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Abstract. Let R be a commutative ring with 1 6= 0 and n a positive integer.

A proper ideal I of R is an n-semiprimary ideal of R if whenever xnyn ∈ I for
x, y ∈ R, then xn ∈ I or yn ∈ I. Let R be an integral domain with quotient

field K. A proper ideal I of R is an n-powerful ideal of R if whenever xnyn ∈ I
for x, y ∈ K, then xn ∈ R or yn ∈ R; and I is an n-powerful semiprimary ideal
of R if whenever xnyn ∈ I for x, y ∈ K, then xn ∈ I or yn ∈ I. If every prime

ideal of R is an n-powerful semiprimary ideal of R, then R is an n-pseudo-

valuation domain (n-PVD). In this paper, we study the above concepts and
relate them to several generalizations of pseudo-valuation domains.

1. introduction

Let R be a commutative ring with 1 6= 0 and n a positive integer. Recall that
an ideal I of R is a semiprimary ideal of R if

√
I is a prime ideal of R. In this

paper, we introduce and study n-semiprimary ideals (resp., n-powerful semiprimary
ideals in integral domains), where a proper ideal I of R is n-semiprimary (resp.,
n-powerful semiprimary) if whenever xnyn ∈ I for x, y ∈ R (resp., x, y ∈ K, the
quotient field of R), then xn ∈ I or yn ∈ I. These concepts generalize prime ideals
and are generalized by semiprimary ideals. We also investigate several other “n”
generalizations obtained by replacing x with xn in the definition.

In Section 2, we give some basic properties of n-semiprimary ideals. For example,
we show that an n-semiprimary ideal is semiprimary, and the converse holds when
R is Noetherian. We also show that an n-semiprimary ideal is m-semiprimary for
every integer m ≥ n. In Section 3, we characterize n-semiprimary ideals in several
classes of commutative rings. In particular, we investigate n-semiprimary ideals in
zero-dimensional commutative rings, Dedekind domains, valuation domains, and
idealizations. In Section 4, we study n-powerful semiprimary ideals in integral
domains and introduce n-pseudo-valuation domains (n-PVDs), a generalization of
pseudo-valuation domains (PVDs). We also study n-valuation domains (n-VDs).
In the final section, Section 5, we introduce pseudo n-valuation domains (PnVDs),
another generalization of PVDs. Many examples are given throughout the paper
to illustrate the theory.

Throughout, R will be a commutative ring with 1 6= 0,
√
I = {x ∈ R | xn ∈ I for

some n ∈ N} for I an ideal of R, ideal of nilpotent elements nil(R) =
√
{0}, group

of units U(R), (Krull) dimension dim(R), and characteristic char(R). An overring
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of an integral domain R with quotient field K is a subring of K containing R, and
we denote the integral closure of R (in K) by R. In particular, if I is an ideal of R,
then (I : I) = {x ∈ K | xI ⊆ I} is an overring of R. Other definitions will be given
throughout the paper as needed. As usual, N, Z, Zn, Fpn , Q, R, and C will denote
the set of positive integers, the rings of integers and integers mod n, the finite field
with pn elements, and the fields of rational numbers, real numbers, and complex
numbers, repectively. For any undefined terminology, see [23], [26], [27], or [28].

2. Basic properties of n-semiprimary ideals

In this section, we give some basic properties of n-semiprimary ideals. We begin
with the definition.

Definition 2.1. Let I be a proper ideal of a commutative ring R and n a positive
integer. Then I is an n-semiprimary ideal of R if whenever xnyn ∈ I for x, y ∈ R,
then xn ∈ I or yn ∈ I.

Note that a 1-semiprimary ideal is just a prime ideal. For convenience, call a
commutative ring R an n-ring if xnyn = 0 for x, y ∈ R implies xn = 0 or yn = 0.
Then a 1-ring is just an integral domain, R is an n-ring if and only if {0} is an
n-semiprimary ideal of R, and R/I is an n-ring if and only I is an n-semiprimary
ideal of R. We start with some elementary results that follow directly from the
definitions.

Theorem 2.2. Let I be a proper ideal of a commutative ring R.
(a) Let I be an n-semiprimary ideal of R. Then I is an mn-semiprimary ideal

of R for every positive integer m. (See Theorem 2.14 for a stronger result.)
(b) Let J ⊆ I be proper ideals of R. Then I is an n-semiprimary ideal of R if

and only if I/J is an n-semiprimary ideal of R/J .
(c) Let I be an n-semiprimary ideal of R and S a multiplicatively closed subset

of R with I ∩ S = ∅. Then IS is an n-semiprimary ideal of RS.

We next show that an n-semiprimary ideal is indeed semiprimary.

Theorem 2.3. Let I be an n-semiprimary ideal of a commutative ring R. Then√
I is a prime ideal of R and xn ∈ I for every x ∈

√
I. In particular, I is a

semiprimary ideal of R, and x ∈
√
I if and only if xn ∈ I.

Proof. Let xy ∈
√
I for x, y ∈ R. Then there is a positive integer k such that

(xk)n(yk)n = (xy)kn ∈ I. Thus xkn = (xk)n ∈ I or ykn = (yk)n ∈ I since I is

an n-semiprimary ideal of R. Hence x ∈
√
I or y ∈

√
I; so

√
I is a prime ideal

of R. Let x ∈
√
I and m be the least positive integer such that xmn ∈ I. Then

xn(xm−1)n = xnx(m−1)n = xmn ∈ I, and thus xn ∈ I or x(m−1)n ∈ I since I is an
n-semiprimary ideal of R. Hence m = 1; so xn ∈ I. The “in particular” statement
is clear. �

The following is an example of a semiprimary ideal of a commutative ring R
that is not an n-semiprimary ideal for any positive integer n. Note that R is not
Noetherian. In fact, Corollary 2.6 shows that semiprimary ideals in a commutative
Noetherian ring are n-semiprimary for all large n.
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Example 2.4. Let R = Z2[{Xn}∞n=1] and I = ({Xn
n}∞n=1). Then

√
I = ({Xn}∞n=1)

is a prime ideal of R; so I is a semiprimary ideal of R. However, I is not an n-
semiprimary ideal of R for any positive integer n since Xn

2nX
n
2n = X2n

2n ∈ I, but
Xn

2n 6∈ I.

The next theorem gives a sufficient condition for a semiprimary ideal to be
an n-semiprimary ideal. As a consequence, n-absorbing semiprimary ideals are
n-semiprimary and semiprimary ideals in commutative Noetherian rings are n-
semiprimary for all large n.

Theorem 2.5. Let I be a proper ideal of a commutative ring R such that P =
√
I is

a prime ideal of R and Pn ⊆ I for a positive integer n. Then I is an m-semiprimary
ideal of R for every integer m ≥ n. In particular, Qn is an m-semiprimary ideal
of R for every prime ideal Q of R and integer m ≥ n.

Proof. Let xnyn ∈ I ⊆ P for x, y ∈ R. Then x ∈ P or y ∈ P . Thus xn ∈ Pn ⊆ I or
yn ∈ Pn ⊆ I, and hence I is an n-semiprimary ideal of R. Moreover, Pm ⊆ Pn ⊆ I
for every integer m ≥ n; so I is also an m-semiprimary ideal of R for every integer
m ≥ n. The “in particular” statement is clear. �

Corollary 2.6. Let I be a semiprimary ideal of a commutative Noetherian ring R.
Then there is a positive integer n such that I is an m-semiprimary ideal of R for
every integer m ≥ n.

Proof. Since I is a semiprimary ideal of R, P =
√
I is a prime ideal of R, and

Pn ⊆ I for some positive integer n since P is finitely generated. Thus I is an
m-semiprimary ideal of R for every integer m ≥ n by Theorem 2.5. �

Recall ([15], [9]) that a proper ideal I of a commutative ring R is an n-absorbing
ideal of R if whenever x1 · · ·xn+1 ∈ I for x1, . . . , xn+1 ∈ R, then the product of
n of the xi’s is in I (for a related concept, also see [10]). Both n-semiprimary
and n-absorbing ideals generalize prime ideals, but in rather different ways. An
n-semiprimary ideal need not be an n-absorbing ideal (see Example 2.9); and an n-
absorbing ideal need not be n-semiprimary since, for example, (6) is a 2-absorbing

ideal of Z, but not a 2-semiprimary ideal since
√

(6) = (6) is not a prime ideal of

Z. However, we next show that if
√
I is a prime ideal, then an n-absorbing ideal I

is n-semiprimary.

Corollary 2.7. Let I be an n-absorbing ideal of a commutative ring R. If
√
I is a

prime ideal of R, then I is an m-semiprimary ideal of R for every integer m ≥ n. In
particular, an n-absorbing ideal is n-semiprimary if and only if it is semiprimary.

Proof. Let P =
√
I be a prime ideal of R. Then Pn = (

√
I)n ⊆ I since I is an

n-absorbing ideal of R ([18], [22]). Thus I is an m-semiprimary ideal of R for every
integer m ≥ n by Theorem 2.5. The “in particular” statement now follows from
Theorem 2.3. �

Corollary 2.8. Let P1 ⊆ · · · ⊆ Pk be prime ideals of a commutative ring R and
n1, . . . , nk positive integers. Then I = Pn1

1 · · ·P
nk

k is an m-semiprimary ideal of R
for every integer m ≥ n1 + · · ·+ nk.

Proof. Note that
√
I = P1 is a prime ideal of R and Pn1 ⊆ Pn1

1 · · ·P
nk

k = I, where
n = n1 + · · ·+ nk. Thus I is an m-semiprimary ideal of R for every integer m ≥ n
by Theorem 2.5. �
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The converse of Theorem 2.5 need not be true, i.e., if I is an n-semiprimary ideal
of R for some integer n ≥ 2, then (

√
I)n need not be a subset of I. Let p ≥ 2 be

a prime integer. In the following example, we show that there is a proper ideal I
of a commutative ring R such that I is a p-semiprimary ideal of R, but (

√
I)p * I,

and thus I is not a p-absorbing ideal of R ([18], [22]).

Example 2.9. Let p ≥ 2 be a prime integer, R = Zp[X,Y ], and I = (Xp, Y p).

Then I is a proper ideal of R with prime ideal P =
√
I = (X,Y ) and P p * I since

Y Xp−1 /∈ I. Thus I is not a p-absorbing ideal of R ([18], [22]). Let fpgp ∈ I ⊆
(X,Y ) for f, g ∈ R. Then f ∈ (X,Y ) or g ∈ (X,Y ); so fp ∈ I or gp ∈ I, and hence
I is a p-semiprimary ideal of R.

Recall [19] that a proper ideal I of a commutative ring R is a uniformly primary
ideal of R if there is a positive integer n such that whenever xy ∈ I for x, y ∈ R,
then x ∈ I or yn ∈ I. If I is a uniformly primary ideal of R for a positive integer
n, then we say that I is an n-primary ideal of R. By the following theorem, an
n-primary ideal is also n-semiprimary.

Theorem 2.10. Let I be an n-primary ideal of a commutative ring R. Then I is
an n-semiprimary ideal of R.

Proof. Let xnyn ∈ I for x, y ∈ R with xn /∈ I, and let m be the least positive
integer such that xnym ∈ I. Then (xnym−1)y = xnym ∈ I. Since xnym−1 /∈ I and
I is an n-primary ideal of R, we have yn ∈ I. Thus I is an n-semiprimary ideal of
R. �

In the following example, we show that there is a commutative ring R with ideals
{In}∞n=2 such that every In is an n-semiprimary ideal of R with (

√
In)n ⊆ In, but

In is not a primary ideal of R. In particular, In is not an m-primary ideal of R for
any positive integer m.

Example 2.11. Let R = Z2[X,Y ]. For every integer n ≥ 2, In = (XY, Y n) is an
ideal of R with prime ideal P =

√
In = (Y ). Thus In is an n-semiprimary ideal of

R by Theorem 2.5 since Pn ⊆ In. However, Y X ∈ In, Y /∈ In, and Xm 6∈ In for
every positive integer m; so In is not a primary ideal of R, and hence In is not an
m-primary ideal of R for any positive integer m.

The next definition generalizes the “n-semiprimary” concept from elements to
ideals.

Definition 2.12. Let I be a proper ideal of a commutative ring R and n a positive
integer. Then I is a strongly n-semiprimary ideal of R if whenever JnKn ⊆ I for
proper ideals J and K of R, then Jn ⊆ I or Kn ⊆ I.

A strongly 1-semiprimary ideal is just a prime ideal, a strongly n-semiprimary
ideal is an n-semiprimary ideal, and a strongly n-semiprimary ideal is also strongly
mn-semiprimary for every positive integer m. However, the following example
shows that an n-semiprimary ideal need not be strongly n-semiprimary.

Example 2.13. Let R = Z2[X,Y ] and I = (X2, Y 2). By Example 2.9, I is a

2-semiprimary ideal of R with prime ideal P =
√
I = (X,Y ). Clearly, P 2P 2 =

P 4 ⊆ I, but P 2 * I. Thus I is not a strongly 2-semiprimary ideal of R. Note
that I is an n-semiprimary ideal of R for every integer n ≥ 3 by Theorem 2.5 since
P 3 ⊆ I, and hence I is an n-semiprimary ideal of R for every integer n ≥ 2.
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We have already observed in Theorem 2.2 that an n-semiprimary ideal is also
mn-semiprimary for every positive integer m. We next give a much stronger result.

Theorem 2.14. Let I be an n-semiprimary ideal of a commutative ring R.
(a) If xmyk ∈ I for x, y ∈ R and positive integers m and k, then xn ∈ I or

yn ∈ I. In particular, if xm ∈ I for x ∈ R and m a postive integer, then xn ∈ I.
(b) I is an m-semiprimary ideal of R for every positive integer m ≥ n.

Proof. (a) Let xmyk ∈ I for x, y ∈ R; we may assume that m ≥ k. Then (xy)m =

xmym = (xmyk)ym−k ∈ I . Thus xy ∈
√
I; so xnyn = (xy)n ∈ I by Theorem 2.3.

Hence xn ∈ I or yn ∈ I since I is an n-semiprimary ideal of R. The “in particular”
statement is clear.

(b) Let xmym ∈ I for x, y ∈ R with m ≥ n. Then xn ∈ I or yn ∈ I by part
(a). Thus xm = xm−nxn ∈ I or ym = ym−nyn ∈ I since m ≥ n; so I is an
m-semiprimary ideal of R. �

An ideal may be n-semiprimary for many different values of n. We now make
that statement more precise. For a proper ideal I of a commutative ring R, let
WR(I) = {n ∈ N | I is an n-semiprimary ideal of R} and δR(I) = minWR(I) (let
δR(I) =∞ if WR(I) = ∅). Then WR(I) = [δR(I),∞) ∩ N by Theorem 2.14(b).

3. n-semiprimary ideals in some classes of rings

In this section, we study n-semiprimary ideals in several important classes of
commutative rings. We have already observed in Corollary 2.6 that for commutative
Noetherian rings, a semiprimary ideal is n-semiprimary for all large n. The first
two results concern the case when dim(R) = 0.

Theorem 3.1. Let I ⊇ nil(R) be an ideal of a commutative ring R with dim(R) =
0. Then I is an n-semiprimary ideal of R if and only if I is a prime ideal of R
(i.e., I is a 1-semiprimary ideal of R).

Proof. A prime ideal is certainly n-semiprimary for every positive integer n. Con-
versely, we show that an n-semiprimary ideal I of R is a prime ideal of R. Let xy ∈ I
for x, y ∈ R; so xnyn ∈ I. Then xn ∈ I or yn ∈ I; say xn ∈ I. Since dim(R) = 0, we
have x = eu+w for an idempotent e ∈ R, u ∈ U(R), and w ∈ nil(R) [13, Corollary
1]. Thus xn = (eu+w)n = eun+a1eu

n−1w+a2eu
n−2w2+· · ·+an−1euwn−1+wn =

e(un+a1u
n−1w+a2u

n−2w2+· · ·+an−1uwn−1)+wn ∈ I, where the ai’s are positive
integers, and v = un + a1u

n−1w + a2u
n−2w2 + · · · + an−1uw

n−1 ∈ U(R). Hence
xn = (eu + w)n = ev + wn with wn ∈ nil(R) ⊆ I. Thus ev = xn − wn ∈ I, and
hence eu = (ev)(v−1u) ∈ I. Thus x = eu+ w ∈ I; so I is a prime ideal of R. �

Corollary 3.2. Let R be a commutative von-Neumann regular ring. Then a proper
ideal I of R is an n-semiprimary ideal of R if and only if I is a prime ideal of R.

Proof. A commutative ring R is von Neumann regular if and only if nil(R) = {0}
and dim(R) = 0 [26, page 5]. �

However, if I is an n-semiprimary ideal of a zero-dimensional commutative ring
R for some integer n ≥ 2 and nil(R) * I, then I need not be a prime ideal of R.
We have the following example.
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Example 3.3. Let R = Z4 × Z2. Then dim(R) = 0 and I = {0} × Z2 is a 2-
semiprimary ideal of R with nil(R) = {0, 2} × {0} * I. However, I is not a prime
ideal of R.

It is easy to determine the n-semiprimary ideals in a Dedekind domain R since
every nonzero proper ideal of R is (uniquely) a product of prime (maximal) ideals
[28, Theorem 6.16].

Theorem 3.4. Let I be a nonzero proper ideal of a Dedekind domain R. Then I
is an n-semiprimary ideal of R if and only if I = P k, where P =

√
I is a prime

(maximal) ideal of R and n ≥ k. Moreover, δR(I) = n if and only if I = Pn.

Proof. Let I be a nonzero proper ideal of a Dedekind domain R. Then
√
I = P is

a prime (maximal) ideal if and only if I = P k for some positive integer k. Thus by
Theorem 2.3 and Theorem 2.5, I is n-semiprimary if and only if I = P k for some
positive integer k, where n ≥ k. The “in particular” statement is clear. �

Next, we give a characterization of Dedekind domains in terms of 2-semiprimary
ideals.

Theorem 3.5. Let R be a Noetherian integral domain. Then the following state-
ments are equivalent.

(1) R is a Dedekind domain.
(2) If I is an ideal of R with δR(I) = 2, then I = M2 for some maximal ideal

M of R.

Proof. (1)⇒ (2) This follows directly from Theorem 3.4.
(2)⇒ (1) Let I be an ideal of R with M2 ⊆ I (M for a maximal ideal M of R.

Then I is 2-semiprimary by Theorem 2.5 and not prime (maximal); so δR(I) = 2.
Thus I = M2 by hypothesis. Hence there are no ideals of R strictly between M and
M2 for every maximal ideal M of R; so R is a Dedekind domain by [28, Theorem
6.20]. �

It is also easy to describe the n-semiprimary ideals in a valuation domain. Recall
that every proper ideal in a valuation domain is semiprimary [23, Theorem 17.1(2)].

Theorem 3.6. Let I be a proper ideal of a valuation domain R with P =
√
I.

(a) I is an n-semiprimary ideal of R if and only if Pn ⊆ I.
(b) If P is idempotent, then I is an n-semiprimary ideal of R if and only if

I = P .
(c) If P is not idempotent, then I is an n-semiprimary ideal of R for some

positive integer n. Moreover, every ideal of R between P and the prime ideal directly
below P is an n-semiprimary ideal for some positive integer n.

Proof. (a) If Pn ⊆ I, then I is n-semiprimary by Theorem 2.5. Conversely, suppose
that I is n-semiprimary. Then xn ∈ I for every x ∈ P by Theorem 2.3; so Pn =
{rxn | r ∈ R, x ∈ P} ⊆ I (cf. [12, Proposition 2.1 and Corollary 2.2]).

(b) This follows directly from part (a).

(c) If P =
√
I is not idempotent, then Pn ⊆ I for some positive integer n [23,

Theorem 17.1(5)], and thus I is n-semiprimary by Theorem 2.5. For the “moreover”
statement, Pn ⊆ I for some positive integer n since the prime ideal directly below
P is Q = ∩∞n=1P

n [23, Theorem 17.1(3)(4)]. �
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The following example illustrates the possible behavior of n-semiprimary ideals
in valuation domains R with dim(R) ≤ 2. The details follow directly from Theo-
rem 3.6 and well-known facts about the value group of a valuation domain (cf. [23,
Chapter 3]). It is interesting to compare Theorem 3.6 (resp., Example 3.7) with
[9, Theorem 5.5] (resp., [9, Example 5.6]) which concerns n-absorbing ideals in a
valuation domain. There are n-semiprimary ideals that are not n-absorbing ideals
in some valuation domains R since I is an n-semiprimary (resp., n-absorbing) ideal
of a valuation domain R if and only if Pn ⊆ I (resp., Pn = I).

Example 3.7. (a) Let R be a one-dimensional valuation domain with maximal
ideal M . If M is principal, then R is a DVR, and thus every proper ideal of
R is an n-semiprimary ideal for some positive integer n. If M is not principal,
then M2 = M , and hence {0} and M are the only proper ideals of R that are
n-semiprimary for some positive integer n.

(b) LetR be a two-dimensional valuation domain with prime ideals {0} ( P (M
and value group G. If G = Z ⊕ Z (all direct sums have the lexicographic order),
then P 2 6= P and M2 6= M ; so every proper ideal of R is n-semiprimary for some
positive integer n. If G = Q ⊕ Q, then P 2 = P and M2 = M ; so {0}, P , and
M are the only ideals of R that are n-semiprimary for some positive integer n. If
G = Z ⊕ Q, then P 2 6= P and M2 = M ; so M and every ideal of R contained in
P is n-semiprimary for some positive integer n, but no ideal properly between P
and M is n-semiprimary for any positive integer n. If G = Q ⊕ Z, then P 2 = P
and M2 6= M ; so every ideal of R between P and M is n-semiprimary for some
positive integer n, but {0} and P are the only ideals of R contained in P that are
n-semiprimary for some positive integer n.

We end this section with two results on idealization. Let M be an R-module over
a commutative ring R. The idealization of M is the commutative ring R(+)M =
R×M with addition and multiplication defined by (a,m) + (b, n) = (a+ b,m+ n)
and (a,m)(b, n) = (ab, bm+an), respectively, and identity (1, 0) (cf. [2], [26, Section
25]). Note that ({0}(+)M)2 = {0}; so {0}(+)M ⊆ nil(R(+)M).

Theorem 3.8. Let I be a proper ideal of a commutative ring R, M an R-module,
and S = IM a submodule of M . If I is an n-semiprimary ideal of R, then I(+)S is
an (n+ 1)-semiprimary ideal of R(+)M . Moreover, if I(+)S is an n-semiprimary
ideal of R(+)M , then I is an n-semiprimary ideal of R.

Proof. Let I be an n-semiprimary ideal ofR and (a,m)n+1(b, h)n+1 = (an+1bn+1, z) ∈
I(+)S for (a,m), (b, h) ∈ R(+)M . Then an ∈ I or bn ∈ I by Theorem 2.14(a) since
I is an n-semiprimary ideal of R. We may assume that an ∈ I; so (n + 1)anm ∈
IM = S. Thus (a,m)n+1 = (an+1, (n + 1)anm) ∈ I(+)S; so I(+)S is an (n + 1)-
semiprimary ideal of R(+)M . The “moreover” statement is clear. �

Theorem 3.9. Let I a proper ideal of a commutative ring R with char(R) = n ≥ 2,
M an R-module, and S a submodule of M . Then I(+)S is an n-semiprimary ideal
of R(+)M if and only if I is an n-semiprimary ideal of R.

Proof. If J = I(+)S is an n-semiprimary ideal of A = R(+)M , then clearly I is an
n-semiprimary ideal of R. Conversely, assume that I is an n-semiprimary ideal of
R. Let (a,m)n(b, h)n = (anbn, z) ∈ J for (a,m), (b, h) ∈ A. Then an ∈ I or bn ∈ I
since I is an n-semiprimary ideal of R; assume that an ∈ I. Since char(R) = n ≥ 2,
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we have nan−1m = 0 ∈ S. Thus (a,m)n = (an, nan−1m) = (an, 0) ∈ J ; so J is an
n-semiprimary ideal of A. �

4. n-powerful semiprimary ideals and n-PVDs

In this section, we study n-powerful semiprimary ideals in integral domains and
two generalizations of valuation domains, namely, n-pseudo-valuation domains (n-
PVDs) and n-valuation domains (n-VDs).

Recall [17] (resp., [24]) that a proper ideal I of an integral domainR with quotient
field K is powerful (resp., strongly prime) if whenever xy ∈ I for x, y ∈ K, then
x ∈ R or y ∈ R (resp., x ∈ I or y ∈ I). We begin with an “n” generalization.

Definition 4.1. Let R be an integral domain with quotient field K and n a positive
integer. A proper ideal I of R is an n-powerful ideal of R if whenever xnyn ∈ I for
x, y ∈ K, then xn ∈ R or yn ∈ R; and I is an n-powerful semiprimary ideal of R if
whenever xnyn ∈ I for x, y ∈ K, then xn ∈ I or yn ∈ I.

Thus a 1-powerful (resp., 1-powerful semiprimary) ideal is just a powerful (resp.,
strongly prime) ideal, and an n-powerful (resp., n-powerful semiprimary) ideal is
also an mn-powerful (resp., mn-powerful semiprimary) ideal for every positive in-
teger m. It is well known that prime ideals in a valuation domain are strongly
prime ideals. From this observation, it easily follows that n-semiprimary ideals
in a valuation domain are also n-powerful semiprimary ideals; so Theorem 3.6
and Example 3.7 also hold for n-powerful semiprimary ideals. However, an n-
semiprimary ideal need not be an n-powerful semiprimary ideal. For example,
let R = Z2[[X2, X3]]. Then its maximal ideal M = (X2, X3) is a prime (1-
semiprimary) ideal, but not a strongly prime (1-powerful semiprimary) ideal. Also,
see Example 4.5 for a 2-semiprimary ideal that is not 2-powerful semiprimary.

We next give a stronger result.

Theorem 4.2. Let R be an integral domain with quotient field K.
(a) Let I be an n-semiprimary ideal of R. If

√
I is a strongly prime ideal of R,

then I is an n-powerful semiprimary ideal of R.
(b) Let I ⊆ J be proper ideals of R. If J is an n-powerful ideal of R, then I is

an n-powerful ideal of R.
(c) Let I be an n-powerful (resp.,n-powerful semiprimary) ideal of R and S a

multiplicatively closed subset of R with I ∩S = ∅. Then IS is an n-powerful (resp.,
n-powerful semiprimary) ideal of RS.

Proof. (a) Let P =
√
I and xnyn ∈ I ⊆ P for x, y ∈ K. Then x ∈ P or y ∈ P since

P is a strongly prime ideal of R. Thus xn ∈ I or yn ∈ I by Theorem 2.3; so I is an
n-powerful semiprimary ideal of R.

(b) Let xnyn ∈ I ⊆ J for x, y ∈ K. Then xn ∈ R or yn ∈ R since J is an
n-powerful deal of R. Thus I is an n-powerful ideal of R.

(c) This follows easily from the definitions. �

Note that every ideal in a valuation domain is powerful; so an n-powerful ideal
need not be n-powerful semiprimary. However, for prime ideals, these two concepts
coincide.

Theorem 4.3. Let I be a prime ideal of an integral domain R with quotient field
K. Then I is an n-powerful semiprimary ideal of R if and only if I is an n-powerful
ideal of R.
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Proof. If I is an n-powerful semiprimary ideal of R, then I is certainly an n-powerful
ideal. Conversely, assume that I is an n-powerful prime ideal of R. Let xnyn ∈ I
for x, y ∈ K. First, suppose that xn, yn ∈ R. Since I is a prime ideal of R,
then xn ∈ I or yn ∈ I. Thus we may assume that xn 6∈ R, and hence yn ∈ R
since I is an n-powerful ideal of R. Since xn 6∈ R and I is an n-powerful ideal
of R, we have x2n = xnxn 6∈ I. Assume that x2n ∈ R; so y2n, x2n ∈ R. Since
x2ny2n ∈ I and x2n 6∈ I, we have y2n ∈ I. Since yn ∈ R, I is a prime ideal of
R, and ynyn = y2n ∈ I, we have yn ∈ I. Now, assume that x2n 6∈ R. Since
(y2/xy)n(x2)n = (y2n/xnyn)x2n = xnyn ∈ I, x2n 6∈ R, and I is an n-powerful ideal
of R, we have y2n/xnyn ∈ R. Thus y2n = xnyn(y2n/xnyn) ∈ I. Since yn ∈ R, I is
a prime ideal of R, and y2n = ynyn ∈ I, we have yn ∈ I. Hence I is an n-powerful
semiprimary ideal of R. �

Theorem 4.4. Let P ⊆ Q be prime ideals of an integral domain R. If Q is an
n-powerful semiprimary ideal of R, then P is an n-powerful semiprimary ideal of
R.

Proof. Let Q be an n-powerful ideal of R; so P is an n-powerful ideal of R by
Theorem 4.2(b). Thus P is an n-powerful semiprimary ideal of R by Theorem
4.3. �

Let I be a proper ideal of an integral domain R. As the “powerful” analogs of
WR(I) and δR(I), we define WR(I) = {n ∈ N | I is an n-powerful semiprimary
ideal of R} and δR(I) = minWR(I) (let δR(I) = ∞ if WR(I) = ∅). Note that
WR(I) ⊆ WR(I) and δR(I) ≤ δR(I). The next example shows that the analogs of
Theorem 2.14(b) and Theorem 4.2(b) do not hold for n-powerful semiprimary ideals.
In particular, if I is an n-powerful semiprimary ideal, then I is an n-semiprimary
ideal. Thus I is also an m-semiprimary ideal for every integer m ≥ n, but I need
not be an m-poweful semiprimary ideal.

Example 4.5. Let R = F [[X2, X5]] = F + FX2 + X4F [[X]], where F is a field.
Then R is quasilocal with maximal ideal M = (X2, X5) = FX2 + X4F [[X]] and
quotient field K = F [[X]][1/X]. Clearly M is a 2-semiprimary ideal of R, but not a
3-powerful semiprimary ideal of R since X3X3 = X6 ∈M , but X3 6∈M . Moreover,
M is a 2-powerful semiprimary ideal of R if and only if char(F ) = 2, and M is an n-
powerful semiprimary ideal of R for every integer n ≥ 4. So, for R = Z2[[X2, X5]],
M is a 2-powerful semiprimary ideal, but not a 3-powerful semiprimary ideal, and
WR(M) = N \ {1, 3}. Thus the “powerful” analog of Theorem 2.14(b) fails for M .
Let I = X4F [[X]]. Then I is a 2-semiprimary ideal of R, but not a 2-powerful
semiprimary ideal of R since X2X2 ∈ I, but X2 6∈ I. So the “semiprimary” analog
of Theorem 4.2(b) fails for I ⊆ J = M when char(F ) = 2.

Recall [24] that an integral domain R is a pseudo-valuation domain (PVD) if
every prime ideal of R is strongly prime. A PVD is neccessarily quasilocal [24,
Corollary 1.3]. A quasilocal integral domain R with maximal ideal M is a PVD ⇔
M is strongly prime [24, Theorem 1.4], and R is a PVD ⇔ (M : M) is a valuation
domain with maximal ideal M [11, Proposition 2.5]. Let T = K+M be a valuation
domain, where K is a field and M is the maximal ideal of T . Then for a proper
subfield k of K, the subring R = k+M is a PVD which is not a valuation domain
[24, Example 2.1]. By Theorem 4.2(a), every n-semiprimary ideal in a PVD is an
n-powerful semiprimary ideal.
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We next give an “n” generalization of PVDs.

Definition 4.6. Let R be an integral domain and n a positive integer. Then R is
an n-pseudo-valuation domain (n-PVD) if every prime ideal of R is an n-powerful
semiprimary ideal of R.

Note that a 1-PVD is just a PVD and an n-PVD is also an mn-PVD for every
positive integer m. The next several results show that n-PVDs behave very much
like PVDs (cf. [1], [6], [8], [11], [17], [24], and [25]).

Theorem 4.7. Let R be an n-PVD. Then R is quasilocal.

Proof. By way of contradiction, assume that M and N are distinct maximal ideals
of R. Let x ∈ M \N and y ∈ N \M . Then (x/y)n(y2)n = (xn/yn)y2n = xnyn ∈
M , and thus (x/y)n ∈ M since M is an n-powerful semiprimary ideal of R and
(y2)n 6∈ M . Hence xn = (x/y)nyn ∈ N ; so x ∈ N , a contradiction. Thus R is
quasilocal. �

In view of Theorem 4.3, Theorem 4.4, and the proof of Theorem 4.7, we have
the following result.

Corollary 4.8. An integral domain R is an n-PVD if and only if some maximal
ideal of R is an n-powerful semiprimary ideal of R, if and only if some maximal
ideal of R is an n-powerful ideal of R.

Recall ([20], [14]) that a prime ideal P of a commutative ring R is a divided
prime ideal of R if x | p (in R) for every x ∈ R\P and p ∈ P (i.e., (x) is comparable
to P for every x ∈ R), and R is a divided ring if every prime ideal of R is divided.
We next give the “n” generalization.

Definition 4.9. Let R be a commutative ring and n a positive integer. Then
a prime ideal P of R is an n-divided prime ideal of R if xn | pn (in R) for every
x ∈ R \ P and p ∈ P . Moreover, R is an n-divided ring if every prime ideal of R is
an n-divided prime ideal of R.

A 1-divided prime ideal (resp., ring) is just a divided prime ideal (resp., ring),
and an n-divided prime ideal is mn-divided for every positive integer m. Thus an
n-divided ring is mn-divided for every positive integer m.

The next several results show that n-divided rings behave very much like divided
rings (cf. [14], [20]).

Theorem 4.10. Let R be an n-divided commutative ring. Then the set of prime
ideals of R is linearly orderd by inclusion. In particular, R is quasilocal.

Proof. Let P and Q be prime ideals of an n-divided commutative ring R with
P 6⊆ Q. We show that Q ⊆ P . Let x ∈ P \Q; then xn | qn for every q ∈ Q since Q
is an n-divided prime ideal of R. Thus qn ∈ (xn) ⊆ P ; so q ∈ P for every q ∈ Q.
Hence Q ⊆ P . �

Theorem 4.11. Let P a prime ideal of an integral domain R. If P is an n-powerful
semiprimary ideal of R, then P is an n-divided prime ideal of R. Moreover, the set
of prime ideals of R that are contained in P is linearly ordered by inclusion.

Proof. Let x ∈ R \ P and p ∈ P . Then (p/x)nxn = (pn/xn)xn = pn ∈ P . Thus
pn/xn ∈ P since xn 6∈ P and P is an n-powerful semiprimary ideal of R. Hence
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pn = (pn/xn)xn; so xn | pn (in R). Thus P is an n-divided prime ideal of R. Now
suppose that F and H are distinct prime ideals of R contained in P . Then F and
H are n-powerful semiprimary ideals of R by Theorem 4.4, and hence are n-divided
prime ideals. The proof of Theorem 4.10 shows that F and H are comparable under
inclusion. �

Corollary 4.12. Let R be an n-PVD. Then R is an n-divided domain and the set
of prime ideals of R is linearly ordered by inclusion. Moreover, if R is Noetherian,
then dim(R) ≤ 1.

Proof. We need only prove the “moreover” statement; it follows directly from [27,
Theorem 144]. �

Let R be an integral domain with quotient field K, S ⊆ R, and n a positive in-
teger. Define En(S) = {x | xn 6∈ S, x ∈ K} and An(S) = {xn | xn ∈ S, x ∈ K}. We
next use these two sets to give another characterization of n-powerful semiprimary
ideals. Note that actually x−nd ∈ An(P ) in Theorem 4.13 and Corollary 4.15(4),
and x−nd ∈ An(M) in Corollary 4.16(3).

Theorem 4.13. Let P a prime ideal of an integral domain R with quotient field
K. Then P is an n-powerful semiprimary ideal of R if and only if x−nd ∈ P for
every x ∈ En(P ) and d ∈ An(P ).

Proof. Suppose that x−nd ∈ P for every x ∈ En(P ) and d ∈ An(P ). Let xnyn ∈ P
for x, y ∈ K with xn 6∈ P ; so x ∈ En(P ). Since xnyn = (xy)n ∈ An(P ), we have
yn = x−n(xnyn) ∈ P . Thus P is an n-powerful semiprimary ideal of R.

Conversely, suppose that P is an n-powerful semiprimary ideal of R. Let d ∈
An(P ); so d = an ∈ P for some a ∈ K and xn(x−1a)n = xnx−nan = an ∈ P for
every 0 6= x ∈ K. Suppose that x ∈ En(P ). Then xn 6∈ P ; so (x−1a)n ∈ P since P
is an n-powerful semiprimary ideal of R. Thus x−nd = x−nan = (x−1a)n ∈ P . �

The proof of the following result is similar to that of Theorem 4.13, and thus
will be omitted.

Theorem 4.14. Let I a proper ideal of an integral domain R. Then I is an n-
powerful ideal of R if and only if x−nd ∈ R for every x ∈ En(R) and d ∈ An(I).

In view of Theorem 4.3, Theorem 4.13, and Theorem 4.14, we have the following
result.

Corollary 4.15. Let P be a prime ideal of an integral domain R. Then the fol-
lowing statements are equivalent.

(1) P is an n-powerful semiprimary ideal of R.
(2) P is an n-powerful ideal of R.
(3) x−nd ∈ R for every x ∈ En(R) and d ∈ An(P ).
(4) x−nd ∈ P for every x ∈ En(P ) and d ∈ An(P ).

In view of Corollary 4.8, Theorem 4.13, and Theorem 4.14, we have the following
result.

Corollary 4.16. Let R be a quasilocal integral domain with maximal ideal M .
Then the following statements are equivalent.

(1) R is an n-PVD.
(2) x−nd ∈ R for every x ∈ En(R) and d ∈ An(M).
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(3) x−nd ∈M for every x ∈ En(M) and d ∈ An(M).

If R is a PVD, then R/P is also a PVD for P a prime ideal of R [21, Lemma
4.5(i)]. The analogous result holds for n-PVDs.

Theorem 4.17. Let P be a prime ideal of an n-PVD R. Then R/P is an n-PVD.

Proof. Let M be the maximal ideal of R, K the quotient field of R, F = RP /PRP
the quotient field of A = R/P , and Hn(M/P ) = {xn ∈ M/P | x ∈ F}. Suppose
that x = a+P, y = b+P ∈ A, and xn - yn in A. Then an - bn in R; so bn | and in R
for every d ∈ An(M) by Corollary 4.16. Thus yn | xnh in A for every h ∈ Hn(M/P );
so A is an n-PVD by Corollary 4.16 again. �

Let n be a positive integer. Recall that an integral domain R with quotient field
K is n-root closed if whenever xn ∈ R for x ∈ K, then x ∈ R; and R is root closed
if R is n-root closed for every positive integer n. For example, an integrally closed
integral domain is root closed. Note that R is mn-root closed if and only if R is
m-root closed and n-root closed. Thus C(R) = {n ∈ N | R is n-root closed} is a
multiplicative submonoid on N generated by some set of prime numbers. Moreover,
for S any multiplicative submonoid of N generated by a set of prime numbers,
S = C(R) for some integral domain R [7, Theorem 2.7].

For n-root closed integral domains, the n-PVD and PVD concepts coincide.

Theorem 4.18. Let R be an n-root closed integral domain with quotient field K.
Then R is an n-PVD if and only if R is a PVD. In particular, an integrally closed
n-PVD is a PVD.

Proof. If R is a PVD, then clearly R is an n-PVD. Conversely, let R be an n-root
closed n-PVD with maximal ideal M . We show that M is a powerful ideal of R.
Let xy ∈ M for x, y ∈ K and x 6∈ R. Then xnyn ∈ M and xn 6∈ R since R is
n-root closed. Thus yn ∈M ⊆ R since M is an n-powerful semiprimary ideal of R,
and hence y ∈ R since R is n-root closed. Thus M is a powerful ideal of R; so M
is a strongly prime ideal of R (i.e., M is a 1-powerful semiprimary ideal of R) by
Theorem 4.3. Hence R is a PVD. The “in particular” statement is clear. �

Recall ([4], [3], [5], [29]) that an integral domain R with quotient field K is
an almost valuation domain if for every 0 6= x ∈ K, there is a positive integer
n (depending on x) such that xn ∈ R or x−n ∈ R. We have the following “n”
generalization.

Definition 4.19. Let n be a positive integer. An integral domain R with quotient
field K is an n-valuation domain (n-VD) if xn ∈ R or x−n ∈ R for every 0 6= x ∈ K.

It is clear that a valuation domain is an n-VD for every positive integer n, an
n-root closed n-VD is a valuation domain, an n-VD is an almost valuation domain,
an n-VD is also an mn-VD for every positive integer m, and an n-VD is an n-PVD.
Moreover, an n-VD is quasilocal, an overring of an n-VD is also an n-VD, and a
Noetherian n-VD has (Krull) dimension at most one.

We have the following elementary results about n-VDs which show that n-VDs
behave very much like valuation domains (cf. [23, Chapter 3]). In [1, page 3], it
was observed that R is a valuation domain if and only if R is a strongly prime ideal
of R (here, and in Theorem 4.20(a)(5), we drop the usual assumption that a prime
ideal is a proper ideal).
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Theorem 4.20. Let R be an integral domain with quotient field K and n a positive
integer.

(a) The following statements are equivalent.

(1) R is an n-VD.
(2) xn | yn or yn |xn for every 0 6= x, y ∈ K.
(3) xn | yn or yn |xn for every 0 6= x, y ∈ R.
(4) Let G be the group of divisibility of R. Then for every g ∈ G, either ng ≥ 0

or ng < 0.
(5) R is an n-powerful semiprimary ideal of R.

(b) Let R be an n-VD. Then R is an n-divided domain, and thus the prime ideals
of R are linearly ordered by inclusion.

(c) Let R be an n-VD and x ∈ K. If xn is integral over R, then xn ∈ R.

Proof. The proofs are essentially the same as for valuation domains. See [23, The-
orem 16.3] for part (a) and [23, Theorem 17.5] for part (c). Part (b) follows from
Corollary 4.12 since an n-VD is also an n-PVD. �

An n-VD is always an n-PVD, but an n-PVD need not be an n-VD. Also, an
almost valuation domain need not be an n-VD for any positive integer n.

Example 4.21. (a) Let R = Q +XR[[X]]. Then R is a PVD with maximal ideal
XR[[X]] and quotient field R[[X]][1/X], and thus R is an n-PVD for every positive
integer n. However, R is not an n-VD for any positive integer n since πn, π−n /∈ R
for every positive integer n.

(b) Let R = Zp+XF [[X]], where p is a positive prime integer and F = Zp is the
algebraic closure of Zp. Then R is an almost valuation domain with maximal ideal
XF [[X]] and quotient field F [[X]][1/X], but not an n-VD for any positive integer
n. This follows from the fact that for every 0 6= a ∈ F , there is a positive integer
n such that an = 1; but for every positive integer n, there is a b ∈ F such that
bn /∈ Zp and b−n /∈ Zp. Note that R is also a PVD, and thus an n-PVD for every
positive integer n.

In some cases, an overring of an n-PVD is also an n-VD.

Theorem 4.22. Let R be an n-PVD with maximal ideal M , quotient field K, and
V an overring of R such that 1/s ∈ V for some 0 6= s ∈ M . Then V is an n-VD,
and thus V is an almost valuation domain.

Proof. Let x ∈ K with xn /∈ V ; so x ∈ En(R). Then x−nd ∈ M for every d ∈
An(M) by Corollary 4.16. In particular, a = x−nsn ∈ M since d = sn ∈ An(M),
and thus x−n = a/sn ∈ V since 1/s ∈ V . Hence V is an n-VD, and thus V is an
almost valuation domain. �

By Theorem 4.2(c), if R is an n-PVD, then RP is also an n-PVD for every
nonmaximal prime ideal P of R. We next give a stronger result; RP is an n-VD.

Theorem 4.23. Let R be an n-PVD with maximal ideal M and P ( M a prime
ideal of R. Then RP is an n-VD, and thus RP is an almost valuation domain.
Moreover, xn ∈ R for every x ∈ PP , and hence PP ( R.

Proof. Since P ( M , there is an s ∈ M \ P . Thus 1/s ∈ RP ; so RP is an n-VD
(and hence also an almost valuation domain) by Theorem 4.22. Let x ∈ PP ; so
x = a/s for some a ∈ P and s ∈ R \ P . Thus sn | an (in R) since P is an n-divided
prime ideal of R by Theorem 4.11. Hence xn = an/sn ∈ R; so PP ( R. �
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We next show that n-divided principal prime ideals are actually maximal ideals.

Theorem 4.24. Let R be an integral domain R with quotient field K and (nonzero)
principal prime ideal P . If P is an n-divided ideal of R, then P is a maximal ideal
of R. Moreover, if P is also an n-powerful semiprimary ideal of R, then P is a
maximal ideal of R and R is an n-VD.

Proof. Let P = (p) for a prime element p of R. By way of contradiction, assume
that P is not a maximal ideal; so there is a nonunit x ∈ R \P . If P is an n-divided
prime ideal of R, then there is a y ∈ R with pn = xnypn or pn = xnwpm for some
positive integer m < n and w ∈ R \ P . If pn = xnypn, then 1 = xny, and thus
x ∈ U(R), a contradiction. If pn = xnwpm, then xnw = pn−m ∈ P , which is a
contradiction since x /∈ P and w /∈ P . Hence P is a maximal ideal of R.

Now, suppose that P = (p) is an n-powerful semiprimary ideal of R. Then P is
an n-divided prime ideal of R by Theorem 4.11. Thus P is a maximal ideal of R,
and hence R is an n-PVD by Corollary 4.8. Finally, we show that R is an n-VD.
Let x ∈ K, and suppose that xn /∈ R. Then xn /∈ P , and thus x−npn ∈ P by
Theorem 4.13. Since x−npn ∈ P = (p), we have x−npn = hpn for some h ∈ R or
x−npn = dpm for some positive integer m < n and d ∈ U(R). If x−npn = dpm,
then xn = d−1pn−m ∈ R, a contradiction. Thus x−npn = hpn for some h ∈ R, and
hence x−n = h ∈ R. Thus R is an n-VD. �

We have already observed several parts of the next theorem. One interesting
consequence is that if P is an n-powerful semiprimary prime ideal of an integral
domain R with quotient field K, then {x ∈ K | xm ∈ P for some positive integer
m} = {x ∈ K | xn ∈ P} (cf. Theorem 2.3).

Theorem 4.25. Let P be a prime ideal of an integral domain R with quotient
field K. If P is an n-powerful semiprimary ideal of R, then P is an mn-powerful
semiprimary ideal of R for every positive integer m. Furthermore, if xm ∈ P for a
positive integer m and x ∈ K, then xn ∈ P . In particular, if R is an n-PVD, then
R is an mn-PVD for every positive integer m.

Proof. Let m be a positive integer. Assume that xmnymn ∈ P for x, y ∈ K. Then
(xm)n(ym)n ∈ P . Since P is an n-powerful semiprimary ideal of R, (xm)n = xmn ∈
P or (ym)n = ymn ∈ P . Thus P is an mn-powerful semiprimary ideal of R. Next,
assume that xm ∈ P for x ∈ K and some positive integer m; so xmn = (xm)n ∈ P .
Let d be the least positive integer such that xdn ∈ P . Since (xd−1)nxn = xdn ∈ P
and P is an n-powerful semiprimary ideal of R, we have (xd−1)n ∈ P or xn ∈ P .
Hence d = 1, and thus xn ∈ P . The “in particular” statement is clear. �

The next several results concern integral overrings of an n-PVD. In particular,
an integral overring of an n-PVD is an n-PVD, and the integral closure of an n-
PVD is a PVD. Note that {x ∈ K | xn ∈ M} = {x ∈ R | xn ∈ M} in the next

several results and
√
MB =

√
MR ∩B for B an integral overring of R.

Theorem 4.26. Let R be an n-PVD with maximal ideal M and quotient field
K. If B is an integral overring of R, then B is an n-PVD with maximal ideal
MB =

√
MB = {x ∈ B | xn ∈M}.

Proof. Let m ∈ M . Then
√
mR is a prime ideal of R since the prime ideals of

R are linearly ordered (under inclusion) by Corollary 4.12, and thus
√
mR is an
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n-powerful semiprimary ideal of R since R is an n-PVD. We show that
√
mB

is an n-powerful semiprimary ideal of B and
√
mB = {x ∈ B | xn ∈

√
mR}.

Let xnyn ∈
√
mB for 0 6= x, y ∈ K. Then xnkynk = (xy)nk = fm for some

positive integer k and 0 6= f ∈ B. Note that f−n 6∈ M ; for if f−n ∈ M , then
1/a = fn ∈ B for some a ∈ M , a contradiction since B is integral over R. Then

fnmn ∈
√
mR since f−n(fm)n = mn ∈

√
mR, f−n 6∈

√
mR ⊆M , and

√
mR is an

n-powerful semiprimary ideal ofR. Thus (xnk)n(ynk)n = (xy)nkn = fnmn ∈
√
mR;

so xnkn ∈
√
mR ⊆

√
mB or ynkn ∈

√
mR ⊆

√
mB. Hence xn ∈

√
mR ⊆

√
mB or

yn ∈
√
mR ⊆

√
mB by Theorem 4.25. Thus

√
mB is an n-powerful semiprimary

ideal of B, and hence a prime ideal of B by Theorem 2.3. A slight modification of
the above proof also shows that

√
mB = {x ∈ B | xn ∈

√
mR}.

We next show that MB = {x ∈ B | xn ∈M} is an n-powerful semiprimary ideal
of B. First, we show that MB is an ideal of B. Let x1, x2 ∈MB ; so xn1 = m1 ∈M
and xn2 = m2 ∈ M . Thus x1 ∈

√
m1B and x2 ∈

√
m2B. Since the prime ideals of

R are linearly ordered, we may assume that
√
m1R ⊆

√
m2R, and hence

√
m1B ⊆√

m2B. Thus x1 + x2 ∈
√
m2B = {x ∈ B | xn ∈

√
m2R} ⊆MB . Next, let x ∈MB

and y ∈ B. Then xn = m3 ∈M ; so x ∈
√
m3B. Thus xy ∈

√
m3B ⊆MB ; so MB is

an ideal of B. A similar argument to that for
√
mB above shows that if xnyn ∈MB

for 0 6= x, y ∈ K, then xn ∈
√
mR ⊆ M ⊆ MB or yn ∈

√
mR ⊆ M ⊆ MB . Hence

MB is an n-powerful semiprimary ideal of B, and thus MB is a prime ideal of B
since it is a radical ideal of B by Theorem 4.25. Hence MB is a maximal ideal of B
since B is integral over R and MB ∩ R = M ; so B is an n-PVD by Corollary 4.8.
Clearly MB = {x ∈ B | xn ∈M} ⊆

√
MB, and

√
MB ⊆MB since MB ( B as B

is integral over R. Thus MB =
√
MB. �

Corollary 4.27. Let R be an n-PVD with maximal ideal M and quotient field K.

Then R is a PVD (1-PVD) with maximal ideal
√
MR = {x ∈ K | xn ∈M}.

Proof. By Theorem 4.26, R is an n-PVD with maximal ideal
√
MR = MR = {x ∈

R | xn ∈M} = {x ∈ K | xn ∈M}. Thus R is a PVD by Theorem 4.18. �

Corollary 4.28. Let P be a nonzero finitely generated prime ideal of an n-PVD R.
Then W = (P : P ) is an n-PVD with maximal ideal

√
MW = {x ∈ W | xn ∈M}.

In particular, if R is a Noetherian n-PVD with maximal ideal M , then (M : M) is
an n-PVD.

Proof. Note that W = (P : P ) is integral over R since P is finitely generated. Thus

W is an n-PVD with maximal ideal
√
MW = {x ∈W | xn ∈M} by Theorem 4.26.

The “in particular” statement is clear. (However, recall that a Noetherian n-PVD
R has dim(R) ≤ 1 by Corollary 4.12). �

The converse of Corollary 4.27 also holds.

Theorem 4.29. Let R be a quasilocal integral domain with maximal ideal M and
quotient field K. Then R is an n-PVD if and only if R is a PVD with maximal

ideal
√
MR = {x ∈ K | xn ∈M}.

Proof. Let R be an n-PVD. Then R is a PVD with maximal ideal
√
MR = {x ∈ K |

xn ∈ M} by Corollary 4.27. Conversely, suppose that R is a PVD with maximal

ideal N =
√
MR = {x ∈ K | xn ∈ M}. Then M = R ∩ N since M ⊆ N . Let

xnyn = (xy)n ∈ M for x, y ∈ K; so xy ∈ N . Thus x ∈ N or y ∈ N since N is
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a strongly prime ideal of R. Hence xn ∈ M or yn ∈ M ; so M is an n-powerful
semiprimary ideal of R. Thus R is an n-PVD by Corollary 4.8. �

Corollary 4.30. Let R be a quasilocal integral domain with maximal ideal M and
quotient field K. Then the following statements are equivalent.

(1) R is an n-PVD.

(2) R is a PVD with maximal ideal
√
MR = {x ∈ K | xn ∈M}.

(3) N =
√
MR = {x ∈ K | xn ∈M} is a maximal ideal of R such that (N : N)

is a valuation domain with maximal ideal N .

Proof. (1) ⇔ (2) is Theorem 4.29, and (2) ⇔ (3) is clear by [11, Proposition
2.5]. �

We have seen that integral overrings of an n-PVD are also n-PVDs. We next
determine when every overring of an n-PVD is an n-PVD. Note that an integrally
closed PVD need not be a valuation domain. For example, R = Q + XC[[X]] is a
PVD, and R = Q+XC[[X]] is a PVD, but not a valuation domain, where Q is the
algebraic closure of Q. In this case, Q[π] +XC[[X]] is a (non-integral) overring of
R which is not an n-VD or n-PVD for any positive integer n.

Theorem 4.31. Let R be an n-PVD with maximal ideal M . Then every overring
of R is an n-PVD if and only if R is a valuation domain. Moreover, if R is a
valuation domain, then every non-integral overring of R is an n-VD.

Proof. Suppose that every overring of R is an n-PVD. Since R is a PVD by The-
orem 4.18, the proof of [25, Proposition 2.7] shows that if R is not a valuation
domain, then there is a non-quasilocal overring B of R (and hence B is an overring
of R). Thus B cannot be an n-PVD by Theorem 4.7; so R is a valuation domain.

Conversely, suppose that R is a valuation domain with maximal ideal N . Let B
be an overring of R. If B is integral over R, then B is an n-PVD by Theorem 4.26;
so assume that B is not integral over R. Let b ∈ B \ R. Then b−1 ∈ N since R
is a valuation domain; so m = b−n = (b−1)n ∈ M by Corollary 4.27 since R is a
valuation domain (and thus a PVD). Hence 1/m = bn ∈ B; so B is an n-VD, and
thus an n-PVD, by Theorem 4.22. The “moreover” statement is clear. �

Let R be a 1-PVD (i.e., PVD) and P a prime ideal of R. Then A1(P ) = P ;
so V = (A1(P ) : A1(P )) = (P : P ) is a 1-VD (i.e., valuation domain) by [8,
Proposition 4.3], and it is easily checked that P is the maximal ideal of V . We have
the following analogous result for n-PVDs.

Theorem 4.32. Let R is an n-PVD, P a prime ideal of R, and I = (An(P )).

Then V = (I : I) is an n-VD with maximal ideal
√
IV = {x ∈ V | xn ∈ I}.

Moreover,
√
IV = {x ∈ V | xn ∈ P} =

√
PV .

Proof. Let x ∈ K with xn 6∈ V . Then xn 6∈ P ; so x−nI ⊆ I by Corollary 4.15.
Thus x−n ∈ V ; so V is an n-VD with maximal ideal NV . Let y ∈ NV . Assume
that yn 6∈ I; so yn 6∈ P . Thus y−nI ⊆ I by Corollary 4.15 again; so y−n ∈ V .
Hence y ∈ U(V ), a contradiction. Thus NV ⊆ {x ∈ V | xn ∈ I} ⊆

√
IV . Also,

IV = I ( V ; so
√
IV ⊆ NV . Hence NV =

√
IV = {x ∈ V | xn ∈ I}. Clearly

{x ∈ V | xn ∈ I} ⊆ {x ∈ V | xn ∈ P} since I ⊆ P . Also, xn ∈ P for x ∈ V ⇒ xn ∈
An(P ); so {x ∈ V | xn ∈ P} ⊆ {x ∈ V | xn ∈ I}. Thus {x ∈ V | xn ∈ I} = {x ∈
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V | xn ∈ P}. Clearly x ∈ P ⇒ xn ∈ An(P ) ⊆ I ⇒ xn ∈
√
IV ; so P ⊆

√
IV , and

hence
√
PV ⊆

√
IV . Also,

√
IV ⊆

√
PV since I ⊆ P ; so

√
IV =

√
PV . �

Recall that a quasilocal integral domain R with maximal ideal M is a PVD if and
only if (M : M) is a valuation domain with maximal ideal M [11, Proposition 2.5].
Example 4.34(c) below shows that if R is an n-PVD with maximal ideal M , then
(M : M) need not be an n-VD. And Example 4.34(d)(e) shows that V = (M : M)

may be an n-VD with maximal ideal
√
MV = {x ∈ V | xn ∈ M} when R is not

an n-PVD. However, since M = A1(M), the next theorem may be viewed as the
n-PVD analog. By adding the extra condition “(∗)n: if x ∈ K is a nonunit of R,
then xn ∈ M ,” we get a converse to Theorem 4.32. Note that I = (An(M)) ( M
in general (see Example 4.34(a)(b)).

Theorem 4.33. Let R be a quasilocal integral domain with maximal ideal M ,
quotient field K, and I = (An(M)). Then the following statements are equivalent.

(1) R is an n-PVD.

(2) V = (I : I) is an n-VD with maximal ideal
√
MV = {x ∈ V | xn ∈ M},

and if x ∈ K is a nonunit of R, then xn ∈M .

Proof. (1) ⇒ (2) By Theorem 4.32, V is an n-VD with maximal ideal
√
MV =

{x ∈ V | xn ∈M}. Let x ∈ K be a nonunit of R. Then xn ∈M by Corollary 4.27.
(2)⇒ (1) Let x ∈ K. Suppose that x ∈ En(M), i.e., xn 6∈M . First, assume that

xn ∈ V . Suppose that xn ∈ N = {x ∈ V | xn ∈ M}; so xn
2

= (xn)n ∈ M . Thus
x ∈ R and x is a nonunit of R; so xn ∈ M by hypothesis, a contradiction. Hence
xn ∈ U(V ), and thus x−nI ⊆ I. Hence x−nd ∈ I ⊆M for every d ∈ An(M). Now,
suppose that xn 6∈ V . Then x−n ∈ V since V is an n-VD. Thus x−nI ⊆ I, and
hence x−nd ∈ I ⊆M for every d ∈ An(M). Thus x−nd ∈M for every x ∈ En(M)
and d ∈ An(M); so R is an n-PVD by Corollary 4.16. �

We end this section with several examples.

Example 4.34. (a) Let R = Z2[[X2, X3]] = Z2 + X2Z2[[X]]. Then R is quasilo-
cal with maximal ideal M = (X2, X3) = X2Z2[[X]] and quotient field K =
Z2[[X]][1/X]. It is easily checked that R is an n-PVD if and only if n ≥ 2
and an n-VD if and only if n is even. First, suppose that n is even. Then
I = (An(M)) = Z2X

n + Xn+2Z2[[X]] ( M and V = (I : I) = R has maximal
ideal MV = M . Also, MV = {x ∈ V | xn ∈ M} ( {x ∈ K | xn ∈ M} = XZ2[[X]].
Next, suppose that n ≥ 3 is odd. Then I = (An(M)) = XnZ2[[X]] ( M and
V = (I : I) = Z2[[X]] has maximal ideal MV = XZ2[[X]] = {x ∈ K | xn ∈M}.

(b) Let R = F [[X2, X3]] = F+X2F [[X]], where F is a field. Then R is quasilocal
with maximal ideal M = (X2, X3) = X2F [[X]] and quotient field F [[X]][1/X], and
R is an n-PVD if and only if n ≥ 2. If char(F ) = 2, then (An(M)) (M for every
integer n ≥ 2. However, M = (A2(M)) if char(F ) 6= 2.

(c) Let R = Zp +ZpX +X2F [[X]], where F = Zp is the algebraic closure of Zp.
Then R is quasilocal with maximal ideal M = ZpX +X2F [[X]] and quotient field
K = F [[X]][1/X]. Moreover, R is an n-PVD if and only if n ≥ 2 by Theorem 4.29
since R = F [[X]] is a PVD (in fact, a valuation domain). However, V = (M : M) =
Zp + XF [[X]] is an almost valuation domain with maximal ideal XF [[X]] = {x ∈
K | xn ∈M}, but V is not an n-VD for any positive integer n by Example 4.21(b).
Note that V is a PVD, and thus an n-PVD for every positive integer n.
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(d) Let F be a field and N a positive integer. Then RN = F + XNF [[X]] is
a quasilocal integral domain with maximal ideal MN = XNF [[X]], quotient field
F [[X]][1/X], and integral closure RN = F [[X]]. Note that VN = (MN : MN ) =
F [[X]] is a valuation domain with maximal ideal XF [[X]] = {x ∈ VN | xN ∈
MN} =

√
MNVN , and thus VN is an n-VD for every positive integer n. However,

RN is an n-PVD if and only if n ≥ N , and RN satisfies condition (∗)n if and only
if n ≥ N .

(e) Let R = Z3 + Z3X
9 + X12Z3[[X]]. Then R is a quasilocal integral domain

with maximal ideal M = Z3X
9 + X12Z3[[X]], quotient field Z3[[X]][1/X], and

integral closure R = Z3[[X]]. Note that V = (M : M) = Z3 +X3Z3[[X]] is a 3-VD

with maximal ideal X3Z3[[X]] =
√
MV = {x ∈ V | x3 ∈M}. However, R is not a

3-PVD since (X2)3(X2)3 ∈M , but X6 /∈M , and R does not satisfy condition (∗)3
since X3 /∈M .

5. Pseudo n-strongly prime ideals, PnVDs, and n-VDs

In this final section, we introduce and investigate pseudo n-valuation domains
(PnVDs), yet another generalization of PVDs. We also give some more results on
n-VDs.

Let R be an integral domain with quotient field K. Recall [16] that R is a
pseudo-almost valuation domain (PAVD) if every prime ideal P of R is pseudo-
strongly prime, i.e., if whenever xyP ⊆ P for x, y ∈ K, then there is a positive
integer n such that xn ∈ R or ynP ⊆ P . Also, recall [17] that R is an almost
pseudo-valuation domain (APVD) if every prime ideal P of R is strongly primary,
i.e, if whenever xy ∈ P for x, y ∈ K, then xn ∈ P for some positive integer n or
y ∈ P . Note that valuation domain⇒ PVD⇒APVD⇒ PAVD, and no implication
is reversible [16, page 1168].

The following is an example of an n-PVD for some integer n ≥ 2 which is neither
an APVD, a PAVD, a PVD, nor an almost valuation domain.

Example 5.1. (cf. [16, Example 3.4]) Let R = Q + CX2 + X4C[[X]]. Then R
is quasilocal with maximal ideal M = CX2 + X4C[[X]] and quotient field K =
C[[X]][1/X]. One can see that R is neither an APVD, a PAVD, a PVD, an almost
valuation domain, nor an n-VD for any positive integer n. However, it is easily
checked that R is a n-PVD for n ≥ 4 and R = Q+XC[[X]] is a PVD with maximal
ideal N = {x ∈ K | x4 ∈ M} = XC[[X]], where Q is the algebraic closure of Q
in C. Note that R is not a valuation domain; in fact, R is not an n-VD for any
positive integer n, and R is not an n-PVD for n = 1, 2, or 3.

We now give yet another “n” generalization of PVDs.

Definition 5.2. Let R an integral domain with quotient field K. A prime ideal
P of R is a pseudo n-strongly prime ideal of R if whenever xyP ⊆ P for x, y ∈ K,
then xn ∈ R or ynP ⊆ P . If every prime ideal of R is a pseudo n-strongly prime
ideal of R, then R is a pseudo n-valuation domain (PnVD).

A P1VD is just a PVD [24, Proposition 1.2], an n-VD is a PnVD, a PnVD is
a PAVD, and a PnVD is also a P(mn)VD for every positive integer m. Moreover,
from Theorem 5.4 and Remark 5.6, it follows that a PnVD R is quasilocal, the
prime ideals of R are linearly ordered by inclusion, and dim(R) ≤ 1 when R is
Noetherian.
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The following is an example of a PAVD which is not a PnVD for any positive
integer n.

Example 5.3. Let p be a positive prime integer and F = Zp the algebraic closure
of Zp. Then R = Zp + ZpX + X2F [[X]] is quasilocal with maximal ideal M =
ZpX +X2F [[X]] and quotient field K = F [[X]][1/X]. Let y ∈ K with yn 6∈ R for
every positive integer n. Then y = z/Xm, where z ∈ U(F [[X]]) and m ≥ 0. If
m > 0, then y−2M ⊆ M . If m = 0, then there is a positive integer n such that
z(0)n = 1; so y−nM ⊆ M . Thus R is a PAVD by [16, Lemma 2.1 and Theorem
2.5]. We now show that R is not a PnVD for any positive integer n. For n a
positive integer, there is a b ∈ F with bn /∈ Zp and b−n /∈ Zp. Hence bn /∈ R and
b−nX /∈ M ; so R is not a PnVD by Theorem 5.4(a)(b) below. However, R is an
n-PVD for every integer n ≥ 2 by Example 4.34(c).

The proofs of the following results are similar to the proofs given in [16], and
thus the details are left to the reader.

Theorem 5.4. Let R an integral domain with quotient field K.
(a) Let P be a prime ideal of R. Then P is a pseudo n-strongly prime ideal of

R if and only if x−nP ⊆ P for every x ∈ En(R) (see [16, Lemma 2.1]).
(b) R is a PnVD if and only if R is quasilocal with pseudo n-strongly prime

maximal ideal (see [16, Theorem 2.5]).
(c) R is a PnVD if and only if for every a, b ∈ R, we have an | bn in R or bn | anc

in R for every nonunit c of R (see [16, Proposition 2.9]).
(d) Let P be a prime ideal of R. If R is a PnVD, then R/P is a PnVD (see [16,

Proposition 2.14]).
(d) An n-root closed PnVD is a PVD (see [16, Theorem 2.13]).

The next example gives some more n-PVDs that are not PnVDs.

Example 5.5. Let m ≥ 2 be an integer. Then R = R + RXm−1 + XmC[[X]]
is quasilocal with maximal ideal M = RXm−1 + XmC[[X]], quotient field K =
C[[X]][1/X], and integral closure R = C[[X]]. By Theorem 4.29, R is an n-PVD
for every integer n ≥ m. For a positive integer k, let y = e−iπ/2k. Then yk = −i 6∈ R
and y−kXm−1 = iXm−1 6∈ R; so R is not a PkVD for any positive integer k by
Theorem 5.4(a).

Remark 5.6. Let R an integral domain with quotient field K. Since An(P ) ⊆ P
for every prime ideal P of R, every pseudo n-strongly prime ideal of R is also an
n-powerful semiprimary ideal of R by Corollary 4.15 and Theorem 5.4(a), and thus
a PnVD is an n-PVD. Hence, we have the following implications

n−V D ⇒ PnV D ⇒ n−PV D.

Neither of the above two implications is reversible. A PnVD need not be an n-VD
by Theorem 5.13, and an n-PVD need not be a PnVD by Examples 5.3 and 5.5.
Also, note that the ring in Example 5.1 is a 4-PVD, but not a P4VD.

The next theorem gives a case where an n-PVD is a PnVD. Note that the n = 1
case is just [11, Proposition 2.5]. We may have M 6= (An(M)) for every integer
n ≥ 2 (see Example 4.34(a)(b)). Note that in the next two theorems, we need the
extra condition (∗)n (cf. Example 4.34(d)(e), and recall that if R is not an n-PVD,
then R is not a PnVD by Remark 5.6).
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Theorem 5.7. Let R be a quasilocal integral domain with maximal ideal M =
(An(M)) and quotient field K. Then the following statements are equivalent.

(1) R is a PnVD.
(2) R is an n-PVD.

(3) V = (M : M) is an n-VD with maximal ideal
√
MV = {x ∈ V | xn ∈M},

and if x ∈ K is a nonunit of R, then xn ∈M .

Proof. (1)⇒ (2) A PnVD is an n-PVD by Remark 5.6.
(2) ⇒ (1) Let x ∈ En(R); so x ∈ En(M). Then x−nAn(M) ⊆ M by Corol-

lary 4.16, and thus x−nM ⊆ M since M = (An(M)) by hypothesis. Hence R is a
PnVD by Theorem 5.4(a)(b).

(2)⇔ (3) This is clear by Theorem 4.33. �

The following result recovers that a quasilocal integral domain R with maximal
ideal M is a PVD if and only if (M : M) is a valuation domain with maximal ideal
M [11, Proposition 2.5]; its proof is an analog of the proof of [16, Theorem 2.15].

Theorem 5.8. Let R be a quasilocal integral domain with maximal ideal M and
quotient field K. Then the following statements are equivalent.

(1) R is a PnVD.

(2) V = (M : M) is an n-VD with maximal ideal
√
MV = {x ∈ V | xn ∈M},

and if x ∈ K is a nonunit of R, then xn ∈M .

Proof. (1)⇒ (2) Let R be a PnVD. Let x ∈ En(V ); so x ∈ En(R). Then x−nM ⊆
M by Theorem 5.4(a); so x−n ∈ V . Thus V is an n-VD with maximal ideal MV .
Let x ∈ MV . If xn ∈ R, then xn ∈ M . Otherwise, x ∈ En(R). Hence x−nM ⊆ M
by Theorem 5.4(a) again; so x−n ∈ V . Thus x ∈ U(V ), a contradiction. Hence

MV ⊆ {x ∈ V | xn ∈ M} ⊆
√
MV , and

√
MV ⊆ MV since MV = M ( V . Thus

MV =
√
MV = {x ∈ V | xn ∈ M}. If x ∈ K is a nonunit of R, then xn ∈ M by

Corollary 4.27 since a PnVD is an n-PVD by Remark 5.6.
(2)⇒ (1) Let V = (M : M) be an n-VD with maximal ideal

√
MV = {x ∈ V |

xn ∈ M}. Suppose that x ∈ En(R); so xn /∈ M . If xn ∈ V and xn /∈ U(V ), then

xn
2

= (xn)n ∈ M ⊆ R; so x ∈ R. Thus xn ∈ M by hypothesis, a contradiction.
Hence xn ∈ U(V ); so x−nM ⊆ M . If xn /∈ V , then x−n ∈ V since V is an n-VD.
Thus x−nM ⊆M in either case; so R is a PnVD by Theorem 5.4(a)(b). �

Corollary 5.9. Let R be a PnVD with maximal ideal M . If P is a prime ideal of
R, then WP = (P : P ) is an n-VD. Moreover, if P ⊆ Q are prime ideals of R, then
WQ = (Q : Q) ⊆ (P : P ) = WP .

Proof. We have V = (M : M) ⊆ (P : P ) = WP by [6, Lemma 2.2] since P ⊆
M . Thus WP is an n-VD since V is an n-VD by Theorem 5.8. The “moreover”
statement is clear since (Q : Q) ⊆ (P : P ) by [6, Lemma 2.2] again. �

Let T be an overring of an integral domain R and n a positive integer. Then T
is an n-root extension of R if xn ∈ R for every x ∈ T , and T is a root extension of
R if for every x ∈ T , there is a positive integer m such that xm ∈ R.

Theorem 5.10. Let R be a quasilocal integral domain with maximal ideal M and
quotient field K, n a positive integer, and V a valuation overring of R with maximal
ideal N = {x ∈ V | xn ∈ M}. Then R is an n-VD if and only if V is an n-root
extension of R.



ON n-SEMIPRIMARY IDEALS AND n-PSEUDO VALUATION DOMAINS 21

Proof. We may assume that R ( V . Suppose that R is an n-VD. Let x ∈ V \ R.
If x ∈ N , then xn ∈ M ⊆ R. Thus, assume that x 6∈ N . Since N is the maximal
ideal of V , we have x ∈ U(V ). Thus xn 6∈M and x−n 6∈M . Since R is an n-VD,
we have xn ∈ U(R) ⊆ R. Hence V is an n-root extension of R.

Conversely, suppose that V is an n-root extension of R. Let x ∈ K with xn 6∈ R.
Then x 6∈ V since V is an n-root extension of R, and thus x−1 ∈ V since V is a
valuation domain. Hence x−n ∈ R since V is an n-root extension of R, and thus R
is an n-VD. �

Lemma 5.11. Let R be a quasilocal integral domain with maximal ideal M and
quotient field K. If R is an n-VD, then R is a valuation domain with maximal

ideal
√
MR = {x ∈ K | xn ∈M} and R ⊆ R is an n-root extension.

Proof. Let R be an n-VD. Then R is an almost valuation domain; so R is a valuation

domain and R ⊆ R is a root extension by [4, Theorem 5.6]. Thus
√
MR = {x ∈ K |

xn ∈ M} is the maximal ideal of R by Theorem 4.29 since an n-VD is an n-PVD.
Hence R is an n-root extension of R by Theorem 5.10. �

Theorem 5.12. Let R be a quasilocal integral domain with maximal ideal M and
quotient field K, and let V be an n-VD overring of R with maximal ideal N = {x ∈
V | xn ∈M}. Then R is an n-VD if and only if V = R = {x ∈ K | xn ∈ R}.

Proof. We may assume that R ( V . Suppose that R is an n-VD. Then R is a
valuation domain with maximal ideal W = {x ∈ K | xn ∈ M} and R ⊆ R is an
n-root extension by Lemma 5.11. Similarly, since V is an n-VD, V is a valuation
domain with maximal ideal T = {x ∈ K | xn ∈ N} and V ⊆ V is an n-root
extension by Lemma 5.11. First, we show that R ( V is an n-root extension. Let
x ∈ V \ R. If x ∈ N , then xn ∈ M ⊆ R. Hence, assume that x 6∈ N . Since N is
the maximal ideal of V , we have x ∈ U(V ). Since x ∈ U(V ), neither xn ∈ M nor
x−n ∈ M . Since R is an n-VD, xn ∈ U(R) ⊆ R. Thus V is an n-root extension
of R. Since V is an integral overring of R, we have that V is integral over R, and
thus R = V = {x ∈ K | xn ∈ R}.

Conversely, suppose that R = V = {x ∈ K | xn ∈ R}, and let x ∈ K with
xn 6∈ R. Then x 6∈ V , and thus x−1 ∈ V since V is a valuation domain by
Lemma 5.11. Hence x−n ∈ R; so R is an n-VD. �

Let V be a valuation domain with maximal ideal M , residue field F = V/M , and
π : V −→ F the canonical epimorphism. If k is a subfield of F , then R = π−1(k)
is a PVD with maximal ideal M [11, Proposition 2.6]. Moreover, every PVD arises
in this way. Let R be a PVD with maximal ideal M . Then V = (M : M) is a
valuation domain with maximal ideal M [11, Proposition 2.5]; so R = π−1(R/M).
A similar result holds for PnVDs and n-VDs.

Theorem 5.13. Let V be an n-VD with nonzero maximal ideal M , residue field
F = V/M , π : V −→ F the canonical epimorphism, k a subfield of F , and R =
π−1(k). Then the pullback R = V ×F k is a PnVD with maximal ideal M . In
particular, if k is properly contained in F and V is not an n-root extension of R,
then R is a PnVD which is not an n-VD.

Proof. In view of the construction stated in the hypothesis, it is well known that
M is a maximal ideal of R for any integral domain V . Also, it is clear that R
and V have the same quotient field K by [11, Lemma 3.1]. Let x ∈ En(R). Then
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xn ∈ V or x−n ∈ V since V is an n-VD. Suppose that xn ∈ V . Since x ∈ En(R)
and M is the maximal ideal of R, we have xn 6∈ M . Thus xn ∈ U(V ), and hence
x−n ∈ V ; so x−nM ⊆ M since M is an ideal of V . Now suppose that x−n ∈ V .
Then x−nM ⊆M since M is an ideal of V . Thus M is a pseudo n-strongly prime
ideal of R by Theorem 5.4(a), and hence R is a PnVD by Theorem 5.4(b). The
remaining part is clear from Theorem 5.12. �

The final example illustrates the previous theorem.

Example 5.14. (a) Let V = Zp(t)[[X]]. Then V is a valuation domain; so R =
Zp +XZp(t)[[X]] is a PnVD for every positive integer n, but not an n-VD for any
positive integer n, by Theorem 5.13 since V is not an n-root extension of R. Note
that R is actually a PVD.

(b) Let T = K +M be a quasilocal integral domain with maximal ideal M and
K a subfield of T . Let k be a subfield of K and R = k + M . Then R is also
quasilocal with maximal ideal M . Thus R is an n-PVD (resp., PnVD) if and only
if T is an n-PVD (resp., PnVD) by Corollary 4.8 (resp., Theorem 5.4(b)).

For example, T = R[[X2, X3]] = R + X2R[[X]] is an n-PVD ⇔ n ≥ 2 (Exam-
ple 4.34(b)), and thus R = Q +X2R[[X]] is an n-PVD ⇔ n ≥ 2.
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