THE N-ZERO-DIVISOR GRAPH OF A COMMUTATIVE SEMIGROUP

DAVID F. ANDERSON AND AYMAN BADAWI ${ }^{0}$

Abstract

Let S be a (multiplicative) commutative semigroup with $0, Z(S)$ the set of zero-divisors of S, and n a positive integer. The zero-divisor graph of S is the (simple) graph $\Gamma(S)$ with vertices $Z(S)^{*}=Z(S) \backslash\{0\}$, and distinct vertices x and y are adjacent if and only if $x y=0$. In this paper, we introduce and study the n-zero-divisor graph of S as the (simple) graph $\Gamma_{n}(S)$ with vertices $Z_{n}(S)^{*}=\left\{x^{n} \mid x \in Z(S)\right\} \backslash\{0\}$, and distinct vertices x and y are adjacent if and only if $x y=0$. Thus each $\Gamma_{n}(S)$ is an induced subgraph of $\Gamma(S)=\Gamma_{1}(S)$. We pay particular attention to $\operatorname{diam}\left(\Gamma_{n}(S)\right), \operatorname{gr}\left(\Gamma_{n}(S)\right)$, and the case when S is a commutative ring with $1 \neq 0$. We also consider several other types of "n-zero-divisor" graphs and commutative rings such that some power of every element (or zero-divisor) is idempotent.

1. Introduction

Let R be a commutative ring with $1 \neq 0$ and $Z(R)$ the set of zero-divisors of R. As in [9], the zero-divisor graph of R is the (simple) graph $\Gamma(R)$ with vertices $Z(R)^{*}=Z(R) \backslash\{0\}$, and distinct vertices x and y are adjacent if and only if $x y=0$. In [19], DeMeyer, McKenzie, and Schneider extended this concept to commutative semigroups. Let S be a (multiplicative) commutative semigroup with 0 (i.e., $0 x=0$ for every $x \in S$) and $Z(S)=\{x \in S \mid x y=0$ for some $0 \neq y \in S\}$ the set of zero-divisors of S. Then the zero-divisor graph of S is the (simple) graph $\Gamma(S)$ with vertices $Z(S)^{*}=Z(S) \backslash\{0\}$, and distinct vertices x and y are adjacent if and only if $x y=0$. Moreover, $\Gamma(S)$ is connected with $\operatorname{diam}(\Gamma(S)) \in\{0,1,2,3\}$ and $\operatorname{gr}(\Gamma(S)) \in\{3,4, \infty\}([19])$. Note that $Z(S)$ is a subsemigroup of S with 0 (if $S \neq\{0\})$ and $\Gamma(S)=\Gamma(Z(S))$; and if R is a commutative ring, then $\Gamma(R)=\Gamma(S)$, where S is either R or $Z(R)$ considered as a multiplicative semigroup.

For a commutative semigroup S with 0 and positive integer n, let $Z_{n}(S)=\left\{x^{n} \mid\right.$ $x \in Z(S)\}$. Then $Z_{n}(S)$ is a commutative subsemigroup of $Z(S)$ with 0 (if $S \neq\{0\}$) and $Z_{1}(S)=Z(S)$. In this paper, we introduce the n-zero-divisor graph of S to be the (simple) graph $\Gamma_{n}(S)$ with vertices $Z_{n}(S)^{*}=Z_{n}(S) \backslash\{0\}$, and distinct vertices x and y are adjacent if and only if $x y=0$. Thus $\Gamma_{1}(S)=\Gamma(S)=\Gamma(Z(S))$ is the connected classical zero-divisor graph of $S, \Gamma_{n}(S)$ is an induced subgraph of $\Gamma(S)$ for every positive integer n, and $\Gamma_{n}(R)=\Gamma_{n}(Z(R))$ for every positive integer n.

[^0]However, $\Gamma_{n}(S)$ need not be connected for $n \geq 2$ (see Example 2.1, Theorem 2.2, Theorem 3.1, and Theorem 4.16).

In this paper, we study some graph-theoretic properties of $\Gamma_{n}(S)$. We pay particular attention to $\operatorname{diam}\left(\Gamma_{n}(S)\right), \operatorname{gr}\left(\Gamma_{n}(S)\right)$, and the case when S is a commutative ring with $1 \neq 0$. In Section 2, we investigate the case when S is a reduced commutative semigroup with 0 . In this case, $\Gamma_{n}(S)=\Gamma\left(Z_{n}(S)\right)$, and thus $\Gamma_{n}(S)$ is connected, for every positive integer n (Theorem 2.4). We concentrate on the relationship between $\operatorname{diam}\left(\Gamma_{n}(S)\right.$) (resp., $\operatorname{gr}\left(\Gamma_{n}(S)\right)$) and $\operatorname{diam}(\Gamma(S)$) (resp., $\operatorname{gr}(\Gamma(S))$). In Section 3, we consider the case when S is not reduced. In this case, $\Gamma_{n}(S)$ need not be connected for $n \geq 2$, and several other results from Section 2 need not hold. However, $\Gamma_{n}(S)$ is connected for every positive integer n when $Z(S)=\operatorname{Nil}(S)$ (Theorem 3.3). In Section 4, we study $\Gamma_{n}(R)$ when R is a π-regular (i.e., zero-dimensional) commutative ring, amd more specifically, when R is a von Neumann regular (i.e., reduced and zero-dimensional) commutative ring. In this case, $\Gamma_{n}(R)$ is connected for every positive integer n (Theorem 4.1). Moreover, in some cases the $\Gamma_{n}(R)$'s eventually repeat in blocks (Theorem 4.2, Theorem 4.9, Theorem 4.11, and Theorem 4.15). Along the way, we also investigate commutative rings such that some power of every element (or zero-divisor) is idempotent. In the final section, Section 5 , we discuss the n-zero-divisor analog for several other types of zero-divisor graphs, namely, the extended zero-divisor graph $\bar{\Gamma}(S)$, the annihilator graph $A G(S)$, and the congruence-based zero-divisor graphs $\Gamma_{\sim}(R), \bar{\Gamma}_{\sim}(R)$, and $A G_{\sim}(R)$. Many examples are given throughout to illustrate the results.

Let R be a commutative ring with $1 \neq 0$. Then $Z(R)$ is the set of zero-divisors of $R, \operatorname{Nil}(R)$ the ideal of nilpotent elements of $R, U(R)$ the group of units of R, $I d(R)$ the set of idempotents of R, and $T(R)=R_{R \backslash Z(R)}$ the total quotient ring of R. In like manner, we have $Z(S)$, $\operatorname{Nil}(S), U(S)$, and $I d(S)$ for a commutative semigroup S with 0 . The ring R (resp., semigroup S) is reduced if $\operatorname{Nil}(R)=\{0\}$ (resp., $\operatorname{Nil}(S)=\{0\}$), zero-dimensional if every prime ideal of R is maximal, and local if it has a unique maximal ideal. For $x \in \operatorname{Nil}(S)$, let n_{x} (index of nilpotency) be the least positive integer m such that $x^{m}=0$; for an ideal $I \subseteq \operatorname{Nil}(R)$, let $n_{I}=\sup \left\{n_{x} \mid x \in I\right\}$. An $r \in R \backslash Z(R)$ is called a regular element, and $\operatorname{Reg}(R)=$ $R \backslash Z(R)$. Note that $N i l(R) \cap I d(R)=\{0\}, \operatorname{Reg}(R) \cap I d(R)=\{1\}$, and a local ring has only the trivial idempotents 0 and 1 . If A is a set with $0 \in A$, then $A^{*}=A \backslash\{0\}$. Let $\mathbb{Z}, \mathbb{Z}_{n}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$, and $\mathbb{F}_{p^{n}}$ denote the ring of integers, integers modulo n, the fields of rational, real, and complex numbers, and the finite field with p^{n} elements, respectively. All rings are commutative with $1 \neq 0$, and subrings have the same identity element as the ring. All semigroups are commutative (usually with 0), and subsemigroups have the same 0 as the semigroup. For any undefined ring-theoretic concepts or notation, see [21] and [22].

For a graph G with vertices $V(G)$, we will often write $|G|$ rather than $|V(G)|$. As usual, K_{m} and $K_{m, n}$ denote the complete graph and complete bipartite graph on m and m, n vertices, respectively (here, m and n may be infinite cardinals). We will call $K_{1, n}$ a star graph and often just write $K_{1, n}=K_{1, \infty}$ and $K_{m, n}=K_{\infty, \infty}$ when m and n are infinite cardinals. The graph with no vertices is called the empty graph and is denoted by \emptyset, and the graph with $n(\geq 2)$ vertices and no edges is called the empty graph on n vertices and is denoted by $\overline{K_{n}}$ (for graph complement). Note that $\Gamma(R)=\emptyset$ for a commutative ring R (resp., $\Gamma(S)=\emptyset$ for a commutative semigroup S with 0) if and only if R is an integral domain (resp.,
$Z(S) \subseteq\{0\}$, e.g., $Z(S)=\emptyset$ if $S=\{0\}$); so to avoid trivialities, we implicitly assume (when necessary) that R is not an integral domain (resp., $Z(S) \nsubseteq\{0\}$, e.g., $S \neq\{0\})$. For a positive integer n, let $d_{n}(x, y)$ be the distance between x and y in $\Gamma_{n}(S)\left(d_{n}(x, x)=0\right.$ and $d_{n}(x, y)=\infty$ if there is no path from x to $y)$, $\operatorname{diam}\left(\Gamma_{n}(S)\right)=\sup \left\{d_{n}(x, y) \mid x, y \in Z_{n}(S)^{*}\right\}$, and $\operatorname{gr}\left(\Gamma_{n}(S)\right)$ the length of a shortest cycle in $\Gamma_{n}(S)$, where $\operatorname{gr}\left(\Gamma_{n}(S)\right)=\infty$ if $\Gamma_{n}(S)$ has no cycles. If $n=1$, then we just use $d(x, y)$, $\operatorname{diam}(\Gamma(S))$, and $\operatorname{gr}(\Gamma(S))$. For any undefined graph-theoretic concepts or notation, see [17]. For additional information and references about the zero-divisor graph of a commutative semigroup with 0 or associating graphs to rings, see the survey article [5] or recent book [2]. We would like to thank the referee for some helpful comments.

2. The n-ZERO-DIVISOR GRAPH OF A REDUCED COMMUTATIVE SEMIGROUP

In this section, we study $\Gamma_{n}(S)$ when S is a reduced commutative semigroup with 0 . We are particularly interested in $\operatorname{diam}\left(\Gamma_{n}(S)\right)$ and $\operatorname{gr}\left(\Gamma_{n}(S)\right.$), and their relationship to $\operatorname{diam}(\Gamma(S))$ and $\operatorname{gr}(\Gamma(S))$, respectively.

For a commutative semigroup S with 0 and positive integer n, let $S_{n}=\left\{s^{n} \mid\right.$ $s \in S\}$. Then S_{n} is a commutative subsemigroup of S with 0 . Thus $\Gamma\left(S_{n}\right)$ is connected, $\operatorname{diam}\left(\Gamma\left(S_{n}\right)\right) \in\{0,1,2,3\}$, and $\operatorname{gr}\left(\Gamma\left(S_{n}\right)\right) \in\{3,4, \infty\}$ by [19]. Note that for $x \in S, x^{n} \in Z_{n}(S) \Leftrightarrow x \in Z(S) ; Z_{n}(S)$ is a subsemigroup of S_{n} with $Z\left(Z_{n}(S)\right) \subseteq Z\left(S_{n}\right) \subseteq Z_{n}(S)$ and $Z\left(S_{n}\right)=Z\left(Z_{n}(S)\right) \subseteq Z_{n}(S)$ if $Z_{n}(S) \neq\{0\} ;$ $Z_{m}(S)_{n}=Z_{m n}(S)=Z_{n}(S)_{m}$ for all positive integers m and n (in particular, $Z(S)_{n}=Z_{n}(S)$ and $Z_{m n}(S)$ is a subsemigroup of $Z_{n}(S)$ for all positive integers m and $n) ; \Gamma_{m n}(S)$ is an induced subgraph of $\Gamma_{n}(S)$ for all positive integers m and n; and $\Gamma\left(S_{n}\right)=\Gamma\left(Z_{n}(S)\right)$ is an induced subgraph of $\Gamma_{n}(S)$. Hence $\Gamma\left(S_{n}\right)=\Gamma_{n}(S)$ (i.e., $\Gamma_{n}(S)=\Gamma\left(Z_{n}(S)\right)$) if and only if $Z\left(S_{n}\right)=Z_{n}(S)$ or $Z_{n}(S)=\{0\}$. Note that if S is reduced, then $S_{n}, Z_{n}(S)$, and $Z\left(S_{n}\right)$ are also reduced for every positive integer n.

We next give several examples of $\Gamma_{n}(S)$. Parts (a) and (b) of Example 2.1 give commutative semigroups S with 0 such that $Z\left(S_{n}\right)=Z\left(Z_{n}(S)\right) \subsetneq Z_{n}(S)$, $\Gamma\left(S_{n}\right)=\Gamma\left(Z_{n}(S)\right) \subsetneq \Gamma_{n}(S)$, and thus $\Gamma_{n}(S)$ is not connected by Theorem 2.2, for every integer $n \geq 2$.

Example 2.1. (a) Let $R=\mathbb{Z}_{2}[X, Y] /\left(X^{2}, X Y\right)=\mathbb{Z}_{2}[x, y]=\{a+b x+y f(y) \mid a, b \in$ $\left.\mathbb{Z}_{2}, f(T) \in \mathbb{Z}_{2}[T]\right\}$ and $S=Z(R)=\left\{b x+y f(y) \mid b \in \mathbb{Z}_{2}, f(T) \in \mathbb{Z}_{2}[T]\right\}$. Then $\Gamma(R)=\Gamma(S)=K_{1, \aleph_{0}}$ is a star graph with center x. Moreover, $S_{n}=\left\{y^{n} f(y)^{n} \mid\right.$ $\left.f(T) \in \mathbb{Z}_{2}[T]\right\}$ for every integer $n \geq 2$; so $Z\left(S_{n}\right)=\{0\}$, while $Z_{n}(S)=\left\{y^{n} f(y)^{n} \mid\right.$ $\left.f(T) \in \mathbb{Z}_{2}[T]\right\}=S_{n}$, for every integer $n \geq 2$. Thus the $\Gamma_{n}(S)$'s are all distinct and $\{0\}=Z\left(S_{n}\right)=Z\left(Z_{n}(S)\right) \subsetneq Z_{n}(S)$; so $\Gamma\left(S_{n}\right) \neq \Gamma_{n}(S)$ and $\Gamma_{n}(S)$ is not connected for every integer $n \geq 2$ by Theorem 2.2. Also, $Z\left(S_{n}\right)=Z\left(Z_{n}(S)\right)=\{0\}$ for every integer $n \geq 2$; so $\Gamma_{n}(R)=\Gamma_{n}(S)=\overline{K_{\aleph_{0}}}$ is not connected (in fact, totally disconnected) and $\Gamma\left(S_{n}\right)=\emptyset$ for every integer $n \geq 2$.
(b) Let $R=\mathbb{Z}_{2}[X, Y, V, W] /\left(X^{2}, X Y, V W\right)=\mathbb{Z}_{2}[x, y, v, w]$ and $S=Z(R)$. Then $y^{n} \in Z_{n}(S)$, but $y^{n} \notin Z\left(S_{n}\right)$, for every integer $n \geq 2$. Thus $Z\left(S_{n}\right)=Z\left(Z_{n}(S)\right) \subsetneq$ $Z_{n}(S)$; so $\Gamma\left(S_{n}\right) \neq \Gamma_{n}(S)$ and $\Gamma_{n}(S)$ is not connected for every integer $n \geq 2$ by Theorem 2.2. Note that $v^{n}, w^{n} \in Z_{n}(S)^{*}$ are distinct adjacent vertices in $\Gamma_{n}(S)$; so $\Gamma_{n}(S)$ is nonempty, not connected, but not totally disconnected, for every integer $n \geq 2$.
(c) Let R be a Boolean ring (i.e., $x^{2}=x$ for every $x \in R$). For example, let $R=\mathbb{Z}_{2}^{m}$ for an integer $m \geq 2$. Then $Z_{n}(R)^{*}=R \backslash\{0,1\}=I d(R) \backslash\{0,1\}$ for every positive integer n, and thus $\Gamma_{n}(R)=\Gamma(R)$ for every positive integer n. We could also let S be any Boolean semigroup with 0 . See [23] for some characterizations of $\Gamma(R)$ when R is a Boolean ring.
(d) Let $S=\{0, x, y, z\}$ be the commutative semigroup with 0 and multiplication given by $x z=y z=z^{2}=0, x y=y$, and $x^{2}=y^{2}=x$. Then $Z(S)=S$, $S_{n}=Z_{n}(S)=\{0, x\}$ for every even integer $n \geq 2$, and $S_{n}=Z_{n}(S)=\{0, x, y\}$ for every odd integer $n \geq 3$. Thus $\Gamma(S)=K_{1,2}$ is a star graph with center z, $\Gamma_{n}(S)=K_{1}$ is connected for every even integer $n \geq 2$, and $\Gamma_{n}(S)=\overline{K_{2}}$ is not connected for every odd integer $n \geq 3$. Moreover, $Z\left(S_{n}\right)=Z\left(Z_{n}(S)\right)=\{0\}$, and hence $\Gamma\left(S_{n}\right)=\emptyset$, for every integer $n \geq 2$.
(e) Let R be a commutative ring with $Z(R)=\operatorname{Nil}(R)$ and m an integer with $m \geq n_{x}$ for every $x \in \operatorname{Nil}(R)$ (e.g., $R=\mathbb{Z}_{p^{m}}$ for a prime p). Then $Z_{n}(R)=\{0\}$, and thus $\Gamma_{n}(R)=\emptyset$, for every integer $n \geq m$. In particular, this holds when R is an Artinian (e.g., finite) local commutative ring.

Let be S be a commutative semigroup with 0 . We start with the following result which gives criteria for $\Gamma_{n}(S)$ to be connected when $\left|Z_{n}(S)^{*}\right| \geq 2$ (cf. Theorem 3.1 and Theorem 4.16). Note that for a commutative ring $R, I d(R) \backslash\{0,1\} \subseteq Z_{n}(R)^{*}$ for every positive integer n, and thus $\left|Z_{n}(R)^{*}\right| \geq 2$, and so $\Gamma_{n}(R) \neq \emptyset$, if R has nontrivial idempotents. In particular, $\left|Z_{n}(R)^{*}\right| \geq 2$ and $\Gamma_{n}(R) \neq \emptyset$ for every positive integer n when R is an Artinian (e.g., finite) nonlocal commutative ring.

If $\left|Z_{n}(S)^{*}\right|=0$, then $Z_{n}(S) \subseteq\{0\}$ (so $Z\left(S_{n}\right) \subseteq\{0\}$), and hence $\Gamma\left(S_{n}\right)=$ $\Gamma_{n}(S)=\emptyset$ is (vacuously) connected. If $\left|Z_{n}(S)^{*}\right|=1$, say $Z_{n}(S)=\{0, x\}$, then $\Gamma_{n}(S)=K_{1}$ is connected, $\operatorname{diam}\left(\Gamma_{n}(S)\right)=0$, and $\operatorname{gr}\left(\Gamma_{n}(S)\right)=\infty$. Note that $Z_{n}(S)^{*}=\{x\}$ with either $x^{2}=0$ or $x^{2}=x$ since $Z_{n}(S)=\{0, x\}$ is a subsemigroup of S. If $x^{2}=0$, then $Z\left(Z_{n}(S)\right)=Z\left(S_{n}\right)=\{0, x\}$, and thus $\Gamma_{n}(S)=\Gamma\left(S_{n}\right)=$ $\Gamma\left(Z_{n}(S)\right)$. Moreover, if S is a commutative ring with $Z_{n}(S)^{*}=\{x\}$, then $x^{2}=0$ (if $x^{2}=x$, then $1-x \in \operatorname{Id}(S)^{*} \subseteq Z_{n}(S)^{*}$ and $1-x \neq x$, a contradiction). Example 2.1(d) shows that we may have $x^{2}=x$, and hence $x \notin Z\left(Z_{n}(S)\right)$, when S is not a commutative ring. In this case (i.e., when $\left.x^{2}=x\right), Z\left(Z_{n}(S)\right)=Z\left(S_{n}\right)=\{0\}$; so $\Gamma\left(S_{n}\right)=\emptyset$, and thus (1), but not (2) - (4), of Theorem 2.2 hold.

Theorem 2.2. Let S be a commutative semigroup with 0 , n a positive integer, and $\left|Z_{n}(S)^{*}\right| \geq 2$. Then the following statements are equivalent.
(1) $\Gamma_{n}(S)$ is connected.
(2) For every $x \in Z_{n}(S)^{*}$, there is a $y \in Z_{n}(S)^{*}$ such that $x y=0$, i.e., $Z\left(Z_{n}(S)\right)^{*}=Z_{n}(S)^{*}$.
(3) $Z\left(S_{n}\right)=Z\left(Z_{n}(S)\right)=Z_{n}(S)$.
(4) $\Gamma\left(S_{n}\right)=\Gamma_{n}(S)=\Gamma\left(Z_{n}(S)\right)$.

Moreover, if $\Gamma_{n}(S)$ is connected, then $\operatorname{diam}\left(\Gamma_{n}(S)\right) \in\{1,2,3\}$ and $\operatorname{gr}\left(\Gamma_{n}(S)\right) \in$ $\{3,4, \infty\}$. If S is a commutative ring, then (1) - (4) all hold when $\left|Z_{n}(S)^{*}\right|=1$.

Proof. (1) \Rightarrow (2) Suppose that $\Gamma_{n}(S)$ is connected. Let $x, z \in Z_{n}(S)^{*}$ be distinct. Then there is a path $x-y-\cdots-z$ in $\Gamma_{n}(S)$. Thus $x y=0$ and $x, y \in Z_{n}(S)^{*}$; so $x \in Z\left(Z_{n}(S)\right)^{*}$. Hence $Z\left(Z_{n}(S)\right)^{*}=Z_{n}(S)^{*}$.
$(2) \Rightarrow(3)$ By definition of S_{n} and $Z_{n}(S)$, it is clear that $Z\left(S_{n}\right)=Z\left(Z_{n}(S)\right)=$ $Z_{n}(S)$ when $Z\left(Z_{n}(S)\right)^{*}=Z_{n}(S)^{*}$.
$(3) \Rightarrow(4)$ This is clear.
$(4) \Rightarrow(1)$ This is clear since $\Gamma\left(S_{n}\right)$ is connected by [19].
For the "moreover" statement, suppose that $\Gamma_{n}(S)$ is connected. Then $\Gamma_{n}(S)=$ $\Gamma\left(S_{n}\right)=\Gamma\left(Z\left(S_{n}\right)\right)$ by $(1) \Rightarrow(4)$, where $Z\left(S_{n}\right)=Z_{n}(S)$ is a commutative semigroup with 0 and $\left|Z_{n}(S)^{*}\right| \geq 2$. Thus $\operatorname{diam}\left(\Gamma_{n}(S)\right) \in\{1,2,3\}$ by [19, Theorem 1.2] and $g r\left(\Gamma_{n}(S)\right) \in\{3,4, \infty\}$ by [19, Theorem 1.5]. The sentence about commutative rings follows from the comments before this theorem.

We now investigate $\operatorname{diam}\left(\Gamma_{n}(S)\right)$ when S is a reduced commutative semigroup with 0 . The following lemma will prove extremely useful.

Lemma 2.3. Let S be a commutative semigroup with 0 , and $x, y \in S$ such that $x \notin \operatorname{Nil}(S)$ and $x y=0$. Then $x^{m} \neq y^{n}$ for all positive integers m and n. In particular, if S is reduced, then x and y are distinct adjacent vertices in $\Gamma(S)$ if and only if x^{n} and y^{n} are distinct adjacent vertices in $\Gamma_{n}(S)$.

Proof. Suppose that $x^{m}=y^{n}$ for positive integers m and n. Then $x^{m+1}=x x^{m}=$ $x y^{n}=0$ since $x y=0$, a contradiction since $x \notin \operatorname{Nil}(S)$.

The "in particular" statement is clear.
Theorem 2.4. Let S be a reduced commutative semigroup with 0 and n a positive integer. Then $\Gamma_{n}(S)$ is connected and $\Gamma_{n}(S)=\Gamma\left(S_{n}\right)=\Gamma\left(Z_{n}(S)\right)$. Moreover, $d_{n}\left(x^{n}, y^{n}\right)=d\left(x^{n}, y^{n}\right)=d(x, y)$ for $x, y \in Z(S)^{*}$ with $x^{n} \neq y^{n}$. In particular, $\operatorname{diam}\left(\Gamma_{n}(S)\right) \leq \operatorname{diam}(\Gamma(S)) \leq 3$ for every positive integer n.
Proof. We may assume that $\left|Z(S)^{*}\right| \geq 1$. Since S is reduced, $x^{n} \in Z_{n}(S)^{*}$ for every $x \in Z(S)^{*}$. Let $x^{n} \in Z_{n}(S)^{*}$ for $x \in Z(S)^{*}$. Then $x y=0$ for some $y \in Z(S)^{*} \backslash\{x\}$; so $y^{n} \in Z_{n}(S)^{*} \backslash\left\{x^{n}\right\}$ by Lemma 2.3 and $x^{n} y^{n}=0$. Thus $\left|Z_{n}(S)^{*}\right| \geq 2$, and so $\Gamma_{n}(S)=\Gamma\left(S_{n}\right)=\Gamma\left(Z_{n}(S)\right)$ is connected by Theorem 2.2.

Let x^{n}, y^{n} be distinct vertices in $Z_{n}(S)^{*}$ for $x, y \in Z(S)^{*}$. Then $d(x, y) \in\{1,2,3\}$ by Theorem 2.2. First, suppose that $d(x, y)=1$. Then $d_{n}\left(x^{n}, y^{n}\right)=1 \Leftrightarrow d(x, y)=$ 1 by Lemma 2.3. So in this case, $d_{n}\left(x^{n}, y^{n}\right)=d\left(x^{n}, y^{n}\right)=d(x, y)=1$. (For this case, we do not need to assume that $x^{n} \neq y^{n}$.) Next, suppose that $d(x, y)=2$. By Lemma 2.3, $x-z-y$ is a path of length 2 in $\Gamma(S) \Leftrightarrow x^{n}-z^{n}-y^{n}$ is a path of length 2 in $\Gamma_{n}(S)$. Hence $d_{n}\left(x^{n}, y^{n}\right)=2 \Leftrightarrow d(x, y)=2$. So in this case, $d_{n}\left(x^{n}, y^{n}\right)=d\left(x^{n}, y^{n}\right)=d(x, y)=2$. Finally, let $d(x, y)=3$. By the two previous cases, we have $d_{n}\left(x^{n}, y^{n}\right)=3 \Leftrightarrow d(x, y)=3$. If $x^{n}-z-y^{n}$ is a path of length 2 in $\Gamma(S)$, then $x^{n}-z^{n}-y^{n}$ is a path of length 2 is $\Gamma_{n}(S)$ by Lemma 2.3 again, a contradiction. Thus $d_{n}\left(x^{n}, y^{n}\right)=d\left(x^{n}, y^{n}\right)=d(x, y)=3$ in this case.

The "in particular" statement is now clear.
Remark 2.5. Let S be a reduced commutative semigroup with 0 and $\left|Z(S)^{*}\right| \geq 1$ (i.e., $S \neq\{0\}$ and $Z(S) \neq\{0\}$). Then $\left|Z(S)^{*}\right| \geq 2$, and thus $\left|Z_{n}(S)^{*}\right| \geq 2$ for every positive integer n by Lemma 2.3. Moreover, if $\left|Z(S)^{*}\right|=2$, then $\Gamma_{n}(S)=$ $K_{2}=K_{1,1}$ for every positive integer n; and if $\left|Z(S)^{*}\right|=3$, then either $\Gamma(S)=K_{1,2}$ or $\Gamma(S)=K_{3}$. If $\Gamma(S)=K_{3}$, then it is easily shown that $\Gamma_{n}(S)=K_{3}$ for every positive integer n. However, for $S=Z\left(\mathbb{Z}_{6}\right)=\{0,2,3,4\}$, we have $\Gamma_{n}(S)=K_{1,2}$ for every odd positive integer n and $\Gamma_{n}(S)=K_{2}=K_{1,1}$ for every even positive integer n. Thus, for $\left|Z(S)^{*}\right| \geq 3$, we may have $\left|Z_{m}(S)^{*}\right| \neq\left|Z_{n}(S)^{*}\right|$ for postive integers m and n, also see Example 2.9 and Example 4.13.

For a reduced commutative semigroup S with 0 and $x, y \in Z(S)^{*}$, we have $d(x, y)=1 \Leftrightarrow d_{n}\left(x^{n}, y^{n}\right)=1$ by Lemma 2.3, and we next show that $d(x, y)=3 \Leftrightarrow$
$d_{n}\left(x^{n}, y^{n}\right)=3$. However, Example 2.9 shows that we may have $d(x, y)=2$ and $d_{n}\left(x^{n}, y^{n}\right)=0$, i.e., $x^{n}=y^{n}$.

Theorem 2.6. Let S be a reduced commutative semigroup with 0 , n a positive integer, and $x, y \in Z(S)^{*}$ with $d(x, y)=3$. Then $x^{n}, y^{n} \in Z_{n}(S)^{*}$ are distinct and $d_{n}\left(x^{n}, y^{n}\right)=d(x, y)=3$. Moreover, $\operatorname{diam}\left(\Gamma_{n}(S)\right)=\operatorname{diam}(\Gamma(S))=3$ for every positive integer n.

Proof. Since $d(x, y)=3$, there is a path $x-z-w-y$ of length 3 in $\Gamma(S)$ from x to y. Since S is reduced, $x^{n}, z^{n}, w^{n}, y^{n} \in Z_{n}(S)^{*}$ for every positive integer n. Suppose that $x^{n}=y^{n}$ for some positive integer n. Then z^{n} and y^{n} are distinct adjacent vertices in $\Gamma_{n}(S)$ by Lemma 2.3, and thus z and y are also distinct and adjacent in $\Gamma(S)$ by Lemma 2.3 again, a contradiction since $d(x, y)=3$. Thus $x^{n} \neq y^{n}$, and hence $d_{n}\left(x^{n}, y^{n}\right)=d(x, y)=3$ by Theorem 2.4.

The "moreover" statement is clear.
We now study the relationship between $\operatorname{diam}(\Gamma(S))$ and $\operatorname{diam}\left(\Gamma_{n}(S)\right)$ when S is reduced. Example 2.1(c) and Example 2.9 show that both cases are possible in parts (2) and (3) of the following theorem.

Theorem 2.7. Let S be a reduced commutative semigroup with 0.
(a) If $\operatorname{diam}\left(\Gamma_{m}(S)\right)=3$ for some integer $m \geq 2$, then $\operatorname{diam}\left(\Gamma_{n}(S)\right)=\operatorname{diam}(\Gamma(S))=$ 3 for every positive integer n.
(b) If $\operatorname{diam}\left(\Gamma_{m}(S)\right)=1$ for some integer $m \geq 2$, then $\operatorname{diam}(\Gamma(S)) \in\{1,2\}$. Moreover, $\operatorname{diam}\left(\Gamma_{n}(S)\right) \in\{1,2\}$ for every positive integer n.
(c) If $\operatorname{diam}\left(\Gamma_{m}(S)\right)=2$ for some integer $m \geq 2$, then $\operatorname{diam}(\Gamma(S))=2$. Moreover, $\operatorname{diam}\left(\Gamma_{n}(S)\right) \in\{1,2\}$ for every positive integer n.
(d) $\operatorname{diam}\left(\Gamma_{m}(S)\right)=0$ for some integer $m \geq 2$ if and only if $Z(S) \subseteq\{0\}$ (i.e., $\Gamma(S)=\emptyset)$, if and only if $\operatorname{diam}\left(\Gamma_{n}(S)\right)=0$ for every positive integer n.
Proof. (a) Suppose that $\operatorname{diam}\left(\Gamma_{m}(S)\right)=3$ for some integer $m \geq 2$. Then $3=$ $\operatorname{diam}\left(\Gamma_{m}(S)\right) \leq \operatorname{diam}(\Gamma(S)) \leq 3$ by Theorem 2.4; so $\operatorname{diam}\left(\Gamma_{n}(S)\right)=\operatorname{diam}(\Gamma(S))=$ 3 for every positive integer n by Theorem 2.6.
(b) Suppose that $\operatorname{diam}\left(\Gamma_{m}(S)\right)=1$ for some integer $m \geq 2$. Then $\operatorname{diam}(\Gamma(S)) \neq$ 3 by Theorem 2.6, and $\operatorname{diam}\left(\Gamma_{n}(S)\right) \neq 3$ for every integer $n \geq 2$ by (a). Thus $\operatorname{diam}\left(\Gamma_{n}(S)\right) \in\{1,2\}$ for every positive integer n. In particular, $\operatorname{diam}(\Gamma(S)) \in$ $\{1,2\}$.
(c) Suppose that $\operatorname{diam}\left(\Gamma_{m}(S)\right)=2$ for some integer $m \geq 2$. Since $2 \leq \operatorname{diam}\left(\Gamma_{m}(S)\right) \leq$ $\operatorname{diam}(\Gamma(S)) \leq 3$ by Theorem 2.4 and Theorem 2.2, we have $\operatorname{diam}(\Gamma(S)) \in\{2,3\}$. Since $\operatorname{diam}\left(\Gamma_{m}(S)\right)=2$ for some positive integer m, we have $\operatorname{diam}(\Gamma(S)) \neq 3$ by Theorem 2.6; so $\operatorname{diam}(\Gamma(S))=2$. Since $1 \leq \operatorname{diam}\left(\Gamma_{n}(S)\right) \leq \operatorname{diam}(\Gamma(S))=2$ for every positive integer n by Theorem 2.4, we have $\operatorname{diam}\left(\Gamma_{n}(S)\right) \in\{1,2\}$ for every positive integer n.
(d) This is clear by Remark 2.5 .

We next consider $\operatorname{gr}\left(\Gamma_{n}(S)\right)$ for a reduced commutative semigroup S with 0 . We show that if $\operatorname{gr}(\Gamma(S)) \in\{3, \infty\}$, then $\operatorname{gr}\left(\Gamma_{n}(S)\right)=\operatorname{gr}(\Gamma(S))$ for every positive integer n. We first do the $\operatorname{gr}(\Gamma(S))=3$ case, and then the $\operatorname{gr}(\Gamma(S))=\infty$ case in Theorem 2.10.

Theorem 2.8. Let S be a reduced commutative semigroup with 0 . Then the following statements are equivalent.
(1) $\operatorname{gr}(\Gamma(S))=3$.
(2) $\operatorname{gr}\left(\Gamma_{n}(S)\right)=3$ for every positive integer n.
(3) $\operatorname{gr}\left(\Gamma_{n}(S)\right)=3$ for some positive integer n.

Proof. (1) \Rightarrow (2) Suppose that $\operatorname{gr}(\Gamma(S))=3$. Let $x-y-z-x$ be a cycle of length 3 in $\Gamma(S)$. Then $x^{n}-y^{n}-z^{n}-x^{n}$ is a cycle of length 3 in $\Gamma_{n}(S)$ for every positive integer n by Lemma 2.3; so $\operatorname{gr}\left(\Gamma_{n}(S)\right)=3$ for every positive integer n.
$(2) \Rightarrow(3)$ This is clear.
$(3) \Rightarrow(1)$ Suppose that $\operatorname{gr}\left(\Gamma_{n}(S)\right)=3$ for some positive integer n. Let $x^{n}-$ $y^{n}-z^{n}-x^{n}$ be a cycle of length 3 in $\Gamma_{n}(S)$. Then $x-y-z-x$ is a cycle of length 3 in $\Gamma(S)$ by Lemma 2.3; so $g r(\Gamma(S))=3$.

The following is an example of a reduced commutative semigroup (ring) S with 0 where $\operatorname{diam}\left(\Gamma_{2}(S)\right)<\operatorname{diam}(\Gamma(S))$ and $\operatorname{gr}\left(\Gamma_{2}(S)\right) \neq \operatorname{gr}(\Gamma(S))$. Thus the hypotheses $" d(x, y)=3 "$ and " $g r(\Gamma(S))=3 "$ are crucial in Theorem 2.6 and Theorem 2.8, respectively.

Example 2.9. Let $R=\mathbb{Z}_{3} \times \mathbb{Z}_{3} ;$ so $S=Z(R)=\{(0,0),(1,0),(2,0),(0,1),(0,2)\}$ is a reduced commutative semigroup with 0 , and $\Gamma_{n}(R)=\Gamma_{n}(S)$ for every positive integer n. Then $\Gamma(R)=K_{2,2}$; so $\operatorname{diam}(\Gamma(R))=2$ and $\operatorname{gr}(\Gamma(R))=4$. Note that $Z_{n}(R)^{*}=\{(1,0),(0,1)\}$ for every even positive integer n; so $\Gamma_{n}(R)=K_{2}=K_{1,1}$, and hence $\operatorname{diam}\left(\Gamma_{n}(R)\right)=1$ and $\operatorname{gr}\left(\Gamma_{n}(R)\right)=\infty$, for every even positive integer n. However, $Z_{n}(R)^{*}=Z(R)^{*}$ for every odd positive integer n, and thus $\Gamma_{n}(R)=$ $\Gamma(R)=K_{2,2}$ for every odd positive integer n. For $x=(1,0), y=(2,0)$, we have $d(x, y)=2$, but $x^{n}=y^{n}=(1,0)$; so $d_{n}\left(x^{n}, y^{n}\right)=0$ for n an even positive integer.

Next, we consider the case when $\operatorname{gr}(\Gamma(S)) \in\{4, \infty\}$. Example 2.9 shows that both cases may occur in Theorem 2.10 (1) and (4) below.

Theorem 2.10. Let S be a reduced commutative semigroup with 0.
(a) If $\operatorname{gr}(\Gamma(S))=4$, then $\operatorname{gr}\left(\Gamma_{n}(S)\right) \in\{4, \infty\}$ for every positive integer n.
(b) If $\operatorname{gr}(\Gamma(S))=\infty$, then $\operatorname{gr}\left(\Gamma_{n}(S)\right)=\infty$ for every positive integer n.
(c) If $\operatorname{gr}\left(\Gamma_{m}(S)\right)=4$ for some integer $m \geq 2$, then $\operatorname{gr}(\Gamma(S))=4$.
(d) If $\operatorname{gr}\left(\Gamma_{m}(S)\right)=\infty$ for some integer $m \geq 2$, then $\operatorname{gr}\left(\Gamma_{n}(S)\right) \in\{4, \infty\}$ for every positive integer n.
Proof. (a) Assume that $\operatorname{gr}(\Gamma(S))=4$. Since $\operatorname{gr}\left(\Gamma_{n}(S)\right) \in\{3,4, \infty\}$ for every positive integer n by Theorem 2.2 and $g r\left(\Gamma_{n}(S)\right) \neq 3$ for every positive integer n by Theorem 2.8, we have $\operatorname{gr}\left(\Gamma_{n}(S)\right) \in\{4, \infty\}$ for every positive integer n.
(b) Assume that $\operatorname{gr}(\Gamma(S))=\infty$. Since $\Gamma_{n}(S)$ is a subgraph of $\Gamma(S)$ for every positive integer n, we have $g r\left(\Gamma_{n}(S)\right)=\infty$ for every positive integer n.
(c) Assume that $\operatorname{gr}\left(\Gamma_{m}(S)\right)=4$ for some integer $m \geq 2$. Then $\operatorname{gr}(\Gamma(S)) \neq 3$ by Theorem 2.8; so $\operatorname{gr}\left(\Gamma((S)) \in\{4, \infty\}\right.$. If $\operatorname{gr}(\Gamma(S))=\infty$, then $\operatorname{gr}\left(\Gamma_{n}(S)\right)=\infty$ for every positive integer n by (2), a contradiction. Thus $\operatorname{gr}(\Gamma(S))=4$.
(d) Assume that $\operatorname{gr}\left(\Gamma_{m}(S)\right)=\infty$ for some integer $m \geq 2$. Then $\operatorname{gr}(\Gamma(S)) \neq 3$ by Theorem 2.8; so $\operatorname{gr}(\Gamma(S)) \in\{4, \infty\}$. If $\operatorname{gr}(\Gamma(S))=\infty$, then $\operatorname{gr}\left(\Gamma_{n}(S)\right)=\infty$ for every positive integer n by (2). If $\operatorname{gr}(\Gamma(S))=4$, then $\operatorname{gr}\left(\Gamma_{n}(S)\right) \in\{4, \infty\}$ for every positive integer n by (a).

We have $\Gamma(T(R)) \cong \Gamma(R)$ for every commutative ring R by [10, Theorem 2.2]; so $\operatorname{diam}(\Gamma(T(R)))=\operatorname{diam}(\Gamma(R))$ and $\operatorname{gr}(\Gamma(T(R)))=\operatorname{gr}(\Gamma(R))$. We next show that these two equalities also hold for every $\Gamma_{n}(R)$.

Theorem 2.11. Let R be a commutative ring and n a positive integer. Then $\Gamma_{n}(T(R))$ is connected if and only if $\Gamma_{n}(R)$ is connected. Moreover, $\operatorname{diam}\left(\Gamma_{n}(T(R))\right)=$ $\operatorname{diam}\left(\Gamma_{n}(R)\right)$ and $\operatorname{gr}\left(\Gamma_{n}(T(R))\right)=\operatorname{gr}\left(\Gamma_{n}(R)\right)$.

Proof. Let $S=R \backslash Z(R)$. Then $T(R)=R_{S}$ and $Z(T(R))=Z(R)_{S}$. Note that $Z_{n}(T(R))=\{0\} \Leftrightarrow Z_{n}(R)=\{0\}$; so we may assume that $\left|Z_{n}(T(R))^{*}\right|,\left|Z_{n}(R)^{*}\right| \geq$ 1. Suppose that $\Gamma_{n}(T(R))$ is connected. Let $y \in Z_{n}(R)^{*} \subseteq Z_{n}(T(R))^{*}$. Then $y z=0$ for some $z \in Z_{n}(T(R))^{*}$, where $z=b^{n} / t^{n}$ with $b \in Z(R)^{*}$ and $t \in S$, by Theorem 2.2. Thus $b^{n} \in Z_{n}(R)^{*}$ and $y b^{n}=0$; so $\Gamma_{n}(R)$ is connected by Theorem 2.2.

Conversely, suppose that $\Gamma_{n}(R)$ is connected. Let $x \in Z_{n}(T(R))^{*}$. Then $x=$ a^{n} / s^{n} for some $a \in Z(R)^{*}$ and $s \in S$; so $a^{n} \in Z_{n}(R)^{*}$. Since $\Gamma_{n}(R)$ is connected and $a^{n} \in Z_{n}(R)^{*}$, there is a $b \in Z_{n}(R)^{*} \subseteq Z_{n}(T(R))^{*}$ with $b a^{n}=0$ by Theorem 2.2. Hence $b x=0$; so $\Gamma_{n}(T(R))$ is connected by Theorem 2.2.

For the "moreover" statement, let x_{1}, \ldots, x_{k} be distinct vertices in $Z_{n}(R)^{*}$ for some integer $k \geq 2$ ($k \geq 3$ for the "cycle" case). Then $x_{1}-\cdots-x_{k}$ (resp., $x_{1}-\cdots-x_{k}-x_{1}$) is a path (resp., cycle) of length k in $\Gamma_{n}(R)$ if and only if $x_{1} / s^{n}-\cdots-x_{k} / s^{n}$ (resp., $x_{1} / s^{n}-\cdots-x_{k} / s^{n}-x_{1} / s^{n}$) is a path (resp., cycle) of length k in $\Gamma_{n}(T(R))$ for every $s \in S$, and every path (resp., cycle) of length k in $\Gamma_{n}(T(R))$ is of the form $y_{1} / t^{n}-\cdots-y_{k} / t^{n}$ (resp., $y_{1} / t^{n}-\cdots-y_{k} / t^{n}-y_{1} / t^{n}$) for distinct $y_{1}, \ldots, y_{k} \in Z_{n}(R)^{*}$ and $t \in S$. Thus $\operatorname{diam}\left(\Gamma_{n}(T(R))\right)=\operatorname{diam}\left(\Gamma_{n}(R)\right)$ and $\operatorname{gr}\left(\Gamma_{n}(T(R))\right)=\operatorname{gr}\left(\Gamma_{n}(R)\right)$.

We recall the following two results which characterize the reduced commutative rings R with $\operatorname{gr}(\Gamma(R)) \in\{4, \infty\}$ in terms of $T(R)$.
Theorem 2.12. ([12, Theorem 2.2], [26, Theorem 2.3]) Let R be a reduced commutative ring. Then the following statements are equivalent.
(1) $\operatorname{gr}(\Gamma(R))=4$.
(2) $T(R)=K_{1} \times K_{2}$, where each K_{i} is a field with $\left|K_{i}\right| \geq 3$.
(3) $\operatorname{gr}(\Gamma(R)) \neq \infty$ and R is a subring of the product of two integral domains.
(4) $\Gamma(R)=K_{m, n}$ with $m, n \geq 2$.

Theorem 2.13. ([12, Theorem 2.4]) Let R be a reduced commutative ring. Then the following statements are equivalent.
(1) $\Gamma(R)$ is nonempty with $\operatorname{gr}(\Gamma(R))=\infty$.
(2) $T(R)=\mathbb{Z}_{2} \times K$, where K is a field.
(3) $\Gamma(R)=K_{1, n}$ for some $n \geq 1$.

We now specialize to the case $\operatorname{gr}(\Gamma(R)) \in\{4, \infty\}$ when R is a reduced commutative ring. We will need the following lemma.
Lemma 2.14. Let R be a commutative ring and ex x_{1}, ex distinct elements of R, where $e \in I d(R)^{*}$ and $x_{1} \in R \backslash Z(R)$. If ex $x_{1}^{n}=e x_{2}^{n}$ for some integer $n \geq 2$, then $e x_{1}^{k n+1} \neq e x_{2}^{k n+1}$ for every positive integer k.
Proof. Suppose that $e x_{1}^{n}=e x_{2}^{n}$ for some integer $n \geq 2$, where $e \in \operatorname{Id}(R)^{*}$ and $x_{1} \in R \backslash Z(R)$. Then $e x_{1}^{k n}=e x_{2}^{k n}$ for every positive integer k. Now, suppose that $e x_{1}^{k n+1}=e x_{2}^{k n+1}$ for some positive integer k. Then $\left(e x_{1}\right) x_{1}^{k n}=e x_{1}^{k n+1}=e x_{2}^{k n+1}=$ $\left(e x_{2}\right)\left(e x_{2}^{k n}\right)=\left(e x_{2}\right)\left(e x_{1}^{k n}\right)=\left(e x_{2}\right) x_{1}^{k n}$, and thus $e x_{1}=e x_{2}$ since $x_{1}^{k n} \in R \backslash Z(R)$, a contradiction. Hence $e x_{1}^{k n+1} \neq e x_{2}^{k n+1}$ for every positive integer k.

We can improve Theorem 2.10 for reduced commutative rings.
Theorem 2.15. Let R be a reduced commutative ring. Then $\operatorname{gr}(\Gamma(R))=4$ if and only if $\operatorname{gr}\left(\Gamma_{n}(R)\right)=4$ for some integer $n \geq 2$. Moreover, if $\operatorname{gr}(\Gamma(R))=4$ and $\operatorname{gr}\left(\Gamma_{n}(R)\right)=\infty$ for some integer $n \geq 2$, then either $\operatorname{gr}\left(\Gamma_{n+1}(R)\right)=4$ or $\operatorname{gr}\left(\Gamma_{n(n+1)+1}(R)\right)=4$.
Proof. Suppose that $\operatorname{gr}\left(\Gamma_{n}(R)\right)=4$ for some integer $n \geq 2$. Then $\operatorname{gr}(\Gamma(R))=4$ by Theorem 2.10(3).

Conversely, assume that $\operatorname{gr}(\Gamma(R))=4$. Then R is a subring of $D_{1} \times D_{2}$, where each D_{i} is an integral domain, by Theorem 2.12. Thus $\Gamma(R)$ has a cycle of length 4 ; say $\left(x_{1}, 0\right)-\left(0, x_{2}\right)-\left(x_{3}, 0\right)-\left(0, x_{4}\right)-\left(x_{1}, 0\right)$ is a cycle of length 4 in $\Gamma(R)$, where $x_{1}, x_{3} \in D_{1}^{*}$ and $x_{2}, x_{4} \in D_{2}^{*}$. Assume that $\operatorname{gr}\left(\Gamma_{n}(R)\right) \neq 4$ for some integer $n \geq 2$. Then $x_{1}^{n}=x_{3}^{n}$ or $x_{2}^{n}=x_{4}^{n}$. Without loss of generality, assume that $x_{1}^{n}=x_{3}^{n}$. If $x_{2}^{n+1} \neq x_{4}^{n+1}$, then $\left(x_{1}^{n+1}, 0\right)-\left(0, x_{2}^{n+1}\right)-\left(x_{3}^{n+1}, 0\right)-\left(0, x_{4}^{n+1}\right)-\left(x_{1}^{n+1}, 0\right)$ is a cycle of length 4 in $\Gamma_{n+1}(R)$ by Lemma 2.14. If $x_{2}^{n+1}=x_{4}^{n+1}$, let $m=n(n+1)$. Then $\left(x_{1}^{m+1}, 0\right)-\left(0, x_{2}^{m+1}\right)-\left(x_{3}^{m+1}, 0\right)-\left(0, x_{4}^{m+1}\right)-\left(x_{1}^{m+1}, 0\right)$ is a cycle of length 4 in $\Gamma_{m+1}(R)$ by Lemma 2.14.

The "moreover" statement is now clear.
For a reduced commutative ring R that is not an integral domain, it is well known that $\Gamma(R)$ is a complete bipartite graph if and only if $\operatorname{gr}(\Gamma(R)) \in\{4, \infty\}$ (Theorem 2.12 and Theorem 2.13). We next show that this also holds for every $\Gamma_{n}(R)$.

Theorem 2.16. Let R be a reduced commutative ring that is not an integral domain and n a positive integer. Then $\operatorname{gr}\left(\Gamma_{n}(R)\right) \in\{4, \infty\}$ if and only if $\Gamma_{n}(R)$ is a complete bipartite graph.

Proof. If $\Gamma_{n}(R)$ is a complete bipartite graph for some integer $n \geq 2$, then $\operatorname{gr}\left(\Gamma_{n}(R)\right) \in$ $\{4, \infty\}$. Conversely, assume that $\operatorname{gr}\left(\Gamma_{n}(R)\right) \in\{4, \infty\}$. Thus $g r(\Gamma(R)) \neq 3$ by Theorem 2.8; so $\operatorname{gr}(\Gamma(R)) \in\{4, \infty\}$. Hence R is a subring of $D_{1} \times D_{2}$, where each D_{i} is an integral domain, by Theorem 2.12 and Theorem 2.13. Let $A=\left\{\left(x^{n}, 0\right) \mid\right.$ $\left.(x, 0) \in R^{*}\right\}$ and $B=\left\{\left(0, y^{n}\right) \mid(0, y) \in R^{*}\right\}$. Then $Z_{n}(R)^{*}=A \cup B$ with $A, B \neq \emptyset$; so $\Gamma_{n}(R)=K_{|A|,|B|}$ is a complete bipartite graph.

In view of Theorem 2.12, Theorem 2.15, and Theorem 2.16, we have the following result. The proof is left to the reader.

Corollary 2.17. Let R be a reduced commutative ring. Then the following statements are equivalent.
(1) There is an integer $k \geq 2$ such that $\Gamma_{k}(R)=K_{m, n}$ with $m, n \geq 2$.
(2) $\operatorname{gr}\left(\Gamma_{k}(R)\right)=4$ for some integer $k \geq 2$.
(3) $\operatorname{gr}(\Gamma(R))=4$.
(4) $T(R)=K_{1} \times K_{2}$, where each K_{i} is a field with $\left|K_{i}\right| \geq 3$.
(5) $\operatorname{gr}(\Gamma(R)) \neq \infty$ and R is a subring of the product of two integral domains.
(6) $\Gamma(R)=K_{m, n}$ with $m, n \geq 2$.

Next, we consider the case when both $\operatorname{gr}\left(\Gamma_{m}(R)\right)=\infty$ and $\operatorname{gr}\left(\Gamma_{n}(R)\right)=4$.
Theorem 2.18. Let R be a reduced commutative ring. Then the following statements are equivalent.
(1) There are integers $m, n \geq 2$ such that $\operatorname{gr}\left(\Gamma_{m}(R)\right)=\infty$ and $\operatorname{gr}\left(\Gamma_{n}(R)\right)=4$.
(2) $T(R)=K_{1} \times K_{2}$, where each K_{i} is a field with $\left|K_{i}\right| \geq 3$ and either K_{1} or K_{2} is finite.

Proof. (1) \Rightarrow (2) Assume there are integers $m, n \geq 2$ such that $g r\left(\Gamma_{m}(R)\right)=\infty$ and $g r\left(\Gamma_{n}(R)\right)=4$. Then $g r(\Gamma(R))=4$ and $T(R)=K_{1} \times K_{2}$, where each K_{i} is a field with $\left|K_{i}\right| \geq 3$, by Corollary 2.17. We may assume that K_{2} is infinite. We show that K_{1} is finite. Assume, by way of contradiction, that K_{1} is infinite. Let $x \in K_{1}^{*}$ and $w \in K_{2}^{*}$. For every integer $n \geq 2$, let $A_{n}(x)=\left\{y \in K_{1} \mid y^{n}=x^{n}\right.$, i.e., $\left.\left(y x^{-1}\right)^{n}=1\right\}$ and $B_{n}(w)=\left\{a \in K_{2} \mid a^{n}=w^{n}\right.$, i.e., $\left.\left(a w^{-1}\right)^{n}=1\right\}$. Since the equation $h^{n}-1=0$ has at most n solutions in K_{1}, K_{2}, we have $1 \leq\left|A_{n}(x)\right|,\left|B_{n}(w)\right| \leq n$. Since K_{1} and K_{2} are infinite fields, there are $c \in K_{1}^{*} \backslash A_{n}(x)$ and $d \in K_{2}^{*} \backslash B_{n}(w)$. Thus $\left(x^{n}, 0\right)-\left(0, w^{n}\right)-\left(c^{n}, 0\right)-\left(0, d^{n}\right)-\left(x^{n}, 0\right)$ is a cycle of length 4 in $\Gamma_{n}(T(R))$; so $\left.\operatorname{gr}\left(\Gamma_{n}(R)\right)\right)=\operatorname{gr}\left(\Gamma_{n}(T(R))\right)=4$ for every positive integer n by Theorem 2.11, a contradiction. Hence either K_{1} or K_{2} is finite.
$(2) \Rightarrow(1)$ Assume that $T(R)=K_{1} \times K_{2}$, where each K_{i} is a field with $\left|K_{i}\right| \geq 3$ and either K_{1} or K_{2} is finite. Then $\operatorname{gr}\left(\Gamma_{m}(R)\right)=4$ for some integer $m \geq 2$ by Corollary 2.17. We may assume that $\left|K_{1}\right|=n+1<\infty$, where $n \geq 2$ by hypothesis. Thus $Z_{n}(T(R))^{*}=\{(1,0)\} \cup\left\{\left(0, y^{n}\right) \mid y \in K_{2}^{*}\right\}$; so $\Gamma_{n}(T(R))$ is a star graph with center $(1,0)$. Hence $g r\left(\Gamma_{n}(R)\right)=g r\left(\Gamma_{n}(T(R))\right)=\infty$ by Theorem 2.11.

In light of the proof of Theorem 2.18, we have the following result. Its proof is left to the reader.

Corollary 2.19. Let R be a reduced commutative ring. Then the following statements are equivalent.
(1) $\operatorname{gr}\left(\Gamma_{n}(R)\right)=4$ for every positive integer n.
(2) $T(R)=K_{1} \times K_{2}$, where each K_{i} is an infinite field.

In view of Theorem 2.18 and Corollary 2.17, we have the following result. Its proof is left to the reader.

Corollary 2.20. Let R be a reduced commutative ring. Then the following statements are equivalent.
(1) There are integers $m, n \geq 2$ such that $\operatorname{gr}\left(\Gamma_{m}(R)\right)=\infty$ and $\operatorname{gr}\left(\Gamma_{n}(R)\right)=4$.
(2) There are integers $m, n \geq 2$ such that $\Gamma_{m}(R)=K_{1, a}$ with $a \geq 1$ and $\Gamma_{n}(R)=K_{b, c}$ with $b, c \geq 2$ and $b<\infty$ or $c<\infty$.
(3) $\operatorname{gr}(\Gamma(R))=4$ and $\operatorname{gr}\left(\Gamma_{n}(R)\right)=\infty$ for some integer $n \geq 2$.
(4) $T(R)=K_{1} \times K_{2}$, where each K_{i} is a field with $\left|K_{i}\right| \geq 3$ and either K_{1} or K_{2} is finite.
(5) $\operatorname{gr}(\Gamma(R)) \neq \infty$ and R is a subring of the product of two integral domains D_{1} and D_{2} such that D_{1} or D_{2} is a finite field.
(6) $\Gamma(R)=K_{b, c}$ with $b, c \geq 2$ and $b<\infty$ or $c<\infty$.

In light of Theorem 2.18 and Corollary 2.19, we have the following result. Its proof is left to the reader.

Corollary 2.21. Let R be a reduced commutative ring. Then the following statements are equivalent.
(1) $\operatorname{gr}\left(\Gamma_{n}(R)\right)=4$ for every positive integer n. In particular, $\operatorname{gr}(\Gamma(R))=4$.
(2) $\Gamma_{n}(R)=K_{\infty, \infty}$ for every positive integer n.
(3) $T(R)=K_{1} \times K_{2}$, where each K_{i} is an infinite field.
(4) $\operatorname{gr}(\Gamma(R)) \neq \infty$ and R is a subring of the product of two infinite integral domains.
(5) $\Gamma(R)=K_{\infty, \infty}$.

In view of Theorem 2.13 and Theorem 2.10(2), we have the following result. Its proof is left to the reader.

Corollary 2.22. Let R be a reduced commutative ring that is not an integral domain. Then the following statements are equivalent.
(1) $\operatorname{gr}\left(\Gamma_{n}(R)\right)=\infty$ for every positive integer n. In particular, $\operatorname{gr}(\Gamma(R))=\infty$.
(2) $\Gamma_{n}(R)=K_{1, \infty}$ for every positive integer n.
(3) $T(R)=\mathbb{Z}_{2} \times K$, where K is an infinite field.
(4) R is a subring of $\mathbb{Z}_{2} \times D$ for an infinite integral domain D.
(5) $\Gamma(R)=K_{1, \infty}$.

3. The n-ZERO-DIVISOR GRAPH OF A NONREDUCED COMMUTATIVE SEMIGROUP

In this section, we study $\Gamma_{n}(S)$ when the commutative semigroup S is not reduced. In this case, $\Gamma_{n}(S)$ need not be connected for $n \geq 2$, i.e., $\Gamma_{n}(S)$ is a proper subgraph of $\Gamma\left(Z_{n}(S)\right)$ (see Example 2.1). First, we give another criterion for $\Gamma_{n}(S)$ to be connected (cf. Theorem 2.2).

For a commutative semigroup S with $0, x \in Z(S)^{*}$, and n a positive integer, let $\operatorname{Nil}_{n}(S)=\left\{y \in S \mid y^{n}=0\right\} \subseteq \operatorname{Nil}(S)$ and $\operatorname{nil}_{n}(x)=\left\{y \in S \mid(x y)^{n}=0\right\}$.

Theorem 3.1. Let S be a (nonreduced) commutative semigroup S with 0 and $n \geq 2$ an integer such that $\left|Z_{n}(S)^{*}\right| \geq 2$. Then $\Gamma_{n}(S)$ is not connected if and only if there is an $x \in Z(S)^{*}$ such that $x^{n} \in Z_{n}(S)^{*}$ and $n i l_{n}(x) \subseteq \operatorname{Nil}_{n}(S)$.

Proof. Assume that $\Gamma_{n}(S)$ is not connected. Then there is an $x \in Z(S)^{*}$ such that $x^{n} \in Z_{n}(S)^{*}$ and $x^{n} z \neq 0$ for every $z \in Z_{n}(S)^{*}$ by Theorem 2.2. Let $y \in \operatorname{nil} l_{n}(x)$. Then $x^{n} y^{n}=(x y)^{n}=0$; so $y^{n} \notin Z_{n}(S)^{*}$. Thus $y^{n}=0$; so $y \in N i l_{n}(S)$. Hence $n i l_{n}(x) \subseteq N i l_{n}(S)$.

Conversely, assume there is an $x \in Z(S)^{*}$ such that $x^{n} \in Z_{n}(S)^{*}$ and $n i l_{n}(x) \subseteq$ $N i l_{n}(S)$. We show that $y x^{n} \neq 0$ for every $y \in Z_{n}(S)^{*}$. Assume that $y x^{n}=0$ for some $y \in Z_{n}(S)^{*}$. Then $y=z^{n}$ for some $z \in Z(S)^{*}$ and $(z x)^{n}=z^{n} x^{n}=$ $y x^{n}=0$; so $z \in \operatorname{nil}_{n}(x) \subseteq \operatorname{Nil}_{n}(S)$. Thus $y=z^{n}=0$, and hence $y \notin Z_{n}(S)^{*}$, a contradiction. Thus $y x^{n} \neq 0$ for every $y \in Z_{n}(S)^{*}$, and hence $\Gamma_{n}(S)$ is not connected by Theorem 2.2.

Although $\Gamma_{n}(S)$ need not be connected when the commutative semigroup S is not reduced, we next show that $\Gamma_{n}(S)$ is connected in the "extreme" nonreduced case, i.e., when $Z(S)=\operatorname{Nil}(S)$. Note that $\operatorname{diam}(\Gamma(S)) \in\{0,1,2\}$ when $Z(S)=\operatorname{Nil}(S)$ $([18$, Theorem 5$])$, and $\operatorname{gr}(\Gamma(R)) \in\{3, \infty\}$ when $Z(R)=\operatorname{Nil}(R)$ for a commutative ring R ([3, Theorem 2.11]). First, a lemma.

Lemma 3.2. Let S be a commutative semigroup with $0, x \in \operatorname{Nil}(S)$, and n a positive integer. If $x^{n} \neq 0$, then $x^{n} \in Z\left(Z_{n}(S)\right)$.

Proof. Let $y=x^{n} \neq 0$ and $m=n_{y}-1(m \geq 1$ since $y \neq 0)$. Then $y \in Z_{n}(S)$ since $x \in \operatorname{Nil}(S) \subseteq Z(S)$, and $0 \neq y^{m} \in Z_{n}(S)$ since $Z_{n}(S)$ is a subsemigroup of S. Thus $y y^{m}=y^{n_{y}}=0$; so $x^{n}=y \in Z\left(Z_{n}(S)\right)$.

Theorem 3.3. Let S be a commutative semigroup with $0, Z(S)=\operatorname{Nil}(S) \neq\{0\}$, and m a positive integer. Then $Z\left(Z_{m}(S)\right)=Z_{m}(S)$ if $Z_{m}(S) \neq\{0\}$, and thus $\Gamma_{n}(S)=\Gamma\left(S_{n}\right)=\Gamma\left(Z_{n}(S)\right)$ is connected for every positive integer n. Moreover, let $N=\sup \left\{n_{x} \mid x \in \operatorname{Nil}(S)\right\}$. If $N<\infty$, then $\Gamma_{n}(S)=\emptyset$ for every integer $n \geq N$. Otherwise, $\Gamma_{n}(S) \neq \emptyset$ for every positive integer n.
Proof. Let $0 \neq x \in Z(S)=\operatorname{Nil}(S)$. If $m \geq n_{x}$, then $x^{m}=0$. If $m<n_{x}$, then $0 \neq x^{m} \in Z\left(Z_{m}(S)\right)$ by Lemma 3.2. Thus $Z\left(Z_{m}(S)\right)=Z_{m}(S)$ if $Z_{m}(S) \neq\{0\}$; so $\Gamma_{m}(S)=\Gamma\left(S_{m}\right)=\Gamma\left(Z_{m}(S)\right)$ is connected by Theorem 2.2 and the comments before that theorem. If $Z_{m}(S)=\{0\}$, then $\Gamma_{m}(S)=\Gamma\left(S_{m}\right)=\Gamma\left(Z_{m}(S)\right)=\emptyset$ is (vacuously) connected. Hence $\Gamma_{n}(S)=\Gamma\left(S_{n}\right)=\Gamma\left(Z_{n}(S)\right)$ is connected for every positive integer n.

The "moreover" statement is clear.
The following is an example of a commutative semigroup (ring) S with 0 such that $Z(S)=\operatorname{Nil}(S)$ and all the $\Gamma_{n}(S)$'s are distinct.
Example 3.4. Let $R=\mathbb{Z}_{2}\left[\left\{X_{n}\right\}_{n=1}^{\infty}\right] /\left(\left\{X_{n}^{n+1}\right\}_{n=1}^{\infty}\right)=\mathbb{Z}_{2}\left[\left\{x_{n}\right\}_{n=1}^{\infty}\right]$ and $S=$ $Z(R)=\operatorname{Nil}(R)=\left(\left\{x_{n}\right\}_{n=1}^{\infty}\right)$. Then $S=Z(S)=\operatorname{Nil}(S)$ and $x_{n}^{n} \in Z_{n}(S)^{*} \backslash$ $Z_{n+1}(S)^{*}$ for every positive integer n. Thus the $\Gamma_{n}(S)^{\prime}$'s are all distinct and nonempty, and every $\Gamma_{n}(S)$ is connected by Theorem 3.3. Moreover, it is easily checked that $\operatorname{diam}\left(\Gamma_{n}(S)\right)=2$ and $\operatorname{gr}\left(\Gamma_{n}(S)\right)=3$ for every positive integer n.

The following is an example of a nonreduced semigroup (ring) S with 0 such that $\operatorname{diam}\left(\Gamma_{2}(S)\right)=\operatorname{diam}(\Gamma(S))=2, \operatorname{gr}\left(\Gamma_{2}(S)\right)=\infty$, and $\operatorname{gr}(\Gamma(S))=3$. Thus the "reduced" hypothesis in Theorem 2.8 is crucial. Also, see Example 3.11(d).

Example 3.5. Let $R=\mathbb{Z}_{2}[X] /\left(X^{6}\right)=\mathbb{Z}_{2}[x]$ and $S=Z(R)=\operatorname{Nil}(R)$. Then R and S are not reduced, and $x^{3}-x^{4}-x^{5}-x^{3}$ is a cycle of length 3 in $\Gamma(S)$; so $\operatorname{gr}(\Gamma(S))=3$. Since x^{5} is adjacent to every $y \in Z(S)^{*}=Z(R)^{*}=S^{*}$ and $\Gamma(S)$ is not a complete graph, we have $\operatorname{diam}(\Gamma(S))=2$. Note that $Z_{2}(S)^{*}=$ $\left\{x^{2}, x^{4}, x^{2}+x^{4}\right\}$ and $\Gamma_{2}(S)=K_{1,2}$ is a star graph with center x^{4}; so $\operatorname{gr}\left(\Gamma_{2}(S)\right)=\infty$ and $\operatorname{diam}\left(\Gamma_{2}(S)\right)=2$. Moreover, $\Gamma_{n}(S)=\Gamma\left(S_{n}\right)$ is connected for every positive integer n and $\Gamma_{n}(S)=\emptyset$ for every integer $n \geq 6$.

The following is an example of a nonreduced commutative semigroup (ring) S with 0 such that $\operatorname{diam}\left(\Gamma_{2}(S)\right)=3, \operatorname{diam}(\Gamma(S))=2$, and $\operatorname{gr}\left(\Gamma_{2}(S)\right)=\operatorname{gr}(\Gamma(S))=3$. Thus the "reduced" hypothesis in Theorem 2.4 and Theorem 2.7(1) is crucial.
Example 3.6. Let $R=\mathbb{Z}_{2}[X, Y, Z, W, V] /\left(X^{2}, X Y, X Z, X W, X V, W Y, V Z, W V\right)=$ $\mathbb{Z}_{2}[x, y, z, w, v]$ and $S=Z(R)$. Then R and S are not reduced, and $x-w-v-x$ is a cycle of length 3 in $\Gamma(S)$; so $\operatorname{gr}(\Gamma(S))=3$. Since x is adjacent to every vertex in $Z(S)^{*}=Z(R)^{*}=S^{*}$ and $\Gamma(S)$ is not a complete graph, we have $\operatorname{diam}(\Gamma(S))=2$. Note that $x^{2} \notin Z_{2}(S)^{*}$. Since $n i l_{2}(d) \nsubseteq \operatorname{Nil}_{2}(S)$ for every $d \in Z(S)^{*}$ with $d^{2} \in Z_{2}(S)^{*}$, we have $\Gamma_{2}(S)$ is connected by Theorem 3.1. Since $w^{2}-v^{2}-y^{2} z^{2}-w^{2}$ is a cycle of length 3 in $\Gamma_{2}(S)$, we have $\operatorname{gr}\left(\Gamma_{2}(S)\right)=3$. Since $y^{2}-w^{2}-v^{2}-z^{2}$ is a shortest path in $\Gamma_{2}(S)$ from y^{2} to z^{2}, we have $d_{2}\left(y^{2}, z^{2}\right)=3$. Thus $\operatorname{diam}\left(\Gamma_{2}(S)\right)=3$.

Let S be as in Example 3.6. Then $\operatorname{diam}\left(\Gamma_{2}(S)\right)=3, \operatorname{gr}\left(\Gamma_{2}(S)\right)=3, \operatorname{diam}(\Gamma(S))=$ 2, and $\operatorname{gr}(\Gamma(S))=3$. In view of Example 3.6, we have the following result.
Theorem 3.7. Let S be a commutative semigroup with 0 . Assume that $\Gamma_{n}(S)$ is connected for a positive integer n. If $\operatorname{diam}\left(\Gamma_{n}(S)\right)=3$ and $x-y-z-w$ is a
shortest path in $\Gamma_{n}(S)$ from x to w with $y^{2} \neq 0$ and $z^{2} \neq 0$ (e.g., if S is reduced), then $\operatorname{gr}\left(\Gamma_{n}(S)\right)=3$.
Proof. Since $y(x w)=z(x w)=0, y^{2} \neq 0$, and $z^{2} \neq 0$, we have $y \neq x w, z \neq x w$, and $x w \neq 0$. Thus $x w-y-z-x w$ is a cycle of length 3 in $\Gamma_{n}(S)$; so $\operatorname{gr}\left(\Gamma_{n}(S)\right)=3$.

We next give the analog of Theorem 2.10 for nonreduced commutative rings.
Theorem 3.8. Let R be a nonreduced commutative ring with $\operatorname{gr}(\Gamma(R))=4$. Then $\Gamma_{n}(R)$ is connected and $\operatorname{gr}\left(\Gamma_{n}(R)\right) \in\{4, \infty\}$ for every integer $n \geq 2$. Moreover, there are integers $m, n \geq 2$ such that $\operatorname{gr}\left(\Gamma_{m}(R)\right)=4$ and $\operatorname{gr}\left(\Gamma_{n}(R)\right)=\infty$.

Proof. Suppose that R is not reduced and $\operatorname{gr}(\Gamma(R))=4$. Then $R \cong D \times B$, where D is an integral domain with $|D| \geq 3$ and $B=\mathbb{Z}_{4}$ or $\mathbb{Z}_{2}[X] /\left(X^{2}\right)=\mathbb{Z}_{2}[x]$ by [12, Theorem 2.3]; so assume that $R=D \times B$. It is easily checked that $Z_{n}(R)^{*}=\left\{\left(d^{n}, 0\right),(0,1) \mid d \in D^{*}\right\}$ for n an even positive integer and $Z_{n}(R)^{*}=$ $\left\{\left(d^{n}, 0\right),(0,1),(0, b) \mid d \in D^{*}\right\}$ for $n \geq 3$ an odd integer (here, $b=3$ if $B=\mathbb{Z}_{4}$, and $b=1+x$ if $\left.B=\mathbb{Z}_{2}[X] /\left(X^{2}\right)\right)$. Let $n \geq 2$. Then for every $z \in Z_{n}(R)^{*}$, there is a $y \in Z_{n}(R)^{*}$ such that $z y=0$. Thus $\Gamma_{n}(R)$ is connected by Theorem 2.2.

Let $\left|\left\{\left(d^{n}, 0\right) \mid d \in D^{*}\right\}\right|=\alpha$. Then $\Gamma_{n}(R)=K_{1, \alpha}$ has girth ∞ for n even, and $\Gamma_{n}(R)=K_{2, \alpha}$ has girth 4 or ∞ for $n \geq 3$ odd. Since $|D| \geq 3$, we have $\alpha \geq 2$ for some odd integer $n \geq 3$. Hence there are integers $m, n \geq 2$ such that $\operatorname{gr}\left(\Gamma_{m}(R)\right)=4$ and $\operatorname{gr}\left(\Gamma_{n}(R)\right)=\infty$.

Remark 3.9. Let $R=D \times B$, where D is an integral domain with $|D| \geq 3$ and $B=\mathbb{Z}_{4}$ or $\mathbb{Z}_{2}[X] /\left(X^{2}\right)$ as in the proof of Theorem 3.8 above. Then $\Gamma(R)=\bar{K}_{m, 3}$ with $m=|D|-1 \geq 2$, where $\bar{K}_{m, 3}$ is the graph obtained by joining the complete bipartite graph $G_{1}=K_{m, 3}(=A \cup C$ with $|A|=m$ and $|C|=3)$ to the star graph $G_{2}=K_{1, m}$ by identifying the center of G_{2} to a point of C ([12, Theorem 2.3]). Let $\left|\left\{\left(d^{n}, 0\right) \mid d \in D^{*}\right\}\right|=\alpha$. As in the proof of Theorem 3.8, we have $\Gamma_{n}(R)=K_{1, \alpha}$ for n an even positive integer and $\Gamma_{n}(R)=K_{2, \alpha}$ for $n \geq 3$ an odd integer. Note that α depends on D. If D is infinite, then clearly α is an infinite cardinal. Let D be a finite integral domain; so D is a field with D^{*} cyclic. Thus $\alpha=1$ if $n=k(|D|-1)$ for any positive integer k, and $\alpha \geq 2$ otherwise. Hence $\Gamma_{n}(R)$ can have girth 4 or ∞ when D is finite, depending on n.

In view of Theorem 3.8, we have the following result.
Corollary 3.10. Let R be a nonreduced commutative ring such that $\Gamma_{n}(R)$ is not connected for some integer $n \geq 2$. Then $\operatorname{gr}(\Gamma(R)) \in\{3, \infty\}$.

The converses of Theorem 3.8 and Corollary 3.10 need not be true. We have the following examples.

Example 3.11. (a) Let $R=\mathbb{Z}_{9} \times \mathbb{Z}_{9}$; so R is not reduced. Then $(3,3)-(0,3)-$ $(3,0)-(3,3)$ is a cycle of length 3 in $\Gamma(R)$; so $\operatorname{gr}(\Gamma(R))=3$. It is clear that $Z_{n}(R)^{*} \subseteq\left\{(x, 0),(0, y) \mid x, y \in U\left(\mathbb{Z}_{9}\right)\right\}$ for every integer $n \geq 2$; so $\Gamma_{n}(R)$ is a complete bipartite graph. Thus $\Gamma_{n}(R)$ is connected with $\operatorname{gr}\left(\Gamma_{n}(R)\right) \in\{4, \infty\}$ for every integer $n \geq 2$. Hence the converses of Theorem 3.8 and Corollary 3.10 do not hold.
(b) Let $R=\mathbb{Z}_{4} \times \mathbb{Z}_{4}$; so R is not reduced. Then $(2,2)-(0,2)-(2,0)-(2,2)$ is a cycle of length 3 in $\Gamma(R)$; so $\operatorname{gr}(\Gamma(R))=3$. For every even positive integer n, we
have $Z_{n}(R)^{*}=\{(1,0),(01)\}$; so $\Gamma_{n}(R)=K_{2}=K_{1,1}$ is connected with $\operatorname{gr}\left(\Gamma_{n}(R)\right)=$ ∞. For every odd integer $n \geq 3$, we have $Z_{n}(R)^{*}=\{(1,0),(3,0),(0,1),(0,3)\}$; so $\Gamma_{n}(R)=K_{2,2}$ is connected with $\operatorname{gr}\left(\Gamma_{n}(R)\right)=4$. Thus the converses of Theorem 3.8 and Corollary 3.10 do not hold.
(c) Let $R=\mathbb{Z}_{2}[X, Y, Z] /\left(X^{2}, X Z, X Y\right)=\mathbb{Z}_{2}[x, y, z]$ (cf. Example 2.1(a)); so R is not reduced. Then $\Gamma(R)=K_{1, \infty}$ with center x; so $g r(\Gamma(R))=\infty$. For every integer $n \geq 2, \Gamma_{n}(R)$ is not connected by Theorem 3.1 since $n i l_{n}(y) \subseteq \operatorname{Nil}_{n}(R)$. Note that $\Gamma_{n}(R)=\overline{K_{\aleph_{0}}}$ for every integer $n \geq 2$.
(d) Let $R=\mathbb{Z}_{2}[X, Y, Z] /\left(X^{2}, X Z, Y Z\right)=\mathbb{Z}_{2}[x, y, z]$; so R is not reduced. Then $Z(R)=\left\{a x+y f(y)+z g(z)+x y h(y) \mid a \in \mathbb{Z}_{2}, f(T), g(T), h(T) \in \mathbb{Z}_{2}[T]\right\}$, and $\operatorname{gr}(\Gamma(R))=3$ since $z-x-x y-z$ is a cycle in $\Gamma(R)$ of length 3 . For every integer $n \geq 2, Z_{n}(R) \subseteq\left\{y f(y)+z g(z)+x y h(y) \mid f(T), g(T), h(T) \in \mathbb{Z}_{2}[T]\right\} ;$ so $\Gamma_{n}(R)=$ $K_{\aleph_{0}, \aleph_{0}}$. Thus $\Gamma_{n}(R)$ is connected with $\operatorname{gr}\left(\Gamma_{n}(R)\right)=4$ and $y^{n}-z^{n}-y^{2 n}-z^{2 n}-y^{n}$ is a 4 -cycle in $\Gamma_{n}(R)$ for every integer $n \geq 2$. Hence the "reduced" hypothesis is needed in Theorem 2.8.

We may also have $\Gamma_{m}(S)$ connected and $\Gamma_{n}(S)$ not connected for some integers $m, n \geq 2$. In this case, $\operatorname{diam}\left(\Gamma_{m}(S)\right) \in\{0,1,2,3\}$, but $\operatorname{diam}\left(\Gamma_{n}(S)\right)=\infty$ by definition. See Example 2.1(d) for a "non-ring" example.
Example 3.12. Let $R=\mathbb{Z}_{2}[X, Y] /\left(X^{3}, X Y\right)=\mathbb{Z}_{2}[x, y]=\left\{a+b x+c x^{2}+y f(y) \mid\right.$ $\left.a, b, c \in \mathbb{Z}_{2}, f \in \mathbb{Z}_{2}[T]\right\}$ and $S=Z(R)=\left\{b x+c x^{2}+y f(y) \mid b, c \in \mathbb{Z}_{2}, f \in \mathbb{Z}_{2}[T]\right\}$. Note that $\operatorname{gr}(\Gamma(R))=3$ since $x-y-x^{2}-x$ is a 3 -cycle. We have $S_{2}=Z_{2}(R)=$ $\left\{b x^{2}+y^{2} f\left(y^{2}\right) \mid b \in \mathbb{Z}_{2}, f \in \mathbb{Z}_{2}[T]\right\} ;$ so $\Gamma\left(S_{2}\right)=\Gamma_{2}(R)=\Gamma_{2}(S)=K_{1, \kappa_{0}}$ is a star graph with center x^{2}, and thus $g r\left(\Gamma_{2}(R)\right)=\infty$. Moreover, $S_{n}=\left\{y^{n} f(y)^{n} \mid f \in\right.$ $\left.\mathbb{Z}_{2}[T]\right\}$; so $Z\left(S_{n}\right)=\{0\}$, while $Z_{n}(S)=\left\{y^{n} f(y)^{n} \mid f \in \mathbb{Z}_{2}[T]\right\}=S_{n}$, for every integer $n \geq 3$. Thus the $\Gamma_{n}(S)$'s are all distinct. Also, $\{0\}=Z\left(S_{n}\right)=Z\left(Z_{n}(S)\right) \subsetneq$ $Z_{n}(S)$ for every integer $n \geq 3$; so $\Gamma\left(S_{n}\right) \neq \Gamma_{n}(S)$ and $\Gamma_{n}(S)$ is not connected for every integer $n \geq 3$ by Theorem 2.2. Moreover, $\Gamma_{n}(R)=\Gamma_{n}(S)=\overline{K_{\aleph_{0}}}$ is not connected (in fact, totally disconnected) and $\Gamma\left(S_{n}\right)=\emptyset$ for every integer $n \geq 3$.

We can replace X^{3} by X^{m} for any integer $m \geq 4$ in the definition of the ring R to get that $\Gamma_{n}(R)$ is connected for $1 \leq n \leq m-1$ and $\Gamma_{n}(R)$ is not connected for every integer $n \geq m$. Details are left to the reader.

4. $\Gamma_{n}(R)$ WHEN R IS π-REGULAR

In this section, we study $\Gamma_{n}(R)$ when R is a π-regular (i.e., zero-dimensional) or von Neumann regular (i.e., reduced and zero-dimensional) commutative ring. We show that the $\Gamma_{n}(R)$'s are all connected, and in certain nice cases, the $\Gamma_{n}(R)$'s eventually repeat in blocks. We also consider commutative rings such that some power of every element (or zero-divisor) is idempotent.

Recall that a (not necessarily commutative) ring R is strongly π-regular if for every $x \in R$, there is a positive integer n and $y \in R$ such that $x^{n+1} y=x^{n}$ and $x y=y x$; and R is π-regular if for every $x \in R$, there is a positive integer n and $y \in R$ such that $x^{2 n} y=x^{n}$. If R is a commutative ring, then R is strongly π-regular if and only if R is π-regular, if and only if R is zero-dimensional ([22, Theorem 3.1]).

The following theorem gives another case when $\Gamma_{n}(R)$ is connected for every positive integer n, when R is zero-dimensional (e.g., finite). Example 2.1(a) shows that the $\Gamma_{n}(R)$'s need not be connected when R is not zero-dimensional.

Theorem 4.1. Let R be a π-regular (i.e., zero-dimensional) commutative ring. Then $\Gamma_{n}(R)$ is connected for every positive integer n. In particular, $\Gamma_{n}(R)$ is connected for every positive integer n when R is a finite commutative ring.
Proof. We may assume that $n \geq 2$ and $Z_{n}(R)^{*} \neq \emptyset$. We show that for every $x \in Z_{n}(R)^{*}$, there is a $y \in Z_{n}(R)^{*}$ such that $x y=0$. Let $x \in Z_{n}(R)^{*}$. Then $x=e u+w$ for an $e \in I d(R), u \in U(R)$, and $w \in \operatorname{Nil}(R)$ by [13, Corollary 1]. Since $x \in Z_{n}(R)^{*}, e \neq 1$. First, assume that $w=0$. Then $e \neq 0,1$ since $x \in Z_{n}(R)^{*}$. Thus $y=1-e \in Z(R)^{*}$ is idempotent; so $y=y^{n} \in Z_{n}(R)^{*}$ and $x y=e u(1-e)=0$. Next, assume that $e=0$. Then $0 \neq x=w \in \operatorname{Nil}(R)$. Let $m \geq 2$ be the least positive integer such that $x^{m}=w^{m}=0$. Since $Z_{n}(R)$ is a semigroup with 0 and $x \in Z_{n}(R)^{*}$, we have $y=x^{m-1}=w^{m-1} \in Z_{n}(R)^{*}$ and $x y=0$ (cf. Lemma 3.2). Now, assume that $e \neq 0$ (note that $e \neq 1$) and $w \neq 0$. Since $w \in \operatorname{Nil}(R)$, let k be the least positive integer such that $[(1-e) w]^{k}=(1-e) w^{k}=0$. Note that $(1-e) x=(1-e)(e u+w)=(1-e) w$. So, if $k=1$, then $y=1-e \in Z_{n}(R)^{*}$ and $x y=(1-e) x=(1-e) w=0$. Hence we may assume that $k \geq 2$. Then $y=(1-e) w^{k-1}=[(1-e) w]^{k-1}=[(1-e) x]^{k-1} \in Z_{n}(R)^{*}$ since $Z_{n}(R)$ is a semigroup and $1-e, x \in Z_{n}(R)^{*}$, and $x y=x\left[(1-e) x^{k-1}\right]=[(1-e) x]^{k}=[(1-e) w]^{k}=0$. Thus for every $x \in Z_{n}(R)^{*}$, there is a $y \in Z_{n}(R)^{*}$ such that $x y=0$; so $\Gamma_{n}(R)$ is connected by Theorem 2.2.

The "in particular" statement is clear.
We next give a particular case when the $\Gamma_{m}(R)$'s eventually repeat in blocks of length n, when $Z_{n}(R)^{*}=I d(R) \backslash\{0,1\}$ for some positive integer n. However, this may happen even when $Z_{n}(R)^{*} \neq I d(R) \backslash\{0,1\}$ (see Example 4.13(b)).
Theorem 4.2. Let R be a commutative ring and n a positive integer. Then the following statements are equivalent.
(1) $x^{n} \in I d(R)$ for every $x \in Z(R)$.
(2) $Z_{n}(R)^{*}=\operatorname{Id}(R) \backslash\{0,1\}$.

Moreover, if either of the above holds, then $Z_{k n+j}(R)^{*}=Z_{n+j}(R)^{*}$ for every positive integer k and integer j with $0 \leq j<n$, and thus $\Gamma_{k n+j}(R)=\Gamma_{n+j}(R)$ for every positive integer k and integer j with $0 \leq j<n$, i.e., $\Gamma_{r}(R)=\Gamma_{s}(R)$ for integers $r, s \geq n$ if $r \equiv s(\bmod n)$.

Proof. The equivalence of statements (1) and (2) is clear since $\operatorname{Id}(R) \backslash\{0,1\} \subseteq$ $Z_{m}(R)^{*}$ for every positive integer m.

For the "moreover" statement, let $x \in Z(R)$. Then $x^{k n+j}=\left(x^{n}\right)^{k} x^{j}=x^{n} x^{j}=$ x^{n+j} since $x^{n} \in I d(R)$. Thus $Z_{k n+j}(R)^{*}=Z_{n+j}(R)^{*}$ for every positive integer k and integer j with $0 \leq j<n$.

In view of the above theorem, it is important to know when there is a positive integer n such that x^{n} is idempotent for every $x \in Z(R)$. As in [15], R is a Euler ring if for every $x \in R$, there is a positive integer n such that x^{n} is idempotent; and R is an exact-Euler ring if there is a positive integer n such that x^{n} is idempotent for every $x \in R$. We define a commutative ring R to be a Z-Euler ring if for every $x \in Z(R)$, there is a positive integer n such that x^{n} is idempotent; and R is a Z-exact-Euler ring if there is a positive integer n such that x^{n} is idempotent for every $x \in Z(R)$. An exact-Euler (resp., Z-exact-Euler) ring is certainly a Euler (resp., Z-Euler) ring, but the converse need not hold, see Example 4.8(c) and Example 4.13(c)(resp., Example 3.4).

For a commutative ring R, let $\gamma(R)$ (resp., $\gamma_{Z}(R)$) be the least positive integer n such that x^{n} is idempotent for every $x \in R$ (resp., $x \in Z(R)$); if no such n exists, set $\gamma(R)=\infty$ (resp., $\gamma_{Z}(R)=\infty$). Clearly, $\gamma_{Z}(R) \leq \gamma(R)$. Example 4.8 shows that the inequaliy may be strict.

We have the following characterization of exact-Euler commutative rings. Note that a finite commutative ring is always an exact-Euler ring.
Theorem 4.3. ([15, Theorem 4.1 and Proposition 4.2]) Let R be commutative ring. Then the following statements are equivalent.
(1) R is an exact-Euler ring.
(2) R is π-regular (i.e., zero-dimensional), and there are positive integers m and n such that $x^{m}=0$ for every $x \in \operatorname{Nil}(R)$ and $u^{n}=1$ for every $u \in U(R)$. Moreover, in this case, $x^{m n}$ is idempotent for every $x \in R$.
In particular, a finite commutative ring is an exact-Euler ring.
Corollary 4.4. Let R be a finite commutative ring. Then there is a positive integer n such that $\Gamma_{k n+j}(R)=\Gamma_{n+j}(R)$ for every positive integer k and integer j with $0 \leq j<n$, i.e., $\Gamma_{r}(R)=\Gamma_{s}(R)$ for integers $r, s \geq n$ if $r \equiv s(\bmod n)$. Moreover, either $\Gamma_{k}(R)=\emptyset$ for every integer $k \geq n$ or $\left|\Gamma_{k}(R)\right| \geq 2$ for every positive integer k.

Proof. Since R is finite, there is a positive integer n such that $x^{n} \in \operatorname{Id}(R)$ for every $x \in R$ by Theorem 4.3. If $Z(R)=\operatorname{Nil}(R)$, then $Z_{k}(R)=\{0\}$ for $k \geq n$. If $Z(R) \neq \operatorname{Nil}(R)$, then $Z_{n}(R)^{*}=\operatorname{Id}(R) \backslash\{0,1\} \neq \emptyset$. If $Z_{k}(R)=\{0\}$, then $\Gamma_{k}(R)=\emptyset$. Otherwise, $\left|Z_{k}(R)^{*}\right| \geq|I d(R) \backslash\{0,1\}| \geq 2$. The proof now follows from Theorem 4.2.

Remark 4.5. (a) Let R be a π-regular (i.e., zero-dimensional) commutative ring. If there are positive integers m and n such that $x^{m}=0$ for every $x \in \operatorname{Nil}(R)$ and $u^{n}=1$ for every $u \in U(R)$, then $\gamma(R) \leq m n$ by Theorem 4.3. However, we may have $\gamma(R)<m n$. For example, let $R=\mathbb{Z}_{3} \times \mathbb{Z}_{4}$. Then $m=n=2$ in Theorem 4.3, but x^{2} is idempotent for every $x \in R$; so $\gamma(R)=2<4=2 \cdot 2$ (cf. Example 4.14(b)). As another example, let $T=\mathbb{Z}_{8}$. Then $m=3, n=2$ in Theorem 4.3, but $x^{4} \in I d(T)$ for every $x \in T$ and $3^{3}=3 \notin I d(T)$; so $\gamma(T)=4<$ $6=3 \cdot 2$ (cf. Example 4.14(a)).
(b) Let R be a local ring with maximal ideal M. If R is Euler (resp., exactEuler), then $M=\operatorname{Nil}(R)$ (resp., the index of nilpotency $n_{M}<\infty$). If R is finite with n the least positive integer such that $u^{n}=1$ for every $u \in U(R)$ and $m=n_{M}$, then $\gamma_{Z}(R)=m$ and $\gamma(R)=\min \{k n \mid k n \geq m, k$ a positive integer $\}$ since $u^{j}=1$ for every $u \in U(R)$ if and only if $n \mid j$ by a standard "division algorithm" argument.

In some cases, to show that R is an exact-Euler ring, we only need to check the elements of $Z(R)$ (i.e., show that R is a Z-exact-Euler ring). To prove this, we will need the following lemma.

Lemma 4.6. Let R be a commutative ring, $e \in R$ a nontrivial idempotent, and n a positive integer. If $f=(e x)^{n}$ is idempotent for $x \in R \backslash Z(R)$, then $f=e$. Moreover, if in addition, $(1-e) x^{n}=1-e$, then $x^{n}=1$.
Proof. Assume that $f=(e x)^{n}=e x^{n}$ is idempotent. Then $(1-e) f=(1-e) e x^{n}=0$ and $(1-f) e x^{n}=(1-f) f=0$. Thus $f=e f$, and $(1-f) e=0$ since $x \in R \backslash Z(R)$. Hence $e f=e$; so $f=e f=e$.

Fot the "moreover" statement, assume that $(1-e) x^{n}=1-e$. Then $e x^{n}=f=e$ and $(1-e) x^{n}=1-e$; so $x^{n}=e x^{n}+(1-e) x^{n}=e+(1-e)=1$.
Theorem 4.7. Let R be a commutative ring with $Z(R) \neq N i l(R)$ and n a positive integer. Then the following statements are equivalent.
(1) x^{n} is idempotent for every $x \in R$, i.e., R is an exact-Euler ring..
(2) x^{n} is idempotent for every $x \in Z(R)$, i.e., R is a Z-exact-Euler ring.

In particular, $\gamma(R)=\gamma_{Z}(R)$ when $Z(R) \neq \operatorname{Nil}(R)$.
Proof. (1) \Rightarrow (2) This is clear.
$(2) \Rightarrow(1)$ Since $Z(R) \neq \operatorname{Nil}(R)$ and x^{n} is idempotent for every $x \in Z(R)$, there is an idempotent $e \in Z(R)^{*}$. Now, let $y \in R \backslash Z(R)$. Then $e y,(1-e) y \in Z(R)$; so $(e y)^{n}=e y^{n}$ and $[(1-e) y]^{n}=(1-e) y^{n}$ are idempotent by hypothesis. Thus $y^{n}=1$ by Lemma 4.6; so y^{n} is idempotent. Hence x^{n} is idempotent for every $x \in R$.

The "in particular" statement is clear.
The following three examples show that the hypothesis " $Z(R) \neq \operatorname{Nil}(R)$ " is crucial in Theorem 4.7. Note that if $Z(R)=\operatorname{Nil}(R)$, then (2) of Theorem 4.7 holds (i.e., R is a Z-exact-Euler ring) if and only if $n_{x} \leq n$ for every $x \in \operatorname{Nil}(R)$. Recall that the idealization $R(+) M$ of an R-module M is the commutative ring $R \times M$ with $(a, m)+(b, n)=(a+b, m+n),(a, m)(b, n)=(a b, a m+b n)$, and identity $(1,0)$. Note that $(\{0\}(+) M)^{2}=\{(0,0)\}$.
Example 4.8. (a) Let R be an integral domain. Then $Z(R)=\operatorname{Nil}(R)=\{0\}$; so R is clearly Z-Euler and exact-Z-Euler with $\gamma_{Z}(R)=1$. However, it is easy to show that R is Euler (resp., exact Euler) if and only if R is a field which is an algebraic extension of a finite field (resp., a finite field). For $R=\mathbb{F}_{p^{n}}$, we have $\gamma(R)=p^{n}-1$ (since R^{*} is cyclic) and $\gamma_{Z}(R)=1$.
(b) Let $R=\mathbb{Z}(+) \mathbb{Z}$. Then $Z(R)=\operatorname{Nil}(R)=\{0\}(+) \mathbb{Z}$ and $x^{2}=0$ for every $x \in Z(R)$; so x^{2} is idempotent for every $x \in Z(R)$. However, $(2,0)^{2}=(4,0)$; so x^{2} is not idempotent for some $x \in R$. Thus the " 2) $\Rightarrow(1)$ " implication of Theorem 4.7 fails. In fact, $(2,0)^{n}=\left(2^{n}, 0\right)$ is not idempotent for any positive integer n; so R is not even a Euler ring. Note that $\gamma_{Z}(R)=2, \gamma(R)=\infty$, and R is neither local nor zero-dimensional.
(c) For a zero-dimensional local example, let $R=K[X] /\left(X^{2}\right)=K[x]=\{a+b x \mid$ $a, b \in K\}$, where K is a field. Then $Z(R)=\operatorname{Nil}(R)=(x), U(R)=\{a+b x \mid a \in$ $\left.K^{*}, b \in K\right\}$, and $y^{2}=0$ is idempotent for every $y \in(x)$; so $\gamma_{Z}(R)=2$. If K is finite, then $y^{n}=1$ is idempotent for every $y \in K^{*}$ and n a positive integral multiple of $|K|-1$ since the multiplicative group K^{*} is cyclic. Thus $(a+b x)^{n}=$ $a^{n}+n a^{n-1} b x=1$ when $a \neq 0, \operatorname{char}(K) \mid n$, and $(|K|-1) \mid n$. However, if K is infinite, then there is no positive integer n such that y^{n} is idempotent for every $y \in K$; so $\gamma(R)=\infty$ when K is infinite. Hence, as in (a) above, R is a Euler (resp., exact-Euler) ring if and only if K is an algebraic extension of a finite field (resp., a finite field). For $K=\mathbb{F}_{p^{n}}$, we have $\gamma(R)=\operatorname{lcm}\left(p^{n}-1, p\right)=p\left(p^{n}-1\right)$ and $\gamma_{Z}(R)=2$.

We next show that the $Z_{n}(R)$'s, and thus the $\Gamma_{n}(R)$'s, are eventually repeating in blocks for certain nice zero-dimensional commutative rings R. The " $Z(R)=$ $\operatorname{Nil}(R)$ " case was handled in Theorem 3.3.
Theorem 4.9. Let R be a commutative ring with $Z(R) \neq \operatorname{Nil}(R)$. Then the following statements are equivalent.
(1) R is an exact-Euler ring.
(2) R is π-regular (i.e., zero-dimensional), and $x^{m n}$ is idempotent for every $x \in R$, where m and n are positive integers such that $x^{m}=0$ for every $x \in \operatorname{Nil}(R)$ and $u^{n}=1$ for every $u \in U(R)$.
(3) $Z_{k m n}(R)^{*}=Z_{m n}(R)^{*}=I d(R) \backslash\{0,1\} \neq \emptyset$ for every positive integer k, where m and n are positive integers such that $x^{m}=0$ for every $x \in \operatorname{Nil}(R)$ and $u^{n}=1$ for every $u \in U(R)$.
Moreover, if the above hold, then $Z_{k m n+j}(R)^{*}=Z_{m n+j}(R)^{*}$, and thus $\Gamma_{k m n+j}(R)=$ $\Gamma_{m n+j}(R)$ and $\left|\Gamma_{k}(R)\right| \geq 2$, for every positve integer k and integer j with $0 \leq j<$ $m n$, i.e., $\Gamma_{r}(R)=\Gamma_{s}(R)$ for integers $r, s \geq m n$ if $r \equiv s(\bmod m n)$.

Proof. (1) $\Rightarrow(2)$ This is clear by Theorem 4.3.
$(2) \Rightarrow(3)$ This follows directly from Theorem 4.2 and Theorem 4.3.
$(3) \Rightarrow(1)$ Since $x^{m n} \in I d(R)$ for every $x \in Z(R)$ and $Z(R) \neq \operatorname{Nil}(R)$, we have $x^{m n} \in I d(R)$ for every $x \in R$ by Theorem 4.7. Thus R is an exact-Euler ring.

The first part of the "moreover" statement, also follows from Theorem 4.2. In addition, $\left|\Gamma_{k}(R)\right| \geq 2$ for every positive integer k since $\emptyset \neq I d(R) \backslash\{0,1\} \subseteq Z_{k}(R)^{*}$ for every positive integer k.

A commutative ring R is von Neumann regular if for every $x \in R$, there is a $y \in R$ such that $x^{2} y=x$. Recall that a commutative ring R is von Neumann regular if and only if R is reduced and zero-dimensional ([22, Theorem 3.1]), if and only if for every $x \in R$, there is an $e \in I d(R)$ and $u \in U(R)$ such that $x=e u$ ([22, Corollary 3.3]). Thus a commutative von Neumann regular ring is just a reduced π-regular ring. For a recent article on von Neumann regular rings, see [4]. The zero-divisor graph $\Gamma(R)$ for a commutative von Neumann regular ring R has been studied in [24] and [10].

If R is a commutative von Neumann regular ring, but not a field, then $Z(R) \neq$ $\operatorname{Nil}(R)$, and thus $\gamma(R)=\gamma_{Z}(R)$ by Theorem 4.7. The next result shows that, in this case, $\gamma(R)$ is the least positive integer m such that $u^{m}=1$ for every $u \in U(R)$. Moreover, if $u^{n}=1$ for every $u \in U(R)$, then $\gamma(R) \mid n$.

Theorem 4.10. Let R be a commutative von Neumann regular ring that is not a field and n a positive integer. Then the following statements are equivalent.
(1) $x^{n} \in I d(R)$ for every $x \in R$, i.e., R is an exact- $E u l e r$ ring.
(2) $x^{n} \in I d(R)$ for every $x \in Z(R)$, i.e., R is a Z-exact-Euler ring.
(3) $u^{n}=1$ for every $u \in U(R)$.
(4) $\gamma(R) \mid n$.

Moreover, $\gamma(R)=\gamma_{Z}(R)$ is the least positive integer m such that $u^{m}=1$ for every $u \in U(R)$. If no such m exists, then $\gamma(R)=\gamma_{Z}(R)=\infty$.

Proof. (1) $\Leftrightarrow(2)$ This is clear by Theorem 4.7.
$(1) \Rightarrow(3)$ This is clear since $\operatorname{Id}(R) \cap U(R)=\{1\}$.
$(3) \Rightarrow(1)$ Let $x \in R$. Then $x=e u$ for some $e \in I d(R)$ and $u \in U(R)$ since R is von Neumann regular. Thus $x^{n}=(e u)^{n}=e^{n} u^{n}=e \in I d(R)$ since $u^{n}=1$ by hypothesis.
$(3) \Rightarrow(4)$ Let $\gamma(R)=m$; so m is the least positive integer such that $u^{m}=1$ for every $u \in U(R)$ by (1) $\Leftrightarrow(3)$ above. A standard "division algorithm" argument then shows that $m \mid n$.
$(4) \Rightarrow(1)$ This is clear by definition.

The "moreover" statement is clear .
The next theorem shows that the $Z_{k}(R)^{*}$'s, and thus the $\Gamma_{k}(R)$'s, repeat in blocks of length n when R is a commutative von Neumann regular ring in which the elements of $U(R)$ have bounded order n (this is the " $m=1$ " case for Theorem 4.9). Example 4.13(b) shows that the $\Gamma_{k}(R)$'s can all be equal, all distinct, or repeat in blocks when R is a commutative von Neumann regular ring with $\gamma(R)=\infty$.

Theorem 4.11. Let R be a commutative von Neumann regular ring that is not a field such that there is a positive integer n such that $u^{n}=1$ for every $u \in U(R)$. Then $Z_{k n}(R)^{*}=Z_{n}(R)^{*}=I d(R) \backslash\{0,1\} \neq \emptyset$ and $Z_{k n+j}(R)^{*}=Z_{j}(R)^{*}$ for every positive integer k and integer j with $1 \leq j \leq n$. Thus $\Gamma_{k n+j}(R)=\Gamma_{j}(R)$ for every positive integer k and integer j with $1 \leq j \leq n$, i.e., $\Gamma_{r}(R)=\Gamma_{s}(R)$ for positive integers r, s if $r \equiv s(\bmod n)$. In particular, $\Gamma_{k n+1}(R)=\Gamma(R)$ and $\left|\Gamma_{k}(R)\right| \geq 2$ for every positive integer k.

Proof. Let $x \in Z(R)$. Then $x=e u$ for some $e \in \operatorname{Id}(R) \backslash\{1\}$ and $u \in U(R)$ since R is von Neumann regular. Since $u^{n}=1$ for every $u \in U(R)$, we have $x^{n}=(e u)^{n}=e^{n} u^{n}=e \in Z_{n}(R)$. Thus $Z_{k n}(R)^{*}=Z_{n}(R)^{*}=I d(R) \backslash\{0,1\}$ for every positive integer k. Let k be a positive integer and j an integer with $1 \leq j \leq n$. Then $x^{k n+j}=x^{k n} x^{j}=\left(x^{n}\right)^{k} x^{j}=e^{k}(e u)^{j}=e\left(e u^{j}\right)=e u^{j}=(e u)^{j}=x^{j}$; so $Z_{k n+j}(R)^{*}=Z_{j}(R)^{*}$, and hence $\Gamma_{k n+j}(R)=\Gamma_{j}(R)$.

The "in particular" statement is clear since $I d(R) \backslash\{0,1\} \subseteq Z_{k}(R)^{*}$ for every positive integer k and $|I d(R) \backslash\{0,1\}| \geq 2$ since R is reduced and not a field.

Corollary 4.12. (cf. Example $4.14(\mathrm{c}))$ Let R be a reduced finite commutative ring that is not a field. Then there is a positive integer n such that $\Gamma_{k n+j}(R)=\Gamma_{j}(R)$ for every positive integer k and integer j with $1 \leq j \leq n$, i.e., $\Gamma_{r}(R)=\Gamma_{s}(R)$ for positive integers r, s if $r \equiv s(\bmod n)$. Moreover, $\left|\Gamma_{k}(R)\right| \geq 2$ for every positive integer k.

Proof. Since R is a reduced finite commutative ring, R is von Neumann regular and there is a positive integer n such that $u^{n}=1$ for every $u \in U(R)$. The result now follows by Theorem 4.11.

We next give several examples to illustate Theorem 4.11. We use the easily proved fact that $\gamma\left(R_{1} \times R_{2}\right)=\gamma_{Z}\left(R_{1} \times R_{2}\right)=\operatorname{lcm}\left(\gamma\left(R_{1}\right), \gamma\left(R_{2}\right)\right)$ for any two integral domains R_{1} and R_{2}. Moreover, $\gamma\left(R_{1} \times R_{2}\right)=\gamma_{Z}\left(R_{1} \times R_{2}\right)$ for any two commutative rings R_{1} and R_{2} by Theorem 4.7 since $Z\left(R_{1} \times R_{2}\right) \neq \operatorname{Nil}\left(R_{1} \times R_{2}\right)$. However, $\gamma\left(\mathbb{Z}_{8}\right)=4$ and $\gamma\left(\mathbb{Z}_{9}\right)=6$, but $\gamma\left(\mathbb{Z}_{8} \times \mathbb{Z}_{9}\right)=6<12=l c m(4,6)$ (cf. Example 4.14(b)).

Example 4.13. (a) (cf. Example 2.1(c)) Let R be a Boolean ring that is not a field. Then $\operatorname{Nil}(R)=\{0\}$ and $U(R)=\{1\}$; so we may choose $n=1$ in Theorem 4.11 (or $m=n=1$ in Theorem 4.9). Thus $Z_{k}(R)^{*}=Z(R)^{*}=I d(R) \backslash\{0,1\} \neq \emptyset$, and hence $\Gamma_{k}(R)=\Gamma(R) \neq \emptyset$, for every positive integer k.
(b) Let $R=\prod_{\alpha \in \Lambda} K_{\alpha}$, where every K_{α} is a field and $|\Lambda| \geq 2$. Then R is a commutative von Neumann regular ring that is not a field, $U(R)=\left\{\left(x_{\alpha}\right) \in R \mid\right.$ $x_{\alpha} \neq 0$ for every $\left.\alpha \in \Lambda\right\}, Z(R)=R \backslash U(R)=\left\{\left(x_{\alpha}\right) \in R \mid x_{\alpha}=0\right.$ for some $\left.\alpha \in \Lambda\right\}$, and $I d(R)=\left\{\left(x_{\alpha}\right) \in R \mid x_{\alpha}=0\right.$ or 1 for every $\left.\alpha \in \Lambda\right\}$. Note that the elements of $U(R)$ have bounded order if and only if every K_{α} is finite and $\left\{\left|K_{\alpha}\right|\right\}_{\alpha \in \Lambda}$ is finite. We consider several cases when $K_{\alpha}=K$ for every $\alpha \in \Lambda$.
(1) Let $K=\mathbb{C}$. In this case, $Z_{n}(R)^{*}=Z(R)^{*}$ for every positive integer n; so $\Gamma_{n}(R)=\Gamma(R)$ for every positive integer n, and $\gamma(R)=\gamma_{Z}(R)=\infty$.
(2) Let $K=\mathbb{R}$. In this case, $Z_{n}(R)^{*}=Z(R)^{*}$ for every odd positive integer n, and $Z_{n}(R)=\left\{\left(x_{\alpha}\right) \in Z(R) \mid x_{\alpha} \geq 0\right\}$ for every even positive integer n. So $\Gamma_{n}(R)=\Gamma(R)$ for every odd positive integer $n, \Gamma_{n}(R)=\Gamma_{2}(R)$ for every even positive integer n, and $\Gamma_{2}(R) \subsetneq \Gamma(R)$. Also, $\gamma(R)=\gamma_{Z}(R)=\infty$.
(3) Let $K=\mathbb{Q}$. In this case, the $Z_{n}(R)^{*}$'s, and thus the $\Gamma_{n}(R)$'s, are all distinct and nonempty since $\left(2^{m}, 0, \ldots\right) \in Z_{m}(R)^{*} \backslash Z_{n}(R)^{*}$ when $m<n$. However, $\Gamma_{n}(R) \subseteq \Gamma_{m}(R)$ when $m \mid n$, and $\gamma(R)=\gamma_{Z}(R)=\infty$.
(4) Let $K=\mathbb{F}_{p^{m}}$. In this case, $n=p^{m}-1$ in Theorem 4.11 since $U(K)=K^{*}$ is cyclic, and thus $\gamma(R)=\gamma_{Z}(R)=p^{m}-1$ by Theorem 4.10. Hence $Z_{k n+j}(R)^{*}=Z_{j}(R)^{*}$, and thus $\Gamma_{k n+j}(R)=\Gamma_{j}(R)$ for every positive integer k and integer j with $1 \leq j \leq n$, i.e., $\Gamma_{r}(R)=\Gamma_{s}(R)$ for positive integers r, s if $r \equiv s(\bmod \mathrm{n})$.
(c) Let $R=\prod_{i=1}^{\infty} \mathbb{Z}_{2}+\oplus_{i=1}^{\infty} \mathbb{F}_{2^{i}} \subsetneq T=\prod_{i=1}^{\infty} \mathbb{F}_{2^{i}}$. Then R and T are both commutative von Neumann regular rings, and every $u \in U(R)$ has finite order, but the orders are not bounded. Thus R is a Euler ring, but not an exact-Euler ring; so $\gamma(R)=\gamma_{Z}(R)=\infty$. The $Z_{n}(R)^{*}$'s are all distinct, and thus the $\Gamma_{n}(R)$'s are all distinct. Also, T is not a Euler ring, $\gamma(T)=\gamma_{Z}(T)=\infty$, and the $Z_{n}(T)^{*}$'s and $\Gamma_{n}(T)$'s are all distinct.

In the next example, we compute $\gamma(R)$ and $\gamma_{Z}(R)$ when R is either \mathbb{Z}_{n} or a finite commutative von Neumann regular ring.

Example 4.14. (a) We first consider $R=\mathbb{Z}_{p^{m}}$ for a prime p and integer $m \geq 1$. If p is odd, then $U\left(\mathbb{Z}_{p^{m}}\right)$ is cyclic of order $p^{m-1}(p-1)$ and its maximal ideal $p \mathbb{Z}_{p^{m}}$ has index of nilpotence $n_{p \mathbb{Z}_{p^{m}}}=m$. Thus $\gamma_{Z}\left(\mathbb{Z}_{p^{m}}\right)=m$, and $\gamma\left(\mathbb{Z}_{p^{m}}\right)=p^{m-1}(p-1)$ since $p^{m-1}(p-1) \geq m$ for every $m \geq 1$. If $p=2$, then $U\left(\mathbb{Z}_{2^{m}}\right)$ is cyclic of order 1 and 2 for $m=1,2$, respectively, and isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2^{m-2}}$ for $m \geq 3$; so $u^{2^{m-2}}=1$ for every $u \in U\left(\mathbb{Z}_{2^{m}}\right)$ when $m \geq 3$. Since $2 \mathbb{Z}_{2^{m}}$ has index of nilpotency $n_{2 \mathbb{Z}_{2^{m}}}=m$, we have $\gamma_{Z}\left(\mathbb{Z}_{2^{m}}\right)=m, \gamma\left(\mathbb{Z}_{2^{m}}\right)=2^{m-1}$ when $m=1,2,3$ (cf. Remark 4.5(b) for $m=3)$, and $\gamma_{Z}\left(\mathbb{Z}_{2^{m}}\right)=m, \gamma\left(\mathbb{Z}_{2^{m}}\right)=2^{m-2}$ when $m \geq 4$ since $2^{m-2} \geq m$ for every $m \geq 4$.
(b) Let $R=\mathbb{Z}_{p_{1}^{n_{1}}} \times \cdots \times \mathbb{Z}_{p_{k}^{n_{k}}}$, where $k \geq 2$, the p_{i} are primes with $p_{1} \leq \cdots \leq p_{k}$, and the n_{i} are positive integers. When the primes p_{i} are all distinct, we have $R=\mathbb{Z}_{n}$ for $n=p_{1}^{n_{1}} \cdots p_{k}^{n_{k}}$. Since $Z(R) \neq \operatorname{Nil}(R)$, we have $\gamma(R)=\gamma_{Z}(R)=m$ by Theorem 4.9. We consider three case to compute m.
(1) Let $p_{1}=\cdots=p_{k}=2$ and $n_{1} \leq \cdots \leq n_{k}$. Then $\gamma(R)=\gamma_{Z}(R)=\gamma\left(\mathbb{Z}_{2^{n_{k}}}\right)=$ $2^{n_{k}-1}$ when $n_{k}=1,2,3$, and $2^{n_{k}-2}$ when $n_{k} \geq 4$, by part (a) above.
(2) Let $p_{1}=\cdots=p_{i}=2$ for i with $1 \leq i<k, n_{1} \leq \cdots \leq n_{i}$, and $p_{i+1}>2$. Then $\gamma(R)=\gamma_{Z}(R)=l c m\left(p_{i+1}^{n_{i+1}-1}\left(p_{i+1}-1\right), \ldots, p_{k}^{n_{k}-1}\left(p_{k}-1\right)\right)$ for $n_{i} \leq 2$ since $p_{i+1}-1 \geq 2$ is even, and $\gamma(R)=\gamma_{Z}(R)=\operatorname{lcm}\left(2^{n_{i}-2}, p_{i+1}^{n_{i+1}-1}\left(p_{n_{i+1}}-\right.\right.$ 1), $\ldots, p_{k}^{n_{k}-1}\left(p_{k}-1\right)$) for $n_{i} \geq 4$. For $n_{i}=3, \gamma(R)=\gamma_{Z}(R)=4$ if $p_{i+1}=\cdots=p_{k}=3$ and $n_{i+1}=\cdots=n_{k}=1$, and $\gamma(R)=\gamma_{Z}(R)=$ $\operatorname{lcm}\left(p_{i+1}^{n_{i+1}-1}\left(p_{i+1}-1\right), \ldots, p_{k}^{n_{k}-1}\left(p_{k}-1\right)\right)$ otherwise (i.e., some $n_{j} \geq 2$ or $p_{j} \geq 5$ for $\left.i+1 \leq j \leq k\right)$ since then either $p_{j+1}^{n_{j+1}-1} \geq 3$ or $p_{j+1}-1 \geq 4$ is even (cf. Remark 4.5(b)).
(3) Let $p_{1}>2$. Then $\gamma(R)=\gamma_{Z}(R)=\operatorname{lcm}\left(p_{1}^{n_{1}-1}\left(p_{1}-1\right), \ldots, p_{k}^{n_{k}-1}\left(p_{k}-1\right)\right)$.

In a similar manner, one can compute $\gamma(R)$ and $\gamma_{Z}(R)$ when R is any Artinian commutative ring.
(c) Let R be a finite commutative von Neumann regular ring that is not a field.
 Since every $U\left(\mathbb{F}_{p_{i}^{n_{i}}}\right)$ is cyclic of order $p_{i}^{n_{i}}-1$, we have $m=\operatorname{lcm}\left(p_{1}^{n_{1}}-1, \ldots, p_{k}^{n_{k}}-1\right)$ is the least positive integer such that $u^{m}=1$ for every $u \in U(R)$. Thus $\gamma(R)=$ $\gamma_{Z}(R)=\operatorname{lcm}\left(p_{1}^{n_{1}}-1, \ldots, p_{k}^{n_{k}}-1\right)$ by Theorem 4.10. For $R=\mathbb{F}_{p_{1}^{n_{1}}}$, we have $\gamma(R)=p_{1}^{n_{1}}-1$ and $\gamma_{Z}(R)=1$.

Recall that a commutative ring R is a p.p. ring if every principal ideal of R is projective, equivalently, if every element of R is the product of an idempotent and a regular element of $R([20]$ and [25, Proposition 15]). Thus a commutative p.p. ring that is not an integral domain has nontrivial idempotents. For example, a commutative von Neumann regular ring is a p.p. ring, and $\mathbb{Z} \times \mathbb{Z}$ is a p.p. ring that is not von Neumann regular. Also, note that a finite commutative ring is a p.p. ring if and only if it is von Neumann regular, if and only if it is a finite product of finite fields.

The nextl result gives a characterization of certain p.p. rings.
Theorem 4.15. Let R be a reduced commutative ring that is not an integral domain and n a positive integer. Then the following statements are equivalent.
(1) R is a p.p. ring and x^{n} is idempotent for every $x \in Z(R)$.
(2) R is a p.p. ring and x^{n} is idempotent for every $x \in R$.
(3) R is a von Neumann regular ring and x^{n} is idempotent for every $x \in R$.
(4) R is a von Neumann regular ring and x^{n} is idempotent for every $x \in Z(R)$.
(5) R is a von Neumann regular ring and $u^{n}=1$ for every $u \in U(R)$.
(6) $Z_{n}(R)^{*}=\operatorname{Id}(R) \backslash\{0,1\} \neq \emptyset$.

Moreover, if any of the above hold, then $\Gamma_{k n+j}(R)=\Gamma_{j}(R) \neq \emptyset$ for every positive integer k and integer j with $1 \leq j \leq n$, i.e., $\Gamma_{r}(R)=\Gamma_{s}(R)$ for positive integers r, s if $r \equiv s(\bmod n)$.

Proof. (1) $\Rightarrow(2) Z(R) \neq N i l(R)$ since R is reduced and not an integral domain; so $x^{n} \in I d(R)$ for every $x \in R$ by Theorem 4.7.
$(2) \Rightarrow(3)$ Since $x^{n} \in I d(R)$ for every $x \in R$, every regular element of R is a unit. Let $y \in R$. Then $y=e u$ for some $e \in I d(R)$ and $u \in U(R)$ since R is a p.p. ring and every regular element of R is a unit; so R is von Neumann regular.
$(3) \Rightarrow(4)$ This is clear.
$(4) \Rightarrow(5)$ This follows from Theorem 4.10.
$(5) \Rightarrow(6)$ This follows from Theorem 4.11.
(6) $\Rightarrow(1)$ We have $Z(R) \neq N i l(R)$ as in (1) $\Rightarrow(2)$ above. Thus $x^{n} \in \operatorname{Id}(R)$ for every $x \in R$ by Theorem 4.7. Hence R is an exact-Euler ring, and thus R is π regular by Theorem 4.3. Since R is reduced and π-regular, R is also von Neumann regular. Hence R is a p.p. ring and $x^{n} \in I d(R)$ for every $x \in Z(R)$.

The "morever" statement follows from Theorem 4.11.
We end this section with a short discussion summarizing when $\Gamma_{n}(R)$ is connected (cf. Theorem 2.2). We say that a commutative ring R (or commutative semigroup S with 0) satisfies property $\left(*_{n}\right)$ for a positive integer n if either $Z_{n}(R)=\{0\}$ or $x \in Z(R) \Rightarrow x^{n} \in Z\left(Z_{n}(R)\right)$, i.e., either $Z_{n}(R)=\{0\}$ or $Z\left(Z_{n}(R)\right)=Z_{n}(R)$;
and that R satisfies property $(*)$ if it satisfies $\left(*_{n}\right)$ for every positive integer n. Every commutative ring clearly satisfies $\left(*_{1}\right)$.

Theorem 4.16. Let R be a commutative ring and n a positive integer.
(a) R satisfies $\left(*_{n}\right)$ if and only if $\Gamma_{n}(R)$ is connected.
(b) R satisfies $\left(*_{n}\right)$ if and only if $\Gamma_{n}(R)=\Gamma\left(Z_{n}(R)\right)$.
(c) $T(R)$ satisfies $\left(*_{n}\right)$ if and only if R satisfies $\left(*_{n}\right)$.
(d) Let $\left\{R_{\alpha}\right\}_{\alpha \in \Lambda}$ be a family of commutative rings. Then $R=\prod_{\alpha \in \Lambda} R_{\alpha}$ satisfies $\left(*_{n}\right)$ if and only if R_{α} satisfies $\left(*_{n}\right)$ for every $\alpha \in \Lambda$.
(e) If R is reduced, zero-dimensional, or $Z(R)=\operatorname{Nil}(R)$, then R satisfies $(*)$.
(f) If R is Artinian, then R satisfies (*).
(g) If R is local with maximal ideal $\operatorname{Nil}(R)$, then R satisfies $(*)$.

Proof. (a) This follows from Theorem 2.2.
(b) This also follows from Theorem 2.2.
(c) This follows from Theorem 2.11 and (a).
(d) Let $R=\prod_{\alpha \in \Lambda} R_{\alpha}$. The result is clear if $|\Lambda|=1$; so assume that $|\Lambda| \geq 2$.

In this case, $Z_{n}(R) \neq\{0\}$ since R has nontrivial idempotents. First, suppose that R satisfies $\left(*_{n}\right)$, and let $\alpha \in \Lambda$. For $0 \neq x_{\alpha} \in Z\left(R_{\alpha}\right)$, let $0 \neq x=$ $\left(1, \ldots, 1, x_{\alpha}, 1, \ldots\right) \in Z(R)$. Then $0 \neq x^{n} \in Z\left(Z_{n}(R)\right)$ by hypothesis; so there is a $0 \neq y^{n}=\left(0, \ldots, 0, y_{\alpha}^{n}, 0, \ldots\right) \in Z_{n}(R)$ with $x^{n} y^{n}=0$. Thus $0 \neq y_{\alpha}^{n} \in Z_{n}\left(R_{\alpha}\right)$ and $x_{\alpha}^{n} y_{\alpha}^{n}=0$. Hence $x_{\alpha}^{n} \in Z\left(Z_{n}\left(R_{\alpha}\right)\right)$; so R_{α} satisfies $\left(*_{n}\right)$.

Conversely, suppose that R_{α} satisfies $\left(*_{n}\right)$ for every $\alpha \in \Lambda$. Note that $Z_{n}(R) \neq$ $\{0\}$. Let $0 \neq x=\left(x_{\alpha}\right) \in Z(R)$. First, suppose that $x_{\beta}=0$ for some $\beta \in \Lambda$. Let $y=\left(0, \ldots, 0,1_{\beta}, 0, \ldots\right) \in Z(R)$. Then $0 \neq y=y^{n} \in Z_{n}(R)$ and $x^{n} y^{n}=0$. Thus $x^{n} \in Z\left(Z_{n}(R)\right)$. So we may assume that $x_{\alpha} \neq 0$ for every $\alpha \in \Lambda$. Hence $0 \neq x_{\beta} \in Z\left(R_{\beta}\right)$ for some $\beta \in \Lambda$. By a similar argument, we may assume that $x_{\beta}^{n} \neq 0$. Since R_{β} satisfies $\left(*_{n}\right)$ by hypothesis and $x_{\beta}^{n} \neq 0$, there is a $y_{\beta} \in Z\left(R_{\beta}\right)$ with $x_{\beta}^{n} y_{\beta}^{n}=0$ and $y_{\beta}^{n} \neq 0$. Let $y=\left(0, \ldots, 0, y_{\beta}, 0, \ldots\right) \in Z(R)$. Then $0 \neq y^{n} \in Z_{n}(R)$ and $x^{n} y^{n}=0$. Thus $x^{n} \in Z\left(Z_{n}(R)\right)$; so R satisfies $\left(*_{n}\right)$.
(e) The reduced (resp., zero-dimensional, $Z(R)=N i l(R)$) case follows from Theorem 2.4 (resp., Theorem 4.1, Theorem 3.3) and (a).
(f) This is a special case of (e) since an Artinian commutative ring is zerodimensional.
(g) This is a special case of (e) since, in this case, $Z(R)=\operatorname{Nil}(R)$.

Example 2.1(a) shows that, unlike the Artinian case, a Noetherian ring R need not satisfy $(*)$. Example 3.12 shows that for every integer $n \geq 2$, there is a commutative ring R_{n} that satisfies $\left(*_{m}\right)$ if and only if $m<n$.

5. Additional n-divisor graphs

In this final section, we consider the n-zero-divisor graph analog for several other related zero-divisor graphs, namely, the extended zero-divisor graph, annihilator graph, and congruence-based zero-divisor graphs. Let S be a commutative semigroup S with 0 .

The extended zero-divisor graph of S is the (simple) graph $\bar{\Gamma}(S)$ with vertices $Z(S)^{*}$, and distinct vertices x and y are adjacent if and only if $x^{m} y^{n}=0$ for positive integers m and n with $x^{m} \neq 0$ and $y^{n} \neq 0$; and the annihilator graph of S is the (simple) graph $A G(S)$ with vertices $Z(S)^{*}$, and distinct vertices x and y are adjacent if and only if $a n n_{S}(x) \cup a n n_{S}(y) \neq a n n_{S}(x y)$ (i.e., $a n n_{S}(x) \cup a n n_{S}(y) \subsetneq$
$\left.a n n_{S}(x y)\right)$. All three graphs $\Gamma(S), \bar{\Gamma}(S)$, and $A G(S)$ have the same set of vertices $Z(S)^{*}$. The graphs $\bar{\Gamma}(S)$ and $A G(S)$ were first defined when S is a commutative ring in [16] and [14], repectively, and then extended to commutative semigroups with 0 in [11] and [1], respectively. For a unified treatment of these three graphs, see [11].

We always have $\Gamma(S) \subseteq \bar{\Gamma}(S)$ and $\bar{\Gamma}(S)=\bar{\Gamma}(Z(S)$). If $S \neq Z(S)$ (e.g., S has an identity element), then we also have $\bar{\Gamma}(S) \subseteq A G(S)$ (cf. [1, Theorem 3.1] and [11]). So we often assume that $S=R$. In this case, all four possible inclusions (i.e., each \subseteq is either \subsetneq or $=$) for $\Gamma(R) \subseteq \bar{\Gamma}(R) \subseteq A G(R)$ are possible ([11, Example 2.3]). However, we need not have $A G(S)=A G(Z(S))$.

The following example shows that we may have $\Gamma(S)=\bar{\Gamma}(S) \nsubseteq A G(S)$ when $S \neq Z(S)$ and $A G(T) \neq A G(Z(T))$ even if T has an identity element.

Example 5.1. Let X be a set with $|X|=\alpha \geq 1$. Define $S=X \cup\{0\}$ to be a commutative semigoup with 0 by defining $x y=0$ for every $x, y \in S$; so $S=Z(S)$. Then $\Gamma(S)=\bar{\Gamma}(S)=K_{\alpha}$ and $A G(S)=\overline{K_{\alpha}}$ since $a n n_{S}(x)=S$ for every $x \in S$. Thus $\Gamma(S)=\bar{\Gamma}(S)=K_{\alpha} \nsubseteq \overline{K_{\alpha}}=A G(S)$. Now define $T=S \cup\{1\}$ to be the commutative semigroup with $\{0\}$ obtained by adjoining an identity element 1 to S. Then $Z(T)=S$ and $A G(T)=K_{\alpha}$ since $a n n_{T}(x)=S$ for every $0 \neq x \in S$ and $a n n_{T}(0)=T$. Hence $A G(T)=K_{\alpha} \neq \overline{K_{\alpha}}=A G(Z(T))$.

In a similar manner as to $\Gamma_{n}(S)$, we define $\bar{\Gamma}_{n}(S)$ and $A G_{n}(S)$ to be the induced subgraphs of $\bar{\Gamma}(S)$ and $A G(S)$, respectively, with vertices $Z_{n}(S)^{*}$. Note that $\Gamma_{n}(S) \subseteq \bar{\Gamma}_{n}(S)$, and thus $\bar{\Gamma}_{n}(S)$ is connected when $\Gamma_{n}(S)$ is connected, for every integer $n \geq 2$. If $S \neq Z(S)$ (e.g., S has an identity element), then also $\bar{\Gamma}_{n}(S) \subseteq A G_{n}(S)$, and hence $A G_{n}(S)$ is connected when $\bar{\Gamma}_{n}(S)$ is connected, for every integer $n \geq 2$. Moreover, if $\Gamma_{n}(S)$ is connected, then $\bar{\Gamma}_{n}(S)=\bar{\Gamma}\left(S_{n}\right)=\bar{\Gamma}\left(Z_{n}(S)\right)$ when $\left|Z_{n}(S)^{*}\right| \geq 2$.

Clearly $\bar{\Gamma}(S)=\Gamma(S)$ when S is reduced, and $\bar{\Gamma}_{n}(S)=\Gamma_{n}(S)$ when $Z_{n}(S)$ is reduced. We next consider some cases when $\bar{\Gamma}_{n}(S)=\Gamma_{n}(S)$.

Theorem 5.2. Let S be a commutative semigroup with 0 .
(a) If S is reduced, then $\bar{\Gamma}_{n}(S)=\Gamma_{n}(S)$ for every positive integer n.
(b) Let $N=\sup \left\{n_{x} \mid x \in N i l(S)\right\}$. If $N<\infty$, then $\bar{\Gamma}_{n}(S)=\Gamma_{n}(S)$ for every integer $n \geq N$. In particular, if S is finite, then $\bar{\Gamma}_{n}(S)=\Gamma_{n}(S)$ for all large n.
(c) If $\bar{\Gamma}_{n}(S)=\Gamma_{n}(S)$, then $\bar{\Gamma}_{k n}(S)=\Gamma_{k n}(S)$ for every positive integer k. In particular, if $\bar{\Gamma}(S)=\Gamma(S)$, then $\bar{\Gamma}_{n}(S)=\Gamma_{n}(S)$ for every positive integer n.

Proof. (a) Suppose that $\left(x^{n}\right)^{i}\left(y^{n}\right)^{j}=0$ for $x, y \in Z(S)^{*}$ and positive integers n, i, j with $\left(x^{n}\right)^{i},\left(y^{n}\right)^{j} \neq 0$. Then $x y \in \operatorname{Nil}(S)=\{0\}$; so $x^{n} y^{n}=0$. Thus $\bar{\Gamma}_{n}(S)=\Gamma_{n}(S)$.
(b) Note that $Z_{n}(S)$ is reduced for $n \geq N$. The proof is then similar to that in part (a) above.
(c) Suppose that $\bar{\Gamma}_{n}(S)=\Gamma_{n}(S)$ and $\left(x^{k n}\right)^{i}\left(y^{k n}\right)^{j}=0$ for positive integers n, k, i, j with $\left(x^{k n}\right)^{i},\left(y^{k n}\right)^{j} \neq 0$. Then $\left(x^{n}\right)^{k i}\left(y^{n}\right)^{k j}=0$ with $\left(x^{n}\right)^{k i},\left(y^{n}\right)^{k j} \neq 0$; so $x^{n} y^{n}=0$. Thus $x^{k n} y^{k n}=0$, and hence $\bar{\Gamma}_{k n}(S)=\Gamma_{k n}(S)$.

The following is an example where $\Gamma_{n}(R) \subsetneq \bar{\Gamma}_{n}(R) \subsetneq A G_{n}(R)$ for every positive integer n.
Example 5.3. (a) Let $R=\mathbb{Z}_{2}\left[\left\{X_{n}, Y_{n}\right\}_{n=1}^{\infty}\right] /\left(\left\{X_{n}^{3 n}, Y_{n}^{3 n}, X_{n}^{2 n} Y_{n}^{2 n}\right\}_{n=1}^{\infty}\right)=\mathbb{Z}_{2}\left[\left\{x_{n}, y_{n}\right\}_{n=1}^{\infty}\right]$. Then R is a zero-dimensional commutative local ring with maximal ideal $Z(R)=$
$\operatorname{Nil}(R)=\left(\left\{x_{n}, y_{n}\right\}_{n=1}^{\infty}\right)$. Thus $\Gamma_{n}(R)$, and hence $\bar{\Gamma}_{n}(R)$ and $A G_{n}(R)$, are connected for every positive integer n by Theorem 3.3 or Theorem 4.1. Clearly $Z_{m}(R) \neq Z_{n}(\underline{R})$ for positive integers $m<n$ since $x_{m}^{m} \in Z_{m}(R) \backslash Z_{n}(R)$. Note that $\Gamma_{n}(R) \subsetneq \bar{\Gamma}_{n}(R)$ since $\left(x^{n}\right)^{2}\left(y^{n}\right)^{2}=0$ with $\left(x^{n}\right)^{2},\left(y^{n}\right)^{2} \neq 0$, but $x^{n} y^{n} \neq 0$.
(b) Let $R=A \times B$, where $A=\mathbb{Z}_{2}\left[\left\{x_{n}, y_{n}\right\}_{n=1}^{\infty}\right]$ as in part (a) above and $B=$ $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$. Then R is a zero-dimensional commutative ring and $\Gamma_{n}(R)$, and thus $\bar{\Gamma}_{n}(R)$ and $A G_{n}(R)$, are connected for every positive integer n by Theorem 4.1. It is easily checked that $Z_{m}(R) \neq Z_{n}(R)$ for all positive integers $m<n$ and $\Gamma_{n}(R) \subsetneq \bar{\Gamma}_{n}(R) \subsetneq A G_{n}(R)$ for every positive integer n.
(c) We may have $\Gamma(R) \subsetneq \bar{\Gamma}(R) \subsetneq A G(R)$ for a commutative ring R and $\Gamma_{n}(R)=$ $\bar{\Gamma}_{n}(R)=A G_{n}(R)$ for some positive integer n. Let $R=\mathbb{Z}_{2} \times \mathbb{Z}_{8}$. Then it is easily checked that $\Gamma(R) \subsetneq \bar{\Gamma}(R) \subsetneq A G(R)$ and $\Gamma_{4}(R)=\bar{\Gamma}_{4}(R)=A G_{4}(R)=K_{2}=K_{1,1}$.

Let R be a commutative ring with $1 \neq 0$ and \sim a multiplicative congruence relation on R, i.e., \sim is an equivalence relation and $x \sim y \Rightarrow x z \sim y z$ for every $x, y, z \in R$. Let $R / \sim=\{[x] \mid x \in R\}$ be the set of congruence classes of \sim. Then $S=R / \sim$ is a commutative monoid under the multiplication $[x][y]=[x y]$ with zero element [0] and identity element [1]. As in [8], let $\Gamma_{\sim}(R)=\Gamma(R / \sim)$ be the \sim-zero-divisor graph of R. We then define $\bar{\Gamma} \sim(R)=\bar{\Gamma}(R / \sim)$ and $A G_{\sim}(R)=$ $A G(R / \sim)$ as in [11]. All three graphs have the same set of vertices $Z(R / \sim)^{*}$, and $\Gamma_{\sim}(R) \subseteq \bar{\Gamma}_{\sim}(R) \subseteq A G_{\sim}(R)$ ([11, Theorem 3.1(a)]). Note that $I=[0]$ is a semigroup ideal of R, and $[x]$ and $[y]$ are adjacent in $\Gamma_{\sim}(R)$ (resp., $\left.\bar{\Gamma}_{\sim}(R), A G_{\sim}(R)\right)$ if and only if $x y \in I$ (resp., $x^{m} y^{n} \in I$ for positive integers m and n with $x^{m}, y^{n} \notin I$, $(I: x) \cup(I: y) \neq(I: x y))$.

For a positive integer n, we define $\Gamma_{n \sim}(R)=\Gamma_{n}(R / \sim), \bar{\Gamma}_{n \sim}(R)=\bar{\Gamma}_{n}(R / \sim)$, and $A G_{n \sim}(R)=A G_{n}(R / \sim)$ with vertices $Z_{n}(R / \sim)^{*}$. Thus $\Gamma_{n \sim}(R) \subseteq \bar{\Gamma}_{n \sim}(R) \subseteq$ $A G_{n \sim}(R)$ for every positive integer n.

When \sim is defined by $x \sim y \Leftrightarrow \operatorname{ann}_{R}(x)=a n n_{R}(y)$, then $\Gamma_{\sim}(R)=\Gamma_{E}(R)$ is the compressed zero-divisor graph (see [6] and [7]) and $[x][y]=[0] \Leftrightarrow x y=0$. Moreover, $R_{E}=R / \sim$ is a Boolean monoid when R is reduced; so $\Gamma_{n \sim}(R)=$ $\Gamma_{\sim}(R)=\bar{\Gamma}_{\sim}(R)=\bar{\Gamma}_{n \sim}(R)$ for every positive integer n when R is reduced.

Let I be an ideal of R. When \sim is defined by $x \sim y \Leftrightarrow x=y$ or $x, y \in I$, then R / \sim is the Rees semigroup of R with respect to I and $Z(R / \sim)=Z_{I}(R)=\{x \in$ $R \backslash I \mid x y \in I$ for some $y \in R \backslash I\}$. Then $\Gamma_{\sim}(R), \bar{\Gamma}_{\sim}(R)$, and $A G_{\sim}(R)$ are the usual ideal-based graphs $\Gamma_{I}(R), \bar{\Gamma}_{I}(R)$, and $A G_{I}(R)$, respectively, and x and y are adjacent in $\Gamma_{I}(R)$ (resp., $\bar{\Gamma}_{I}(R), A G_{I}(R)$) if and only if $x y \in I$ (resp., $x^{m} y^{n} \in I$ for positive integers m and n with $\left.x^{m}, y^{n} \notin I,(I: x) \cup(I: y) \neq(I: x y)\right)$.

We leave a more detailed study of these graphs to a later time and place.

Acknowledgment

Ayman Badawi is supported by the American University of Sharjah Research Fund FRG20 AS1614.

References

[1] M. Afkhami, K. Khashyarmanesh, and S. M. Sakhdari, The annihilator graph of a commutative semigroup, J. Algebra Appl. 14(2) (2015), 1550015 (14 pp).
[2] D. F. Anderson, T. Asir, A. Badawi, and T. Tamizh Chelvam, Graphs from Rings, Springer, 2021.
[3] D. F. Anderson and A. Badawi, On the zero-divisor graph of a ring, Comm. Algebra 36 (2008), 3073-3092.
[4] D. F. Anderson and A. Badawi, Von Neumann regular and related elements in commutative rings, Algebra Colloq. 19(SPL. ISS. 1) (2012), 1017-1040.
[5] D. F. Anderson and A. Badawi, The zero-divisor graph of a commutative semigroup: A survey, In Groups, Modules, and Model Theory-Surveys and Recent Developments, edited by Manfred Doste, et al., 23-39, Springer, Cham, 2017.
[6] D. F. Anderson and J. D. LaGrange, Commutative Boolean monoids, reduced rings, and the compressed zero-divisor graph, J. Pure Appl. Algebra 216 (2012), 1626-1636.
[7] D. F. Anderson and J. D. LaGrange, Some remarks on the compressed zero-divisor graph, J. Algebra 447 (2016), 297-321.
[8] D. F. Anderson and E. F. Lewis, A general theory of zero-divisor graphs over a commutative ring, Int. Electron. J. Algebra 20 (2016), 111-135.
[9] D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999) 434-447.
[10] D. F. Anderson, R. Levy, and J. Shapiro, Zero-divisor graphs, von Neumann regular rings, and Boolean algebras, J. Pure Appl. Algebra 180 (2003), 221-241.
[11] D. F. Anderson and G. McClurkin, Generalization of the zero-divisor graph, Int. Electron. J. Algebra 27 (2020), 237-262.
[12] D. F. Anderson and S. B. Mulay, On the diameter and girth of a zero-divisor graph, J. Pure Appl. Algebra 210 (2007), 543-550.
[13] A. Badawi, On abelian π-regular rings, Comm. Algebra 25 (1997), 1009-1021.
[14] A. Badawi, On the annihilator graph of a commutative ring, Comm. Algebra 42 (2014), 108-121.
[15] A. Badawi, A. Y. Chin, and H. V. Chen, On rings with near idempotent elements, International J. of Pure and Applied Math 1 (2002), 255-262.
[16] D. Bennis, J. Mikram, and F. Taraza, On the extended zero-divisor graph of commutative rings, Turkish J. Math. 40 (2016), 376-388.
[17] B. Bollobás, Graph Theory, An Introductory Course, Springer-Verlag, New York, 1979.
[18] F. DeMeyer and L. DeMeyer, Zero-divisor graphs of semigroups, J. Algebra 283 (2005), 190198.
[19] F. R. DeMeyer, T. McKenzie, and K. Schneider, The zero-divisor graph of a commutative semigroup, Semigroup Forum 65 (2002), 206-214.
[20] S. Endo, Note on p.p. rings. (A supplement to Hattori's paper), Nagoya Math. J. 17 (1960) 167-170.
[21] R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, New York, 1972.
[22] J. A. Huckaba, Commutative Rings wirh Zero Divisors, Marcel Dekker, New York/Basel, 1988.
[23] J. D. LaGrange, Characterizations of three classes of zero-divisor graphs, Canad. Math. Bull. 55 (2012), 127-137.
[24] R. Levy, and J. Shapiro, The zero divisor graph of von Neumann regular rings, Comm. Algebra 30 (2002), 745-750.
[25] W. W. McGovern, Clean semiprime f-rings with bounded inversion, Comm. Algebra 31 (2003) 3295-3304.
[26] S. B. Mulay, Rings having zero-divisor graphs of small diameter or large girth, Bull. Austral. Math. Soc. 72 (2005), 481-490.
[27] S. Spiroff and C. Wickham, A zero divisor graph determined by equivalence classes of zero divisors, Comm. Algebra 39 (2011), 2338-2348.

Department of Mathematics, The University of Tennessee, Knoxville, TN 37996-1320, U. S. A.

Email address: danders5@utk.edu
Department of Mathematics \& Statistics, The American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates

Email address: abadawi@aus.edu

[^0]: ${ }^{0}$ Corresponding author: Ayman Badawi, abadawi@aus.edu
 Date: March 15, 2022.
 2010 Mathematics Subject Classification. Primary: 13A70; Secondary: 05C25, 05C99, 13A15, 13B99.

 Key words and phrases. Idempotent elements, zero-divisors, commutative semigroup with zero, commutative ring with identity, von Neumann regular ring, π-regular ring, zero-divisor graph, annihilator graph, extended zero-divisor graph, congruence-based zero-divisor graph.

