
algorithms

Article

Efficient Dynamic Cost Scheduling Algorithm for Financial
Data Supply Chain

Alia Al Sadawi 1, Abdulrahim Shamayleh 1,2,* and Malick Ndiaye 1,2

����������
�������

Citation: Al Sadawi, A.; Shamayleh,

A.; Ndiaye, M. Efficient Dynamic

Cost Scheduling Algorithm for

Financial Data Supply Chain.

Algorithms 2021, 14, 211. https://

doi.org/10.3390/a14070211

Academic Editor: Frank Werner

Received: 18 June 2021

Accepted: 12 July 2021

Published: 14 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Engineering Systems Management Graduate Program, American University of Sharjah,
Sharjah 26666, United Arab Emirates; g00047863@alumni.aus.edu (A.A.S.); mndiaye@aus.edu (M.N.)

2 Industrial Engineering, American University of Sharjah, Sharjah 26666, United Arab Emirates
* Correspondence: ashamayleh@aus.edu

Abstract: The financial data supply chain is vital to the economy, especially for banks. It affects their
customer service level, therefore, it is crucial to manage the scheduling of the financial data supply
chain to elevate the efficiency of banking sectors’ performance. The primary tool used in the data
supply chain is data batch processing which requires efficient scheduling. This work investigates the
problem of scheduling the processing of tasks with non-identical sizes and different priorities on a
set of parallel processors. An iterative dynamic scheduling algorithm (DCSDBP) was developed to
address the data batching process. The objective is to minimize different cost types while satisfying
constraints such as resources availability, customer service level, and tasks dependency relation. The
algorithm proved its effectiveness by allocating tasks with higher priority and weight while taking
into consideration customers’ Service Level Agreement, time, and different types of costs, which led
to a lower total cost of the batching process. The developed algorithm proved effective by testing it
on an illustrative network. Also, a sensitivity analysis is conducted by varying the model parameters
for networks with different sizes and complexities to study their impact on the total cost and the
problem under study.

Keywords: financial data; supply chain management; data batching; scheduling; batching cost;
parallel processing; optimization; multi-processing commitment

1. Introduction

In today′s world, economies and commodity markets swing rapidly; personal, or-
ganizational, and business networks are becoming more interconnected, instrumented,
and intelligent [1]. One of the important aspects of the business world is supply chain
management. It works towards satisfying customers′ requirements through the efficient
use of resources resulting in reducing cost and increasing profit margin for companies [2].
With a highly competitive global market, supply chains have to be more responsive to
customers′ needs. Supply chain represents all stages of a process; usually, researchers focus
on materials that are manufactured to become an end product; however, the supply chain
covers a wider range that extends beyond physical assets. For instance, looking at the
banking sector, their main supply chain is of financial data that needs to be processed using
available resources which are software and hardware processors.

One of the main instruments used in business networks for the management of
the financial data supply chain is data batch processing (DBP). It plays a critical role
in daily operations carried out in most organizations in different business fields. Data
batch processing can be defined as the execution of data files as input batches using the
available resources and gather the resulted files as output batches while satisfying files
priorities, predecessors constraints, and time constraints [3,4]. The execution is carried
out on the mainframe computer that runs at a scheduled time or on an as-needed basis
without user interaction and minimal or no interaction with a computer operator [3,4].
The main feature of data batch processing is its ability to handle an enormous amount of

Algorithms 2021, 14, 211. https://doi.org/10.3390/a14070211 https://www.mdpi.com/journal/algorithms

https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-0214-7052
https://doi.org/10.3390/a14070211
https://doi.org/10.3390/a14070211
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/a14070211
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a14070211?type=check_update&version=1

Algorithms 2021, 14, 211 2 of 23

data files which makes it attractive and essential to many organizations that are constantly
dealing with heavy business activities [5]. It contributes to the major part of the workload
on mainframe computers that will often run a large number of business workflows with
complex interrelations, requiring careful scheduling and prioritizing to ensure that all
batch jobs run in the correct order and meet strict deadlines [3,4,6].

Our research considers the case of processing end-of-day (EOD) operations which
include highly important and frequently used activities and services such as: preparing
customers’ bank statements; credit card processing bills; fraud detection data; merging the
day′s transactions into master files; sorting data files for optimal processing; providing
daily, weekly, monthly, and annual reports; invoices and bank statements; performing
periodic payroll calculations; and applying interest to financial accounts [4]. Banks seek to
elevate their level of customer service by optimizing their data supply chain scheduling.
This supply chain consists of the bank, a service provider that arranges the processing of
data, and processors providing company that rents and leases processors and software
to service providers. Also, in our research, data supply chains adopt the technique of lot
streaming which is a technique that splits a given data job, each consisting of similar files,
into tasks to allow overlapping of successive operations in processing systems thereby
reducing the processing makespan.

The proposed work addresses the financial data supply chain scheduling problem
from an operational perspective by considering the scheduling at an individual job level.
The problem can be viewed as a single-stage supply chain scheduling problem where jobs
are arranged to be processed by mainframe processors that can be modeled as a series of
flow shop machines. Processors are leased and rented from manufacturing and supplying
company as needed by a third-party company that performs the data scheduling. Data
arrives raw and unprocessed from banks to a service provider which needs to manage
scheduling them for processing as per the available resources (software and hardware) in
the most efficient way. After processing, jobs must be returned back to banks where they
will be charged for the provided service.

In order to address financial data supply chain, this research covers all aspects of data
batch processing, being that it is the tool that manages banks′ financial data supply chain
scheduling. The scheduling aspects of DBP are job priorities, precedence relationships,
constraints in addition to cost. It is important to understand that cost consideration in data
batch processing is vital due to the extremely high cost of the resources involved. However,
previous research has overlooked the cost despite its importance, and the focus was on the
effectiveness of the scheduling component of the process. The high cost of software and
hardware resources used in the batch process and the patent rights of companies that own
the platform made it not only beneficial, but also essential for DBP users to reduce the cost
associated with it. Therefore, this research intends to bridge such a gap and provides a
comprehensive study that covers the important aspects of data batch processing. Thus, the
main contributions of this work can be summarized as follows:

• Consider all types of costs related to the batch process which are the servers and
software basic leasing cost, rental cost for additional resources needed in case of
overload and extra work, penalty cost of failing to execute the batch process as per
the Service Level Agreement (SLA), and the opportunity cost representing the cost of
idling a resource for any period of time due to inefficient task allocation.

• Develop an iterative dynamic scheduling algorithm (DCSDBP) to optimize the data
batch processing considering the different costs, availability of resources, and customer
service level agreement (SLA) along with the rest of the batch process factors such as
the clients′ priorities, tasks predecessors and time.

• Utilize the created optimization model to address the problem of controlling the avail-
ability of resources such as processors and software required to process input batches
and balance the usage of current owned resources and the need to rent additional
ones while maintaining the lowest possible cost for the whole data batch processing.

Algorithms 2021, 14, 211 3 of 23

The rest of the paper is organized as follows: Section 2, the background related to
this work is presented. The data batch algorithm is presented in Section 3. The illustrative
example and sensitivity analysis are presented in Sections 4 and 5 respectively. Finally, the
conclusions are presented in Section 6.

2. Literature Review

Supply chain management has another perspective when associated with the financial
sector. An alternative concept appears that relates to information or data and supply
chain known as Financial Information Supply Chain Management. The researchers in [7]
emphasized the need to improve financial operating processes in order to optimize financial
data supply chain management by reducing processing time, improving efficiency, and
decreasing associated costs of equipment and computers.

Other studies reached an aligned outcome such as the case study by [8] to design,
develop, and implement an inter-organizational system by the Reserve Bank of Australia
(central bank) and other authorities to remodel data reporting by financial institutions in
Australia. The research concluded that the complexity of data consumption patterns led to
an increased interdependence within the financial information supply chain which requires
developing data exchanges and commodity-like IT infrastructures.

Also, a study by [9] stated that multiple governments have implemented Integrated
Financial Management Information Systems to improve effectiveness and streamline busi-
ness processes. Authors determine the need for automated financial operations to improve
data supply chain efficiency.

The authors of [7] believe that in order to improve financial performance, we need
to utilize a tool from lean manufacturing. They state that although financial operations
are not the same as manufacturing operations, they share more similarities than might be
acknowledged. These similarities entitle the financial data supply chain to adopt batch
processing and scheduling from lean manufacturing.

Batch processing is widely used because of its ability to meet business-critical functions.
It is mainly applied when dealing with large, repeated jobs that can be carried out at a
prescribed time. The batch process is complex posing a challenge to efficiently allocate the
needed resources. In this section, related literature to approaches used in data batching is
presented. Also, related work of using data batching in other fields is presented as well.

The scheduling problem was studied by many researchers since it is a critical issue
in batch process operation and performance improvement. Page et al. [10] considered
eight common heuristics along with the genetic algorithm (GA) evolutionary strategy
to dynamically schedule tasks to processors in a heterogeneous distributed system; they
found that using multiple heuristics to generate schedules provides more efficient sched-
ules than using each heuristic on its own. Méndez et al. [11] classified and presented
the different state-of-the-art optimization methods associated with the batch scheduling
problem. Osman et al. [12] proposed a model for data batch scheduling; they presented a
dynamic, iterative framework to assign the required tasks to available resources taking into
consideration the predecessors, constraints, and priority of each job. Al Sadawi et al. [13]
studied the data batch problem with the goal of minimizing costs and satisfying customer
service level agreement. Lim and Chao [14] used fuzzy inference systems to model the
preferences of users and decide on the priority of each schedule with the goal of providing
users with more efficient throughput. Xhafa and Abraham [15] developed heuristic and
metaheuristic methods to deal with scheduling in grid technologies which are considered
more complicated than scheduling in classical parallel and distributed systems. Aida [16]
evaluated multiple job scheduling algorithms performance to investigate the effect of
job size characteristics on job scheduling in a parallel computer system. Stoica et al. [17]
described a schedule based on the microeconomic paradigm for online scheduling of a
set of parallel jobs in a multiprocessor system. The user was granted control over the
performances of his jobs by providing him with a saving account containing an amount of
money used to run the jobs. Stoica [18] considered the problem of scheduling an online set

Algorithms 2021, 14, 211 4 of 23

of jobs on a parallel computer with identical processors by using simulation to compare
three microeconomic policies with three variable partitioning policies. Islam et al. [19]
demonstrated higher revenue and better performance by using their proposed new schedul-
ing heuristic called Normalized Urgency to prioritize jobs based on their urgency and their
processing times.

A study by Damodaran and Vélez-Gallego [20] developed a simulated annealing
algorithm to evaluate the performance of batch systems in terms of total completion time
with the goal of minimizing the processing time, and Mehta et al. [21] proposed a parallel
query scheduling algorithm by dividing the workload into batches and exploiting common
operations within queries in a batch, resulting in significant savings compared to single
query scheduling techniques. Grigoriev et al. [22] developed a two-phased LP rounding
technique that was used to assign resources to jobs and jobs to machines where a maximum
number of units of a resource may be used to speed up the jobs, and the available amount of
units of that resource must not be exceeded at any time. Also, Bouganim et al. [23] studied
execution plans performance of data integration systems where they proposed an execu-
tion strategy to reduce the query response time by concurrently executing several query
fragments to overlap data delivery delays with the processing of these query fragments.
Ngubiri and van Vliet [24] proposed a new approach for parallel job schedulers fairness
evaluation where jobs are not expected to have the same performance in a fair set up when
they do not have the same resource requirements and arrive when the queue and system
have different states. Arpaci-Dusseau and Culler [25] used a proportional-share scheduler
as a building-block and showed that extensions to the above scheduler for improving
response time can still fairly allocate resources to a mix of sequential, interactive, and
parallel jobs in a distributed environment.

From an economic point of view, Ferguson et al. [26] adopted the human economic
model and implemented it on resource allocation in a computer network system which
resulted in limiting the complexity of resource sharing algorithms by decentralizing the
control of resources. Additionally, Kuwabara et al. [27] presented a market-based ap-
proach, where resources are allocated to activities through buying and selling of resources
between agents and resource allocation in a multi-agent system. Chun and Culler [28]
presented a performance analysis of market-based batch schedulers for clusters of work-
stations using user-centric performance metrics as the basis for system evaluation. Also,
Sairamesh et al. [29] proposed a new methodology based on economic models to pro-
vide Quality of Service (QoS) guarantees to competing traffic classes in packet networks.
Yeo et al. [30] outlined a taxonomy that describes how market-based resource management
systems can support utility-driven cluster computing; the taxonomy is used to survey
existing market-based resource management systems to better understand how they can
be utilized.

Islam et al. [31] designed a framework that provides an admission control mechanism
that only accepts jobs whose requested deadlines can be met and, once accepted, guarantees
these deadlines. However, the framework is completely blind to the revenue these jobs
can fetch for the supercomputer center. They analyzed the impact of job opportunity cost
on the overall revenue of the supercomputer center and attempted to minimize it through
predictive techniques. Mutz and Wolski [32] presented a novel implementation of the
Generalized Vickrey Auction that uses dynamic programming to schedule jobs and com-
putes payments in pseudo-polynomial time. Mutz et al. [33] proposed and evaluated the
application of the Expected Externality Mechanism as an approach to solving the problem
of efficiently and fairly allocating resources in a number of different computational settings
based on economic principles. Tests indicated that the mechanism meets its theoretical
predictions in practice and can be implemented in a computationally tractable manner.

Lavanya et al. [34] proposed two task scheduling algorithms for heterogeneous sys-
tems. Their offline and online scheduling algorithms aimed at reducing the overall
makespan of task allocation in cloud computing environments. The algorithms’ sim-
ulation proved that they outperformed standard algorithms in terms of makespan and

Algorithms 2021, 14, 211 5 of 23

cloud utilization. Minimizing makespan was the objective of the research conducted by
Muter [35] which tackled single and parallel batch processing machine scheduling. The
author presented a reformulation for parallel batch processing machines and proposed an
exact algorithm to solve this problem. Also, Jia et al. [36] developed a mathematical model
and a fuzzy ant colony optimization (FACO) algorithm to schedule parallel non-identical
size jobs with fuzzy processing times. The batch processing utilized machines with dif-
ferent capacities and aimed at minimizing the makespan. Additionally, Li [37] proposed
two fast algorithms and a polynomial time approximation scheme (PTAS) to tackle the
problem of scheduling n jobs on m parallel batching machines with inclusive processing set
restrictions and non-identical capacities. The research aimed at finding a non-preemptive
schedule to minimize makespan.

Another study by Josephson and Ramesh [38] aimed at creating a task scheduling
process by examining the various real times scheduling algorithm. The study presented
a new algorithm for task scheduling in a multiprocessor environment. The authors used
TORSCHE toolbox for developing real-time scheduling in addition to utilizing features of
particle swarm optimization. The proposed algorithm succeeded in executing a maximum
number of the process in a minimum time. Also, Ying et al. [39] investigated the Distributed
No-idle Permutation Flowshop Scheduling Problem (DNIPFSP) with the objective of
minimizing the makespan. The authors proposed an Iterated Reference Greedy (IRG)
algorithm that was compared with a state-of-the-art iterated greedy (IG) algorithm, as well
as the Mixed Integer Linear Programming (MILP) model on two benchmark problems
showing promising results.

An energy-efficient flexible job shop scheduling problem (EFJSP) with transporta-
tion was the core of research by Li and Lei [40]. The authors developed an imperialist
competitive algorithm with feedback to minimize makespan, total tardiness, and total
energy consumption. The conducted experiments provided promising computational
results, which proved the effectiveness of the proposed algorithm. Furthermore, a study
addressing distributed unrelated parallel machines scheduling problem aiming at minimiz-
ing makespan in the heterogeneous production network was proposed by Lei et al. [41].
A novel imperialist competitive algorithm with memory was developed by authors and
experiments were conducted to test the performance of where the computational results
proved the effectiveness of the algorithm. A study aimed at optimizing the trade-off be-
tween the total cost of tardiness and batch delivery was conducted by Rahman et al. [42].
To achieve this goal, the authors proposed three new metaheuristic algorithms which
are the Differential Evolution with different mutation strategy variation, a Moth Flame
Optimization, and Lévy-Flight Moth Flame Optimization algorithm. The algorithms were
validated through an industrial case study.

Luo [43] tackled the dynamic flexible job shop scheduling problem under new job
insertions. The goal of the research was to minimize the total tardiness; therefore, the
authors proposed a deep Q-network (DQN). The developed DQN was trained using
deep Q-learning and numerical experiments confirmed the superiority and generality of
DQN. Also, Yun et al. [44] suggested a genetic algorithm based energy-efficient design-
time task scheduling algorithm for an asymmetric multiprocessor system. The proposed
algorithm adaptively applies different generation strategies to solution candidates based
on their completion time and energy consumption. Experiments proved that it minimized
energy consumption compared to existing methods. Finally, Saraswati et al. [45] aimed at
minimizing the total tardiness in batch completion time using the metaheuristic approach
of simulated annealing. The programming was done using Python programming. The
research case study scheduled batches to parallel independent machines where the results
of data processing demonstrated reduced total tardiness.

As concluded from the above survey, none of the articles found in the literature
covered all aspects of data batch processing and scheduling. While some researchers
concentrated on fulfilling the time constraint, others aimed at scheduling the maximum
number of tasks effectively; however, none of the studies found in the literature considered

Algorithms 2021, 14, 211 6 of 23

cost during the scheduling process of data batches. This work tackles the significantly
effective and widely used data batching process covering all its aspects. It will focus on
scheduling a set of required jobs to be processed in a batch using the available resources
(i.e., processors) as per the predecessors, job priorities and constraints stated in the SLA
while batch job′s predecessors and priorities are specified by the client depending on the
type of tasks handled. This work represents a major contribution to the literature since it
comprises all aspects of the DBP including cost.

3. Data Batch Algorithm

This research tackles the financial data supply chain management for the banking and
financial sector which mainly revolves around processing financial-related data using avail-
able resources. Those resources are usually software and hardware processors. A major tool
used in the management of the financial data supply chain is data batch processing (DBP).
Our study covers all aspects of data batch processing—such as job priorities, precedence
task relation, and time constraints—in addition to different types of cost. It is vital to
emphasize the importance of the cost aspect in data batch processing since the utilized
resources′ costs are very high. Yet, previous research work has neglected considering DBP
cost despite its significance. Therefore, this research is extremely important since it includes
different types of DBP costs in addition to all other aspects in a scheduling algorithm.

The DBP which the financial sector relies heavily on has been bounded by the IT
systems that drive banking businesses making them in severe need of rapid, efficient
and effective processes to be able to focus on their clients holistically. They use DBP
widely in their daily operations like processing end-of-day (EOD) jobs which include
highly important and frequently used activities and services such as: preparing employees′

payroll, interest rate calculations, and customer′s bank statements, credit card processing
bills, fraud detection data, and many others [4]. Banks usually outsource DBP to a third-
party company (service provider) that takes charge of arranging and processing the data
and aggregating the output as shown in Figure 1. The service provider company leases
processors and software from a provider to perform the batch process for the bank based
on a Service Level Agreement (SLA). The service provider usually operates after closing
hours so there will be no more data entries or online intervention.

Algorithms 2021, 14, x FOR PEER REVIEW 6 of 24

simulated annealing. The programming was done using Python programming. The re-
search case study scheduled batches to parallel independent machines where the results
of data processing demonstrated reduced total tardiness.

As concluded from the above survey, none of the articles found in the literature cov-
ered all aspects of data batch processing and scheduling. While some researchers concen-
trated on fulfilling the time constraint, others aimed at scheduling the maximum number
of tasks effectively; however, none of the studies found in the literature considered cost
during the scheduling process of data batches. This work tackles the significantly effective
and widely used data batching process covering all its aspects. It will focus on scheduling
a set of required jobs to be processed in a batch using the available resources (i.e., proces-
sors) as per the predecessors, job priorities and constraints stated in the SLA while batch
job′s predecessors and priorities are specified by the client depending on the type of tasks
handled. This work represents a major contribution to the literature since it comprises all
aspects of the DBP including cost.

3. Data Batch Algorithm
This research tackles the financial data supply chain management for the banking

and financial sector which mainly revolves around processing financial-related data using
available resources. Those resources are usually software and hardware processors. A ma-
jor tool used in the management of the financial data supply chain is data batch processing
(DBP). Our study covers all aspects of data batch processing—such as job priorities, prec-
edence task relation, and time constraints—in addition to different types of cost. It is vital
to emphasize the importance of the cost aspect in data batch processing since the utilized
resources′ costs are very high. Yet, previous research work has neglected considering DBP
cost despite its significance. Therefore, this research is extremely important since it in-
cludes different types of DBP costs in addition to all other aspects in a scheduling algo-
rithm.

The DBP which the financial sector relies heavily on has been bounded by the IT
systems that drive banking businesses making them in severe need of rapid, efficient and
effective processes to be able to focus on their clients holistically. They use DBP widely in
their daily operations like processing end-of-day (EOD) jobs which include highly im-
portant and frequently used activities and services such as: preparing employees′ payroll,
interest rate calculations, and customer′s bank statements, credit card processing bills,
fraud detection data, and many others [4]. Banks usually outsource DBP to a third-party
company (service provider) that takes charge of arranging and processing the data and
aggregating the output as shown in Figure 1. The service provider company leases pro-
cessors and software from a provider to perform the batch process for the bank based on
a Service Level Agreement (SLA). The service provider usually operates after closing
hours so there will be no more data entries or online intervention.

Figure 1. Data batching service network.

DBP begins with scheduling data, gathered in batches by type, to the available pro-
cessor. The data files are scheduled while taking into consideration job priorities, prede-
cessors and other constraints meaning that jobs will not be processed simultaneously but

Figure 1. Data batching service network.

DBP begins with scheduling data, gathered in batches by type, to the available proces-
sor. The data files are scheduled while taking into consideration job priorities, predecessors
and other constraints meaning that jobs will not be processed simultaneously but rather
as per their schedule. The objective is to execute the tasks using the available resources
to improve utilization, reduce cost and increase their profit while meeting the SLA. Each
job consists of one or more executable data files. It is considered the surface layer of batch
systems. A job consists of multiple tasks; therefore, the network of tasks is a detailed
network view of jobs. In other words, a job is defined as a collection of tasks that are
used to perform a computation. The developed dynamic scheduling algorithm considers
cost types associated with the data batch scheduling which are: servers and software
leasing cost, rental cost for additional resources needed in case of overload and extra work,
penalty cost of failing to execute the batch process as per the (SLA), and the opportunity

Algorithms 2021, 14, 211 7 of 23

cost representing the cost of idling a resource for any period of time due to inefficient
task allocation.

The data batching dynamic algorithm will be presented next. The algorithm will
efficiently decide on resources allocation for the service provider to minimize the total
operational cost. The service provider will batch process data for its clients one at a time
according to a specific service agreement with that client.

3.1. Dynamic Cost Scheduling Algorithm for Data Batch Processing (DCSDBP)

Usually, given the current business practice dealing with such techniques, certain
market-based rules govern the implementation of these scheduling processes. Therefore,
the following assumptions underpinning the proposed algorithm are applied:

• The service-providing company lease a fixed number of data processors.
• Reserving processors is not allowed at the beginning or during the batch process

scheduling. A processor is immediately acquired once a decision is made to rent it.
• The characteristics of data files that will be processed as batches such as size and

priorities are specified at the beginning of the scheduling process.
• Hardware and software costs are incurred for processing data.
• The hardware cost is a fixed amount.
• Software cost will have fixed and variable cost amounts; the variable cost is charged

based on usage per unit time.
• Additional processors can be rented anytime during the execution; however, costs

will be higher, 1.25 times, than the currently leased processors′ hardware and software
fixed cost. Also, a software variable cost is charged per unit time of usage. These
assumptions are derived from practices in the field.

• Additional processors are rented only if there is a chance of not meeting the SLA.
• When an additional processor is acquired, it will be accounted for from the time it is

acquired until the end of the batch window.
• Whenever an additional processor is rented at any time unit T, the endorsed fixed

hardware and software costs will be calculated from the time of renting until the end
of the batch process.

• Each leased or additionally rented processor executes a single task at a time.
• Different tasks can be processed in parallel. Parallel processing can occur only if there

is no restriction due to priorities and predecessors relations provided in advance.
• A single data file containing multiple tasks can be multi-processed on multiple proces-

sors at the same time if it is allowed by the tasks predefined predecessors relations
and the hardware and software resources are available.

• The iteration clock time unit is estimated by the time it takes to process the smallest
size unit of the data file.

• The total DBP time is a multiple of the iteration unit time. Files are allocated to
processors until a predetermined SLA time is reached. A penalty cost is imposed on
each delay unit of time if the SLA is exceeded. The total penalty cost is calculated by
multiplying the time delay by the penalty cost per unit time.

• At the beginning of each time unit T, files are allocated and resources are captured.
However, at the end of the time period T, all resources are freed and ready for the next
time period T.

3.1.1. Indices

i,j Data file.
k Leased processor
r Rented processor.
T Clock discrete time

Algorithms 2021, 14, 211 8 of 23

3.1.2. Problem Parameters

I Set of data files.
I′T Subset of the data files that are available for processing at any time T.
ni Required processing time for data file i.
SLA Batch process time as agreed on in the SLA.
K Set of all leased processors.
R Set of rented processors.
VT Number of rented extra processors that can be acquired at any discrete time T.

lT
ij

Binary parameter equal to 1 if data file j immediately precedes data file i, and 0
otherwise (parameters of precedence/dependency matrix).

αT
i Data file weight based on precedence/dependency matrix.

βi Data file scheduling priority provided by the client.
lT
ij Precedence/dependency matrix at each period T.

BW Available batch process window.
Csf Leased processor software fixed leasing cost.
Csv Variable leasing cost per unit time of a processor software.
Ch Leased processor hardware cost.
Cesf Fixed rental cost per unit time of additional processor software.
Cesv Variable rental cost per unit time of additional processor software.
Ceh Rental cost per unit time of additional processor hardware.
Cp Penalty cost per unit time for failing to execute the batch process as per the SLA.
ei Number of times file i can be multi processed.
TCp Delay time total penalty cost.
TH Total cost of renting one additional processor at any time unit T.
DT Available files total multiprocessing ei at any time T.
Tr Clock discrete time at which extra processor r is rented.
END End of batch process.
TBC Total batch process cost.

3.1.3. Problem Variables

Pk Binary variable equal to1 if processor k is available and 0 otherwise.
Wr Binary variable equal to1 if processor r is available and 0 otherwise.

f T
i

Binary variable equal to 1 if data file i is available for processing at discrete time
T, and 0 otherwise.

qT
i

Number of times data file i has been processed. It is incremented by one every
time data file i being processed.

AT Binary variable equal to 1 if T > SLA, and 0 otherwise.
UT Critical path at time T for each file i included in the subset I′T .
EST

i Early start of file i.
LST

i Late start of file i.
ST

i Slack (the difference between early start and late start) of file i.
OT

i Binary variable equal to1 if ni − qT
i > 0, and 0 otherwise.

3.1.4. Problem Decision Variables

XT
iK Binary variable equal to 1 if data file i allocated to processor k, and 0 otherwise.

YT
ir

Binary variable equal to 1 if data file i is allocated to extra processor r, and
0 otherwise.

The DCSDBP algorithm is illustrated in Figure 2 and the step-by-step description of
the algorithm is as follows.

Algorithms 2021, 14, 211 9 of 23

Algorithms 2021, 14, x FOR PEER REVIEW 9 of 24

𝑂 Binary variable equal to1 if ni-𝑞 > 0, and 0 otherwise.

3.1.4. Problem Decision Variables
T
iK

X Binary variable equal to 1 if data file i allocated to processor k, and 0 otherwise.
T
ir

Y Binary variable equal to 1 if data file i is allocated to extra processor r, and 0 other-
wise.

The DCSDBP algorithm is illustrated in Figure 2 and the step-by-step description of
the algorithm is as follows.

Figure 2. Dynamic Cost Scheduling Algorithm for Data Batch Processing (DCSDBP).

Step 1: Preparatory and Initialization Stage

Figure 2. Dynamic Cost Scheduling Algorithm for Data Batch Processing (DCSDBP).

Step 1: Preparatory and Initialization Stage

This step involves preparing the initial data which consists of the subset of data files
that are ready for processing and the availability of leased and rented. We also set:

1. The extra processors′ utilization parameter to zero indicating that no extra processor
is used at the beginning of the allocation process.

2. The data files processing parameters to zero meaning that files are not being processed
yet. In addition to that, the time loop is initialized where time is set to zero. At the
end of the step, we initialize all data needed to start the iterative algorithm.

I′T = {} (1)

Algorithms 2021, 14, 211 10 of 23

Set
Pk = 1 ∀ k ∈ K (2)

Equation (2) indicates that leased processors are ready since the binary variable Pk is
set to 1.

Set
Wr = 1 ∀ r ∈ R (3)

Equation (3) indicates that rented processors are ready since the binary variable Wr is
set to 1.

Set
VT = 0 (4)

Equation (4) indicates that the number of rented extra processors acquired at this time
period VT is zero.

Set
qT

i = 0 ∀ i ∈ I (5)

Equation (5) indicates that a data file i have never been processed since qT
i is set

to zero.
Set

T = 0 (6)

Equation (6) indicates the beginning of the time loop of the algorithm where the time
T is set to zero.

Step 2: Set of Files Available for Processing

We assign parameters and weights to the subset of data files available for processing
I′T based on their precedence obtained from the dependency matrix.

If:
∑J

j=1 lT
ij = 1 ∀ i (7)

Then set:
f T
i = 1 (8)

I′T= I′T + {i} (9)

αT
i =

I

∑
θ=1

lT
θi ∀ i (10)

αT
i is the weight for each data file. It is calculated using the precedence/dependency

matrix by finding the number of files that depend on file i.
This step will indicate the set of data files available for processing which will serve as

input for step 3 to start the scheduling of available files on the available processors.

Step 3: Allocation of Files to Processors

In this step, the algorithm allocates files to processors. The model presented in this
step will allocate files with the objective function (11) of minimizing data file allocation
cost while taking into consideration priority, weight and criticality of each file included in
each subset at any time T.

Min (Z T) =
I′

∑
i=1

K
∑

k=1
(

Csv+ (
Cs f+ Ch

BW)

βi αT
i

) XT
iK+

K
∑

k=1
(Cs f+Ch

BW) (1−
I′

∑
i=1

XT
iK)+

I′

∑
i=1

V
∑

v=1
(Cesv+Ces f+Ceh

βi αT
i

)YT
ir+

V
∑

v=1
(Ces f + Ceh) (1−

I′

∑
i=1

YT
ir)+ AT ∗ Cp ∗ (T − SLA)

(11)

The first term considers the basic processors leasing cost, weight αT
i and priority βi

at any time unit T. The second term considers the opportunity cost of not utilizing the
leased processors at any time unit T. The third term handles the cost of renting additional
processors, weight αT

i and priority βi at any time unit T. The fourth term considers the

Algorithms 2021, 14, 211 11 of 23

opportunity cost of not utilizing the additionally rented processors at any time T. the
last term is concerned with the penalty cost of exceeding the SLA. The βi αT

i used in
terms 1 and 3 ensures that files with higher priority and weight are scheduled first. BW is
the available time during which processing can take place. It is used in Equation (11) to
find what the fixed cost of resources per unit time is.

Subject to:

K

∑
k=1

XT
ik +

V

∑
r=1

YT
ir ≤ Mi f T

i ∀ i ∈ I′T where Mi = min {ei, ni − qT
i , K + V} (12)

The constraint in Equation (12) is concerned with leased and additionally rented
processors allocation and their availability to ensure that the total file allocation does not
exceed either file multiprocessing ei or file required remaining processing ni or the total
number of available basic and extra processors (K,V) for any file i at a certain time T.

qT
i ≤ ni ∀ i ∈ I (13)

The constraint in Equation (13) ensures that the number of times a file is processed is
less or equal to the needed processing time.

I′

∑
i=1

XT
ik ≤ PT

k ∀ k ∈ K (14)

The constraint in Equation (14) ensures that exactly one data file is allocated to a single
leased processor.

I′

∑
i=1

YT
ir ≤WT

r ∀ r ∈ R (15)

The constraint in Equation (15) ensures that exactly one data file is allocated to a single
additionally rented processor.

XT
iK 0 or 1 ∀ i ∈ I and k ∈ K (16)

The constraint in Equation (16) declares that the decision variable Xik is binary, mean-
ing that file i either be assigned to a leased processor or not.

YT
ir = 0 or 1 ∀ i ∈ I and r ∈ R (17)

The constraint in Equation (17) declares that the decision variable Yir is binary, mean-
ing that a file i either be assigned to an additionally rented processor or not.

Step 4: Update Utilized Extra Processors

At this stage, we check if an additional processor should be rented at this time unit
to avoid delay and penalty cost. This step involves calculating the critical path duration
for the rest of the unprocessed activities in the data files network at each time unit and
compare it to the remaining time until the end of the batch process time that is agreed on
in the SLA. A trade-off between the cost of renting an additional processor and the penalty
cost is made, and according to that, it will be decided whether to rent a new processor
or incur a penalty cost. Renting a new processor is subject to the condition that the total
number of data files available for processing is higher than the total number of rented basic
and extra processors.

Critical path duration

Calculate UT = duration of the remaining critical path at time T.EST
i = Max

{EST
j + (ni − qi

T)} ∀ i and j ∈ I where (i 6= j) andαi<= αj
(18)

Algorithms 2021, 14, 211 12 of 23

EST
i = 0 ∀ i = 0 (19)

LST
i = Min {LST

j − (ni − qi
T)} ∀ i and j ∈ I where (i 6= j) andαi<= αj (20)

ST
i = LST

i − ESi (21)

UT =
I

∑
i=1

(ni − qi
T) ∀ i ∈ I and ST

i = 0 (22)

In the above equations the slack ST
i for each file i is calculated and the critical path for

the network UT is found for the files with slack equal to zero (ST
i = 0).

Checking critical path duration against SLA
If

UT ≥ SLA−T (23)

Then
TCp = Cp ∗ (UT−(SLA−T)) (24)

Else
TCp = 0 (25)

The above equations calculate the penalty cost TCp for all cases of critical path duration
against SLA.

Cost of renting extra processor in case there is a delay
If

UT ≥ SLA−T (26)

Then
TH = (Cesf + Cesh + Cesv) ∗ UT (27)

Else
TH = 0 (28)

The above equations calculate the extra processor renting cost TH in case of a delay.
Amount of processing to completion

DT = (∑I′
i=1 ei − qT

i) ∀ i ∈ I′T and ei > 1 + (∑I′
i=1 eT

i) ∀ i ∈
I′T and ei = 1

(29)

Decision on renting extra processor
If

TCp ≥ TH and DT > (K + V) (30)

Then
VT= VT + 1 (31)

Tr = T (32)

VT ≤ R (33)

In the above equations, the number of rented extra processor VT is increased by one
if the penalty cost TCp is greater than the extra processor renting cost TH.

In this step, we are calculating the maximum completion time using CPM without
considering splitting because the decision to multi-process a job is not taken yet. A job
multi-processing means it can be split if needed to minimize the completion time of the
batch process. CPM is not the only tool in this study to make the decision. Looking at
Equations (29) and (31), the decision to rent an additional processor is based on another
criterion. D was introduced which, as per Equation (29), ensures that no extra processor
shall be rented unless there is an available task ready to be allocated to it. This ensures that
no additional processor will be rented unless it will be used.

Step 5: Update the Availability of Files

Algorithms 2021, 14, 211 13 of 23

Each data file processing parameter is incremented by the number of times it was
processed. When a file is fully processed, then it is removed from the subset for the
following time unit and the rest of the process.

Update f T
i Matrix:

qT
i = qT

i +
K

∑
k=1

XT
ik+

R

∑
r=1

YT
ir ∀ i ∈ I′T (34)

If
OT

i = 1 (35)

Then
f T+∆
i = 1 (36)

Else
f T+∆
i = 0 (37)

And
lT+∆
ji = 0 ∀ j (38)

If
qT

i = ni

Then
J

∑
j=1

lT+∆
ij = 0 ∀ i (39)

And
I

∑
i=1

lT+∆
ji = 0 ∀ j (40)

This step will update the file availability to determine if any file needs further process-
ing or all files are completed.

Step 6: Check Termination Condition

When all files are processed, then the algorithm shall stop, else the model will go to
step 7.

If
I

∑
i=1

qT
i =

I

∑
i=1

ni (41)

Then
Stop.
If

T > SLA (42)

Then
AT = 1 (43)

Else
AT = 0 (44)

Step 7: Update Clock

Increment iteration clock by one time unit until the DCSDBP algorithm allocates
all files.

T = T+1 (45)

Go to Step 2
Steps 2 through 7 of the DCSDBP will be repeated until all tasks are allocated to

available resources and there are no more jobs waiting in the queue.

Algorithms 2021, 14, 211 14 of 23

The Total batch process cost is updated as follows:

TBC = (Cs f + Ch) ∗ K +
END
∑

T=1

I′T

∑
i=1

K
∑

k=1
Csv ∗ XT

ik

+
BW
∑

T=1

I′T

∑
i=1

K
∑

k=1

(Cs f +Ch)

BW ∗ (1− XT
ik)

+
V
∑

r=1
(Ces f + Ceh)(END− Tr) +

END
∑

T=1

I′T

∑
i=1

V
∑

r=1
Cesv ∗YT

ir

+
V
∑

r=1

I′T

∑
i=1

END
∑

T=Tr
(Ces f + Ceh)(1−YT

ir) + AEND ∗Cp ∗(TEND − SLA)

(46)

The total cost and the completion time will be calculated at the end of the DCSDBP
algorithm. The total batch process cost (C) = leased processors fixed hardware cost +
leased processors fixed software cost+ leased processors variable software cost + leased
processors opportunity cost + rented processors variable software cost + rented processors
fixed software cost + rented processors hardware cost + rented processors opportunity cost
+ penalty cost.

4. Illustrative Example

In this section, we present a numerical example to illustrate the proposed DCSDBP
algorithm. Consider a network of 15 data files with the precedence relations as shown in
Figure 3.

Algorithms 2021, 14, x FOR PEER REVIEW 15 of 24

The total cost and the completion time will be calculated at the end of the DCSDBP
algorithm. The total batch process cost (C) = leased processors fixed hardware cost + leased
processors fixed software cost+ leased processors variable software cost + leased proces-
sors opportunity cost + rented processors variable software cost + rented processors fixed
software cost + rented processors hardware cost + rented processors opportunity cost +
penalty cost.

4. Illustrative Example
In this section, we present a numerical example to illustrate the proposed DCSDBP

algorithm. Consider a network of 15 data files with the precedence relations as shown in
Figure 3.

Figure 3. Illustrative example.

The precedence relationships are fixed relationships provided by the client that the
service provider must use in processing the files; therefore, there cannot be any deadlocks
relation. Table 1 presents the different parameters’ values; these values are either given
directly such as file′s multiprocessing ei, processing time ni and priority βi, or derived
from the files precedence relation such as file′s weight αi^T and precedence parameter
Lij^T. The following data were also used: there are two available leased processors; max-
imum number of available processors than can be rented is 5, SLA = 18 time units; batch
window BW = 22 time unit; leased processor fixed software cost Csf = $10; leased processor
hardware cost Ch = $100; leased processor variable software cost per time unit Csv = $2;
rented processor fixed software cost Cesf = $12.5; rented processor Hardware Cost Ceh =
$125; rented processor variable software cost per time unit Cesv = $2.5; penalty cost per
time unit in case of exceeding the SLA is Cp = $200.

Table 1. Model parameters at T = 0.

File 𝒆𝒊 𝒏𝒊 𝜷𝒊 𝜶𝒊𝑻 𝟎 𝑳𝒊𝒋

Figure 3. Illustrative example.

The precedence relationships are fixed relationships provided by the client that the
service provider must use in processing the files; therefore, there cannot be any deadlocks
relation. Table 1 presents the different parameters’ values; these values are either given
directly such as file′s multiprocessing ei, processing time ni and priority βi, or derived
from the files precedence relation such as file′s weight αiˆT and precedence parameter LijˆT.
The following data were also used: there are two available leased processors; maximum
number of available processors than can be rented is 5, SLA = 18 time units; batch window

Algorithms 2021, 14, 211 15 of 23

BW = 22 time unit; leased processor fixed software cost Csf = $10; leased processor hard-
ware cost Ch = $100; leased processor variable software cost per time unit Csv = $2; rented
processor fixed software cost Cesf = $12.5; rented processor Hardware Cost Ceh = $125;
rented processor variable software cost per time unit Cesv = $2.5; penalty cost per time unit
in case of exceeding the SLA is Cp = $200.

Table 1. Model parameters at T = 0.

File ei ni βi αT=0
i Lij

0 0 0 1 1 1
1 3 9 2 6 1
2 1 1 3 5 1
3 2 8 2 5 1
4 3 9 4 4 1
5 1 3 2 4 3
6 1 1 5 4 1
7 1 3 2 3 3
8 1 8 2 3 3
9 2 4 2 3 1

10 2 8 2 3 1
11 1 1 1 4 7
12 6 12 1 4 5
13 3 9 1 4 5
14 1 2 2 2 4
15 1 4 2 2 4
16 0 0 1 1 1

The algorithm was programmed using LINGO 15.0 x64. The Lingo output shows
that the files were processed in 20 time units, while 4 extra processors were rented, and
the batch process exceeded the SLA by 2 time units, which indicates that penalty cost was
imposed. Once the batch process started, the program sets all initialization conditions,
which means that ready files subset I′T is empty. At the beginning of each time unit T,
the precedence parameters lT

ij for all files are checked to determine which files are ready

to be processed. All files having precedence parameter lT
ij = 1 are considered ready and

inserted to the ready files subset I′T . It is worth mentioning that files 0 and 16 are start
and end files with processing time ni = 0 which means they won′t be allocated to any
processor. The reason of their existence is to start and end the network for critical path
calculation purposes.

The algorithm started at T = 0 with files 1, 2, 3, 4, 6, 9, and 10 ready for processing;
therefore, they were inserted into the ready files subset I′T . At T = 0 files 4 and 6 were
processed by leased processor 2 and 1 respectively because these files have the highest
calculated weight αT=0

i and predetermined priority βi while the rest of ready files were
shifted for the next time unit. At T = 1, the values of precedence parameter lT

ij are updated
for all files, so the ones that have not been processed or not finished processing still have
the value of 1 and are consequently still included in the ready files subset I′T while file
6 which has a processing time ni of 1 has the value of lT

ij =0 and no longer exist in the

subset I′T since it is considered ready. Also, an additional processor VT was rented and
utilized at that time unit because the criteria of renting a new processor was satisfied. It
was found that the critical path of the remaining network activities exceeds the SLA, so the
program needs to take an action to try to avoid the delay. The decision of renting a new
processor is made since the cost of renting a new processor TH was found to be less than
the penalty cost TCp at that time unit and also since there are ready files for the next time
unit that exceeds the total number of available processor. During T = 1 file 4 was processed
by leased processors 1 and 2, as well as by the additionally rented processor 1.

At T = 2 another additional processor was rented based on the above-explained mecha-
nism. File 4 continued to be processed by leased processors 1 and rented processors 1 and 2

Algorithms 2021, 14, 211 16 of 23

since it has a multiprocessing of ei = 3. Also, file 2 was processed by leased processor 2.
At T = 3 an additional third processor was rented and file 1 was processed by leased
processors 1 and 2 and rented processor 3 due to its multiprocessing criteria. File 4 was
processed by rented processors 1 and 2 and by that it is considered ready. At T = 4 the forth
additional processor was rented and used to process file 1 along with rented processors 1
and 3 while rented processor 2 and leased processor 1 were used to process file 3. File 5 was
processed by leased processor 2. T = 5 had the same files allocations as T = 4. It is noted
that the program did not rent any more extra processor starting from T = 5 onwards which
means it utilized 4 out of the 5 processors available for renting and that is based on the
renting mechanism. The same steps were executed on all files until the end of processing
at T = 19 when all files were processed.

The batch process cost calculation was based on using Equation (46) by using the
input values listed earlier in this section and the allocation results from Lingo output;
Table 2 demonstrates the detailed costs. Also, Table 2 clarifies the cost of allocating files to
leased processor and that includes hardware and software fixed costs as well as software
variable cost. Similarly, rented processors allocation cost which includes hardware and
software fixed costs as well as software variable cost is shown. Then the opportunity costs
associated with each processor type is calculated. Penalty cost is determined at the end of
the batch process and total cost is found by summing all costs for each time unit. In Table 2,
column (1) represents the time unit T, column (2) shows the total number of existing leased
processors K, column (3) identifies how many leased processors are actually being acquired
at each time unit T, column (4) calculates the leased processors variable cost Csv while the
fixed software Csf and hardware Ch costs are calculated at the end because they are not
related to time. Leased processors opportunity cost is determined in column (5) as per
Equation (27). For rented processors, column (6) shows the number of additionally rented
processors VT at that time unit T, column (7) represents the number of rented processors
actually being acquired at each time unit T. In column (8), and based on model assumption
14 which states that rented processors are paid for from the time unit T they are rented
onwards, rented processors total allocation cost is calculated using all types of costs (extra
fixed hardware cost Ceh, extra fixed software cost Cesf and extra variable software cost
Cesv). It is worth mentioning that in case of an additional processor being rented but
not utilized due to unavailability of ready files, the total allocation cost will equal fixed
hardware cost Ceh plus fixed software cost Cesf while the variable software cost Cesv will
not exist since the processor is not being utilized. Rented processors opportunity cost is
found in column (9) using fixed hardware cost Ceh plus fixed software cost Cesf. Finally,
column (10) sums all the above costs for each time unit T.

At the end of Table 2 leased fixed costs are added, they represent fixed hardware
cost Ch plus fixed software cost Csf for each leased processor k. Also as mentioned above
penalty cost is calculated based on number time units the processing is delayed beyond
the SLA. Since leased processors fixed hardware cost Ch and fixed software cost Csf are
calculated per unit time by dividing them by BW, remaining opportunity cost for basic
processor exists in case the batch process time END is less than batch window BW. It
represents the opportunity cost of the leased processors for the time units between the end
of batch process END and BW.

From Table 2, we can see that from T = 0 until T = 17, the basic allocation cost
was showing the utilization of both leased processors, which explains the zero value for
opportunity cost of leased processors during the same period. However, at T = 18 and 19
one leased processor was utilized and that ended up in variable allocation cost for one
processor and opportunity cost for the other. It can be also noticed that from T = 0 up to
T = 10, every rented processor was utilized which ended in zero opportunity cost. After
T = 10 some rented processors were not utilized due to unavailability of ready files such as
at T = 11 where 3 out of 4 rented processors were utilized. Also at T = 12, 13, 16, 17, 18, and
19 none of the rented processors were utilized due to the unavailability of ready files.

Algorithms 2021, 14, 211 17 of 23

Table 2. DBP cost summary.

Leased Processors Rented Processors (10)
Total

Cost/Time
Period

$

(1)
T

(2)
No. of

P

(3)
No. of

Acquired
P

(4)
Allocation
Variable

cost $

(5)
Oppo.
Cost $

(6)
No. of

P

(7)
No. of

Acquired
P

(8)
Total

Allocation
Cost $

(9)
Oppo.
Cost $

0 2 2 4.00 0.00 0 0 0.00 0.00 4.00
1 2 2 4.00 0.00 1 1 8.75 0.00 12.75
2 2 2 4.00 0.00 2 2 17.50 0.00 21.50
3 2 2 4.00 0.00 3 3 26.25 0.00 30.25
4 2 2 4.00 0.00 4 4 35.00 0.00 39.00
5 2 2 4.00 0.00 4 4 35.00 0.00 39.00
6 2 2 4.00 0.00 4 4 35.00 0.00 39.00
7 2 2 4.00 0.00 4 4 35.00 0.00 39.00
8 2 2 4.00 0.00 4 4 35.00 0.00 39.00
9 2 2 4.00 0.00 4 4 35.00 0.00 39.00
10 2 2 4.00 0.00 4 4 35.00 0.00 39.00
11 2 2 4.00 0.00 4 3 32.50 6.25 42.75
12 2 2 4.00 0.00 4 0 25.00 25.00 54.00
13 2 1 2.00 5.00 4 0 25.00 25.00 57.00
14 2 2 4.00 0.00 4 4 35.00 0.00 39.00
15 2 2 4.00 0.00 4 4 35.00 0.00 39.00
16 2 2 4.00 0.00 4 0 25.00 25.00 54.00
17 2 2 4.00 0.00 4 0 25.00 25.00 54.00
18 2 1 2.00 5.00 4 0 25.00 25.00 57.00
19 2 1 2.00 5.00 4 0 25.00 25.00 57.00

Total dynamic cost $ for all periods 795.25
Penalty cost $ 400.00
Leased processors fixed costs $ 220.00
Remaining opportunity cost for Leased
processors $ 20.00

Batch Process Total Cost $ 1435.25

The above illustrative example shows the effectiveness of the developed algorithm in
allocating files to processors. The algorithm managed to allocate highly prioritized and
weighted files before the ones with lower priority and weight. Also, the algorithm will
advise renting the necessary number of extra processors to accomplish the batch process
goal while trying to minimizing cost. In the illustrated example, the program rented 4 extra
processors to achieve minimum real batch process time, which is 20 time units. Although
that exceeds the SLA specified time of 18 time units, it is the minimum possible execution
time for this network due to network logic and predecessors′ relations.

The illustrative example shows that the batch processing is performed using a set of
assumptions and constraints under which the problem makes the best decision at that time
unit. Decisions are made dynamically based on the current status and previous decisions.
This decision process ascertains that the best decision is taken at each iteration. We do
not define the global network (of all feasible assignments of jobs to servers) to perform a
direct optimization on it, we rather generate the subnetwork of feasible assignments at each
iteration (Step 3 of the algorithm). This sequence of optimum decision-making ensures
that the solution at the end is global. Not being optimal would mean that a better solution
exists at some stage in the optimization process, which would contradict stage 3 as built.

5. Sensitivity Analysis

The whole research was motivated by working with a company in the field, therefore,
whatever assumptions and constraints applied to the algorithm are based on practice.
Given the initial results obtained from the illustrative example, they were promising and
could be easily extended to cover other networks.

Algorithms 2021, 14, 211 18 of 23

Sensitivity analysis was performed in two parts. The first part was conducted on the
illustrative example network by changing different parameters. In part two, the algorithm
performance was tested using networks with varying sizes and complexities.

5.1. Parameters Variation Analysis

Different parameters were tested and the summary of results total cost and process
time are shown in Figures 4 and 5, respectively.

Algorithms 2021, 14, x FOR PEER REVIEW 19 of 24

5.1. Parameters Variation Analysis
Different parameters were tested and the summary of results total cost and process

time are shown in Figure 4 and Figure 5, respectively.

Figure 4. Result of sensitivity analysis on DBP total cost.

Figure 4. Result of sensitivity analysis on DBP total cost.

Algorithms 2021, 14, x FOR PEER REVIEW 19 of 24

5.1. Parameters Variation Analysis
Different parameters were tested and the summary of results total cost and process

time are shown in Figure 4 and Figure 5, respectively.

Figure 4. Result of sensitivity analysis on DBP total cost.

Figure 5. Result of sensitivity analysis on DBP batch time.

Algorithms 2021, 14, 211 19 of 23

5.1.1. Varying Number of Processors Available to Rent

In the case of having four processors available for rent to be used in the batch process,
the results were the same as the case of five available processors since the same number
of processors were actually rented as in the illustrative example results shown earlier.
However, having three available processors to rent resulted in a longer batch process time
and higher total cost in addition to that, the SLA was exceeded by more time units. Having
two processors available for rent resulted in more delay in batch process time, increased
the total cost, and the SLA was exceeded by 6 time units. The batch process had the
highest delay and total cost in the last case of having only one available processor to rent.
The previous results shows that the algorithm is renting additional processors only when
needed in order to perform the batch process with minimum execution time and total cost.

5.1.2. Changing SLA Value

Different values for the SLA were tested. The results show the lower the SLA value,
the higher the penalty cost will be or the need to rent additional processors to avoid delay
and the opposite in case of higher SLA. The values tested are for SLA = 16, 17, 19, and
20. It is recommended that, when deciding on the SLA time between the client and the
service provider, both sides study the data batch network carefully to decide on the right
SLA terms that serve both sides and achieve the goal of the batch process.

5.1.3. Varying Penalty Cost per Time Unit

Different penalty cost values were assumed and the algorithm was tested accordingly.
The results showed that the lowest batch process cost is obviously obtained when the
penalty cost is set to zero. In this case, there will not be any trade-off between cost of
renting an additional processor and any other cost; however, the program needed more
time to run since the completion time to process doubled. In the case of the penalty, cost
equals to $5 same results were obtained as in the case of zero penalty cost. Three extra
processors instead of four were used with a penalty cost equal to 8 and the total batch
process time was higher; however, the total cost is less. In cases of penalty cost of $20
and $100 per time unit, the same number of extra processors were rented as of the case
of penalty cost per unit time = $200 but with a less total bath cost. Increasing the penalty
cost further to $500 will not affect the way files are allocated to servers since the program
will not be able to squeeze the batch time more even if the trade-off between renting more
extra processors and penalty cost goes in favor of utilizing another rented processor simply
because of the network′s activity relations. In other words, due to precedence constraints
jobs are processed only when they are available. Therefore, even if more resources are
available, the duration will not be reduced since the resources will not be utilized; i.e.,
paying more money for resources may not reduce the completion time.

5.1.4. Changing the Processor Rental Costs

When increasing the renting cost of an additional processor to 2.5 times the leased
processor cost, the program rented the same number of processors to finish the batch
process because the penalty cost is still higher relatively. It only ended up increasing the
total batch cost, while the same number of additional processors were utilized. Increasing
the processors renting cost to 5 times the leased processor cost did not stop the program
from renting additional processors to finish the batch process because the penalty cost is
still relatively higher. However, the total batch cost increased while the same number of
additional processors were utilized. To prove the efficiency of the algorithm, the case of
equal costs for leased and rented processors was tested, the algorithm rented only what it
needed from available additional processors to finish the batch process. Finally, in the case
of setting costs ratio to 0.5, the total price went lower but the files-to-processors allocation
stayed the same.

The above findings and analysis prove that when the algorithm reaches the optimum
solution, it does not utilize any unnecessary resources since it is part of the objective

Algorithms 2021, 14, 211 20 of 23

function to minimize all types of costs while trying to meet SLA deadline and satisfy all
priorities and constraints.

5.2. Jobs Network Size Analysis

In the second part of the sensitivity analysis, the developed algorithm was tested
by varying the number of jobs and the network complexity. Different network sizes and
relationship complexities were generated using a random network generator RanGen2
software [46]. Several data for different network sizes of 15, 25, 50, and 100 jobs were
generated. Each network size was also generated based on precedence complexity measure
by an indicator of complexity “I2 index” which is a measure of the closeness of a network
to a serial or parallel network based on the number of progressive levels. If I2 = 0 then the
network activities are all in parallel, meaning no relation between them, while if I2 = 1 then
the network activities are all in series [47]. The average program run time for the complete
DCSDBP Algorithm for each network is shown in Table 3. The results demonstrate that the
algorithm is efficient since the program run time is relatively low and acceptable.

Table 3. Run times for variant network sizes with different complexities.

No. of Network Activities Complexity Index I2 Run Time (s)

15
0.2 2
0.5 3
0.8 3

25
0.2 5
0.5 2
0.8 4

50
0.2 11
0.5 13
0.8 14

100
0.2 33
0.5 34
0.8 34

6. Conclusions

The financial data supply chain is of huge importance to the banking sector. It impacts
financial institutes′ performance and customer service. Therefore, it is of great necessity to
manage the scheduling of the financial data supply chain. The main tool utilized in the
financial data supply chain is data batch processing. Batch scheduling and processing are
extremely important because they are widely used in service industries to track tasks and
data continuously. However, there is a lack of an efficient scheduling solution for data batch
scheduling which creates a major issue for the financial sector. The goal of this work is to
develop an iterative Dynamic cost scheduling for DBP (DCSDBP) algorithm that includes
all aspects of DBP. Different types of costs associated with the batch process were taken into
consideration to develop the iterative scheduling algorithm. While the algorithm worked
towards minimizing these costs, it aimed at the same time to allocate files based on their
weight and priority without violating network predecessors′ relations. Also, the algorithm
tries to satisfy the time limit specified in the SLA. The developed algorithm proved its
effectiveness in allocating data files to available resources while satisfying priority and
predecessors constraints in addition to maintaining the minimum possible cost, keeping in
mind the SLA time limit. After coding the developed algorithm using Lingo, a number of
networks were used to test it. It was concluded from the results that it is more effective
to include all types of costs along with priority, weight, predecessor, and time factors,
which led to a more effective allocation and a lower total batch process cost. It can also
be seen from the results that renting more processors does not necessarily mean that
the batch process will be performed in a shorter time because network logic relations or
‘predecessors′ relations′ govern the process′s total time. The decision of whether or not to

Algorithms 2021, 14, 211 21 of 23

rent a new processor and when to do so is very important since it will affect the whole batch
process in terms of file allocations to processors and total processing cost and time. Our
research has positive implications on the performance and customer service of financial
institutes and banks that choose to adopt it. It optimizes the scheduling of the data batch
process which reflects on a more efficient and reliable financial data supply chain and
through better management. The algorithm was developed under certain assumptions;
while we tried to generalize it to cover batch processing, there are some limitations that
could be addressed in future researches. For instance, it was assumed that resources costs
are the same for leased processors, this could be generalized to assume different costs or
even different costs as a future research direction. Also, additional research could be done
on cases where renting additional processors has varying costs. Future researchers might
also work on developing the additional processors renting mechanism to allow more than
one processor to be rented for each time unit in case that serves the total completion time
and maintains a low cost. In addition, one of our basic assumptions is that processors
reservation is not allowed, which can be researched further to test the case where processor
reservation is allowed and how it can be implemented; in addition to its impact on the
different aspects of the batch process such as total process time, total cost and basic and
extra processor utilization.

Author Contributions: A.A.S.: conceptualization, methodology, software programming, validation,
and writing the original draft. A.S. and M.N.: conceptualization, methodology, and finalizing the
manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: The authors received no specific funding for this work.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable. This article does not contain any studies with human
participants or animals performed by any of the authors.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors have no conflict of interest to declare.

References
1. Jensen, C.T. Smarter Banking, Horizontal Integration, and Scalability. 2010. Available online: http://www.redbooks.ibm.com/

redpapers/pdfs/redp4625.pdf (accessed on 15 June 2021).
2. Chang, Y.-C.; Chang, K.-H.; Chang, T.-K. Applied column generation-based approach to solve supply chain scheduling problems.

Int. J. Prod. Res. 2013, 51, 4070–4086. [CrossRef]
3. Bullynck, M. What Is an Operating System? A Historical Investigation (1954–1964). In Reflections on Programming Systems:

Historical and Philosophical Aspects; Philosophical Studies Series 2542–8349; Springer International Publishing: Cham, Switzerland,
2018; pp. 49–79.

4. Microsoft-Corporation. Batch Applications—The Hidden Asset. 2006. Available online: http://download.microsoft.com/
download/4/1/d/41d2745f-031c-40d7-86ea-4cb3e9a84070/Batch%20The%20Hidden%20Asset.pdf (accessed on 15 June 2021).

5. Antani, S. Batch Processing with WebSphere Compute Grid: Delivering Business Value to the Enterprise. 2010. Available online:
http://www.redbooks.ibm.com/redpapers/pdfs/redp4566.pdf (accessed on 16 June 2021).

6. Barker, M.; Rawtani, J. Practical Batch Process Management; Elsevier: Burlington, VT, USA, 2005.
7. Matyac, E. Financial Supply Chain Management. Str. Financ. 2015, 96, 62–63.
8. Fahy, M.; Feller, J.; Finnegan, P.; Murphy, C. Co-operatively re-engineering a financial services information supply chain: A case

study. Can. J. Adm. Sci. 2009, 26, 125–135. [CrossRef]
9. Mbaka, A.; Namada, J. Integrated financial management information system and supply chain effectiveness. Am. J. Ind. Bus.

Manag. 2019, 9, 204–232. [CrossRef]
10. Page, A.J.; Keane, T.M.; Naughton, T.J. Multi-heuristic dynamic task allocation using genetic algorithms in a heterogeneous

distributed system. J. Parallel Distrib. Comput. 2010, 70, 758–766. [CrossRef] [PubMed]
11. Méndez, C.A.; Cerdá, J.; Grossmann, I.E.; Harjunkoski, I.; Fahl, M. State-of-the-art review of optimization methods for short-term

scheduling of batch processes. Comput. Chem. Eng. 2006, 30, 913–946. [CrossRef]
12. Osman, M.S.; Ndiaye, M.; Shamayleh, A. Dynamic scheduling for batch data processing in parallel systems. In Proceedings of the

3rd International Conference on Operations Research and Enterprise Systems-Volume 1: ICORES, Angers, France, 6–8 March
2014; pp. 221–225.

http://www.redbooks.ibm.com/redpapers/pdfs/redp4625.pdf
http://www.redbooks.ibm.com/redpapers/pdfs/redp4625.pdf
http://doi.org/10.1080/00207543.2013.774476
http://download.microsoft.com/download/4/1/d/41d2745f-031c-40d7-86ea-4cb3e9a84070/Batch%20The%20Hidden%20Asset.pdf
http://download.microsoft.com/download/4/1/d/41d2745f-031c-40d7-86ea-4cb3e9a84070/Batch%20The%20Hidden%20Asset.pdf
http://www.redbooks.ibm.com/redpapers/pdfs/redp4566.pdf
http://doi.org/10.1002/cjas.98
http://doi.org/10.4236/ajibm.2019.91014
http://doi.org/10.1016/j.jpdc.2010.03.011
http://www.ncbi.nlm.nih.gov/pubmed/20862190
http://doi.org/10.1016/j.compchemeng.2006.02.008

Algorithms 2021, 14, 211 22 of 23

13. Al Sadawi, A.; Shamayleh, A.; Ndiaye, M. Cost Minimization in Data Batch Processing. In Proceedings of the 6th International
Conference on Industrial Engineering and Operations Management, Kuala Lumpur, Malaysia, 8–10 March 2016.

14. Lim, S.; Cho, S.-B. Intelligent OS Process Scheduling Using Fuzzy Inference with User Models; Springe: Berlin/Heidelberg, Germany,
2007; pp. 725–734.

15. Xhafa, F.; Abraham, A. Computational models and heuristic methods for Grid scheduling problems. Future Gener. Comput. Syst.
2010, 26, 608–621. [CrossRef]

16. Aida, K. Effect of Job Size Characteristics on Job Scheduling Performance. In Lecture Notes in Computer Science; Springe Science &
Business Media: Berlin/Heidelberg, Germany, 2000; pp. 1–17.

17. Stoica, I.; Abdel-Wahab, H.; Pothen, A. A microeconomic scheduler for parallel computers. In Proceedings of the Workshop on
Job Scheduling Strategies for Parallel Processing, Santa Barbara, CA, USA, 25 April 1995; pp. 200–218.

18. Stoica, I.; Pothen, A. A robust and flexible microeconomic scheduler for parallel computers. In Proceedings of the 3rd International
Conference on High Performance Computing (HiPC), Trivandrum, India, 19–22 December 1996; pp. 406–412.

19. Islam, M.; Khanna, G.; Sadayappan, P. Revenue Maximization in Market-Based Parallel Job Schedulers; Technical Report; Ohio State
University: Columbus, OH, USA, 2008; pp. 1–13.

20. Damodaran, P.; Vélez-Gallego, M.C. A simulated annealing algorithm to minimize makespan of parallel batch processing
machines with unequal job ready times. Expert Syst. Appl. 2012, 39, 1451–1458. [CrossRef]

21. Mehta, M.; Soloviev, V.; DeWitt, D.J. Batch scheduling in parallel database systems. In Proceedings of the IEEE 9th International
Conference on Data Engineering, Vienna, Austria, 19–23 April 1993; pp. 400–410.

22. Grigoriev, A.; Sviridenko, M.; Uetz, M. Unrelated Parallel Machine Scheduling with Resource Dependent Processing Times. In
Proceedings of the Integer Programming and Combinatorial Optimization: 11th International IPCO Conference, Berlin, Germany,
8–10 June 2005; pp. 182–195.

23. Bouganim, L.; Fabret, F.; Mohan, C.; Valduriez, P. Dynamic query scheduling in data integration systems. In Proceedings of the
16th International Conference on Data Engineering, San Diego, CA, USA, 28 February–3 March 2000; pp. 425–434.

24. Ngubiri, J.; van Vliet, M. A metric of fairness for parallel job schedulers. Concurr. Comput. Pract. Exp. 2009, 21, 1525–1546.
[CrossRef]

25. Arpaci-Dusseau, A.; Culler, D. Extending Proportional-Share Scheduling to a Network of Workstations. In Proceedings of the
International Conference on Parallel and Distributed Processing Techniques and Applications, Las Vegas, NV, USA, 30 June–3
July 1997.

26. Ferguson, D.; Nikolaou, C.; Sairamesh, J.; Yemini, Y. Economic models for allocating resources in computer systems. Market-Based
Control: A Paradigm for Distributed Resource Allocation; World Scientific: Singapore, 1996; pp. 156–183.

27. Kuwabara, K.; Ishida, T.; Nishibe, Y.; Suda, T. An Equilibratory Market-Based Approach for Distributed Resource Allocation
And Its Applications To Communication Network Control. In Market-Based Control: A Paradigm for Distributed Resource Allocation;
World Scientific: Singapore, 1996; pp. 53–73.

28. Chun, B.N.; Culler, D.E. A Malleable-Job System for Timeshared Parallel Machines. In Proceedings of the 2nd IEEE/ACM
International Symposium on Cluster Computing and the Grid, Washington, DC, USA, 21–24 May 2002; p. 30.

29. Sairamesh, J.; Ferguson, D.F.; Yemini, Y. An approach to pricing, optimal allocation and quality of service provisioning in
high-speed packet networks. In Proceedings of the INFOCOM’95, Boston, MA, USA, 2–6 April 1995; pp. 1111–1119.

30. Yeo, C.S.; Buyya, R. A taxonomy of market-based resource management systems for utility-driven cluster computing. Softw. Pract.
Exp. 2006, 36, 1381–1419. [CrossRef]

31. Islam, M.; Balaji, P.; Sabin, G.; Sadayappan, P. Analyzing and Minimizing the Impact of Opportunity Cost in QoS-aware Job
Scheduling. In Proceedings of the 2007 International Conference on Parallel Processing (ICPP 2007), Xi’an, China, 10–14 September
2007; p. 42.

32. Mutz, A.; Wolski, R. Sc-International Conference for High Performance Computing. Efficient auction-based grid reservations
using dynamic programming. In 2008 SC-International Conference for High Performance Computing, Networking, Storage and Analysis;
IEEE: Piscataway, NJ, USA, 2008; pp. 1–8.

33. Mutz, A.; Wolski, R.; Brevik, J. Eliciting honest value information in a batch-queue environment. In 2007 8th IEEE/ACM
International Conference on Grid Computing; IEEE: Piscataway, NJ, USA, 2007; pp. 291–297.

34. Lavanya, M.; Shanthi, B.; Saravanan, S. Multi objective task scheduling algorithm based on sla and processing time suitable for
cloud environment. Comput. Commun. 2020, 151, 183–195. [CrossRef]

35. Muter, İ. Exact algorithms to minimize makespan on single and parallel batch processing machines. Eur. J. Oper. Res. 2020, 285,
470–483. [CrossRef]

36. Jia, Z.; Yan, J.; Leung, J.Y.; Li, K.; Chen, H. Ant colony optimization algorithm for scheduling jobs with fuzzy processing time on
parallel batch machines with different capacities. Appl. Soft Comput. 2019, 75, 548–561. [CrossRef]

37. Li, S. Parallel batch scheduling with inclusive processing set restrictions and non-identical capacities to minimize makespan. Eur.
J. Oper. Res. 2017, 260, 12–20. [CrossRef]

38. Josephson, J.; Ramesh, R. A novel algorithm for real time task scheduling in multiprocessor environment. Clust. Comput. 2019, 22,
13761–13771. [CrossRef]

39. Ying, K.-C.; Lin, S.-W.; Cheng, C.-Y.; He, C.-D. Iterated reference greedy algorithm for solving distributed no-idle permutation
flowshop scheduling problems. Comput. Ind. Eng. 2017, 110, 413–423. [CrossRef]

http://doi.org/10.1016/j.future.2009.11.005
http://doi.org/10.1016/j.eswa.2011.08.029
http://doi.org/10.1002/cpe.1384
http://doi.org/10.1002/spe.725
http://doi.org/10.1016/j.comcom.2019.12.050
http://doi.org/10.1016/j.ejor.2020.01.065
http://doi.org/10.1016/j.asoc.2018.11.027
http://doi.org/10.1016/j.ejor.2016.11.044
http://doi.org/10.1007/s10586-018-2083-5
http://doi.org/10.1016/j.cie.2017.06.025

Algorithms 2021, 14, 211 23 of 23

40. Li, M.; Lei, D. An imperialist competitive algorithm with feedback for energy-efficient flexible job shop scheduling with
transportation and sequence-dependent setup times. Eng. Appl. Artifi. Intell. 2021, 103, 104307. [CrossRef]

41. Lei, D.; Yuan, Y.; Cai, J.; Bai, D. An imperialist competitive algorithm with memory for distributed unrelated parallel machines
scheduling. Int. J. Prod. Res. 2020, 58, 597–614. [CrossRef]

42. Rahman, H.F.; Janardhanan, M.N.; Poon Chuen, L.; Ponnambalam, S.G. Flowshop scheduling with sequence dependent setup
times and batch delivery in supply chain. Comput. Ind. Eng. 2021, 158, 107378. [CrossRef]

43. Luo, S. Dynamic scheduling for flexible job shop with new job insertions by deep reinforcement learning. Appl. Soft Comput. J.
2020, 91, 106208. [CrossRef]

44. Yun, Y.; Hwang, E.J.; Kim, Y.H. Adaptive genetic algorithm for energy-efficient task scheduling on asymmetric multiprocessor
system-on-chip. Microprocess. Microsyst. 2019, 66, 19–30. [CrossRef]

45. Saraswati, D.; Sari, D.K.; Kurniadi, S.P. Minimizing total tardiness in parallel machines with simulated annealing using python.
Int. J. Adv. Sci. Technol. 2019, 29, 645–654.

46. Vanhoucke, M.; Coelho, J.; Debels, D.; Maenhout, B.; Tavares, L.V. An evaluation of the adequacy of project network generators
with systematically sampled networks. Eur. J. Oper. Res. 2008, 187, 511. [CrossRef]

47. Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557.
[CrossRef]

http://doi.org/10.1016/j.engappai.2021.104307
http://doi.org/10.1080/00207543.2019.1598596
http://doi.org/10.1016/j.cie.2021.107378
http://doi.org/10.1016/j.asoc.2020.106208
http://doi.org/10.1016/j.micpro.2019.01.011
http://doi.org/10.1016/j.ejor.2007.03.032
http://doi.org/10.1136/bmj.327.7414.557

	Introduction
	Literature Review
	Data Batch Algorithm
	Dynamic Cost Scheduling Algorithm for Data Batch Processing (DCSDBP)
	Indices
	Problem Parameters
	Problem Variables
	Problem Decision Variables

	Illustrative Example
	Sensitivity Analysis
	Parameters Variation Analysis
	Varying Number of Processors Available to Rent
	Changing SLA Value
	Varying Penalty Cost per Time Unit
	Changing the Processor Rental Costs

	Jobs Network Size Analysis

	Conclusions
	References

