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Abstract 

Diabetes Mellitus (DM) received substantial attention for exploring its mechanism as 

expected to be the seventh primary reason for death worldwide by 2030. The hallmark 

of DM leads to damaging effects on many organ systems, mainly the cardiovascular, 

ophthalmic, and renal systems. The number of adults with DM to reach 95 million by 

2030 and 136 million by 2045 in the Middle East and North Africa region. Type 2 

diabetes (T2DM) is the most common type of DM, accounting for around 90% of 

diabetes cases. T2DM is a multifactorial chronic metabolic disease caused by genetic 

and non-genetic factors resulting from an imbalance between energy intake and output 

and other lifestyle-related factors. However, the detailed understanding of T2DM 

etiology is still limited. As the focus of this work is the metabolomic derived biomarker 

discovery, a non-targeted metabolomics experiment using liquid chromatography with 

tandem mass spectrometry (LC-MS/MS) is conducted to explore the metabolic profile 

of diabetic Emirati Citizens to uncover potential novel diabetes biomarkers through big 

data analytics. The study is twofold: in the first part, a comprehensive analysis is 

performed to reveal the profiling metabolites of diabetic Emirates compared to healthy 

ones. Blood samples of 50 diabetic Emiratis versus 42 healthy were utilized to 

investigate for differential metabolites. In the second part, a metabolomic study of 

patients with diabetic kidney disease against dialysis non-diabetics patients was 

conducted to uncover their distinct biomarkers. Blood samples of 11 dialysis diabetics 

and 25 dialysis non-diabetic were used to reveal potential biomarkers. A great panel of 

potential differential metabolites was identified among diabetic and non-diabetic 

Emirates. The identified metabolites were sorted into classes, including Tryptophan and 

Purines. Several potential biomarkers and their related pathways were pinpointed 

among dialysis patients, including Tyrosine metabolism-related metabolite and 3,4-

Dihydroxymandelic acid. These studies provide detailed coverage of blood metabolic 

changes related to T2DM in the Emirati population. The results of this work are mainly 

consistent with similar international studies, with a few added biomarkers reflecting the 

region-specific health profile. The worldwide consensus on common metabolites 

encourages the clinical trials of novel biomarkers that could expedite the treatment 

process for diabetics. Monitoring and managing diseases might move medicine from a 

therapeutic model to a prevention model.  

Keywords: Metabolomics; Biomarker discovery; Diabetes; Pathway analysis 
Liquid chromatography with tandem mass spectrometry; United Arab Emirates. 
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Chapter 1. Introduction 

1.1 Diabetes Definition 

Chronic diseases, defined as noncommunicable diseases (NCDs), are complex 

disorders that tend to be of long duration and result from a combination of genetic, 

physiological, environmental, and behavioral factors. Chronic diseases such as 

Diabetes Mellitus (DM) are currently considered the leading cause of morbidity and 

mortality globally, along with an alarming growth in developed and developing nations. 

DM is a chronic disease of the metabolic system, defined by chronic high blood sugar 

level hyperglycemia, which might severely damage the entire body. Continuing high 

blood sugar can harm the eyes, blood vessels, kidneys and causes skin infections and 

slow healing of cuts and sores. The disease diagnosis might already present chronic or 

long-term DM difficulties in individuals with T2DM. DM happens when the body 

cannot generate enough insulin or cannot use insulin successfully. Insulin is a hormone 

produced in the pancreas that permits glucose from food to penetrate the body's cells. 

The latter translates glucose into energy required by muscles and tissues to work. A 

person with DM does not absorb glucose correctly, and glucose remains circulating in 

the blood, a condition recognized as hyperglycemia, hurting body tissues over time. 

Overall, it will cause long-term consequences that substantially worsen the quality of 

life. DM has two major classes: type 1 (T1DM) and type 2 (T2DM). However,  about 

90-95% of people with diabetes have T2DM [1]. 

T1DM primarily occurs due to having a genetic predisposition. Therefore, it mostly 

happens in children, adolescents, and adults. In comparison, the reasons for or direct 

mechanisms for developing T2DM are still unknown; however, there are several 

important risk factors. T2DM is a multifactorial disease occurring due to many factors 

such as obesity, hyperlipidemia, hypertension, unhealthy or sedentary lifestyle, stress, 

aging, ethnicity, family history of DM, and high blood glucose during pregnancy.  

DM increases the risk of early death. In 2021, the International Diabetes Foundation 

(IDF) estimated 6.7 million death among adults worldwide because of DM and its 

complications [2]. Furthermore, DM is the 7th primary reason for death worldwide by 

2030 [3]. Figure 1-1 exhibits global and United Arab Emirates (UAE) diabetes 

prevalence.  
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Therefore, early detection and appropriate treatment are essential to prevent disability 

and death. Consequently, detecting early biomarkers coupled with inhibited disease 

progress is imperative.  

Biomarkers are classified into two types: traditional or novel biomarkers. These two 

types of biomarkers are distinguished based on their categories (1) clinical biomarkers, 

e.g., age, gender, race, and family history, (2) biochemical biomarkers, e.g., Glycemia, 

and (3) molecular biomarkers, e.g., deoxyribonucleic acid (DNA) based, proteomics 

and metabolomics. This study focuses on biomarker discovery in a metabolomics 

context. Several studies showed a significant relationship between metabolic 

abnormalities and T2DM [4-7]. The metabolic phenotype of dysregulation can be 

symptomatic of an aberrant biochemical or physical state.  

DM is considered a major risk factor for diabetic kidney disease (DKD). DKD is a 

chronic condition with unknown etiology. 

 

Figure 1-1: Diabetes prevalence (UAE vs. Global), related- health and economic issues [2]. 

1.2 Diabetic Kidney Disease  

Chronic kidney disease (CKD) has become a primary worldwide health concern due to 

the high mortality rate [8, 9]. Individuals with CKD are five to ten times more 

susceptible to premature death than to progress to end-stage renal disease (ESRD) [10]. 

Individuals with ESRD will routinely undergo hemodialysis to compensate for the 

failing kidney function. DKD develops in almost 40% of patients who have diabetes 
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and is the leading cause of CKD worldwide [11]. DM is a leading cause of ESRD [12, 

13]. Inversely, the renal function progressive decline and CKD-related sequelae also 

disturb glucose metabolism [14]. This association has been of long-standing interest. 

Cardiovascular mortality and progression to ESRD are the two significant unmet 

medical needs in patients with CKD and DM. Diabetic patients undergoing 

hemodialysis have a lower survival rate than non-diabetic patients with ESRD due to 

other renal diseases [15, 16].  

Hemodialysis is a frequent procedure to compensate for the failing kidney function, 

resulting in a constant shift in the metabolic profile. For example, a recent study found 

that almost one-third of diabetic hemodialysis patients might face impulsive solutions 

of hyperglycemia with glycated hemoglobin (HbA1c) levels less than 6% [17]. This 

uncertain biological plausibility and unspecified medical consequences is a 

phenomenon called "Burnt-Out Diabetes" [18]. Further, several glucose-lower agents 

and their active metabolites are metabolized in the kidneys and emitted, requiring 

dosage correction or avoidance in hemodialysis patients [18]. Therefore, DKD patients 

under routine hemodialysis will encounter hyperglycemia and hypoglycemia via 

multifactorial processes relating to kidney dysfunction, the uremic environment, and 

hemodialysis [18-22].  

DKD is a severe irreversible complication of DM that further disturbs glucose 

metabolism. Therefore, the quest for predictive and surrogate endpoint biomarkers for 

advanced DKD has received significant interest [13]. 

1.3 Biological Background 

Molecules are two or more atoms with differing types, numbers, and chemical bonding. 

The molecular structure governs the physical and biochemical properties, such as 

folding patterns that change in response to microenvironmental cues in living systems. 

The study of molecular structure in applied biology is key to understanding biochemical 

mechanisms and vital properties. For example, the chemical and pharmaceuti¬cal 

properties of therapeutic medications depend on the molecular structure knowledge. 

Furthermore, biological molecules are classified into three main classes; carbohydrates, 

lipids, and proteins. These essential components of the cell are necessary to perform 

various biological functions.  
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Carbohydrates deliver energy through simple sugars such as glucose. Carbohydrates 

can be symbolized by the (CH2O)n formula, where n is the number of carbon atoms in 

the molecule. Namely, carbon to hydrogen to oxygen is 1:2:1 in carbohydrate 

molecules. Carbohydrates are classed into three subtypes; disaccharides, 

monosaccharides, and polysaccharides.  

Lipids are nonpolar hydrophobic, water-fearing molecules that store energy long-term 

in the cell. Lipids also provide protection from the environment for plants and animals. 

For instance, they help maintain mammals and aquatic birds dry due to their water-

resisting nature. Lipids are also an essential component of many hormones, such as 

steroids and plasma phospholipids membrane.  

Proteins are polymers of amino acids arranged in a linear sequence that will later 

undergo post-translational modification and a unique folding pattern that dictates their 

molecular structure and function. Each cell in a living system might include thousands 

of various proteins, each unique structure, and function. For example, enzymes are 

catalysts in biochemical reactions like digestion and are usually proteins. Furthermore, 

nucleic acids hold the genetic blueprint and have instructions for the cell's functioning. 

The two categories of nucleic acids are DNA and ribonucleic acid (RNA). DNA is the 

genetic material observed in all living organisms, varying from single-celled bacteria 

to multicellular mammals. DNA, RNA, and polynucleotide make up monomers known 

as nucleotides. Each nucleotide comprises a nitrogenous base, a pentose sugar, and a 

phosphate group. Specific DNA sequences that translate particular proteins are known 

as genes and are parts of heredity. 

The cell is an essential component of all living things and examines biological 

mechanisms. Microorganisms such as bacteria, parasites, and yeasts may consist of as 

few as one cell, while a highly evolved human body contains trillion cells. All cells are 

bound by a plasma membrane and filled with a cytoplasm that contains DNA and 

Ribosomes for protein synthesis. For example, the human red blood cell. A group of 

cells combines the tissue such as human skin. A group of tissues makes up an organ 

system, such as the stomach. A group of tissues comprises the organism; each human 

is an organism. 

In essence, to conduct any given biological function in the cell in response to 

environmental stimuli, DNA will first be transcribed into mRNA called messenger, 
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followed by a translation into protein in the ribosome, that will undergo further 

modifications to conduct the biological function and resulting in metabolites, the 

aftermath story. The quest to explore the interplay between a disease genotype, a unique 

sequence of DNA inherited for a particular gene, and its phenotype results from the 

interaction between genotype and environmental factors. The multi-OMICS approach 

can solve nature vs. nurture. 

1.4 OMICs, The Interpreting Language of Molecular Life 

The first bacterial genome sequencing was back then in 1995 [23]. Subsequently, the 

Human Genome Project declared its first version in 2001 [24, 25]. Understanding the 

molecular system of living organisms has led to advancements in technological 

techniques to measure the function of critical biomolecules in living organisms, 

namely: RNA, DNA,  proteins, and small molecules of diverse nature. The analysis of 

such elements led to the growth of the research fields known as Omics [26, 27]. 

Omics has become the new slogan of molecular biology. In recent years, the utility of 

-Omics technologies, such as genomics, proteomics, metabolomics, and 

transcriptomics [7], has delivered new perceptions of well-being. For example, Omics 

enhances monitoring disease evolution, dietary interventions, and drug toxicities by 

revealing the triggers of several diseases and detecting promising links between 

apparently different conditions [28]. The terms Omics is a derivation of the suffix -ome, 

which has been added to past existing biological terms like genomics, proteomics, 

transcriptomics, and metabolomics. Omics seek to detect the whole set of biomolecules 

confined in a biological fluid, cell, tissue, or organism, which creates a massive volume 

of data explored by biostatistics and bioinformatics methods [29]. Figure 1-2 indicates 

how Omics technologies are associated and their biomedical studies roles. 

Omics platforms have promising avenues for biomarker discovery, identifying signals 

molecules related to cell death, cell growth, cellular metabolism, and early discovery 

of disease [30]. Genomics/transcriptomics allows evaluating potential information, 

proteomics evaluating executed plans, and metabolomics reveal the outcomes 

following these plans' execution [31]. 

Interactions between multiple genes and environmental factors triggered complex 

diseases such as cancer, DM, cardiovascular disease, schizophrenia. Therefore, 
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discovering the metabolomes or metabolite profiles of such conditions has earned 

significant consideration in the area of genomics and big data[28]. 

 

Figure 1-2: The correlation between leading omics technologies. Adapted from [35]. 

1.5 Metabolomics 

Living organisms, such as humans, are very well-ordered systems. Several studies 

showed that everyone has a metabolic pattern displayed in their biological fluids' 

genetic makeup. Roger Williams was the first who present this theory in the late 1940s 

[32]. Studies described the human metabolome as the qualitative and quantitative set of 

all small molecules, called metabolites. They present in a cell as contributors to general 

metabolic reactions and are necessary for growth, maintenance, and regular function 

[33][34]. A unique metabolic fingerprint for each cell and tissue type can reveal organ 

or tissue-specific information. Biospecimens or biosamples utilized for metabolomics 

analysis comprise but are not limited to plasma, blood serum, saliva, urine, muscle, 

feces, sweat, exhaled breath, amniotic fluid, and gastrointestinal fluid [35]. 

Metabolites have two main types: primary/central metabolites and secondary/ 

specialized metabolites. The former represents the compounds directly involved in the 

metabolic pathways of an organism's growth, development, and reproduction. The latter 

also symbolizes the organic compounds produced by various organisms indirectly 

involved in the organism's growth, development, or reproduction. Primary metabolites 

contain enzymes, proteins, lipids, carbohydrates, vitamins, ethanol, lactic acid, butanol, 

etc., that make the organism's structural and physiological organization. Secondary 

metabolites contain steroids, phenolics, essential oils, pigments, alkaloids, antibiotics, 

etc. 
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Human beings are 99.9 percent similar in genetic makeup [36]. The 0.1 percent 

differences can deliver significant signs about the origins of diseases. Various diseases 

result in variations in biofluids' metabolite profiles before clinical symptoms. The 

metabolic signature of diseases explains the disease's pathophysiological mechanisms 

and proposes new drug targets. Metabolomics has demonstrated predictive, diagnostic, 

and prognostic abilities that have facilitated the analysis of factors affecting chronic 

diseases' onset and progression.  

The terms metabolic profiling and metabolomics are used interchangeably [37]. The 

motto metabolome initially seemed in the literature in 1998. Oliver et al. [38] evaluated 

the change in metabolites' relative concentrations due to the deletion or overexpression. 

In the 1990s, researchers defined metabolomics as the methodical experiment of the 

distinctive chemical fingerprints that specific cellular processes leave after, precisely, 

studying their small metabolite profiles  [39]. Metabolomics identifies and determines 

the collection of metabolites or specific metabolites in specimens (cells, biofluids, 

tissues, or organisms) in normal situations compared to progressive alterations 

triggered by diseases, drug treatment, nutrition, or environmental influences and 

genetic effects.  

Chronic diseases occur from the impact of multi factors, such as genetics, lifestyle, and 

environment. Comparing metabolite concentration levels in phenotypically recognized 

populations, e.g., diseased and control subjects, might support identifying pathways and 

biological activities linked with a specific disease. Hence, effective computational 

techniques have become essential to decoding many changes' effects. 

Horning et al. [41] introduced early metabolism studies. Toward the end of the 1990s, 

several omics acronyms were revealed. The terms metabolome, metabolomics, and 

metabonomic were proposed. Van der Greef et al. [42] review and examine the 

relationship of chemometrics and metabolomics and a timeline of metabolomics' 

development. 

A metabolomics experiment involves targeted metabolomics, and untargeted 

metabolomics approaches. The targeted metabolomics approach defines a quantitative 

analysis where metabolites concentrations are predefined and determined [43]. An 

untargeted metabolomics approach is mainly the global profiling of the feasible 

metabolites from different biological specimens [44]. Hence, a targeted metabolomics 
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analysis requires considerable prior knowledge, and the completion of the experiment 

depends on the research hypothesis's strength. Furthermore, in targeted metabolomics, 

the classification of the metabolite or metabolite class of interest is identified. In 

contrast, for untargeted metabolomics experiments, metabolite identification is 

employed.  

The overall number of distinct metabolites in a specific organism known as the 

metabolome is unknown [37]. The Estimations of metabolites based on identified 

pathways vary from hundreds to thousands. In the Human Metabolome Database 

(HMDB) metabolome database, more than 217920 annotated metabolites entries are 

registered [45]. However, there are free metabolomics resources, databases and 

libraries, such as HMDB [45], Kyoto Encyclopedia of Genes and Genomes (KEGG) 

[46], PubChem [47], Metlin [48], MassBank [49], LIPID MAPS [50], Chemical 

Entities of Biological Interest (ChEBI) [51], BioMagResBank [52] and the Small 

Molecule Pathway Database (SMPDB) [53].  

The following section highlights the general methodological steps implemented in 

metabolomics experiments. 

1.6 Metabolomics Experiments 

The metabolomics experiment is a set of chronological steps highlighting targeted and 

untargeted metabolomics analyses. The metabolomics experiment is conducted as 

follows: sampling, sample preparation, instrumental analysis, data processing, and 

interpretation [54-57]. Figure 1-3 exhibits the methodological step of metabolomics 

experiments. 

The crucial first step is identifying the research problem statement clearly and precisely. 

This step will define how the experiment will be designed and conducted [43]. The type 

of metabolomics approach should be identified in this step, i.e., targeted vs. untargeted. 

Next, the collected specimens, such as biofluids (urine, serum, plasma, saliva, 

cerebrospinal fluid (CSF)), tissues, cells, organisms, and sample size, should be 

identified. The sample's choice depends on the research question, i.e., biofluids used to 

detect biomarkers, while tissues and cells examine mechanisms related to 

pathophysiological processes. Also, experimental conditions, frequency of sample 

collection, metabolic quenching to interrupt enzymatic activity should be apparent. The 

immediate freezing of samples using dry ice or liquid nitrogen at −80 °C conditions is 
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preferred for long-term biological fluids storage [58]. This stage also should define the 

analytical platforms and sample preparation strategies for the experiment. High-

throughput quantitative technological platforms have allowed fast and increasingly 

expansive data acquisition with samples as small as single cells; however, considerable 

hurdles remain [59]. 

Nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS) are the 

most popular analytical instruments for metabolomics sampling [60][40]. However, the 

data processing techniques differ whether a targeted or untargeted metabolomics 

experiment is conducted [61]. Metabolomic data are complicated and require advanced 

techniques to unlock the hidden biological metabolite between control and healthy 

samples [62].  

Univariate and multivariate methods corroborate each other to attain the best results 

[63]. Chapter 3 explains further details about chemometrics in metabolomics. 

Biological interpretation is of extreme importance for both targeted and untargeted 

metabolomics studies. The association of altered metabolites with respective metabolic 

pathways can explain the rationale and answer the initial biological question that guided 

the metabolomics study. Although it is uncommon to validate the results after 

metabolomics studies are completed, validation is believed to provide reliability for the 

obtained results. The initial focus of metabolomics experiments is biomarkers 

discovery accountable for certain diseases. The following section summarizes the main 

definitions of biomarkers. 

 

Figure 1-3: The metabolomics experiment. 
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1.7 Biomarker Discovery for Diabetes 

The current diagnostic tools for DM, such as HbA1c, fructosamine, and glycated 

albumin, have limitations due to many variables such as hemoglobinopathies [64]. So, 

the motto one size fits all approach should not be used to diagnose or manage DM. 

Therefore, a vital need exists to identify more sensitive and precise biomarkers capable 

of predicting progression to dysglycemic states at the earliest point when the β-cell 

function is still relatively optimal and may be more responsive to lifestyle modification. 

Combining biomarkers in a clinical setting may provide better sensitivity and 

specificity in predicting pre-diabetes and diabetes [65, 66]. In addition, biomarkers 

offer the ability to identify people with subclinical disease before the development of 

overt clinical disorders [67]. They enable preventive measures to be applied at the 

subclinical stage and the responses to prophylactic or therapeutic measures to be 

monitored. 

To date, it is unclear whether the observed metabolic changes are a consequence of high 

glucose levels and therefore of the diseases T1DM and T2DM or if the metabolic 

changes are causative and lead to the development of T1DM and T2DM [6]. We only 

observed the co-occurrence of both events: diabetes and metabolic changes. It seems 

plausible that both events occur hand in hand, especially in T2DM; thus, metabolic 

changes arise before or with the development of T2DM. 

Metabolomics is widely employed in discovering biomarkers for disease diagnosis, 

prognosis, and risk prediction [68]. Diagnostic biomarkers determine the incidence and 

type of DM. Prognostic biomarkers deliver DM outcomes in patients to enable DM 

diagnosis noninvasively. Finally, predictive biomarkers support the optimization of 

therapy decision-making by offering information on the possibility of a reaction to a 

provided treatment [69, 70]. 

Novel biomarkers, also called molecular markers or signature molecules, are 

quantifiable biological molecules found in biofluids, tissues, or cells. These biomarkers 

can be a sign to identify, observe, or expect the risk of disease. In addition, the 

biomarker helps find how the body reacts to a particular medication, i.e., monitoring 

therapeutic measures [71]. The advancement in metabolomics technology can spot the 

light on unexplored territories and detect biomarkers beyond the traditional areas of 

urine, plasma, and serum studies [71]. 
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Breast Cancer Type 1 (BRCA1) mutations are genetic biomarkers accountable for a 

substantial number of genetic predispositions to breast and ovarian cancer risk [72]. 

Likewise, blood glucose is a typical biomarker for monitoring diabetes or prediabetes 

[71]. HbA1C reveals hyperglycemia or average plasma glucose concentration over the 

prior two to three months of the test. Therefore HbA1C is a leading functional 

biomarker utilized for long-term glycemic monitoring to diagnose prediabetes and 

diabetes. [73]. HbA1c may also act as a biomarker that alarms for a risk factor for 

different diseases, such as a risk marker for diabetic retinopathy, nephropathy, and other 

vascular complications [71]. 

The risk factor may be defined as increasing the risk of disease. Risk factors can be 

categorized as an unmodifiable biomarker, e.g., gender, age, or modifiable biomarker 

such as LDL cholesterol as a risk factor for atherosclerosis [74] and smoking as a risk 

factor for lung cancer [75]. 

In the context of DM, due to the long-lasting asymptomatic clinical manifestation of 

DM, it is of most importance among DM researchers to discover and develop practical 

biomarkers with high specificity and sensitivity for the diagnosis, prognosis, and 

clinical control of DM. Thus, several studies found novel molecular biomarkers 

associated with DM. 

Diabetes-related biomarkers are mainly categorized into conventional and novel 

biomarkers [76]. HbA1c is an example of traditional biomarkers well-defined in 

research and clinical medicine; however, moderate sensitivity and specificity of such 

biomarkers and their inaccuracy in certain clinical conditions are considered 

limitations. Therefore, novel biomarkers with more sensitive and accurate capabilities 

will boost predicting progression to dysglycemic states at the earliest time point when 

the β-cell function is still relatively more optimum and might be more reactive to 

lifestyle change [77]. 

1.8 Systems Engineering, Big data, and Healthcare: A Prominent Union  

Systems Engineering is an established body of knowledge used for complex systems in 

different domains, including healthcare. Healthcare systems worldwide have incredible 

challenges because of the aging population, related diseases, the ever-increasing 

technologies use, and sedentary lifestyle. As a result, health outcomes improvement 

while regulating costs is a stumbling block. In this context, big data support the 
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healthcare sector in meeting these aspirations in distinctive approaches. Big data's 

promise in healthcare depends on detecting patterns and turning high volumes of data 

into actionable knowledge for precision medicine and decision-makers.  

Big data is an integral part of the healthcare sector [79]. Medical data is produced 

massively and productively that requires very efficient tools to manage, store and 

analyze the data. Moreover, data in healthcare involves heterogeneous, insufficient, and 

inaccurate observations such as biological and clinical data. Therefore, various sources 

are used to generate high throughput profiling of such biological and clinical data cost-

effectively, such as mobile phones, sensors devices, electronic health records (EHR), 

patients, hospitals and clinics, researchers, and other organizations. For instance, gene 

expression measurements using microarrays or RNA sequencing in transcriptomics and 

the NMR and MS platforms for proteomics, metabolomics, and lipidomic.  

Big data tools available in modern software systems empower remarkable research 

opportunities and innovation in the healthcare domain. New emerging and interrelated 

paradigms such as Informatics & Data-Driven Medicine [80], eHealth [81] and 

mHealth [82], and Digital Health [83] are booming and attaining recognition in 

healthcare specialists and patients.  

Big Data Analytics has emerged to perform descriptive and predictive analyses of such 

massive data (Figure 1-4). Databases store big healthcare data produced from several 

resources. Big data analytics platforms process the data for a better decision-making 

process. Descriptive analytics describes what happened. Diagnostics analytics answers 

why did it happen. Predictive analytics gives what will happen. Finally, prescriptive 

analytics recommends actions to affect desirable outcomes (make it happen). 

Big Data Analytics is essential and popular in bioinformatics research as the human 

genome's size can reach 200 GB [84]. Therefore, bioinformatics researchers should 

develop high computational power algorithms and parallel programs.  

Bioinformatics is a new, developing area that employs computational methods to solve 

biological questions. To answer these questions, investigators rigorously take 

advantage of large, complex data sets, both public and private, to reach valid, biological 

conclusions [85]. New research areas such as computational genomics and proteomics 

have arisen that target the identification of genes and their products. World Health 

Organization (WHO) defines genomics as studying genes and their functions and 
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associated techniques [86]. Together, extensive human genomic data and the innovation 

of analysis methods may empower more effective clinical diagnoses and new therapies. 

Public and private efforts were accomplished to create a comprehensive set of genes 

and proteins for the human genome. Therefore, the Human Genome Project generated 

a massive volume of genome data, an international and collaborative research program 

[85]. Initiatives established several projects such as the Cancer Genome Atlas (TCGA) 

Research [87] and the Encyclopedia of DNA Elements (ENCODE) project [88]. The 

most recent initiative is the Precision Medicine Initiative launched in 2015 by president 

Obama [89]. Precision Medicine aims to study the combined genotypes and phenotypes 

of at least one million volunteers that consider individual variability in genes, 

environment, and lifestyle for each person [89]. Precision medicine is promising for 

improving many aspects of health. For instance, in [90], a big-data-centered method for 

personalized medicine has been proposed. Moreover, by examining cardiovascular 

data, the American Heart Association offered a future digital ecosystem for 

cardiovascular disease and stroke [91]. 

Efficient management, analysis, and interpretation of big data can open new avenues 

for modern healthcare. Therefore, several healthcare industries take necessary actions 

to transform this potential into better services and financial benefits.  

Data from DM is massive and beneficial for preventive diagnostic and prognosis of 

disease occurrence and outcomes. Effective management and data processing may 

substantially enhance human wellbeing [92]. The significant relationship between 

genes and diseases led to metabolomics research to unlock the hidden secret behind 

humans' biological processes.  

 

Figure 1-4: Workflow of Big data Analytics [84]. 
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1.9 Research Motivation 

DM has become an epidemic. Millions of individuals are affected worldwide, and the 

rates are projected to increase significantly [93]. Figure 1-1 exhibits individuals' 

prevalence (20-79 years) with diabetes worldwide [2, 94]. IDF reported around 537 

million diabetics worldwide in 2021; however, it is estimated to reach 783 million 

individuals with diabetes globally in 2045 [2, 94]. 

The Middle East and North Africa (MENA) region ranked amongst the highest diabetes 

incidence rates. In 2021, one in six adults were diagnosed with diabetes, resulting in 

796,000 deaths. However, the number of people with DM is projected to increase by 

86% to 136 million by 2045 [2, 94]. 

UAE is categorized within the top countries for the prevalence of impaired glucose 

tolerance (IGT) in adults between 20-79 years [94]. IGT is a phase preceding diabetes 

when blood glucose levels are above average. Therefore, people with IGT are at high 

risk of acquiring T2DM diabetes, although all IGT people do not necessarily develop 

it.  

DM prevalence in the UAE steadily increases (Figure 1-1). In 2021, the estimated 

prevalence of adults diagnosed with diabetes (20-79 years) was almost 16%. The 

expected prevalence of individuals (20-79 years) with DM in the UAE in 2045 is 19.3% 

[2]. Therefore, DM in the UAE is in an alarming and dangerous phase.  

Moreover, the prevalence of CKD has increased considerably over the past two 

decades, with 13.4% of the population affected worldwide; the majority of the cases 

are CKD stages 3–5 [95]. In 2012, the prevalence of CKD in Abu Dhabi was unknown, 

but the population on dialysis was doubling approximately every five years [96]. T2DM 

is one of the significant risk factors for CKD among UAE nationals.  It is widely 

accepted that the rate of CKD progression is affected by risk factors and is accelerated 

when multiple risk factors such as obesity, dyslipidemia, and smoking are present in an 

individual. However, the incidence and etiology of DKD under hemodialysis from the 

UAE and other middle eastern populations is unknown [97]; therefore, creating local 

data would support understanding the pathogenesis of DKD in the high-risk population 

such as UAE. 
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On the other hand, the Omics technologies adoption in the MENA region is nascent. 

Therefore, researchers should promote the concept of Omics technologies through 

advanced experiments, thus creating our scientific silhouette. 

1.10 Research Aim and Objectives 

This study aims to decode the link between metabolites and T2DM, which aids in 

understanding disease pathogenesis, i.e., the biological mechanism that leads to a 

diseased state and identifying novel biomarkers that could lead to developing more 

personalized nutritional and therapeutic strategies.  In this study, we conducted a non-

targeted metabolomics experiment using the LC-MS/MS platform available at Sharjah 

Institute of Medical Research (SIMR) and College of Pharmacy at the University of 

Sharjah to explore the profile of people with diabetes, Emirati citizens, to uncover their 

potential novel biomarkers. The study is twofold: (1) a comprehensive study to reveal 

global metabolic profiling for 50 diabetics patients versus 42 healthy and (2) a study 

for 11 dialysis diabetics (DD) against 25 dialysis non-diabetics patients (DND) to 

uncover their distinct biomarkers. Blood samples were collected from subjects in both 

scenarios based on clinical diabetic status and current HbA1c values. Ultimately, this 

study set the foundation for clinical translation by validating metabolic biomarkers 

associated with T2DM and other diseases. Integrating big data, computer-aided tools, 

and established databases and repositories helped generate a metabolic starting point 

for UAE studies in Omics technologies. The study outcomes are aligned with UAE 

goals for preventing diabetes. The potential biomarkers would be validated by 

conducting follow-up Omics studies in UAE. The clinical translation of novel 

biomarkers could expedite the treatment process and boost the healthcare system 

beating increasing numbers of diabetes. 

This research aims to answer the research questions: what metabolites are associated 

with T2DM in the UAE population. In other words, are there any differences in 

metabolites concentration levels between group samples that reveal particular 

pathophysiology?. Thus, the research will examine the relationship between DM and 

distinct metabolites. 

1.11 Research Significance 

Translational medical research allows physicians to modify existing protocols to 

manage disease conditions and optimize patient outcomes. In addition, the development 
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of new technologies, tools, and drug discovery reduces morbidity and mortality. For 

example, insulin pump therapy innovation has prolonged life and reduced illness and 

disability. Therefore, it is of utmost importance to promote clinical research in our area 

to provide more information that may eventually lead to new medical breakthroughs. 

The study investigates the underlooked metabolomic role and correlation with DM in 

the UAE population. The significance of the proposed work can be summarized in the 

following points: 

1. This work represents the first comprehensive approach to discover metabolomic 

biomarkers associated with T2DM in the UAE population. 

2. DKD is a complex health disorder with unknown etiology, particularly in the 

middle eastern population; therefore, it is imperative to unveil the biological 

knowledge of such diseases. 

3. The discovered metabolites will be used for future clinical trials to validate our 

findings as early diagnostic or prognostic tools in a clinical setting. 

4. This study would contribute to a global comparison of metabolomic alterations 

in various populations. In addition, the results will be aligned to T2DM studies 

worldwide as researchers desire to pinpoint a metabolite biomarkers bank that 

might be potential predictors of T2DM. 

5. The work will be extended to incorporate other OMICs approaches such as 

proteomics studies. 

6. The work utilizes big data tools in metabolomics experiments. 

7. We anticipate that this work may contribute to new drug discovery by outlining 

metabolites profiles and interactions with antidiabetic medications in UAE.  

8. Technically, we hope this work attracts students and junior researchers to study 

and develop statistical tools that are more robust and reliable. 

9. The research will contribute to the United Arab Emirates' government support 

of the health sector and its Diabetes Initiatives. It is in line with the Ministry of 

Health and Prevention’s National Strategy for Diabetes and as well as with the 

American University of Sharjah's strategy of taking a leadership role in 

contributing to the UAE and GCC challenges.  

10. We hope to establish a metabolomics bank to facilitate collaboration and data 

access among other scientists in the UAE and the GCC region. 
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1.12 Execution Phases 

The research studied the metabolomic profiles of T2DM individuals. The project 

consisted of the following steps. 

1.12.1 Literature review 

We examined the literature on analytical methods for metabolomics and metabolomic 

profiles concerning T2DM. 

1.12.2 Collect biological Samples 

Blood sample collection has been done at the University of Sharjah facilities utilizing 

the diabetes case. 

1.12.3 Data acquisitions 

Liquid Chromatography with tandem mass spectrometry (LC-MSMS) was used at the 

University of Sharjah by the Co-PI from the Department of Medicinal Chemistry. Then, 

a pre-processing step was carried out to remove low-frequency artifacts and differences 

between samples that are generated by experimental and instrumental variation. 

1.12.4 Data processing 

After the metabolite features are robustly quantified, multiple univariate and 

multivariate statistical methods have been used to perform the desired study analysis. 

1.12.5 Model validation 

Validation will be conducted through a follow-up study in the future. 

1.12.6 Data interpretation 

A comprehensive interpretation was performed to decode the link between 

metabolomics profiles and T2DM. The outcomes will facilitate understanding of the 

disease pathogenesis and identify novel biomarkers that could develop personalized 

nutritional and therapeutic strategies. 

The project extended over two years, divided into simultaneous tasks. The different 

functions and their time duration are shown in Table 1. The distribution of work is also 

shown in the same table. 
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Table 1-1: Dissertation Execution Plan. 
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1.13 Dissertation Structure 

The dissertation comprises eight main chapters. The first chapter introduces a 

background about the topic, research motivation, and aims and objectives. The second 

chapter includes the main profiling techniques deployed in metabolomics. The third 

chapter outlines the general data analysis techniques in metabolomics. The fourth 

chapter covers the literature review conducted in metabolomics. Chapter five includes 

the methodology. The sixth and seventh chapters exhibit a complete description of the 

first and second analyses. Finally, chapter eight concluded the work. The next chapter 

discusses data processing technologies in metabolomics to decrease variations or 

spectra incorrect phases and reducing influences differences in biofluid salt 

concentrations or different dilutions, disturbing the aftermath of data analysis. 
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 Chapter 2. Data Analysis Techniques 

2.1 Introduction 

The conventional methodological pipeline of an untargeted metabolomics experiment 

combines different steps (Figure 1-3). This pipeline starts with spectral data processing 

to produce metabolic information [98].  

After generating the metabolites, the researcher can apply univariate and multivariate 

data analysis. In [99], a systematic list of the broadest and free accessible tools and 

software mainly employed in metabolomics has been provided. Tools were classified 

based on the type of analytical platforms, i.e., NMR, Liquid Chromatography with Mass 

Spectrometry (LC-MS), GC–MS, and the role, i.e., pre-and post-processing steps, 

statistical analysis, workflow, and more functions. This chapter depicts the data spectral 

processing techniques and different metabolomics statistical analysis tools.  

Spectral data processing aims to detect and quantify the molecular features, i.e., MS 

(mass-to-charge ratio (m/z)) spectrum and NMR spectrum peaks. Then,  arrange them 

in a feature quantification matrix (FQM). The FQM includes the counts of all the 

examined samples' metabolic features. The acquired features will be used for later 

statistical analysis, i.e., univariate, multivariate, or exploratory [54]. 

2.2 Spectral Pre-processing 

Preprocessing spectral data has been considered a crucial aspect of chemometrics 

modeling for better data quality and interpretation [100, 101], [63]. The spectral 

preprocessing role eliminates noises, artifacts, and weak signals due to test 

environments and flaws of raw data components. Different approaches and algorithms 

exist and have been applied for proper preprocessing. However, several factors identify 

selecting a pretreatment technique, such as the chosen data analysis methods, the data 

set structure, and the biological research question [100]. Thus, it is debatable how the 

executing order should be, which is sometimes more governed by practical 

considerations than optimal statistical analysis [63]. The most common NMR- and MS-

based spectra techniques are binning, spectral alignment, baseline correlation, 

normalization, and scaling. 

2.2.1 Binning 

Binning or bucketing technique decreases the number of variables and improves data 

analysis. It requires splitting the NMR spectrum into small areas, usually spanning 
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0.04–0.05 ppm, which are adequately large to comprise one or more NMR peaks. 

Binning is similar to the histogram procedure, and all amounts inside each bin are added 

up to produce spectra with fewer variables [63]. The area under the curve (AUC) 

defines each bin's intensity. Several available binning techniques include equidistant 

(equal size) binning, Gaussian binning, dynamic adaptive binning, adaptive-intelligent 

binning, and more. Several non-binning methods, such as spectral deconvolution curve-

fitting, direct peak fitting, and peak alignment, have been established to avoid binning's 

downsides. However, these approaches are best for biofluids such as plasma, serum, 

saliva, CSF. The primary rationale for applying binning is the excessive number of 

variables to manage computer memory problems and its ability to adjust small peak 

shifts. Later, multivariate statistical analysis is performed on the extracted bin 

intensities. Then, the most important peaks or bins are allocated to particular 

metabolites. 

2.2.2 Spectral alignment 

Spectral alignment is a method that iteratively moves peak positions in several spectra 

so that the peaks related to the same compounds can be overlaid or aligned. Peaks or 

unevenly altered signals across different spectra will not be matched appropriately. 

Thus, successive scaling steps, binning steps, and multivariate analysis of the binned or 

scaled intensities will be compromised [63]. In addition, minor variations can adjust 

multivariate statistical analysis and abstruse the biomarkers discovery or the form of 

metabolic profiles. Hence, it is required to use alignment algorithms as a preprocessing 

step to improve local signal shifts. Spectral alignment methods are grouped into 

segmenting strategies and warping. One of the most common NMR alignment methods 

for chromatographic data is correlation-optimized warping (COW) [102]. COW 

method employs two factors, flexibility and section length, to monitor how spectra can 

be warped for a reference spectrum. The section length is used to split the spectra into 

sections that can be stretched and compressed as much as the flexibility parameter 

allows by moving the sections' endpoints. Another method that employs Fast Fourier 

Transforms is the ice shift procedure [103]. However, some of the limitations of 

alignment methods may bias signal areas and compromise metabolite quantification 

accuracy. Therefore, absolute quantifying based on raw data is recommended. Software 

packages, for instance, Chenomx, offer signal shifts in individual NMR spectra and 

generate reliable metabolite quantification without the necessity for signal alignment. 
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2.2.3 Baseline correction 

Raw data from different measurements usually have an unnecessary linear or non-linear 

addition to the spectra. Many statistical analysis techniques cannot separate the noise 

baseline and actual signals. Thus, they will be disturbed when the baseline is not 

entirely flat and can overfit the data [63], [104]. These distortions are corrected for 

NMR spectra data processing because they offset the intensity values and inaccuracy 

in peak assignment and quantification. Adjusting such errors is crucial in 

metabolomics, including many small but statistically significant peaks sensitive to 

baseline distortions. Inaccurate quantification of later peaks could lead to failures in 

discovering essential metabolites or detecting potential biomarkers [104]. Therefore, 

baseline correction is used to remove these variations between samples. It can be 

achieved before FT on raw data or the NMR spectrum. There are several baseline 

correction techniques available. The most common category is the family of polynomial 

fitting baselines, e.g., Lieber and Mahadevan-Jansen's iterative polynomial fitting. 

However, limiting the form of the baseline to a polynomial is not always the best option. 

Approaches like robust baseline estimation (RBE) and asymmetric least squares (ALS) 

use further constraints on the baseline's shape that are often more reasonable. [63] 

described a method for selecting baseline algorithms and their factors. 

2.2.4 Normalization 

Sample normalization is an essential part of the overall metabolomic profiling 

workflow for quantitative metabolomics. Different unwanted signal variations in 

metabolomics data negatively alter metabolic profiling accuracy. Samples containing 

metabolites can vary substantially from one sample to another caused by the variation 

of dilution factors for various samples. Changes in intensity for MS spectra may occur 

due to different quantities of metabolites reaching the detectors. For instance, urine 

samples may have different metabolite concentrations due to the solvent's water 

variations. Thus, the calculated metabolite concentrations will indicate dilution instead 

of the changes in the metabolic response. Therefore, reducing or eliminating the total 

sample amount variation on individual metabolites' quantification. Accordingly, 

various normalization methods can be applied to address the problems mentioned above 

after peak alignments, identifications, or binning, and the determination of their 

respective intensities. The two main applied ways are stable endogenous metabolites 

like creatinine in urine and the total spectral area, i.e., AUC. When employing 
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univariate analysis, it is noteworthy that it is unnecessary to apply variable 

normalization because each metabolic feature is assessed individually. Conversely, 

normalization in multivariate analysis is extremely valuable and relies on the research 

question. 

2.2.5 Scaling 

Scaling refers to a statistical technique that improves the normality distribution of data 

or lowers the dispersed values. It employs a mathematical operation on the spectra 

intensities or concentrations. Metabolite concentrations can vary over numerous orders 

of magnitude. This fact can make a small number of metabolites dominate the outcomes 

from multivariate statistical analyses. To avert this bias, scaling metabolite intensities 

is necessary before further study. Centering adjusts the differences between low-

concentration and high-concentration metabolites. Centering scales each value to 

fluctuate around zero, where zero is the mean metabolite level. Depending on the 

experimenting nature, a range of statistical and data mining methods can be employed 

on metabolomic data. In the next section, both univariate and multivariate statistics are 

illustrated. 

2.3 Statistical Analysis 

After the metabolite features are robustly acquired and quantified, researchers can apply 

statistical methods and data mining approaches to extract relevant information from 

metabolomic data. There are two main data analysis methods, univariate and 

multivariate methods. The latter techniques also are identified as chemometric methods. 

Here, we describe the most applied metabolomic features and the most used 

chemometric methods. 

2.3.1 Metabolomics features 

The preprocessed metabolomics data, both MS and NMR, is typically organized into 

an FQM. In this matrix, rows relate to the samples, and columns relate to the obtained 

metabolomic features. The metabolomic feature is almost associated with the 

concentration of a metabolite. Data analysis techniques can then be applied using these 

metabolomic features as input. 

2.3.2 Univariate analysis methods 

The univariate analysis provides an initial summary of the data features possibly 

significant in differentiating against the study conditions. At This Point, only one 
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metabolomic feature is analyzed at a time. These techniques are standard easy to apply 

and interpret. The main limitation is that they do not consider the relationship between 

distinct metabolic features. Furthermore, the non-considerable impact of possible 

confounding variables like diet, gender, or body mass index (BMI), increases the 

likelihood of getting false-positive or false-negative outcomes. Nevertheless, univariate 

analysis methods can analyze metabolomic data. For instance, parametric tests such as 

ANOVA and Student's t-test are typically employed when evaluating variations 

between two or more groups, assuming that normality assumptions are validated. 

2.3.3 Multivariate analysis methods 

Contrary to univariate approaches, multivariate analysis methods consider each of the 

metabolomic features at once to discover associations between them. The main two 

multivariate methods can be categorized into supervised and unsupervised methods. 

Examples of such methods include multivariate regression analysis, multivariate 

ANOVA, principal component analysis, factor analysis, and partial least square 

discriminant analysis. Supervised methods use the sample labels to distinguish the 

features or feature combinations related to a phenotype of interest. They are also the 

base for developing prediction models. Most multivariate analysis applications in 

metabolomics apply principal component analysis (PCA) for data exploration. Then, 

OPLS-DA  or OPLS for regression, class discrimination, or biomarker discovery. 

2.3.4 Unsupervised methods 

Unsupervised methods summarize the complex metabolomic data. They help detect 

data patterns associated with biological and experimental variables. PCA is the 

dominant unsupervised method in metabolomic studies used for visualization and 

exploration. PCA is the linear transformation of the metabolic features into linear and 

uncorrelated (i.e., orthogonal) variables named principal components. PCA is 

considered a starting point of any analysis to detect trends, groups, and outliers. Also, 

unsupervised methods such as hierarchical clustering analysis (HCA) and self-

organizing maps (SOMs) have been employed to metabolomic data. These methods are 

especially appropriate to uncover non-linear trends in the data that PCA does not easily 

cover. For example, some metabolomics studies use SOMs to visualize feature patterns 

and metabolic phenotypes and arrange the specified metabolites based on their 

similarity. 
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2.3.5 Supervised methods 

Supervised methods identify metabolic patterns linked with the phenotypic variable of 

interest. These methods are also the basis for developing classifiers based on 

metabolomic features. Partial least squares are the most broadly employed supervised 

methods in metabolomics. It performs as regression analysis, i.e., the quantitative 

variable of interest, or as a PLS-DA binary classifier, i.e., the binary variable of interest. 

However, PLS's weakness is that some metabolic features that don’t correlate with 

interest variables may manipulate the results. Therefore, orthogonal PLS (O-PLS) was 

developed. Support vector machines (SVMs) are supervised analysis methods to 

establish classifiers based on metabolomic data. 

Although there is a problematic interpretation of classifiers based on SVM, they can 

handle non-linear relationships between the variable of interest and the metabolomic 

data.  

To summarize, numerous data analysis methods have been offered for the spectra 

generated from LC-MS and NMR spectrometers. PCA and PLS methods are the 

dominant, as commercial and open data analysis tools widely adopt them. In contrast, 

the non-frequent analysis methods include HCA, batch-PLS, k-nearest neighbors 

(KNN), orthogonal signal correction (OSC) combined with PCA, and various neural 

network applications. However, some challenges arise with metabolomics data 

analysis. For example, the multivariate projection methods (i.e., PCA and PLS) search 

for the most robust data variations and dominate the first new components. 

Consequently, more subtle but significant differences are characterized by higher 

elements often overlooked by the data analyst or spread over numerous features that 

are not detectable to the data analyst [37]. Therefore, new data analysis methods for 

metabolomic are introduced, such as O-PLS [105] or statistical correlation techniques, 

for instance, the statistical total correlation spectroscopy (STOCSY) [106]. 

2.4 Pathway Analysis  

Two of the main challenges in Omics data analysis are the dimensionality dilemma 

produced by more variables than samples and the development of algorithms that 

successfully integrate and analyze biological data, incorporating present and future 

knowledge. Pathway Analysis (PA) has developed and established a reliable answer to 

manage these issues. 
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PA, also known as functional enrichment analysis, is one of the commonly used 

principal tools of Omics research. PA tools analyze data obtained from high-throughput 

technologies, identifying potential perturbed genes in diseased samples compared to a 

control. In this sense, PA methods aspire to conquer the dilemma of interpreting 

overwhelmingly large lists of essential genes, the main output of most basic high-

throughput data analysis. In addition, PA methods provide meaning to experimental 

high-throughput biological data, therefore, enabling interpretation and successive 

hypothesis generation. PA targets have been reached by combining biological 

knowledge from databases with statistical testing, mathematical analyses, and 

computational algorithms [107]. 

PA methods hold a wide scale of applications in physiological and biomedical research. 

PA aims to benefit the researchers by discovering biological themes and which 

biomolecules are crucial to insight into the phenomena under study. The generated clues 

empower the researcher to create new theories, design the following assays, and 

validate their outcomes. For example, PA methods have supported researchers in 

identifying the biological functions of potential genes selected to develop new 

treatments for cancer [108]. 

PA needs several elements to operate. At the outset, quantitative data on cell biology is 

produced through Omics technologies such as RNA-microarrays, LC-MSMS, and 

RNA sequencing. Then, a method to analyze such massive information is needed. Next, 

databases store the molecular biological knowledge for downstream analysis, leading 

PA methods to explore links between the Omics data and common biological themes. 

Finally, computer-aided tools are employed to achieve PA. These tools comprise 

statistical testing of the biological themes against the data and mathematical algorithms 

to obtain associations between the data and prior knowledge. 

The PA workflow starts with the input phase, including choosing a PA method, 

analyzing Omics data, and extracting the pathway data from the database. Then, the 

analysis phase involves all statistical and mathematical computations accomplished by 

the PA method. Even though the used algorithms are varied, they share commonalities 

and are driven by the same method. PA computer-aided tools can be found in three 

different styles: stand-alone software, web-based applications, and programming 

packages. The first two categories are user-friendlier than packages as they require less 
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analytical skills or programming-related talents. R and python are usually employed to 

code programming packages. The main benefit of using PA programming packages is 

the customization ability of the analysis and the possibility of automation through 

scripted analysis pipelines. Choosing between different platforms relies on client skills 

and the cost-benefit ratio of time invested in arranging everything necessary to run the 

analysis. Finally, the output phase covers visualization and results from the study. The 

results presented a ranked list of relevant pathways, and the top pathways are often 

ordered based on P-value or the multiple testing corrected q-value. 

Additionally, directed acyclic graphs are formats used to visualize results in which 

relevant categories are hierarchically ranked according to their relationship, such as 

within the Gene Ontology categories. Heatmap formats are similarly utilized to 

visualize results since pattern generation among related pathways and samples is 

simpler to explore in this approach. Additionally, most web-based and stand-alone 

software provide links to web pages in databases and other online resources for easier 

integration of the results. 

PA methods mainly refer to over-representation analysis (ORA) or enrichment analysis. 

The primary premise in ORA is to understand complex biological systems. These 

methods reduce data complexity, enhance interpretation and insight of biological 

systems, and better yield hypotheses. ORA searches for keywords or descriptors of the 

set of molecules of interest, e.g., over-expressed molecules, concerning a background 

reference set, e.g., the whole genome/transcriptome/proteome/metabolome or the 

collection of molecules identified by the technique used [109]. 

In this manner, ORA methods act along the main workflow of statistically evaluating 

the fraction of pathway components found among a user-selected list of biological 

features [107]. The list fulfills typically specific criteria: log fold change, statistical 

significance or both, ranking and cutting off most components from an original list, for 

instance, all molecules tested in a metabolomics experiment [107].  

Classical enrichment analyses use Fisher’s exact test, but many other enrichment 

methods, such as hypergeometric, Kolmogorov–Smirnov, or Wilcoxon statistical tests, 

have originated from it. Finally, multiple testing correction is usually achieved as 

assessing data with several hypotheses at once (in this case, pathways) causes false 
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positives. The outcome from an ORA method consists of a list of the best relevant 

pathways, ranked based on a p-value or a multiple-hypothesis-test-corrected p-value. 

However, although ORA can find meaningful insights in large biological data sets, 

these methods have several limitations, including (1) neglecting a large amount of basal 

level data because of the user-selected cut-off method. In addition, the potential 

significant elements close to the cut-off threshold are frequently omitted in the analysis 

leading to repercussions in results stability. Finally, the arbitrary selection of the cut-

off thresholds generates different results as there is no general principle for establishing 

a cut-off threshold. And (2) ORA assesses every element in the pathway, providing 

them the same weight or importance, neglecting any information inherent to the 

interactions, such as location in the pathway and interaction between molecules. Thus, 

two pathways with the same molecules but different topologies would generate the 

same result [110]. Lastly, (3) ORA  assumes that pathways are independent of each 

other, against acknowledging the interaction and overlapping between pathways [111]. 

The subsequent PA generation is pathway-topology based (PTB). The fundamental 

premise of PTB analysis is that interactions observed in pathway topology, annotated 

in databases, bear information for interpreting correlated changes between pathway 

components. PTB techniques are expansions of the ORA methods, they act along with 

the same general steps, but they add pathway topology for evaluating the statistical 

relevance of the pathways. 

PA is a steadily growing and developing interdisciplinary research area. Most current 

methodologies are designed to use pathway topology information stored in different 

databases and all the data from Omics technologies. Yet, some challenges need to be 

overcome to identify relevant pathways better. The challenges can be managed in three 

classes: advancements in Omics technologies, annotations of databases, and PA 

algorithms progress and use. First, there is no consensus on a standard definition of 

pathways and usage of a pathway ontology. The lack of cohesiveness might be due to 

every single project biological focus had in its beginnings or cellular functions being 

very different from being confined in a specific paradigm. Again, though, the 

unification of similar ontologies and usage of universal languages should be the most 

pragmatic and feasible solution across databases and PA methodologies. Also, 

databases lack annotation depth and coverage. 
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PA methods should certainly not be black boxes from where experimental data goes in, 

and factual statements come out, however perhaps more as cleaners of haystacks from 

where we are pursuing meaningful biological needles [107]. 
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 Chapter 3. Literature Review 

3.1 Metabolomics and Diabetes 

The encouraging role of metabolomics in translating biomarkers to the clinic is 

remarkable. Therefore, steady growth in the number of yearly publications, including 

both ''metabolomics" and "biomarker" in the past ten years (2009–2021), is observed 

(Figure 3-1). In 2021, rapid progress happened, with over 2000 articles on 

metabolomics-aided biomarker research. The following sections explain DM's 

developmental stages and how metabolomics stands in DM research. 

 

Figure 3-1: Scopus research results using "metabolomics" and "biomarker" (2009-2021). 

3.2 T2DM Pathogenesis 

Insulin resistance (IR) is a crucial reason for T2DM that primarily refers to the decrease 

in the body’s biological effects on specific insulin concentrations. IR leads to 

impairment in glucose uptake and metabolism of the body, representing the decrease of 

insulin sensitivity and, therefore, the deterioration of responsiveness [112]. IR is 

stimulated by receptor loss, sequence mutations, mitochondrial dysfunction of skeletal 

muscle [113], and the actions of cytokines like free fatty acids, tumor necrosis factor, 

leptin, resistin, and adiponectin. Impaired islet cell function is related to islet α and β 

cells. The number of islet β cells is remarkably decreased in T2DM patients, and the 

ratio of α/β cells is elevated dramatically. In addition, the sensitivity of α cells to glucose 

is decreased, which increases the glucagon level and liver sugar output and finally 

results in the prevalence of T2DM [114]. This is the conventional hypothesis of double 
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hormone abnormalities [115]. IR can disturb glucose and lipid metabolism levels in the 

body, causing overstated free fatty acids. 

Exaggerated free fatty acids stimulate the body to produce large amounts of reactive 

oxygen species (ROS) and reactive nitrogen species (RNS), which yield oxidative stress 

[116]. Oxidative stress activates the nuclear factor-kB (NF-_kB) signaling pathway by 

disrupting the mitochondrial structure and inducing apoptosis, which causes cellular 

inflammatory responses and inhibits insulin synthesis and secretion. Oxidative stress 

also affects physiological processes related to insulin signaling, involving the 

phosphorylation of insulin receptor (InsR) and insulin receptor substrate (IRS), 

activation of phosphatidylinositol 3-kinase (PI3K), and glucose transport of protein 4 

(GLUT4) to generate IR. Also, Oxidative stress damages the anatomical structure and 

later yields T2DM [117]. T2DM patients are commonly obese, especially centrally 

obese, mainly characterized by abnormal glucose and lipid metabolism. There is a 

substantial negative correlation between the abdominal fat area and insulin-mediated 

glucose utilization. Central obesity patients have increased abdominal fat, metabolic 

disorders in visceral adipose tissue (VAT), and impaired hepatic glycogen production 

by insulin leads to IR [118]. Free fatty acids increase in the liver and muscle leads to 

lipid metabolites accumulation. Lipid metabolites accretion might generate 

dyslipidemia, impaired β cell secretion of insulin, and exaggerated fatty acids inhibit 

glucose from clearing, leading to T2DM [119]. The general pathogenesis of T2DM is 

shown in Figure 3-2 [120]. T2DM is characterized as a decrease in insulin sensitivity. 

The leading reasons for T2DM are obesity, oxidative stress, gene and aging, and IR. 

The rise of visceral fat implies increased fatty acids, increasing gluconeogenesis and 

glucose levels. The increased glucose level affects the compensation and 

decompensation of β cells, leading to IGT and eventually T2DM development. 

However, the metabolomics role in DM studies is promising. Detailed information is 

in the next section. 
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Figure 3-2: General pathogenesis of T2DM [115]. 

3.3 Metabolomics Footprint in T2DM Pathogenesis 

Recently, many researchers have studied T2DM metabolites and revealed potential 

biomarkers and their metabolic pathways. These findings provide a necessary 

speculative foundation for T2DM successful prevention and treatment. The main 

factors that can normalize insulin secretion in the human body include glucose, amino 

acids, fatty acids, neurotransmitters, and hormones. Islet cells sustain specific 

homeostasis in several states by managing and integrating these regulatory factors. 

Conversely, T2DM can cause many metabolic abnormalities of substances in the body, 

such as amino acids, lipids, carbohydrates, and others. Metabolomic techniques can 

detect irregularities of metabolites by identifying early biomarkers that can predict the 

incidence and advancement of diabetes. These potential biomarkers are essential for 

studying the inhibition and therapy of diabetes. Many studies have revealed that 

perturbed metabolites significantly after the onset of T2DM are primarily amino acids, 

lipids, and carbohydrates. Findings have demonstrated that amino acids are potential 

biomarkers of T2DM and branched-chain amino acids (BCAA), including leucine, 

valine, and isoleucine. These are vital amino acids for human beings. Studies found 

BCAA closely linked to IR and diabetes [121, 122]. 

On the other hand, diabetes is usually associated with dyslipidemia [123], yet the exact 

mechanism is unclear. For instance, experiments [124, 125] showed that free fatty acids 

might be the leading reason for IR. A recent study [126] introduces a comprehensive 

review of perturbed lipids and amino acid metabolites related to T2DM. Carbohydrates 
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are comprised of sugars, such as fructose and glucose, formed of monosaccharides or 

two disaccharides. Simple carbohydrates are smoothly and rapidly consumed for 

energy by the body due to their simple chemical structure, commonly causing a sharper 

increase in blood sugar and insulin secretion from the pancreas, which can have adverse 

health effects. Several studies applied metabolomics to examine the pathogenesis of 

DM. A group of researchers [127] reviews the metabolomics application in diabetic 

complications. The study includes diabetic coronary artery disease, diabetic 

nephropathy, diabetic retinopathy, and diabetic neuropathy. The study of diabetic 

complications is still in the early stage in metabolomics research. Also, there are few 

studies on biomarkers discovery for diabetes.  

Yun et al. [4] conducted a targeted metabolomics experiment to identify metabolites 

linked with the level of  HbA1c in the serum of people with diabetes. The study 

identified twenty-two metabolites in the discovery set and validated sixteen in the 

replication set. Multivariate logistic regression analysis was performed to cluster the 

metabolites based on their concentration differences (low/high levels) depending on the 

level of HbA1c. Metabolites with high concentrations in the normal HbA1c group, such 

as glycine, valine, and phosphatidylcholines (PCs), could improve  HbA1c levels in 

diabetic patients. The metabolite signatures discovered in this research give insight into 

the pathogenesis in HbA1c levels in T2DM.  

Arneth et al. [6] explore the current published research to assess the relationship 

between metabolites and T1DM and T2DM. All reviewed studies signify the 

relationship between multiple metabolites and diabetes. For example, metabolites such 

as glucose, fructose, amino acids, and lipids are typically altered in individuals with 

T1DM and T2DM.  

[128] reviewed the discovered metabolites associated with prediabetes and T2DM. The 

study selected 27 cross-sectional and 19 prospective publications for the systematic 

review. It has been found that different blood amino acid is consistently associated with 

the risk of developing T2DM. The blood concentrations of numerous metabolites, 

including hexoses, branched-chain amino acids, aromatic amino acids, phospholipids, 

and triglycerides, were associated with the incidence of prediabetes and T2DM.  

A 6-year follow-up Chinese study [129] was conducted to pinpoint metabolites linked 

with an increased risk of T2DM. The serum samples of individuals were analyzed for 
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metabolic profiling purposes. The sample includes 197 diseased individuals with 

T2DM and without cardiovascular or cancer diseases before the diabetes diagnosis and 

197 healthy controls matched by sex, age, and date of blood collection. The results of 

the study revealed 51 differential metabolites between diseased and healthy. Of these, 

35 were substantially correlated with diabetes risk in the multivariate analysis. Some of 

these metabolites are chain amino acids (leucine, isoleucine, and valine), nonesterified 

fatty acids (palmitic acid, stearic acid, oleic acid, and linoleic acid), and 

lysophosphatidylinositol (LPI) species (16:1, 18:1, 18:2, 20:3, 20:4 and 22:6).  

A multiplatform metabolomics study [130] to investigate diabetes used 40 individuals 

with T2DM and 60 controls (male, over 54 years) from the participants of the 

population-based KORA (Cooperative Health Research in the Region of Augsburg) 

study. The known biomarkers identified in the study include sugar metabolites (1,5-

anhydroglucoitol), ketone bodies (3-hydroxybutyrate), and BCAA.  

A  research group [131] identified candidate biomarkers of pre-diabetes for a subcohort 

without T2DM of 876 S4 participated in the study. Of them, 91 developed T2DM 

incidences during the 7-year follow-up samples in the population-based Cooperative 

Health Research in the Region of Augsburg (KORA) cohort.  The study indicated three 

significant metabolites (glycine, lysophosphatidylcholine (LPC) (18:2) and 

acetylcarnitine) had changed levels in IGT individuals as compared to those with 

normal glucose tolerance. 

Research in the Region of Augsburg (KORA) [132] consisted of population-based 

surveys and follow-up periods in Augsburg in southern Germany. A subcohort without 

T2DM 876 S4 people participated in the study. Of them, 91 developed T2DM 

incidences during the 7-year follow-up. Hexose, phenylalanine, and diacyl-

phosphatidylcholines C32:1, C36:1, C38:3, and C40:5 were significantly related to 

T2DM risk in a positive manner. 

Another study on T2DM and impaired fasting glucose (IFG) was performed on plasma 

samples from a large population-based cohort of 2204 females from TwinsUK [133]. 

In this research, 3-methyl-2-oxovalerate was the strongest predictive biomarker, and it 

was confirmed in 720 plasma samples from an independent population. Also, the 

findings were validated in 189 twins, with urine metabolomics taken concurrently as 
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plasma. The results confirmed an overt role in the catabolism of branched-chain-amino-

acids in T2DM and IFG. 

A study [134] reported a metabolic signature shift for 24 IFG, 27 T2DM, and 60 ND. 

IFG and T2DM had significantly raised fructose, α-hydroxybutyrate, alanine, proline, 

phenylalanine, glutamine, BCAA (leucine, isoleucine,andvaline), low 

carbonnumberlipids (myristic, palmitic,andstearic acid), and significantly reduced 

pyroglutamic acid, glycerophospohlipids, and sphingomyelins compared to ND. 

One of the few studies on insulin resistance (IR) in children is Mastrangelo et al. [135]. 

In this study, metabolites related to inflammation and central carbon metabolism, 

together with the contribution of the gut microbiota, were recognized as the most altered 

processes. Most metabolites differing between groups were lysophospholipids (15) and 

amino acids (17). Bile acids exhibit the most remarkable changes. Sex proved a strong 

influence in selecting the metabolite markers despite their prepubertal status. 

Lie et al. [136] explored the mechanism of the complex disease, T2DM coronary heart 

disease (T2DM-CHD). The study analyzed plasma samples from 15 HC, 13 coronary 

heart disease (CHD) patients, 15 T2DM patients, and 28 T2DM-CHD patients. About 

17 metabolic biomarkers were highly possible to be associated with T2DM-CHD. 

These metabolites included isoleucine, valine, isopropanol, alanine, leucine, acetate, 

proline, glutamine, arginine, trans-aconitate, creatine, creatinine, glucose, glycine, 

threonine, tyrosine, and 3-methylhistidine.  

In 2016, [137] surveyed previously identified metabolic shifts in DM. BCAA, aromatic 

amino acids (AAAs), and acylcarnitines are strongly associated with early IR. 

A meta-analysis [128] of 27 cross-sectional and 19 prospective publications reporting 

associations of metabolites and pre-diabetes and/or type 2 diabetes was conducted. 

Carbohydrate (glucose and fructose), lipid (phospholipids, sphingomyelins, and 

triglycerides), an amino acid (BCAA, aromatic amino acids, glycine, and glutamine) 

metabolites were higher in individuals with T2DM compared with control subjects. 

Prospective studies provided evidence that blood concentrations of several metabolites, 

including hexoses, BCAA, aromatic amino acids, phospholipids, and triglycerides, 

were associated with the incidence of pre-diabetes and type 2 diabetes. 
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Tam et al. [138] explored the pathogenesis and phenotype of late-onset T2DM. The 

study consists of a urine sample for 80 older people with late-onset T2DM and 79 older 

controls without T2DM. The results identified potential biomarkers; reduced levels of 

phenylalanine, acetylhistidine, and cyclic adenosine monophosphate (cAMP) were 

found in urine samples of T2DM subjects. Elevated levels of 5′-methylthioadenosine 

(MTA), which previously had only been implicated in an animal model of diabetes, was 

found in the urine of older people with T2DM. 

A T2DM follow-up study [139] examined 2776 individuals from the Erasmus Rucphen 

Family study. Of them, 1571 healthy controls were followed up to 14-years. The results 

showed 24 biomarkers, i.e., high-density, low-density, and very low-density lipoprotein 

sub-fractions, specific triglycerides, amino acids, and small intermediate compounds 

predicted future T2DM. 

An interesting and neglected biological sample type is earwax in [140] to detect 

biomarkers of diabetes. The authors studied the volatile compounds in the sample by 

headspace Gas Chromatography Coupled to Mass Spectrometry (GC-MS). The six 

most essential biomarkers were ethanol, acetone, methoxyacetone, hydroxyurea, 

isobutyraldehyde, and acetic acid. For example, the Methoxyacetone biomarker 

perfectly differentiated between T2DM and T1DM. 

A prospective Swedish study [141] identified potential metabolites for T2DM future 

prediction. A sample of 503 case-control pairs at baseline and samples from a subset of 

187 case-control pairs at ten years of follow-up were analyzed. The study identified 46 

predictive plasma metabolites of T2DM. PCs containing odd-chain fatty acids (C19:1 

and C17:0) and 2-hydroxyethanesulfonate were associated with the likelihood of 

developing T2DM. 

The Singapore Chinese Health Study (SCHS), a population-based study in Singapore, 

investigated T2DM risk and prevalence in the Chinese population [142]. Participants 

involved 160 incidents and 144 prevalent cases with T2DM and 304 controls. The study 

recognized 37 metabolites associated with prevalent T2DM, including 7 

lysophosphatidylinositol (LPIs), 18 non esterified fatty acids (NEFAs), and 12 

acylcarnitines and 11 metabolites associated with incident T2DM, including 2 LPIs and 

9 NEFAs. Then, LPI (16:1) and dihomo-g-linolenic acid indicated independent 

associations with incident T2DM and improved risk prediction considerably. 
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The Korean community-based cohort of the Ansan–Ansung study prospectively 

analyzed the associations between serum metabolites and T2DM risk [143]. A sample 

of 1939 participants with available metabolic profiles without DM, cardiovascular 

disease, or cancer at baseline was selected. In the follow-up period, the study identified 

282 cases of incident T2DM. Serum levels of alanine, arginine, isoleucine, proline, 

tyrosine, valine, hexose, and five phosphatidylcholine diacyls were positively 

associated with T2DM risk. In contrast, lyso-phosphatidylcholine acyl C17:0 and C18:2 

and other glycerophospholipids were negatively associated with T2DM risk. 

The prospective study [144], Atherosclerosis Risk in Communities (ARIC), analyzed 

known metabolites using an untargeted approach in serum. A sample of 2939 

participants with metabolomics data and without prevalent diabetes was selected. The 

study identified 245 metabolites. Seven metabolites were significantly associated with 

incident diabetes, including a food additive (erythritol) and compounds involved in 

amino acid metabolism [isoleucine, leucine, valine, asparagine, 3-(4-

hydoxyphenyl)lactate] and glucose metabolism (trehalose). This study is the first to 

report asparagine as a protective biomarker of diabetes risk. 

The investigation of T2DM in young adults was conducted using four Finnish cohorts 

[145]. Out of 229 metabolic measures, 113 were associated with incident T2DM in a 

meta-analysis of the four cohorts. Branched-chain and aromatic amino acids and 

triacylglycerol within VLDL particles and linoleic n-6 fatty acid and non-esterified 

cholesterol in large HDL particles are amongst the strongest biomarkers of diabetes 

risk. 

T2DM is a multifactorial disease; therefore, since obesity is associated with an 

increased risk of IR and T2DM, a study [146] aimed to depict the serum metabolomic 

fingerprint and multi-metabolite signatures associated with IR and T2DM. a sample of 

30 adults of normal weight, 26 obese adults, and 16 adults newly diagnosed with T2DM 

were chosen. The identified IR potential biomarkers include amino acids (Asn, Gln, 

and His), methionine (Met) sulfoxide, 2-methyl-3-hydroxy-5-formylpyridine-4-

carboxylate, serotonin, L-2-amino-3- oxobutanoic acid, and 4,6-dihydroxyquinoline. 

However, T2DM was associated with dysregulation of 42 metabolites, including amino 

acids, amino acids metabolites, and dipeptides. 
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Researchers conducted a non-targeted urine metabolomics experiment [147] to 

understand better the role of the urine metabolome in predicting the risk of T2DM. 

Urine samples from two community cohorts of 1424 adults were analyzed by ultra-

performance liquid chromatography/mass spectrometry (UPLC-MS). The study 

proposed 3-hydroxyundecanoyl-carnitine as a potential biomarker for T2DM. 

Satheesh et al. [148] examined previous targeted metabolomics-based prospective 

studies on potential biomarkers for T2DM. The analysis revealed that many studies 

showed a direct association of BCAA and an inverse association of glycine with T2DM. 

A comprehensive systematic review [5] revealed potential biomarkers for T2DM 

patients. Amino acids such as BCAA and AAAs had positive associations with T2DM. 

In particular, prospective studies indicated that isoleucine, leucine, valine, tyrosine, 

phenylalanine, glutamate, alanine, valerylcarnitine (C5), palmitoylcarnitine (C16), 

palmitic acid, and linoleic acid were associated with higher T2DM risk. In contrast, 

serine, glutamine, and lysophosphatidylcholine C18:2 decreased the risk of T2DM. 

Studies about the metabolomic profile of T2DM from the Middle Eastern populations 

are still in their early stages. A study [149] on UAE T2DM nationals revealed 

significant differences in many metabolites, including BCAA, trimethylamine N-oxide, 

β-hydroxybutyrate, trimethyl uric acid, and alanine. A targeted MS approach showed 

substantial differences in lysophosphatidylcholines, phosphatidylcholines, 

acylcarnitine, amino acids, and sphingomyelins; Lyso.PC.a.C18.0, PC.ae.C34.2, 

C3.DC..C4.OH, glutamine and SM.C16.1 are the most significant metabolites [149].  

Table 3-1 summarizes common diabetes-related potential metabolites. Collectively, we 

can sort the panel of potential discovered metabolic signatures into different pathways: 

(1) carbohydrate metabolism, (2) amino acid and derivative metabolism, (3) Glycolysis 

and TCA Cycle, and (4) lipid metabolism [150, 151]. 

To summarize, human metabolomics studies are susceptible to clinical confounding 

factors that may lead to false conclusions, as equivalent studies with different results 

have shown. Therefore, applying metabolomic profiling to large population-based 

epidemiological cohorts will enable more robust findings and reproducible results 

translated into real clinical markers [68]. The importance of metabolites as potential 

biomarkers is several. Metabolites changes earlier and more significant compared to 

genes or proteins, and those changes can be measured in absolute terms, while genes 
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and proteins demonstrate changes in activity in a different manner than those in the 

concentrations; metabolites can be allocated in biochemical pathways, and therefore, 

their changes can be biologically explained in most cases, strengthening their value 

[68]. The limitation of biomarkers discovery studies is that small sample sets influence 

the selection of controls and might have confounding factors that strongly affect the test 

outcome. This challenge explains why the studies used for the same disease, in the same 

sample type, and with the same instrumental technique often lead to different findings. 

Examining common metabolite biomarkers in various studies and a biochemical 

relationship with the disease will identify those with higher potential [68].  

Challenges that require more recognition of the scientific community in metabolomics 

disease studies are research design, sample collection, quality, data quality assurance, 

reliable means of data analysis and model validation, and confirmation of metabolite 

biomarkers [152], [153]. Many efforts were proposed to construct metabolomics format 

standards as a common language between researchers, i.e., creating standard practices 

to boost the efficiency, validity, and understanding of metabolomics data [152], [154]. 

It is believed that these standards can ensure regularizing the structure and reporting of 

data. Also, they ease the way of data distribution, exchange, and reanalysis. In this 

regard, a recent success [155] has been made as a collaboration between researchers of 

the Metabolomics Standards Initiative, Proteomics Standards Initiative, and the 

Metabolomics Society. The "mzTab-M" data standard tool is developed to provide a 

common output format from analytical platforms using MS on small molecules. The 

tool can represent final quantification values from analyses and the evidence trail in 

terms of features measured directly from MS (e.g., LC-MS, GC-MS, DIMS, etc.) and 

distinct types of methods employed to recognize molecules. It also allows the removal 

of vagueness in identifying molecules that enable clear communication to readers of 

the files. 

However, many identified biomarkers from cross-sectional epidemiological studies are 

inadequately potent to provide a clinically robust diagnosis of diabetes. The study's 

limitations are commonly acknowledged as single and small cohort studies, prompting 

the need for independent validation in well-designed, largescale studies in the future. 

There is a great potential for many better biomarkers to be discovered, which is a highly 

dynamic field of research in metabolomics [156].  
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Some considerations should be applied to transfer the discovered biomarkers into 

clinical settings [118]. First, the validation of the results should be conducted in 

different stages, from analytical validation to validation in independent sets of samples, 

employing thousands of samples from various sources. The utilization of metabolomic 

experiments to significant sample-based epidemiological cohorts will lead to improved 

and robust conclusions—high sensitivity, specificity, and reproducibility rates 

transformed into real clinical indicators.  

However, metabolomic profiles are significantly affected by environmental and 

demographic factors, i.e., age, gender, blood pressure, BMI, and smoking, that alter the 

range of natural values and raise the possibility of false biomarker discovery [157]. 

Therefore, it is necessary to scrutinize the study design features that help boost the 

utility of metabolomics data across demographic groups. Thus, the following section 

summarizes the explored relationship between demographic risk factors and 

metabolites. 

Table 3-1: Survey of discovered potential diabetes-related metabolites. 

Ref 

 

Disease

/ 

Treatm

ent 

 

Training 

Size 

 

Biomarkers Biological 

Matrix 

Analytical 

Platform 

 

[130] T2DM Forty 
individuals 
with T2DM 
and 60 HC.  

3-indoxyl sulfate, glycerophospholipids, 
free fatty acids, and bile acids 

Blood  NMR, MS 

[131] T2DM KORA S4: 
91 dT2D and 
1206 
non-T2DM 
(866  
NGT, 102 i-
IFG, 238 
with IGT). 
KORA F4: 
876 non-
diabetic (91 
developed 
T2DM). 
of 641 
individuals 
with NGT 
at baseline 
(118 
developed 
IGT)) 

Three significant metabolites (glycine, 
lysophosphatidylcholine (LPC) (18:2), and 
acetylcarnitine) had changed levels in IGT 
individuals as compared to those with 
normal glucose tolerance. 

Serum  LC 
and flow 
injection 
analysis–MS 

[132] T2DM T2DM (n = 
800) and HC 
(n = 2282). 

This study identified sugar metabolites, 
amino acids, and choline-containing 
phospholipids to be independently 
associated with risk of T2D. 

Serum Flow 
injection 
analysis 
tandem mass 
spectrometry 
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Ref 

 

Disease

/ 

Treatm

ent 

 

Training 

Size 

 

Biomarkers Biological 

Matrix 

Analytical 

Platform 

 

(FIA) 
MS/MS 

[133] T2DM T2DM (n = 
115), IFG (n 
= 192) and 
HC (n = 
1897). 

Forty-two metabolites from three major 
fuel  
sources, carbohydrates, 
lipids and proteins are robust risk factors 
for the development of both IFG and T2D. 
The branched-chain keto-acid metabolite 
3-methyl-2-oxovalerate was the strongest 
predictive biomarker for IFG after glucose 
 

Plasma and 
Urine 

UHPLC-
LTQ/MS and 
GC-MS 

[134] T2DM 24 IFG, 27 
T2DM, and 
60 ND 

fructose, α-hydroxybutyrate, alanine, 
proline, phenylalanine, glutamine, BCAA 
(leucine, isoleucine,andvaline), low 
carbonnumberlipids (myristic, 
palmitic,andstearic acid), pyroglutamic 
acid, glycerophospohlipids, and 
sphingomyelins. 

Serum MS 

[135] IR IR (n = 30) 
and non-IR 
(n = 30) 

47 metabolites were found to be 
significantly 
different. Bile acids exhibit the greatest 
changes. 

Serum LC-MS, GC-
MS, CE–MS. 

[136] T2DM 
coronar
y heart 
disease 
(T2DM-
CHD) 

15 HC, 13 
CHD, 
15 T2DM 
and 28 
T2DM-
CHD.  

About 11 and 12 representative 
metabolites of 
CHD and T2DM were identified, 
respectively, mainly including alanine, 
arginine, proline, glutamine, creatinine and 
acetate. 

Plasma  NMR 

[137] T2DM  BCAAs, AAAs, and acylcarnitines are 
strongly associated with early IR. 

Blood, 
Saliva 

MS, NMR 

[128] T2DM 
and 
Prediab
etes 

8,000 
individuals 
(1,940 had 
T2DM) 

Several blood amino acids appear 
to be consistently associated with the risk 
of developing T2DM. 

Blood 
(plasma, 
serum) or 
urine 

MS, NMR, 
HILIC. 

[138] T2DM 80 older 
people with 
late-onset 
T2DM and 
79 older 
controls 
without 
T2DM. 

Lower levels of phenylalanine, 
acetylhistidine, and cAMP were 
found in urine samples of late-onset 
T2DM subjects. Elevated levels of 
5′-methylthioadenosine (MTA) 
was found in the urine of older people with 
T2DM. 

Urine UPLC-MS 

[139] T2DM 2776 
participants 
(controls = 
2564, cases 
= 212) 

lipoprotein sub-fractions, certain 
triglycerides, amino acids 

Blood NMR, MS 

[140] T1DM, 
T2DM 

DM (n = 26, 
type 1 (n = 
8) and 
T2DM (n = 
18)) 

Six important biomarkers were ethanol, 
acetone, 
methoxyacetone, hydroxyurea, 
isobutyraldehyde, 

Earwax GC-MS 
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Ref 

 

Disease

/ 

Treatm

ent 

 

Training 

Size 

 

Biomarkers Biological 

Matrix 

Analytical 

Platform 

 

and HC (n = 
33). 

and acetic acid. Methoxyacetone was the 
only 
biomarker able solely to perfectly 
discriminate 
between diabetes types 1 and 2. 

[141] T2DM 503 cases, 
503 
Controls. 

PCs containing odd-chain fatty acids 
(C19:1 and C17:0) and 2-
hydroxyethanesulfonate were associated 
with the likelihood of developing T2DM. 

Plasma LC-MS 

[142] T2DM 160 incident 
and 144 
prevalent 
cases with 
T2DM and 
304 controls. 

Several LPIs and NEFAs were associated 
with the risk of T2DM. 

Serum LC-MS/MS, 
GC MS/MS 

[143] T2DM 1939 
participants 
with 
available 
metabolic 
profiles and 
without DM, 
cardiovascul
ar disease, or 
cancer at 
baseline. 

Serum levels of alanine, arginine, 
isoleucine, proline, tyrosine, valine, 
hexose and five phosphatidylcholine 
diacyls were positively associated with 
T2DM risk. In contrast, lyso-
phosphatidylcholine acyl C17:0 and C18:2 
and other glycerophospholipids were 
negatively associated with T2DM risk. 

Serum AbsoluteIDQ
TM p180 kit, 
LC–MS/MS 

[144] T2DM 2939 
participants 
with 
metabolomic
s data and 
without 
prevalent 
diabetes 
(1126 
T2DM) 

Food additive (erythritol) and compounds 
involved in amino acid metabolism 
[isoleucine, leucine, valine, asparagine, 3-
(4-hydoxyphenyl)lactate] and glucose 
metabolism (trehalose) 
 

Serum Waters 
ACQUITY 
UPLC, 
ThermoFishe
r Scientific 
Q-Exactive 
MS 

[145] T2DM 11,896 
individuals 
(392 T2DM) 

Branched-chain and aromatic amino acids, 
triacylglycerol within VLDL particles, 
linoleic n-6 fatty acid, and non-esterified 
cholesterol.  

Serum NMR 

[146] T2DM 
and IR 

30 adults of 
normal 
weight, 26 
obese 
adults, and 
16 adults 
newly 
diagnosed 
with T2DM 

IR potential biomarkers: amino acids (Asn, 
Gln, and His), methionine (Met) sulfoxide, 
2-methyl-3-hydroxy-5-formylpyridine-4-
carboxylate, serotonin, L-2-amino-3- 
oxobutanoic acid, and 4,6-
dihydroxyquinoline. T2DM was associated 
with dysregulation of 42 metabolites, 
including amino acids, amino acids 
metabolites, and dipeptides. 

Serum (CIL) LC-
MS 
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3.4 Metabolomics and Demographics Variables 

Several factors have been revealed to have an association with the incidence of diabetes, 

bolstered by various epidemiologic and experimental research. Risk factors can be 

classified into two categories: non-modifiable, such as age, gender, ethnicity, family 

history, or modifiable such as BMI, diet, exercise, risk factors. 

Different metabolomics studies show the significant impact of sex and age on 

metabolite profiles [158-166]. Their cross-sectional designs limit these studies, yet they 

are informative. It is vital to apply a longitudinal research design that can depict age-

Ref 

 

Disease

/ 

Treatm

ent 

 

Training 

Size 

 

Biomarkers Biological 

Matrix 

Analytical 

Platform 

 

[147] T2DM 789 
participants 
of the 
PIVUS 
study (108 
prevalent 
cases of 
T2DM) and 
635 
participants 
of 
the ULSAM 
study (89 
cases of 
prevalent 
T2DM). 

3-hydroxyundecanoyl-carnitine Urine UPLC-MS 

[148] T2DM  Direct association of BCAA and an inverse 
association of 
glycine with T2DM. 

  

[5] T2DM The number 
of 
participants 
ranged from 
100(20) 
to 27296(21) 

Isoleucine, leucine, valine, tyrosine, 
phenylalanine, glutamate, alanine, 
valerylcarnitine (C5), palmitoylcarnitine 
(C16), palmitic acid, and linoleic acid 
were associated with higher T2DM risk. 
However, serine, glutamine, and 
lysophosphatidylcholine C18:2 decreased 
the risk of T2DM. 

plasma, 
serum, 
urine 

MS, NMR 

[149] T2DM 100 Patients 
(obese 
non-T2DM 
(n = 50) and 
obese T2DM 
(n = 50)) 
UAE 
nationals 
aged 
between 18 - 
60 year. 

BCAAs, trimethylamine N-oxide, β-
hydroxybutyrate, trimethyl uric acid, and 
alanine. 
lysophosphatidylcholines, 
phosphatidylcholines, acylcarnitine, amino 
acids and 
sphingomyelins;Lyso.PC.a.C18.0,PC.ae.C
34.2, C3.DC..C4.OH, glutamine and 
SM.C16.1, are the most significant 
metabolites. 

Blood NMR, FIA-
MS/MS, and 
LC-MS/MS. 
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associated phenomena to evaluate aging's metabolomics, mainly because of the high 

variability of metabolites [167]. 

It is stated that age is recognized to be the single major risk factor of the most 

widespread diseases in developed countries [168]. Building a knowledge of the 

metabolome variation with age could further unveil the mechanisms by which age 

impacts disease risk. It could also enable discovering high-risk metabolomic profiles 

suggestive of specific diseases' early stages [169]. Therefore, longitudinal plasma 

samples from the Wisconsin Registry for Alzheimer's Prevention were used to 

investigate the function of age in metabolomics [169]. The results show that 1,097 

metabolites were tested, 623 (56.8%) were associated with age, and 695 (63.4%) with 

sex after correcting for multiple testing. The levels of most metabolites are significantly 

affected by age and sex, and sex differentially influences the levels and trajectories of 

many metabolites. The study's significance underlines the importance of integrating age 

and sex in the design and analysis of metabolomics studies and proposes a richer insight 

into the aging process that could tell many novel hypotheses regarding the role of 

metabolites in healthy and accelerated aging. 

The Baltimore Longitudinal Study of Aging was employed to identify plasma 

metabolites predictive of change in gait speed over time [170]. Gait speed measures 

lower extremity physical performance in older adults and predicts disability and 

mortality. BLSA is a follow-up study of 50.5 months in 504 adults aged 50 years and 

above. Results show that of 148 plasma metabolites (amino acids, biogenic amines, 

hexoses, glycerophospholipids) measured, eight were significantly associated with gait 

speed at baseline, independent of age and sex. It is concluded that Low plasma LPC 

18:2, which has previously been shown to predict IGT, IR, T2DM, coronary artery 

disease, and memory impairment, is an independent predictor of decline in gait speed 

in older adults.  

It is worth mentioning that [157] summarizes major classes of metabolites affected by 

age, sex, and BMI. Therefore, it is critical to study the impact of different demographic 

features on metabolites in the UAE population. 

3.5 Metabolomics in Diabetic Kidney Disease 

Recently, the investigation of DKD via metabolomics has been of primary interest [171, 

172]. However, despite the increased interest in metabolomics in DKD patients [173, 
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174], more studies need to be conducted in such a manner. Specifically, studies on 

people with diabetes under hemodialysis have been rare.  

Several studies have shown potential biomarkers of DKD. The primary metabolites 

were products of lipid metabolism (such as esterified and nonesterified fatty acids, 

carnitines, phospholipids), branch-chain amino acid and aromatic amino acid 

metabolism, carnitine, and tryptophan metabolism, nucleotide metabolism (purine, 

pyrimidine), and the tricarboxylic acid cycle or uraemic solutes [175-178]. Moreover, 

mitochondrial function and fatty acid oxidation are crucial in the DKD progress [172, 

179]. However, these studies demonstrated substantial variations in the metabolomic 

profiles, perhaps due to differences in geography, ethnicity, sample selection, and 

analytical platform.  

The metabolomic profile of DKD under hemodialysis from the middle eastern 

populations is unknown. Therefore, the second study explores the metabolomic profile 

of diabetic and non-diabetic UAE citizens undergoing hemodialysis to uncover the 

potential novel biomarkers in this population. However, diabetic medication intake for 

dialysis patients affects their metabolic profiling. Therefore, we also analyzed the data 

based on the available HbA1c values. 

Metabolomics is promising in the pharmaceutical field and clinical research. However, 

due to the complexity and high throughput data generated from such experiments, data 

mining and analysis are significant challenges for researchers in the field. Thus, several 

efforts were achieved to develop a complete workflow that helps researchers analyze 

data. The following sections review the state-of-the-art computer-aided tools and 

databases in metabolomics established in recent years. 

3.6 Metabolomics Databases 

The ever-growing quantity of experimental and computational chemical data requires 

consideration of storing, accessing, and manipulating this vast amount of information. 

Today, hundreds of database projects are created and annotating biological knowledge; 

each is dedicated context, as shown in Figure 3-3.  
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Figure 3-3: Metabolomics databases multifunctional tasks. 

As a result, the database's current catalog is robust and diverse, including organism 

focus, curation approach, type of pathways, interactions covered, and other differences. 

In addition, many databases are available to researchers for data mining and sharing 

consistent chemical data for various purposes. For example, all pathway search tools 

depend on a database from which biochemical reactions and molecules can be enlisted 

to comprise the pathway of interest. This section discusses the databases related to 

various metabolite annotation, metabolism, and metabolomics workflows.  

The Reactome Knowledgebase [180] is a curated database of pathways and reactions 

in human biology, cross-referenced with several resources, as essential literature and 

different pathway-related databases. It aims its manual annotation effort on a single 

species, Homo sapiens, and applying a single consistent data model across all domains 

of biology. The Reactome defines a reaction as any event in biology that changes the 

state of a biological molecule. Binding, activation, translocation, degradation, and 

classical biochemical events involving a catalyst are all reactions. It provides molecular 

details of signal transduction, transport, DNA replication, metabolism, and other 

cellular processes. It contains 2,546 human pathways and 1,940 small molecules [180]. 

BioCyc [181] is an encyclopedic reference to a collection of 19494 Pathway and 

Genome Databases for model eukaryotes and thousands of microbes and software tools 

for exploring them. In addition, BioCyc comprises curated data from 130,000 

publications. The MetaCyc and EcoCyc databases are freely available via BioCyc. 
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However, access to the remaining BioCyc databases needs a paid subscription such as 

HumanCyc (HumanCyc.org) [182].  

MetaCyc [183] is a broad reference database of metabolic pathways and enzymes from 

all fields of life. It includes 2937 pathways obtained from 3295 different organisms., 

making it the most extensive curated collection of metabolic pathways [183].  

EcoCyc [184] is a scientific database for Escherichia coli K-12 MG1655. The EcoCyc 

project performs literature-based curation of its genome, transcriptional regulation, 

transporters, and metabolic pathways. New and improved data analysis and 

visualization tools include an interactive metabolic network explorer, a circular genome 

viewer, and many upgrades to the speed and usability of existing tools [184]. It mainly 

focuses on metabolic pathways and signaling.  

Metabolite Network of Depression Database (MENDA) [185] is a broad metabolite-

disease association database that integrates all existing knowledge and datasets of 

metabolic characterization in depression. In addition, study and tissue type, organism, 

category of depression, sample size, platform (MS-based, MRS, NMR), and differential 

metabolites are provided.  

BiGG Models [186] is Biochemical, Genetic, and Genomic knowledge base of genome-

scale metabolic network reconstructions. BiGG Models include more than 75 high-

quality, manually curated genome-scale metabolic models. It also delivers a broad 

application programming user interface for accessing BiGG Models with modeling and 

analysis tools. In addition, reaction identifiers, metabolite identifiers, and pathway 

visualization were formalized in BiGG Models.  

KEGG [46] is one of the most complete and widely used databases. It is a manually 

curated resource integrating eighteen databases categorized into systems, genomic, 

chemical and health information.  

The BRaunschweig ENzyme Database (BRENDA) enzyme database [187] contains 

comprehensive functional enzyme and metabolism data such as measured kinetic 

parameters. The main part has more than 5 million data for almost 90000 enzymes. In 

addition, BRENDA offers easy access to enzyme information from quick to advanced 

searches, text- and structured-based queries for enzyme-ligand interactions, word maps, 

and visualization of enzyme data.  
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PubChem [47] is the world's most extensive collection of freely accessible chemical 

information from more than 750 data sources. It stores information in three primary 

categories: compounds, substances, and bioactivities. In addition, several research areas 

use PubChem as a big data source, including machine learning and data science studies 

for virtual screening, drug repurposing, chemical toxicity prediction, drug side effect 

prediction, and metabolite identification. Furthermore, PubChem provides chemical 

and physical properties, biological activities, safety and toxicity information, patents, 

literature citations, and more.  

ChEBI [51] is a freely accessible dictionary of molecular entities focused on small 

chemical compounds. The HMDB [45] is comprehensive reference information about 

human metabolites and their related biological, physiological, and chemical properties. 

To date, HMDB has a 220945 total number of metabolites. ChemSpider [188] is a free 

chemical structure database delivering quick text and structure search access to more 

than 100 million structures from hundreds of data sources.  

MetaboLights [189] is a database for metabolomics studies, raw experimental data, and 

associated metadata.  MetaboLights is cross-species, cross-technique, and covers 

metabolite structures and their reference spectra and their biological roles, locations and 

concentrations, and experimental data from metabolic experiments. Users can upload 

their research datasets into the MetaboLights Repository. These researches are then 

automatically given a stable and unique identifier that can be used for publication 

reference.  

The Metabolomics Workbench [190] is a public repository for metabolomics metadata 

and experimental data spanning various species and experimental platforms, metabolite 

standards, metabolite structures, protocols, tutorials, training material, and other 

educational resources. It can integrate, analyze, track, deposit, and disseminate big 

heterogeneous data from many MS- and NMR-based metabolomics studies. It also 

covers more than 20 different species, including humans and other mammals, plants, 

insects, invertebrates, and microorganisms. 

SMPDB [53] is a comprehensive, interactive, visual database containing over 48000 

discovered pathways. Most of these pathways don't exist in any other pathway database. 

SMPDB help in pathway interpretation and pathway discovery in metabolomics, 

transcriptomics, proteomics, and systems biology. 
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MetSigDis [191] is a free web-based tool that offers a comprehensive metabolite 

alterations resource in various diseases. The database deposited 6849 curated 

relationships between 2420 metabolites and 129 diseases across eight species involving 

Homo sapiens and model organisms. 

Virtual Metabolic Human [192] is a web-based database capturing current knowledge 

of human metabolism within five interlinked resources including,  Human metabolism, 

Gut microbiome, Disease, Nutrition, and ReconMaps. The VMH's unique features are 

(i) the hosting of the metabolic reconstructions of human and gut microbes amenable 

for metabolic modeling; (ii) seven human metabolic maps for data visualization; (iii) a 

nutrition designer; (iv) a user-friendly webpage and application-programming interface 

to access its content; (v) user feedback option for community engagement and (vi) the 

connection of its entities to 57 other web resources. 

WikiPathways  [193] is a reliable and rich pathway database that captures biological 

pathways' collective knowledge. By providing a database in a curated, machine-

readable way, omics data analysis and visualization is enabled.  

The relational database of Metabolomics Pathways (RaMP) [194] is a public database 

to combine biological pathways from the KEGG, Reactome, WikiPathways, and the 

HMDB. RaMP maps genes and metabolites to biochemical/disease pathways and can 

readily be integrated into other existing software. It can be used as a stand-alone 

resource or incorporated into other tools. 

Pathway Commons [195] is one of the most extensive composite databases. It is an 

integrated resource of publicly available information about biological pathways, 

including biochemical reactions, assembly of biomolecular complexes, transport and 

catalysis events, and physical interactions involving proteins, DNA, RNA, and small 

molecules (e.g., metabolites and drug compounds). A list of commonly used 

metabolomics databases and their main features can be found in Table 3-2.  

A variety of databases stands as a metabolomics datasets repository. To mention some, 

BioMagResBank (BMRB) [52] is a public repository for NMR spectroscopy data from 

proteins, peptides, nucleic acids, and other biomolecules. In addition, Golm 

Metabolome Database (GMD) [196] provides data sets for biologically quantified 

active metabolites and text search capabilities for GC-MS data. Moreover, the Mass 

Spectral Library [197] extensively collects EI MS, MS/MS, Replicate spectra, and 
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Retention index data sets. Finally, the Spectral Database System (SDBS) [198] is a 

spectral database for organic compounds and has various MS, NMR, IR, Raman, ESR 

data sets.  

Taken all together, Pathguide [199] is a necessary initial step for considering the 

prospect of pathway databases. Pathguide is a meta-database that contains information 

about 702 biological pathway-related databases and molecular interaction-related 

databases. For example, the Pathguide categories include metabolic pathways, 

signaling pathways, pathway diagrams, transcription factor targets, gene regulatory 

networks, genetic interactions networks, protein–compound interactions, protein 

sequence-focused, protein-protein interactions, etc.  

Despite the emerging number of chemical databases, the significant challenge for this 

expansion is the incompetence to utilize metabolite and reaction information from 

different databases such as KEGG, BRENDA, MetaCyc because of representation 

inconsistencies and, duplications and errors. In addition, the same metabolite is found 

with multiple names across databases and models, which slows down collating 

information from various data sources. Therefore, researchers designed the MetRxn 

database [200], Rhea [201],  and RefMet [202] to standardize reaction and metabolite 

names. Additions and modifications to databases are made regularly to increase the 

quality and coverage of their biological knowledge. Some databases can update their 

information frequently to sustain pace with discoveries. For instance, the KEGG 

database [46] revises its data weekly; however other databases do it less often. The 

preference of databases should consider the relative sizes, degree of overlap, and scope. 

For instance, KEGG contains significantly more compounds than MetaCyc, whereas 

MetaCyc contains more reactions and pathways than KEGG. For example, pathway 

sets can differ between databases in many ways, including the number of pathways 

present, the size of pathways, how pathways are curated (manually or computationally, 

or a combination of both), pathway boundaries, and the organisms supported [203]. 

However, the interpretation of metabolomics data has been challenging as 

understanding the connections between dozens of altered metabolites has often relied 

on researchers' biochemical knowledge and speculations. However, modern 

biochemical databases provide information about metabolism's interrelations, 

automatically polling using metabolomics secondary analysis tools, i.e., mathematical, 

and computational tools. Table 3-2 shows variety of available databases online. The 
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second column shows the kind of species pursued by each database. Additionally, in 

the sixth column, the links to websites are supplied.  

Table 3-3: Summary of metabolomics databases. 
YOR, Year of release. 

Database  Organis

ms  

Database 

descriptions  

Coverage  Accessi

bility  

Link  Y.O.R Ref. 

Reactome 
Knowledg
ebase 

Homo 
sapiens 

It contains 
visualization, 
interpretation, and 
analysis of pathway 
knowledge. 
Available tools: 
SkyPainter, 
PathFinder, 
BioMart, Reactome 
Gene Set Analysis 
(ReactomeGSA) 
and Reactome IDG 
Portal. 
  

Human 

Pathways:25
46 
Reactions:13
890 
Proteins:102
0 
Small 

Molecules:19
40 
Drugs:507 
 

Free Reactome.org 2005 [180] 

BioCyc Eukaryot
es 
Bacteria 
and 
Archaea. 

It is a 
comprehensive 
reference 
containing listed 
data from 130000 
publications—
available tools: 
Pathologic, 
Genome browser, 
Pathway Tools, 
BLAST search and 
SmartTables. 

Pathway/Gen

ome 

Databases 

(PGDBs):194
94  
Archaea: 
465 databases 
Bacteria: 
18956 
databases 
Eukaryota: 
37 databases 
MetaCyc: 
Metabolic 
Encyclopedia 

EcoCyc 
and 
MetaCy
c 
databas
es: free 
access. 
Others: 
Paid 
subscri
ption  

Biocyc.org 1997 [181] 

MetaCyc Eukaryot
es 
Bacteria 
and 
Archaea. 

It serves as a 
comprehensive 
reference to 
metabolic pathways 
and 
enzymes. Available 
tools: Pathologic, 
Genome browser, 
BLAST search, 
Pathways Tools, 
Google™. 

Multi-

organisms: 
3295 
Metabolic 

pathways:29
37 
Enzymatic 

reactions:173
10   

Free MetaCyc.org 1999 [183] 

EcoCyc Bacterial 
organism: 
Escherich
ia coli K-
12 
MG1655 

It contains 
Metabolic Network 
Explorer, Circular 
Genome Viewer  
 
 

Genes:4518 
Enzymes:168
2 
Metabolic 
reactions:215
1 
 

Free EcoCyc.org 1995 [184] 

BIGG 
Models 

Eukaryot
es, 
Prokaryot
es, and 
Photosynt
hetic 
Eukaryot
es.  

It provides Pathway 
visualization with 
Escher. It also 
offers Standardized 
identifiers for 
metabolites, 
reactions, and 
genes.  

It contains 
more than 75 
high-quality 
manually-
curated 
genome-scale 
metabolic 
models. 

Free BIGG.ucsd.ed
u 

2007 [186] 

https://reactome.org/
http://bigg.ucsd.edu/
http://bigg.ucsd.edu/


 

65 
 

Database  Organis

ms  

Database 

descriptions  

Coverage  Accessi

bility  

Link  Y.O.R Ref. 

KEGG Eukaryot
es 
Bacteria 
and 
Archaea. 

PATHWAY 
database, KEGG 
NETWORK 
database, KO 
annotation and 
taxonomy, Drug 
information, and 
Virus-cell 
interaction. 
Available tools: 
KEGG Atlas, 
KegHier, 
KegArray, 
KegDraw, 
KegTools, KEGG2, 
KEGG API. 
 

 

 

KEGG 

organisms: 

7760 
(Eukaryotes: 

695,  
Bacteria:669
4, 

Archaea:371)
. 
KEGG 

modules: 456 

Reaction 

modules:46 

Free www.kegg.jp/ 1995 [46] 

BRENDA Eukaryot
es 
Bacteria 
and 
Archaea. 

It comprises 
disease-related 
data, protein 
sequences, 3D 
structures, genome 
annotations, ligand 
information, 
taxonomic, 
bibliographic, and 
kinetic data. 

Number of 

different 

enzymes: 
8197 

Free www.brenda-
enzymes.org 

1987 [187] 

PubChem Eukaryot
es 
Bacteria 
and 
Archaea 

It provides 
chemical and 
physical properties, 
biological 
activities, safety 
and toxicity 
information, 
patents, literature 
citations, and more. 
Available tools: 
PubChem Structure 
Editor, Entrez, 
PubChem3D, 
PubChem 
Download Facility, 
ToxNet . 
 

Compounds:
110 million, 
Substances:2
77 million, 
Bioactivities:
293 million. 

Free PubChem.ncb
i.nlm.nih.gov 

2004 [47] 

ChEBI Eukaryot
es 
Bacteria 
and 
Archaea 

It is a database and 
ontology containing 
information about 
chemical entities of 
biological interest. 

Annotated 

compounds: 
59708 

Free  www.ebi.ac.u
k/chebi 

2010 [51] 

HMDB Homo 
sapiens 

It is a human 
metabolomics 
database. It has 
spectral and 
pathway 
visualization tools. 
Available tools: 
Data Extractor, 
ChemSketch, 
BLAST search, 
MetaboCard, MS 
and NMR spectral 
search utility, 
MetaboLIMS. 

Annotated 

metabolite 

entries: 
217920  

Free  https://hmdb.c
a 

2007 [45] 

http://www.kegg.jp/
http://www.brenda-enzymes.org/
http://www.brenda-enzymes.org/
http://www.ebi.ac.uk/chebi
http://www.ebi.ac.uk/chebi
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Database  Organis

ms  

Database 

descriptions  

Coverage  Accessi

bility  

Link  Y.O.R Ref. 

ChemSpid
er  

Eukaryot
es 
Bacteria 
and 
Archaea 

It is a chemical 
structure database. 

Chemical 
entities:114 
Million  

Free chemspider.c
om 

2007 [188] 

MetaboLi
ghts 

Eukaryot
es 
Bacteria 
and 
Archaea 

It is an open-access 
database repository 
for cross-platform 
and cross-species 
metabolomics 
research. 

Different 

organisms: 

6510 

Reference 

compounds:2
7475 
Metabolite 

annotation 

features:2016
457 

Free  https://www.e
bi.ac.uk/meta
bolights 

2012 [189] 

Metabolo
mics 
Workbenc
h 

Eukaryot
es 
Bacteria 
and 
Archaea 

It is a repository for 
metabolomics data 
and metadata and 
provides analysis 
tools and access to 
metabolite 
standards, 
protocols, tutorials, 
training, and more. 

Discrete 

structures:13
6000  

Genes:7300  

Proteins:155
00  

Free  metabolomics
workbench.or
g 

2016 [190] 

SMPDB Eukaryot
es 
Bacteria 
and 
Archaea 

It is a pathway 
database for 
different model 
organisms such as 
humans, mice, E. 
coli, yeast, and 
Arabidopsis 
thaliana.  

Pathways 

Number: 

48690 
Metabolites 

Number 

(non-

redundant): 

55700 

Free  https://smpdb.
ca/ 

2009 [53] 

MetSigDi
s  

Homo 
sapiens, 
Rat, 
Mouse, 
Drosophil
a 
melanoga
ster, 
Triatomin
e, Mice, 
Pig, and 
Mus 
musculus
. 

It is a manually 
curated resource 
that aims to provide 
a comprehensive 
resource of 
metabolite 
alterations in 
various disease. 

Curated 

relationships

:6,849 

Metabolites:

2,420  

Diseases:129  

Species: 8  

Free  http://www.bi
o-
annotation.cn/
MetSigDis/ 

2017 [191] 

Virtual 
Metabolic 
Human  

Homo 
sapiens 

It captures human 
and gut microbial 
metabolism 
information and 
links it to hundreds 
of diseases and 
nutritional data.  

Reactions:19

313 

Metabolites:

5607 

Human 

genes:3695 

Diseases:255 

Foodstuff:87

90 

 

Free  www.vmh.life 2018 [192] 

Pathway 
Commons  

Eukaryot
es 
Bacteria 
and 
Archaea 

It aims to collect 
and disseminate 
biological pathway 
and interaction data 

Pathways:57

72 

Interactions:

2424055  

Databases:22  

Free  https://www.p
athwaycomm
ons.org 

 [195] 

https://www.ebi.ac.uk/metabolights
https://www.ebi.ac.uk/metabolights
https://www.ebi.ac.uk/metabolights
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Database  Organis

ms  

Database 

descriptions  

Coverage  Accessi

bility  

Link  Y.O.R Ref. 

WikiPath
ways   

Eukaryot
es 
Bacteria 
and 
Archaea 

It is a public, 
collaborative 
platform devoted to 
the curation of 
biological pathways 

Human 

genes: 11532 

Number of 

pathways: 

3013 

 

Free  wikipathways
.org 

2008 [193] 

 RaMP Eukaryot
es 
Bacteria 
and 
Archaea 

It is a multi-
database integration 
approach for 
gene/metabolite 
enrichment analysis 
providing 
interactive tables of 
query results, 
interactive tables of 
PA results, and 
clustering of 
enriched pathways 
by pathway 
similarity 

Pathways: 

51,526 (from 

KEGG, 

Reactome, 

SMPDB, and 

WikiPathwa

ys) 

Genes: 

23,077 

Metabolites: 

113,725  

Free  https://github.
com/mathelab
/RaMP-DB/ 
or 
https://github.
com/ 
mathelab/Ra
MP-
DB/inst/extda
ta/ 

 [194] 

MENDA Organism
s include:  
Human, 
Rat, 
Mouse, 
and  
Non-
human 
primates. 

 It is a 
comprehensive 
metabolic 
characterization 
database for 
depression. 

Differential 
expressed 
metabolites: 
5675. 
(Humans:134
7 
Rat:3127 
Mouse:1105 
Non-human 
primates:96) 

Free Menda.cqmu.
edu.cn:8080/i
ndex.php 

2020 [185] 

 

3.7 Metabolomics Computer-Aided Tools 

Python (https://www.python.org/), R [204], and other programming languages 

empower and facilitate various tools to implement integrated workflows. Independent 

computational methods for conducting statistics, enrichment, visualization, and 

contextualization should be combined into integrated workflows [205]. These 

workflows should be customized and compatible with the study designs to attain 

complete and significant information from the metabolomics datasets. Mathematical 

methods are helpful for molecular biomarker detection. However, statistical tests, such 

as t-test, significance analysis of microarrays (SAM), and eBayes, are commonly used 

to extract dysfunctional molecules from large-scale expression data, integrated as an 

essential analytical step in many biomarker identification pipelines. In addition, several 

novel computational tools have been established as secondary analysis tools to enable 

metabolomics researchers to grasp the powers of their data and produce farther-

reaching biological conclusions than ever before. This section explains the functionality 

and use of various analysis tools.  

http://menda.cqmu.edu.cn:8080/index.php
http://menda.cqmu.edu.cn:8080/index.php
http://menda.cqmu.edu.cn:8080/index.php
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The MarVis-Suite [206] (Marker Visualization) toolbox for interactive ranking, 

filtering, combination, clustering, visualization, and functional analysis of data sets 

containing intensity-based profile vectors, as found, e.g., from MS, microarray, or 

RNA-seq experiments.  

MetExplore [207] offers an easy-to-use complete online solution comprised of 

interactive tools for metabolic network curation, network exploration, and omics data 

analysis. MetExplore holds the concepts of metabolic networks and significantly 

improves multi-omics data analysis. 

Pathway Activity Profiling [208] (PAPi) compares metabolic pathway activities from 

metabolite profiles. PAPi can reach the activity of metabolic pathways under different 

conditions, which provides excellent support for hypothesis generation and facilitates 

biological interpretation.  

Metabolites Biological Role (MBROLE) [209] is a server that performs functional 

enrichment analysis of a list of chemical compounds derived from a metabolomics 

experiment, which allows this list to be interpreted in biological terms. MBROLE 

analyzes a wide variety of functional annotations that describe many different aspects 

of the chemistry and biology of chemical compounds; these include pathways and sub-

pathways, interactions with enzymes, proteins and other types of molecules, 

physiological locations, chemical classifications and taxonomies, and biological roles, 

uses, and applications. MeltDB 2.0 [210] is a next-generation web application 

addressing storage, sharing, standardization, integration, and analysis of metabolomics 

experiments.  

MetaboAnalyst version 5.0 [211] is a fully automated web interface to bridge raw data 

to functional insights for global metabolomics based on high-resolution mass 

spectrometry (HRMS). MetaboAnalyst performs optimized peak detection, alignment, 

and annotation tasks for LC-MS data generated in global metabolomics. The key 

features of MetaboAnalyst are that it includes: (1) MetaboAnalystR package in R 

environment, (2) large libraries for metabolite sets and metabolic pathways, (3) 

metabolomic biomarker metanalysis, (4) integration of multi-omics data through 

knowledge-based network analysis and visualization, and (5) easy and free accessible 

tool.  
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Metabolite pathway enrichment analysis (MPEA) [212] is a metabolomics pathway 

enrichment tool for visualization and biological interpretation. However, MPEA is 

limited to top-down/bottom-up analysis.  

MetaP-server [213] is an easy-to-use web-server-based for metabolomics data analysis. 

It covers data acquisition to biological interpretation: (i) data quality checks, (ii) 

estimation of reproducibility and batch effects, (iii) hypothesis tests for multiple 

categorical phenotypes, (iv) correlation tests for metric phenotypes, (v) optionally 

including all possible pairs of metabolite concentration ratios, (vi) PCA, and (vii) 

mapping of metabolites onto colored KEGG pathway maps.  

Mass TRanslator into Pathways (MassTRIX) [214] annotates metabolites in high 

precision mass spectrometry data. It marks the identified chemical compounds on 

KEGG pathway maps using the KEGG/API. In addition, selected genes or enzymes can 

be highlighted, e.g., to represent information on gene transcription or differences in the 

gene complement of different bacterial strains.  

Pathos [215] is a web-based tool to analyze raw or processed metabolomics mass 

spectra and demonstrate the metabolites identified and alterations in their experimental 

abundance within the context of their associated metabolic pathways. Pathos is limited 

to specific organism databases.  

PaintOmics 3 [216] is a web-based tool for the integrated visualization of multiple Omic 

data types onto KEGG pathway diagrams. PaintOmics 3 combines server-end 

capabilities for data analysis with the potential of modern web resources for data 

visualization, delivering researchers with a robust framework for interactive 

exploration of their multi-omics information.  

IMPaLA [217] is a web-based tool for the joint PA with expression (genes/proteins) 

and metabolite data. It performs over-representation or enrichment analysis with user-

specified lists of metabolites and genes using over 3000 pre-annotated pathways from 

11 databases.  

MetaMapR [218] is an open-source, web-based, or desktop software implemented in 

the R programming language. It integrates enzymatic transformations with metabolite 

structural similarity, mass spectral similarity, and empirical associations to generate 

well-connected metabolic networks.  
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The Layered Enrichment Analysis of Pathways (LeapR) [219] is a framework to 

measure biological pathway activity using various statistical tests and data sources, 

allowing facile integration of multisource data.  

PAthway NEtwork Visualizer (PANEV) [220] is an R package set for gene/pathway-

based network visualization. Utilizing KEGG, it visualizes genes within a network of 

multiple levels of interconnected upstream and downstream pathways. The network 

graph visualization helps to interpret functional profiles of a cluster of genes. However, 

PANEV is a KEGG-based tool that can be considered a limitation because of KEGG's 

lack of or incomplete information.  

PathfindR [221] is an R package using protein-protein interaction information and for 

active-subnetwork-oriented pathway enrichment analyses for class comparison omics 

experiments. It also provides functionality for clustering the resulting pathways. 

Ingenuity Pathway Analysis [222] is A comprehensive visualization software/database 

search tool for finding functions and pathways for specific biological states.   IPA helps 

understand complex omics data and perform insightful data analysis and interpretation 

by placing experimental results within the context of biological systems. Its pathway 

focuses on protein-protein interactions, protein-compound interactions, metabolic, 

signaling, gene regulation, and diagrams.  

iPath3.0 [223] is a free web-based tool for visualization, customization, and analysis of 

various KEGG cellular pathways. Version 3 could deal with metabolic pathway, 

regulatory pathway, and biosynthesis of secondary metabolites.  

ReactomePA  [224] is a free R/Bioconductor package providing enrichment analyses, 

including hypergeometric tests and gene set enrichment analyses. A functional analysis 

can be applied to the genomic coordination obtained from a sequencing experiment to 

analyze genomic loci's functional significance, including cis-regulatory elements and 

non-coding regions. In addition, ReactomePA provides several visualization functions 

to produce highly customizable, publication-quality figures.  

MetExploreViz  [225] is an open-source web component for visualizing metabolic 

networks and pathways and offers a flexible solution to analyze omics data in a 

biochemical context.   
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Recon3D [226] is a computational resource that includes three-dimensional (3D) 

metabolite and protein structure data and enables integrated analyses of metabolic 

functions in humans. Recon3D represents the most comprehensive human metabolic 

network model to date, accounting for 3,288 open reading frames (representing 17% of 

functionally annotated human genes), 13,543 metabolic reactions involving 4,140 

unique metabolites, and 12,890 protein structures. These data provide a unique resource 

for investigating molecular mechanisms of human metabolism.  

ChemRICH [227] is a statistical enrichment approach based on chemical similarity 

rather than sparse biochemical knowledge annotations. ChemRICH utilizes structure 

similarity and chemical ontologies to map all known metabolites and name metabolic 

modules. Unlike pathway mapping, this strategy yields study-specific, non-overlapping 

sets of all identified metabolites. 

KEGGREST[228] is an R package employed to build an adjacency matrix that linked 

the dataset's metabolites with their corresponding KEGG pathways. First, one is 

assigned if the metabolite is part of that particular pathway, or 0 if not. Then five 

metabolites of each pathway were randomly sampled.  

MetaX [229] offers several functions: peak picking and annotation, data quality 

assessment, missing value imputation, data normalization, univariate and multivariate 

statistics, power analysis and sample size estimation, receiver operating characteristic 

analysis, biomarker selection, and pathway annotation, correlation network analysis, 

and metabolite identification. It is available as a web-based interface and R package 

(http://metax.genomics.cn).  

Biomarker Discovery by Machine Learning (BioDiscML) [230] is a biomarker 

discovery tool that exploits various feature selection procedures to produce signatures 

associated with machine learning models that efficiently predict a specified outcome. 

BioDiscML employs a large selection of machine learning algorithms to choose the 

best combination of biomarkers for predicting categorical or continuous outcomes from 

highly unbalanced datasets. BioDiscML can implement data pre-processing, feature 

selection, model selection, and performance evaluation. The software tool is developed 

in JAVA 8 language and uses the Weka 3.8 machine learning library. It outperforms 

recent tools for discovering biomarkers' signatures.  
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ASICS [231] is an R package that contains a complete workflow to analyze spectra 

from NMR experiments. It includes an automatic approach to identifying and 

quantifying metabolites in a complex mixture spectrum and uses the quantification 

results in untargeted and targeted statistical analyses. ASICS has algorithm limitations: 

the difficulty in detecting the metabolites with low concentrations or their peaks, all 

located in a region with a high density of peaks.   

3Omics [232] is a web-based systems biology visualization tool integrating human 

transcriptomic, proteomic, and metabolomic data. It generates inter-Omics correlation 

networks to visualize relationships in data for time or experimental conditions for all 

transcripts, proteins, and metabolites.  

To take a glimpse at such tools, a study [239] examined about 100 metabolomics 

software resources, tools, databases, and other utilities that emerged or were enhanced 

in 2019. Similarly, around 85 metabolomics software resources, packages, tools, 

databases, and other utilities that appeared in 2020 are released in a recent study [233]. 

Finally, Table 3-3 surveyed commonly used metabolomics tools in the literature.   

Each of the available tools has strengths and weaknesses, and it should not come to the 

use of one over the other. The use of at least one enrichment analysis and one 

visualization/mapping tool is optional. Due to the complexity of metabolomics data, it 

is also essential to cautiously regard the results from the secondary analysis. For 

example, enrichment analysis can produce significant pathway hits from only one or 

two metabolites in a pathway. As such, careful scrutinization and logical biological 

interpretation of the data must be undertaken. With this in mind, metabolomics 

researchers should integrate secondary analysis into their studies as these beneficial 

results can be obtained rapidly [234]. The field of secondary analysis is coming into its 

own, and its steady growth will help enhance the success of the metabolomics approach. 

These cutting-edge bioinformatics analysis tools that are completely incorporated with 

various functions and are accessible and manageable by users who lack prior 

knowledge in programming are vital in metabolomics research. They will persist in 

enabling discoveries and more significant insights for increasing metabolomics 

researchers.  
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The dissertation performed two studies: (1) an untargeted metabolomics profile study 

for the T2DM Emirati population vs. healthy and (2) untargeted metabolomic profiling 

of Emirati dialysis patients with diabetes versus non-diabetic dialysis. 

Table 3-4: Summary of computer-aided metabolomics. 

Tool 

Name  

Description  Input Implementation Accesibility  Databases Used  Link Ref 

MarVis

-Suite  

Metabolic 
pathways 
analysis and 
visualizatio
n 

MS, 
microa
rray, 
or 
RNA-
seq 
experi
ments 

Web-based Free KEGG and 
BioCyc 

http://m
arvis.go
bics.de 

[206] 

MetExp

lore 

Metabolic 
network and 
OMICs data 
analysis 

Any  Web-based Free BioCyc- related https://
metexpl
ore.toul
ouse.inr
a.fr/met
explore
2/. 

[207] 

PAPi Compare 
activity of 
metabolic 
pathway 
between 
sample 
types. 

Any  R package Free KEGG   http://
www.4
shared.c
om/file/
s0uIY
WIg/P
APi_10
.html 

[208] 

MBRO

LE 

Enrichment 
analysis of 
metabolites 
annotations. 

Any Web-based Free  KEGG, HMDB, 
PubChem, 
ChEBI, 
SMILES, 
YMDB, 
ECMDB, 
BioCyc-related, 
Rhea, 
UniPathway, 
LMSD,  CTD, 
MeSH, 
MATADOR, 
DrugBank. 

http://cs
bg.cnb.
csic.es/
mbrole
2. 

[209] 

Metabo

Analyst 

5.0 

Metabolomi
cs analysis 
platform, 
tutorials, 
and report 
analysis.  

LC, 
GC 
raw 
spectr
a, MS, 
NMR 
peak 
list, 
and 
spectr
al 
bins. 

Web-based, R 
package 

Free  KEGG, HMDB, 
PubChem, 
ChEBI, 
RefMet and 
LIPID MAPS. 

https://
www.m
etaboan
alyst.ca 

[211] 

MPEA Pathway 
enrichment 
analysis.  

Pre-
annota
ted 
compo
unds 
or 
GC-
MS-

Web-based Free  KEGG, SMPDB 
and GMD. 

http://e
khidna.
biocent
er.helsi
nki.fi/p
oxo/mp
ea/ 

[212] 
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Tool 

Name  

Description  Input Implementation Accesibility  Databases Used  Link Ref 

based 
MSTs 

PaintO

mics 3 

Compound 
mapping 

Any  Web-based Free  KEGG www.p
aintomi
cs.org 

[216] 

IMPaL

A 

Enrichment 
analysis. 

Any  Web-based Free  Reactome, 
KEGG, 
Wikipathways, 
HMDB, CAS, 
ChEBI, 
PubChem, 
SMPDB, 
NetPath, 
BIOCART, 
BioCyc. 

http://i
mpala.
molgen.
mpg.de 

[217] 

MetaM

apR  

Metabolic 
network 
mapping. 

LC 
and 
GC 
raw 
spectr
a, MS 
and 
NMR 
peak 
list, 
and 
spectr
al 
bins. 

Web-based or 
desktop software. 

Free  KEGG and 
PubChem 

http://d
grapov.
github.i
o/Meta
MapR/ 

[218] 

LeapR Enrichment 
analysis. 

Any  R package  Free  https://g
ithub.co
m/bioda
taganac
he/leap
R 

[219] 

PANEV Gene/pathw
ay-based 
network 
visualizatio
n 

Any  R package  Free KEGG https://g
ithub.co
m/vpalo
mbo/P
ANEV 

[220] 

Pathfin

dR 

Enrichment 
analysis. 

Any  R package  Free  KEGG, Biogrid, 
v, IntAct,  

https://c
ran.r-
project.
org/pac
kage=p
athfind
R 

[221] 

Ingenui

ty 

Pathwa

y 

Analysi

s 

Metabolic 
network 
mapping. 

Any  Web-based, 
software  

Paid  GO, KEGG, 
BIND 

IPA, 
http://w
ww.ing
enuity.c
om 

[222] 

iPath3.0 Metabolic 
network 
mapping. 

Comp
ound 
IDs 

Web-based Free  KEGG, 
Uniprot, 
STRING, 
protein IDs, 
COGs, 
eggNOGs , 
NCBI gene 
identifiers, 
ChEBI and 
PubChem.  

http://p
athways
.embl.d
e 

[223] 
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Tool 

Name  

Description  Input Implementation Accesibility  Databases Used  Link Ref 

Reacto

mePA 

Enrichment 
analysis. 

Any  R-package  Free  REACTOME  http://w
ww.bio
conduct
or.org/p
ackages
/Reacto
mePA 

[224] 

MetExp

loreViz   

Metabolic 
network 
mapping. 

Any  Web-based Free  KEGG http://m
etexplor
e.toulou
se.inra.f
r/metex
ploreVi
z/doc/ 

[225] 

Recon3

D  

Network 
reconstructi
on 

Any  Web-based Free  KEGG, PDB, 
CHEBI, 
PharmGKB, 
UniProt 

http://v
mh.life 

[226] 

ChemR

ICH  

  Web-based and 
R-package 

Free  NCBI 
BioSystems, 
PubChem, 
KEGG, BioCyc, 
Reactome, GO, 
and 
Wikipathways 

www.c
hemrich
.fiehnla
b.ucdav
is.edu) 
and 
www.gi
thub. 
com/bar
upal/ch
emrich 

[227] 

KEGG

REST  

A package 
provides a 
client 
interface to 
the KEGG 
REST 
server. 

Comp
ound 
IDs 

R package Free  KEGG https://b
iocondu
ctor.org
/packag
es/relea
se/bioc/
html/K
EGGR
EST.ht
ml 

[228] 

MetaX  Flexible and 
comprehens
ive 
software for 
processing 
metabolomi
cs data 

Raw 
peak 
intensi
ty data 

Web-based and 
R-package 

Free  HMDB, KEGG, 
MassBank, Pub-
Chem, LIPID 
MAPS, 
MetaCyc, and 
PlantCyc 

http://m
etax.ge
nomics.
cn). 

[229] 

BioDisc

ML 

Biomarker 
discovery 
software 
that 
supports 
classificatio
n  and 
regression  
problems. 

Any  Stand-alone 
program 

Free   https:// 
github.c
om/mic
kaellecl
ercq/Bi
oDiscM
L. 

[230] 
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Tool 

Name  

Description  Input Implementation Accesibility  Databases Used  Link Ref 

3Omics  Web tool 
visualizatio
n of multi-
omics data 
(transcripto
mics, 
proteomics, 
and 
metabolomi
cs) 

Any  Web-based Free  iHOP, KEGG, 
HumanCyc, 
DAVID, Entrez 
Gene, OMIM 
and UniProt 

http://3
omics.c
mdm.t
w 

[232] 

MeltDB 

2.0 

Web-based 
tool for 
statistical 
analysis and 
sets for 
enrichment 
analysis. 

Raw 
GC/L
C-MS 
spectr
a, 
proces
sed 
spectr
a, 
compo
und 
IDs,  
and 
abund
ances. 

Web-based, login 
required 

Free  KEGG, ChEBI, 
GMD and CAS. 

https://
meltdb.
cebitec.
uni-
bielefel
d.de 

[210] 

MassT

RIX 

Compound 
mapping  

MS 
spectr
a  

Web-based Free  KEGG, 
HMDB and 
LipidMaps. 

www.m
asstrix.
org 

[214] 

MetaP-

server 

Global 
statistical 
analysis 

Comp
ound 
IDs 
and 
sampl
e 
metad
ata. 

Web-based Free  KEGG, HMDB, 
LIPID MAPS, 
PubChem and 
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 Chapter 4. Methodology 

4.1 Introduction 

This chapter depicts the chronological methodological stages followed in the 

dissertation. First, it covers ethical approval for biological samples acquisition and then 

analytical steps conducted in the SIMR lab. Finally, it describes data statistical and 

pathway analysis. Figure 4-1 records sequential methodological steps in our work. 

4.2 Participant Inclusion and Ethical Statement 

After obtaining ethical approval from the University Hospital Sharjah Ethics Research 

Committee (REF number: UHS-HERC-012-10062019), the study was conducted with 

adherence to the committee's research guidelines and regulations. The first 

comprehensive study has 92 subjects: 50 were diagnosed with T2DM, and the other 42 

subjects have no known T2DM status and are referred to as a non-T2DM group. The 

second study has 36 patients, including 11 dialysis diabetic patients and 25 non-diabetic 

dialysis patients. However, the sample size is restricted by the available resources, such 

as individuals’ willingness to participate and the cost of sample analysis. In addition, 

the selected individuals are located in Sharjah, UAE. Also, we acknowledge the lack of 

confounding variables such as stress. 

All volunteers were supplied with an information sheet explaining study objectives, 

design, and confidentiality, and written informed consent was obtained from all study 

participants. One hundred twenty-eight blood specimens, 4 ml each, were collected in 

sterile containers. The samples were stored immediately at 4°C for short-term storage 

or –80 ºC for long-term storage. 
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Figure 4-1: Sequential lists of methodological steps in the study. 
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4.3 Sample Preparation 

A total of 4 mL of blood was collected from each subject into a sterile container. The 

samples were stored immediately at –80 ºC for long-term storage until further 

metabolomics analysis. All samples were collected daily (between 8 and 10 am) while 

fasting. An aliquot of plasma sample into a microcentrifuge tube and add cold methanol 

into the sample at 3:1 v/v (i.e., 30 μL sample, add 90 μL cold methanol) vortex and 

allow to sit in –20ºC for two hrs. Next, centrifuge the samples at 20,817 x g for 15 min 

at 4ºC. Then, transfer the supernatant to a new microcentrifuge tube. Usually, transfer 

three times the original sample volume (i.e., for 30 μL sample, add 90 μL cold 

methanol, then transfer 90 μL supernatant). Dry down the sample using Speed vac at 

30 – 40°C. Store the dried sample in a –80ºC freezer for further use or dissolve it in 

solvent for LCMS analysis. Dissolve samples preferably in the starting solvent (0.1% 

formic acid) where volume is three times the original plasma volume. For example, 

when 30 μL serum/plasma has been used, dissolve the supernatant in 90 μL 0.1% formic 

acid. Place the vials in the autosampler. 

4.4 Profiling Techniques and Analytical Measurement 

The four main technologies used in the drug development field are NMR, the 

combination of LC-MS, its evolvement called UPLC-MS, and GC-MS. These different 

platforms do not compete, as none of them can conduct a complete detection and 

quantification of all metabolites set for a targeted biological sample. Accordingly, the 

optimum metabolomic experiments utilize various technology platforms [37], [235, 

236]. Furthermore, MS and NMR provide complementary information; therefore, there 

is an appeal in merging NMR and MS techniques for disease research [237]. For 

example, combining MS and NMR enhances metabolite annotation and detection [236]. 

Therefore, combining several analytical sources is vital to the future of metabolomics 

research. Table 4-1 exhibits the main differences between NMR and MS platforms. 

Table 4-1: Key distinctions between NMR and MS. 

Feature/key point NMR MS Ref. 

Metabolite 

coverage/number 

Few hundreds Hundreds to thousands [238], 
[235] 

Sensitivity Low  High  

Robustness Extremely good Very good 

Reproducibility High  Lower than NMR  
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Feature/key point NMR MS Ref. 

Apparatus cost  Expensive  LC: expensive, GC: non-expensive 

Resolution Low  High  

Type of metabolite Amino acids, 
Polar/nonpolar 
metabolites, 
Sugars, Volatile 
liquids, Large 
metabolites. 

Amino acids, Fatty acids, Polar/ Nonpolar metabolites, 
Organic acids, Steroids, Volatile/thermally stable 
metabolites, Amino acids, Medium-to-high 
lipophilicity, Nucleosides and nucleotides, 
Carbohydrates, Esters. 

The robustness and availability of the MS technique in SIMR allowed us to identify 

and characterize molecules in our data. The MS output data signal is m/z spectrum. 

Figure 4-2 shows an MS spectrum output. The molecules analyzed by mass spectrum 

are charged; they are ions with a range of charges: +1, +2, and so on. The relative 

intensity or relative abundance are represented in the vertical axis; the two terms are 

used interchangeably. 

 

Figure 4-2: MS spectrum output. 

TimsTOF Mass Spectrometer (BRUKER, Germany) and Metaboscape software 

version 4 in SIMR were employed to separate and detect the cell metabolites. It was 

equipped with a trapped quadrupole time-of-flight mass spectrometer and composed of 

Solvent delivery systems pump (ELUTE UHPLC Pump HPG 1300), Autosampler 

(ELUTE UHPLC), Thermostat column compartment (ELUTE UHPLC), Computer 

System, Windows 10 Enterprise 2016 LTSB, Data Management Software, Bruker 

Compass HyStar 5.0 SR1 Patch1 (5.0.37.1), Compass 3.1 for otofSeries, otofControl 

Version 6.0. Metabolites were analyzed in auto MS/MS positive scan mode within the 

range of 20-1300 m/z utilizing electrospray ionization (ESI). The ESI source was 10 

L/min, and the drying temperature was equal to 220℃. The capillary voltage of the ESI 

was 4500 V with 2.2 bar nebulizer pressure. The collision energy was set at 7 eV and 



 

81 
 

end Plate Offset as 500 V. A HAMILTON ® Intensity Solo 2 C18 column (100 um x 

2.1 mm x1.8 µm) was utilized the separation of metabolites. And Sodium Formate was 

used as a calibrant for the external calibration step. Solvent A (Water + 0.1% FA) and 

solvent B (Acetonitrile + 0.1% FA) were used in gradient elution mode for metabolite 

analysis. Metabolites were analyzed in auto MS/MS positive scan mode within the 

range of 20-1,300 m/z utilizing electrospray ionization (ESI). The ESI source with dry 

nitrogen gas was 10 l/min, and the drying temperature was equal to 220℃. The capillary 

voltage of the ESI was 4,500 V with 2.2 bar nebulizer pressure. For MS2 acquisition, 

the collision energy was set at 20 eV and end Plate Offset as 500 V. A Hamilton® 

Intensity Solo 2 C18 column (100 mm x 2.1 mm x 1.8 µm) was utilized to separate 

metabolites, and sodium formate was used as a calibrant for external calibration step. 

For metabolite analysis, solvent A (Water + 0.1% FA) and solvent B (Acetonitrile + 

0.1% FA) were used in gradient elution mode. The gradient program used a flow rate 

of 0.250 ml/min with 99A:1.0B from 0.00-2.00 min, 99A:1.0B to 1.0A:99B from 2.00-

17.00 min, 1.0A:99B from 17.00-20.00 min, 1.0A:99B to 99A:1.0B from 20.00-20.10 

min, flow rate of 0.350 ml/min with 99A:1.0B from 20.10-28.50 min, flow rate of 0.250 

ml/min, with 99A:1.0B from 28.50-30 min giving a total run time of 30 min with a 

maximum pressure of 14993 pounds per square inch (PSI). The autosampler 

temperature was set at 8℃ and the column oven temperature at 35℃. A total volume 

of 10 µl was injected into the QTOF MS. The flow rate was set as (0.250-0.350 mL/min) 

for 30 min in gradient mode with a maximum pressure of 14993 psi. The elute 

autosampler temperature was set at 8℃, and the column oven temperature was at 35℃. 

And a total volume of 10 µL was injected into the QTOF MS.  LC total ion 

chromatograms (TIC), and fragmentation patterns of the metabolites were identified by 

MetaboScape® version 4.0 (Bruker-Daltonics)   and MS/MS library search based on 

the  Bruker HMDB Metabolite  Library 2.0 (Bruker Daltonics). The latter library 

provides more than 6000 MS/MS spectra for more than 800 compounds selected from 

the HMDB [45].  Data processing. Processing and statistical analysis were performed 

using MetaboScape® 4.0 software (Bruker Daltonics). Bucketing in T-ReX 2D/3D 

workflow, the parameters set for molecular feature detection were as follows: minimum 

intensity threshold equal to 1,000 counts along with minimum peak length of 7 spectra 

for peak detection, using peak area for feature quantitation. The mass recalibration was 

done within a 0-0.3 min retention time range. Only those features present in at least 3 

of 12 samples (per cell type) were considered. On the other hand, the MS/MS import 
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method was set to be done by average. The parameters for data bucketing were assigned 

as follows: Retention time range started at 0.3 min and ended at 25 min, while mass 

range started at 50 m/z and ended at 1,000 m/z. Each sample was run in duplicate LC-

MS/MS analysis as described above. 

Bland Altman plots (Figure 4-3) were used to compare and estimate bias and agreement 

between the duplicate analytical measurements. The Bland Altman plot analysis is a 

simple way to evaluate a bias between the mean differences, and to estimate an 

agreement interval, within which 95% of the differences of the second method, 

compared to the first one fall. Exploring the agreement analysis for the whole data, we 

can say that biologically the agreement interval is not wide and sufficiently narrow for 

our purpose. 

 

Figure 4-3: Plot of differences between measurement A and measurement B vs. the mean of the two 
measurements for sample 3.  

4.5 Output Data Format 

Generally, the chromatogram representation of raw signals is a graphical description of 

separated eluents managed to detect compounds and define their relative concentrations 

in the spectra. Due to the heterogeneity of data format, it is challenging for researchers 

to manipulate and share such data. Therefore, numerous software programs for 

converting proprietary raw data file forms such as .CSV, .TXT, .mzXML, or .netCDF, 

into a universal format have been employed.. 

A mass spectrometer output file format mzML was developed [239]. The mzML format 

is an open,  based on extensible markup language (XML) format for mass spectrometer 
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output files to create a distinct open format sponsored by each software. The format 

incorporates the best aspects from pre-existing open formats and has further help for 

chromatograms and other desirable characteristics. 

Output data are typically structured in matrices with rows representing samples and 

columns corresponding to features. There are different standard input data formats: 

metabolite concentration, spectra bins/peak table, NMR/MS peak lists, and GC/LC-MS 

raw spectra. MetaboAnalyst use data in several types of tabular format such as textual 

tab-delimited TXT (.txt) or comma-separated value (.csv). Also, MetaboAnalyst 

receives zipped files of MS peak lists or MS spectra that must be in mzXML [240], 

mzDATA [241], or NetCDF [242] open data format [55].  After converting raw data to 

an appropriate format, i.e., (.csv) format, we can further analyze them. 

4.6 Statistical Data Analysis 

R software version 4.0.5 was used for the statistical analysis [204]. Data was analyzed 

in a duplicate technique. Data cleaning excluded concentration values that were missing 

or below the detection limit. Then, each sample was averaged. Data standardization and 

normalization were performed through Logarithmic transformation following standard 

normalization techniques found in related literature.  

The development of biomarkers into diagnostic or prognostic tests can be categorized 

into three broad phases: discovery, performance evaluation, and impact determination 

when added to existing clinical measures. Each stage requires a unique study design 

and statistical considerations to accomplish research objectives accurately. The 

necessary statistical methodology for assessing biomarker performance differs from the 

classic methods used in epidemiology or therapeutic research. However, the biomarker 

discovery stage focus on measures of association. 

Initially, we run a non-parametric Kruskal Wallis Test to tell whether the overall 

comparison is significant, and post-hoc analyses usually follow it to identify which two 

levels are different. Differential metabolites between the different groups of patients 

were identified using PCA and Wilcoxon rank-sum test (known as Mann-Whitney U-

test). Wilcoxon rank-sum test does not assume our data have a known distribution. In 

addition, the False Discovery Rate (FDR) method was applied to adjust for the multiple 

comparisons problem. A 0.05 significance level was assumed throughout the analysis, 

and adjusted p-values through FDR less than 0.05 were assumed significant. 
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4.7 Pathway Analysis 

MetaboAnalyst 5.0 platform [211] introduces the PA module for pathway enrichment 

and topological analysis. Pathway enrichment analysis computes a single P-value for 

each metabolic pathway (a group of functional-associated metabolites) instead of the t-

test, which determines the statistical significance of the difference between individual 

metabolites. Pathway topology analysis utilizes graph theory to evaluate a given 

experimentally identified metabolite's importance in a pre-defined metabolic pathway. 

Measurements were computed using centrality, a standard metric used in graph theory 

to estimate the relative importance of individual nodes to the overall network. A 

"pathway impact score" was then computed as the sum of the important measures of 

identified metabolites divided by the total sum of the important measures of all the 

identified and unidentified metabolites in the pathway. The pathway impact score 

represents an objective estimate of the importance of a given pathway relative to a 

global metabolic network. First, we uploaded the data input files to MetaboAnalyst 5.0 

web server, where data pre-processing, such as normalization and scaling, and 

metabolic PA were performed. Then, we specified PA parameters as follows: (1) global 

test method [243] performed enrichment analysis, (2) Relative Betweenness was used 

to measure centrality, and (3) 80 human metabolic pathways (Homo sapiens) in the 

KEGG database were employed as reference metabolic pathways. The choice of FDR 

value for selecting the best number of pathways is arbitrary. Commonly, the FDR value 

is identified based on the p-value and impact score value. The nodes with the most 

significant p-value (more dense color) and the nodes with the higher impact score 

values (bigger size) are chosen. Figure 4-2 lists sequential methodological steps in our 

work. 
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 Chapter 5. Metabolomics Profile for T2DM Emirati Population versus 

Healthy: Untargeted Approach 

5.1 Introduction 

Metabolomics has great potential as a decision-making tool offering valuable 

information on the physiological state. The minor change in the expression levels of 

genes or proteins causes an overt variation in the level of metabolites. In addition, 

chronic diseases occur from the impact of multi factors, such as genetics, lifestyle, and 

environment. Therefore, to compare the metabolite concentration levels in 

phenotypically recognized populations, e.g., diseased and control subjects. It might 

support identifying etiological pathways and biological processes that have 

significantly changed across two different biological states. However, the high 

dimensionality of the metabolomics observations often complicates the interpretation 

of the findings. Pathway analysis is a standard method of studying gene expression data. 

Focusing only on the over-represented subsets in the outcomes of metabolomics assays 

can substantially reduce dimensionality. This approach, known as over-representation, 

or enrichment analysis, has become one of the standard tools for interpreting high-

throughput metabolomics observations with the primary purpose of dimensionality 

reduction [244]. 

Studies about the metabolomic profile of T2DM from the Middle Eastern populations 

are still in their early stages. Although metabolomics reports identified several 

metabolites whose levels are related to dysglycaemia and T2DM, further studies need 

to be conducted in biomarker discovery—specifically, studies on DM in the MENA 

region. Examining common metabolite biomarkers in various studies and a biochemical 

relationship with the disease will identify those with higher potential [68]. Therefore, 

this study explores the metabolomic profile of T2DM and non-T2DM UAE citizens to 

uncover the potential novel biomarkers in this population. 

5.2 Materials and Methods 

5.2.1 Patients 

A case-control analysis was conducted on blood specimens collected from Emirati 

citizens. Ninety-two subjects (50 T2DM and 42 non-T2DM) were collected from 

University Hospital Sharjah. All samples were collected in the morning while fasting. 
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5.2.2 Sample collection, preparation, and analytical analysis 

A total of 4 mL of blood was collected from each patient after overnight fasting into a 

sterile container. All samples were assembled at roughly the same time each day 

(between 8 and 10 am every day). The samples preparation method was described 

previously in the Methods chapter.  

TimsTOF Mass Spectrometer (BRUKER, Germany) and MetaboScape software 

version 4 (Brucker) were employed to separate and detect the cell metabolites. Detailed 

explanation about LC-MSMS analytical techniques is also found in the Methods 

chapter. 

5.2.3 Statistical and pathway analysis 

We attained statistical analysis using R software version 4.0.5 [220]. First, too many 

zeroes or missing values will cause difficulties for downstream analysis. Therefore, the 

default method replaces all the missing and zero values with small ones; zeros are 

replaced with 2. This approach assumes that most missing values are caused by low 

abundance metabolites (i.e., below the detection limit). In addition, since zero values 

may cause data normalization problems (i.e., log), they are also replaced with this small 

value. Then, each sample was averaged as each sample was duplicated. Data 

transformation applies a mathematical transformation on individual values themselves. 

The logarithmic transformation (base 10) technique is used.  

Differential metabolites between the 50 T2DM and 42 non-T2DM patients were 

detected using PCA and Wilcoxon rank-sum test (known as Mann-Whitney U-test). 

They provide a preliminary overview of potentially significant features in 

discriminating the conditions under study. In addition, the FDR method was applied to 

adjust for the multiple comparisons problem. A 0.05 significance level was assumed 

throughout the analysis, and adjusted p-values through FDR less than 0.05 were 

considered significant.  

MetaboAnalyst 5.0 platform [211] introduces the Pathway Analysis module for 

pathway enrichment and topological analysis. Pathway enrichment analysis computes 

a single P-value for each metabolic pathway (a group of functional-associated 

metabolites) instead of the t-test, which determines the statistical significance of the 

difference between individual metabolites. Pathway topology analysis utilizes graph 

theory to evaluate a given experimentally identified metabolite's importance in a pre-



 

87 
 

defined metabolic pathway. Measurements were computed using centrality, a standard 

metric used in graph theory to estimate the relative importance of individual nodes to 

the overall network. A "pathway impact score" was then computed as the sum of the 

important measures of identified metabolites divided by the total sum of the important 

measures of all the identified and unidentified metabolites in the pathway. The pathway 

impact score represents an objective estimate of the importance of a given pathway 

relative to a global metabolic network.  

First, we uploaded the data input files to MetaboAnalyst 5.0 web server [211], where 

data pre-processing, such as normalization and scaling, and metabolic pathway analysis 

were performed. Then, we specified pathway analysis parameters as follows: (1) global 

test method [251] performed enrichment analysis, (2) Relative Betweenness was used 

to measure centrality, and (3) 80 human metabolic pathways (Homo sapiens) in the 

KEGG database were employed as reference metabolic pathways. The Figure shows 

part of the matched pathways and their enriched metabolites according to the p values 

from the pathway enrichment analysis and pathway impact values from the pathway 

topology analysis for nondiabetics vs. uncontrolled diabetics groups. We selected 

potential pathways based on the arbitrary FDR cut-off values (fdrcut-off) exhibited in 

the results section. The choice of fdrcut-off since was no considerable increase in 

significantly enriched pathways when the fdrcut-off was increased beyond the preferred 

values. Subsequently, the matched metabolites in each pathway are documented for 

further analysis. Finally, the resulting excel file containing all matched metabolites 

from the selected pathways is analyzed using the Wilcoxon rank test to filter the most 

significant metabolite between different groups. As shown in Figure,  the compound 

colors within the pathway are as the following: light blue means those metabolites are 

not in our data and are used as background for enrichment analysis; grey means the 

metabolite is not in our data and is also excluded from enrichment analysis; other colors 

varying from yellow to red means the metabolites are in the data with different levels 

of significance. Each potential pathway should be visited to record matching 

metabolites to combine our final document. Figure 5-1 visualizes an example for 

pathway analysis conducted in MetaboAnalyst.While collecting matching metabolites, 

one of the main concerns is using different names for the same metabolites across 

databases and various studies. Therefore, we used  RefMet, a reference list of 

metabolite names [202]. RefMet is essential for comparing and contrasting metabolite 
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data across different experiments and studies. Finally, the KEGG pathway is a 

collection of manually drawn pathway maps representing molecular interaction, 

reaction, and relation networks. Figure 5-2 displays the KEGG Homo sapiens pathway 

map for Aminoacyl-tRNA biosynthesis (hsa00970). However, the very intricate nature 

of interaction and pathway signaling makes inter-pathway dependence the most critical 

challenge in pathway analysis up to now. The metabolome view figures showing all 

matched pathways according to the p values from the pathway enrichment analysis and 

pathway impact values from the pathway topology analysis are demonstrated in the 

results section. 

 

Figure 5-1: Graphical visualization for pathway analysis conducted in MetaboAnalyst, Aminoacyl-
tRNA biosynthesis pathway is chosen as an example for methods explanation. 
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Figure 5-2: KEGG pathway map for Aminoacyl-tRNA biosynthesis (hsa00970). 

5.3 Results 

5.3.1 Clinical data of patients 

Ninety-two subjects were voluntarily enrolled in this study, of which 50 are diagnosed 

with T2DM and are being treated at the University Hospital Sharjah. The other 42 

subjects have no known T2DM status and refer to them as a non-T2DM group. In 

T2DM, 35 females aged between 23 and 86 (average: 65.5 ± 15.5 years; median: 71 

years), and 15 males aged between 18 and 85 (average: 68.9 ± 17.4 years; median: 72 

years). In non-T2DM patients, 31 females aged between 18 and 68 (average: 33.7 ± 

12.3 years; median: 28 years), and 11 males aged between 25 and 88 (average: 42.6 ± 

18.9 years; median: 36 years). The classification for patients is based on the clinically 

confirmed diabetic status according to WHO diagnostic criteria for diabetes (fasting 

plasma glucose ≥ 7.0mmol/l (126mg/dl) or 2–hrs. plasma glucose ≥ 11.1mmol/l 

(200mg/dl)). Patients' demographic data are presented in Table 5-1. 
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Table 5-1: Demographics characteristics of individuals with and without diabetes. 
T2DM: diabetic patients, n: sample size, BMI: body mass index, SD: standard deviation, M: male, F: 
female. 

Characteristics T2DM 
(n=50) 

Non-T2DM 
(n=42) 

Age in years: mean (SD, range) 
BMI: mean(SD, range) 

66.48 (15.9, 68) 
28.76 (4.81, 27.095) 

36.02(14.60, 70) 
27.04 (5.56, 20.894) 

Gender: (M%. F%)) (30%, 70%) (26%, 74%) 
 

 
5.3.2 Differential metabolite screening 

Integration of  LC-MS/MS technique and HMDB database [45] revealed 148 detected 

and identified metabolites. In addition, we used the MetaboAnalyst 5.0 platform to 

examine the patterns of these identified metabolites. The top 50 metabolites based on 

the differences in averages between T2DM and non-T2DM groups are displayed as a 

heatmap in Figure 5-3. Columns represent samples, rows represent metabolites, and the 

relative content of the metabolites is displayed by color. Heatmap in Figure 5-3 

indicates apparent differences in the concentration of the metabolites among the two 

groups. Examples include Salicyluric acid, 4-Pyridoxic acid, 2-Pyrrolidinone, and 

Indoleacetic acid. 
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Figure 5-3: Heatmap of the 50 selected metabolites among the T2DM and non-T2DM patients. 
 
5.3.3 Multivariate statistical analysis 

First, statistical analysis was performed based on clinically confirmed diabetic status. 

The plot of the top two principal components following the PCA analysis of the 148 

identified metabolites grouped by clinically confirmed diabetic status is shown in 

Figure 5-4 A. Figure 5-4 A depicts the blood components of the T2DM group, and the 

non-T2DM group has apparent clustering, particularly for the non-T2DM group. 

However, the available HbA1c data and BMI values indicate new potential groups.  

Therefore, the data were explored based on the recent HbA1c and BMI values indicated 

in Figure 5-4 B. PCA plot in Figure 5-4 B shows three main groups as follows: (1) non-

diabetics (ND) patients, (2) uncontrolled diabetics (Uncontrolled D), and (3) controlled 

diabetics and prediabetics (Pre/controlled D). In all subsequent analyses, we assume 

three groups of subjects as indicated in Figure 5-4 B. 
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Figure 5-4: Plots of PCA scores. (A) PCA plot based on clinically confirmed diabetic status, (B) PCA 
plot shows new groups based on most recent HbA1c values and BMI. 

5.3.4 Differential metabolite analysis 

Following the grouping of subjects in three groups shown in Figure 5-4 B, three 

scenarios were analyzed to search for differential metabolites accounting for the three 

possible groupwise comparisons: (1) non-diabetics vs. uncontrolled diabetics, (2) non-

diabetics vs. prediabetics, and controlled diabetics, and (3) uncontrolled diabetics vs. 

prediabetics and controlled diabetics. Heatmaps were generated for the three pairwise 

comparisons to visualize the metabolomics data based on the t-test. Figure 5-5 shows 

the top 50 metabolites between non-diabetics vs. uncontrolled diabetics. Figure 5-6 

depicts the principal 50 metabolites between non-diabetics vs. prediabetics and 

controlled diabetics. Figure 5-7 exhibits the highest 50 metabolites between 

uncontrolled diabetics and prediabetics and controlled diabetics. The initial 

visualization inspection based on Figures 5-5, 5-6, and 5-7 indicates an apparent 

variability between metabolites levels among the identified groups. Therefore, further 

analysis is required to better understand the metabolic changes in such groups. The non-

parametric Wilcoxon rank-sum test analyzed the differential metabolites among the 

three previously identified groups. Then, FDR adjusted P-values were attained. In non-

diabetics and uncontrolled diabetics groups, a total of 95 significant metabolites listed 

in Table 5-2 were observed.  In non-diabetics vs. prediabetics and controlled diabetics 

groups, 117 significant metabolites recorded in Table 5-3 were examined. In 

uncontrolled diabetics vs. prediabetics and controlled diabetics groups, 50 significant 

metabolites listed in Table 5-4 were spotted. MetabolomicsWorkbench RefMet was 

used to match each metabolite with its corresponding subclass [194]. 
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MetabolomicsWorkbench RefMet is a standardized reference terminology for 

metabolomics. RefMet is essential for comparing and contrasting metabolite data 

across different experiments and studies. 

 

Figure 5-5: Heatmap of the 50 selected (t-test) metabolites among the ND and Uncontrolled D. 
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Figure 5-6: Heatmap of the 50 selected metabolites (t-test) among the ND and Pre/controlled D. 
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Figure 5-7: Heatmap of the 48 significant metabolites (t-test) among the Uncontrolled D and 
Pre/controlled D. 
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Table 5-2: List of significant metabolites between non-diabetics and uncontrolled diabetics (Wilcoxon 
rank-sum test). 
 

Metabolite FDR Subclass Metabolite FDR Subclass 

5-Hydroxyindoleacetic acid <0.001   Indole-3-acetic 
acid derivatives 

Indole-3-

carboxylic acid 

<0.001 Indolecarboxyli
c acids 

Aniline <0.001   Anilines 4-Pyridoxic acid <0.001   Pyridinecarbox
ylic acids 

Benzocaine <0.001   Benzoic acids Succinylacetone <0.001   Medium-chain 
keto acids 

Acetone <0.001   Ketones 4-Aminophenol <0.001   Aminophenols 

Trimethylamine <0.001   Tertiary amines 1,3-Dimethyluric 

acid 

<0.001   Xanthines 

3,4,5-Trimethoxycinnamic 

acid 

<0.001   Coumaric acids Traumatic acid <0.001   Dicarboxylic 
acids 

Hippuric acid <0.001   Hippuric acids Pyridoxal 5'-

phosphate 

<0.001   Pyridoxals 

Paraxanthine <0.001   Xanthines Acetaminophen <0.001   Aminophenols 

L-Arabinose <0.001   Monosaccharide
s 

Urea <0.001   Isoureas 

L-Tryptophan <0.001   Amino acids m-Coumaric 

acid 

<0.001   Hydroxycinna
mic acids 

Alpha-N-phenylacetyl-L-

glutamine 

<0.001   Amino acids Guanidoacetic 

acid 

<0.001   Amino acids 

Deoxyguanosine <0.001   Purine 
deoxyribonucleo
sides 

Niacinamide <0.001   Nicotinamides 

Aspartame <0.001   Peptides L-Norleucine <0.001   Amino FA 

Cytosine <0.001   Pyrimidones Cortisol <0.001   C21 steroids 

L-Kynurenine <0.001   Butyrophenones o-Tyrosine <0.001   Amino acids 

3-Methylindole <0.001   Indoles Paracetamol 

sulfate 

<0.001   Phenylsulfates 

Pantothenic acid <0.001   Amino acids Nicotinuric acid <0.001   Amino acids 

Cinnamic acid <0.001   Cinnamic acids PC(18:1(9Z)/18:

1(9Z)) 

<0.001   PC 

Indole-3-carbinol <0.001   Indoles Thyroxine <0.001   Diarylethers 

Guanine <0.001   Hypoxanthines Benzoic acid <0.001   Benzoic acids 

5-Methoxytryptophol <0.001   Indoles Phenylglyoxylic 

acid 

<0.001   Phenylacetic 
acids 

N-Methylhydantoin <0.001   Hydantoins Adenine <0.001   6-aminopurines 

Indole <0.001   Indoles Nicotinamide 

ribotide 

<0.001   Nicotinamide 
nucleotides 

Alpha-ketoisovaleric acid <0.001   Branched FA ADP <0.001   Purine rNDP 

Urocanic acid <0.001   Imidazolyl 
carboxylic acids 

Dehydroascorbic 

acid 

<0.001   Gamma 
butyrolactones 

2-Pyrrolidinone <0.001   Pyrrolidine-2-
ones 

Citrulline <0.001   Amino acids 

Pyridoxal <0.001   Pyridoxals DL-2-

aminooctanoic 

acid 

<0.001   Amino acids 

3-Hexenedioic acid <0.001   Dicarboxylic 
acids 

Uridine <0.001   Pyrimidine 
ribonucleosides 

Glucosamine <0.001   Amino sugars Hypoxanthine 0.001 Hypoxanthines 

Indolelactic acid <0.001   Indolyl 
carboxylic acids 

Adenosine 

monophosphate 

0.001 Purine rNMP 
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Metabolite FDR Subclass Metabolite FDR Subclass 

N-Acetylserotonin <0.001   Serotonins Kynurenic acid 0.001 Quinoline 
carboxylic 
acids 

Trans-Ferulic acid <0.001   Hydroxycinnami
c acids 

Trehalose 0.001 Disaccharides 

Homocysteine <0.001   Amino acids N6-Acetyl-L-

lysine 

0.002  

Indoleacetic acid <0.001   Indole-3-acetic 
acid derivatives 

5-

Aminolevulinic 

acid 

0.003 Amino FA 

Scopolamine <0.001    Oxypurinol 0.003 Xanthines 

Salicyluric acid <0.001   Hippuric acids 3-

Indolepropionic 

acid 

0.003 Indolyl 
carboxylic 
acids 

3-Methylxanthine <0.001   Xanthines Homo-L-

arginine 

0.005 Amino acids 

5-Hydroxy-L-tryptophan <0.001   Amino acids Acetic acid 0.006 Saturated FA 

3,5-Dimethoxyphenol <0.001    L-Glutamine 0.006 Amino acids 

L(-)-Nicotine pestanal <0.001    Ribothymidine 0.006 Pyrimidine 
ribonucleosides 

Isovalerylcarnitine <0.001   Acyl carnitines Acetaminophen 

glucuronide 

0.007 Sugar acids 

Caffeine <0.001   Xanthines Isovalerylglycine 0.007 Amino acids 

Homoveratric acid 0.012 Phenylacetic 
acids 

Uric acid 0.030 Xanthines 

Pyroglutamic acid 0.012 Pyrroline 
carboxylic acids 

Phenylpropiolic 

acid 

0.044 Benzenes 

1-Methylhistidine 0.020 Amino acids Creatinine 0.029 Imidazolines 

Glycine 0.021 Amino acids Gallic acid 0.030 Gallic acids 

2,5-Furandicarboxylic acid 0.022  Epinephrine 0.028 Catechols 

Protocatechuic acid 0.025 Hydroxybenzoic 
acids 

Table 5-3: List of significant metabolites between non-diabetics and prediabetics/controlled diabetics 
(Wilcoxon rank-sum test). 

Metabolite FDR Subclass Metabolite FDR Subclass 

Hexadecanedioic 

acid 

<0.001   Dicarboxylic 
acids   

Urea <0.001   Isoureas 

Traumatic acid <0.001   Dicarboxylic 
acids 

Aniline <0.001   Anilines 

Benzocaine <0.001   Benzoic acids Aspartame <0.001   Peptides 
Elaidic acid <0.001   Unsaturated FA Cytosine <0.001   Pyrimidones 
Paraxanthine <0.001   Xanthines 4-Ethylbenzoic acid <0.001   Benzoic acids 
Protocatechuic 

acid 

<0.001   Hydroxybenzoic 
acids 

Pyroglutamic acid <0.001   Pyrroline carboxylic 
acids 

m-Coumaric acid <0.001   Hydroxycinnamic 
acids 

Indole <0.001   Indoles 

Thyroxine <0.001   Diarylethers Pantothenic acid <0.001   Amino acids 
Hippuric acid <0.001   Hippuric acids Indole-3-carbinol <0.001   Indoles 
L-Tryptophan <0.001   Amino acids Glycocholic acid <0.001   C24 bile acids 
5-Hydroxy-L-

tryptophan 

<0.001   Amino acids Homocysteine <0.001   Amino acids 

Isovalerylcarnitin

e 

<0.001   Acyl carnitines 3,5-
Dimethoxyphenol 

<0.001    

Pyridoxal 5'-

phosphate 

<0.001   Pyridoxals Deoxyguanosine <0.001   Purine 
deoxyribonucleoside
s 

5-Dodecenoic acid <0.001   Unsaturated FA o-Tyrosine <0.001   Amino acids 
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Metabolite FDR Subclass Metabolite FDR Subclass 

Umbelliferone <0.001   Hydroxycoumarin
s 

Trans-Ferulic acid <0.001   Hydroxycinnamic 
acids 

1-Butanol <0.001   Fatty alcohols 3-Methylxanthine <0.001   Xanthines 
2-Phenylbutyric 

acid 

<0.001    Benzoic acid <0.001   Benzoic acids 

Succinylacetone <0.001   Medium-chain 
keto acids 

4-Aminophenol <0.001   Aminophenols 

5-

Methoxytryptoph

ol 

<0.001   Indoles Guanine <0.001   Hypoxanthines 

Urocanic acid <0.001   Imidazolyl 
carboxylic acids 

Glucosamine <0.001   Amino sugars 

Cinnamic acid <0.001   Cinnamic acids PC(18:1(9Z)/18:1(9
Z)) 

<0.001   PC 

Nutriacholic acid <0.001    Trehalose <0.001   Disaccharides 
L-Norleucine <0.001   Amino FA Trimethylamine <0.001   Tertiary amines 
2-Pyrrolidinone <0.001   Pyrrolidine-2-

ones 
3-Indolepropionic 
acid 

<0.001   Indolyl carboxylic 
acids 

Homovanillic acid <0.001   Phenylacetic acids DL-2-
aminooctanoic acid 

<0.001   Amino acids 

Alpha-

ketoisovaleric 

acid 

<0.001   Branched FA 4-Pyridoxic acid <0.001   Pyridinecarboxylic 
acids 

3-Methylindole <0.001   Indoles Creatinine <0.001   Imidazolines 
Pyridoxal <0.001   Pyridoxals Adenosine 

monophosphate 
<0.001   Purine rNMP 

L(-)-Nicotine 

pestanal 

<0.001    Dodecanedioic acid <0.001   Dicarboxylic acids 

Alpha-N-

phenylacetyl-L-

glutamine 

<0.001   Amino acids 2,5-
Furandicarboxylic 
acid 

<0.001    

Indolelactic acid <0.001   Indolyl carboxylic 
acids 

5-
Hydroxyindoleaceti
c acid 

<0.001   Indole-3-acetic acid 
derivatives 

Isobutyric acid <0.001   Branched FA PC(16:0/16:0) <0.001   PC 
N-

Methylhydantoin 

<0.001   Hydantoins 1,3-Dimethyluric 
acid 

<0.001   Xanthines 

Homoveratric 

acid 

<0.001   Phenylacetic acids Paracetamol sulfate <0.001   Phenylsulfates 

Acetaminophen <0.001   Aminophenols Cis,cis-Muconic 
acid 

<0.001    

Scopolamine <0.001    Citrulline <0.001   Amino acids 
L-Kynurenine <0.001   Butyrophenones L-Acetylcarnitine <0.001   Acyl carnitines 
Caffeine <0.001   Xanthines Guanidoacetic acid <0.001   Amino acids 
Deoxycholic acid 

glycine conjugate 

<0.001   C24 bile acids Acetic acid <0.001   Saturated FA 

3-Hexenedioic 

acid 

<0.001   Dicarboxylic 
acids 

N-Acetylserotonin <0.001   Serotonins 

Salicyluric acid <0.001   Hippuric acids Niacinamide <0.001   Nicotinamides 
L-Arabinose <0.001   Monosaccharides Indole-3-carboxylic 

acid 
<0.001   Indolecarboxylic 

acids 
Niacinamide <0.001   Nicotinamides Indole-3-carboxylic 

acid 
<0.001   Indolecarboxylic 

acids 
3,4,5-

Trimethoxycinna

mic acid 

<0.001   Coumaric acids Uridine 0.009 Pyrimidine 
ribonucleosides 

Adenine <0.001   6-aminopurines L-Glutamine 0.001 Amino acids 
Acetaminophen 

glucuronide 

<0.001   Sugar acids Acetone 0.001 Ketones 

3-

Methoxyphenylac

etic acid 

<0.001    Naproxen 0.002 Naphthalenes 

Oxypurinol <0.001   Xanthines DUMP 0.002 Pyrimidine dNMP 
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Metabolite FDR Subclass Metabolite FDR Subclass 

Kynurenic acid <0.001   Quinoline 
carboxylic acids 

Phenol 0.003 Phenols 

Hypoxanthine <0.001   Hypoxanthines Uric acid 0.005 Xanthines 
1-

Methyladenosine 

<0.001   Purine 
ribonucleosides 

5-Aminolevulinic 
acid 

0.007 Amino FA 

Nicotinamide 

ribotide 

<0.001   Nicotinamide 
nucleotides 

Gallic acid 0.009 Gallic acids 

Nicotinuric acid <0.001   Amino acids    

Table 5-4: List of significant metabolites between uncontrolled diabetics and prediabetics/controlled 
diabetics (Wilcoxon rank-sum test). 

Metabolite FDR Subclass Metabolite FDR Subclass 

3-Indolepropionic acid <0.001   Indolyl 
carboxylic 
acids 

Glucosamine 0.006 Amino sugars 

2-Phenylbutyric acid <0.001    Thyroxine 0.008 Diarylethers 

Hexadecanedioic acid <0.001   Dicarboxylic 
acids 

L-Arabinose 0.014 Monosaccharid
es 

5-Dodecenoic acid <0.001   Unsaturated 
FA 

3-Methylxanthine 0.019 Xanthines 

Homovanillic acid <0.001   Phenylacetic 
acids 

Homocysteine 0.019 Amino acids 

Succinylacetone <0.001   Medium-
chain keto 
acids 

ADP 0.020 Purine rNDP 

Umbelliferone <0.001   Hydroxycoum
arins 

Creatine 0.023 Amino acids 

Indoleacetic acid <0.001   Indole-3-
acetic acid 
derivatives 

L-Valine 0.023 Amino acids 

Cortisol <0.001   C21 steroids Guanine 0.025 Hypoxanthines 

Dodecanedioic acid <0.001   Dicarboxylic 
acids 

Isobutyric acid <0.001   Branched FA 

Indolelactic acid <0.001   Indolyl 
carboxylic 
acids 

3,5-

Dimethoxyphenol 

<0.001    

Homoveratric acid <0.001   Phenylacetic 
acids 

L-Acetylcarnitine 0.001 Acyl carnitines 

4-Ethylbenzoic acid <0.001   Benzoic acids Naproxen 0.004 Naphthalenes 

Glycocholic acid <0.001   C24 bile acids Acetic acid 0.004 Saturated FA 

L-Kynurenine <0.001   Butyrophenon
es 

Glycylproline 0.005 Dipeptides 

Nutriacholic acid <0.001    Glucosamine 0.006 Amino sugars 

PC(16:0/16:0) <0.001   PC Thyroxine 0.008 Diarylethers 

3-Methoxyphenylacetic 

acid 

<0.001    L-Arabinose 0.014 Monosaccharid
es 

Cis,cis-Muconic acid <0.001    3-Methylxanthine 0.019 Xanthines 

PC(18:1(9Z)/18:1(9Z)) <0.001   PC Homocysteine 0.019 Amino acids 

Deoxycholic acid glycine 

conjugate 

<0.001   C24 bile acids ADP 0.020 Purine rNDP 

Traumatic acid <0.001   Dicarboxylic 
acids 

Creatine 0.023 Amino acids 

5-Hydroxyindoleacetic acid <0.001   Indole-3-
acetic acid 
derivatives 

L-Valine 0.023 Amino acids 

Aniline <0.001   Anilines Guanine 0.025 Hypoxanthines 
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Metabolite FDR Subclass Metabolite FDR Subclass 

Inosinic acid <0.001   Purine rNMP 5-

Methoxytryptophol 

<0.001   Indoles 

1-Butanol <0.001   Fatty alcohols Adenine <0.001   6-
aminopurines 

Elaidic acid <0.001   Unsaturated 
FA 

Aspartame <0.001   Peptides 

3,4,5-Trimethoxycinnamic 

acid 

<0.001   Coumaric 
acids 

Pantothenic acid <0.001   Amino acids 

Adenosine monophosphate <0.001   Purine rNMP L-Norleucine <0.001   Amino FA 

1-Methyladenosine <0.001   Purine 
ribonucleosid
es 

   

 

5.3.5 Analysis of metabolic pathway 

Since the metabolomics assay captured a high dimensionality snapshot of the state of 

the respective metabolome, as shown in Tables 5-2, 5-3, and 5-4, the focus was on the 

over-represented subsets in the outcomes. PA is to reduce dimensionality and ease 

functional interpretation. Based on existing knowledge of biological pathways, 

molecular entities such as metabolites can be mapped onto curated pathway sets to 

represent how these entities collectively function and interact in a biological context 

[109]. The MetaboAnalyst 5.0 platform performed pathway enrichment and topological 

analysis of differential metabolites in blood. Groupwise PA was performed assuming 

the three groups indicated in Figure 5-4 B (non-diabetics, prediabetics, and controlled 

diabetics, and uncontrolled diabetics). Based on the identified metabolites in our data, 

the MetaboAnalyst 5.0 platform detected 39 metabolic pathways for each groupwise 

comparison as mentioned above. These metabolic pathways are shown in Figures 5-8 

and 5-9. In Figure 5-8, total compounds are the total number of compounds in the 

KEGG library pathway; the Hits are the actually matched number from our uploaded 

data. In Figure 5-9, potential target pathways were screened according to each pairwise 

comparison's log(P) value and pathway impact score. The metabolome view shows all 

matched pathways according to the p values from the pathway enrichment analysis and 

pathway impact values from the pathway topology analysis. Each bubble in the bubble 

diagram represents a metabolic pathway. Color gradient and circle size indicate the 

significance of the pathway ranked by P-value (yellow: higher P-values and red: lower 

P-values) and pathway impact score (the larger the circle, the higher the pathway impact 

score). According to the -log(P) value and pathway impact score, the top metabolic 

pathways were identified by name.  



 

101 
 

The arbitrary FDR cut-off values (fdrcut-off) are 0.00007, 0.000038, and 0.0417 for 

non-diabetics vs. uncontrolled diabetics, non-diabetics vs. pre-diabetics and controlled 

diabetics, and uncontrolled diabetics vs. pre-diabetics and controlled diabetics, 

respectively. However, there was no considerable increase in significantly enriched 

pathways when the fdrcut-off was increased beyond the preferred values. For non-

diabetics vs. uncontrolled diabetics, the top fifteen metabolic pathways were selected 

as shown in Figure 5-9 A: Aminoacyl-tRNA biosynthesis, Tryptophan metabolism, 

Pantothenate, and CoA biosynthesis, Cysteine and methionine metabolism, Valine, 

leucine and isoleucine dégradation, Valine, leucine and isoleucine biosynthèses, 

Histidine metabolism, Vitamin B6 metabolism, Caffeine metabolism, Purine 

metabolism, Amino sugar and nucleotide sugar metabolism, Phenylalanine 

metabolism, Nicotinate and nicotinamide metabolism, Steroid hormone biosynthesis 

and Glycine, serine and threonine metabolism. Metabolic PA indicated 42 different 

metabolites enriched in these fifteen metabolic pathways. Wilcoxon rank-sum test 

analyzed the differential metabolites enriched in the identified pathways. The levels of 

5-Hydroxyindoleacetic acid (P <0.001), Paraxanthine (P < 0.001), L-Tryptophan (P < 

0.001), Deoxyguanosine (P < 0.001), L-Kynurenine (P < 0.001), Pantothenic acid (P < 

0.001), Guanine (P <0.001), Alpha-ketoisovaleric acid (P <0.001), Urocanic acid (P < 

0.001), Pyridoxal (P < 0.001), N-acetylserotonin (P <0.001), Homocysteine (P< 0.001), 

Indoleacetic acid (P < 0.001), 5-Hydroxy-L-tryptophan (P < 0.001), Glucosamine (P 

<0.001), Guanidoacetic acid (P < 0.001), Cortisol (P < 0.001), Hippuric acid (P < 

0.001),  Caffeine (P < 0.001), 4-Pyridoxic acid (P< 0.001), Pyridoxal 5'-phosphate (P< 

0.001), Urea (P < 0.001), Nicotinamide ribotide ( P  <0.001), Adenine (P <0.001), ADP 

(P < 0.001), Hypoxanthine (P < 0.001), Adenosine monophosphate (P < 0.001), L-

Glutamine (P < 0.001), 5-Aminolevulinic acid (P < 0.001), 1-Methylhistidine (P < 

0.001), Glycine (P < 0.001), and Uric acid (P = 0.026) were significantly different 

among non-diabetics and uncontrolled diabetics. Boxplots of the identified significant 

metabolites for non-diabetics vs. uncontrolled diabetics groups are shown in Figure 5-

10. However, L-Histidine, levels of L-Arginine, L-methionine, L-Valine, L-Proline, 

Uracil, 2-Ketobutyric acid, Theobromine, Inosinic acid and Creatine are insignificantly 

different among ND and Uncontrolled D.  

The same analysis was repeated for non-diabetics vs. pre-diabetics and controlled 

diabetics, the top twenty one metabolic pathways were selected as shown in Figure 5-9 
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B: Aminoacyl-tRNA biosynthesis, Tryptophan metabolism, Pantothenate and CoA 

biosynthesis, Tyrosine metabolism, Cysteine and methionine metabolism, Valine, 

leucine and isoleucine dégradation, Valine, leucine and isoleucine biosynthèses, 

Histidine metabolism, Vitamin B6 metabolism, Caffeine metabolism, Purine 

metabolism, Amino sugar and nucleotide sugar metabolism, Phenylalanine 

metabolism, Primary bile acid biosynthesis, Nicotinate and nicotinamide metabolism, 

Starch and sucrose metabolism, Arginine biosynthesis, Pyruvate metabolism, 

Glycolysis / Gluconeogenesis, Glycine, serine and threonine metabolism and Arginine 

and proline metabolism . There were 48 enriched metabolites in the selected pathways. 

The levels of of Paraxanthine (P < 0.001), Hippuric acid (P < 0.001), Glucosamine (P 

< 0.001), Glycocholic acid (P < 0.001), Trehalose (P < 0.001), Pantothenic acid (P < 

0.001), Guanidoacetic acid (P < 0.001), N-Acetylserotonin (P < 0.001), 5-

Hydroxyindoleacetic acid (P < 0.001), 5-Hydroxy-L-tryptophan (P < 0.001), L-

Kynurenine (P < 0.001), epinephrine (P < 0.001, Homovanillic acid (P < 0.001), 

Citrulline (P < 0.001), Niacinamide (P < 0.001), Thyroxine (P < 0.001), L-Tryptophan 

(P < 0.001), alpha-Ketoisovaleric acid (P < 0.001), Urocanic acid (P <0.001), 1-

Methylhistidine (P < 0.001), Pyridoxal 5'-phosphate (P < 0.001), Pyridoxal (P < 0.001), 

4-Pyridoxic acid (P < 0.001), Homocysteine (P < 0.001), Paraxanthine (P < 0.001), 

Caffeine (P < 0.001), L-Glutamine (P = 0.002), Nicotinamide ribotide (P < 0.001), ADP 

(P = 0.023), Adenosine monophosphate (P < 0.001), Inosinic acid (P = 0.012) , 

Hypoxanthine (P < 0.001), 5-Aminolevulinic acid (P < 0.001),Guanine (P < 0.001), 

Deoxyguanosine (P < 0.001), Adenine (P = 0.001), Uric acid (P = 0.003), Urea ( P< 

0.001), Creatine (P = 0.020), Glycine(P = 0.030)  and Inosinic acid (P = 0.008)  are 

significant among non-diabetics vs. pre-diabetics and controlled diabetics. Boxplots of 

the identified significant metabolites for non-diabetics vs. pre-diabetics and controlled 

diabetics groups are presented in Figure 5-11. On the other hand, levels of L-Histidine, 

L-Arginine, L-Proline, L-Valine, L-Methionine, 2-Ketobutyric acid, Uracil, and 

Theobromin are the same for non-diabetics vs. pre-diabetics and controlled diabetics. 

 Lastly, a groupwise comparison between uncontrolled diabetics vs. prediabetics and 

controlled diabetics was conducted. The top twelve metabolic pathways were selected 

as shown in Figure 5-9 C: Tyrosine metabolism, Tryptophan metabolism, Primary bile 

acid biosynthesis, Steroid hormone biosynthesis, Glycerophospholipid metabolism, 

Arachidonic acid metabolism, Linoleic acid metabolism, Pyruvate metabolism, Purine 



 

103 
 

metabolism,  Glycolysis / Gluconeogenesis, alpha-Linolenic acid metabolism, and 

Vitamin B6 metabolism. There were 29 enriched metabolites in the identified pathways. 

The level of Homovanillic acid (P < 0.001), Indoleacetic acid (P < 0.001), Cortisol (P 

< 0.001), Glycocholic acid (P < 0.001), L-Kynurenine (P < 0.001), PC(16:0/16:0)(P < 

0.001), PC(18:1(9Z)/18:1(9Z))(P < 0.001), Inosinic acid (P < 0.001), 5-

Hydroxyindoleacetic acid (P < 0.001), Adenosine monophosphate (P < 0.001), Adenine 

(P < 0.001), Acetic acid (P < 0.001), Thyroxine (P < 0.001), ADP (P = 0.010), Guanine 

(P = 0.018) are significantly different between uncontrolled diabetics vs. pre-diabetics 

and controlled diabetics. Boxplots of the identified significant metabolites for 

uncontrolled diabetics vs. prediabetics and controlled diabetics groups are presented in 

Figure 5-12. However, levels of N-Acetylserotonin, Deoxyguanosine, 4-Pyridoxic acid, 

Pyridoxal 5'-phosphate, Epinephrine, L-Tryptophan, Hypoxanthine, L-Glutamine, Uric 

acid, Pyridoxal, 5-Hydroxy-L-tryptophan, Glycine, Glycerophosphocholine, and Urea 

are the same for uncontrolled diabetics vs. prediabetics and controlled diabetics. 
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Figure 5-8: Pathway analysis results showing total compounds in each pathway versus the number of 
matched metabolites from our datasets. (A) Metabolic pathway analysis for ND and Uncontrolled D. 
(B) Metabolic pathway analysis for ND and Pre/controlled D. (C) Metabolic. 
 

 

 

 

 

 

 

C 



 

106 
 

 

Figure 5-9: Overview of metabolic pathway analysis. (A) Metabolic pathway analysis for ND and 
Uncontrolled D. (B) Metabolic pathway analysis for ND and Pre/controlled D. (C) Metabolic pathway 
analysis for Uncontrolled D and Pre/controlled D. 
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Figure 5-10: Boxplot of normalized intensity metabolites for ND and Uncontrolled D. 



 

108 
 

 

Figure 5-11: Boxplot of normalized intensity metabolites for ND and Pre/controlled D. 

 

Figure 5-12: Boxplot of normalized intensity metabolites for Uncontrolled D and Pre/controlled D. 
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5.4 Discussion and Conclusions 

This research used LC-MS/MS to analyze blood metabolites of T2DM and non-T2DM 

Emirati patients. The state-of-the-art LC-MS/MS is a powerful quantitative technique 

of biological compounds with high specificity, sensitivity, and throughput [245].  

The descriptions of dysglycemia, when applied to a continuous pathophysiologic 

process, may unintentionally undervalue individuals at risk for disease progression. 

Even within the normal range, the gradual rise of glucose levels happens relatively late 

in the T2DM advance when β-cell function might already be decreased [246]. 

Therefore, it is significant to discover biomarkers that predict evolution to dysglycemic 

states at the earliest point when the β-cell function is still relatively optimal and may be 

more responsive to lifestyle change [65]. 

This study has observed fifteen significant potential biomarkers between uncontrolled 

diabetics against prediabetics and controlled diabetics. The metabolites-associated 

alterations in fatty acid-, Purines-, bile acid-, Steroids-, Glycerophosphocholines-, 

Diarylethers-, Phenylacetic acids-, and Indoles-metabolism are identified. Uncontrolled 

diabetics patients have cortisol excess compared to prediabetics and controlled 

diabetics vs. non-diabetics. The presence of T2DM and other diseases as chronic 

complications of cortisol excess, both overt and subclinical, has been established for 

several years [247-249]. As a result, there is importance in manipulating glucocorticoid 

action as a therapeutic strategy [247]. Also, a study [250] found that alterations in 

diurnal cortisol patterns were predictive of future glucose disturbance.  

Bile acids (BAs) have appeared as vital signaling molecules in glucose metabolic 

management [251, 252].  Alterations in BA metabolism have been partially proved in 

T2DM patients [253]. We also recognized higher levels of Glycocholic acid in 

uncontrolled diabetics than prediabetics and controlled diabetics. Bile acids might 

regulate glucose tolerance, insulin sensitivity, and energy metabolism, meaning bile 

acids may represent a potential therapeutic target for T2DM [254, 255].       

Tryptophan, an aromatic amino acid metabolite, has expansive physiological functions 

regulating growth and feed intake, mood and behavior, and immune responses [256]. 

Moreover, it is one of the essential amino acids for humans. The ability of tryptophan 

to identify high-risk individuals before the onset of T2DM and even before significant 

variations of metabolic markers is noteworthy [257]. Our analysis indicated that 
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tryptophan metabolites such as 5-Hydroxyindoleacetic acid is higher in diabetic and 

potentially diabetic patients. Previous studies [258, 259] found that levels of 5-

Hydroxyindoleacetic acid were increased in plasma from DM patients, indicating that 

the metabolism of tryptophan is accelerated in DM patients and that tryptophan 

metabolism may be altered in T2DM patients due to the many stresses to which T2DM 

patients are exposed. 

Purines are fundamental parts of nucleotides and nucleic acids, playing several essential 

roles in human physiology, disturbing tissue function, cell integrity, and oxidation. 

Purine metabolism comprises the synthesis and degradation of purine nucleotides and 

regulates the adenylate and guanylate pool [260]. Previous studies presented a potential 

functional connection between Purines metabolites and the onset of T2DM [261, 262]. 

Our research found Adenine to be higher in prediabetics and controlled diabetics than 

uncontrolled diabetics and non-diabetics. However, Guanine is higher in the 

uncontrolled diabetics and prediabetics and controlled diabetics groups than non-

diabetics. Also, the non-diabetics group has higher ADP levels than the uncontrolled 

diabetics and prediabetics and controlled diabetics groups. 

On the contrary, the non-diabetics group has lower Caffeine levels than the uncontrolled 

diabetics and prediabetics and controlled diabetics groups. We also noticed lower 

Hypoxanthine levels in the non-diabetics group versus the prediabetics and controlled 

diabetics group. Moreover, Deoxyguanosine shows low levels in non-diabetics versus 

uncontrolled diabetics and prediabetics and controlled diabetics groups. 

Thyroid dysfunction and DM are closely related [263]. In addition, several studies have 

recognized the increased incidence of thyroid disorders in DM and vice versa [264]. 

Therefore, thyroid dysfunction is more prevalent in T2DM patients than in general. 

Consequently, it is recommended that insulin treatment should be adjusted in patients 

with diabetes after the occurrence of thyroid dysfunction [263]. Our analysis shows that 

Thyroxine in prediabetics and controlled diabetics has lower values than both the 

uncontrolled diabetics and non-diabetics groups. Interestingly, a study found that lower 

thyroid function is a risk factor for incident diabetes, especially in prediabetes [265]. 

Short-chain fatty acids (SCFAs) were mainly identified in reducing serum glucose 

levels, improving insulin resistance, mitigating inflammation [266-269]. In addition, 
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we found Acetic acid with higher levels in uncontrolled diabetics than prediabetics and 

controlled diabetics. 

Amino acids are essential modulators of glucose metabolism, insulin secretion, and 

insulin sensitivity [270, 271]. A peptide is a short chain of amino acids. The amino 

acids in a peptide are connected in a sequence by bonds called peptide bonds. Our study 

recognized that Pantothenic acid has lower non-diabetics values than uncontrolled 

diabetics and prediabetics and controlled diabetics, consistent with a previous study 

[272]. On the other hand, Creatine, and Citrulline,  changed between non-diabetics and 

prediabetics, and controlled diabetics. However, amino acids were identified by a 

previous T2DM UAE study [149] being the most significant metabolites. 

In contrast, Glycine is higher in non-diabetics than in prediabetics, controlled diabetics, 

and uncontrolled diabetics. A previous work [273] stated these findings by reviewing 

metabolites with altered profiles in individual diabetes. Table 5-5 summarizes diabetes-

related metabolites in our study. This study identified differences in metabolites in 

response to T2DM, agreeing with many published population studies. However, as 

shown above, the metabolite variation between different studies and our results might 

have been charged due to specific population constraints such as demographic factors. 

Therefore, understanding the role of purines and amino acid metabolites in the UAE 

population needs more investigation as more of our results lie within these categories. 

Furthermore, linking these metabolites' dysregulation with diabetes pathogenesis is 

expected to help unlock the triggers of diabetes' high prevalence in the UAE. 

Briefly, in the current study, the panel of (43) metabolic signatures can be broadly 

classified into three pathways: (1) carbohydrate metabolism, (2) amino acid 

metabolism, and (3) lipid metabolism. 

These findings were examined in a single, small cohort, encouraging the need for 

independent validation in well-designed, largescale studies in the future. Moreover, a 

targeted metabolomics study can be conducted to validate the discovered metabolites 

in the study. 

Metabolic PA has limitations that might lead to many false-positive pathways. Pathway 

database choice led to considerably different results in the number and function of 

significantly enriched pathways [203]. It is also claimed that the selection of pathway 

databases used in enrichment analyses can have a much stronger effect on the 
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enrichment results than the statistical corrections used in these analyses [244]. We used 

the KEGG database library; therefore, it is anticipated to have different effects using 

other databases such as Reactome and BioCyc.  

To conclude, metabolomics is a powerful evolving technology to enhance wellbeing. 

Combining biomarkers in a clinical setting may provide better sensitivity and 

specificity in predicting prediabetes and diabetes [65, 66]. Biomarkers offer the ability 

to identify people with subclinical disease before developing overt clinical disorders 

[67]. They enable preventive measures to be applied at the subclinical stage and the 

responses to prophylactic or therapeutic measures to be monitored. 

Biomarkers have various applications, including disease detection, diagnosis, 

prognosis, prediction of response to intervention, and disease monitoring. 

Biomarkers could help in daily practice as a diagnostic tool, monitor therapy response, 

assess prognosis, and as an early marker of disease damage or stratify risk. Biomarkers 

can also predict drug efficacy more quickly than conventional clinical endpoints. 

Potential to accelerate product development in specific disease areas. Compared to the 

more traditional drug-discovery approach, biomarker-enabled drug discovery promotes 

a better understanding of the disease during target discovery. Biomarkers allow the 

measurement of drug activity and safety using an endpoint integrated into the drug's 

therapeutic action. 
Table 5-5: Diabetes-related significant metabolites in our study. 
↑: indicates that the metabolite is upregulated (increased) from group A-B, ↓: 
indicates that the metabolite is downregulated (decreased) from group A-B. 

Metabolite  Class of Compound Nature of 

Variation 

(Non-

Diabetic -

Prediabetic) 

Nature of 

Variation 

(Non-

Diabetic -

Diabetics)  

Nature of 

Variation 

(Prediabetics - 

Diabetics)  

Associated Pathway  

Cortisol Steroids (Sterol Lipids) - ↑ ↑ Steroid hormone 
biosynthesis. 

Glycocholic acid 

 

 

Bile acids (Sterol 
Lipids) 

↓ - ↑ Primary bile acid 
biosynthesis. 

5-

Hydroxyindoleac

etic acid 

Indoles ↑ ↑ ↑ Tryptophan 
metabolism. 

Adenine Purines (Nucleic acids) ↑ ↑ ↓ Purine metabolism. 
Guanine Purines (Nucleic acids) ↑ ↑ ↑ Purine metabolism. 
ADP Purines (Nucleic acids) ↓ ↓ ↓ Purine metabolism. 
Caffeine Purines (Nucleic acids) ↑ ↑ - Caffeine metabolism. 
Hypoxanthine Purines (Nucleic acids) ↑ ↑ - Purine metabolism. 
Deoxyguanosine Purines (Nucleic acids) ↑ ↑ - Purine metabolism. 
Thyroxine Diarylethers 

(Benzenoids) 
↓ - ↑ Tyrosine metabolism. 

Acetic acid Short Chain Fatty Acids ↓ - ↑ Pyruvate metabolism. 
Glycolysis / 
Gluconeogenesis. 

Pantothenic acid Amino acids and 
peptides 

↑ ↑ - Pantothenate and CoA 
biosynthesis. 
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Metabolite  Class of Compound Nature of 

Variation 

(Non-

Diabetic -

Prediabetic) 

Nature of 

Variation 

(Non-

Diabetic -

Diabetics)  

Nature of 

Variation 

(Prediabetics - 

Diabetics)  

Associated Pathway  

Creatine Amino acids and 
peptides 

↑ - - Glycine, serine, and 
threonine metabolism. 
Arginine and proline 
metabolism. 

Citrulline Amino acids and 
peptides 

↑ - - Arginine biosynthesis. 

Glycine Amino acids and 
peptides 

↓ ↓ - Primary bile acid 
biosynthesis. 
Aminoacyl-tRNA 
biosynthesis. 
Glycine, serine and 
threonine metabolism. 

1-Methylhistidine Amino acids and 
peptides 

↑ ↑ - Histidine metabolism 

4-Pyridoxic acid Pyridines ↑ ↑ - Vitamin B6 
metabolism 

5-Aminolevulinic 
acid 

Amino acids and 
peptides 

↓ ↓ - Cysteine and 
methionine metabolism 

5-Hydroxy-L-
tryptophan 

Indoles ↑ ↑ - Tryptophan 
metabolism 

Adenosine 
monophosphate 

Purine nucleotides ↑ ↑ ↓ Purine metabolism 

Alpha-
ketoisovaleric acid 

Fatty Acids ↑ ↑ - Valine, leucine and 
isoleucine degradation 

Glucosamine Monosaccharides ↑ ↑ - Amino sugar and 
nucleotide sugar 
metabolism 

Guanidoacetic 
acid 

Amino acids and 
peptides 

↑ ↑ - Arginine and proline 
metabolism and  
Glycine, serine and 
threonine metabolism 

Guanine Purines ↑ ↑ ↑ Purine metabolism 
Hippuric acid Benzamides ↑ ↑ - Phenylalanine 

metabolism 
Homocysteine Amino acids and 

peptides 
↑ ↑ - Cysteine and 

methionine metabolism 
Homovanillic acid Phenylacetic acids ↑ - ↓ Tyrosine metabolism 
Inosinic acid Purines ↑ - ↓ Purine metabolism 
L-Glutamine Amino acids and 

peptides 
↓ ↓ - Purine metabolism 

L-Kynurenine  ↑ ↑ - Tryptophan 
metabolism 

N-acetylserotonin Tryptamines ↑ ↑ - Tryptophan 
metabolism 

Niacinamide Pyridinecarboxylic acids ↑ - - Nicotinate and 
nicotinamide 
metabolism 

Nicotinamide 
ribotide 

Nicotinamides ↑ ↑ - Nicotinate and 
nicotinamide 
metabolism 

Paraxanthine Purines ↑ ↑ - Caffeine Metabolism 

PC(16:0/16:0) Glycerophosphocholines - - ↑ Glycerophospholipid 
metabolism 

PC(18:1(9Z)/18:1(
9Z)) 

phosphatidylcholines - - ↑ Glycerophospholipid 
metabolism 

Pyridoxal Pyridine 
carboxaldehydes 

↑ ↑ - Vitamin B6 
metabolism 

Pyridoxal 5'-
phosphate 

Pyridine 
carboxaldehydes 

↓ ↓ - Vitamin B6 
metabolism 

Trehalose Disaccharides ↑ - - Starch and sucrose 
metabolism 

Urea Carboximidic acids ↓ ↓ - Purine metabolism 
Uric acid purine ↑ ↑ - Purine metabolism 
Urocanic acid Imidazoles ↑ ↑ - Histidine metabolism 
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 Chapter 6. Metabolomic Plasma Profiling of Emirati Dialysis Patients with 

T2DM versus Non-T2DM 

6.1 Introduction 

DKD is considered one of the significant complications of DM. However, despite the 

surge of studies in the field, understanding disease mechanisms is still lacking. 

Furthermore, the metabolomic profile of DKD under hemodialysis from the middle 

eastern populations is still unknown. Therefore, this part of our work explores the 

metabolomic profile of diabetic and non-diabetic UAE citizens undergoing 

hemodialysis to uncover the potential novel biomarkers in this population. 

6.2 Materials and Methods 

6.2.1 Patients 

We conducted a single-site cross-sectional study, and all available patients were 

recruited. However, the sample size is constrained by the available resources, such as 

individuals' willingness to participate and the cost of sample analysis. Therefore, 36 

subjects from Emirati citizens who are treated at University Hospital Sharjah were 

selected. 

6.2.2 Sample collection, preparation, and analytical analysis 

A total of 4 mL of blood was collected from each patient after overnight fasting into a 

sterile container. All samples were assembled at roughly the same time each day 

(between 8 and 10 am every day). The samples preparation method was described 

previously in the Methods chapter.  

TimsTOF Mass Spectrometer (BRUKER, Germany) and MetaboScape software 

version 4 (Brucker) were employed to separate and detect the cell metabolites. Detailed 

explanation about LC-MSMS analytical techniques is also found in the Methods 

chapter. 

6.2.3 Statistical and pathway analysis 

The statistical approach to analyzing the data is similar to the one used in Chapter 5. 

First, we found lists of differential metabolites, and then pathway analysis gave a view 

about the most enriched metabolites and their related- pathways. 
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6.3 Results  

6.3.1 Patients 

We enrolled 36 subjects who are being treated at University Hospital Sharjah, UAE. 

There are 20 females aged between 56 and 85 (average: 69.9 ± 8.16 years; median: 69 

years), and 16 males aged between 34 and 90 (average: 73.68 ± 13.07 years; median: 

74 years). Out of the 36 participants, 11 are hemodialysis diabetic patients, and 25 are 

non-diabetic hemodialysis patients. The classification for patients is based on the 

clinically confirmed diabetic status according to WHO diagnostic criteria for diabetes 

(fasting plasma glucose ≥ 7.0mmol/l (126mg/dl) or 2–hrs. plasma glucose ≥ 11.1mmol/l 

(200mg/dl)). However, we will classify the patients based on their most recent HbA1c 

values for further analysis. The patients are elderly with renal complications of diabetes. 

Our data show that most known diabetic hemodialysis patients have their diabetes 

controlled (72.3%). Surprisingly, about 32.0% of the known non-diabetic hemodialysis 

patients uncontrolled their blood glucose. There is no statistically significant difference 

in age, gender, HbA1c, cholesterol total, and blood Hb between DD and DND groups 

(P > 0.05). 

6.3.2 Differential metabolite screening 

Using the LC-MS-MS technique and HMDB database [45], 142 metabolites were 

identified. These detected and identified metabolites were documented. The top 50 

metabolites based on the differences in averages between DD and DND groups are 

displayed as a heatmap in Figure 6-1. Heatmap in Figure 6-1 shows detected 

metabolites among DD and DND groups. The color gradient demonstrates 

concentration levels for each metabolite in each sample. Heatmap in Figure 6-1  

indicates no apparent differences in the concentration of the metabolites among the two 

groups. However, a few of these metabolites show potential differences, such as Alpha-

Aspartyl-Lys and Cis-Aconitic Acid. 
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Figure 6-1: Heatmap of the 50 selected metabolites among the DD and DND patients (clinically 
confirmed diabetic status). 
 
6.3.3 Multivariate statistical analysis 

As stated previously, statistical analysis was performed based on (1) clinically 

confirmed diabetic status (2) HbA1c values. Plots of the top two principal components 

following the PCA analysis of the 142 identified metabolites under the two scenarios 

considered are shown in Figure 6-2. Figure 6-2A shows a PCA plot following known 

diabetic status for patients grouping. The plot in Figure 6-2A depicts that the blood 

components of the DD group and DND group did not have apparent clustering 

indicating almost similar metabolic profiles among the two groups. Therefore, both 
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groups' latest available HbA1c values were used for further PCA analysis. Figure 6-2B 

shows the PCA plot following participants' grouping based on their latest HbA1c value 

(controlled if HbA1c value is less than 6.4% and uncontrolled otherwise). Figure 6-2B 

illustrates an improved separation between controlled and uncontrolled groups. 

Participants with uncontrolled blood glucose tend to have lower values of PC2 

compared to the participants with controlled blood glucose. 

 

Figure 6-2: Plots of PCA scores. (A)  PCA plot based on clinically confirmed diabetic status, (B) PCA 
plot based on latest HbA1c values. 

6.3.4 Discrepancy metabolite analysis 

Wilcoxon rank-sum test as a robust non-parametric testing procedure was used to 

examine the differential metabolites among participants groups under the two analysis 

scenarios discussed previously. First, we conducted the Wilcoxon rank-sum test for all 

142 detected metabolites using clinically confirmed diabetic status. Then, FDR adjusted 

P-values were obtained. Out of the 142 metabolites, five metabolites significantly had 

different concentrations among the DD and DND groups. Boxplot of these metabolites 

intensities are shown in Figure 6-3A with adjusted p-values of Elaidic acid (P = 0.036), 

Phosphorylcholine (P = 0.036), and Phthalic acid (P = 0.036), the levels of 11a-

Hydroxyprogesterone (P = 0.036) and 3,4-Dihydroxymandelic acid (P = 0.036). 

Analysis was repeated according to the latest HbA1c values as controlled or 

uncontrolled. Boxplots of the identified significant metabolites according to the HbA1c 

values are shown in Figure 6-3B. These Boxplots show significant difference in the 
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levels of Androstenedione (P = 0.042), Delta-hexanolactone (P = 0.042), 2-

Furoylglycine (P = 0.042), Maltitol (P = 0.045), Vitamin D3 (P = 0.045), and 

Indolelactic acid (P = 0.049) and the  levels of Isovalerylglycine (P = 0.049). 

 

Figure 6-3: (A) Boxplot of normalized intensity metabolites for the clinically confirmed diabetic status. 
(B) Boxplot of normalized intensity metabolites based on latest HbA1c values. 

6.3.5 Analysis of metabolic pathway 

First, we examined the PA for the clinically confirmed diabetic status. Based on the 

identified metabolites in our data, the MetaboAnalyst platform detected 46 metabolic 

pathways, as exhibited in Figure 6-4A. According to the -log(P) value and pathway 

impact score, the top three metabolic pathways were selected: Tyrosine metabolism, 

Linoleic acid metabolism, and Caffeine metabolism. Metabolic PA results show nine 

different metabolites enriched in these three metabolic pathways: Linoleic acid, 

Glycerophosphocholine, Paraxanthine, Caffeine, 3,4-Dihydroxymandelic acid, 3,4-

Dihydroxyphenylglycol,  3,4-Dihydroxybenzeneacetic acid, DL-Dopa, L-Tyrosine, as 

shown in Table 6-1. Wilcoxon rank-sum test was used to analyze the differential 

metabolites enriched in the identified pathways. The levels of Tyrosine metabolism-

related metabolite 3,4-Dihydroxymandelic acid (P = 0.028) are noticeably different in 

both groups. However, there was no significant difference in the levels of other 

metabolites between the DD group and the DND group. The same approach was 

applied, considering the grouping of participants based on the latest HbA1c values. In 

this case, 46 metabolic pathways were screened by the MetaboAnalyst platform. Figure 
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6-4B shows the top six selected metabolic pathways based on -log(P) value and 

pathway impact score, which are: Citrate cycle, Glycerolipid metabolism, Vitamin B6 

metabolism, Caffeine metabolism, Phenylalanine, tyrosine, tryptophan biosynthesis, 

and Linoleic acid metabolism. Metabolic PA results indicated 11 different metabolites 

enriched in these six metabolic pathways: Cis-Aconitic acid, Glycerol, Pyridoxal 5'-

phosphate, Pyridoxal, 4-Pyridoxic acid, Caffeine, Paraxanthine, L-Phenylalanine, L-

Tyrosine, Linoleic acid, and Glycerophosphocholine, as shown in Table 6-1. Wilcoxon 

rank-sum test was used to analyze the differential metabolites enriched in the identified 

metabolism pathways. The levels of glycerolipid metabolism-related metabolite 

Glycerol (P = 0.050) were significantly different among the controlled and uncontrolled 

groups. However, there was no significant difference in the levels of other metabolites 

between the two groups. 

Table 6-1: Analysis of the top metabolic pathways based on clinically confirmed diabetic status and 
latest HbA1c values. 

 
 
Clinically 
confirmed 
diabetic 
status 

Name -Log(P) Impact Compounds Pathway 

Linoleic acid 
metabolism 

0.30064 1.0 Linoleic 
acid, Glycerophosphocholine 

hsa00591  

Caffeine metabolism 1.7512 0.69231 Paraxanthine, Caffeine map00232   
 

Tyrosine metabolism 1.7414 0.27636 3,4-Dihydroxymandelic 
acid,  3,4-
Dihydroxyphenylglycol,  3,4
-Dihydroxybenzeneacetic 
acid, DL-Dopa,  L-Tyrosine 

map00350 
 

 
 
 
Latest 
HbA1c 
values 

Citrate cycle 1.5898 0.05003 Cis-Aconitic acid hsa00020   
Glycerolipid 
metabolism 

1.1213 0.23676 Glycerol hsa00561    

Vitamin B6 
metabolism 

0.67539 0.68759 Pyridoxal 5'-phosphate, 
Pyridoxal, 4-Pyridoxic acid 

hsa00750 

Linoleic acid 
metabolism 

0.08917 1.0 Linoleic 
acid, Glycerophosphocholine 

hsa00591  

Caffeine metabolism 0.37079 0.69231 Paraxanthine, Caffeine hsa00232   
 

Phenylalanine, 
tyrosine, and 
tryptophan 
biosynthesis 

0.19682 1 L-Phenylalanine, L-
Tyrosine,   

hsa00400  
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Figure 6-4: (A) Metabolic pathway analysis of Clinically confirmed diabetic status. (B) Metabolic 
pathway analysis based on latest HbA1c values. 

6.4 Discussion and Conclusions 

This study used LC-MS/MS to examine blood metabolites of DD and DND Emirati 

patients. The analysis is two-fold: (1) the analysis is based on clinically confirmed 

diabetic status, and (2) the analysis is based on the available HbA1c values. We detected 

and identified 142 metabolites among the DD and DND groups. Initial results using 

PCA of clinically confirmed diabetic status showed that DD and DND of the plasma 

components could not have apparent clustering. Therefore, we further performed PCA 

using HbA1c values. The results showed that the uncontrolled group could be clearly 

distinguished from the controlled group, indicating that the controlled and uncontrolled 

groups' plasma metabolites are different. 

Subsequently, the Wilcoxon rank-sum test and metabolic PA of 142 metabolites were 

performed. Differential metabolites analysis based on the clinically confirmed diabetic 

status between both groups showed enrichment of Hydroxyprogesterone (P = 0.036). It 

was consistent with previous publications related to androgenic metabolism, oxidative 

stress, and adipocyte activity accumulation among the DD group [274, 275]. Therefore, 

the inability to metabolize androstenedione to testosterone and accumulation in blood 

among the DD group could be correlated with DKD and thereby a useful biomarker. 

Moreover, we detected an alteration in norepinephrine derivative, 3,4-

Dihydroxymandelic acid (P = 0.036) turnover and metabolism among the DD group 
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and consistent another diabetic sequela such as diabetic cardiomyopathy [276]. 

Similarly, we identified higher levels of isovalerylglycine (P = 0.049) among the 

uncontrolled group based on HbA1c values. 

Interestingly and consistent with a previous study concluded a higher clearance rate 

among DKD compared to vascular causes of kidney disease [277]. Vitamin D is an 

essential regulator of calcium and phosphate homeostasis. Surprisingly, despite the 

expected decline in kidney function, including 1α-hydroxylation (a necessary step in 

vitamin D metabolism), we detected an increase in vitamin D3 (P = 0.045) among the 

controlled group based on HbA1c values [278]. Perhaps due to compensatory 

mechanisms by other organs such as the gastrointestinal system, for example, a 

previous study showed a protective role against creatinine degradation among 

individuals with diabetes with high HbA1c values [279]. Furthermore, plasma 

metabolites of the Glycerolipid metabolism pathways such as Glycerol (P = 0.05) were 

increased in the uncontrolled group based on HbA1c values. Interestingly, a previous 

study concluded that altered tissue lipid metabolism is involved in the pathogenesis of 

toxin-induced nephropathy and perhaps can be used as an early screening biomarker 

[280]. 

Last, mitochondrial dysfunction is one of the mechanisms that contribute to the 

incidence and development of DKD [281-283]. Mitochondrial dysfunction is associated 

with kidney disease in non-diabetic contexts, and increasing evidence indicates that 

dysfunctional renal mitochondria are pathological mediators of DKD [282].  Besides, 

studies revealed that fatty acid metabolism disorders contribute to the development of 

DKD in T2DM patients [284]. For example, previous western studies concluded that 

the lower intake of polyunsaturated fatty acids, primarily linolenic and linoleic acid, is 

associated with CKD in T2DM patients [285, 286]. Our study found that elaidic acid 

(P = 0.036) decreased in the DD group. Therefore, targeting key enzymes for such 

metabolites may be a promising avenue in treating DKD, especially advanced-stage 

DKD such as ESRD.  

We acknowledge the limitation of the small number of patients enrolled in this study. 

In addition, this one-site study requires a follow-up with a larger cohort to validate our 

findings further. Furthermore, some of the identified metabolites such as caffeine can 
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be further attributed to other factors such as diet and medication-the need for further 

validation.  

In conclusion, metabolomics is an emerging technology that plays an essential role in 

better understanding health and disease conditions as metabolic biomarkers have 

translational potential to improve disease diagnosis and therapeutic targets. Herein, we 

identified for the first-time potential biomarkers, such as isovalerylglycine, elaidic acid, 

hydroxyprogesterone, 3,4-Dihydroxymandelic acid, and glycerolipid metabolites such 

as Glycerol for early detection of DKD based on robust metabolomics modeling 

between diabetic hemodialysis and non-diabetic hemodialysis patients in the UAE 

population. 
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 Chapter 7. A Framework for Optimum Biomarker Discovery 

The sophisticated paradigm of metabolomics studies requires researchers to consider 

each step and employ it thoroughly. However, the abundance of metabolomics studies 

doesn’t necessarily lead to validated outcomes. Moreover, the lack and weaknesses in 

experiment designs deter medical experts from implementing the results in the clinical 

setting. However, the ultimate goal for metabolomics studies is to translate the 

hypothesized knowledge toward better disease therapeutic and management. 

Recently, several studies proposed solutions for some of the detected issues in the body 

of the experiment. Unfortunately, however, the road is longer than expected.  

The disintegrated proposed knowledge for reaching optimal outcomes requires an 

informed and detailed paradigm combining the complete route from biological samples 

collection to creating a worldwide consensus for biomarkers in each targeted disease. 

Therefore, we proposed a comprehensive guide for optimal biomarker discovery 

(Figure 7-1). The recommended framework is motivated by previous studies and based 

on the challenges we faced in our research. Furthermore, earlier works tackle specific 

elements of metabolomics studies. Therefore, to the best of our knowledge, our 

framework is the first to discuss and propose the complete aspects of metabolomics 

experiments to achieve optimal outcomes. 

The very first step in metabolomics studies is biological samples acquisition. This step 

is a very hectic and challenging part of the whole endeavor. Typically, the quest for an 

ideal sample is non-realistic. The subject selection is often driven more by specimen 

availability than a rigorous study protocol. However, sampling selection substantially 

affects subsequent steps and leads to false discoveries. This chaotic samples collection 

is subject to massive bias and could limit the complete patient data for support and be 

incapable of satisfying power calculations based on subject inclusion criteria. This 

constraint makes the subsequent clinical validity questionable. 

As stated before, metabolomics focuses on biomarker discovery to identify metabolites 

associated with different diseases and environmental exposures. Despite the wealth of 

studies on metabolomics, the causality assessment is often complex because of 

confounding, reverse causation, and other uncertainties. Therefore, the caution of inter-

individual metabolite variation arising due to differences in genetic factors and 
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environmental influences should be considered when collecting samples. These stimuli 

result in several metabolic responses in population studies [287], leading to extreme 

difficulty locating metabolites related to a specific disorder and, eventually, providing 

clinical biomarkers [288]. This dilemma is the case, especially when analyzing a 

multifaceted condition such as diabetes. Several methods can overcome biological 

variations in human studies. Creating appropriate experimental design and statistical 

power for the research and using patient questionnaires following population 

stratification and regression modeling can obtain essential metabolites [288]. These 

approaches can remove confounding samples from the analysis and help rationalize the 

data to identify metabolites only correlated with the biological stimulus. 

Moreover, metabolite normalization strategies such as evaluating metabolite ratios or 

normalizing to creatinine in urine experiments could help. Also, a collective effort is 

required to develop databases collecting data on the normal variations in metabolite 

concentration ranges in response to influences such as age, gender, diet, pollution, and 

exercise, which are common reasons for sample-to-sample fluctuation. The last 

proposal promotes the exposome research [289], measuring all exposures to which an 

individual is subjected from conception to death and how those exposures relate to 

health. However, no universal method exists to determine the entirety of the exposome 

yet [290]. The figure shows that inter-individual genomic, environmental, and gut 

microflora variation can add to an individual-specific metabotype or metabolomic 

fingerprint. Metabotype comprises all the genetic, environmental, and gut microflora 

modifications that are not readily noticeable, and it provides each individual a defining 

metabolomic fingerprint. Each of these factors can influence the others and determine 

the outcome of the metabotype. On the other hand, the individual’s metabolome can 

affect each one of the factors [287]. 

The most widely employed analytical techniques in metabolomics are MS and NMR. 

Each analytical approach has its benefits and drawbacks. None of these tools can 

examine all compounds; combining two or three analytical platforms is required to 

detect disease pathogenesis and discriminate conditions. The factors that specify the 

platform selection are the study's focus and samples. More factors limit the platform 

choice, such as its availability, the cost, and the existing expertise.  
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These different platforms do not compete, as none of them can conduct a complete 

detection and quantification of all metabolites set for a targeted biological sample. 

Accordingly, the optimum metabolomic experiments utilize various technology 

platforms [37, 235-237] to enhance metabolite annotation and detection. Together 

NMR and MS are equally crucial for metabolomics experiments. Combining several 

analytical sources is vital to the future of metabolomics research. 

Pathway analysis encompasses different major elements that yield improved outcomes 

if scientifically employed. However, the metabolomics community lacks a common 

standard describing its best-practice use. In addition, several parameters in pathway 

analysis have a pronounced effect on the outcome, yet their impact caught a little 

systematic attention in the area. These parameters include differential metabolite 

selection methods, false discovery rate threshold, pathway size, and pathway database 

choice, generating different results. 

Databases are considered the cornerstone in pathway analysis, and recent studies 

revealed that choosing a pathway database could substantially affect the results [203, 

244]. During recent decades, advancements in pathway databases have caused several 

formalization schemes, impeding the interoperability among these resources and 

generating data silos. Pathway database selection [291], metabolite misidentification 

rate [292], and assay chemical bias of several analytical platforms [203]  will impact 

most PA methods. Therefore, the suggestion to overcome the databases pitfalls is to 

perform organism-specific pathway analysis using multiple pathway databases and 

form a consensus pathway signature utilizing the outcomes. Databases integration 

comprising multiple pathway databases, such as the ConsensusPathDB [293] or 

PathMe [294], might be helpful and consider continuing attempts to standardize 

pathway resources. 

An effort [109] presented a critical overview, for the first time, of the performance of 

selected bioinformatics tools for omics datasets. These tools include 

BioCyc/HumanCyc [181], ConsensusPathDB [293], IMPaLA [217], MBRole [209], 

MetaboAnalyst [211], Metabox [295], MetExplore [207], MPEA [212], PathVisio 

[296], and Reactome [180] and KEGGREST [228]. Despite the variability of the tools, 

they generated coherent results independent of their analytical method. Nevertheless, 
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as indicated before, further effort on the completeness of metabolite and pathway 

databases is necessary, which dramatically impacts the analysis accuracy.  

Integrating biological knowledge and machine learning received significant attention 

in recent years [297, 298]. With the combination of pathway information and novel 

statistical methods, machine learning tools represent a promising computational 

approach in examining pathways and could deliver biological insight into the study of 

metabolomics data. However, the fundamental challenge confronting the successful 

application of ML in such data is the essential need for high-quality and large quantity 

datasets. High repeatability, reproducibility, and minimal uncertainty are crucial 

aspects of high-quality data. An experiment should generate similar responses using the 

same inputs; otherwise, there is little promise that an algorithm can be predictive [298]. 

The above recommendation in the sampling process should enhance ML applications 

if considered.  

The goal of pathway analysis is to attain a list of potential biomarkers for disease 

diagnosis and prognosis. However, these perturbed biomarkers require necessary 

validation steps to transfer them to clinical use successfully. The following 

recommended approach is a targeted metabolomics experiment, which allows 

validation and absolute quantification of a predefined list of potential metabolites. 

Targeted metabolomics provides higher sensitivity and selectivity than untargeted 

metabolomics. Furthermore, targeted metabolomics can optimize sample preparation, 

decreasing the dominance of high-abundance molecules in the studies. In addition, due 

to prior knowledge of metabolites of interest, analytical artifacts are not transferred to 

downstream analysis. Therefore, this approach can partially validate the reproducibility 

and repetitiveness of the results. The follow–up experiments should be carried out in 

an additional cohort of biological samples to validate the metabolite variations with 

specific conditions. 

It is reasonable to say that metabolomics studies are concerned primarily with 

introducing pioneering results within the research community rather than researching 

the real-time impact of these efforts on health. Therefore, the translations of assays 

results into practical applications should be considered to accomplish optimum 

validation. Unfortunately, very few molecular biomarkers are in clinical use [299]. 
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However, many studies acknowledged the existing gap between biomarker discovery 

and meaningful clinical use [288, 300]. 

Clinical trials for predefined potential biomarkers are valuable. The parameters that 

should be tested among these clinical trials [300] include (1) analytical validity to assess 

reproducibility and accuracy of the test, (2) clinical validity to evaluate a biomarker's 

ability to distinguish one group from another in a meaningful manner, (3) clinical utility 

to assess changes of the test results on the outcomes and, (4) evaluating cost-efficient, 

psychological and ethical implications in case there is value-added or cost saved by 

knowing the results. Also, is there a possibility of characterizing treatment or risk 

reduction strategy based on results? 

The outcomes of initial clinical trials should be used as feedback to improve the 

biomarker discovery process, eliminating related challenges, and increasing the 

benefits.  

If each part of the metabolomics experiment is best cured, we can create a trustful global 

validated biomarkers bank that clinician can quickly embrace.  

Multidimensional assessment can provide insight into the systemic biological 

variations correlated with metabolites and probably direct more mechanistic analyses. 

Developing a clinically meaningful biomarker starts with a predefined plan. But, when 

clinicians and medical professionals are unsure what to do with the abundance of such 

information, how best can individuals be informed? 

Together, scientists have a unique opportunity to abandon malformed research practices 

and stand together against this field's overwhelming and complex nature in a uniform 

and scientifically sound approach. Metabolomics can promote and motivate researchers 

and practitioners to think outside the box and stand as leaders in discovering new 

avenues to reach better public health, improving clinical care and patient outcomes. 
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Figure 7-1: Framework for optimal biomarker discovery. 
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 Chapter 8. Concluding Remarks 

Good quality health is fundamental to human happiness and well-being, promoting 

prosperity, wealth, and even economic growth, as healthy populations are more 

productive and have longevity. Therefore, nations worldwide contribute toward 

research enriching people's health. As chronic diseases are a significant problem 

globally, they are continuously and unstoppable to fight them. 

The metabolomics experiments stand up as a considerable prospective driver for 

defining the mechanisms of different diseases. Moreover, the multifaceted nature of 

such experiments encouraged physicians, chemists, biologists, engineers, and IT 

professionals to build a robust metabolomics workbench. The intricated journey of 

metabolomics experiments starts from collecting species and ends with knowledgeable 

information to boost well-being and resolve related issues.  

Diabetes and its related complications are leading causes of morbidity and mortality 

globally. Therefore, the surge of studies to solve the riddles behind it is remarkable. 

This study examines metabolomics' role in diabetes globally and utilizes existing tools 

and knowledge to link triggers of diabetes in UAE citizens to other nations. The 

importance of the study lies as it is considered the first comprehensive non-targeted 

metabolomics experiment to study UAE metabolic profile.  

This dissertation is twofold to explore diabetics populations. First, we investigated the 

metabolic profile between diabetics patients against healthy. Second, a study examined 

the metabolic profile for diabetic versus non-diabetic dialysis patients.  

The first study analyzed blood metabolites of T2DM and non-T2DM Emirati patients. 

Three scenarios were examined to search for differential metabolites: (1) non-diabetics 

vs. uncontrolled diabetics, (2) non-diabetics vs. prediabetics and controlled diabetics, 

(3) and lastly, uncontrolled diabetics vs. prediabetics and controlled diabetics. A panel 

of 41 metabolic signatures was identified for the groupwise comparisons. The identified 

metabolites are sorted into classes such as Tryptophan and Purines. Adenine levels are 

higher in prediabetics and managed diabetics than in uncontrolled diabetics and non-

diabetics. Furthermore, the study identified fifteen significant differentially abundant 

metabolites between uncontrolled diabetics against prediabetics and controlled 

diabetics. Some metabolites are linked to changes in fatty acid, purine, and bile acid 
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metabolism, as well as Steroids, Glycerophosphocholines, Diarylethers, Phenylacetic 

acids, and Indoles metabolism. It is worth highlighting that uncontrolled diabetics 

patients have cortisol excess compared to prediabetics, controlled diabetics, and non-

diabetics. 

The second study introduced several potential metabolites helping understand dialysis 

diabetic phenotype. It identified for the first-time potential biomarkers, such as 

isovalerylglycine, elaidic acid, hydroxyprogesterone, 3,4-Dihydroxymandelic acid, and 

glycerolipid metabolites such as Glycerol for early detection of DKD based on robust 

metabolomics modeling between diabetic hemodialysis and non-diabetic hemodialysis 

patients in the UAE population. 

Utilizing big data, computer-aided tools, and established databases and repositories 

helped create a metabolic starting point for UAE studies in Omics technologies. The 

study outcomes are enlightening toward UAE goals combating diabetes. The 

discovered biomarkers would be validated by conducting the following Omics studies 

in UAE. The clinical translation of novel biomarkers could expedite the treatment 

process and boost the healthcare system beating increasing numbers of diabetes.  

PA is the core of metabolomics experiments providing clues about the mechanism of 

phenotype. Over the last few years, several PA methods have been suggested. However, 

despite such analysis's power and substantial potential in diseases definitions, it is still 

rudimentary and ad hoc. We acknowledge metabolomics assay's limitations and 

weaknesses, also stated in other studies.  

One challenge in PA methods in assessing the correctness of whatever comes out from 

the PA. Often, articles describe new ways and support them using two to three data sets, 

followed by results interpretation. However, the approach is subjective and biased. 

Living organisms are complex systems, and some references will support almost any 

analysis result. Furthermore, with a lack of knowledge about phenotypes phenomena, 

it is irrational to conclude accurately whether such associations are meaningful or not. 

The pathways grow as more knowledge is collected. The knowledge obtained by the 

pathways is both inadequate and partially inaccurate at any moment in time. Even 

though PA has pitfalls, researchers need to identify significant pathways in the given 

phenotype. Thus, extensive benchmarking results will be beneficial despite pathway 

annotations imperfection at one particular time. On the other hand, the heterogeneity in 
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the individual experiments the number of genes/metabolites found from different 

studies under the same condition often vary greatly. This issue creates inconsistency 

and bias toward certain data sets in the downstream analysis.  

This exploratory research is initial research into our hypothetical idea to build a solid 

foundation in diseases treatments. It lays the groundwork for future studies or 

determines if a current theory might explain what we observed. Explanatory research 

is required to demonstrate a cause-and-effect phenomenon, investigating patterns and 

trends in existing data that haven’t been previously considered. In our case, future 

explanative studies need to explain why specific metabolites differ in particular 

pathways and how signaling pathways work. Our analysis studied associations amongst 

groups and respective metabolites, while future explanatory studies should explain 

causation. It is well-known that correlation does not mean causation. 
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