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SUMMARY

Tests can be derived from extended finite state machine (EFSM) specifications considering the coverage
of single transfer faults, all transitions using a transition tour, all-uses, edge-pair, and prime path with side
trip. We provide novel empirical assessments of the effectiveness of these test suites. The first assessment
determines for each pair of test suites if there is a difference between the pair in covering EFSM faults of
six EFSM specifications. If the difference is found significant, we determine which test suite outperforms
the other. The second assessment is similar to the first; yet, it is carried out against code faults of twelve
Java implementations of the specifications. Besides two assessments are provided to determine whether
test suites have better coverage of certain classes of EFSM (or code) faults than others. The evaluation
uses proper data transformation of mutation scores and p-value adjustments for controlling Type I error
due to multiple tests. Furthermore, we show that subsuming mutants have an impact on mutation scores of
both EFSM and code faults; and accordingly, we use a score that removes them in order not to invalidate
the obtained results. The assessments show that all-uses tests were outperformed by all other tests;
transition tours outperformed both edge-pair and prime path with side trips; and single transfer
fault tests outperformed all other test suites. Similar results are obtained over the considered EFSM
and code fault domains and there were no significant differences between the test suites coverage of
different classes of EFSM and code faults.
Copyright © 2020 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Testing is an indispensable yet expensive part of software development. One promising approach to
reduce this cost is to use model-based testing techniques and tools. Accordingly, many techniques
are provided for test selection of systems modeled as extended finite state machines (EFSMs). These
machines have powerful modeling capabilities and well-defined semantics based on extending the
traditional (Mealy) FSM model with variables, predicates, and update statements. In particular, an
EFSM transition is labeled by an input/output pair of possibly parameterized interactions and the
transition can be guarded by a predicate that must hold for the transition to be executed. Upon its
execution, new values can be assigned to variables based on the transition update statements. Due to
these properties, EFSMs are used for functional testing of many systems including communication
networks, embedded components, web services, object oriented systems, etc. For some related work
the reader may refer to [9, 10, 14, 19, 21, 40, 41, 53, 55, 62, 63, 64].

A trace of an EFSM specification M is a sequence of (concrete) input/output interactions starting
from the initial configuration of M . A configuration simply consists of a pair; a state and a vector
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of current valuations of variables. A test case is finite trace of M and such a trace is feasible or
executable by definition. A test suite is a finite set of feasible test cases.

A wide range of test selection criteria can be used for deriving tests from a given EFSM
specification M . For instance, tests can be derived from the (flow-)graph representations of M
using the traditional all-uses [31], edge-pair, and prime path with side trip [5] criteria. In addition,
a known way to derive tests from M is to enumerate all single transfer fault EFSM mutants of
M , and then derive a test suite (called single transfer faults test suite) that has the capability of
detecting/distinguishing each mutant that does not have the same behavior asM . An EFSM mutant
M ′ of M has a single transfer fault if M ′ is an exact copy of M ; except for one transition t of
M with the ending state s, t in M ′ has an ending state s′ that is different from s. Another way
of test derivation is to traverse all the edges of M using a single test case called a transition tour.

Considering the diversity of EFSM based test selection criteria, we need to investigate the
effectiveness of these test suites in covering faults in order to use the most appropriate one(s). This
is done using mutation testing [2, 5, 36] where seeded faults, derived according to some established
mutation operators, are inserted into the implementation of a given EFSM specification producing
related (code) mutants. However, the assessment can also be done using EFSM based mutants
(faults) of the specification. These mutants are derived with respect to traditional EFSM based
mutation operators which are mostly based on the EFSM transitions; such as considering transitions
output parameter, transfer, and assignment update faults. In both cases, the assessment is carried out
using the mutation scores of the considered test suites. Traditionally, the mutation score MS of a
certain test suite, with respect to a given collection of mutants, is computed based on the number
of mutants killed by the suite divided by the number of all derived mutants minus the number
of alive mutants that cannot be killed by any test suite. However, in a recent work, Papadakis et
al. [52] proposed an enhanced mutation assessment score, denoted hereafter as MS∗. The proposed
mutation score is based on removing subsuming mutants before computing the mutation score; as
these mutants inflate the mutation scores and thus may affect the validity of the assessment studies.
Accordingly, in this paper, we also use the mutation score MS∗. It is worth mentioning that recent
and established research [6, 39] demonstrate a strong relationship between code mutants and real
faults. This indicates that results obtained using code mutation test assessment, as done in this
paper, may apply to findings that would pertain to real faults in real systems [6, 39].

In this paper, we consider six realistic EFSM specifications and related single transfer fault,
all-uses, edge-pair, prime path with side trip, and transition tour test suites. Then, we conduct
experiments with the aims and contributions illustrated below.

• Considering the diversity of test selection from EFSMs; our first aim is to empirically
assess the effectiveness of the test suites in terms of their coverage of EFSM faults. To this
end, we provide an empirical assessment that determines for each pair of considered test
suites whether there is a significant difference between the pair in covering the EFSM
faults of six real EFSM examples. If the difference is significant, we determine which test
suite outperforms (has better coverage than) the other.

• The second aim of this work is to empirically assess the test suites; however, with respect
to their coverage of the code faults of twelve Java implementations of the considered
EFSM examples

• The third (fourth) assessment provided in this paper aims at determining whether the
test suites have better coverage of certain classes of EFSM (code) faults than others. This
will tell us whether the tests derived from EFSMs are biased against detecting certain
classes of faults or not.

• Another aim of this paper is to study the influence of subsuming mutants on mutation
testing experiments. In [52] subsuming code mutants are shown to inflate the mutation
scores; and thus, they should be removed in order not to invalidate the outcomes of
related studies. Here, we provide a simple correlation analysis between the traditional
MS and the enhanced mutation MS∗ scores verifying the same question raised in [52];
however, over the EFSM faults of the considered specifications and the code faults of the
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corresponding Java implementations. Accordingly; we use the mutation score MS∗ in
our assessments.

• The last contribution of the paper is the selection of appropriate statistical evaluation
methods for the considered assessments. When multiple tests are conducted, the outcome
without adjustment of the p-values is questionable. For instance, each of the first two
assessments handles 10 pairwise comparisons as we consider five different test suites;
and thus, if done independently, there will be a higher risk of Type I error (detecting a
false significance) than the intended significant level of 5% [59]. To appropriately handle
this situation; the statistical evaluation first tests the overall significance after using a
proper data transformation of the mutation scores so that the ends of the scale of the
distribution is expanded. If the overall significance is detected, pairwise comparisons are
conducted to find the source of the difference. Then the resulting p-values are adjusted
using Bejamini and Hochberg [8] method to control the probability of Type I error due
to multiple simultaneous tests. Therefore, conclusions are made based on the adjusted
p-values (called q-values) and not the original p-values.

Related Work: This work mostly relates to the previous work reported in [23] and [24],
respectively. In [23] three (out of the five) EFSM based test suites considered in this paper
are sorted (from best to worst) with respect to their coverage of code faults, and in [24] the
test suites considered in this paper are sorted with respect to their coverage of EFSM faults.
The mutation score used in these studies was the traditional mutation score. In this paper, we
provide two simple correlation studies that show, as in other related work [52], that subsuming
mutants affect mutation scores. Accordingly, the more appropriate mutation score MS∗ is
used in the assessments provided in this paper. However, more importantly, in this paper, we
empirically assess the effectiveness of the test suites. To this end, proper research questions
are elaborated and a proper statistical evaluation method is used allowing us to provide sound
conclusions. No empirical assessments are provide in [23, 24]. Besides, here, we also provide
two novel assessments showing that there is no significant differences between the test suites
coverage of different classes of EFSM and code faults.

In general, for a good survey and information about mutation testing, the reader may refer
to Ammann and Offutt [5], Jia and Harman [36], and Mathur [2]. The reader may also refer
to [1,3,7,17,33,46] for summaries on model-based mutation testing; especially for specification
written in UML [3, 11, 42, 45], statecharts [26], SDL [44], and (Mealy) FSMs [20, 54]. Other
line of research focuses on assessing code based testing and mutation testing against code
faults [6, 15, 27, 28, 29, 30, 35, 47, 48, 50]. Also there has been some work on the derivation
of tests and distinguishing tests for EFSMs [10, 14, 21, 25, 40, 41, 53, 63]. Thus, our work
complements this previous research; however, we focus on a different specification model;
namely, the EFSM model, where we assess related test suites against both EFSM and code
faults.

This paper is organized as follows. Preliminaries are introduced in Section 2. Section 3 includes
the provided empirical studies and Section 5 includes a summary of obtained results. Section 5
concludes the paper.

2. PRELIMINARIES

2.1. Extended finite state machines

A (Mealy) finite state machine (FSM) is an initialized machine with finite number of inputs X ,
outputs Y , states S with the initial state s0, and transitions. A transition t has the form t = (s, x, y, s′)
and it means if the machine is in state s, upon receiving an input x, it produces the output y and
moves to state s′.

The EFSM model extends the FSM model with variables V , update statements, predicates, and
(possibly parameterized) inputs and outputs. The reader may refer to [10, 21, 24, 53] for formal
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definitions of such machines. A transition t has the form t = (s, x(p), [G], up, op, y(q), s′), where s
and s′ are the starting and ending states of t, x ∈ X (y ∈ Y ) is an input (output) interaction with
the parameter p (q), [G] is the enabling predicate of t which depends on the current values of state
variables and input parameter value ρ, and up is are concurrent update statements which define new
values for certain variables in V as a function of the current values of variables and the parameter
p, op is an output parameter function which updates the output parameters of t according to values
of variables and q. For simplicity of presentation, we use interactions with single parameters. The
meaning of t is the following: If M is in state s, then M may make a transition to state s′ by
receiving the input x with parameter value ρ if [G] holds True for the current values of variables v
and ρ. If t is executed, the values of variables are updated according to the update in up producing
v′, the value of q will be updated according to op, and afterward the output y is produced carrying
the value % of q; i.e. y(%). Such an execution realizes the corresponding concrete (Mealy) FSM
transition ((s, v), x(ρ), y(%), v′), with the concrete input/output pair x(ρ)/y(%).

Considering a sequence of consecutive transitions of M , we obtain a corresponding (feasible or
executable) trace over concrete input/output pairs of these transitions.

A test case derived from an EFSM is a finite length trace of the machine. A finite set of such test
cases is a test suite. By definition, such test cases (suites) are executable. Test case length equals the
total number of inputs of a test case and Test suite length is the total length of all test cases of a test
suite.

s0 s1

t1: CONreq(qos),  [ qos ≤ 1 ]  / connect(ReqQos),

{ TryCount := 0 ;

ReqQos := qos ; }

t2 :
refuse, [TryCount ≠ 2] / connect(ReqQos),

{ TryCount := TryCount + 1 ; }

ReqQos := 0

TryCount:= 0

Figure 1: Part of the SCP protocol.

As a simple example, we consider an execution of two consecutive transitions t1.t2 of the
SCP protocol [16]. Part of this protocol is shown in Fig. 1. The protocol has two integer
variables TryCount and ReqQos with the possible values 0 or 1. Transition t1 has the
predicate [qos ≤ 1], update statements {TryCount := 0;ReqQos := qos}, parameterized input
CONreq with integer parameter qos which can have values 0 or 1, and parameterized out-
put connect with integer output parameter carrying the value of ReqQos. Transition t2 has
guard [TryCount 6= 2], update TryCount := TryCount+ 1, input refuse, and the same output
as t1. The initial state of the SCP machine is s0 and the initial values of TryCount and
ReqQos are zeros. Assume the machine receives the input CONreq(1), i.e., input CONreq
with parameter qos = 1. Then t1 can be executed as its predicate [qos ≤ 1] is satisfied, then
upon the execution of t1, the update statements are executed setting TryCount := 0 and
ReQos := 0, and the output connect(0) is then produced, and the machine moves to state s1.
In fact the machine has the corresponding concrete transition ((s0, (TryCount = 0, ReqQos =
0)), CONreq(1), connect(0), (s1, (TryCount = 0, ReqQos = 0)). Afterwards, if the machine
receives the input refuse, then t2 can be executed as [TryCount 6= 2] is satisfied. Then, upon the
execution t2, TryCount := TryCount+ 1 is executed, the output connect(0) is produced, and the
machine moves to state s1. In fact, it has the corresponding concrete transition ((s1, (TryCount =
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0, ReqQos = 0)), refuse, connect(0), (s1, (TryCount = 2, ReqQos = 0)). Thus, the above exe-
cution has the corresponding trace CONreq(0)/connect(0).refuse/connect(0).

2.2. EFSM mutants

For a given EFSM specification M , its corresponding EFSM mutants =EFSM are derived using the
traditional EFSM mutation operators OPEFSM = { TF, OPF, AF } listed below. For every opi in
OPEFSM , =opi denotes the collection of EFSM mutants (class of faults) derived from M using this
operator, and =EFSM denotes the collections of mutants derived using all operators in OPEFSM .
Table below I shows how an operator can be applied to a transition t = (s, x(p), [G], up, op, y(q), s′)
ofM , producing the corresponding EFSM mutant. The reader may refer to [9,21,24,62] for detailed
description of these mutants.

Table I. EFSM Mutation Operators

Operator Description/Example(s)
TF (Single) Transfer Fault The ending state s′ of transition t is replaced by state s′′ 6= s′

OPF Output Parameter Fault
The output parameter function op of t is replaced by op′ 6= op
e.g., op defined over a context variable (or a constant)
is replaced by another context variable or a constant in op′.

AF (Single) Assignment Fault

The update up of transition t replaced by up′ 6= up,
e.g., update statement of another transition is added
into up (assignment insertion)
e.g., update statement in up is removed (assignment deletion)
e.g., Right-Hand-Side (RHS) of up is changed; as examples:
a variable or a constant added into the RHS of up;
a variable or a constant in the RHS of up is deleted or
replaced by another variable or constant.

2.3. Code mutants and mutation operators

For a given Java implementation, its corresponding code mutants =Code are derived using the well-
studied mutation operatorsOPCode = { COR,ROR,EV R,LV R, STD,AOR } listed below [39].
For every opi in OPCode, =opi denotes the collection of (code) mutants derived from the given
implementation using this operator, and =Code denotes the collections of mutants derived using
all the operators in OPCode. As usual, 1-Order code mutants are considered to alleviate problems
related to the coupling effect of using N -order mutants, when N > 1.

Table II. Java Mutation Operators [37]

Operator Description/Example(s)
COR Conditional Operator Replacement e.g. a||b replaced by a&&b
ROR Relational Operator Replacement e.g. a == b replaced with a >= b

EV R Expression Value Replacement An expression with a default value,
e.g. int a = b with int a = 0

LV R Literal Value Replacement Numerical literal is replaced by
positive number, negative number, or zero.

STD (single) Statement Deletion Deletes an assignment, break, or continue statement
AOR Arithmetic Operator Replacement e.g. a+ b replaced with a− b
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2.4. Test Suites

In this paper we consider the following EFSM based test suites. These test suites are derived, as will
be illustrated in Section 3.2, mostly, using the criteria and tools described in [5, 9, 10, 18, 23, 24, 25,
31, 53, 61, 64].

(a) Single transfer fault test suite (STF )- A test case distinguishes/kills an EFSM mutant M ′

from a given EFSM specification M if the output sequences of these machines, with respect to the
input sequence of the test case, are different. A test suite that kills each single transfer fault mutant,
that has a different behavior than M , is called a single transfer fault test suite (STF ).

(b) Transition tour (TT )- A TT of M is a single test case that traverses all transitions of M .
(c) All-Uses- Given a flow-graph representation of M , annotated with definitions and uses of

variables and parametrized inputs, derived as illustrated in [10, 64]. An All-Usess test suite can
be derived from the obtained annotated flow-graph using the traditional data-flow all-uses criterion
[31].

(d) EP and PPST - These test suites can be derived from the graph representation of an EFSM
specification M using the criteria illustrated in [5]. An edge-pair test suite EP is a test suite that
covers each executable path of length up to 2 of a given graph. More precisely, edge-pair coverage
requires covering each pair of consecutive edges, or a path of length 2 of the given graph. Further, a
path from node ni to node nj in the graph is simple if no node appears more than once in the path,
with the exception that the first and last nodes may be identical. A path from node ni to node nj is
a prime path if it is a simple path and it does not appear as a proper sub-path of any other simple
path. A prime path with side trip is a path p that tours the prime path q such that every edge in q is
also in p in the same order. In this paper, we consider prime path with side trip test suites, denoted
by PPST

2.5. Mutation scores

Traditionally, the mutation score of a test suite TS with respect to a collection of mutants =, is
computed as the following should be MS = Killed/(All −Alive) ∗ 100 where, All denotes the
total number of mutants in =, Killed denotes the number of those killed by TS, and Alive denotes
the number of mutants in = that cannot be killed by any test suite as they have the same behavior as
the original code (machine).

Also please note that, in order not to inflate the score due to subsuming mutants, the score, denoted
MS∗, is computed after removing all subsuming mutants killed by TS from = [52]. Note that one
mutant subsumes another if at least one test case kills the first, and every test case that kills the
first also kills the second [4]. In Section 3.2, we describe in detail the methods and tools used for
determining Alive for code and EFSM mutants, respectively.

3. EMPIRICAL STUDIES

3.1. Research questions

We consider five different types of EFSM based test suites; namely, the test suites SuitesEFSM = {
All-Usess, EP , STF , PPST , TT }.

The objective of the first assessment (RQ1) considered in the paper is to compare, based on MS∗

mutation scores, the effectiveness or performance of each pair of considered test suites (TSi, TSj)
in SuitesEFSM against collections of EFSM mutants (faults) of the considered EFSM examples;
and the objective of the second assessment (RQ2) is to compare the effectiveness against code
mutants (faults) of the Java implementations of these examples.
More precisely, for every pair (TSi, TSj) in SuitesEFSM , we consider the following two
hypotheses:

H0: There is no difference of the average mutation scores between TSi and TSj .
H1: There is a difference of the average mutation scores between TSi and TSj .

In fact, we assess the above hypotheses against EFSM faults using the following research question:

Copyright © 2020 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2020)
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RQ1: We test the above hypotheses for each pair of test suites (TSi, TSj) in SuitesEFSM

considering the collections of EFSM mutants =EFSM derived from the six considered EFSM
examples and their corresponding mutation scores.
In addition, we assess the hypotheses against code faults using the following research question:

RQ2: We test the above hypotheses for each pair of test suites (TSi, TSj) in SuitesEFSM

considering the collections of code mutants =Code derived from the twelve considered Java
implementations (of the EFSM examples) and their corresponding mutations scores.

Another two aims of the this work is to assess if the test suites have better coverage of certain
classes of EFSM or code faults than others. Accordingly, in the third assessment (RQ3), we to
determine for each test suite TS in SuitesEFSM and for every selected pair of the selected classes
of EFSM faults =opi and =opj , obtained using the corresponding operators opi and opj , if there is a
significant difference in the coverage of TS of the mutants in these classes. The fourth assessment
(RQ4) is similar to the third; yet it is carried out over the different pairs of selected classes of the
Java faults of the considered implementations.

Thus, we consider testing the following two hypotheses for each TS in SuiteEFSM :
H ′0: There is no difference of the average mutation scores between =opi and =opj .
H ′1: There is a difference of the average mutation scores between =opi and =opj .

In fact, we assess the above hypotheses against different classes of EFSM (code) of faults using the
following two research questions:

RQ3: We test H ′0 and H ′1 for each pair of operators (opi, opj) in OP ′EFSM over each test suite
TS in SuiteEFSM .

This assessment considers the different classes of EFSM mutantsOP ′EFSM = { TF,AF }. Note
the class containing single output parameter faults mutants =OPF is not included this assessment as
most of the considered examples did not have parameterized outputs; i.e. corresponding collections
=OPF are empty.

RQ4: We test H ′0 and H ′1 for each pair of operators (opi, opj) in OP ′Code over each test suite TS
in SuiteEFSM .

This assessment considers the following classes of Java mutantsOP ′Code = {COR,ROR,LV R,
STD }. Note only mutants of these classes are considered in this assessment; as the vast majority of
derived mutants come from these classes. In other words, the AOR and EV R operators produced
significantly less mutants than other operators.

In this paper, we also study the correlation between the traditional mutation score MS and the
score MS∗ computed after removing subsuming mutants. As in [52], if there is a strong correlation,
we infer that the influence of subsumed mutants on the score is minor; otherwise, the effects may
be distorting. More precisely, we investigate the following two questions:

RQ5: Does the mutation score MS of considered EFSM test suites computed based on EFSM
mutants have high correlation with the subsuming mutation score MS∗.

RQ6: Does the mutation score MS of considered EFSM test suites computed based on code
mutants have high correlation with the subsuming mutation score MS∗.

3.2. Assessment methodology

Here we describe the assessment method used in this paper.
Step-1: Application examples: We consider six well-known realistic EFSM specification

examples; namely, the Trivial File Transfer Protocol (TFTP) [56]; Post Office Protocol V.3 (POP3)
[57]; Initiator [34]; Responder [34]; SCP [16], and the CD player [58].

Step-2: Java Implementations: For each considered example, corresponding Java implemen-
tations are developed, by different software engineers, based on the EFSM specification and
its textual description, under the following coding rules. State variables cannot be explicitly or
implicitly introduced in an implementation; for instance, no state variables nor flags or labels
indicating states can be used. In addition, names of (parameterized) inputs and outputs of the
EFSM specification should be preserved in a code implementation. Each implementation should

Copyright © 2020 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2020)
Prepared using stvrauth.cls DOI: 10.1002/stvr



8 K. EL-FAKIH A. ALZAATREH, U. C. TURKER

be implemented as one function that inputs a string separated by a delimiter ”,” representing an
input sequence to the function and returns as an output a string representing the output response of
the implementation to the input sequence. A Reader/Writer class is used in all implementations
that handles reading/writing the input and the output strings in order to separate reading and
writing outputs from the function that implements the specification and thus, code mutants are only
derived from the function that implements the specification. We note each Java implementation is
thoroughly tested using all considered test suites. In total twelve implementations are considered in
the assessments.

Step-3: Derivation of Mutants: For each EFSM example, corresponding EFSM mutants
with single transfer and single output parameter faults are derived using a software tool
that we have developed for this purpose [24]. However, assignment faults are injected by
hand, one after the other, into the specification and their corresponding mutants are then
saved by the developed tool [24]. Furthermore, for each Java implementation, the Major tool
framework [37] was used to derive related Java mutants considering the mutation operators
given in Table II. We note several studies [39, 43], considering the widely-used Defects4J [38]
data set, show that majority of real faults are coupled to mutants generated by the used Major
tool framework.

Step-4: Derivation of Test Suites: We use the same test suites considered in [24]. However,
we recall here how these suites are derived for illustration purposes. Deriving a STF test suite
of an EFSM specification is carried out by first deriving all single transfer fault mutants of
the specification using a tool that we have developed for this purpose [24]. Then for each
considered EFSM mutant, the Plavis/FSM tool [61] is used to derive and add to the test suite
a test case that distinguishes the mutant from the corresponding specification if needed (i.e.,
if the test suite does not already have a test case that kills the mutant). We note that a derived
STF test suite is of optimal or near-optimal length as the tool [61] derives shortest length
distinguishing tests. We note that methods that describe procedures for deriving distinguishing
tests for two EFSMs are illustrated in detail in [10, 25, 53]. In fact, our tool determines if an
EFSM mutant is distinguishable from an EFSM specification or not as follows: First the tool
simulates the behavior of the EFSMs and produces the corresponding FSMs as illustrated
in [22]. Then, the Plavis/FSM tool [61] is used to determine if the two FSMs are distinguishable
or not. We note that in general, when the domains of variables are not finite, an EFSM may
not have a corresponding FSM; however, all the EFSM examples considered in this paper have
corresponding FSMs and thus we could determine the distinguishability of two EFSMs using
the corresponding FSMs.

A TT test suite is derived (by hand) as a selected path of an EFSM specification, and then
the feasibility of the path is checked and a corresponding test case is derived. Again, we
derive optimal or near-optimal length TT test suites. Deriving All-Uses test suites is done as
follows: For every EFSM specification, a corresponding flow-graph representation, annotated
with definitions and uses of variables, is derived (by hand), and then corresponding All-
Uses test suite (set of paths) is derived from the obtained flow-graph exactly as described
in previous related work [64]. EP and PPST are derived with the help of the graph coverage
web application tool [5]. We note that we consider executable test cases in this paper. That
is, for every derived path in the flow-graph (graph) we check that if it corresponds to an
executable test case using the corresponding transitions in the EFSM and making sure to select
appropriate values for input parameters, execute update statements of the transitions, and
determine the reached configurations. The obtained tests, traces over the EFSM specification,
are transformed into the corresponding JUnit tests using a simple procedure that we have
developed for this purpose. For instance, the trace CONreq(0)/connect(0).refuse/connect(0)
of the EFSM in Fig. 1, provided in Section 2.1, is written in JUnit as follows:

import junit.framework.TestCase;
public class testSCP extends TestCase {
public SCP tester; public void setUp() tester = new SCP(); }
public void test1() {
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assertEquals(”connect(0),connect(0),”, tester.scp(”CONreq(0),refuse,”)); } }
Step-5: Computing Mutation Scores: Determining the mutation score MS of an EFSM test

suite TS with respect to a selected collection of EFSM faults =EFSM is done as follows: First,
the Plavis/FSM tool [61] is used to determine Alive mutants as described above; i.e. mutants in
=EFSM that are indistinguishable from the considered EFSM specification. Then, by running
the test cases of TS against each remaining (non-alive) mutant, we determine which mutants
are killed by TS; and accordingly determine related MS. Also, for each TS, we derive a
related two-dimension kill-matrix that indicates for each test case which (non-alive) mutants
are killed by the test case. This is needed to determine subsuming mutants and compute MS∗

as illustrated below.
Determining the mutation score MS of a test suite TS against a collection =Code of code

mutants of a given Java implementation is done as follows: First to determine Alive mutants,
all the test suite considered in this paper derived for an EFSM example M are combined
into a single test suite; and then the Major tool [37] is used to derive the corresponding
mutants, execute the tests on these mutants, and afterward; produce a related kill-matrix.
Then, Alive is determined as the number of mutants that are not killed by any test case of the
combined test suites. For code, the distinguishability (or equivalence) problem is in general
undecidable [13]. Accordingly, we follow the practice of declaring a mutant alive if it is not
killed by a collection of a large number of test suites. This practice is regarded as acceptable
as the focus is on the differences between the different test selection criteria [6]. Then, after
determining Alive, of each considered TS, we run the Major tool again on the considered
mutants, determine the number of killed mutants; and then compute the corresponding MS
accordingly. We also determine for each test suite and collection of (EFSM or code) mutants=
the corresponding mutation score MS∗ exactly as described above; however, after eliminating
subsuming mutants from =. Determining subsuming mutants is done based on the kill-matrix
of the test suite.

3.3. Statistical evaluation

In this subsection, we outline the statistical methods used in order to answer the considered research
questions followed by some details on each method.

Outline of the statistical analysis used for RQ1-RQ4:

i. Data transformation.
ii. Testing the overall difference of the mutation scores averages.

iii. If overall significant difference is detected in (ii), then (a) post hoc tests of pairwise
comparisons (if needed) are conducted. Afterwards, (b) the resulting p-values of the multiple
tests are adjusted to control Type I error.

(i). Data transformation: In order to test the research hypotheses in Section 3.1,
for all research questions, we apply the logit transformation to all mutation scores for
the considered samples. The logit transformation is defined as logit(MutationScore) =
log (MutationScore/(1−MutationScore)), and is often used to transform percentage data so
that the ends of the scale of the distribution is expanded. And therefore, it shows a better picture of
the difference in proportions. Also, the logit transformation may help making the distribution more
symmetrical. For more details, one is referred to [12].

(ii). Testing the overall significance: For RQ1 and RQ2, we test the overall significance among
the considered test suites. That it is, we test the following hypotheses:
H ′′0 : There is no difference of the average mutations scores of TSi for all i = 1, 2, . . . , 5.
H ′′1 : There is at least one difference of the average mutations scores between TSi and TSj for

some i 6= j = 1, 2, . . . , 5.
Where,

• For RQ1, we test the hypotheses using the collections =EFSM of EFSM mutants derived
from the considered EFSM examples.
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• for RQ2, we test the hypotheses using the collections =Code of code mutants derived from the
considered Java implementations.

For RQ3 and RQ4, for every test suite, we test the overall significance among the considered
mutants categories OP . That is, we test the following hypotheses:
H ′′′0 : There is no difference of the average mutations scores of opi for all i = 1, 2, . . . , k,

k = |OP |.
H ′′′1 : There is at least one difference of the average mutations scores between opi and opj for

some i 6= j = 1, 2, . . . , k, k = |OP |.
Where,

• For RQ3, we test the above hypotheses (for each test suite) per the collections of EFSM
mutants derived using each opi in OP = OP ′EFSM and their corresponding mutation scores
over all considered examples.

• For RQ4, we test the above hypotheses (for each test suite) per the collections of code mutants
derived using each opi in OP = OP ′Code and their corresponding mutation scores over all
considered Java implementations.

For each of the research questions RQ1-RQ4, we used the repeated measure Analysis of Variance
(rANOVA) to test the above hypothesises (H ′′0 and H ′′′0 ) with one exception, RQ3. Since only two
groups (classes) are compared in RQ3, the paired t-test is used instead of rANOVA. If the resulting
p-value from rANOVA is greater than or equals 5%, we assume there is no overall significant
difference of the mutation score average among the comparison groups and therefore, we assume
all perform equally. Whereas, a p-value of less than 5% indicates an overall significant difference.
For RQ1,RQ2 and RQ4, the result from rANOVA was further verified using the nonparameteric
Friedman test [32] (Wilcoxon signed-rank test for RQ3). The Friedman test is a nonparametric test
analogue to the parametric rANOVA test and is often used when some assumptions of rANOVA
are violated (such as normality assumption). rANOVA requires the normality assumption of the
sampling distributions. The Shapiro-Wilk normality test [60] was used to check the normality
assumption in each case. Quantile-Quantile normality plot (Q-Q plot) was also used to verify
the results from Shapiro-Wilk test. In Shapiro-Wilk test, the null hypothesis assumes normal
distribution and a p-value of greater than 0.05 supports the normality assumption. During the
rANOVA computation, the covariance structure of the residuals is checked and is taken into account.

(iii)- Pairwise comparisons and controlling Type I error: Since overall difference was not found
significant for both RQ3 and RQ4 (see section 3.4), pairwise comparisons was only applied to
RQ1 and RQ2. A paired t-test is used to compare the logit transformed data for each paired sample
(TSi, TSj). Then, due to large number of comparisons, it is important to control the false discovery
rate (controlling Type I error). The Benjamini and Hochberg [8] False Discovery Rate adjustment
is one of the popular methods in this context. The Benjamini and Hochberg q-value represents the
expected proportion of false positives among all comparisons that called significant. In this paper,
q-value of less than 0.05 is deemed significant.

Outline of the statistical analysis used for RQ5 and RQ6:

For RQ5 and RQ6, we conducted a correlation analysis between the traditional mutation score
MS and the score MS∗ computed after removing subsuming mutants. If a strong correlation is
detected, we infer that the influence of subsumed mutants on the score is minor [52]; otherwise, the
effects may be distorting. A correlation value of 0.7 and above is considered high ( [49], [51]).

Pearson and Spearman correlation coefficients are computed betweenMS andMS∗. The strength
of the association is measured in terms of the absolute value of the correlation coefficient. The
strength lies between 0 and 1. Strong correlation of 0.7 and above suggests that MS and MS∗

have similar trend. Weak correlation, however, suggests that MS∗ should be used instead of
MS.
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3.4. Results

3.4.1. RQ1 results considering EFSM faults: As described in Section 3.3, the normality assumption
was first tested for all EFSM based on the logit transformed mutation scores. In all cases, the
normality assumption can be assumed (Shapiro-Wilk’s p-value > 0.05). The result from Shapiro-
Wilk test was further verified using Q-Q plot (see Figure 2). Then, rANOVA test was used to test
the overall difference among the mutation scores. If significant difference was found (rANOVA p-
value < 0.05), pairwise comparisons using paired t-test are followed. The resulting p-values from
all pairwise comparisons are then adjusted using Benjamini and Hochberg False Discovery Rate
method. In this paper, q-value of less than 0.05 is deemed significant.

Over EFSM based mutants, single transfer fault test suite clearly outperforms all other test suites.
It kills nearly 100% of all mutants in =EFSM . Thus, including it in the analysis, distorts the results
of rANOVA. For this reason, it was assumed to outperform all other test suites (we verified this
assumption by running paired t-test between STF and all other test suites) and it was not considered
in rANOVA test.

rANOVA test result showed an overall significant difference of the average mutation scores
among the test suites (p-value < 0.002). For further verification, Friedman test was also conducted
and the test result showed significant difference (p-value < 0.0007). For the multiple comparison,
paired t-test was used to compare each pairs of the test suites. The results of the p-value and
the q-value (adjusted p-value using Benjamini and Hochberg False Discovery Rate method) are
depicted in Table III. The performance direction was based on the sample mean difference of the
mutation scores between the pair test suites. It is worth mentioning that the results in Table III were
further verified using the nonparameteric Wilcoxon signed-rank test. The significant test suites were
identical. The boxplots of the logit MS∗ are depicted in Figure 2. The Figure supports the results
in Table III.

Table III. p-values and q-values (adjusted p-values) for pairwise comparisons of EFSM faults mutation scores
(RQ1).

Comparison Test Suites p-value q-value Performance Direction
All-Usess EP 0.0008 0.0020∗ ≺

PPST 0.0340 0.0408∗ ≺
TT 0.0000 0.0002∗ ≺

EP PPST 0.3020 0.3020 -
TT 0.0050 0.0075∗ ≺

PPST TT 0.0010 0.0020∗ ≺
* indicates significant difference, TS ≺ TS′ means TS′ outperforms TS.

Figure 2. Boxplots and Q-Q plots of Logit MS* for the EFSM faults mutation (RQ1).
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3.4.2. RQ2 results considering code faults: The normality assumption was first tested for all code
based on the logit transformed mutation scores. In all cases, the normality assumption can be
assumed (Shapiro-Wilk’sp-value¿0.05). The result from Shapiro-Wilk test was further verified using
Q-Q plot (see Figure 3).Over code based mutants, rANOVA test showed an overall significant
difference of the average mutation scores between the test suites (p-value < 0.0001). Friedman test
was also conducted and showed significance result (p-value< 0.0001). For the multiple comparison,
paired t-test was used to compare each pairs of the test suites. The results of the p-value and the q-
value are depicted in Table IV. The results in Table IV were further verified using the Wilcoxon
signed-rank test. The significant test suites were identical. In Figure 3, Boxplots for the logit MS∗
are plotted for all test suites. The Figure supports the results in Table IV.

Table IV. p-values and q-values (adjusted p-values) for pairwise comparisons of code faults mutation scores
(RQ2)

Comparison Test Suites p-value q-value Performance Direction
All-Use EP 0.0000 0.0003∗ ≺

PPST 0.0003 0.0007∗ ≺
STF 0.0001 0.0003∗ ≺
TT 0.0001 0.0003∗ ≺

EP PPST 0.2280 0.2280 -
STF 0.0070 0.0140∗ ≺
TT 0.0120 0.0200∗ ≺

PPST STF 0.0270 0.0338∗ ≺
TT 0.0350 0.0389∗ ≺

STF TT 0.0250 0.0338∗ �
* indicates significant difference, TS ≺ TS′ means TS′ outperforms TS.

Figure 3. Boxplots and Q-Q plots of Logit MS* for the code faults mutation (RQ2).

3.4.3. RQ3 results over EFSM operators: For each test suite, paired t-test was used to test the
difference of the average mutation scores between the two operators; TF and AF . In all cases,
the difference was not found significant (p-value > 0.05). Similar results were also obtained using
Wilcoxon signed-rank test.

3.4.4. RQ4 results over code operators: For each test suite, rANOVA test was conducted to test the
overall difference among the four operators; COR, ROR, LV R and STD. In all cases, the overall
difference was not found significant (p-value > 0.05). The results were also verified using Friedman
test.
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3.4.5. RQ5 results considering EFSM mutation scores MS and MS∗: The correlation between
MS and MS∗ were analysed using both Person and Spearman correlation coefficients. The
results of the correlation coefficients are 0.521 and 0.532 respectively. These coefficients indicate
somewhat weak association between MS and MS∗ as, we recall that, strong correlation is
indicated for coefficients above 0.7.

3.4.6. RQ6 results considering code mutation scoresMS andMS∗ : The correlation betweenMS
and MS∗ were analysed using both Person and Spearman correlation coefficients. The results of
the correlation coefficients are 0.575 and 0.534 respectively. Both correlation coefficients indicate
somewhat weak association between MS and MS∗.

3.5. Threats to validity

One threat to validity is to control the false discovery rate (controlling Type I error) that may
occur, as a result of the considered multiple tests, in the statistical assessment. This threat was
alleviated by the use of the Benjamini and Hochberg [8] method in which adjusted p-values are
used instead of p-values during the assessment. Another threat is the adequacy of obtained results,
and this was handled by using six real EFSM specifications when considering EFSM faults and
twelve Java implementations of these specifications when considering code faults. Another threat is
related to the derivation of test suites, mutants, and computation of corresponding mutation scores.
This was addressed by the development and use of many related software tools as described in
Section 3.2 and by the use of an appropriate mutations score that removes subsuming mutants
before computing the score. We note that we worked on deriving optimal (or near-optimal)
length test suites, as mentioned in Section 3.2, that cover the intended test selection criteria.
Yet, it is worth mentioning, as in [23, 24], that there is no correspondence between length
(or number of test cases) of the EFSM test suites and their fault coverage (mutation scores).
For instance; single-transfer fault and transitions tour tests outperformed EP and PPST
though they are shorter (and have less number of tests), etc. Finally, it is worth mentioning
that though we are confident about the obtained results over specifications written as EFSMs with
corresponding implementations written using the Java language; yet, unfortunately, we can not
generalize these results to specifications written over other formalisms or to implementations using
other programming languages or to general implementations that do not correspond to EFSMs. This
is a natural limitation that emphasizes the need for conducting more related assessments.

4. SUMMARY OF OBTAINED RESULTS

EP

TT 

STF

PPST

All-Uses

(a) – Results over EFSM faults (RQ1)

An arrow,  TSi              TSj   indicates that TSi outperformed TSj 

(b) – Results over code faults (RQ2)

EP

TT 

STF

PPST

All-Uses

Figure 4. The similar results obtained over (a) EFSM faults (RQ1) and (b) code faults (RQ2).
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Figure 4 includes a summary of obtained results on assessing the considered test suites against
EFSM (RQ1) and code faults (RQ2). The following outcomes and conclusions are obtained using
these assessments and the other assessments considered in this paper.

Outcome 1: For every pair of considered test suites; if a test suite outperformed another in
covering EFSM faults then the test suite also outperformed the other in covering code faults.
This result was obtained using the assessments of RQ1 and RQ2, respectively.

Outcome 1 is very interesting as it allows us to uniquely determine, as given below, which
EFSM test suites are better than others in detecting both EFSM and code faults. In addition,
obtaining consistent results over the considered EFSM and code fault domains indicates that
there is a strong correspondence between these domains. We think the reason behind this is
that our Java implementations and their code mutants are special as they also have EFSM
behavior. This result will open the door for more related work as will be mentioned in the
Conclusion section.

Outcome 2: Single transfer fault test suites (STF) outperformed all other test suites in
covering both EFSM and code faults.

Outcome 2 clearly shows that it is better to use a test suite that covers the single transfer
faults of an EFSM than EP, PPST, and TT test suites which are based on some graph-based
test selection criteria. This result is expected when considering the coverage of EFSM faults; as
STF test suites are derived considering EFSM faults. However, obtaining the same results over
code faults is interesting and it is due to the correspondence between EFSM and code faults as
mentioned above for Outcome 1. So, a STF test suite derived taking into account EFSM faults
captured more EFSM faults than other test suites derived based on covering the transitions of
the EFSM. In addition, due to the correspondence, the STF test suite also captured more code
faults than other test suites.

Outcome 3: Transition tours outperformed both EP and PPST test suites.
Outcome 3 shows that using a test suite that covers all transitions of a machine with a single

test case (a transition tour) is better than using a test suite that covers these transitions using
many test cases.

Outcome 4: Transition tours outperformed both EP and PPST test suites and no differences
were spotted between edge-pair and prime path with side trip test suites in covering both EFSM
and code faults. It is interesting to spot such result while considering test derivation from EFSM
specifications.

Outcome 5: EFSM based all-uses test suites were outperformed by all other test suites in covering
code faults.

This result is expected as the implementation can have many variables different than those of the
specification. However, all-uses tests were also outperformed by all other tests when considering
EFSM based faults. These results indicate that it is not beneficial to use data-flow testing when
deriving tests from EFSM specifications. We understand this result as many transitions of an EFSM
may not define nor use variables; i.e., defined only over non-parameterized input/output pairs.

Outcome 6: For each pair of considered (EFSM/code) operators and their corresponding
classes of (EFSM/code) faults, there was no significant difference of the mutation scores
between these classes. These results were obtained by the assessments related to RQ3 and
RQ4, respectively.

Outcome 6 is interesting as it shows that the considered EFSM based test suites have no
preferences in covering certain classes than others in covering EFSM or code faults. In fact,
if this was not the case, then we would have to find which classes are usually less covered; and
then argue that EFSM model-based testing is not appropriate for covering certain classes of
faults.
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Two other studies were conducted, using correlation analysis, over the considered test suites using
traditional mutation scores and scores derived after removing subsuming mutants. According to
these studies the following holds.

Outcome 7: There is a clear evidence that removing subsuming mutants has an impact on the
mutation scores of the considered test suites. This result is validated considering EFSM mutants of
the EFSM examples and the Java mutants of of the Java implementations of these specifications.

Thus, the conjecture provided in [52] is verified here for EFSM specifications and their
corresponding EFSM and code faults. In addition, based on this results we decided, as suggested
in [52], to remove subsuming mutants before computing the mutation scores in the provided
assessments (RQ1-RQ4).

5. CONCLUSIONS AND FURTHER RESEARCH WORK

We provide novel empirical assessments of five different test suites derived from extended finite
state machine (EFSM) specifications; namely, test suites that satisfy the all-uses, edge-pair, prime
path with side trip, single transfer faults, and transition tour coverage criteria. The first assessment
is done against EFSM mutants of six real EFSM examples while the second is carried out against
the code mutants of twelve (Java) implementations of these examples. Two other assessments are
provided to compare the coverage of the test suites over different classes of EFSM and code faults.
A proper statistical evaluation method is used in the assessments. Namely, logit transformation of
the percentage data (mutation scores) is used to expand the ends of the scale of the distribution and
make it more symmetrical. Then testing the overall significance among the considered test suites is
done. If an overall significance is detected, post hoc tests of pairwise comparisons are conducted,
and the resulting p-values of the multiple tests are then adjusted, using the method in [8], to reduce
the impact of Type-I error. In addition, two simple correlation studies are provided that show the
impact of subsuming mutants on mutation scores; and accordingly, a proper mutation score that
removes these mutants is considered in the assessments.

The outcomes of the assessments are summarized in a separate section. In nutshell,
EFSM based all-uses tests were outperformed by all other test suites; and transition tours
outperformed edge-pair and prime path with side trips; in addition, single transfer fault test
suites are the best choice as they outperformed all other test suites.

A main outcome of the assessments is that consistent results are obtained over both EFSM
and code fault domains. That is, if a test suite outperformed another in covering EFSM faults,
then the test suite also outperformed the other in covering code faults. This result indicates
that there is a strong correspondence between the considered EFSM and code fault domains.
However, there is a need for more quantitative and analytical work to examine in detail
this correspondence. Furthermore, according to the conducted assessments, test suites have
similar coverage of different classes of EFSM and code faults. Thus, EFSM based tests are not
biased against covering certain types of faults than others.

Though it is interesting to empirically assess the coverage of different EFSM test suites
against code faults; as done in this paper, yet it would be also interesting to determine which
faults are not detected by these test suites. Also, there is a need to validate the results obtained
in this paper considering other programming languages; such as C and Python. Another
research direction is to validate the results considering tests derived from other formal or
semi-formal specification techniques, such as statecharts, extended labeled transition systems,
etc, and their corresponding implementations.
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