 4

4

In
st
ab

ili
ty

Sa
dd

le

St
ab

ili
ty

Figure 3. This figure illustrates the stability scenarios of the co-
existence equilibrium (x̄2, ȳ2) based on Lemma 3.1 and the values
of X := a

1+v x̄2, Y := mp
k+v ȳ2. The shaded dashed-region reflects the

local stability region of the coexistence equilibrium.

Now, we depend on Lemma 3.1 and its illustration in Fig. 3 to characterize local
stability of the equilibria in System 2.1. For our writing convenience, we define

γ :=
4µp

m
, α := µp(r − d)− ak(m+ 1), β := dµp+ a(m+ 1),

v0 := min

{
r

d+ 2
− 1,

α+ ak

β − a

}
and v1 := max

{
r

d+ 2
− 1,

α+ ak

β − a

}
.

Theorem 3.2. Consider x∗ > 0. Each of the following holds true.

(i) The trivial equilibrium (0, 0) is a saddle, and its stable manifold is the positive
y-axis.

(ii) The predator free equilibrium (x∗, 0) is stable when v > v1, and it is unstable
when v < v0. (x∗, 0) is a saddle with a stable manifold along the positive x-axis
when v between v0 and v1.

(iii) Assume x̄2 < x∗. (x̄2, ȳ2) is locally asymptotically stable if

α < vβ and (β + a− γ)v < γ + α− ak,
unstable if

vβ < α and (β + a− γ)v < γ + α− ak,
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and a saddle if (β + a− γ)v > γ + α− ak.

Proof. Part (i) is obvious. Part (ii) follows straightforward from the eigenvalues
λ1(x∗, 0) and λ2(x∗, 0). −1 < λ1(x∗, 0) < 1 when v > r

d+2 − 1, and λ1(x∗, 0) < −1

when v < r
d+2 − 1. 0 < λ2(x∗, 0) < 1 when v(β − a) > α+ ak, which is

v >
µp(r − d)− akm

dµp+ am
(equivalently x̄2 > x∗).

λ2(x∗, 0) > 1 when x̄2 < x∗. Thus, (x∗, 0) is stable when v > v1, and it is unstable
when v < v0. The saddle case becomes obvious. Next, we prove Part (iii). Observe
that Y > 0 guarantees the existence of the coexistence equilibrium (x̄2, ȳ2), which
is assured by x̄2 < x∗. This is equivalent to the condition in Inequality (2.2), i.e,
v < α+ak

β−a . Now, the local stability is assured by 2X− 4 < Y < X in Fig. 3. Y < X

is equivalent to v > α
β , and Y > 2X − 4 is equivalent to

(β + a− γ)v < γ + α− ak.

The rest of the proof goes through the same idea. In particular Y > X and Y >
2X − 4 make (x̄2, ȳ2) unstable, which is equivalent to the inequalities vβ < α and
(β + a− γ)v < γ + α− ak. The saddle case is obtainable when Y < 2X − 4, which
is equivalent to (β + a− γ)v > γ + α− ak.

From Theorem 3.2 and Figure 1, ȳ2 > 0 ⇔ x̄2 < x∗ ⇔ λ2(x∗, 0) > 1.
Therefore, bi-stability in the steady states is not a viable scenario.

3.2. Global stability and permanence. We start by stressing some needed con-
cepts. A nonempty, compact, and invariant set B ⊂ R2

+ is called an attractor of
System (2.1) if there exists a neighborhood U of B such that lim(d(B,Ln(U))) = 0
as n→∞. B is called a global attractor if lim(d(B,Ln(U))) = 0 as n→∞, where
U = R2

+ \ {(x, 0), (0, y) : x, y ≥ 0}. System (2.1) is called asymptotically smooth if
for any nonempty compact subset of R2

+ for which T (B) ⊂ B, there is a compact set
J ⊂ B such that J attracts B. A species is called persistent if it starts finite, stays
finite, and does not come arbitrarily close to zero. A species is called permanent (or
uniformly persistent) if it starts finite, and eventually enters a compact subset of
R+. In the predator-free model, the local stability of the equilibrium x∗ implies its
global stability with respect to the interval (0,∞). When the predator is introduced
in the model, the equilibrium (x∗, 0) is expected to inherit the global stability for a
certain range of the parameters. Indeed, we have the following result.

Proposition 3. If 0 < x∗ ≤ x̄2 and v ≥ r
d+1 − 1, then the predator free equilibrium

(x∗, 0) is globally asymptotically stable.

Proof. From the first equation in Model (2.1), we have xn+1 ≤ xnf1(xn). The con-
dition v ≥ r

d+1 − 1 makes the convergence in xnf1(xn) to be eventually monotonic.
Therefore, we obtain lim supxn ≤ x∗. There exists n1 ∈ N such that xn ≤ x∗ for all
n ≥ n1. Consequently, since x∗ ≤ x̄2, there exists n2 ∈ N such that

yn+1 ≤ ynf2(x∗) ≤ ynf2(x̄2) = yn for all n ≥ n2.

Thus, {yn} is eventually decreasing, and consequently must converge to a fixed
point. Hence, the predator goes extinct, and (x∗, 0) is globally asymptotically
stable.
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The continuous map L : R2
+ → R2

+ is called completely continuous if for any

bounded subset B ⊂ R2
+, L(B) is compact. Obviously, L is completely continuous.

It is well-known that completely continuous maps are asymptotically smooth [6, 24].
Now, we cite the following theorem from [5] (see also [24], theorems 1.1.2 and 1.1.3),
which helps us to verify the existence of a global attractor.

Theorem 3.3. Let X be a complete metric space, and suppose that F : X → X is
completely continuous. If F is point dissipative on X, then there is a global attractor
for F.

Based on Theorem 3.3 and Theorem 2.2, we obtain a global attractor that in-
cludes the coexistence equilibrium.

Corollary 1. Let x∗ > 0, and assume that Condition 2.3 is satisfied, then System
(2.1) has a global attractor.

From the invariant sets obtained in Section 2, it is obvious that both the predator
and prey eventually enter a compact set. To test their permanence, it remains to
find conditions under which they stay away from collapsing to zero.

Proposition 4. Assume v < r
d − 1. The prey is permanent.

Proof. Since xn becomes smaller than M1 = max{xf1(x)} in finite time, it remains
to show that xn stays away from zero. From the invariant sets obtained in Lemma
2.1, there exists n0 ≥ 0 such that yn < c1 for all n > n0. Thus, for n > n0, we
obtain

xn+1 >xnf1(xn)g(c1)

=xn exp

[
−axn
1 + v

]
.

From the fact that v < r
d − 1 and xn ≤M1, there exists N > n0 such that

xn ≥M1 exp

[
−aM1

1 + v

]
for all n > N.

Hence, the prey is permanent.

Next, we assume the equilibrium (x∗, 0) to be unstable, and depend on the tech-
nique developed by Hofbauer and So [7] to show that System (2.1) is permanent. To
familiarize the reader with the used concepts, we give the definition of an isolated
invariant set. A compact invariant subset M of R2

+ is called isolated if there exists
a closed neighborhood U of M for which M is the largest invariant set.

Theorem 3.4. [7] Let X be a metric space and F : X → X be continuous.
Assume that Y is closed in X such that X \Y is positively invariant. Suppose B is
a global attractor in X, M is the maximal compact invariant set in Y such that M
is isolated in B. If the stable set of M is contained in Y, then F is permanent.

Theorem 3.5. Assume v < v0, then System (2.1) is permanent.

Proof. Assume v < v0, and recall from Theorem 3.2 and its proof that for 0 <
x̄2 < x∗, (x∗, 0) is unstable and (0, 0) is a saddle. Furthermore, Y := {(x, y) :
xy = 0 and x, y ≥ 0} is closed in R2

+ and L(R2
+ \ Y ) ⊂ R2

+ \ Y. Define M :=
{(0, 0), (x∗, 0)}, then M is the maximal compact invariant set in Y. The condition
v < v0 makes x̄2 < x∗, and the vector field illustrated in Part (b) of Fig. 1 shows
that M is isolated. Finally, it is obvious that L(Y ) = Y, which means the stable set
of M is contained in Y. Therefore, System (2.1) is permanent by Theorem 3.4.



THE ROLE OF VIGILANCE ON A DISCRETE-TIME PREDATOR-PREY MODEL 11

4. Bifurcation analysis. Let the condition in Inequality (2.2) continue to hold
(i.e., x̄2 < x∗). If D = 1 and −2 < T < 2, System 2.1 is expected to go through a
Neimark-Sacker (Hopf) bifurcation. This means Y = X and 0 ≤ X < 4 in Fig. 3.
We consider the vigilance v as the bifurcation parameter to obtain

v = v∗ :=
µp(r − d)− ak(m+ 1)

a(m+ 1) + dµp
and

k + v

1 + v
<

4µp

am
.

Observe that v∗ is positive when µp(r− d) > ak(m+ 1). This condition is stronger
than the condition in Inequality (2.2), which guarantees the existence of the coex-
istence equilibrium. We stress some facts in the following simple proposition, then
give the Neimark-Sacker bifurcation theorem.

Proposition 5. Define q(v) = ax̄2

1+v and assume r > ak
µp (m + 1) + d. Each of the

following holds true.

(i) v∗ > 0 and x̄2 < x∗

(ii) k 6= 1
(iii) q := q(v∗) 6= am

µp .

Proof. (i) When r > ak
µp (m+ 1) + d, we obtain (r − d)µp− amk > 0 and

0 < v∗ <
(r − d)µp− amk

dµp+ am
.

Also, from Inequality (2.2), (x̄2, ȳ2) exists as a coexistence equilibrium which means

x̄2 < x∗. To prove Part (ii), substitute v = v∗ and x̄2 = m(k+v∗)
µp in q, then solve for

v∗ to obtain

v∗ =
µpq − akm
am− µpq

. (4.1)

Since v∗ > 0 by Part (i), we must have k 6= 1. Finally, k 6= 1 forces q to be different
from am

µp which completes the proof of Part (iii).

Theorem 4.1. Consider System (2.1), define q as in Proposition 5 and assume
µpr > µpd+ ak(m+ 1). If

k + v∗

1 + v∗
<

4µp

am
, r 6= a(m+ 1)(k − 1)

µp
,
a(k − 1)(m(d+ j) + j)

jpµ− am
, j = 2, 3, 4,

and q3−4q2 +4mq+8m2 6= 0, then the coexistence equilibrium (x̄2, ȳ2) goes through
a Neimark-Sacker bifurcation at v = v∗.

Proof. The non-hyperbolicity condition is satisfied at v = v∗ since we obtain two
complex eigenvalues λi, i = 1, 2 with modulus one. Next, we check the transversality

condition
d

dv
|λi(v∗)| 6= 0 and the non-strong resonance condition λji (v

∗) 6= 1 for

j = 1, 2, 3, 4. Since

|λi(v)| =
√
D(v), we obtain

d

dv
|λi(v)| = D′(v)

2
√
D(v)

and

D′(v) =
m

µp

(ak(m+ 1)− µpr − a(m+ 1))

(1 + v)2
,

Thus,

r 6= a(m+ 1)(k − 1)

µp
ensures that

d

dv
|λi(v∗)| 6= 0.
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Now, we test λji (v
∗) = 1. At j = 1, λi(v

∗) = 1 if and only if T = 2, which is not
possible since T = 2− ax̄2

1+v . When j = 2, λ2
i (v
∗) = 1 if and only if T = 2 or −2. We

are done with T = 2. T = −2 when x̄2 = 4(1+v)
a . The condition

r 6= a(k − 1)(m(d+ 4) + 4)

4pµ− am
ensures that x̄2 6=

4(1 + v)

a
at v = v∗.

When j = 3 or 4, λji (v
∗) = 1 if and only if T = 2,−1,−1 or 2,−2, 0, 0. Thus, it

remains to show that (T,D) = (0, 1) or (−1, 1) is not possible at v = v∗. From the
expression of T in Eq. (3.1), we need to show that

q(v) =
ax̄2

1 + v
6= 2, 3 at v = v∗.

This is ensured by the condition

r 6= a(k − 1)(m(d+ j) + j)

jpµ− am
for j = 2, 3.

Finally, it remains to verify the nondegeneracy condition. Since at v = v∗, the
eigenvalues of the Jacobian matrix are on the unit circle, we depend on Eqs (3.1)
and (3.2) to obtain

J(x̄2, ȳ2) =

[
1− q −mµ
µ
mq 1

]
,

where q = q(v∗) as defined in Proposition 5. Obviously, (T,D) = (2− q, 1) and the

eigenvalues are λ = 1 − 1
2q + 1

2

√
q(4− q)i together with its conjugate. It is worth

stressing that q < 4 is equivalent to k+v∗

1+v∗ <
4µp
am . Next, shift the equilibrium point

(x̄2, ȳ2) to make it at the origin, i.e., let (Un, Vn) = (xn − x̄2, yn − ȳ2). We obtain{
Un+1 = F1(Un, Vn) := (Un + x̄2)f1(Un + x̄2)g(Vn + ȳ2)− x̄2

Vn+1 = G1(Un, Vn) := (Vn + ȳ2)f2(Un + x̄2)− ȳ2.
(4.2)

Since q = ax̄2

1+v = mpȳ2
k+v at v = v∗, we write x̄2 and ȳ2 in terms of q. Then we take the

Taylor expansion of the right hand side in System (4.2) at the origin. We obtain[
Un+1

Vn+1

]
=

[
1− q −mµ
µ
mq 1

] [
Un
Vn

]
+

[
F2(Un, Vn)
G2(Un, Vn)

]
+

[
O(|Un, Vn|4)
O(|Un, Vn|4)

]
,

where

F2(U, V ) =
a(q − 2)

2(1 + v)
U2 +

p(q − 1)

k + v
UV +

p2q(1 + v)

2a(k + v)2
V 2 +

a2(3− q)
6(1 + v)2

U3

+
p2(1− q)
2(k + v)2

UV 2 +
ap(2− q)

2(1 + v)(k + v)
V U2 − p3q(1 + v)

6a(k + v)3
V 3

and G2(U, V ) =

pµ2q

2m(k + v)
U2 +

µp

k + v
UV + 0V 2 +

p2qµ3

6m(k + v)2
U3 + 0UV 2 +

µ2p2

2(k + v)2
V U2 + 0V 3.

To transform the Jacobian matrix into the Jordan normal form S−1JS, consider
the transformation[

U
V

]
= S

[
X
Y

]
, where S =

[
0 m

−µ2
√
q(4− q) −µq2

]
.
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To avoid massive expressions in the coefficients, we find it convenient to write v∗ in
terms of q as given in Eq. (4.1). Thus, we obtain[
Xn+1

Yn+1

]
=

[
1− q

2 − 1
2

√
q(4− q)

1
2

√
q(4− q) 1− q

2

] [
Xn

Yn

]
+

[
F3(Xn, Yn)
G3(Xn, Yn)

]
+

[
O(|Xn, Yn|4)
O(|Xn, Yn|4)

]
,

where

F3(X,Y )

=
(am− µpq)

(k − 1)

(
a1X

2 + a2XY + a3Y
2 + a4X

3 + a5XY
2 + a6X

2Y + a7Y
3
)
,

a1 := 1
8

√
q(4− q), a2 := (2q−4m−q2)

4q , a3 := −a1,

a4 := (q−4)(am−µpq)
48(k−1) , a5 := (am−µpq)(8m2+4q2−q3)

16q2(k−1) , a6 :=
(q−2)

√
q(4−q)(am−µpq)
16q(k−1) ,

a7 := (am−µpq)(q3+8m2−6q2)

48q(k−1)
√
q(4−q)

,

and

G3(X,Y )

=
(am− µpq)

(k − 1)

(
b1X

2 + b2XY + b3Y
2 + b4X

3 + b5XY
2 + b6X

2Y + b7Y
3
)
,

b1 := 1
8 (q − 4), b2 :=

(q−2)
√
q(4−q)

4q , b3 := −b1,

b4 := (4−q)2(am−µpq)
48(k−1)

√
q(4−q)

, b5 :=
(am−µpq)(q−4)

√
q(4−q)

16q(k−1) , b6 := (q−2)(q−4)(am−µpq)
16q(k−1) ,

b7 := (am−µpq)(6−q)
48(k−1) .

Next, we evaluate

η = −Re
(

(1− 2λ)λ̄2

1− λ
C11C20

)
− 1

2
|C11|2 − |C02|2 +Re

(
λ̄C21

)
, (4.3)

where

C11 :=
1

4
(F3XX + F3Y Y + i (G3XX +G3Y Y ))

C20 :=
1

8
(F3XX − F3Y Y + 2G3XY + i (G3XX −G3Y Y − 2F3XY ))

C02 :=
1

8
(F3XX − F3Y Y − 2G3XY + i (G3XX −G3Y Y + 2F3XY ))

C21 :=
1

16
(F3XXX − F3XY Y +G3XXY +G3Y Y Y

+i (G3XXX −G3XY Y − F3XXY − F3Y Y Y ))

are evaluated at (X,Y ) = (0, 0) and v = v∗. It is a matter of lengthy but straight-
forward computations to find

η = − (am− µpq)2(q3 + 8m2 + 4mq − 4q2)

64q2(k − 1)2
.
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From Proposition 5, neither k = 1 nor am = pqµ. Thus η 6= 0 when q3 + 8m2 +
4mq − 4q2 6= 0 which completes the proof.

For more details about the normal form and nondegenerate conditions of Neimark-
Sacker bifurcation, we refer readers to the work of Huang et al [8].

Our next example illustrates and validates the above results.

Example 4.2. Consider the model in System (1.3), and fix

d =
1

10
, p = 1, k = 5, µ =

7

10
, m =

3

10
, a =

1

5
.

In this case, we obtain

x∗ =
1

2
(10r − v − 1) , x̄2 =

1

7
(15 + 3v) , and ȳ2 =

(5 + v)(70r − 13v − 37)

70(1 + v)
.

To have x∗ > 0, we need v < 10r−1, and to have x̄2 < x∗, we need v < 1
13 (70r−37).

Therefore, we need r > 37
70 and v < 1

13 (70r−37). Next, we have v∗ = 1
33 (70r−137),

which is positive when r > 137
70 . The parameter values of this example will be

considered in our numerical simulations in the next section.

Next, we proceed to investigate period-doubling bifurcation. A period doubling
bifurcation occurs when D+ T + 1 = 0 and −2 < T < 0. These two conditions give
us

v = ṽ :=
γ + α− ak
β + a− γ

and
2µp

am
<
k + v

1 + v
< 4

µp

am
.

We use the center manifold reduction to test the super-criticality of the 2-cycle
obtained after the bifurcation. As in System (4.2), shift the equilibrium point
(x̄2, ȳ2) to make it at the origin, i.e., let (un, vn) = (xn − x̄2, yn − ȳ2) to obtain{

un+1 = F1(un, vn) := (un + x̄2)f1(un + x̄2)g(vn + ȳ2)− x̄2

vn+1 = F2(un, vn) := (vn + ȳ2)f2(un + x̄2)− ȳ2.
(4.4)

We follow the notations of Kuznetsov [10] (Chapter 4). Let q be the eigenvector
that belongs to the eigenvalue λ1 = −1, and let p be the adjoint eigenvector, i.e.,
J(0, 0)q = λ1q and JT ((0, 0))p = λ1p, respectively (J(0, 0) after the shift is the same
as J(x̄2, x̄2) before the shift). We normalize p and q with respect to the Euclidean
inner product, i .e., < p, q >= 1. The normal form becomes

ξ 7→ −ξ +
1

6
cξ3 +O(ξ4),

where c :=< p,C(q, q, q) > −3 < p,B(q, (J − I2)−1B(q, q)) >,

B(q, q) =

[
B1(q1, q2)
B2(q1, q2)

]
, C(q, q, q) =

[
C1(q1, q2)
C2(q1, q2)

]
and

Bi(q1, q2) =
∂2Fi(0, 0)

∂x2
q2
1 + 2

∂2Fi(0, 0)

∂xy
q1q2 +

∂2Fi(0, 0)

∂y2
q2
2

Ci(q1, q2) =
∂3Fi(0, 0)

∂x3
q3
1 + 3

∂3Fi(0, 0)

∂x2∂y
q2
1q2 + 3

∂3Fi(0, 0)

∂y2∂x
q1q

2
2 +

∂3Fi(0, 0)

∂y3
q3
2 .

At v = ṽ, write λ1 = −1 and λ2 = λ, then J(0, 0) becomes

J :=

[
λ− 2 −mµ
2µ
m (1− λ) 1

]
. (4.5)
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We consider eigenvectors p and q after normalization with respect to the Euclidian
inner product as

p =

[
p1

p2

]
=

1

λ+ 1

[
2µ
m
1

]
q =

[
q1

q2

]
=

1

λ+ 1

[ m
µ

λ− 1

]
.

Next, we use a CAS to do the computations. We evaluate B(q, q) and C(q, q, q) to
obtain

B1(q1, q2) =
m[(pµ(λ− 1)(ṽ + 1) + am(ṽ + k)][(pµ(λ− 3)(ṽ + 1) + am(ṽ + k)]

µ3p(1 + ṽ)2(k + ṽ)

B2(q1, q2) =− m[pµ(dm− 2λ+ 2)(ṽ + 1) + am2(ṽ + k)− pmrµ]

µ(k + ṽ)(1 + ṽ)

and

C1(q1, q2) =− m[pµ(λ− 4)(ṽ + 1) + am(ṽ + k)][pµ(λ− 1)(ṽ + 1) + am(ṽ + k)]2

(µ4p(1 + ṽ)3(k + ṽ)2)

C2(q1, q2) =− pm2[pµ(dm− 3λ+ 3)(ṽ + 1) + am2(ṽ + k)−mµpr]
µ(k + ṽ)2(1 + ṽ)

Next, we substitute the values of ṽ and λ to obtain

(J − I2)−1B(q, q) =

[
0
0

]
,

and consequently

B
(
q, (J − I2)−1B(q, q)

)
=

[
0
0

]
.

Finally, we evaluate C(q, q, q)−3B
(
q, (J − I2)−1B(q, q)

)
, then do the inner product

to obtain
c :=

[pµ(dm− 4) + am(m+ 2)]2[(am3 − 2pµ(m2 + 4))r + a(k − 1)(dm3 + 2m3 + 8m+ 16)]

µ2[(am− 4µp)r + a(k − 1)(dm+ 4(m+ 1))][mr + (k − 1)(dm− 4)]2
.

(4.6)

We summarize the conclusion in the follwoing result.

Theorem 4.3. Consider Model (2.1). At v = ṽ, if 2µp
am < k+ṽ

1+ṽ < 4 µp
am , then the

coexistence equilibrium (x̄2, ȳ2) goes through a period-doubling bifurcation. Further-
more, the newly born 2-cycle is locally asymptotically stable when c > 0 and unstable
when c < 0.

We close this section by the following illustrative example.

Example 4.4. Consider the model in System (1.3), and fix

d =
1

10
, p = 1, k = 5, µ =

7

10
, m =

3

10
, a =

7

5
.

In this case, we obtain

x∗ =
1

14
(10r − 1− v) , x̄2 =

1

7
(15 + 3v) , and ȳ2 =

(5 + v)(10r − 7v − 31)

10(1 + v)
.
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To have x∗ > 0 and x̄2 < x∗, we need r > 31
10 and v < 1

7 (10r − 31). Next, we

obtain ṽ = 1
259 (293− 30r) . Up to this end, we need 31

10 < r < 293
30 . At v = ṽ, the

coexistence equilibrium (x̄2, ȳ2) will have

λ1 = −1 and λ =
2(293− 30r)

5(92− 5r)
.

The expression of c in Eq. (4.6) becomes

c =
67081(20315r − 369134)

400(85r − 1046)(15r − 794)2
,

which is positive on the considered values of r.

5. Numerical simulations. In this section, we perform numerical simulations and
present bifurcation diagrams, maximum Lyapunov exponents and bi-parameter di-
agrams to illustrate the dynamical behaviors of the system (1.3). To investigate the
impact of vigilance parameter (v) on the dynamics of the system, we set the initial
value as (0.1, 0.2) and run each simulation for 50000 time steps. In a dynamical
system, Lyapunov exponent is a number that characterizes the rate of separation of
infinitesimally nearby trajectories. We characterize chaos by the condition that the
average distance between two infinitesimally close orbits magnifies exponentially
with time. It is worthy to mention that in a discrete-time system, if the largest
Lyapunov exponent (LLE) is positive, then the system shows chaotic oscillations,
and if the LLE is negative then the system exhibits periodic or stable dynamics. It
is also to be noted that in an n-dimensional system, there are n Lyapunov expo-
nents. In the two-dimensional system (1.3), we have two Lyapunov exponents, say
λ1 and λ2. These two Lyapunov exponents are defined as

λi = lim
K→∞

1

K
ln |Λi| , i = 1, 2,

Λ1,2 being the eigenvalues of the 2× 2 matrix Λ =
∏K
l=1 Jl.

Here, Jl is the Jacobian of the system (1.3) at the l-th iteration and defined by

Jl =


(

1− axl

1+v

)
exp

[
r

1+v − d−
axl

1+v −
pyl
k+v

]
−pxl

k+v exp
[

r
1+v − d−

axl

1+v −
pyl
k+v

]
µpyl
k+v exp

[
µpxl

k+v −m
]

exp
[
µpxl

k+v −m
]

 .

Depending on the largest (maximal) Lyapunov exponent (say λ1), three types of
topologically non-equivalent dynamical behaviors can arise. In the context of a
discrete-time dynamical system, different topologically non-equivalent behaviors are
given below:

(i) λ1 < 0: fixed point/periodic attractor,
(ii) λ1 = 0: quasi-periodic attractor,

(iii) λ1 > 0: chaotic oscillations.

It is to be noted that at the bifurcation point the Lyapunov exponent λ1 is also zero,
but non-zero in the neighborhood of the bifurcation point [17]. Here, the Lyapunov
exponents are calculated by using the above-mentioned algorithm.
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5.1. Neimark-Sacker bifurcation and chaos control. Here, we fix the param-
eters as in Example 4.2, namely

r = 3, d = 0.1, a = 0.2, p = 1, k = 5, µ = 0.7, m = 0.3. (5.1)

First, we observe that in the absence of vigilance (i.e. v = 0), the system (1.3)
shows chaotic dynamics. To visualize the impact of the vigilance parameter, we
draw the bifurcation diagram and calculate the maximum Lyapunov exponent of
the system with respect to the vigilance parameter v. We observe that the system
becomes stable from chaotic oscillations via Neimark-Sacker bifurcation with an
increase of the strength of vigilance parameter v (Fig. 4). It is observed that
D = 1, T = 1.8075 and two eigenvalues of the Jacobian matrix at the interior fixed
point (3.0909, 4.6268) are λ1,2 = 0.9038 ± 0.4280 i when v = 2.212. Therefore,
the Neimark-Sacker bifurcation occurs at the point v = 2.212, where the other
parameters are fixed at (5.1). Figure 5 shows the region of survival and extinction
of the populations in v − r bi-parameter space. We notice that with an increase
of the value of v, populations extinct from the system. We also explore the role of
vigilance on the densities of the prey and predator populations in v−r bi-parameter
space, where the fixed point of the system is stable. For this, we divide the v − r
plane ((v, r) ∈ [0, 7.5]× [0, 1.5]) into a mesh of 800× 800 different combinations of
(v, r) and draw the diagram by continuously changing the color according to the
values of prey and predator densities (Fig. 6). We observe that the density of the
predator is high when there is no vigilance from the prey. For moderate vigilance,
the density of prey is high. However, high vigilance is detrimental for both prey
and predator, and the populations extinct from the system.

Figure 4. The figure shows a bifurcation diagram (left) and max-
imum Lyapunov exponent (right) of the system (1.3) with respect
to the vigilance parameter v, where other parameters are same as
equation (5.1).
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Figure 5. The figure shows the region of survival of the popula-
tions in v − r bi-parameter space. In region I, populations show
chaotic and quasiperiodic oscillations. In region II, both prey and
predator show stable coexistence. In region III, the prey popula-
tion shows stable behavior, but predator populations extinct from
the system. In region IV , both prey and predator extinct from the
system.

Figure 6. The figure shows variation of the densities of prey and
predator populations in v − r bi-parameter space.

Coexisting attractors: The obtained curve in the Neimark-Sacker bifurcation is
topologically equivalent to a circle, and the dynamics on the circle can be interesting
from a theoretical point of view. It is worth mentioning here that when we fix the
parameters d, a, p, k, µ and m as in Eqs. (5.1), numerical simulations show the
coexistence of different types of topologically non-equivalent attractors [18, 17]. For
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r = 2.525 and v = 0.046, the system exhibits period-12 and period-13 coexisting
attractors, whereas for r = 2.659 and v = 0.168, period-13 and period-14 coexisting
attractors are found. Fig. 7 shows phase portraits and basins of attractions of the
above-listed attractors. The period-13 attractor is highlighted by black color, and
the attractors of period-12 and period-14 are in green and red colors, respectively.

0 2 4 6 8 10 12 14

Prey

0

5

10

15

20

25

30

P
re

d
a

to
r

(a)

0 2 4 6 8 10 12 14

Prey

0

5

10

15

20

25

30

P
re

d
a

to
r

(b)

(c) (d)

Figure 7. (A) Phase portrait of the system showing period-12 and
period-13 attractors with initial conditions (0.5, 0.2), and (0.1, 0.2),
(B) phase portrait of the system showing period-13 and period-
14 attractors with initial conditions (0.1, 0.2), and (0.7, 0.2), (C)
basins of attraction for the coexisting period-12 and period-13 at-
tractors, (D) basins of attraction for the coexisting period-13 and
period-14 attractors.

5.2. Flip bifurcation and chaos control. Here, we fix the parameters as in
Example 4.4, namely

r = 4, d = 0.1, a = 1.4, p = 1, k = 5, µ = 0.7, m = 0.3. (5.2)

For the above set of parameters (5.2), we again draw the bifurcation diagram and
calculate the maximum Lyapunov exponent of the system (1.3). We observe that
an increase of the level of v, the system becomes stable from chaotic oscillations via
period-halving bifurcation (see, Fig. 8). At v = ṽ ≈ 0.668, the equilibrium point
(x̄2, ȳ2) ≈ (2.4291, 1.4693) undergoes flip-bifurcation. Figure 9 shows the existence
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of the populations in v − r bi-parameter space and it is observed that populations
go to extinction for higher values of v.

Figure 8. This figure shows bifurcation diagram (left) and max-
imum Lyapunov exponent (right) of the system (1.3) with respect
to the vigilance parameter v, where other parameters are same as
equation (5.2).

6. Conclusion. The complexity of behavioral interactions plays an important role
in the dynamics and structuring of predator-prey systems. The prey population
shows different types of trade-offs in behavior to reduce predation risk. In the
present paper, we considered a discrete-time predator-prey model, where vigilance
of prey acts as a trade-off between the safety and growth rate of the prey. We
analytically and numerically investigated the stability and bifurcation behaviors of
the model. We observed that vigilance drives the system towards stability from
chaotic oscillations. We also noticed that the density of the predator population
continuously decreased with an increase in prey vigilance due to the unavailability
of food. On the other hand, with an increase of the prey vigilance, initially, the
density of the prey population increased, but high vigilance had a detrimental role
for the prey population as the growth rate declined significantly. We also observed
the coexistence of multiple attractors in the system and drawn their basins of at-
tractions. Therefore, depending on the initial population densities, the populations
converge to different periodic cycles. So, the balance between safety and food plays
an important role in the dynamics of the populations.

Finally, it is worth mentioning that this paper left several mathematical questions
unanswered. Proposition 3.3 showed that the predator-free equilibrium (x∗, 0) is
globally asymptotically stable if 0 < x̄2 ≥ x∗ and v ≥ r

d+1 − 1. We believe that
the conditions here are sufficient rather than necessary. In particular, we believe
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Figure 9. The figure shows the region of survival of the popula-
tions in v− r bi-parameter space. The meanings of the regions are
the same as in figure 4.

that the local stability of (x∗, 0) implies its global stability. We have also utilized
the notion of dissipative systems from Theorem 3.4 to prove the existence of a
global attractor. The global attractor here is a set that contains the coexistence
equilibrium (x̄2, ȳ2). However, we believe the local stability of (x̄2, ȳ2) implies its
global stability. In particular, we believe that if x̄2 < x∗, α < vβ and (β + a−
γ)v < γ+α−ak then the coexistence equilibrium (x̄2, ȳ2) is globally asymptotically
stable with respect to the interior of the positive quadrant.

Acknowledgments. The authors are thankful to the anonymous reviewers and
the editor for their valuable comments and suggestions, which helped us in improv-
ing the quality of the manuscript. The first author was supported by an AUS grant
number FRG19-S-S141, and the open access fee was covered by the Open Access
Program from the American University of Sharjah. This paper represents the opin-
ions of the authors and does not mean to represent the position or opinions of the
American University of Sharjah.

REFERENCES

[1] A. S. Ackleh, M. I. Hossain, A. Veprauskas and A. Zhang, Persistence and stability analysis
of discrete-time predator–prey models: A study of population and evolutionary dynamics, J.

Difference Equ. Appl., 25 (2019), 1568–1603.
[2] Z. AlSharawi, S. Pal, N. Pal and J. Chattopadhyay, A discrete-time model with non-monotonic

functional response and strong Allee effect in prey, J. Difference Equ. Appl., 26 (2020), 404–

431.

http://www.ams.org/mathscinet-getitem?mr=MR4039193&return=pdf
http://dx.doi.org/10.1080/10236198.2019.1669579
http://dx.doi.org/10.1080/10236198.2019.1669579
http://www.ams.org/mathscinet-getitem?mr=MR4079498&return=pdf
http://dx.doi.org/10.1080/10236198.2020.1739276
http://dx.doi.org/10.1080/10236198.2020.1739276


22 ZIYAD ALSHARAWI, NIKHIL PAL AND JOYDEV CHATTOPADHYAY
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