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Abstract. Let R be a commutative ring with nonzero identity. In this paper,

we introduce the concept of 1-absorbing primary ideals in commutative rings.

A proper ideal I of R is called a 1-absorbing primary ideal of R if whenever

nonunit elements a, b, c ∈ R and abc ∈ I, then ab ∈ I or c ∈
√
I. Some

properties of 1-absorbing primary ideals are investigated. For example, we
show that if R admits a 1-absorbing primary ideal that is not a primary ideal,

then R is a quasilocal ring. We give an example of a 1-absorbing primary
ideal of R that is not a primary ideal of R. We show that if a ring R is not

a quasilocal, then a proper ideal I of R is a 1-absorbing primary ideal of R if

and only if I is a primary ideal. We show that if R is a Noetherian domain,
then R is a Dedekind domain if and only if every nonzero proper 1-absorbing

primary ideal of R is of the form Pn for some nonzero prime ideal P of R and

a positive integer n ≥ 1. We show that a proper ideal I of R is a 1-absorbing
primary ideal of R if and only if whenever I1I2I3 ⊆ I for some proper ideals

I1, I2, I3 of R, then I1I2 ⊆ I or I3 ⊆
√
I.

1. Introduction

Throughout this paper all rings are commutative with 1 6= 0. Let R be a com-
mutative ring. If R has exactly one maximal ideal, then R is called a quasilocal
ring. An ideal I of R is said to be proper if I 6= R. Let I be a proper ideal of a
commutative ring R. Then the radical of I is denoted by

√
I = {r ∈ R | rn ∈ I for

some positive integer n ≥ 1} and the set of zero divisor elements with respect to I
is denoted by ZI(R) = {r ∈ R | rs ∈ I for some s ∈ R\I}.

Since prime ideals have an important role in the theory of commutative rings,
there are several ways to generalize the concept of prime ideals. Badawi generalized
the concept of prime ideals in [3]. We recall from [3] that a nonzero proper ideal
I of R is said to be a 2-absorbing ideal of R if whenever a, b, c ∈ R and abc ∈ I,
then either ab ∈ I or ac ∈ I or bc ∈ I. Anderson and Badawi [2] generalized the
notion of 2-absorbing ideals to n-absorbing ideals. A proper ideal I of R is called
n-absorbing ideal if whenever x1 · · · xn+1 ∈ I for x1, ..., xn+1 ∈ R, then there are
n of the xi’s whose product is in I. Recall from [4] that a proper ideal I of R is
called a 2-absorbing primary ideal of R if whenever a, b, c ∈ R with abc ∈ I, then
ab ∈ I or ac ∈

√
I or bc ∈

√
I.

In this paper, we introduce the concept of 1-absorbing primary ideals of com-
mutative rings . A proper ideal I of a commutative ring R is called a 1-absorbing
primary ideal of R if whenever nonunit elements a, b, c ∈ R and abc ∈ I, then
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ab ∈ I or c ∈
√
I. We show that the following implications hold and none of them

is revisable:
primary ideal =⇒ 1-absorbing primary ideal =⇒ 2-absorbing primary ideal.
Among many results in this paper. We give an example (Example 1) of a 1-

absorbing primary ideal of R that is not a primary ideal of R, and another example
(Example 2) of a 2-absorbing primary ideal of R that is not a 1-absorbing primary
ideal of R. We show (Theorem 2) that if I is a 1-absorbing primary ideal of R,

then
√
I is a prime ideal of R. We show (Theorem 3) if a ring R admits a 1-

absorbing primary ideal of R that is not a primary ideal, then R is a quasilocal
ring. We give a method (Theorem 6) to construct 1-absorbing primary ideals of
commutative rings that are not primary ideals. We show (Theorem 7) that if a
ring R is not a quasilocal, then a proper ideal I of R is a 1-absorbing primary
ideal of R if and only if I is a primary ideal. We show (Theorem 16) that if R is
a Noetherian domain, then R is a Dedekind domain if and only if every nonzero
proper 1-absorbing primary ideal of R is of the form Pn for some nonzero prime
ideal P of R and a positive integer n ≥ 1. We show (Theorem 21) that a proper
ideal I of R is a 1-absorbing primary ideal of R if and only if whenever I1I2I3 ⊆ I
for some proper ideals I1, I2, I3 of R, then I1I2 ⊆ I or I3 ⊆

√
I.

For any undefined terminology see [5], [6], [7], and [8].

2. Properties of 1-absorbing primary ideals

We remind the reader with the following definitions.

Definition 1. Let I be a proper ideal of a commutative ring R.

(1) We call I a 1-absorbing primary ideal of R if whenever nonunit elements

a, b, c ∈ R and abc ∈ I, then ab ∈ I or c ∈
√
I.

(2) ([4]) We call I a 2-absorbing primary ideal of R if whenever a, b, c ∈ R with

abc ∈ I, then ab ∈ I or ac ∈
√
I or bc ∈

√
I.

We start with the following trivial result, and hence we omit its proof.

Theorem 1. Let I be a proper ideal of R. Then

(1) If I is a primary ideal of R, then I is a 1-absorbing primary ideal of R.
(2) If I is a 1-absorbing primary ideal of R, then I is a 2-absorbing primary

ideal of R.

The following is an example of a 1-absorbing primary ideal that is not a primary
ideal.

Example 1. Let A = K[x, y], where K is a field, M = (x, y)A, and R = AM . Note
that R is a quasilocal ring with maximal ideal MM . Then I = xMM = (x2, xy)R is

a 1-absorbing primary ideal of R (see Theorem 6) and
√
I = xR. However xy ∈ I,

but neither x ∈ I nor y ∈
√
I. Thus I is not a primary ideal of R.

The following is an example of a 2-absorbing primary ideal that is not a 1-
absorbing primary ideal.

Example 2. Let R = Z. Consider the ideal I = 12R. Then I is a 2-absorbing
primary ideal of R by Corollary 2.12 in [4]. However 2 ·2 ·3 ∈ I, but neither 2 ·2 ∈ I

nor 3 ∈
√
I. Thus I is not a 1-absorbing primary ideal of R.
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Theorem 2. Let I be a 1-absorbing primary ideal of a ring R. Then
√
I is a prime

ideal of R.

Proof. Let xy ∈
√
I for some x, y ∈ R. We may assume that x, y are nonunit

elements of R. Let n ≥ 2 be an even positive integer such that (xy)n ∈ I. Then
n = 2m for some positive integer m ≥ 1. Since (xy)n = xnyn = xmxmyn ∈ I and
I is a 1-absorbing primary ideal of R, we conclude that xmxm = xn ∈ I or yn ∈ I.
Hence x ∈

√
I or y ∈

√
I. Thus

√
I is a prime ideal of R. �

The following lemma is needed in the proof of our next result.

Lemma 1. Let R be a ring. Suppose that for every nonunit element w of R and
for every unit element u of R, we have w + u is a unit element of R. Then R is a
quasilocal ring.

Proof. Suppose that R has at least two maximal ideals, say M1,M2. Then m1 +
m2 = 1 for some m1 ∈ M1 and m2 ∈ M . Thus 1 −m1 = m2 is a unit element of
R, which is impossible since m2 ∈M2. Thus R is a quasilocal ring. �

In the following result, we show that if a ring R admits a 1-absorbing primary
ideal that is not a primary ideal, then R is a quasilocal ring.

Theorem 3. Suppose that a ring R admits a 1-absorbing primary ideal that is not
a primary ideal. Then R is a quasilocal ring.

Proof. Suppose that I is a 1-absorbing primary ideal of R that is not a primary
ideal of R. Hence there exist nonunit elements x, y ∈ R such that neither x ∈ I nor
y ∈
√
I. Let w be a nonunit element of R. Since wxy ∈ I and I is a 1-absorbing

primary ideal of R and y /∈
√
I, we conclude that wx ∈ I. Let u be a unit element of

R. Suppose that w+u is a nonunit element of R. Since (w+u)xy ∈ I and I is a 1-

absorbing primary ideal of R and y /∈
√
I, we conclude that (w+u)x = wx+ux ∈ I.

Since wx ∈ I, we conclude that x ∈ I, which is a contradiction. Thus w+u is a unit
element of R. Since for every nonunit element w of R and for every unit element u
of R, we have w + u is a unit element of R, we conclude that R is a quasilocal ring
by Lemma 1. �

Theorem 4. Suppose that a ring R is not a quasilocal ring. Then a proper ideal
I of R is a 1-absorbing primary ideal of R if and only if I is a primary ideal of R.
In particular, if R = R1 × R2 for some rings R1 and R2, then a proper ideal I of
R is a 1-absorbing primary ideal of R if and only if I is a primary ideal of R.

Proof. If I is a primary ideal of R, then it is clear that I is a 1-absorbing primary
ideal of R. Hence assume that I is a 1-absorbing primary ideal of R. Let xy ∈ I
for some x, y ∈ R. We may assume that x, y are nonunit elements of R. Suppose
that y 6∈

√
I. Since R is not a quasilocal ring, there exist a nonunit element w ∈ R

and a unit element u ∈ R such that w + u is a nonunit element of R by Lemma 1.
Since wxy ∈ I and I is a 1-absorbing primary ideal of R and y /∈

√
I, we conclude

that wx ∈ I. Also, since (w + u)xy ∈ I and I is a 1-absorbing primary ideal of R

and y /∈
√
I, we conclude that (w + u)x = wx+ ux ∈ I. Since wx ∈ I, we conclude

that x ∈ I. Thus I is a primary ideal of R. �

Let R = R1 × R2, where R1 and R2 are commutative rings with 1 6= 0, and let
J be a proper ideal of R. Then it is well-know that J is a primary ideal of R if and
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only if J = I ×R2 for some primary ideal I of R1 or J = R1 ×L for some primary
ideal L of R2. Hence, in view of Theorem 4, we have the following result.

Theorem 5. Let R = R1×R2, where R1 and R2 are commutative rings with 1 6= 0,
and let J be a proper ideal of R. The following statements are equivalent.

(1) J is a 1-absorbing primary ideal of R.
(2) J is a primary ideal of R.
(3) J = I×R2 for some primary ideal I of R1 or J = R1×L for some primary

ideal L of R2.

Recall that a nonzero nonunit element x of a ring R is called irreducible if x =
x1x2 for some x1, x2 ∈ R, then x1 is a unit of R or x2 is a unit of R. Also, recall
that x is called prime if x | x1x2 for some x1, x2 ∈ R, then x | x1 or x | x2. The
following lemma is needed in the proof of our next result.

Lemma 2. Let R be a quasilocal ring. If p is a nonzero prime element of R, then
p is an irreducible element of R.

Proof. Assume that p = p1p2 for some p1, p2 ∈ R. Since p is a prime element of
R, we may assume that p | p1. We show that p2 is a unit of R. Hence p1 = pw
for some w ∈ R and thus p = pwp2. Thus p − pwp2 = p(1 − wp2) = 0. If p2 is a
nonunit element of R, then 1− wp2 is a unit of R (since R is quasilocal) and thus
p = 0, a contradiction. Hence p2 is a unit of R. Thus p is an irreducible element of
R. �

The following result provides a method to construct 1-absorbing primary ideals
that are not primary ideals.

Theorem 6. Let R be a quasilocal ring with maximal ideal M . Let x ∈ M be a
nonzero prime element of R such that M 6= xR. Then xM is a 1-absorbing primary
ideal of R that is not a primary ideal of R.

Proof. Fist, we show that xM is not a primary ideal of R. Observe that
√
xM = xR.

Since M 6= xR, there exists an m ∈ M \ xR. Now xm ∈ I. Since x is a nonzero
prime element of R, we conclude that x is an irreducible element of R by Lemma
2, and thus x /∈ xM . Also, since m ∈ M \ xR and

√
xM = xR, we conclude that

m /∈
√
xM . Thus xM is not a primary ideal of R. Now we show that xM is a

1-absorbing primary ideal of R. Suppose that abc ∈ I for some nonunit elements
a, b, c ∈ R. Suppose that ab /∈ xM . Then x - a and x - b (note that if x | a or
x | b, then ab ∈ xM). Since x | abc and x - ab, we conclude that x | c. Thus

c ∈
√
xM = xR. �

Theorem 7. Suppose that I is a 1-absorbing primary ideal of R that is not a
primary ideal of R. Then there exist an irreducible element x ∈ R and a nonunit
element y ∈ R such that xy ∈ I, but neither x ∈ I nor y ∈

√
I. Furthermore, if

ab ∈ I for some nonunit elements a, b ∈ R such that neither a ∈ I nor b ∈
√
I,

then a is an irreducible element of R.

Proof. Since I is not a primary ideal of R, there exist nonunit elements x, y ∈ R
such that neither x ∈ R nor y ∈

√
I. Suppose that x is not an irreducible element

of R. Then x = cd for some nonunit elements c, d ∈ R. Since xy = cdy ∈ I and I
is a 1-absorbing primary ideal of R and y /∈

√
I, we conclude that cd = x ∈ I, a

contradiction. Hence x is an irreducible element of R. �
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Theorem 8. Let R be a quasilocal ring with maximal ideal M and P be a prime
ideal of R such that P ⊆M . Then PM is a 1-absorbing primary ideal of R.

Proof. . First observe that
√
PM = P . Suppose that abc ∈ PM for some nonunit

elements a, b, c ∈ M . If a ∈ P or b ∈ P , then it is clear that ab ∈ PM . Hence
assume that neither a ∈ P nor b ∈ P . Thus ab 6∈ P . Since abc ∈ PM ⊆ P and
ab /∈ P , we conclude that c ∈ P =

√
PM . Thus PM is a 1-absorbing primary ideal

of R. �

Remark 1. Observe that PM in Theorem 8 needs not be a primary ideal of R by
Theorem 6.

Theorem 9. Let I be a 1-absorbing primary ideal of a ring R. Suppose that
c ∈ R \ I is a nonunit element of R. Then (I : c) = {x ∈ R | cx ∈ I} is a primary
ideal of R.

Proof. Suppose that I is a 1-absorbing primary ideal of R and c is a nonunit element
of R such that c ∈ R \ I. Let ab ∈ (I : c) for some elements a, b ∈ R. We may
assume that a, b are nonunit elements of R. Suppose that a /∈ (I : c). Hence ca /∈ I.
Since cab ∈ I and I is a 1-absorbing primary ideal of R and ca /∈ I, we conclude
that b ∈

√
I ⊆

√
(I : c). Hence (I : c) is a primary ideal of R. �

Remark 2. Let I be a 1-absorbing primary ideal of a ring R and c be a nonunit
element of R such that c ∈ R \ I. Suppose that c /∈

√
I. Since

√
I is a a prime

ideal of R, we conclude that I ⊆ (I : c) ⊆
√
I, and thus

√
(I : c) =

√
I. Suppose

that c ∈
√
I \ I. Let n be the last positive integer n ≥ 2 such that cn ∈ I. Then

cn−1 ∈ (I : c) \ I. Thus I ( (I : c). Also, (I : c) needs not be a subset of
√
I; for

let R, I, MM be as in Example 1, and c = x. Then (I : c) = MM *
√
I.

Recall that a ring R is called divided if for every prime ideal P of R and for every
x ∈ R \ P , we have x | p for every p ∈ P . Recall that a ring R is called a chained
ring if for every x, y ∈ R, we have x | y or y | x. Thus every chained ring is divided.
Hence if R is a divided ring, then R is a quasilocal ring. We have the following
result.

Theorem 10. Let R be a divided ring. Then a proper ideal I of R is a 1-absorbing
primary ideal of R if and only if I is a primary ideal of R. In particular, if R is a
chained ring, then a proper ideal I of R is a 1-absorbing primary ideal of R if and
only if I is a primary ideal of R.

Proof. It is clear that every primary ideal of R is a 1-absorbing primary ideal of
R. Hence assume that I is a 1-absorbing primary ideal of R. Suppose that xy ∈ I
for some x, y ∈ R and y /∈

√
I. We may assume that x, y are nonunit elements of

R. Since
√
I is a prime ideal of R by Theorem 2 and y /∈

√
I, we conclude that

x ∈
√
I. Since R is divided, we conclude that y | x. Thus x = yw for some w ∈ R.

Since y /∈
√
I and x ∈

√
I, we conclude that w is a nonunit element of R. Since

xy = ywy ∈ I and I is a 1-absorbing primary ideal of R and y /∈
√
I, we conclude

that yw = x ∈ I. Thus I is a primary ideal of R. �

Recall that a proper ideal I of R is called principal if I = xR for some x ∈ R.

Theorem 11. Let R be a divided ring with maximal ideal M . If M is not a
principal prime ideal of R, then every nonzero prime ideal of R is not principal.
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Proof. Suppose that a nonzero prime ideal P = xR for some x ∈ R. Then x is a
nonzero prime element of R and M 6= xR. Thus xM is a 1-absorbing primary ideal
of R that is not a primary ideal of R by Theorem 6, which is a contradiction by
Theorem 10. �

Theorem 12. Let R be a divided integral domain and P be a prime ideal of R.
Then Pn is a primary ideal of R for every positive integer n ≥ 1, and hence Pn is
a 1-absorbing primary ideal of R for every positive integer n ≥ 1.

Proof. If n = 1, then there is nothing to prove. Thus let n ≥ 2 and Suppose that
xy ∈ Pn for some x, y ∈ R. Then xy = p1c1+· · ·+pkck ∈ Pn for some p1, ..., pk ∈ P
and c1, ..., ck ∈ Pn−1 for some positive integer k ≥ 1. Suppose that y 6∈ P . Since
R is divided, we have Then y | pi for every i, 1 ≤ i ≤ k. Hence for every i,
1 ≤ i ≤ k, we have pi = ydi for some di ∈ P . Thus xy = yd1c1 + · · ·+ydkck. Hence
y(x − (d1c1 + · · · + dkck)) = 0. Since R is an integral domain, we conclude that
x = d1c1 + · · ·+ dkck ∈ Pn. Thus Pn is a primary ideal of R. Since every primary
ideal of R is a 1-absorbing primary ideal, we conclude that Pn is a 1-absorbing
primary ideal of R for every positive integer n ≥ 2. �

Recall that an integral domain R is called a valuation domain if R is a chained
ring.

Theorem 13. Let R be a valuation domain and I be a proper ideal of R with
√
I =

P (note that P is a prime ideal of R). The following statements are equivalents.

(1) I is a 1-absorbing primary ideal of R.
(2) I is a primary ideal of R.
(3) If P 6= P 2, then I = Pn for some positive integer n ≥ 1.

Proof. (1)⇒ (2). Since R is divided, the claim is clear by Theorem 10.
(2)⇒ (3). The claim is clear by [8, Theorem 5.11].
(3)⇒ (1). Since R is divided, the claim is clear by Theorem 12. �

Let R be an integral domain with quotient field K. Recall that a proper ideal I
of R is called invertible if II−1 = R, where I−1 = {r ∈ K | rI ⊆ R}. An integral
domain R is called a Prufer domain if every nonzero finitely generated ideal of R
is invertible.

Theorem 14. Let R be a Prufer domain and I be a proper ideal of R with
√
I = P

for some prime ideal P of R. Then the following statements are equivalents.

(1) I is a 1-absorbing primary ideal of R.
(2) I is a primary ideal of R.
(3) If P is a finitely generated ideal of R, then I = Pn for some positive integer

n ≥ 1.

Proof. (1) ⇒ (2). Suppose that R is quasilocal with maximal ideal M . Since R is
a Prufer domain, it is known that R = RM is a valuation domain and hence the
claim follows from Theorem 14. Suppose that R is not quasilocal. Then the claim
follows by Theorem 4.

(2)⇒ (3). The claim is clear by [8, Exercise 2, p. 144].
(3) ⇒ (1). Since I = Pn for some positive integer n ≥ 1 and P is a finitely

generated ideal of R, we conclude that I is a primary ideal of R by [8, Exercise 2,
p. 144]. Thus I is a 1-absorbing primary ideal of R. �
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Recall that an integral domain is called a Dedekind domain if every nonzero
proper ideal of R is invertible.

Theorem 15. Let R be a Dedekind domain and I be a nonzero proper ideal of R.
Then I is a 1-absorbing primary ideal of R if and only if

√
I is a prime ideal of R.

Proof. If I is a 1-absorbing primary ideal of R, then
√
I is a prime ideal of R by

Theorem 2. Conversely, suppose
√
I is a prime ideal of R. Since R is a Dedekind

domain, it is well-known that every nonzero prime ideal of R is a maximal ideal of
R. Thus

√
I is a maximal ideal of R. Hence I is a primary ideal of R, and thus I

is 1-absorbing primary ideal of R. �

Theorem 16. Let R be a Noetherian integral domain that is not a field. Then the
following statements are equivalent:

(1) R is a Dedekind domain.
(2) A nonzero proper ideal I of R is a 1-absorbing primary ideal of R if and

only if I = Pn for some prime ideal P of R some positive integer n.

Proof. (1)⇒ (2). Let R be a Dedekind domain and I be a nonzero proper ideal of

R. Suppose that I is a 1-absorbing primary ideal of R. Then
√
I = P is a nonzero

prime ideal of R by Theorem 2. Since R is a Dedekind domain, it is known that
every nonzero prime ideal of R is a maximal ideal of R. Thus

√
I = P is a maximal

ideal of R. Thus I is a primary ideal of R. Since R is Dedekind and I is a primary
ideal of R with

√
I = P is a maximal ideal of R, we conclude that I = Pn for some

n ≥ 1 by of R by [8, Theorem 6.20]. Conversely, suppose that I = Pn for some
nonzero proper ideal P of R and a positive integer n ≥ 1. Since R is Dedekind, we
conclude that P is a maximal ideal of R, and hence I is a primary ideal of R. Thus
I is a 1-absorbing primary ideal of R.

(2)⇒ (1). Suppose that every nonzero 1-absorbing primary ideals of R is of type
I = Pn for some nonzero prime ideal P of R and a positive integer n ≥ 1. Let M
be a maximal ideal of R. Since every ideal between M2 and M is a primary ideal
and hence a 1-absorbing primary ideal of R, we conclude that there is no primary
ideals of R between M2 and M . Thus R is a Dedekind domain by [5, Theorem
39.2]. �

Since every principal ideal domain is a Dedekind domain, we have the following
result.

Corollary 1. Let R be a principal ideal domain and I be a nonzero proper ideal
of R. Then I is a 1-absorbing primary ideal of R if and only if I = pnR for some
nonzero prime element p of R and a positive integer n ≥ 1.

In light of Theorem 6 and Example 1, observe that there are some rings whose
1-absorbing primary ideals are not of the form Pn for some prime ideal P of R and
a positive integer n ≥ 1.

Let I1 and I2 be 1-absorbing primary ideals of R. If
√
I1 6=

√
I2, then I1 ∩ I2

needs not to be a 1-absorbing primary ideal of R. We have the following example.

Example 3. Let R = Z× Z. Then I1 = 4Z× Z and I2 = Z× 9Z are 1-absorbing
primary ideals of R. Also,

√
I1 = 2Z × Z and

√
I2 = Z × 3Z. Hence

√
I1 6=

√
I2

and I1 ∩ I2 = 4Z× 9Z is not a 1-absorbing primary ideal of R by Theorem 5



8 AYMAN BADAWI AND ECE YETKIN CELIKEL

Definition 2. Let I be a 1-absorbing primary ideal of a ring R. Then
√
I = P is

a prime ideal of R by Theorem 2. Hence we call I a P -1-absorbing primary ideal
of R.

So we have the following result.

Theorem 17. Let I1, I2, ..., In be P -1-absorbing primary ideals of a ring R. Then
I =

⋂n
i=1 Ii is a P -1-absorbing primary ideal of R.

Proof. First observe that
√
I = P . Suppose that abc ∈ I for some nonunit elements

a, b, c ∈ R and ab /∈ I. Without loss of generality, we may assume that ab /∈ I1.
Since I1 is a P -1-absorbing primary ideal of R and ab /∈ I1, we have c ∈ P . �

Theorem 18. Let R1 and R2 be rings and f : R1 → R2 be a ring homomorphism
such that f(1) = 1 and if R2 is a quasilocal ring, then f(a) is a nonunit of R2 for
every nonunit a ∈ R1. Then the following statements hold.

(1) Assume that J is a 1-absorbing primary ideal of R2, then f−1(J) is a 1-
absorbing primary ideal of R1.

(2) If f is onto and I is a 1-absorbing primary ideal of R1 with Ker(f) ⊆ I,
then f(I) is a 1-absorbing primary ideal of R2.

Proof. (1). Assume that R2 is quasilocal. Let abc ∈ f−1(J) for some nonunit
elements a, b, c ∈ R1. Then f(abc) = f(a)f(b)f(c) ∈ J (note that f(a), f(b), and
f(c) are nonunit elements of R2 by hypothesis), which implies f(a)f(b) ∈ J or

f(c) ∈
√
J . It follows ab ∈ f−1(J) or c ∈

√
f−1(J) = f−1(

√
J). Thus f−1(J) is a

1-absorbing primary ideal of R1. Suppose that R2 is not a quasilocal ring and J is
a 1-absorbing primary ideal of R2. Then J is a primary ideal of R2 by Theorem 3.
Thus f−1(J) is a primary ideal of R1, and hence f−1(J) is a 1-absorbing primary
ideal of R1.

(2). Since f is onto and Ker(f) ⊆ I, we know that f(
√
I) =

√
f(I). Let

xyz ∈ f(I) for some nonunit elements x, y, z ∈ R2. Since f is onto, there exist
nonunit elements a, b, c ∈ R1 such that x = f(a), y = f(b), and z = f(c). Hence
f(abc) = f(a)f(b)f(c) = xyz ∈ f(I). Since Ker(f) ⊆ I, we conclude that abc ∈ I.

Hence ab ∈ I or c ∈
√
I; so xy ∈ f(I) or z ∈ f(

√
I) =

√
f(I). Thus f(I) is a

1-absorbing primary ideal of R2. �

In view of Theorem 18, we have the following result.

Corollary 2. Let I and J be proper ideals of a ring R with I ⊆ J and suppose that
if R/I is a quasilocal ring, then a+ I is a nonunit of R/I for every nonunit a ∈ R.
Then J is a 1-absorbing primary ideal of R if and only if J/I is a 1-absorbing
primary ideal of R/I.

Proof. Let f : R → R/I such that f(a) = a + I. Then f is a ring homomorphism
from R onto R/I and f(1) = 1. Suppose that J is a 1-absorbing primary ideal of R.
Since Ker(f) = I ⊆ J and f is onto, we conclude that f(J) = J/I is a 1-absorbing
primary ideal of R/I by Theorem 18(2). Suppose that J/I is a 1-absorbing primary
ideal of R/I. Then f−1(J/I) = J is a 1-absorbing primary ideal of R by Theorem
18(1). �

Theorem 19. Let S be a multiplicatively closed subset of R, and I be a proper
ideal of R Then the following statements hold.
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(1) If I is a 1-absorbing primary ideal of R such that I ∩ S = ∅, then S−1I is
a 1-absorbing primary ideal of S−1R.

(2) If S−1I is a 1-absorbing primary ideal of S−1R and S ∩ ZI(R) = ∅, then
I is a 1-absorbing primary ideal of R.

Proof. (1) Let a
s1

b
s2

c
s3
∈ S−1I for some nonunit elements a, b, c ∈ R, and s1, s2, s3 ∈

S. Suppose that a
s1

b
s2

/∈ S−1I. Then uabc ∈ I for some u ∈ S. Since I is 1-

absorbing primary and uab /∈ I, we have c ∈
√
I. Thus c

s3
∈ S−1

√
I =

√
S−1I

which completes the proof.
(2) Let abc ∈ I for some nonunit elements a, b, c ∈ R. Hence abc

1 = a
1
b
1
c
1 ∈ S−1I.

Since S−1I is 1-absorbing primary, we have a
1
b
1 ∈ S−1I or c

1 ∈
√
S−1I = S−1

√
I.

If a
1
b
1 ∈ S−1I, then uab ∈ I for some u ∈ S. Since u /∈ ZI(R), we conclude that

ab ∈ I. If c
1 ∈ S−1

√
I, then (tc)n ∈ I for some positive integer n and t ∈ S. Since

tn /∈ ZI(R), we have cn ∈ I, as needed. �

Theorem 20. Let I be a 1-absorbing primary ideal of a commutative ring R. If
abJ ⊆ I for some nonunit elements a, b ∈ R and a proper ideal J of R, then ab ∈ I
or J ⊆

√
I.

Proof. Assume on the contrary that abJ ⊆ I, but ab 6∈ I and J 6⊆
√
I. Then there

exists an element j ∈ J such that j 6∈
√
I. Hence we have abj ∈ I, but neither

ab ∈ I nor j ∈
√
I, a contradiction. �

Theorem 21. Let I be a proper ideal of R. Then the followings statements are
equivalent.

(1) I is a 1-absorbing primary ideal of R.
(2) For any proper ideals I1, I2, I3 of R such that I1I2I3 ⊆ I implies that either

I1I2 ⊆ I or I3 ⊆
√
I.

Proof. (1)⇒ (2). Let I be a 1-absorbing primary ideal of R. Assume that I1I2I3 ⊆
I for some proper ideals I1, I2, I3 of R and I1I2 * I. Then there exist nonunit
elements a ∈ I1 and b ∈ I2 such that ab /∈ I. Since abI3 ⊆ I and ab 6∈ I, we
conclude that J ⊆

√
I by Theorem 20.

(2) ⇒ (1). Suppose that abc ∈ I for some nonunit elements a, b, c ∈ R and
ab /∈ I. Let I1 = aR, I2 = bR, and I3 = cR. Then I1I2I3 ⊆ I and I1I2 * I. Thus

I3 = cR ⊆
√
I. Hence c ∈

√
I. �
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