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Abstract

With the rapid development of technology and the Internet, datasets have grown in-

creasingly larger in size and dimensionality. As a result, feature selection has become

a critical reprocessing tool in machine learning applications, as well as the subject of a

plethora of research in a variety of fields. However, a common concern in feature selec-

tion is that different approaches can give very different results when applied to similar

datasets. Aggregating the results of feature selection methods can help resolve this con-

cern and control the diversity of selected feature subsets. In this work, we develop a

general framework for the ensemble of different feature selection methods. Based on

diversified datasets generated from the original set of observations, we aggregate within

and between the importance scores generated by different feature selection techniques.

The thesis goes into detail about the framework and its validation on prominent real-

world datasets, using experimental analysis to show how aggregating multiple feature

selection methods affects the learning algorithm’s performance while identifying the

optimal and most appropriate feature subset for a given dataset. In further contribu-

tion to this field, this thesis also examines the stability of the aggregation process that

influences the stability of the feature selection algorithm. Correspondingly, different

aggregation approaches are evaluated and compared using datasets from a variety of

application fields, in terms of both the classification performance and the stability. The

results are meant to emphasize the variations in aggregation approaches and highlight

the role of the aggregation procedure in affecting feature selection robustness.

Keywords: Feature selection, aggregation, stability, ensemble learning, bootstrap

sampling
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Chapter 1. Introduction

With the prevalence of the Internet and the recent technological advancements in database

systems and information management, a vast amount of data in all kinds of application

domains has become readily available at the touch of a button. Given the increasing vol-

ume of this data, traditional means of comprehending and interpreting information have

proven inadequate. In turn, machine learning algorithms capable of extracting usable

information from massive volumes of redundant data have grown increasingly popular.

Among the numerous machine learning approaches, feature selection distinguishes it-

self by selecting a subset of the most important features while removing unnecessary,

redundant, and noisy features. It allows learning algorithms to focus on the most rel-

evant elements of the data, generally resulting in a faster and more accurate learning

application. In this thesis, we are interested in enhancing feature selection approaches

for machine learning with regards to both their stability and accuracy, through the de-

velopment of an ensemble feature selection framework.

1.1 Background

The process of learning a set of rules from available data using automated procedures is

widely known as machine learning. In inductive machine learning, the development of a

learning algorithm allows available data to be analyzed for generalizations on new data.

Among the various disciplines associated with machine learning, supervised learning

is one of the most active ones [1]. In this field, a predictive model is trained using a

collection of observations that include the desired outputs such that, once trained, the

model can derive the likeliest output for samples that have yet to be observed. Depend-

ing on whether the output associated with the data is of the discrete or continuous type,

supervised learning falls under two categories, classification or regression, respectively.

Like other machine learning algorithms, supervised learning largely benefits from

bigger sample sizes (i.e. data observations) on which the learning algorithm is trained.

However, due to the curse of dimensionality, larger numbers of features are not neces-

sarily productive to the learning process. The curse of dimensionality refers to a slew of

issues that occur when dealing with large amounts of data. Datasets containing a large

number of features, such as gene microarray datasets, are more likely to have higher

amounts of noise, which can lead to errors when learning algorithms are applied. In

order to address such problems, feature selection has become a crucial preprocessing
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step for the study of high-dimensional datasets [2]. Reducing the data dimensionality

using feature selection can enhance performance by lowering model complexity and

computational cost or by boosting its prediction accuracy and generalization of the re-

sults. The selection of appropriate features might also provide better readability and

interpretability of the problem at hand. Given the nature of the relationship between

the feature selection technique and the learning algorithm used for creating a prediction

model, supervised feature selection approaches can be categorized into three groups:

filters, wrappers, and embedded methods. Furthermore, new approaches for combining

these existing methods and other machine learning techniques are constantly emerging

to address additional challenges associated with feature selection, such as the stability

of the feature selection process.

1.2 Problem Statement

As datasets expand in size, both in terms of observations and features, it becomes more

difficult to examine their properties or obtain crucial insight into the relationship be-

tween features without employing feature selection. However, no single feature se-

lection method outperforms all others across most applications, whether in terms of

prediction accuracy or selection stability. In general, a main challenge within machine

learning is choosing which feature selection technique to utilize. Accordingly, an under-

standing of the various types of feature selection algorithms is often needed before an

appropriate method selection could be made. For instance, such a choice can be based

on massive empirical evaluations of various feature selection methods, or through meta-

learning, which involves a systemic study of the best feature selection algorithms in a

given problem [3]. Alternatively, other areas of research have been interested in com-

bining different learning models or feature selection methods via a process known as

ensemble learning. The premise behind ensemble learning, in general, lies with the idea

of combining several models in the hopes of achieving better results than of a singu-

lar model. In these ensembles, higher prediction accuracy scores are often not the sole

consideration. Since ensemble feature selection frameworks integrate the findings of

various feature selection methods, using an ensemble framework is believed to reduce

the chances of selecting an unstable subset of features. Feature selection stability or

robustness is characterized as the degree of fluctuation in the selected feature subsets

given modest changes in the data used to obtain them [4]. As practitioners now recog-
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nize the importance of having feature selection results that are resilient to fluctuations in

the training data, the research of feature selection stability has received a lot of attention

in recent years [5]–[7].

In order to achieve a better balance between predictive performance and stability,

this work intends to develop a general framework for a bootstrap ensemble in which the

feature selection results are aggregated homogeneously and heterogeneously across a

collection of feature selection methods. Moreover, using the proposed ensemble frame-

work, this work aims to analyze both the classification accuracy and stability perfor-

mance of several aggregation approaches. Currently, while various studies have looked

at ensemble feature selection methods based on different aggregations, little research

has been done regarding the influence of the aggregation techniques themselves on the

stability of the feature selection strategy. To this end, we wish to propose a framework

for evaluating the stability of the aggregation techniques and further analyze the scope

of this framework in order to understand the impact of the aggregation process.

1.3 Significance of the Research

While numerous feature selection methods exist across machine learning literature, each

feature selection technique provides its own assumptions and mechanism for selecting

the most important features. Accordingly, small perturbations in the dataset used to

obtain the feature subsets might result in enormous changes in the resultant features,

especially in high-dimensional datasets encompassing considerable amounts of noise

and relatively low sample sizes. For that reason, we believe that investigating the issue

of stability in ensemble feature selection, particularly when perturbing feature selection

methods, is extremely important. To address this problem, we adopt an ensemble con-

struction in which both data and method perturbation approaches are utilized. Based on

diversified datasets generated from the original set of observations, we describe the ag-

gregation of the importance scores generated by multiple feature selection techniques.

The thesis intends to investigate in depth the proposed framework, analyze its properties,

and assess its validation on prominent real-world datasets. While extensive published

work concerns itself with analyzing and comparing ensemble feature selection methods

using different aggregations, little work has been devoted to investigating the extent to

which the aggregation techniques affects the stability of the ensemble feature selection.

Accordingly, this thesis further examines the potential of combining numerous score and
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rank-based aggregation rules by establishing an embedded structure for the aggregation

procedure within the proposed ensemble bootstrap-based feature selection framework.

The findings are intended to show the differences in aggregation techniques and the sig-

nificance of the aggregating procedure in altering the feature selection stability, hence

filling the important gap existing in the literature. The thesis also highlights possible

differences in accuracy and stability between the score and rank-based aggregation pro-

cedures.

1.4 Thesis Objectives

The aims of this thesis are:

• To investigate and develop an accessible ensemble feature selection framework

using bootstrap aggregation with the aim of increasing the robustness of the fea-

ture selection process and improving the accuracy ofmachine learning algorithms.

• To investigate the full potential of utilizing different aggregations, including score-

based and rank-based aggregations, within the ensemble bootstrap aggregation

framework; and to examine the influence of the aggregation process on the sta-

bility of the feature selection algorithm.

• To provide practical insights in terms of identifying an appropriate feature selec-

tion framework for a given problem, and recognize aggregation approaches that

are more suited to particular application domains than others.
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1.5 Thesis Outline

The remainder of this thesis is organized as follows:

Chapter 2 first introduces the background behind the feature selection process. We

give an overview of feature selectionmethods across their three categroies: Filter,Wrap-

per, and Embedded methods. We also review previous work in the field of ensemble

feature selection, with emphasis on the role of the aggregation techniques within the

ensemble and the stability of the feature selection process.

In Chapter 3, we propose a boostrap aggregation framework for feature selection,

which consists of a homogeneous Within Aggregation Method (WAM) and a heteroge-

neous Between Aggregation Method (BAM). The frameworks combines multiple fea-

ture selection techniques using bootstrap induced diversity. The framework for evalu-

ating the stability influence of the aggregation procedure is also discussed.

Chapter 4 presents the experimental results of applying our proposed ensemble frame-

work on a variety of real datasets from multiple application domains, and compares the

accuracy and stability findings of the WAM and BAM algorithms. Furthermore, the

effects of using different aggregation techniques on the accuracy and stability of the

feature selection are also examined using the homogeneous WAM configuration.

Finally, the conclusion and prospects for future research are presented in Chapter 5.
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Chapter 2. Literature Review

Afeature is a unique measurable aspect of the observed process; machine learning algo-

rithms may derive rules from available data using a collection of observed features. The

process of selecting a subset of relevant features based on particular assessment criteria

is known as feature selection. The goal of feature selection is to select as small as pos-

sible subset of features which can accurately represent certain data in order to deliver

high prediction results while simultaneously limiting the impact of noise and irrelevant

features. This chapter provides a thorough review of the existing feature selection meth-

ods and establishes the need for the ensemble approach in the selection of important and

stable features.

2.1 Feature Selection Methods

In terms of the output, two types of feature selection approaches can be identified. That

is, univariate methods that evaluate each feature independently, and multivariate meth-

ods that evaluate subsets of features simultaneously [8]. In multivariate methods, the

feature selection procedure begins by choosing a subset of the original features and as-

sessing each feature’s value inside the subset. Using this evaluation, some features may

be removed or added to the existing subset. Then, a specific assessment criterion is used

to determine whether the final subset is satisfactory and can be thus returned to the user.

With univariate methods, otherwise known as rankers, the feature selection method re-

turns a ranking of all the features according to another assessment criteria, starting with

the most important and ending with the least important features. In this scenario, a

threshold must be established in order to select the final feature subset. It should be

noted that feature selection is distinct from feature extraction (or feature transforma-

tion), which generates new features by combining existing ones. In feature selection,

the original meaning of the selected features is preserved, which is desired in many

areas.

In addition, depending on the relationship between a feature selection method and

the corresponding learning algorithm, three categories of feature selection may be iden-

tified. These are filter, wrapper, and embedded methods. For instance, filter methods

measure the relevance of each feature with regards to the output class labels indepen-

dently of the learning algorithm; whereas both wrapper and embedded methods tend to

employ the performance of the learning algorithm itself as a selection criteria. Wrapper
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methods commonly search the space of all feature subsets, while in embedded methods,

the search is guided by the learning algorithm. In order to assess feature subsets or in-

dividual features, several assessment criteria have been presented across the literature

such as inconsistency rate [9], entropy [10], inference correlation [11], global sensitivity

[12], and distance measures [13].

2.1.1 Filter methods

Filter methods largely depend on the general characteristics of the training data and

select features as a pre-processing step independent of the learning algorithm. A typical

filter algorithm consists of two steps: In the first step, features are ranked based on

some criteria; this criteria differs from one technique to another. In the second step,

features with the highest rankings are used to build classification and regression models.

Filter methods are popular due to their computational efficiency and independence from

the model. However, these properties can also be disadvantageous if they contribute

to lower prediction accuracy, as the selected susbets may not be optimal for a certain

model. Filter techniques can either be univariate or multivariate. Some of the most

popular filter methods include: Information Gain [14], Symmetric Uncertainty [15],

Chi-Squared [16], ReliefF [17], Minimum Redundancy Maximum Relevance (MRMR)

[18], Correlation-Based Feature Selection (CFS) [19], and Consistency-based Filters

[20]. More details about some of these techniques are given in [21].

2.1.2 Wrapper methods

Wrapper methods evaluate the feature subset by using the learning algorithm as a

black box and the performance of the learning algorithm given the feature subset as the

objective function [22]. These methods have the advantage of including the interaction

between feature subset search and model selection, as well as the ability to account for

feature dependencies. However, wrapper methods are generally more prone to overfit-

ting than filter approaches and are more computationally costly, particularly if the imple-

mented learning algorithm has high computational costs. Wrappers can be categorized

into sequential selection algorithms and heuristic search algorithms. To optimize the

objective function, heuristic search algorithms examine different feature subsets by ei-

ther searching via a search space or producing optimization problem solutions, whereas

sequential selection methods begin with an empty set (or full set) and gradually add
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(or remove) features until the maximum objective function is achieved. Examples of

sequential selection algorithms include Forward Selection, Backwards Selection, Ex-

haustive selection, and Recursive Selection. One of the most popular heuristic search

approaches is the Genetic Algorithm (GA) [23].

2.1.3 Embedded methods

The way feature selection and the learning algorithm interact in embedded methods

distinguishes them from other feature selection techniques. In embedded methods, fea-

ture selection is incorporated within the training procedure of the learning algorithm;

i.e. the learning and feature selection parts cannot be separated. To do this, embedded

methods employ an assessment criteria independent from the learning algorithm to de-

termine the best subset for a specified cardinality. The learning algorithm is then used

to choose the best feature subset from among the best subsets across all cardinalities.

This method has the benefit of including interaction with the classification or regression

model while being significantly less computationally costly than wrapper methods. Em-

bedded approaches, in other words, capture feature dependencies and examine not just

the link between the input features and the output variable, but also search locally for

features that allow for improved local discrimination [2]. A popular example of this is

SVM-RFE (Recursive Feature Elimination for Support Vector Machines) [24] and Ran-

dom Forest Importance Scores [25]. Despite the effectiveness of embedded methods, it

should be noted that they make classifier-dependent decisions that may or may not be

compatible with other classifiers.

Given that each of the above discussed categories encompass a wide array of al-

gorithms, there is a large corpus of feature selection methods. Most researchers be-

lieve that “the optimal technique” does not exist, and their efforts are thus directed at

identifying a suitable approach for a given setting. In this regard, several approaches

have been developed to cope with large-scale datasets, in the aim of decreasing train-

ing time and computational costs while retaining optimal prediction accuracy. Of the

three categories listed above (filters, wrappers, and embedded methods), only filters are

algorithm-independent. Due to this, filters are computationally simple and quick, and

they can efficiently handle extremely large-scale datasets. However, most filters are uni-

variate, which means that they examine each feature independently of other features and
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may result in redundancy within the selected feature subsets. To account for these is-

sues, some hybrid filter-wrapper approaches have been proposed in several works [26],

[27]. For instance, the dimension of the feature space can be first reduced using a filter

technique, after which a wrapper approach can then be used to choose the best feature

subset. Alternatively, a more generalized ensemble feature selection framework can be

adopted, wherein lies the focus of this work.

2.2 Ensemble Feature Selection

Ensemble methods build on the assumption that the aggregation of multiple models may

provide better results than the use of a single model. Given the popularity of ensemble

techniques for classification models, the concept of aggregating feature selection meth-

ods was recently proposed in [28]. Several works have since embraced this approach,

including [29]–[32]. Some entail the use of classifiers, while others do not. Ensemble

feature selection frameworks generally consist of two main steps: First, a diversifica-

tion approach is used to produce different feature selection outputs. Then, an aggrega-

tion strategy is employed to combine the produced outputs. Data perturbation and/or

method perturbation can be used to achieve diversification. Method perturbation, for

instance, introduces diversity by aggregating the results of different feature selection

methods. The aim is to construct a subset of relevant features capable of conveying

the benefits and drawbacks of all utilized feature selection methods while avoiding the

biases of each individual method. This may result in more robust and/or better perform-

ing feature subsets [28], but it may also incur a higher processing cost and increase the

difficulty of interpreting those results.

For classification models, the most well-known approaches for applying ensemble

learning are Bagging and Boosting. These approaches introduce diversity through data

perturbation; that is, different results are obtained by introducing variations to the train-

ing data. In Bagging, each individual classifier in the ensemble is obtained from a dif-

ferent training set. These varying training sets are constructed through randomly sam-

pling the original data with replacement. In Boosting, a “weak” learning algorithm,

is boosted into an arbitrarily “strong” one [33]. By way of example, a boosting algo-

rithm may sequentially obtain a series of classifiers by iteratively updating the training

set to compensate for errors made in predictions by earlier classifiers. In other words,

boosting would perform random sampling with replacement on weighted data rather

18



than the original dataset. Ensemble approaches can also be used to minimize several

objective functions simultaneously. In their work, Ng et al. [34] proposed a multi-

objective genetic algorithm NSGA-III with the intention of reducing both training error

and ensemble sensitivity. It follows that the ideas used in Bagging and Boosting can be

generalized to ensemble feature selection by utilizing feature selection methods instead

of classifiers.

In this manner, ensemble feature selection methods can also be categorized into ho-

mogeneous and heterogeneous methods [35]. Homogeneous ensembles generally com-

bine the results of the same feature selection methods under different training sets (i.e.

data perturbation), whereas heterogeneous ensembles combine the results of different

feature selection methods under the same training set (i.e. method perturbation). Over-

all, both homogeneous and heterogeneous approaches have produced promising results

across the literature [28], [36]–[40]. In [41], an analysis and comparison of parallel and

serial ensemble combination techniques for homogeneous ensembles concluded that en-

semble feature selection outperforms single feature selection in terms of classification

accuracy. If the dataset is large or comes with long computational running times, then

homogeneous ensembles tend to be recommended due to their lower processing costs

[42]. On the other hand, heteregoenus ensembles can be the better option if the dataset

is considered small or if the researcher is not sure which choice of feature selection tech-

nique would be optimal [42]. In such case, the degree of diversity/similarity between the

included feature selection methods needs to be carefully considered for ensuring the best

results [43]. In their work, Seijo-Pardo et al. [36] built homogeneus and heteregoneus

ensembles of five feature selection methods using multiple aggregation methods. The

experimental results over seven datasets demonstrate that ensemble feature selection

outperforms single methods, and that the difference in classification error between the

two ensemble types (homogeneus and heteregoneus) was limited by the dataset size and

dimension. In practice, heterogeneous ensembles tend to be the more popular ensemble

configuration [29], [30], [44].

Additional considerations for building an ensemble feature selection technique in-

clude: the nature of the resampling method, the number/size of the training sets, the

aggregation procedure for combining the results of the feature selection methods, the

thresholds for selecting the feature subsets, and the learning algorithms on which the se-
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lected features are applied [45]. To this end, recent novel techniques in ensemble feature

selection include integrating classifiers in the feature selection ensemble [46], introduc-

ing a number of automatic feature threshold identifiers [47], [48], assessing the relative

importance of each features using several iterations of a genetic algorithm [49], [50],

and combining multiple feature-ranking techniques via clustering to select an optimal

feature subset [31].

Moreover, in addition to the evaluation of a method’s classification performance,

the study of the stability of the ensemble feature selection has gained more attention in

recent years. Overall, the stability or robustness of any feature selection technique serves

as an indicator of its reproducibility power. Accordingly, feature selection stability is

particularly valuable for ensuring confidence in the selected feature subsets, especially

if additional studies or validations of the selected subsets are costly [28].

On that account, while the use of ensemble techniques generally necessitates higher

computational resources, it is possible to create a fast and effective ensemble feature

selection framework for dealing with small sample domains at an affordable cost. For

instance, previous work suggests that only the least stable feature selection methods

truly benefit from a computationally expensive ensemble framework [39], [51], [52].

Furthermore, it was shown that a small number of feature selection methods within an

ensemble framework can provide similar or better results than that of a larger ensemble

[29].

2.2.1 Aggregation techniques

In order to maximize the effectiveness of ensemble learning, ensemble feature se-

lection frameworks have been tested under multiple considerations. Among them, the

aggregation procedure has a particularly substantial impact on the outcome of the ensem-

ble feature selection. To this end, numerous aggregation strategies have been adopted

across the literature. In contrast to more complex and computationally expensive tech-

niques, it is possible to combine the homogeneous or heterogeneous feature selection

subsets using simple set intersection and/or union [53]. Alternatively, it is possible to

combine the label predictions instead, by applying a classification technique based on

the different feature selectionmethods and then combining the obtained labels from each

feature selection output [54]. Examples of this include the use of majority votes [55]
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and cumulative probability [54]. Many works also adopt the use of ranking filter meth-

ods, from which the obtained rankings are then aggregated into a single final ranked

list [56]–[58]. In this manner, the most popular rank aggregation techniques include

the Borda Methods [59], Stuart [60], Robust Rank Aggregation [61], and SVM-Rank

[62]. Other aggregation techniques can also be used to account for interactions between

the features or to identify more than one appropriate feature subset [63]. In their pa-

per, Wald et al. [64] applied nine rank aggregation techniques on twenty-five feature

ranking methods. Their findings highlight the effectiveness of rank aggregation, but

indicate no significant differences between the different rank aggregation methods. A

similar conclusion was noted across the rank aggregations used in [36]. Meanwhile,

another study [65] demonstrates that the similarity between the aggregation methods

effectively increases as the selected feature subsets grow larger. In fact, a comparison

of the results presents definite clusters of similarity between the different aggregation

methods. As such, each cluster can be better-suited for a certain problem domain than

others. Alternatively, within the same cluster, use of a simpler aggregation technique,

such as the mean aggregation, can be recommended over a complex one [51], [66].

While less commonly used across the literature, score-based aggregation is also an-

other approach for combining the output of multiple feature selection methods. In fact,

it was shown that applying the same Arithmetic Mean aggregation technique on both

the feature importance scores and the feature ranks can lead to vastly different results

[67]. However, there is no clear rule on which of the two is the better option. In text cat-

egorization, average rank aggregation outperformed average score aggregation when

applied on the same datasets [68]. Yet, in terms of stability, Dernoncourt et al. [69]

noted that average score aggregation generally resulted in better stability than average

rank aggregation.

2.3 Feature Selection Stability

The insensitivity of a feature selection algorithm to changes in the training data and how

it impacts the feature selection process is measured by the feature selection stability. In

other words, a feature selection method is termed stable if it returns comparable feature

rankings over several training sets obtained from the same dataset. Since small changes

in the training sample should not have a considerable impact on the obtained feature

rankings, stable algorithms are valued for the consistency of their outputs. Correspond-
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ingly, it is critical to augment the examination of classification performance with sta-

bility analysis in order to guarantee the quality of the feature selection process. In most

cases, the best trade-off between the stability and classification performance depends on

the dataset itself [28]. However, previous work suggests that homogeneous ensembles

can be more stable than their heterogeneous counterparts [54].

It should be noted here that the stability of feature selection techniques is influenced

by several factors such as the dataset variation [70], dataset imbalance [71], or feature re-

dundancy [72]. Accordingly, several metrics used to assess the stability of different fea-

ture subsets have been introduced and discussed across the literature [5], [73], [74]. For

various datasets, these metrics can be utilized for finding a more robust feature subset.

In [75], Yang andMao proposed a multicriterion fusion-based recursive feature elimina-

tion (MCF-RFE) algorithm with the goal of improving both classification performance

and stability of feature selection results. Moreover, intensive search techniques such as

the genetric algorithm have been introduced inside ensembles for improving the feature

selection stability [76]. Splitting the input features (depending on their feature extrac-

tion techniques) across various classifiers and combining the predictions to arrive at a

final conclusion is also recommended in [77]. However, while numerous studies have

looked at the stability of ensemble feature selection techniques under countless settings,

little work has explored the impact of the aggregation process itself on the stability of the

ensemble technique. In [64], using the same mean aggregation approach on both feature

importance scores and feature rankings provides radically different outcomes depend-

ing on the data characteristics and application domain. In some applications, average

score aggregation was found to be more stable than average rank aggregation, whereas

average rank aggregation dominated in terms of the classification performance in other

applications [68]. Accordingly, it is fairly possible that the stability of the aggregation

process directly influences the stability of the feature selection within the ensemble.
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Chapter 3. Methodology

The purpose of this chapter is to propose two frameworks for the feature selection en-

semble that provide better accuracy of the learning algorithm and higher stability of the

feature selection process. TheWithinAggregation Method (WAM) is used to aggregate

the importance scores within a single feature selection method. The Between Aggrega-

tionMethod (BAM) is used to aggregate the importance scores between different feature

selection methods. Both methods will be assessed and compared using a variety of fea-

ture selection techniques and some stability measures. Moreover, to explore the impact

of the aggregation procedure on the feature selection ensemble, this chapter outlines

the methodology for analyzing the stability behavior of the proposed framework using

different aggregation functions. We thoroughly detail each of the approaches used for

selecting the most important features, for aggregating the importance scores and ranks,

and the classification algorithms used in the experimental analysis.

3.1 Definitions and Notations

Note that throughout this chapter, the terms feature and variable are used interchange-

ably. Given a dataset S ≡ (X ,Y ), with n observations and p features (variables) such

that n, p ∈ Z>0. That is, X = [xi j]n×p ∈ Rn,p is the matrix of observations and Y is the

target variable (i.e. the rows are the observations and the columns are the features of the

dataset). Let xi j denote the observation i of the feature j. In order to predict the target

variable Y , the proposed algorithm aims to reduce the number of features in the dataset

X .

Now, let {V1, . . . ,Vp} denote the set of features in X and {FS1, . . . ,FSt} denote the

feature selection methods used, where t ∈ Z>0. For every feature Vj ∈ {V1, . . . ,Vp}, we

assume each feature selection method FSq ∈ {FS1, . . . ,FSt} generates a feature impor-

tance score ` j ∈ R . Despite being less commonly used in the literature, feature im-

portance scores possess a higher level of detail than the ranks and might be better able

to differentiate between the features, particularly in the case of ties. For this reason,

this work highlights the use of score-based aggregations in addition to the rank-based

aggregations. Accordingly, a normalization technique is implemented for meaningful

comparison of the scores derived from different feature selection algorithms.

To produce the desired importance scores; first, the dataset S is divided into a training

dataset X, and a testing dataset T. Here, X= Xdrne,p and T= Xn−drne,p with 0 < r < 1.
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Note that drne refers to the Ceiling function (upper bound) of rn∈R. For instance, given

the dataset Jasminewith n= 2984 observations and p= 145 features, then {V1, . . . ,V145}

denotes the set of features in Jasmine (Table 4.1). If two-thirds (r = 2
3 ) of Jasmine

are taken for training, whereas one-third is used for testing. Then, the training data is

denoted X = X1990,145 and the testing data is denoted T = X994,145. The aim of this

work is to construct an ensemble of feature selection methods in order to reduce the 145

features in Jasmine to only the most important features.

3.2 Bootstrap Aggregation Framework

In this section, we illustrate the proposed bootstrap aggregation procedure for aggregat-

ing the feature importance scores inside each FSq and between different FS1, . . . ,FSt .

TheWAM is an ensemble method that aggregates importance scores within a single fea-

ture selection method (section 3.2.1), whereas the BAM aggregates importance scores

between several feature selection methods (section 3.2.2). In the aggregation step, the

proposed WAM and BAM methodologies allow for the implementation of any score or

rank-based aggregation strategy such as the L2 norm, Geometric Mean, Robust Rank

Aggregation, etc. Thus, we will refer to the aggreagtion technique used in the ensemble

framework as AT .

3.2.1 Within Aggregation Method (WAM)

Given a training datasetX, aggregation techniqueAT , and a feature selectionmethod

FS. Let X1, X2, . . . ,Xm be bootstrapped samples from X, where m ∈ Z>0. Then, we ap-

ply FS on each Xs, s = 1, . . . ,m to generate feature importance scores {`s1, . . . , `sp}

which corresponds to the set of features {V1, . . . ,Vp}. Therefore, a score matrix L =

[`s j] ∈ Rm×p is generated after applying the feature selection method FS on each boot-

strap sample. In L, column j represents the FS importance scores for the feature Vj

over the m bootstrap sample datasets, whereas row s represents the FS importance

scores for all features {V1, . . . ,Vp} in one bootstrap sample Xs. The final aggregated

score for the feature Vj is defined to be the aggregation (via the aggreagtion technique

AT ) of column j in L. For instance, assuming AT = Arithmetic Mean, we use the no-

tation a j =
∑

m
s=1 `s j

m
to denote the aggregated scores of Vj. Then, a rank vector r =

(r1, . . . ,rp), r j ∈ {1,2, . . . , p} is assigned to the feature set {V1, . . . ,Vp} based on the ag-

gregated scores {a1, . . . ,ap}. Based on the rank vector r, the feature set is then sorted
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from the most to the least important. Now, based on a threshold parameter, 0 < k ≤ 1,

we keep only the most important 100k% of the feature set (determined by the rank vec-

tor r). The WAM approach can be used to compare the performance of different feature

selection techniques based on various supervised learning methods for a given dataset.

The flowchart in Figure 3.1 illustrates the WAM framework. It is clear that both clas-

sification and regression problems are comptaible with this framework. Algorithm 1

further details the WAM below.

Figure 3.1. Framework for WAM

Algorithm 1WAMAlgorithm

Given a training datasetXwith p features, a testing datasetT, a feature selection method

FS, an aggregation technique AT, a threshold parameter k, and a learning algorithm M.

1: For s = 1, . . . ,m, generate bootstrap samples, X1, . . . ,Xm of the training dataset X.
2: Based on FS, obtain a features score matrix L.
3: Based on AT , obtain aggregated score set {a1, . . . ,ap}.
4: For the aggregated score set {a1, . . . ,ap}, get the corresponding rank vector r =

(r1, . . . ,rp).
5: Based on the rank vector r, keep only the top 100k% of the variable set {V1, . . . ,Vp}.
6: Based on the selected feature set in (5), use the testing dataset T and a cross-

validation technique to train and test the model M.
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3.2.2 Between Aggregation Method (BAM)

Given a training dataset X, feature selection methods {FS1, . . . ,FSt}, and aggrega-

tion techniqueAT . LetX1,X2, . . . ,Xm be bootstrapped samples fromX,wherem∈Z>0.

Then, we applyFSq, q= 1, . . . , t on eachXs, s= 1, . . . ,m, to generate feature importance

scores {`s1, . . . , `sp}(q) which corresponds to the set of features {V1, . . . ,Vp}. Therefore,

a score matrix L(q) = [`
(q)
s j ] ∈ Rm×p is generated after applying the feature selection

method FSq on each bootstrap sample. In L(q), column j represents the FSq scores for

variable Vj over the m bootstrap sample datasets, whereas row s represents the FSq im-

portance scores for all features {V1, . . . ,Vp} in one bootstrap sample Xs. To allow for

the aggregation of different feature selection outputs, each column in the score matrix

L(q) is normalized using min-max normalization as follows:

~L(q) = [~̀
(q)
s j ], where

~̀(q)
s j =

`
(q)
s j −min

s
`
(q)
s j

max
s

`
(q)
s j −min

s
`
(q)
s j

Then, the aggregation technique AT is used to combine the normalized importance

scores across FSq, q = 1, . . . t into one score matrix ~̄L =

t
∑

q=1
~L(q)

t
. For instance, as-

suming AT = Arithmetic Mean, column j in the score matrix ~̄L represents the aver-

age column j between all considered feature selection methods FS1, . . . ,FSt . Then, the

AT = Arithmetic Mean of columns 1, . . . , p in ~̄L, is once more used to obtain the fi-

nal aggregated scores {a1, . . . ,ap} for the feature set {V1, . . . ,Vp}. The rank vector

r = (r1, . . . ,rp), r j ∈ {1,2, . . . , p} is assigned to the feature set {V1, . . . ,Vp} based on

the final aggregated scores. The feature set is then sorted from the most to the least

important based on the rank vector r. Now, using a threshold parameter, 0 < k ≤ 1, we

keep only the most important 100k% of the feature set (determined by the rank vector

r). The flowchart in Figure 3.2 illustrates the BAM framework. It is clear that both

classification and regression problems are comptaible with this framework. Algorithm

2 further details the BAM below.
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Figure 3.2. Framework for BAM

Algorithm 2 BAMAlgorithm

Given a training datasetXwith p features, a testing dataset T, feature selection methods

{FS1, . . . ,FSt}, an aggregation technique AT, a threshold parameter k, and a learning

algorithm M.

1: For i = 1, . . . ,m, generate bootstrap samples, X1, . . . ,Xm of the training dataset X.
2: For each feature selection method FSq ∈ {FS1, . . . ,FSt}, get features score matrix

L(q).
3: Normalize the score matrices in (2) as ~L(q), q = 1, . . . , t.
4: Use aggregation technique AT to combine the matrices in (3) into one score matrix

~̄L.
5: Based on AT , obtain aggregated score set {a1, . . . ,ap}.
6: For the aggregated scores in (5), compute the corresponding rank vector r =

(r1, . . . ,rp).
7: Based on the rank vector r, keep the top 100k% of the variable set {V1, . . . ,Vp}.
8: Based on the selected feature set in (6), use the testing dataset T and a cross-

validation technique to train and test the model M.
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3.3 Stability Analysis

As a measure of the sensitivity of the feature selection process, stability assesses the

influence of changes in the training data on the output of the feature selection procedure.

Since the stability of feature selection is mainly influenced by data variation, we can

induce variation in the dataset on which we wish to evaluate the stability through two

approaches [4]:

Approach 1 Divide the dataset S into a training datasetX and a testing datasetT. Then,

multiple training samples X1,X2, . . . ,Xm are generated by bootstrapping X

with replacement.

Approach 2 Use m-fold cross-validation to generate different training datasets. For ex-

ample, take a 5-fold cross-validation procedure. On every iteration, one of

these folds is used as a testing dataset T, while the remaining four folds are

used as a training dataset X. In this manner, by going through all iterations,

one can obtain five training samplesX1,X2, . . . ,X5 and five testing samples

T1,T2, . . . ,T5.

In section 3.3.1, using Approach 1, we describe the stability evaluation of the fea-

ture selection methods by comparing the similarity of feature selection outputs produced

from different bootstrapped samples. Furthermore, by introducing additional data vari-

ations to the aggregations using Approach 2, we underline the stability influence of

the aggregation techniques themselves within the feature selection ensemble in section

3.3.2.

3.3.1 Feature selection stability

In order to measure the stability of feature rankings for a certain feature selection

method, a similarity-based approach can be implemented. This approach depends on

the representation language of the produced feature rankings. Given a feature selec-

tion method FS, let X1,X2, . . . ,Xm be the training samples obtained using Approach 1.

Through bootstrapping with replacement, this approach allows us to construct simulated

samples without making assumptions about the underlying data distribution. Then, by

applying FS on each Xs, s = 1, . . . ,m; we obtain any of the following three representa-

tions with respect to the feature set {V1, . . . ,Vp} and the sample dataset Xs:
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• An importance scores vector `̀̀s = (`s1, . . . , `sp), `s j ∈ R

• A rank vector rs = (rs1, . . . ,rsp), rs j ∈ {1,2, . . . , p}

• A subset of features represented by an index vector ws = (ws1, . . . ,wsp), ws j ∈

{1,0}, where 1 indicates feature presence and 0 indicates feature absence.

Naturally, it is possible to transform any feature importance scores vector `̀̀ into a rank

vector r by sorting the importance scores. On the other hand, a rank vector r may be

converted into an index vector w by selecting the top 100k% features. The most popular

approach for assessing the stability of a feature selection method is to simply average the

similarity comparisons between each pair of feature rankings produced from different

bootstrap samples, as shown below:

Stability =
2

m(m−1)

m−1

∑
s=1

m

∑
v=s+1

Φ( fs, fv) (3.1)

where Φ( fs, fv) is the similarity measure between a pair of feature rankings from any

two training samples Xs,Xv (1 6 s,v 6 m). Note that the feature rankings ( fs, fv) can

be represented as a pair of importance scores vectors, rank vectors, or index vectors.

Moreover, the multiple 2
m(m−1) stems from the fact that there are

m(m−1)
2 possible pairs

of feature rankings between the total m samples. Several stability measures have been

introduced in the literature, with Jaccard’s index being one of the most commonly used

[78]. To calculate the stability, feature selection methods can be used to produce impor-

tance scores vectors {`̀̀1, . . . `̀̀m} to be converted into rank vectors {r1, . . .rm} or index

vectors {w1, . . .wm} and used to evaluate the stability using a corresponding similarity

measure.

3.3.1.1 Score-based stability

In the case of the similarity between two importance score vectors (`̀̀s, `̀̀v) produced

by one of the feature selection methods, the Pearson’s Correlation Coefficient computes

the similarity measure as:

ΦPCC(`̀̀s, `̀̀v) =
∑

p
j=1(`s j − ¯̀s∗)(`v j − ¯̀v∗)√

∑
p
j=1(`s j − ¯̀s∗)2(`v j − ¯̀v∗)2

, (3.2)
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where the `̀̀s refers to the feature importance scores corresponding to the set of features

{V1, . . . ,Vp} obtained from Xs. Given a score matrix L, in which the rows correpsond

to the importance scores across the training samples X1,X2, . . . ,Xm and the columns

correspond to the features {V1, . . . ,Vp}, then `̀̀s refers to the row s in L. Furthermore,

¯̀s∗ refers to the mean of row s in L. Note that ΦPCC(`̀̀s, `̀̀v) ∈ [−1,1].

In most of feature selection literature, index-based similarity measures tend to be

more common due to the popularity of multivariate feature selectionmethods. However,

a recent study, which aims to identify desirable qualities in a stability measure, points

out that Pearson’s Correlation Coefficient fulfills all desirable properties, yet tends to be

overlooked in favour of more complex alternatives [5].

3.3.1.2 Rank-based stability

In the case of the similarity between two rank vectors (rs,rv) produced by one of the

feature selection methods, there are two possible similarity measures for this evaluation:

i. Spearman Rank Correlation Coefficient measures the similarity between the two

rank vectors as:

ΦSRCC(rs,rv) = 1−
6∑

p
j=1(rs j − rv j)

2

p(p2 −1)
, (3.3)

where rs is the rank vector that corresponds to the set of features {V1, . . . ,Vp}.

Here, ΦSRCC(rs,rv) ∈ [−1,1].

ii. Canberra Distance quantifies the similarity between two rank vectors (rs,rv) as

the absolute difference between them [79]:

ΦCD(rs,rv) =
p

∑
j=1

|rs j − rv j|
|rs j|+ |rv j|

. (3.4)

where rs is the rank vector that corresponds to the set of features {V1, . . . ,Vp}. For

easier interpretation, Canberra’s distance is usually normalized through dividing

by p.

3.3.1.3 Index-based stability

Due to the multivariate nature of many feature selection techniques, numerous sta-

bility metrics seek to assess the degree of similarity between two feature subsets repre-

sented by two index vectors. The most popular similarity measure for this evaluation
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is Jaccard’s Index. Jaccard’s index measures the similarity between two finite sets; it

is taken as the size of the intersection divided by the size of the union of the two sets.

Given the index vectors (ws,wv) used to represent the two feature subsets, Jaccard’s

index is given by:

ΦJI(ws,wv) =
|ws ∩wv|
|ws ∪wv|

=
|ws ∩wv|

|ws|+ |wv|− |ws ∩wv|
, (3.5)

such that ΦJI(ws,wv) ∈ [0,1].

3.3.1.4 Average Standard Deviation (ASD)

In addition to similarity-based stability measures, the Average Standard Deviation

of feature importance scores across all bootstrap samples may be computed for each

feature selection technique. The standard deviation, by definition, reflects the dispersion

or instability of the feature selection scores over training bootstraps. Similar to the work

in [80], we define the ASD for a given feature selection approach as follows:

ASD =
1
p

p

∑
j=1

SD(c j), (3.6)

where c j represents the column j in the standardized score matrix~L. Across the m boot-

strap samples, SD(c j) is the standard deviation of the standardized importance scores

for the feature Vj. That is, a low ASD would indicate strong stability, whereas a large

ASD would indicate poorer stability.

For the WAM and BAM methodologies, the four discussed similarity measures

(Pearson’s CorrelationCoefficient, Spearman’s RankCorrelationCoefficient, Canberra’s

Distance, and Jaccard’s Index) are evaluated to assess the stability of the tested feature

selection techniques for each of the possible representation languages. In addition, for

every feature selection method, we compute the Average Standard Deviation (ASD) of

the feature importance scores across all bootstrap samples.

3.3.2 Influence of the aggregation procedure

In the implemented framework, we combine the two approaches, Approach 1 and

Approach 2, to further analyze the stability influence of the aggregation procedure on the

ensemble feature selection framework. Given a fixed feature selection method FS; we
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integrate theWAM framework, built usingApproach 1, within a cross-validation process

ofApproach 2, as illustrated in Figure 3.3. In other words, an internal WAM framework

is used to produce an aggregated feature selection result for each iteration of the cross-

validation. Specifically, stratified cross-validation is applied on the dataset S to produce

f -folds. 1 fold is set aside for each iteration (dataset T), while the remaining f − 1

folds are used for training (dataset X). The training data is subsequently subjected to

Algorithm 1 (WAM). Inside each iteration of the cross-validation, the bootstrap samples

X1, . . . ,Xm will be created and utilized to obtain an aggregated rank vector r. By going

through all iterations, we acquire {r1, . . .r f } aggregated rank vectors

Given the aggregated rank vectors {r1, . . .r f }, the stability of the ensemble feature

selection can be evaluated by averaging over the values of any of the similarity measures

described in section 3.3.1. In this manner, the similarity scores of all pairs of aggregated

feature rankings are computed and then averaged to find a final stability score for the

chosen similarity measure. As the WAM is embedded within the cross-validation op-

eration, each output of the WAM creates an aggregated rank vector for each aggrega-

tion approach. In accordance, the cross-validation folds (Approach 2) incorporate data

variance into these aggregated rank vectors. The ensuing instability is then mostly at-

tributable to the aggregation procedure, because a single feature selection method was

fixed across all folds and in each ensemble. Hence, we underline the stability influence

of the aggregation techniques themselves within the ensemble feature selection.

Figure 3.3. Framework for analyzing the stability influence of the aggregation procedure
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3.4 Feature Selection Techniques

As described in section 2.1, countless feature selection methods exist in the literature

including filter, wrapper, and embedded methods. Due to their computational efficiency

and reliable performance, filter methods are used within this thesis to test the proposed

methodology. Four of the most popular filter methods used in the experimental design

are discussed in this section.

3.4.1 Information Gain (IG)

Information Gain (IG) is one of the most common feature selection methods due to

its computational efficiency and ease of understanding. Based on entropy, IG is a sym-

metrical measure of dependency between two random variables X and Y that measures

the information obtained about Y after seeing X , or vice versa. In feature selection, X

usually refers to one of the dataset’s features, whereas Y refers to the target variable.

Moreover, entropy is a measure of the uncertainty of a random variable or the amount

of information required to predict its outcome. For simplicity, assume that both X and

Y are nominal features, with n and m unique classes for X and Y , respectively. The

IG importance score of X is determined by the decrease in the entropy of Y when X is

known. Here, the entropy of Y is given by [81]:

H(Y ) =−∑
y

P(y) log2(P(y)) (3.7)

whereP(y) is the probability that an arbitrary sample belongs to class y∈Y . On the other

hand, the conditional entropy ofY given X , namely H(Y | X), represents the uncertainty

about Y given the value of X . This is given by:

H(Y | X = x) =−∑
y

P(x,y)
P(x)

log2

(
P(x,y)
P(x)

)
(3.8)

where P(x,y) is the probability that an observation is of class y in a subset x. For nominal

random variables, we average H(Y | X = x) over all possible values that X may take in

order to obtain H(Y | X). Accordingly, the Information Gain on knowing X is given by:

IG(Y ;X) = H(Y )−H(Y | X) (3.9)
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Alternatively, the joint entropy or the sum of the uncertainty contained by the two fea-

tures can be calculated using:

H(X ,Y ) =−∑
x

∑
y

P(x,y) · log2 (P(x,y)) (3.10)

where P(x,y) is the probability that an observation is of class y in a subset x. In this

case, the Information Gain on knowing X can be simply be obtained by:

IG(Y ;X) = H(X)+H(Y )−H(Y,X) (3.11)

For continuous variables, differential entropy replaces the summations in (3.7), 3.8, and

(3.10) by integration. IG may be used as a correlation metric since it aims to assess

how much information a feature provides about the target variable. The greater the IG,

the stronger the relationship between the features X and Y . They are independent if

the IG between X and Y is zero. They are dependant if it is more than zero and one

variable can supply information about the other. Information Gain can be used with all

data types. However, one disadvantages of this method with nominal variables is that it

favors features with more distinct values even when they are not more informative (e.g.

customer’s identification number).

3.4.2 Symmetric Uncertainty (SU)

Symmetric Uncertainty (SU) is a correlation measure between two random variables

X and Y , usually an independent feature of the dataset and the target variable. SU,

like Information Gain, uses entropy to determine how much information the features

contribute. However, the SU criterion adjusts for the inherent bias of IG by dividing it

by the sum of X and Y entropies. In other words, SU is defined as:

SU(X ,Y ) = 2× H(X)+H(Y )−H(Y,X)

H(X)+H(Y )
(3.12)

where H(X) and H(Y ) are the entropies associated with X and Y , and H(Y,X) is the

joint entropy, as defined in 3.7 and 3.10 respectively. Due to the correction factor 2,

SU takes values which are normalized in the range [0,1]. A value of SU = 1 means that

the information of one feature completely predicts the other, whereas the value SU = 0

34



indicates that X and Y are uncorrelated.

Generally, SU provides an advantage in overcoming the limitations of Information

Gain. However, a weakness of SU is that it is biased towards features with fewer values.

In order to examine the interactions of multiple features within the dataset, a generaliza-

tion of the bivariate measure was introduced in [82]. Like other entropy-basedmeasures,

SU works with all data types.

3.4.3 Chi-squared test (CS)

In general, the Chi-squared test is implemented as a way of testing the independence

of two nominal features by examining whether the observed distributions are generated

by the same underlying distribution. Assume X is a nominal independent feature with r

distinct levels and Y is the nominal target variable with c classes. Chi-squared test can

be done by applying the following [83]:

χ
2(X) =

r

∑
i=1

c

∑
j=1

(ni j −µi j)
2

µi j
(3.13)

where ni j is the observed count of observations classified into the j-th class of Y given

xi ∈ X , whereas µi j indicates the expected frequency. This refers to the expected ob-

servations of the j-th class of Y provided there is no relationship between X and Y .

Accordingly, µi j can be calculated using:

µi j =
n∗ jni∗

n
(3.14)

where n∗ j is the number of observations classified into the j-th class of Y , ni∗ is the

number of observations under xi ∈ X , and n is the total number of observations. If the

two features are independent, there should not be a statistically significant difference

between the observed frequency and the expected frequency. In order to determine

whether the results are statistically significant, the degree of freedom (calculated based

on the contingency table size) is used to examine the statistic in the context of the Chi-

squared distribution. To apply the Chi-squared test on numeric data, the features need

to be discretized.
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3.4.4 Minimum Redundancy Maximum Relevance (MRMR)

Minimum Redundancy Maximum Relevance (MRMR) aims to select attributes that

are highly correlated with the target variable (maximum relevance), yet show little cor-

relation between the attributes themselves (mininum redundancy). Correlations with the

target variable and in-between the features (the optimization criterion) can be measured

using IG. The importance of the independent variables X based on the MRMR criterion

is defined by [84]:

f mRMR(X) = IG(Y ;X)− 1
|S| ∑

Xs∈S
IG(Xs;Xi)

where Y is the target variable, S is the set of selected features, |S| is the number of

selected features, Xs ∈ S is a particular feature from the feature set S, and features not

currently selected are denoted by Xi /∈ S. Finally, the function IG(X ;Y ) represents the

Information Gain as defined in 3.9 and 3.11. At every step of the MRMR feature selec-

tion process, the feature with the highest importance score maxXi /∈S f mRMR(Xi) is added

to the selected feature set S. By selecting features that are maximally dissimilar to each

other, MRMR reduces feature redundancy while retaining relevant features. However,

it is disadvantaged by the sensitivity of its relevance and redundancy measures to out-

liers. In general, MRMR works with both numeric and nominal inputs, but requires a

nominal output.

3.5 Aggregation Techniques

Aggregation refers to the process of combining several values together. Given an in-

put vector of (usually numeric) values, aggregation functions produce a singular output

value. The core of aggregation is that the aggregation function’s output value should

reflect or synthesize “in some way” all individual inputs, depending on the context in-

volved [85]. Due to a vast array of possible aggregation functions, it can be difficult

to choose an appropriate aggregation procedure. Optimization-based rank aggregation

techniques, for example, are designed to minimize some distance measure to guarantee

that the aggregated rank vector is as close as possible to the underlying rank vectors.

Other aggregation techniques, such as the Arithmetic Mean, provide simpler aggrega-

tions that don’t aim to maximize any criterion. In this thesis, we mainly focus on score-

based aggregation approaches. While they are less frequent in the literature, score-based
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aggregations can provide a higher level of detail than the ranks and be simpler to cal-

culate. Moreover, since the aggregated score vectors can easily be translated into both

rank vectors and feature subsets, they are compatible with multiple types of stability

metrics. For completeness and further analysis of the methods used, two strictly rank-

based aggregation techniques are also included.

3.5.1 Arithmetic Mean (AM)

TheArithmetic Mean (AM) is an aggregation technique that is compatible with both

scores and ranks. Given an importance score vector of m values, AM computes the

average across input values to determine a final aggregated output score as follows:

AM(`̀̀ j) =
1
m

m

∑
i=1

`i j (3.15)

In Algorithm 1 (WAM), `̀̀ j = (`1 j, . . . , `m j) is the column j in the score matrix L. That

is, the feature importance scores that correspond to feature Vj ∈ {V1, . . . ,Vp}, obtained

from X1,X2, . . . ,Xm.

3.5.2 Geometric Mean (GM)

The Geometric Mean (GM) is another aggregation technique that is compatible with

both scores and ranks. Given an importance score vector ofm values, GMCalculates the

geometric average across importance scores and uses it to determine a final aggregated

score as follows: [59]:

GM(`̀̀ j) =

(
m

∏
i=1

`i j

) 1
m

(3.16)

In Algorithm 1 (WAM), `̀̀ j = (`1 j, . . . , `m j) is the column j in the score matrix L.

3.5.3 L2 Norm (L2)

In L2 Norm, the importance scores are viewed as an n-dimensional vector, then the

Euclidean norm for that vector is calcuated as follows [59]:

L2(`̀̀ j) =

(
m

∑
i=1

`2
i j

) 1
2

(3.17)

In Algorithm 1 (WAM), `̀̀ j = (`1 j, . . . , `m j) is the column j in the score matrix L.
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3.5.4 Stuart

In Stuart aggreagtion, input rank vectors (for the same ranked feature across exper-

imental samples) are compared to a baseline of random feature ranks. Subsequently,

the beta distribution is used to assign significance scores for each feature [60]. Assume

r j = (r1 j, . . . ,rm j) is the rank vector that corresponds to the feature Vj ∈ {V1, . . . ,Vp}.

That is, r j is derived from the column j in the scorematrixL. Furthermore, we normalize

the rank vector by dividing by the maximal rank value p, such that the maximal value in

the rank vector r j will be 1. To aggregate the ranks for the feature Vj, let r(1 j), . . . ,r(m j)

be a reordering of r j such that r(1 j) ≤ . . . ≤ r(m j). Moreover, let r̂ j be a rank vector

generated by the null model, i.e. the ranks are sampled from the uniform distribution.

We are thus interested in the probability r̂(s j) ≤ r(s j), which we denote as βs,m(r j). Since

r̂(s j) is the order statistic of m independent random variables uniformly distributed over

[0,1], this probability may be evaluated using the beta distribution or taken as a binomial

probability under the null model. Finally, we compute the score for ranking the feature

Vj using ρ(r j) = mins=1,...,m βs,m(r j). Based on the ρ score distribution, p-values can

also be calculated for each ρ score as follows [61]:

Pr[X ≤ ρ] = 1−Pr[r̂(1) ≤ 1−β
−1
m,m(ρ), . . . , r̂(m) ≤ 1−β

−1
m,1(ρ)] (3.18)

where r̂ is an observation from the uniform distribution with size m and β−1
s,m(ρ) is a

quantile of Beta(s,m− s+1) distribution. The p-values are used to decide whether the

ranking of a particular feature is statistically significant and to re-rank the features in

the final aggregated rank vector.

3.5.5 Robust Rank Aggregation (RRA)

The Robust Rank Aggregation (RRA) is a Stuart variant that uses Bonferroni ad-

justments to obtain a suitable aggregated vector even when the input rank vectors are

inaccurate or irrelevant [61]. First, for each feature Vj, ρ(r j) is calculated like in Stuart

as follows:

ρ(r j) = min
s=1,...,m

βs,m(r j), βs,m(x) :=
m

∑
`=s

(
m
`

)
x`(1− x)m−` (3.19)
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Unlike Stuart, the Bonferroni correction is then applied to determine an upper bound

on the corresponding p-value for each score ρ independently. For this purpose, each ρ

score is multiplied by the number of input vectors (i.e. the number of bootstraps). In

most circumstances, the Bonferroni correction is a suitable compromise between effi-

ciency and precision.

3.6 Classification Learning Algorithms

While the methodology discussed in this chapter so far is applicable to both regression

and classification problems, the experimental analysis will solely focus on classification

datasets. Hence, the learning algorithms used for the experimental analysis will consist

of classification algorithms. In this section, we discuss the most popular classifiers used

in this work.

3.6.1 Logistic Regression

Logistic Regression is a commonly used statistical model that uses a logistic (sig-

moid) function to represent the likelihood of a class or event occurring. In particular,

the sigmoid function is used to map the predicted values into probabilities between 0

and 1 given by:

S(Z) =
1

1+ e−Z =
eZ

eZ +1

Assume that Z represents a regression function or a linear combination of multiple ex-

planatory features {V1, . . . ,Vp} such that:

Z = B0 +B1.V1 +B2.V2 + ... + Bp.Vp

Then, the general logistic function can be given by:

P(Y = 1) = S(Z) =
1

1+ e−(B0+B1.V1+B2.V2 + ... + Bp.Vp)

In binary Logistic Regression, P(Y = 1) refers to the probability of the dependent

variable Y representing a success/positive class label rather than a failure/negative class

label. Moreover, the logit (log odds) function can be defined as the inverse of the logistic
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function where:

S−1(P(Y = 1)) = ln
(

P(Y = 1)
1−P(Y = 1)

)
= B0 +B1.V1 +B2.V2 + ... + Bp.Vp

We may choose a threshold, such as 0.5, to make the Logistic Regression into a lin-

ear classifier. For instance, assuming the classes are 1 and -1, we predict Y = 1 when

P(Y = 1)> 0.5 andY =−1 when P(Y = 1)< 0.5. Meanwhile, the Logistic Regression

coefficients B j, j = 1, . . . , p, are commonly estimated using the maximum likelihood

estimation approach.

3.6.2 Naive Bayes

Naive Bayes is a probabilistic classifier based on the Bayes theorem [86] that works

with both binary and multiclass classification problems. Due to its simplicity, it is a

fast machine learning algorithm which can be utilized for large datasets. The classifier

is called ’naive’ since features are assumed to be class-conditionally independent. In

other words, Naive Bayes assumes that the existence of one feature in a class has no

bearing on the presence of another one. Moreover, every feature is given the same level

of importance. These assumptions work well with the Bayes theorem, which uses infor-

mation about prior conditions related to a feature to describes its posterior probability.

Given an observation vector x = (x1,x2, . . . ,xp) that corresponds to the values of the

features {V1, . . . ,Vp} and the class y ∈ Y (i.e. x = xi for some row i in the input dataset

S≡ (X ,Y )). Then, the Bayes theorem states that:

P(y|x) = P(x|y)P(y)
P(x)

(3.20)

Due to the naive assumption, it becomes possible to rewrite P(x|y) as follows:

P(x|y) = P(x1|y)P(x2|y) · · ·P(xp|y)

Therefore, Equation 3.20 can be rewritten as:

P(y|x) =
P(x1|y)P(x2|y) · · ·P(xp|y)P(y)

P(x1)P(x2) · · ·P(xp))
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As we solve for P(y), P(x) remains a constant. Therefore, the posterior probability can

be taken as:

P(y | x1,x2, . . . ,xn) ∝ P(y)
p

∏
j=1

P
(
x j | y

)
At this point, the Naive Bayes classifier aims to choose the class y with the maximum

probability. Thus, we find the maximum y value using the following function:

y = argmaxy P(y)
p

∏
j=1

P
(
x j | y

)
By going through this process, the Naive Bayes classifier can produce good results very

quickly if the assumptions are met and would not require as much training data as other

classifiers.

3.6.3 Random Forest

Random Forests are decision tree ensemble models in which each tree is trained on

a random subsample of the dataset to predict the class of the target variable Y . Decision

trees work by splitting the datasets into small subgroups using feature-based criteria.

This splitting process continues until no additional gains are possible or a predetermined

rule is satisfied, such as the tree’s maximum depth. The three components of a decision

tree are root nodes which represent the entry points to the data, inner nodes which are

obtained after splitting a root node, and leaf nodes where the class decision can be made

as further splitting is not possible. Moreover, there are several ways for selecting the

features used at each split, using impurity criterions such as entropy or Gini’s index.

The issue with decision trees, however, is that they tend to overfit their training sets,

resulting in low bias but large variance.

To minimize the variance of decision trees, Random Forests utilize a majority vote

on identically distributed decision trees. In Random Forest, subsamples are obtained

from the training dataset with replacement and the output of each decision tree is av-

eraged to increase the predicted accuracy and control over-fitting [87]. While Random

Forest models are effective at preventing overfitting, they can be expensive to construct.
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3.6.4 Support Vector Machine (SVM)

Assuming that n is the number of observations and p is the number of features, each

observation is represented as a point in p-dimensional space in Support Vector Machine

(SVM). The goal of SVM is to find the best hyperplane for separating data into different

classes of the target variable. As a result, the chosen hyperplane optimize the distance

between data points of various classes. This distance is known as the margin. Only the

points closest to the hyperplane are used to compute the margin; these points are referred

to as the support vectors.

To illustrate, assume that xT
i = (xi1, . . .xip) represents an observation vector (row)

in the input dataset S≡ (X ,Y ), where Y = {−1,+1} represents a binary class variable.

Then, xi is positively classified if yi =+1, and negatively classified if yi =−1. More-

over, using some weight vector w and bias b, the training data can be separated using

the hyperplane wTxi +b = 0. Our goal is to find w and b for the optimal hypberplane.

To do this, let the marginal hyperplanes, H1 and H2, be taken as:

H1 :
(
wTxi +b

)
=+1

and H2 :
(
wTxi +b

)
=−1

such that the marginal hyperplanes are passing through the nearest points in each class.

Once we subtract the data points to get the distance between the two marginal hyper-

planes, we obtain the quantity
2

‖w‖
. This is known as the margin. We are interested in

maximizing this in order to identify the optimal marginal hyperplanes which ensure no

data points are misclassified. Alternatively, we maximize the margin such that no point

can have a distance to the hyperplane smaller than the margin. In this manner, we find

the values of w and b that maximize the following function [88]:

(w∗,b∗)max
2

‖w‖yi

 +1 where wTxi +b ≥+1

−1 where wTxi +b ≤−1

This can also be expressed as a minimization problem via the following function:

(w∗,b∗)min
‖w‖2

2
+C

n

∑
i=1

ξi
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subject to yi
(
wTxi +b

)
≥ 1−ξi.Note thatC is a regularization (penalty) parameter that

regulates the trade-off between maximization of the margin and minimization of the

training error, and ξi ≥ 0, i = 1, . . . ,n, is a slack variable that indicates how much the

constraints are violated.
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Chapter 4. Experimental Analysis

This chapter highlights both the classification performance and stability behavior results

obtained from implementing the WAM and BAM algorithms on different classification

problems. In addition, different aggreagtion procedures are tested on the WAM, where

their accuracy and stability differences are compared and analyzed across the different

feature selection methods.

4.1 Experimental Design

Due to their computational efficiency, four traditional filter feature selection techniques

are used in the analysis of theWAM and BAM frameworks. As presented in section 3.5,

these methods are: Information Gain (IG), Symmertric Uncertainty (SU), MinimumRe-

dundancy Maximum Relevance (MRMR), and Chi-Square test (CS) (note that numeric

features are first discretized using fixed width binning in order to obtain the CS scores).

In the experimental analysis, the dataset S is first divided into a training dataset X, and

a testing dataset T, where two thirds of the dataset is used for obtaining the importance

scores (i.e. X) and one third is used for testing the model (i.e. T). The training set is

bootstrapped 1000 times (m = 1000), such that each sample is of the same size as the

training set.

By applying the WAM and BAM frameworks as described in sections 3.2 and 3.3

on all bootstrap samples, we obtain an aggregated score set {a1, . . . ,ap} and a corre-

sponding rank vector r = (r1, . . . ,rp). Based on the rank vector r, we select only the

top 100k% of the variable set {V1, . . . ,Vp} and test their classification performance on

the previously segmented testing set T. The classifiers used for this step are Logistic

Regression, Naive Bayes, Random Forest, and SVM, described in section 3.7. The test-

ing data is also divided into 5 folds for stratified K-fold cross-validation, where strat-

ification is used to ensure that each fold encompasses equal proportions of the target

classes. Moreover, the metric used for determining the classification performance is

the Accuracy score (i.e. the proportion of correct predictions). By removing different

percentages of features from the classifier depending on the feature rankings, we can

observe the optimal percentage of features that can be used for obtaining a reasonable

accuracy. In the experimental analysis, ten different k thresholds are used in the testing

step, resulting in subsets containing the top {10%,20%, . . . ,100%} of the total features.

Here, 100k% where k = 1.0, refers to the baseline model where all features are used
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and none of the feature selection methods are implemented. In addition, to provide a

more general picture of the classification performance of the two ensembles, a weighted

average of the accuracy scores is taken across the feature selection methods and for each

classifier. In this WeightedAverageAccuracy (WAcc), each accuracy score is weighted

by the percentage of removed features such that:

WAcc =
∑

d
i=1WiAcci

∑
d
i=1Wi

(4.1)

where the weights Wi = {0.1,0.2, . . . ,0.9} are the nine threshold values (d = 9), ex-

cluding k = 1.0. Note that the weights are taken to be 1− k, rather than k, in order to

give more weight to feature selections methods that result in good accuracy at higher

feature reduction percentages. Furthermore, due to its simplicity and effectiveness, the

Arithmetic Mean (AM) [51], [66] is used for aggregating the feature importance scores

obtained from the tested feature selection methods in the WAM and BAM frameworks.

In other words, AT = {AM} for comparing WAM and BAM in the first part of the ex-

perimental analysis. Then, using the WAM ensemble framework, different aggregation

methods are assessed and compared in terms of their accuracy and stability behavior.

In the process of examining the influence of the aggregation procedure, 1000 boot-

strap samples are created to aggregate the feature importance scores for each feature se-

lection method using the five aggregation strategies: ArithmeticMean (AM), Geometric

Mean (GM), L2 Norm (L2), Robust Rank Aggregation (RRA), and Stuart aggregation.

To assess the classification accuracy of the feature selection, a 5-fold cross-validation

process is then implemented using the Naive Bayes classifier. Moreover, the bootstrap

samples are embedded within a 100-fold cross-validation approach to compute the sta-

bility. On each iteration, 99 folds are used to generate a training set and one fold is used

to generate a testing set. By going through all iterations, the stability of the same feature

selection ensemble under different aggregation techniques is evaluated using the final

100 aggregated rank vectors. This procedure is followed across the different score-based

(AM, GM, L2) and rank-based (RRA, Stuart) aggregations. Due to their contrasting per-

formance in the WAM and BAM ensembles, the two filter techniques Information Gain

(IG) and Minimum Redundancy Maximum Relevance (MRMR) are used to analyze the

stability influence of the different aggregation procedures.
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The experimental framework was performed in the open-source statistical program-

ming language R. The experimental environment wasWindows 10, 64-bit, 16 GBRAM,

Intel(R) Xeon E-2124 (3.30GHz). The evaluation involved twelve classification prob-

lems with real datasets from different application domains, ten of which are binary and

two with multiclass target variables. Note that features of near-zero variance were re-

moved prior to the analysis.

4.2 Experimental Datasets

Our experimental analysis consists of the datasets illustrated in Table 4.1. The datasets

have been acquired from various sources pertaining to different classification problems,

including a binarization of multiclass problems, ML challanges, and datasets from the

UCI Machine Learning Repository. As seen in the Table 4.1, the datasets contain both

numerical and nominal values with various dimensionalities and numbers of observa-

tions. Thus, they provide an interesting benchmark for the investigation of the proposed

framework’s behavior and its characteristics.

The datasets Jasmine, Philippine, and Ada are all part of the ChaLearn AutoML

Challenge Series (2015–2018) [89], which consists of six rounds of a machine learn-

ing competition with increasing levels of difficulty and computational constraints. The

data was chosen to represent a wide range of application domains including biology,

medicine, and ecology, among others. While not in their original variable-length rep-

resentations, the classification involves processing of text, speech, and video data; this

data was preprocessed into numerical features.

The Scene dataset [90] consists of 2400 images from both personal and the COREL

stock image collections. Spatial color moments in Luv space were recorded as features.

The image was divided into 49 blocks using a 7x7 grid after being converted to Luv

space. The first and second moments (mean and variance) of each band were calcu-

lated, which correspond to a low-resolution image and inexpensive texture features. As

a result, each image has a 294-dimension feature vector. The classification task was

taken to be the identification of a scene as Urban. Similarly, the Image dataset [91]

consists of 2,000 natural scene images belonging to the classes desert, mountains, sea,

sunset, and trees. While some of the photographs were taken from the COREL image

collection, others were gathered via the Internet. The binary classification task was the

identification of the sea in the images.
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The Musk dataset [92] describes 102 compounds, 39 of which human experts have

determined to be musks and the remaining 63 to be non-musks. A single molecule can

take on a variety of shapes due to the rotational nature of bonds. Therefore, the dataset

was constructed by generating 6,598 conformations from each of the molecules’ low-

energy conformations. Then, a feature vector that characterizes each precise shape, or

conformation, of the molecules was retrieved. The objective is to tell whether new

compounds will be musks or not.

The Optidigits dataset [92] consists of normalized bitmaps of handwritten digits

preprocessed by NIST software. The number of pixels was counted in each block of a

32x32 bitmap that was partitioned into 4x4 nonoverlapping blocks. With each element

being an integer between 0 and 16, this produced an 8x8 input matrix. Meanwhile, the

features in the Satellite dataset [92] were taken from satellite observations. Each image,

specifically, was captured using four different light wavelengths: two visible (green and

red) and two infrared. The binary dataset’s objective is to categorize the image into the

observed region’s soil category (Normal vs Anamoly). Red soil, gray soil, damp gray

soil, and very damp gray soil were used to define the ’Normal’ class. ’Anomalies’were

drawn from the two semantically distinct groups “cotton crop” and “soil with vegetation

stubble.”

The Splice dataset [92] consists of 60 variables, each of which represents a group of

DNAnucleotides. The aim is to determine whether the middle of the sequence is a splice

junction and if so, what kind it is. A splice junction is a location in a DNA sequence

where “superflous” DNA is eliminated during the production of proteins. Exon/intron

(EI) and intron/exon (IE) sites are the two different kinds of splice junctions found in

DNA sequences; exon is the section of the sequence that is kept, whereas intron is the

component of the sequence that is spliced out.

Finally, Indian Pines [93] is a multiclass dataset for segmenting hyperspectral im-

ages. The input data consists of 145x145 pixel hyperspectral bands covering a single

landscape in Indiana, United States. The data collection contained 220 spectral re-

flectance bands for each pixel that represent various portions of the electromagnetic

spectrum. The classes include land-use types for alfalfa, corn, grass, hay, oats, soy-

beans, trees, and wheat. Similarly, the Semeion multiclass dataset [92] consists of 1593

handwritten digits (0-9) from 80 individuals that were scanned and enlarged to a 16x16
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size image. Each of the 256 variables describes a single pixel and its associated value.

Table 4.1. Datasets Description

Dataset name and source No. observations No. Features No. Classes Dimensionality*

Jasmine1 2984 (1492/1492) 145 2 0.048592

Image2 2000 (1420/580) 140 2 0.070000

Scene3 2407 (1976/431) 295 2 0.122559

Musk4 6598 (5581/1017) 170 2 0.025765

Philippine1 5832 (2916/2916) 309 2 0.052984

Ionosphere4 351 (126/225) 34 2 0.096866

Optdigits2 5620 (572/5048) 64 2 0.011388

Satellite2 5100 (75/5025) 37 2 0.007255

Ada1 4147 (1029/3118) 49 2 0.011816

Splice2 3190 (1535/1655) 61 2 0.019436

Indian Pines2 9144 221 8 0.024168

Semeion4 1593 257 10 0.161330

* Dimensionality is the ratio of features to number of observations. Superscripts indicate the data sources as fol-

lows:
1 automl.chalearn.org, 2 www.openml.org, 3 mulan.sourceforge.net, 4 archive.ics.uci.edu.

4.3 Classification Performance Results

The accuracy scores (percentage of true predictions) after applying the WAM and the

BAMon each dataset are shown in Figures 4.1-4.12. TheWAM findings are represented

by the curves corresponding to the different feature selection methods: IG, SU, MRMR,

and CS. The BAM findings, on the other hand, are shown in each panel by a single

BAM curve. The four plots for each dataset illustrate the four classifiers that were used:

Logistic Regression, Naive Bayes, Random Forest, and SVM. Note that for Figures

4.11-4.12, Logistic Regression is not included due to being multiclass datasets. Overall,

the accuracy values, which are averaged across the 5-folds in the cross-validation, are

displayed against ten distinct 100k% thresholds in the testing stage to demonstrate the

classification performance for different feature subsets. In addition, the Weighted Av-

erage Accuracy values in Table 4.3 present a more general overview of the WAM and

BAM performances.

Conversely, the accuracy scores after applying the WAM to each dataset using dif-

ferent aggregation strategies are shown in Figures 4.13-4.24. These WAM findings are

represented by the curves corresponding to the various aggregation techniques: AM,

GM, L2, RRA, and Stuart aggregation. The four plots for each dataset illustrate the four

feature selection approaches that were used: IG, SU, CS, andMRMR. The accuracy val-

ues, which are averaged across the 5-folds in the cross-validation, are displayed against
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ten distinct 100k% thresholds in the testing stage to demonstrate the classification per-

formance for different feature subsets.

The running times forWAM and BAM, respectively, are also presented in Table 4.2.

In the experiments, WAM takes an average of around 3,030 seconds to run, whereas

BAM averages at nearly 3,012 seconds. Since BAM requires an additional aggrega-

tion step across the multiple feature selection algorithms, it is significantly slower than

WAM across all datasets (Wilcoxon-test p-value= 0.0002). Overall, the computational

costs of the ensemble frameworks are mostly controlled by the feature selectionmethods

utilized and the dataset composition on which it is used (see Table 4.1).

Table 4.2. Computational running times for WAM and BAM frameworks

Dataset name WAM (seconds) BAM (seconds)

Jasmine 1838 1840

Image 1816 1843

Scene 4277 4332

Musk 4307 4379

Philippine 7595 7601

Ionosphere 377 377

Optdigits 1112 1117

Satalite 786 799

Ada 698 698

Splice 1009 1019

Indian Pines 8744 8753

Semeion 698 698

In the following two subsections, we analyze and compare the performance of the

WAM and BAM algorithms, in terms of their classification accuracy and their identifi-

cation of optimal feature subsets (subsection 4.3.1). In subsection 4.3.2, we also ana-

lyze and compare the classification performance of the different aggregation techniques

within the WAM framework.
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4.3.1 Comparison of the classification performance forWAM and BAM

As can be seen in Figures 4.1-4.12, the best classifier for most datasets appears

to be the Random Forest classifier averaging at around 88% accuracy throughout the

different experiments. In contrast, SVM achieves largely better accuracy scores in the

Image, Scene, and Optidigts datasets (see Figures 4.2-4.3 and Figure 4.7). However, the

Naive Bayes classifier, in particular, seems to be the most influenced by the ensemble

framework.

In the majority of datasets, we generally observe that both ensemble feature selec-

tion frameworks enhance the baseline (k = 1.0) classification performance to some de-

gree. The efficiency of the WAM is particularly apparent when using the Naive Bayes

classifier, where the accuracy values exhibit a steeper increase than that of other clas-

sifiers across multiple datasets. For example, in the Ionosphere dataset in Figure 4.6,

the Naive Bayes accuracy climbs from roughly 0.81 at baseline to nearly 0.90. In the

Satellite dataset in Figure 4.8, it climbs from around 0.89 baseline accuracy to nearly

0.99. Similarly, it can be observed that BAM also improves the baseline accuracy of

the model, particularly under the Logistic Regression classifier. For example, in the

Jasmine dataset in Figure 4.1, BAM improves the Logistic Regression accuracy from

approximately 0.75 at baseline to nearly 0.9. In the Philippine dataset in Figure 4.5, the

Logistic Regression accuracy climbs from around 0.68 at baseline to over 0.72 under

the BAM.

Overall, the experimental results reveal that the ensembling of bootstrap samples and

aggregating of feature importance scores within and between feature selection methods

helps improve the baseline classification performance and/or allows for removing a large

proportion of insignificant features without compromising the accuracy (e.g. Image,

Musk, and Satellite datasets). However, while the WAM and BAM produce compara-

ble results, the aggregated feature selection methods under WAM appear to somewhat

outperform the BAM in terms of the maximum accuracy scores. In particular, for most

of the datasets, at least one feature selection method aggregated under WAM has pro-

duced better accuracy values than those obtained by the BAM. In the Philippine and

Scene datasets, for example, the aggregated CS clearly outperforms BAM as seen in

Figure 4.5 and Figure 4.3, respectively. In some datasets, such as Jasmine in Figure 4.1
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or Ionosphere in Figure 4.6, the aggregated SU yields better accuracy values, whereas in

others such as Optidigits in Figure 4.7 and Splice in Figure 4.10, the aggregated MRMR

outperforms the other feature selectionmethods. Similar patterns can be observed across

the rest of the binary datasets, where the aggregated IG findings exhibit the highest cor-

relation with the BAM results and the aggregated MRMR exhibit the least correlation.

Alternatively, in the multiclass datasets, both the WAM and BAM frameworks produce

overlapping curves across most classifiers in Figures 4.11-4.12. This might be attributed

to the consensus of the other feature selection techniques in the multi-class datasets,

given that the WAM simply averages the outcomes of the other methods. On a more

general level, the BAM appears to be the middle-of-the-pack strategy when compared

with the WAM in terms of its classification performance.

However, when compared comprehensively, using the Weighed Average Accuracy

scores in Table 4.3, the distinction between theWAMandBAMbecomes less prominent.

Although the best weighted average scores (bolded across the rows in Table 4.3) are still

mainly dominated by theWAMmethods, the BAM still produces relatively good perfor-

mance in a number of datasets such as Musk, Splice, and Semeion. Moreover, the BAM

continues to be the middle-best performing strategy even in the datasets in which a fea-

ture selection approach under WAM outperforms it. Statistically, a repeated-measures

ANOVA reveals that differences in the accuracy scores between the feature selection al-

gorithms are significant under the Logistic Regression and SVM classifiers (Bonferroni-

adjusted p-values 0.013 and 0.0372 respectively). When further investigated, the sig-

nificant pairwise differences were generally attributed to a difference between MRMR

and each of the other feature selection methods (IG, SU, CS, BAM) under SVM (ad-

justed p-values 0.044, 0.04, 0.019, and 0.047, respectively). In addition, there were

significant differences between the BAM and MRMR methods under the Logistic Re-

gression classifier (adjusted p-value 0.009), highlighting the interaction between both

the classification algorithm and the utilized feature selection within the ensemble.

On the other hand, in terms of selecting the optimal 100k% threshold based on the

accuracy values, the WAM and BAM produce nearly consistent results. Across the Jas-

mine, Scene, and Splice datasets, removing the least significant features results in a

comparable improvement in the performance of most classifiers in Figure 4.1, Figure

4.3 and Figure 4.10, respectively. Although the aggregated feature selection techniques
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reveal some variable patterns depending on the amount of data retained, the overall

trend exhibits a stable or improved accuracy performance followed by a sharp decrease

in the overall accuracy once the number of used features falls below a certain thresh-

old. In the Philippine and Jasmine datasets in Figure 4.5 and Figure 4.1, there is a clear

trend in which the classification accuracy decreases drastically around the 40% line,

demonstrating that removing more than 60% of the features reduces the trained model’s

performance significantly. In the Scene and Optidigits datasets in Figure 4.3 and Fig-

ure 4.7, most classifiers agree that roughly half of the top features should be retained.

Likewise, the optimal feature reduction threshold is nearly 80% of the features in the

Satellite andAda datasets in Figure 4.8 and Figure 4.9, whereas it is approaching 20% in

the mutliclass datasets in Figure 4.11 and Figure 4.12. That is to say, the optimal feature

reduction percentage appears to be dependent on the dataset used. It’s also worth noting

that the results of the experimental analysis demonstrate that the performance of a spe-

cific feature selection approach is similarly data dependent. None of the utilized feature

selection methods produces the best accuracy values across all datasets. However, given

that highly significant features are expected to retain comparable ranks throughout dif-

ferent feature selections, there is still some clear overlap in accuracy values between

the feature selection methods. In fact, the relatively good performance of the weighted

average accuracy scores across Table 4.3 indicate that both theWAM and BAM succeed

in identifying many of these features.
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Figure 4.1. Jasmine dataset classification results (by FS)
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Figure 4.2. Image dataset classification results (by FS)
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Figure 4.3. Scene dataset classification results (by FS)
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Figure 4.4. Musk dataset classification results (by FS)
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Figure 4.5. Philippine dataset classification results (by FS)
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Figure 4.6. Ionosphere dataset classification results (by FS)
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Figure 4.7. Optdigits dataset classification results (by FS)
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Figure 4.8. Satellite dataset classification results (by FS)
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Figure 4.9. Ada dataset classification results (by FS)
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Figure 4.10. Splice dataset classification results (by FS)
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Figure 4.11. Indian Pines dataset classification results (by FS)
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Figure 4.12. Semeion dataset classification results (by FS)
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Table 4.3. TheWeightedAverageAccuracy (WAcc) acrossWAM and BAM frameworks

(by FS)

Dataset Classifier Information Gain Symmetric Uncertainty MRMR Chi-Squared BAM

Jasmine

Logistic Regression 0.777737094 0.774542663 0.776988214 0.779748205 0.777648458

Random Forest 0.811066766 0.811714121 0.80630254 0.810135811 0.811940928

Naive Bayes 0.761989954 0.762901166 0.762668092 0.761784717 0.761161243

SVM 0.721481573 0.736496728 0.746852638 0.758842094 0.732229371

Image

Logistic Regression 0.728227035 0.735411663 0.714032594 0.729149491 0.726829013

Random Forest 0.773557276 0.773478472 0.775014402 0.769885659 0.771758501

Naive Bayes 0.670619334 0.669195377 0.688176411 0.678267809 0.676746593

SVM 0.859287772 0.855166274 0.859563336 0.856717166 0.853891445

Scene

Logistic Regression 0.818903899 0.818760524 0.829500518 0.822860766 0.822853002

Random Forest 0.851768634 0.852691166 0.855387509 0.85806332 0.858111801

Naive Bayes 0.704603002 0.69504158 0.698178571 0.714646135 0.709193237

SVM 0.856276052 0.854928054 0.862983782 0.864100242 0.859195307

Musk

Logistic Regression 0.91559596 0.915343434 0.893161616 0.90689899 0.916363636

Random Forest 0.951343434 0.949040404 0.949212121 0.94420202 0.950060606

Naive Bayes 0.825888889 0.825151515 0.743707071 0.798545455 0.829878788

SVM 0.931093862 0.926793146 0.920002016 0.920226368 0.92916029

Philippine

Logistic Regression 0.714459609 0.713131594 0.700473179 0.715055551 0.715490537

Random Forest 0.747480838 0.74632694 0.730154919 0.748725489 0.746655889

Naive Bayes 0.687216024 0.688416034 0.657540349 0.691519919 0.687125299

SVM 0.722021573 0.722879148 0.705169215 0.724411022 0.72341917

Ionosphere

Logistic Regression 0.80821256 0.810958132 0.820933977 0.807689211 0.817504026

Random Forest 0.901602254 0.891570048 0.856441224 0.859814815 0.862979066

Naive Bayes 0.854951691 0.857705314 0.854830918 0.85242351 0.859565217

SVM 0.916215781 0.897342995 0.900241546 0.899557166 0.897230274

Optdigits

Logistic Regression 0.975308568 0.975356102 0.978297358 0.975141945 0.975782547

Random Forest 0.977264345 0.978414957 0.978034304 0.977905106 0.977229265

Naive Bayes 0.94422791 0.937242828 0.960119945 0.948317085 0.944156514

SVM 0.979991127 0.979183521 0.981020337 0.981139743 0.979290093

Satelite

Logistic Regression 0.994096015 0.992460867 0.995365303 0.994461912 0.994827772

Random Forest 0.995114628 0.993141957 0.99490644 0.994748691 0.994892367

Naive Bayes 0.946982387 0.969562201 0.961157292 0.958576197 0.962850611

SVM 0.99315772 0.99112903 0.992673175 0.992869215 0.992920618

Ada

Logistic Regression 0.81341879 0.824654889 0.832365173 0.831398873 0.834113954

Random Forest 0.82568438 0.832223385 0.840397926 0.838436085 0.840169751

Naive Bayes 0.745233146 0.747732666 0.766919781 0.757098078 0.758832325

SVM 0.827156502 0.828557643 0.838015487 0.83515949 0.837888871

Splice

Logistic Regression 0.923429926 0.923429926 0.923851956 0.922970278 0.922926977

Random Forest 0.967699406 0.967699406 0.965505202 0.967408844 0.968059719

Naive Bayes 0.925090421 0.925090421 0.927738592 0.925381963 0.924922902

SVM 0.936007372 0.936007372 0.935605481 0.935882907 0.936216804

Indian Pines

Random Forest 0.818901759 0.819352962 0.820038851 0.81952797 0.818609529

Naive Bayes 0.594505273 0.591830337 0.643413263 0.596480731 0.59360754

SVM 0.710693582 0.710693582 0.710693582 0.710693582 0.710343855

Semeion

Random Forest 0.806870593 0.803915937 0.802848638 0.807401078 0.805217426

Naive Bayes 0.742873362 0.739290115 0.763815853 0.747545666 0.749211096

SVM 0.7832915 0.782098007 0.781322652 0.78303674 0.782702863
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4.3.2 Comparison of the classification performance for aggregation techniques

Similar to theWAM and BAM findings of section 4.3.1 in which only theArithmetic

Mean aggregation was used in both ensembles; we note that under most aggregation

procedures, the WAM still enhances the baseline (k = 1.0) classification performance.

Moreover, the patterns depicted are consistent with those discussed in section 4.3.1. The

Naive Bayes, for instance, highlights the effectiveness of the WAM framework under

most aggregated feature selection methods. To illustrate, the MRMR accuracy rises

from around 0.68 baseline accuracy to nearly 0.81 in the Image dataset in Figure 4.14

and from baseline 0.89 to nearly 0.99 in the Satellite dataset in Figure 4.20. A similar

increase in the performance of the aggregated Chi-Squared method can be observed in

the Image and Ionosphere datasets in Figure 4.14 and Figure 4.18. Moreover, none of

the utilized feature selection techniques under WAM is consistently the best performing

under most datasets, even when the same aggregation procedure is considered. For in-

stance, in the Jasmine and Indian Pines datasets in Figure 4.13 and Figure 4.23, MRMR

produces the best accuracy curves; yet it is also the worst performing feature selection

method under most aggregations in the Scene, Musk, and Philipine datasets in Figures

4.15, Figure 4.16, and Figure 4.17. Generally speaking, the overall trend across differ-

ent aggregation procedures depicts a stable or improved accuracy performance followed

by a sharp decrease in the overall accuracy once the number of used features falls be-

low a certain threshold. Furthermore, this pattern is still data-dependent, with the ideal

feature reduction threshold varied between datasets, such as 30% features retained in

the Ionosphere, Ada, and Splice datasets in Figure 4.18, Figure 4.21, and Figure 4.22,

respectively; or 20% features retained in the Jasmine and Musk datasets in Figure 4.13

and Figure 4.16.

Similarly, the classification performance can be considered data-dependent for each

of the aggregation approaches used. While the GM aggregation procedure performs

well in the Scene and Musk datasets in Figures 4.15-4.16, it is one of the worst aggre-

gation frameworks in the Image, Ionosphere, and Philippine datasets in Figures 4.14,

Figure 4.18, and Figure 4.17. Likewise, Stuart rank aggregation produces the best ac-

curacy scores in the Jasmine, Indian Pines, and Splice datasets in Figure 4.13, Figure

4.23, and Figure 4.22, but is beaten by practically all other aggregations in the Musk
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and Semeion datasets in Figure 4.16 and Figure 4.24. The nature of the feature selection

techniques studied also contributes to these disparities. That is, under Information Gain,

we see more pronounced differences in classification performance between the various

aggregations; whereas Chi-Squared exhibits the most overlap. In fact, under both the

Information Gain andMRMRmethods, a repeated-measuresANOVAdemonstrates sig-

nificant differences in the classification accuracies between the different aggregations

(Bonferroni-adjusted p-values 0.0068 and 0.0304 respectively). On further investiga-

tion, the significant pairwise differences were often linked to a difference between one

of the score-based aggregations (AM, GM, L2) and the rank-based aggregations (Stuart,

RRA). For instance, the rank-based RRA and all of the score-based aggregations (AM,

GM, L2) were found to have significant accuracy differences under MRMR (adjusted

p-values 0.001, 0.005 and 0.002, respectively). In addition, significant differences be-

tween the AM and GM aggregations were also discovered. However, there were no

significant differences between the AM and L2 aggregations.

Overall, while the performance of the aggregation procedure remains data-depenedent,

we find that the score-basedArithmetic Mean and L2 Norm aggregation procedures per-

form well across most experiments. In fact, in 11 of 12 datasets, both aggregation ap-

proaches consistently perform in the middle or outperform the other aggregations. Fur-

thermore, both techniques have more consistent accuracy curves that are less volatile

across datasets and feature selection methods. When compared to the L2 Norm, we find

that theArithmeticMean is marginally more consistent, especially in the Ionosphere and

Satellite datasets in Figure 4.18 and Figure 4.20. That is to say, while both aggregations

procedures may be used as simple and efficient strategies for achieving good accuracy

behavior under theWAM framework; the score-basedArithmetic Mean is a particularly

good choice due to its simplicity and ease of implementation, as well as its demonstrated

good performance in previous studies [51], [66].
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Figure 4.13. Jasmine dataset classification results (by AT)
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Figure 4.14. Image dataset classification results (by AT)
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Figure 4.15. Scene dataset classification results (by AT)
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Figure 4.16. Musk dataset classification results (by AT)
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Figure 4.17. Philippine dataset classification results (by AT)
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Figure 4.18. Ionosphere dataset classification results (by AT)
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Figure 4.19. Optdigits dataset classification results (by AT)
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Figure 4.20. Satellite dataset classification results (by AT)
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Figure 4.21. Ada dataset classification results (by AT)
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Figure 4.22. Splice dataset classification results (by AT)

66



0.537

0.568

0.598

0.628

0.659

10%20%30%40%50%60%70%80%90%100%
Features Used

A
cc

ur
ac

y

Information Gain

0.537

0.568

0.598

0.628

0.659

10%20%30%40%50%60%70%80%90%100%
Features Used

A
cc

ur
ac

y

Symmetric Uncertainty

0.537

0.568

0.598

0.628

0.659

10%20%30%40%50%60%70%80%90%100%
Features Used

A
cc

ur
ac

y

MRMR

0.537

0.568

0.598

0.628

0.659

10%20%30%40%50%60%70%80%90%100%
Features Used

A
cc

ur
ac

y

Chi−Squared

Aggregation Method

Arithmetic Mean
Geometric Mean
L2 Norm
RRA
Stuart

Figure 4.23. Indian Pines dataset classification results (by AT)

0.365

0.486

0.607

0.728

0.849

10%20%30%40%50%60%70%80%90%100%
Features Used

A
cc

ur
ac

y

Information Gain

0.365

0.486

0.607

0.728

0.849

10%20%30%40%50%60%70%80%90%100%
Features Used

A
cc

ur
ac

y

Symmetric Uncertainty

0.365

0.486

0.607

0.728

0.849

10%20%30%40%50%60%70%80%90%100%
Features Used

A
cc

ur
ac

y

MRMR

0.365

0.486

0.607

0.728

0.849

10%20%30%40%50%60%70%80%90%100%
Features Used

A
cc

ur
ac

y

Chi−Squared

Aggregation Method

Arithmetic Mean
Geometric Mean
L2 Norm
RRA
Stuart

Figure 4.24. Semeion dataset classification results (by AT)
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4.4 Stability Performance Results

The findings of the stability analysis of the four aggregated filters usingWAM and BAM

are presented in Table 4.4. The importance scores obtained from applying the feature

selection method FS on every bootstrap sample are used to compute the stability scores

of the average Pearson’s Correlation Coefficient. In contrast, average Spearman’s Rank

Correlation Coefficient and Canberra’s Distance are calculated using the ranks derived

from the sorted importance scores. The Jaccard’s Index is also calculated using feature

subsets of the 25% topmost ranking features (represented by index vectors). Lastly,

the Average Standard Deviation (ASD) is computed using the normalized importance

scores averaged over the 1000 bootstraps. The bolded values in Table 4.4 reflect the best

stability value for each dataset. This is the highest stability score in Jaccard’s Index,

Spearman’s Rank Correlation Coefficient, and Pearson’s Correlation Coefficient, but

the lowest value in Canberra’s Distance and ASD.

Likewise, the findings of the stability analysis of the five aggregation procedures un-

der WAM are presented in Tables 4.5-4.6. The feature ranks obtained from embedding

the WAM within a 100-fold cross-validation procedure and aggregating using each of

the discussed aggregation procedures are used to compute the stability scores of the av-

erage Spearman’s Rank Correlation Coefficient and Canberra’s Distance. The Jaccard’s

Index is also calculated using feature subsets of the 25% topmost ranking features (rep-

resented by index vectors) across each of the aggregation strategies. The bolded values

in Tables 4.4-4.6 reflect the best stability value for each dataset. This is the highest

stability score in Jaccard’s Index and Spearman’s Rank Correlation Coefficient, but the

lowest value in Canberra’s Distance. Note that Table 4.5 represents the stability results

using Information Gain, whereas Table 4.6 depicts the stability results using MRMR.

In the following two subsections, we analyze and compare the performance of the

WAM and BAM algorithms, in terms of the stability behavior of their feature selection

processes. We also analyze and compare the stability influence of the different aggre-

gation techniques within the WAM framework.
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4.4.1 Comparison of the stability for feature selection methods

Similar to the classification performance results, there is no single feature selec-

tion method that consistently produces optimal stability behavior for every experimental

dataset. In other words, the stability of the feature selection approaches is data depen-

dant, though there are some observable patterns. For example, in the Philippine and

Ada datasets, IG is the most stable approach across all stability metrics. However, in

the Ionosphere dataset, it is MRMR that is the most stable across all similarity mea-

sures. Likewise, Chi-Squared achieves the best stability scores in the Scene and Optidg-

its datasets, whereas Symmetric Uncertainty is more robust in the Splice and Semeion

datasets. Therefore, none of the tested feature selection approaches can be deemed the

most stable overall. However, across most experiments, IG and MRMR exhibit rela-

tively good stability behavior under several metrics.

While none of the feature selection methods is consistently the most stable in every

measure, we observe that the Pearson, Spearman, and Canberra-based stability scores

are high for each of the filters. Given the low average standard deviation scores, there

also seems to be a lack of variation across the features importance scores obtained from

every bootstrap sample, which translates to similar rankings and high feature selection

stability. On the other hand, the comparatively smaller values of the average Jaccard’s

index suggest the features subsets constructed using the topmost ranked features are less

stable. This disparity between the rank and index-based stability measures can be ex-

plained by larger inconsistencies across the higher feature ranks than the lower ones. In

the previous discussion, we observed that for most datasets, the accuracy scores drop

steadily once the threshold for selecting a subset of features falls below a certain thresh-

old. In other words, while the feature selection succeeds in removing the most irrelevent

features with relative confidence, it is difficult to single out the most significant features

accurately. Alternatively, it is possible that below the indicated threshold, there are no

irrelevant features to discard in the first place, which indicates the goal of feature selec-

tion has been effectually achieved.

Conversely, when comparing the stability behavior of the feature selection processes

under theWAMand BAM,Table 4.4 suggests that when aggregated usingWAM, at least

one of the singular feature selection techniques achieves better stability than the BAM.
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Note that, with the exception of the Image dataset, each of the similarity measures in

Table 4.4 is generally dominated by one of the individual feature selection methods.

In contrast, the stability under BAM is consistently placed in the middle of the other

feature selection approaches. This is similar to the observations noted in section 4.3.1

regarding the classification performance of the BAM.While BAM reveals a comparable

stability behavior to that of each single feature selection method underWAM; it appears

that in most cases, the use of an individual feature selection method is better for main-

taining stability of the results. Interestingly, there also seems to be some indication of

a positive association between the stability behavior of the individual feature selection

methods and their classification performance under the WAM. For instance, the Chi-

Squared feature selection method dominant in terms of stability in the Scene dataset is

also the best performing method in Scene (Figure 4.3). A similar pattern can be seen

with respect to the higher stability of Information Gain in the Ada dataset (Figure 4.9)

or the Weighted Average Accuracy of Chi-Squared in Satellite. While it is possible that

the feature selection method that outperforms in terms of classification accuracy may

also outperform in terms of stability behavior, this relationship is likely dependent on

both the dataset composition and the similarity measures utilized in the analysis of the

stability.

4.4.2 Comparison of the stability for aggregation techniques

Finally, in terms of the stability behavior of the WAM ensemble under different

aggregation procedures, we observe more representative patterns. That is, in compari-

son to the rank-based aggregation methods (Stuart, RRA), the score-based aggregation

methods (AM, GM, L2) produce better stability scores across both Information Gain and

MRMR. Furthermore, across all experimental datasets and for all implemented stability

criteria, the rank-based Stuart aggregation provides the lowest stability results. These

patterns are observable under both binary and multiclass datasets. The findings of this

analysis emphasize the importance of recognizing the differences in stability influence

between score-based and rank-based aggregations in the construction of the ensemble

feature selection framework. Based on the results of these experiments, we remark that

using a score-based aggregation procedure in the construction of the ensemble appears

to be a suitable alternative in many cases, especially since the scores have a stronger
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scale and provide a higher level of detail about the importance of the features. More-

over, under MRMR, we particularly note that the Arithmetic Mean and L2 Norm gen-

erally produce the highest stability scores, peaking at multiple datasets (e.g. Jasmine,

Optdigits, Indian Pines) in comparison to the other tested aggregation procedures.

Statistically, one-way ANOVA reveals that the observed stability differences be-

tween the five aggregation techniques are significant (Bonferroni-adjusted p-values <

0.0001). Post-hoc analysis demonstrates that these significant differences can nearly

always be attributable to Stuart aggregation when compared to any other aggregation

technique (Bonferroni-adjusted p-values < 0.0001). Other significant differences are

also discovered under Information Gain using Canberra’s Distance between the Arith-

metic Mean and L2 Norm (Bonferroni-adjusted p-value= 0.037), Arithmetic Mean and

RRA (Bonferroni-adjusted p-value = 0.041), and using Jaccard’s Index between the

Arithmetic Mean and RRA (Bonferroni-adjusted p-value = 0.031). Overall, the Arith-

metic Mean and L2 Norm appear to outperform alternative aggregation rules in terms of

stability, whereas RRA outperforms Stuart in terms of rank-based aggregation. In fact,

theArithmetic Mean and L2 Norm seem to exhibit similar influences on the ensemble’s

stability as well as its classification performance. According to the experimental anal-

ysis of this thesis, these two aggregation functions present a preferable choice in terms

of performance and efficiency when compared to more sophisticated options in most

cases.

Note that also, when comparing the IG and MRMR columns in Table 4.4 with the

results obtained in Tables 4.5 and 4.6, respectively; the findings demonstrate noticeable

improvement in the shared rank-based and index-based similarity measures. In other

words, the experimental stability analysis demonstrates the suitability of the proposed

ensemble, since it matched or improved on the stability results achieved by the indi-

vidual feature selection methods. Moreover, based on the findings in Tables 4.5-4.6,

it becomes possible to recommend the score-based aggregation techniques for similar

experimental designs.
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Table 4.4. Stability analysis results across all datasets (by FS)

Dataset Stability Measure Information Gain Symmetric Uncertainty MRMR Chi-Squared BAM

Jasmine

Average Pearson Correlation 0.299705 0.258270 0.902748 0.360289 0.335806

Average Spearman Rank Correlation 0.319009 0.378017 0.730414 0.231101 0.334655

Average Jaccard’s Index 0.254683 0.319411 0.308712 0.286586 0.252964

Average Canberra Distance 0.278113 0.269500 0.124180 0.337122 0.294955

Average Standard Deviation 0.744817 0.753504 0.149429 0.747054 0.765530

Image

Average Pearson Correlation 0.768404 0.760257 0.461867 0.784970 0.793634

Average Spearman Rank Correlation 0.702970 0.690212 0.541442 0.716971 0.671209

Average Jaccard’s Index 0.534739 0.514374 0.275411 0.557456 0.560470

Average Canberra Distance 0.140367 0.142500 0.236440 0.242640 0.254949

Average Standard Deviation 0.437907 0.462153 0.643365 0.459268 0.434591

Scene

Average Pearson Correlation 0.898425 0.887953 0.652895 0.933014 0.908673

Average Spearman Rank Correlation 0.871633 0.863620 0.705409 0.904599 0.881263

Average Jaccard’s Index 0.725580 0.718157 0.429004 0.834032 0.761022

Average Canberra Distance 0.150622 0.156575 0.206240 0.169175 0.182344

Average Standard Deviation 0.309285 0.328335 0.501868 0.253048 0.296812

Musk

Average Pearson Correlation 0.953028 0.939819 0.983622 0.972910 0.971086

Average Spearman Rank Correlation 0.897172 0.920754 0.978164 0.958189 0.932817

Average Jaccard’s Index 0.254683 0.319411 0.308712 0.286586 0.252964

Average Canberra Distance 0.278113 0.269500 0.124180 0.337122 0.294955

Average Standard Deviation 0.198588 0.230549 0.106096 0.153881 0.164122

Philippine

Average Pearson Correlation 0.992381 0.987185 0.949337 0.974312 0.990140

Average Spearman Rank Correlation 0.948322 0.945942 0.876291 0.794429 0.826292

Average Jaccard’s Index 0.907578 0.895855 0.599476 0.882073 0.898057

Average Canberra Distance 0.036655 0.037883 0.123565 0.216403 0.199559

Average Standard Deviation 0.065557 0.093865 0.194033 0.133756 0.090117

Ionosphere

Average Pearson Correlation 0.398351 0.583203 0.803445 0.689003 0.678480

Average Spearman Rank Correlation 0.391580 0.583566 0.779300 0.634363 0.621247

Average Jaccard’s Index 0.322984 0.418490 0.588096 0.511871 0.514258

Average Canberra Distance 0.284348 0.254220 0.185660 0.245600 0.249635

Average Standard Deviation 0.731482 0.606503 0.397275 0.546923 0.549206

Optdigits

Average Pearson Correlation 0.974733 0.956047 0.946192 0.978112 0.976264

Average Spearman Rank Correlation 0.965357 0.959320 0.913443 0.968890 0.967125

Average Jaccard’s Index 0.776935 0.687190 0.621800 0.699440 0.740367

Average Canberra Distance 0.087271 0.094572 0.112731 0.077847 0.090535

Average Standard Deviation 0.150498 0.196308 0.188786 0.141531 0.146916

Satellite

Average Pearson Correlation 0.962102 0.735536 0.735555 0.962324 0.932846

Average Spearman Rank Correlation 0.913703 0.737037 0.886279 0.941141 0.912465

Average Jaccard’s Index 0.889171 0.523733 0.579217 0.711644 0.540189

Average Canberra Distance 0.128159 0.206656 0.093391 0.117366 0.126052

Average Standard Deviation 0.189240 0.429693 0.289669 0.186215 0.235742

Ada

Average Pearson Correlation 0.998732 0.998655 0.997906 0.992348 0.998004

Average Spearman Rank Correlation 0.956392 0.952797 0.823995 0.955461 0.952162

Average Jaccard’s Index 0.919947 0.866222 0.607214 0.830739 0.863409

Average Canberra Distance 0.106299 0.108989 0.155215 0.122942 0.125797

Average Standard Deviation 0.028835 0.031522 0.029137 0.083938 0.042076

Splice

Average Pearson Correlation 0.992299 0.993156 0.990926 0.974606 0.989386

Average Spearman Rank Correlation 0.841882 0.842385 0.738889 0.843115 0.836391

Average Jaccard’s Index 0.761442 0.762814 0.597770 0.760529 0.742453

Average Canberra Distance 0.187747 0.187556 0.224846 0.187334 0.190992

Average Standard Deviation 0.070557 0.065447 0.081051 0.157357 0.096031

Indian Pines

Average Pearson Correlation 0.999238 0.988947 0.742512 0.996915 0.992818

Average Spearman Rank Correlation 0.997207 0.983358 0.900745 0.993381 0.990461

Average Jaccard’s Index 0.90582 0.849971 0.613475 0.868253 0.937861

Average Canberra’s Distance 0.024178 0.039431 0.116739 0.036038 0.038302

Average Standard Deviation 0.026581 0.085295 0.305766 0.050679 0.06472

Semeion

Average Pearson Correlation 0.958882 0.959117 0.941782 0.956113 0.956536

Average Spearman Rank Correlation 0.944449 0.94398 0.937229 0.944859 0.943758

Average Jaccard’s Index 0.728269 0.732672 0.696779 0.764083 0.731358

Average Canberra’s Distance 0.116476 0.116419 0.121602 0.119251 0.118144

Average Standard Deviation 0.198025 0.197594 0.228502 0.207605 0.206073
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Table 4.5. Stability analysis results using Information Gain (by AT)

Dataset Stability Measure Arithmetic Mean Geometric Mean L2 Norm Stuart RRA

Jasmine

Average Spearman Rank Correlation 0.984421 0.978226 0.98267 0.088026 0.92984

Average Jaccard’s Index 0.996506 1.00000 0.996506 0.306569 0.961509

Average Canberra Distance 0.020466 0.026401 0.022534 0.266369 0.04919

Image

Average Spearman Rank Correlation 0.992861 0.966235 0.992041 0.106854 0.980959

Average Jaccard’s Index 0.903514 0.929316 0.899481 0.357117 0.890638

Average Canberra Distance 0.027475 0.070757 0.028673 0.253253 0.044732

Scene

Average Spearman Rank Correlation 0.996959 0.974216 0.996281 0.04031 0.984125

Average Jaccard’s Index 0.960134 0.879713 0.961829 0.350817 0.886225

Average Canberra Distance 0.023078 0.055415 0.024018 0.260263 0.045151

Musk

Average Spearman Rank Correlation 0.998464 0.998376 0.998497 0.125679 0.992484

Average Jaccard’s Index 0.938857 0.944736 0.934836 0.326162 0.927091

Average Canberra Distance 0.014975 0.014985 0.014913 0.255385 0.03036

Philippine

Average Spearman Rank Correlation 0.949456 0.947388 0.944734 0.257199 0.999066

Average Jaccard’s Index 0.984514 0.573192 0.984349 0.374306 0.969606

Average Canberra Distance 0.037079 0.126254 0.039078 0.217622 0.011732

Ionosphere

Average Spearman Rank Correlation 0.983104 0.969398 0.984172 0.054752 0.913307

Average Jaccard’s Index 0.774483 0.724724 0.770639 0.312562 0.770212

Average Canberra Distance 0.045669 0.059043 0.046972 0.274561 0.079306

Optdigits

Average Spearman Rank Correlation 0.998708 0.991615 0.998774 0.26705 0.994696

Average Jaccard’s Index 0.996923 0.909464 0.996923 0.511447 0.937676

Average Canberra Distance 0.009819 0.022968 0.009697 0.213391 0.020513

Ada

Average Spearman Rank Correlation 0.99697 0.997174 0.996392 0.212377 0.986638

Average Jaccard’s Index 1.00000 1.00000 1.00000 0.403033 1.00000

Average Canberra Distance 0.012065 0.010789 0.012796 0.238021 0.026267

Splice

Average Spearman Rank Correlation 0.994203 0.994218 0.993797 0.053527 0.965871

Average Jaccard’s Index 0.910949 0.912467 0.910025 0.289253 0.888437

Average Canberra Distance 0.01733 0.017227 0.017946 0.26515 0.0394

Indian Pines

Average Spearman Rank Correlation 0.999915 0.999028 0.999915 0.34175 0.999584

Average Jaccard’s Index 0.999286 0.980462 0.999286 0.442751 0.955356

Average Canberra Distance 0.005959 0.01017 0.005969 0.195324 0.013514

Semeion

Average Spearman Rank Correlation 0.999066 0.99907 0.999061 0.149696 0.994699

Average Jaccard’s Index 0.965517 0.966032 0.9652 0.234598 0.933886

Average Canberra Distance 0.012241 0.012223 0.01223 0.259725 0.027009
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Table 4.6. Stability analysis results using MRMR (by AT)

Dataset Stability Measure Arithmetic Mean Geometric Mean L2 Norm Stuart RRA

jasmine

Average Spearman Rank Correlation 0.985348 0.975607 0.969901 0.127768 0.945334

Average Jaccard’s Index 0.920859 0.712669 0.860327 0.28029 0.942433

Average Canberra Distance 0.037728 0.071905 0.052573 0.265316 0.062051

Image

Average Spearman Rank Correlation 0.990206 0.999271 0.991754 0.077584 0.986775

Average Jaccard’s Index 0.824668 1.00000 0.911903 0.34549 0.877772

Average Canberra Distance 0.044145 0.000756 0.034265 0.260363 0.052491

Scene

Average Spearman Rank Correlation 0.991528 0.867312 0.990774 0.037092 0.985775

Average Jaccard’s Index 0.883476 0.919565 0.912394 0.352322 0.85963

Average Canberra Distance 0.048357 0.043893 0.035833 0.260327 0.058293

Musk

Average Spearman Rank Correlation 0.999319 0.957317 0.9995 0.192018 0.997759

Average Jaccard’s Index 0.971851 0.975257 0.9864 0.331341 0.920576

Average Canberra Distance 0.011183 0.014444 0.008829 0.24121 0.019513

Philippine

Average Spearman Rank Correlation 0.997471 0.886464 0.99692 0.124873 0.991156

Average Jaccard’s Index 0.944297 0.896914 0.973887 0.303979 0.855237

Average Canberra Distance 0.022058 0.04292 0.017112 0.252163 0.041142

Ionosphere

Average Spearman Rank Correlation 0.986624 0.823187 0.987527 0.127751 0.964272

Average Jaccard’s Index 0.96563 0.755886 0.860929 0.327636 0.833535

Average Canberra Distance 0.033533 0.092643 0.038098 0.264702 0.047948

Optdigits

Average Spearman Rank Correlation 0.997515 0.96065 0.998079 0.220924 0.990739

Average Jaccard’s Index 0.948225 0.881989 0.982315 0.453761 0.827538

Average Canberra Distance 0.017777 0.025685 0.015212 0.220903 0.034954

Ada

Average Spearman Rank Correlation 0.997238 0.97531 0.992067 0.181563 0.989869

Average Jaccard’s Index 1.00000 0.693282 0.925326 0.35123 0.939871

Average Canberra Distance 0.013484 0.056628 0.0219 0.249259 0.027471

Splice

Average Spearman Rank Correlation 0.993365 0.95587 0.977623 0.048368 0.954847

Average Jaccard’s Index 0.907029 0.658117 0.850792 0.282154 0.898472

Average Canberra Distance 0.024897 0.096655 0.042943 0.274512 0.048559

Indian Pines

Average Spearman Rank Correlation 0.995184 0.982723 0.985878 0.077339 0.995655

Average Jaccard’s Index 0.923521 0.899203 0.930099 0.332715 0.909569

Average Canberra Distance 0.026688 0.0313 0.02894 0.252948 0.027732

Semeion

Average Spearman Rank Correlation 0.998864 0.998867 0.998861 0.133935 0.994133

Average Jaccard’s Index 0.950387 0.948793 0.951807 0.264046 0.905127

Average Canberra Distance 0.015151 0.015151 0.015215 0.256725 0.030999
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Chapter 5. Conclusion and Future Work

Over the years, datasets have grown increasingly larger in size and dimensionality. To

mitigate the curse of dimensionality in high-dimensional datasets, feature selection has

become an essential preprocessing technique in machine learning applications, as well

as the focus of a wide spectrum of literature spanning practice in several disciplines.

However, no feature selection method is able to consistently deliver optimal perfor-

mance across different application fields. For this reason and in order to improve the

stability of the feature selection process, ensemble feature selection frameworks have

become increasingly popular. Because ensemble feature selection frameworks combine

the findings of several feature selection iterations, their adoption is thought to lower the

likelihood of picking an unstable feature subset. The degree of variation in the selected

features, given minor changes in the training data used to select them, characterizes the

feature selection stability or robustness. This element of feature selection assessment

has received a lot of attention in recent years, as practitioners now recognize the impor-

tance of having feature selection results that are resilient to fluctuations in the training

data.

In contribution to this field, this thesis develops a general framework for ensemble

feature selection via bootstrap induced diversity. Using this ensemble framework, im-

portance scores are aggregated within and between different feature selection techniques

in order to reduce the input dimensionality and improve the stability of the selected fea-

tures. The tested ensemble framework is thus validated on real-life datasets and analyzed

in terms of both the classification performance and stability behavior. While many have

examined the construction of ensemble techniques under various conditions, very lit-

tle work has shed light on the impact of the aggregation techniques themselves on the

stability of the feature selection strategy. Therefore, this work also examines how the

robustness and accuracy of the aggregation process influences the ensemble feature se-

lection. To this end, five different aggregation approaches are evaluated and compared

using twelve real datasets from a variety of application fields, in terms of both the classi-

fication performance and the stability influence. Moreover, the experimental evaluation

includes four filter feature selection methods and a variety of stability criteria. A merit

of this work is that it singles out the stability resulted from the aggregation procedure

alone. This has seldom been thoroughly investigated in the literature before, and not
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with the focus on the underused score-based aggregation procedures.

The extensive experimental analysis of twelve real datasets across different appli-

cation fields demonstrates the effectiveness of the WAM and BAM frameworks in im-

proving the performance of the learning algorithm, guiding the selection of the opti-

mal feature subsets, and facilitating the identification of the most appropriate feature

selection method for a given dataset. Both methods are comparable in terms of their

accuracy scores, computational costs, and ability to determine the optimal feature re-

duction percentages. However, the BAM is demonstrably slower and less consistent

across classification experiments. In particular, the accuracy differences between the

WAM and BAM are found to be insignificant in the Random Forest and Naive Bayes

classifiers, and less pronounced when higher feature reduction percentages are given

more weight. Conversely, the WAM demonstrates better stability behavior than the

BAM across most datasets, whereas the BAM stability scores fall in the middle range of

the computed values on most of the similarity metrics. In addition, a comparison of the

rank and index-based stability results for the WAM and BAM indicates that lower fea-

ture ranks are associated with higher confidence in the selected feature subsets. Based

on the results of the experiments and the extent to which the feature selection can be

influenced by the data composition and learning algorithm, we recommend that both

BAM andWAMmethods be implemented in order to achieve better insight into the un-

derlying application domain and to guide the selection of the most important features

for the given dataset. If the computational cost is a concern, then the WAM can be rec-

ommended over the BAM. Nonetheless, it is also important to note that optimizing the

computational cost depends largely on the dataset properties and the learning algorithm

utilized.

On the other hand, the analysis of the stability and accuracy behavior of the WAM

ensemble demonstrates significant results for the tested score-based (Arithmetic Mean,

Geometric Mean, L2 Norm) and rank-based (Robust Rank Aggregation, Stuart) aggre-

gations. That is, the results of the experimental evaluation highlight the strengths of

the implemented score-based aggregations in comparison to the rank-based methods.

In terms of classification accuracy, the performance of the aggregation approaches is

found to be generally data-dependent, with significant disparities in the classification

accuracy results between score-based and rank-based aggregation procedures. In terms
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of stability behavior, the performance of the aggregation methods shows similar dispar-

ities, though the highest stability scores are almost always attributed to one of the three

score-based aggregation functions. Moreover, the stability analysis of the ensemble

framework exhibits improved feature selection stability across most aggregation func-

tions in comparison to prior implementations. In particular, the experimental findings

demonstrate that the Arithmetic Mean and L2 Norm outperform the other aggregation

procedures in terms of stability, and that these two score-based aggregations consistently

deliver good performance, allowing them to be recommended in many problem settings.

Overall, these findings validate the ensemble frameworks introduced in this thesis

and highlight both the accuracy and stability differences between score-based and rank-

based aggregations. Moreover, the experimental results obtained demonstrate the effi-

ciency of using simpler aggregations such as the Arithmetic Mean over more complex

alternatives. Given that the scores have stronger interval scale than the ranks and can

possibly better differentiate between the features, they can be considered better suited

for aggregation. This research, however, is confined to the aforementioned aggrega-

tion methodologies as well as the binary and multiclass classification datasets that were

investigated. In turn, future research might include more score and rank-based aggrega-

tions in the comparison, as well as expand the underlying feature selection approaches to

include embedded and wrapper techniques. Such findings can have significant practical

implications as they guide the ensemble feature selection methods to the most efficient

aggregation rule given the data structure and corresponding application domain.
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