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Abstract Let R be a commutative ring with 1 6= 0. Recall that a proper ideal I of
R is called a 2-absorbing ideal of R if a,b,c ∈ R and abc ∈ I, then ab ∈ I or
ac ∈ I or bc ∈ I . A more general concept than 2-absorbing ideals is the concept
of n-absorbing ideals. Let n ≥ 1 be a positive integer. A proper ideal I of R is
called an n-absorbing ideal of R if a1,a2, ...,an+1 ∈ R and a1a2 · · ·an+1 ∈ I, then
there are n of the ai’s whose product is in I. The concept of n-absorbing ideals is
a generalization of the concept of prime ideals (note that a prime ideal of R is a
1-absorbing ideal of R). In this survey article, we collect some old and recent results
on n-absorbing ideals of commutative rings.
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1 introduction

We assume throughout that all rings are commutative with 1 6= 0. Over the past
several years, there has been considerable attention in the literature to n-absorbing
ideals of commutative rings and their generalizations, for example see ([1]–[62]).
We recall from [8] that a proper ideal I of R is called a 2-absorbing ideal of R if
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a,b,c ∈ R and abc ∈ I, then ab ∈ I or ac ∈ I or bc ∈ I . A more general concept
than 2-absorbing ideals is the concept of n-absorbing ideals. Let n≥ 1 be a positive
integer. A proper ideal I of R is called an n-absorbing ideal of R as in [5] if
a1,a2, ...,an+1 ∈ R and a1a2 · · ·an+1 ∈ I, then there are n of the ai’s whose product
is in I. The concept of n-absorbing ideals is a generalization of the concept of prime
ideals (note that a prime ideal of R is a 1-absorbing ideal of R).

Let R be a (commutative) ring. Then dim(R) denotes the Krull dimension of R,
Spec(R) denotes the set of prime ideals of R, Max(R) denotes the set of maximal
ideals of R, T (R) denotes the total quotient ring of R, q f (R) denotes the quotient
field of R when R is an integral domain, and Nil(R) denotes the ideal of nilpotent
elements of R. If I is a proper ideal of R, then Rad(I) and MinR(I) denote the radical
ideal of I and the set of prime ideals of R minimal over I, respectively. We will often
let 0 denote the zero ideal.

The purpose of this survey article is to collect some properties of n-absorbing
ideals in commutative rings. In particular, we state some recent progresses on three
outstanding conjectures (see section 5). Our aim is to give the flavor of the subject,
but not be exhaustive.

We recall some background material. A prime ideal P of a ring R is said to be
a divided prime ideal if P ⊂ xR for every x ∈ R \P; thus a divided prime ideal is
comparable to every ideal of R. An integral domain R is said to be a divided domain
if every prime ideal of R is a divided prime ideal.

An integral domain R is said to be a valuation domain if either x|y or y|x (in
R) for all 0 6= x,y ∈ R (a valuation domain is a divided domain). If I is a nonzero
fractional ideal of a ring R, then I−1 = { x ∈ T (R) | xI ⊆ R }. An integral domain R
is called a Dedekind (resp., Prüfer) domain if II−1 = R for every nonzero fractional
ideal (resp., finitely generated fractional ideal) I of R. Moreover, an integral domain
R is a Prüfer domain if and only if RM is a valuation domain for every maximal ideal
M of R.

Some of our examples use the R(+)M construction. Let R be a ring and M an R-
module. Then R(+)M = R×M is a ring with identity (1,0) under addition defined
by (r,m)+(s,n)= (r+s,m+n) and multiplication defined by (r,m)(s,n)= (rs,rn+
sm).

2 Basic properties of n-absorbing ideals

Let I be a proper ideal of R. If I be an n-absorbing ideal of R for some positive
integer n, then recall from [5] that ωR(I) = min{ n | I is an n-absorbing ideal of R };
otherwise, set ωR(I) = ∞. It is convenient to define ωR(R) = 0. We start by recalling
some basic properties of n-absorbing ideals.

Theorem 2.1 1. ([8, Theorem 2.3]). Let I be a 2-absorbing ideal of a ring R.
Then there are at most two prime ideals of R that are minimal over I (i.e.
|MinR(I)|= 1 or 2).
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2. ([8, Theorem 2.1 and Theorem 2.4]). Let I be a 2-absorbing ideal of a ring R.
Then Rad(I) is a 2-absorbing ideal of R and (Rad(I))2 ⊆ I.

3. ([5, Theorem 2.5]). Let I be an n-absorbing ideal of a ring R. Then there are at
most n prime ideals of R minimal over I. Moreover, |MinR(I)| ≤ ωR(I).

4. ([5, Theorem 2.9]). Let M1, . . . ,Mn be maximal ideals of a ring R (not necessarily
distinct). Then I = M1 · · ·Mn is an n-absorbing ideal of R. Moreover, ωR(I)≤ n.

5. ([8, Theorem 2.4]). Let I be an 2-absorbing ideal of a ring R with exactly two
minimal prime ideals P1,P2 over I. Then P1P2 ⊆ I.

6. ([5, Theorem 2.14]). Let I be an n-absorbing ideal of a ring R such that I has
exactly n minimal prime ideals, say P1, . . . ,Pn. Then P1 · · ·Pn ⊆ I. Moreover,
ωR(I) = n.

7. ([8, Theorem 2.5]). Let I be a 2-absorbing ideal of R such that Rad(I) = P is
a prime ideal of R and suppose that I 6= P. For each x ∈ P \ I let Bx = (I :R
x) = (I :R x) = {y ∈ R | yx ∈ I}. Then Bx is a prime ideal of R containing P.
Furthermore, either By ⊆ Bx or Bx ⊆ By for every x,y ∈ P\ I.

8. ([8, Theorem 2.6]). Let I be a 2-absorbing ideal of R such that I 6= Rad(I) =
P1∩P2, where P1 and P2 are the only nonzero distinct prime ideals of R that
are minimal over I. Then for each x∈ Rad(I)\ I, Bx = (I :R x) = {y∈ R | xy∈ I}
is a prime ideal of R containing P1 and P2. Furthermore, either By ⊆ Bx or
Bx ⊆ By for every x,y ∈ Rad(I)\ I.

9. ([5, Theorem 3.4]). Let I be an n-absorbing ideal of a ring R. Then (I :R x) = {y∈
R | yx ∈ I} is an n-absorbing ideal of R containing I for all x ∈ R\ I. Moreover,
ωR(Ix)≤ ωR(I) for all x ∈ R.

10. ([5, Theorem 3.5]). Let n ≥ 2 and I ⊂ Rad(I) be an n-absorbing ideal of a ring
R. Suppose that x ∈ Rad(I)\ I, and let m(≥ 2) be the least positive integer such
that xm ∈ I. Then (I :R xm−1) = {y ∈ R | yxm−1 ∈ I} is an (n−m+1)-absorbing
ideal of R containing I.

11. ([5, Corollary 2.6]). Let n≥ 2 and I ⊂ Rad(I) be an n-absorbing ideal of a ring
R. Suppose that x ∈ Rad(I)\ I and xn ∈ I, but xn−1 6∈ I. Then (I :R xn−1) = {y ∈
R | yxn−1 ∈ I} is a prime ideal of R containing Rad(I).

12. ([5, Corollary 2.7]). Let n≥ 2 and I be an n-absorbing P-primary ideal of a ring
R for some prime ideal P of R. If x ∈ Rad(I)\ I and n is the least positive integer
such that xn ∈ I, then (I :R xn−1) = {y ∈ R | yxn−1 ∈ I}= P.

13. ([5, Theorem 3.8]). Let n ≥ 2 and I ⊂ Rad(I) be an n-absorbing ideal of a ring
R such that I has exactly n minimal prime ideals, say P1, . . . ,Pn. Suppose that
x ∈ Rad(I) \ I, and let m(≥ 2) be the least positive integer such that xm ∈ I.
Then every product of n−m+1 of the Pi’s is contained in (I :R xm−1) = {y ∈ R |
yxm−1 ∈ I}.

14. ([5, Theorem 3.9]). Let I be a P-primary ideal of a ring R such that Pn ⊆ I for
some positive integer n (for example, if R is a Noetherian ring), and let x ∈ P\ I.
If xm 6∈ I for some positive integer m, then (I :R xm) = {y ∈ R | yxm ∈ I} is an
(n−m)-absorbing ideal of R.

Assume that I is a proper ideal of R such that I 6= Rad(I). The following two
results give a characterization of 2-absorbing ideals in terms of (I :R x) = {y ∈ R |
yx ∈ I}, where x ∈ Rad(I)\ I.
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Theorem 2.2 ([8, Theorem 2.8]) . Let I be an ideal of R such that I 6= Rad(I)
and Rad(I) is a prime ideal of R. Then the following statements are equivalent:

1. I is a 2-absorbing ideal of R;
2. Bx = {y ∈ R | yx ∈ I} is a prime ideal of R for each x ∈ Rad(I)\ I.

Theorem 2.3 ([8, Theorem 2.9]). Let I be an ideal of R such that I 6= Rad(I) =
P1∩P2, where P1 and P2 are nonzero distinct prime ideals of R that are minimal
over I. Then the following statement are equivalent:

1. I is a 2-absorbing ideal of R;
2. P1P2⊆ I and Bx = {y∈R | yx∈ I} is a prime ideal of R for each x∈Rad(I)\I.
3. Bx = {y ∈ R | yx ∈ I} is a prime ideal of R for each x ∈ (P1∪P2)\ I.

In view of Theorem 2.2, the following is an example of a prime ideal P of an
integral domain R such that P2 is not a 2-absorbing ideal of R.

Example 2.4 ([8, Example 3.9]). Let R = Z+ 6XZ[X ] and P = 6XZ[X ]. Then
P is a prime ideal of R. Since 6X2 ∈ P \P2 and B6X2 = {y ∈ R | 6X2y ∈ P2} =
6Z+ 6XZ[X ] is not a prime ideal of R, P2 is not a 2-absorbing ideal of R by
Theorem 2.2.

The following result characterizes all P-primary ideals that are 2-absorbing ideals.

Theorem 2.5 ([8, Theorem 3.1]). Let I be a P-primary ideal of a ring R for some
prime ideal P of R. Then I is a 2-absorbing ideal of R if and only if P2 ⊆ I. In
particular, M2 is a 2-absorbing ideal of R for each maximal ideal M of R.

The following is an example of a prime ideal P of an integral domain R such
that P2 is a 2-absorbing ideal of R, but P2 is not a P-primary ideal of R.

Example 2.6 ([8, Example 3.11]). Let R = Z+3xZ[X ] and let P = 3XZ[X ] be a
prime ideal of R. Since 3(3X2)∈ P2, we conclude that P2 is not a P-primary ideal
of R. It is easy to verify that if d ∈ P \P2, then either Bd = {y ∈ R | yd ∈ I} = P
or Bd = 3Z+3XZ[X ] is a prime ideal of R. Hence P2 is a 2-absorbing ideal by
Theorem 2.2.

Let I be an ideal of R such that Rad(I) = P is a nonzero divided prime ideal of
R. The following result characterizes all such ideals that are 2-absorbing ideals.

Theorem 2.7 ([8, Theorem 3.6]). Suppose that P is a nonzero divided prime ideal
of R and I is an ideal of R such that Rad(I) = P. Then the following statements
are equivalent:

1. I is a 2-absorbing ideal of R;
2. I is a P-primary ideal of R such that P2 ⊆ I.

Theorem 2.8 ([8, Theorem 3.7] and [5, Theorem 3.3]). Let n ≥ 1 be a positive
integer. Suppose that Nil(R) and P are divided prime ideals of a ring R such
that P 6= Nil(R). Then Pn is a P-primary ideal of R, and thus Pn is an n-absorbing
ideal of R with ωR(Pn)≤ n. Moreover, ωR(Pn) = n if Pn+1 ⊂ Pn.
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In view of Theorems 2.5, 2.7 and 2.8, for n≥ 3, we have the following two results.

Theorem 2.9 ([5, Theorem 3.1]). Let P be a prime ideal of a ring R, and let I be a
P-primary ideal of R such that Pn ⊆ I for some positive integer n (for example, if R
is a Noetherian ring). Then I is an n-absorbing ideal of R. Moreover, ωR(I)≤ n. In
particular, if Pn is a P-primary ideal of R, then Pn is an n-absorbing ideal of R with
ωR(Pn)≤ n, and ωR(Pn) = n if Pn+1 ⊂ Pn.

Theorem 2.10 ([5, Theorem 3.2]). Let P be a divided prime ideal of a ring R, and
let I be an n-absorbing ideal of R with Rad(I) = P. Then I is a P-primary ideal of
R.

Mostafanasab and Darani in [51] proved the following result.

Theorem 2.11 ([51, Theorem 2.15]). (n-absorbing avoidance theorem). Let I1, I2, ..., Im
(m≥ 2) be ideals of R such that Ii is an ni-absorbing ideal of R for every 3≤ i≤m.
Suppose that Ii * (I j :R xn j−1) ⊂ R for every x ∈ Rad(I j) \ I j with i 6= j. If I is an
ideal of R such that I ⊆ I1∪ I2∪·· ·∪ Im, then I ⊆ Ii for some 1≤ i≤ m.

3 Extensions of n-absorbing ideals

The following results show the stability of n-absorbing ideals in various ring-
theoretic constructions. These results generalize well-known results about prime
ideals.

Theorem 3.1 1. ([5, Theorem 4.1]). Let I be an n-absorbing ideal of a ring R,
and let S be a multiplicatively closed subset of R with I ∩ S = /0. Then IS is an
n-absorbing ideal of RS. Moreover, ωRS(IS)≤ ωR(I).

2. Let f : R−→ T be a homomorphism of rings.

a. ([5, Theorem 4.1]). Let J be an n-absorbing ideal of T . Then f−1(J) is an
n-absorbing ideal of R. Moreover, ωR( f−1(J))≤ ωT (J).

b. Let f be surjective and I be an n-absorbing ideal of R containing ker( f ). Then
f (I) is an n-absorbing ideal of T if and only if I is an n-absorbing ideal of R.
Moreover, ωT ( f (I)) = ωR(I). In particular, this holds if f is an isomorphism.

In the following result, we determine the n-absorbing ideals in the product of any
two rings.

Theorem 3.2 ([5, Theorem 4.7]). Let I1 be an m-absorbing ideal of a ring R1 and
I2 an n-absorbing ideal of a ring R2. Then I1× I2 is an (m+ n)-absorbing ideal of
the ring R1×R2. Moreover, ωR1×R2(I1× I2) = ωR1(I1)+ωR2(I2).

Let R be a ring, M be an R-module, and T = R(+)M. If I is an n-absorbing ideal
of R, then it is easy to show that I(+)M is an n-absorbing ideal of T . In fact,
ωT (I(+)M) = ωR(I). We have the following result for the special case T = R(+)R,
where R is an integral domain.
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Theorem 3.3 ([5, Theorem 4.10]). Let D be an integral domain, R = D(+)D, and
I be an n-absorbing ideal of D that is not an (n− 1)-absorbing ideal of D. Then
0(+)I is an (n+ 1)-absorbing ideal of R that is not an n-absorbing ideal of R; so
ωR(0(+)I) = ωD(I)+ 1. In particular, if P is a prime ideal of D, then 0(+)P is a
2-absorbing ideal of R.

Let T be a ring extension of an integral domain D and P a prime ideal of D. Then
0(+)P need not be a 2-absorbing ideal of the ring R = D(+)T ; so Theorem 3.3 does
not extend to general R. We have the following example.

Example 3.4 ([5, Example 4.12]). Let R = Z(+)Q. Then I = 0(+)2Z is an ideal of
R with Rad(I) = 0(+)Q. Let x = (0, 1

2 )∈ Rad(I)\ I. Then Bx = (I :R x) = (4Z)(+)Q
is not a prime ideal of R (ωR(Bx) = 2), and hence I is not a 2-absorbing ideal of R
by Theorem 2.2. In fact, one can easily show that I is not an n-absorbing ideal of R
for any positive integer n. For each positive integer n, let xi = (2,0) for 1 ≤ i ≤ n
and xn+1 = (0, 1

2n−1 ). Then x1 · · ·xn+1 = (0,2) ∈ I, but no proper subproduct of the
xi’s is in I. Thus ωR(I) = ∞.

We next consider extensions of n-absorbing ideals of R in the polynomial ring
R[X ] and the power series ring R[[X ]].

Theorem 3.5 Let I be a proper ideal of a ring R. Then

1. ([5, Theorem 4.13]). (I,X) is an n-absorbing ideal of R[X ] if and only if I is an
n-absorbing ideal of R. Moreover, ωR[X ]((I,X)) = ωR(I).

2. ([5, Theorem 4.15]). I[X ] is a 2-absorbing ideal of R[X ] if and only if I is a 2-
absorbing ideal of R. (If n≥ 3 and I is an n-absorbing ideal of R, does it follow
that I[X ] is an n-absorbing ideal of R[X ]? (See section 5.)

3. ([44, Proposition 2.13]) I[[X ]] is a 2-absorbing ideal of R[[X ]] if and only if I is
a 2-absorbing ideal of R (and therefore I[X ] is a 2-absorbing ideal of R[X ] if and
only if I is a 2-absorbing ideal of R).

Let K be a field. For rings of the form D+XK[[X ]], where D is a subring of K,
we have the following result.

Theorem 3.6 ([5, Theorem 4.17]). Let D be a subring of a field K and R = D+
XK[[X ]].

(a) If D is a field, then every proper ideal of R is an n-absorbing ideal of R for
some positive integer n.

(b) If D is a proper subring of K with q f (D) = K, then the nonzero n-absorbing
ideals of R have the form I +XK[[X ]], where I is an n-absorbing ideal of D, or
XmK[[X ]] for m an integer with 1≤m≤ n. Moreover, ωR(I+XK[[X ]]) = ωD(I) and
ωR(XmK[[X ]]) = m.

4 n-absorbing ideals in specific rings

If R is a Noetherian ring, then we have the following result.
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Theorem 4.1 ([5, Theorem 5.3]). Let R be a Noetherian ring. Then every proper
ideal of R is an n-absorbing ideal of R for some positive integer n.

A characterization of Dedekind domains in terms of 2-absorbing ideals is first
given in [8, Theorem 3.15] and a similar characterization of Dedekind domains in
terms of n-absorbing ideals (n≥ 2) is given in [5, Theorem 5.1].

Theorem 4.2 ([8, Theorem 3.15] and [5, Theorem 5.1]). If R be a Noetherian inte-
gral domain. Then the following statements are equivalent.

1. R is a Dedekind domain.
2. If I is an n-absorbing ideal of R, then I =M1 · · ·Mm for maximal ideals M1, . . . ,Mm

of R with 1≤ m≤ n.
Moreover, if I = M1 · · ·Mn for maximal ideals M1, . . . ,Mn of a Dedekind domain
R which is not a field, then ωR(I) = n.

All 2-absorbing ideals of a valuation domain are determined in [8, Theorem 3.10].
If n≥ 3, then a similar result [5, Theorem 5.5] determines all n-absorbing ideals of
a valuation domain.

Theorem 4.3 ([8, Theorem 3.10] and [5, Theorem 5.5]). Let R be a valuation do-
main and n a positive integer. Then the following statements are equivalent for an
ideal I of R.

(1) I is an n-absorbing ideal of R.
(2) I is a P-primary ideal of R for some prime ideal P of R and Pn ⊆ I.
(3) I = Pm for some prime ideal P(= Rad(I)) of R and integer m with 1≤m≤ n.
Moreover, ωR(Pn) = n for P a nonidempotent prime ideal of R.

Theorem 4.4 ([51, Proposition 2.10]). Let V be a valuation domain with quotient
field K, and let I be a proper ideal of V . Then I is an n-absorbing ideal of V if
and only if whenever x1x2 · · ·xn+1 ∈ I with x1,x2, ...,xn+1 ∈ K, then there are n of
x1,x2, ...,xn+1 whose product is in I.

All 2-absorbing ideals of a Prüfer domain are determined in [8, Theorem 3.14].

Theorem 4.5 ([5, Theorem 3.14]). Let R be a Prüfer domain and I be a nonzero
ideal of R. Then the following statements are equivalent:

1. I is a 2-absorbing ideal of R;
2. I is a prime ideal of R or I = P2 is a P-primary ideal of R or I = P1 ∩P2,

where P1 and P2 are nonzero prime ideals of R.

If n is a positive integer and R is a Prüfer domain, then we have the following result.

Theorem 4.6 ([8, Theorem 5.7]). Let R be a Prüfer domain. Then an ideal I of R
is an n-absorbing ideal of R for some positive integer n if and only if I is a product
of prime ideals of R. Moreover, if P1, . . . ,Pk are incomparable prime ideals of R and
n1, . . . ,nk are positive integers with ni = 1 if Pi is idempotent, then ωR(P

n1
1 · · ·P

nk
k ) =

n1 + · · ·+nk.
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5 Strongly n-absorbing ideals and recent progresses on three
Conjectures

It is well known that a proper ideal I of a ring R is a prime ideal of R if and only if
whenever I1I2 ⊆ I for ideals I1, I2 of R, then either I1 ⊆ I or I2 ⊆ I. Let n be a positive
integer. We recall from [5] that a proper ideal I of a ring R is a strongly n-absorbing
ideal if whenever I1 · · · In+1 ⊆ I for ideals I1, . . . , In+1 of R, then the product of some
n of the I j’s is in I. Thus a strongly 1-absorbing ideal is just a prime ideal, and
the intersection of n prime ideals is a strongly n-absorbing ideal. It is clear that a
strongly n-absorbing ideal of R is also an n-absorbing ideal of R, and in [8, Theorem
2.13], it was shown that these two concepts agree when n = 2.

Theorem 5.1 ([8, Theorem 2.13]). Let I be a proper ideal of R. Then I is a 2-
strongly absorbing ideal of R if and only if I is a 2-absorbing ideal of R.

If R is a Prüfer domain and I is a proper ideal of of R, it was shown in ([5,
Corollary 6.9]) that I is an n-strongly absorbing ideal of R if and only if I is an
n-absorbing ideal of R..

Theorem 5.2 ([5, Corollary 6.9]). Let R be a Prüfer domain and n a positive inte-
ger. Then an ideal I of R is a strongly n-absorbing ideal of R if and only if I is an
n-absorbing ideal of R.

In view of Theorem 5.1, the following result is a generalization of Theorem 2.5
([8, Theorem 3.1]).

Theorem 5.3 ([5, Theorem 6.6]). Let I be a P-primary ideal of a ring R and n a
positive integer. Then the following statements are equivalent.

(1) I is an n-absorbing ideal of R and Pn ⊆ I.
(2) I is a strongly n-absorbing ideal of R.
In particular, if Pn is P-primary, then Pn is a strongly n-absorbing ideal of R.

For a Notherian ring R, we have the following result.

Theorem 5.4 ([5, Corollary 6.8]). Let R be a Noetherian ring. Then every proper
ideal of R is a strongly n-absorbing ideal of R for some positive integer n.

Theorem 5.5 ([5, Corollary 6.7]). Let M1, . . . ,Mn be maximal ideals of a ring R.
Then I = M1 · · ·Mn is a strongly n-absorbing ideal of R.

In view of Theorem 5.1, the following result is a generalization of ([8, Theorem
2.4]).

Theorem 5.6 ([5, Theorem 6.2]). Let n be a positive integer and I a strongly n-
absorbing ideal of a ring R such that I has exactly m(≤ n) minimal prime ideals
P1, . . . ,Pm. Then Pn1

1 · · ·Pnm
m ⊆ I for positive integers n1, . . . ,nm with n= n1+ · · ·+nm.

In particular, if Rad(I) = P is a prime ideal of R, then Pn ⊆ I.
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Theorem 5.7 ([51, Corollary 2.14]). Let Ii be a strongly ni-absorbing ideal of a
ring R for every 1≤ i≤ m (m≥ 2). If I is an ideal of R such that I ⊆ I1∪ I2 · · ·∪ Im,
then Ini ⊆ Ii for some 1≤ i≤ m.

Three outstanding conjectures on n-absorbing ideals are the following (see An-
derson and Badawi [5] and also Cahen et al. [14, Problem 30]) :

1. Conjecture one. If an ideal of R is n-absorbing, then it is strongly n-absorbing.
2. Conjecture two. If an ideal I of R is n-absorbing, then I[X ] is an n-absorbing

ideal of R[X ].
3. Conjecture three. If an ideal I of R is n-absorbing, then (Rad(I))n ⊆ I.

Laradji in [44] gave an affirmative answer for Conjecture three when n = 3. Note
that an affirmative answer for Conjecture three was given in Theorem 2.1(2) when
n = 2.

Theorem 5.8 ([44, Proposition 2.7]. Let I be a 3-absorbing ideal of R. Then
(Rad(I))3 ⊆ I.

Recently, Choi and Walker in [21, Theorem 1] gave an an affirmative answer for
Conjecture three for any positive integer n.

Theorem 5.9 ([21, Theorem 1]). Let n be a positive integer and I be an n-absorbing
ideal of R. Then (Rad(I))n ⊆ I.

It was shown [5, Theorem 6.1] that Conjecture one implies Conjecture three.

Theorem 5.10 ([5, Theorem 6.1]). Let n be a positive integer and I be a strongly
n-absorbing ideal of R. Then (Rad(I))n ⊆ I.

Laradji in [44] showed that Conjecture two implies Conjecture one.

Theorem 5.11 ([44, Proposition 2.9(i)]). Let I be a proper ideal of R and n be
a positive integer. If I[X ] is an n-absorbing ideal of R[X ], then I is a strongly n-
absorbing ideal of R.

Let f (X) = amxm + · · ·+ a0 ∈ R[X ], for some positive integer m and for some
am, ...,a0 ∈ R. Then c( f ) = (am, ...,a0)R is an ideal of R and it is called the
the content of f (X). We recall that a ring R is called Armandariz if whenever
f (X)g(X) = 0 ∈ R[X ] for some f (X),g(X) ∈ R[X ], then c( f )c(g) = 0 ∈ R.

Let I be a strongly n-absorbing ideal of R. The author in [44] showed that if R/I
is Armandariz, then Conjecture one implies Conjecture two.

Theorem 5.12 ([44, Proposition 2.9(ii)]). Let I be a strongly n-absorbing ideal of
R for some positive integer n. If R/I is Armandariz, then I[X ] is an n-absorbing ideal
of R[X ].

Note that Theorem 5.2 gives an affirmative answer for Conjecture one when R is
a Prüfer domain.

Let I be an n-absorbing ideal of R. Darani and Puczylowski in [29] proved that
Conjecture one holds if the additive group of R/I is torsion-free.
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Theorem 5.13 ([29, Theorem 4.2]). Let I be a proper ideal of R and n be a positive
integer. If I is an n-absorbing ideal of R such that the additive group of R/I is
torsion-free, then I is a strongly n-absorbing ideal of R.

Donadze in [31] proved that Conjecture one holds in the following case.

Theorem 5.14 ([31, Proposition 2.2]). Let R be a ring and n ≥ 2 be an integer.
Suppose that R contains n−1 distinct invertible elements u1, ...,un−1 such that ui−
u j is also invertible for all i 6= j, 1≤ i, j ≤ n−1. Then every n-absorbing ideal of R
is strongly n-absorbing.

Laradji in [44] proved that Conjecture two holds in the following cases.

Theorem 5.15 ([44, Proposition 2.10]). Let n be a positive integer, I be an n-
absorbing ideal of R, and let S = R/I. Then I[X ] is an n-absorbing ideal of R[X ]
in each of the following cases.

1. S is Armendariz and |R/M| ≥ n for each maximal ideal M of R containing I.
2. S is Armendariz and is (n−1)!-torsion free as an additive group.
3. S is torsion-free as an additive group.

Donadze in [31] proved the following result.

Theorem 5.16 ([31, Corollary 2.10]). If Conjecture two holds for Z[X1, ...,Xm] for
all m≥ 1, then Conjecture one holds for any commutative ring R.

Recall that R is called arithmetical ring if the set of ideals of every localization
of R by a prime ideal of R is totally ordered by inclusion.

Laradji in [44] proved that Conjecture two holds if R is arithmetical.

Theorem 5.17 (([44, Corollary 2.11]). Let n be a positive integer and I be an n-
absorbing ideal of an arithmetical ring R. Then I[X ] is an n-absorbing ideal of
R[X ].

In light of Theorem 5.17, Theorem 5.11, and Theorem 5.10, we conclude that all
three Conjectures hold if R is arithmetical.

Theorem 5.18 Let R be an arithmatical ring (for example, if R is a Prüfer domain).
If I is an n-absorbing ideal of R for some positive integer n, then the following
statements are true:

1. I is a strongly n-absorbing ideal of R;
2. I[X ] is an n-absorbing ideal of R[X ];
3. (Rad(I))n ⊆ I.

Laradji in [44] showed that when attempting to prove either Conjecture one,
Conjecture two, or Conjecture three, it is enough to restrict our attention to the
zero ideal of some total quotient rings.



n-absorbing ideals and recent progress on conjectures 11

Theorem 5.19 ([44, Proposition 2.15]). Let I be a proper ideal of R and T (R/I)
be the total quotient ring of R/I. If Conjecture one, Conjecture two, or Conjecture
three holds for the zero ideal of T (R/I), then it holds for I.

Let I be a proper ideal of R. Badawi and Anderson in [5] conjectured that
ωR[X ](I[X ]) = ωR(I).

In view of Theorem 5.18, we have the following result.

Theorem 5.20 Let R be an arithmatical ring (for example, if R is a Prüfer domain).
Then ωR[X ](I[X ]) = ωR(I) for every proper ideal I of R.

Nesehpour in [52, Corollary 10], independently, proved that ωR[X ](I[X ]) = ωR(I)
for every proper ideal I of a Prüfer domain R.

6 n-Krull dimension of commutative rings

From [46], we recall the following definitions.

Definition ([46]).

1. Let R be a ring and n a positive integer. A chain of ideals: I0 ⊂ I1 · · · ⊂ Im, where
I0, I1, ..., Im are distinct n-absorbing ideals of R, is called a chain of n-absorbing
ideals of length m. The n-Krull dimension of R, denoted by dimn(R), is defined
to be the supremum of the lengths of these chains. Thus dim1(R) is just the usual
Krull dimension, dim(R), of R.

2. An n-absorbing ideal I of R is called a minimal n-absorbing ideal of the ideal J if
J⊆ I and there is no n-absorbing ideal L such that J⊆ L⊂ I. An n-absorbing ideal
I of R is called a minimal n-absorbing ideal of R if I is a minimal n-absorbing
ideal of 0.

3. If I is an n-absorbing ideal of R, the n-height of I, denoted by htn(I), is defined
to be the supremum of lengths of chains I0 ⊂ I1 · · · ⊂ Im of n-absorbing ideals of
R for which Im = I if this supremum exists, and ∞ otherwise.

4. If I is a proper ideal of R (not necessarily an n-absorbing ideal) and n a positive
integer, the n-height of I, denoted by htn(I), is defined to be min{htn(J) | J is an
n-absorbing ideal and I ⊆ J}.

Remark 6.1 Although every prime ideal of R is an n-absorbing ideal for each n≥ 1,
there exists a minimal prime ideal which is not a minimal n-absorbing ideal for each
n≥ 2. For example, if R = K[X ] is the polynomial ring in one variable X over a field
K, the minimal prime ideal P = RX of (0) is not a minimal 2-absorbing ideal of 0,
since by [5, Lemma 2.8], RX2 is a 2-absorbing ideal of R.

Let l(R) denotes the length of a composition series for a ring R which is of finite
length. We recall the following results.

Theorem 6.2 Let R be a ring. Then
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1. ([46, Theorem 2.1]). For each positive integer n, there is an n-absorbing ideal of
R which is minimal among all n-absorbing ideals of R.

2. ([46, Theorem 2.1]. If I a proper ideal of R, then for each positive integer n, there
is an n-absorbing ideal of R which is minimal among all n-absorbing ideals of R
containing I.

3. ([46, Theorem 2.7]). Let n a positive integer. If dimn(R) is finite, then dimn(R) =
sup{htn(M) |M is a maximal ideal of R}.

4. ([46, Theorem 2.8]). If R is an Artinian ring, then dimn(R) is finite for each
positive integer n.

5. ([46, Theorem 2.9]). If (R,M) is a quasilocal Noetherian domain with maximal
ideal M such that dim1(R) = 1, then dim2(R) is finite.

6. ([46, Theorem 2.12]). If (R,M) is a quasilocal Artinian ring and n is the smallest
positive integer such that Mn = 0, then dimkR = l(R)−1 for each k ≥ n.

7. ([46, Theorem 2.13]). If R is an Artinian ring with k maximal ideals, then there
exists a positive integer n such that dimn(R) = l(R)− k.

It was shown [46, Theorem 2.10] that if Conjecture three holds (see Section 5), then
Theorem 6.2(5) can be extended to any positive integer n. Hence in view of Theorem
5.9, we have the following result.

Theorem 6.3 ([21, Theorem 1] and [46, Theorem 2.10]). If (R,M) is a quasilocal
Noetherian domain with maximal ideal M such that dim1(R) = 1, then dimn(R) is
finite for every positive integer n.

In light of Theorem 4.2, the following result provides a characterization of
Dedekind domains in terms of n-Krull dimension.

Theorem 6.4 ([46, Theorem 2.13]). Let R be a Noetherian integral domain which
is not a field. Then the following statements are equivalent.

1. R is a Dedekind domain.
2. dimn(R) = n for every positive integer n.
3. dim2(R) = 2.

Theorem 6.5 ([46, Theorem 2.21]). Let (R,M) be a discrete valuation ring and I
an ideal of R. Then

1. I is an n-absorbing ideal for some positive integer n and ωR(I) = lR(R/I).
2. For every positive integer n, dimn(R) = lR(R/Mn) = n.

7 (m,n)-closed ideals and quasi-n-absorbing ideals

We start by recalling some definitions.

Definition. Let I be a proper ideal I of R. Then
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1. ([4]). I is called a semi-n-absorbing ideal of R if xn+1 ∈ I for x∈ R implies xn ∈ I.
More generally, for positive integers m and n, I is said to be an (m,n)-closed ideal
of R if xm ∈ I for x ∈ R implies xn ∈ I (observe that I is a semi-n-absorbing ideal
of R if and only if I is a (n+1,n)-closed ideal of R).

2. ([4]). For positive integers m and n, I is said to be an strongly (m,n)-closed ideal
of R if Jm ⊆ I for some ideal J of R implies Jn ⊆ I.

3. ([51]). I is called a quasi-n-absorbing ideal if whenever anb∈ I for some a,b∈R,
then an ∈ I or a(n−1)b ∈ I.

4. [51]. I is called a strongly quasi-n-absorbing ideal if whenever In
1 I2 ⊆ I for some

ideals I1, I2 of R, then In
1 ⊆ I or I(n−1)

1 I2 ⊆ I.

Remark 7.1 Note that Mostafanasab and Darani in [51] called a proper ideal I of
R to be a semi-(m,n)-absorbing ideal if I is an (m,n)-closed ideal.

The following examples show that for every integer n ≥ 2, there is a semi-n-
absorbing ideal (i.e., (n+ 1,n)-closed ideal) that is neither a radical ideal nor an
n-absorbing ideal, and that there is an ideal that is not a semi-n-absorbing ideal (i.e.,
(n+1,n)-closed ideal) for any positive integer n.

Example 7.2 ([4, Example 2.2]).

1. Let R = Z, n≥ 2 an integer, and I = 2 ·3nZ. Then I is a semi-n-absorbing ideal
(i.e., (n+1,n)-closed ideal) of R. In fact, I is a semi-m-absorbing ideal for every
integer m≥ n. However, (2 ·3n−1)2 ∈ I and 2 ·3n−1 6∈ I; so I is not a radical ideal
of R. Moreover, 2 ·3n ∈ I, 3n /∈ I, and 2 ·3n−1 /∈ I; so I is not an n-absorbing ideal
of R (but, I is an (n+1)-absorbing ideal of R). Note that for n = 1, I = 6Z is a
semi-1-absorbing ideal (i.e., radical ideal) of R, but not a 1-absorbing ideal (i.e.,
prime ideal) of R.

2. Let R = Q[{Xn}n∈N] and I = ({Xn
n }n∈N). Then Xn+1

n+1 ∈ I and Xn
n+1 6∈ I for every

positive integer n; so I is not a semi-n-absorbing ideal (i.e., (n+ 1,n)-closed
ideal) for any positive integer n. Thus I is (m,n)-closed if and only if 1≤ m≤ n.

3. Let R be a commutative Noetherian ring. Then every proper ideal of R is an n-
absorbing ideal of R, and hence a semi-n-absorbing ideal of R, for some positive
integer n (Theorem 4.1). Thus, for every proper ideal I of R, there is a positive
integer n such that I is (m,n)-closed for every positive integer m. Note that the
ring in (2) is not Noetherian.

4. Clearly, an n-absorbing ideal of R is also an (n+1)-absorbing ideal of R. How-
ever, this need not be true for semi-n-absorbing ideals. For example, it is easily
seen that I = 16Z is a semi-2-absorbing ideal (i.e., (3,2)-closed ideal) of Z, but
not a semi-3-absorbing ideal (i.e., (4,3)-closed ideal) of Z.

5. Let R be a valuation domain. Then it is known that a radical ideal of R is also
a prime ideal of R, i.e., a semi-1-absorbing ideal of R is a 1-absorbing ideal of
R. However, a semi-n-absorbing ideal of R need not be an n-absorbing ideal of
R for n ≥ 2. For example, let R = Z(2) and I = 16Z(2). Then R is a DVR, and it
is easily verified that I is a semi-2-absorbing ideal (i.e., (3,2)-closed ideal) of R,
but not a 2-absorbing ideal of R.
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It was conjectured (see Conjecture one in section 5) that a proper ideal I of R
is an n-absorbing ideal of R if and only if I is a strongly n-absorbing ideal of R.
However, an (m,n)-closed ideal of R need not be a strongly (m,n)-closed ideal of
R; we have the following example.

Example 7.3 ([4, Example 2.5]). Let R =Z[X ,Y ], I = (X2,2XY,Y 2), and J =
√

I =
(X ,Y ). Suppose that am ∈ I for a∈R and m a positive integer. Then a∈

√
I, and thus

a = bX +cY for some b,c∈ R. Hence a2 = (bX +cY )2 = b2X2+2bcXY +c2Y 2 ∈ I,
and thus I is an (m,2)-closed ideal of R for every positive integer m. It is easily
checked that Jm ⊆ I for every integer m ≥ 3. However, J2 6⊆ I since XY 6∈ I; so I is
not a strongly (m,2)-closed ideal of R for any integer m≥ 3.

In view of Example 7.3, we have the following result.

Theorem 7.4 ([4, Theorem 2.6]). Let R be a commutative ring, m a positive integer,
I an (m,2)-closed ideal of R, and J an ideal of R.

1. If Jm ⊆ I, then 2J2 ⊆ I.
2. Suppose that 2 ∈U(R). Then I is a strongly (m,2)-closed ideal of R.

In view of Theorem 7.4(2), we have the following result.

Theorem 7.5 ([51, Corollary 4.11]). Let R be a ring and n be a positive integer
such that n! is a unit in R. Then every semi-n-absorbing ideal of R is strongly semi-
n-absorbing.

We have the following result.

Theorem 7.6 ([51, Proposition 4.6]). Let I be an ideal of a ring R and n be a
positive integer. If for every ideal J of R, we have Jn+1 ⊆ I ⊆ J implies Jn ⊆ I, then
I is a strongly semi-n-absorbing ideal of R.

The following result is a characterization of zero-dimensional rings in terms of
(m,n)-closed ideals.

Theorem 7.7 ([4, Theorem 2.15]). Let R be a commutative ring and n a positive
integer. Then the following statements are equivalent.

1. Every proper ideal of R is (m,n)-closed for every positive integer m.
2. There is an integer m > n such that every proper ideal of R is (m,n)-closed.
3. For every proper ideal I of R, there is an integer mI > n such that I is (mI ,n)-

closed.
4. Every proper ideal of R is a semi-n-absorbing ideal (i.e., (n+1,n)-closed ideal)

of R.
5. dim(R) = 0 and wn = 0 for every w ∈ nil(R).

Let R be an integral domain and m,k be fixed positive integers. The next result
determines the smallest positive integer n such that I = pkR is (m,n)-closed. As
usual, bxc is the greatest integer, or floor function.
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Theorem 7.8 ([4, Theorem 3.10]). Let R be an integral domain and I = pkR, where
p is a prime element of R and k is a positive integer. Let m be a positive integer and
n be the smallest postive integer such that I is (m,n)-closed.

1. If m≥ k, then n = k.
2. Let m < k and write k = ma+ r, where a is a positive integer and 0≤ r < m.

a. If r = 0, then n = m.
b. If r 6= 0 and a≥ m, then n = m.
c. If r 6= 0, a < m, and (a+1)|k, then n = k/(a+1).
d. If r 6= 0, a < m, and (a+1) - k, then n = bk/(a+1)c+1.

Let R be an integral domain and n,k be fixed positive integers. The next result
determines the largest positive integer m such that I = pkR is (m,n)-closed.

Theorem 7.9 ([4, Theorem 3.11]). Let R be an integral domain, n a positive integer,
and I = pkR, where p is a prime element of R and k is a positive integer.

1. If n≥ k, then I is (m,n)-closed for every postive integer m.
2. Let n < k and write k = na+ r, where a is a positive integer and 0 ≤ r < n. Let

m be the largest positive integer such that I is (m,n)-closed.

a. If a > n, then m = n.
b. If a = n and r = 0, then m = n+1.
c. If a = n and r 6= 0, then m = n.
d. If a < n, r = 0, and (a−1)|k, then m = k/(a−1)−1.
e. If a < n, r = 0, and (a−1) - k, then m = bk/(a−1)c.
f. If a < n, r 6= 0, and a|k, then m = k/a−1.
g. If a < n, r 6= 0, and a - k, then m = bk/ac.

In view of Theorem 7.8 and Theorem 7.9, let I be a proper ideal of a com-
mutative ring R and m and n positive integers. Anderson and Badawi in [4] de-
fined fI(m) = min{n | I is (m,n)− closed} ∈ {1, . . . ,m} and gI(n) = sup{m | I is
(m,n)− closed} ∈ {n,n+1, . . .}∪{∞}. We have the following example.

Example 7.10 Let R be an integral domain and I = p30R for p a prime element
of R. By Theorem 7.8, one may easily calculate that fI(m) = m for 1 ≤ m ≤ 6,
fI(7) = 6, fI(8) = fI(9) = 8, fI(m) = 10 for 10 ≤ m ≤ 14, fI(m) = 15 for 15 ≤
m ≤ 29, and fI(m) = 30 for m ≥ 30. Using Theorem 7.9, one may easily calculate
that gI(n) = n for 1 ≤ n ≤ 5,gI(6) = gI(7) = 7,gI(8) = gI(9) = 9,gI(n) = 14 for
10≤ n≤ 14,gI(n) = 29 for 15≤ n≤ 29, and gI(n) = ∞ for n≥ 30.

If R is a Prüfer domain, we have the following result.

Theorem 7.11 ([51, Corollary 3.26]). Let R be a Prüfer domain, n be a positive
integer, and I be an ideal of R.

1. If I is a strongly quasi-n-absorbing (resp. strongly semi-n-absorbing) ideal of R,
then I[X ] is a quasi-n-absorbing (resp. semi-n-absorbing) ideal of R[X ].
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2. If I[X ] is a quasi-n-absorbing (resp. semi-n-absorbing) ideal of R[X ], then I is a
quasi-n-absorbing (resp. semi-n-absorbing) ideal of R.

The following result determines the quasi-n-absorbing ideals in the product of
any two rings.

Theorem 7.12 ([51, Proposition 4.20]). Let n ≥ 2 be an integer, R1,R2 be rings,
R = R1×R2, and L be a quasi-n- absorbing ideal of R. Then either L = I1×R2,
where I1 is a quasi-n-absorbing ideal of R1 or L = R1× I2, where I2 is a quasi-n-
absorbing ideal of R2 or L = I1× I2, where I1 is a semi-(n− 1)-absorbing ideal of
R1 and I2 is a semi-(n−1)-absorbing ideal of R2.

8 2-absorbing primary ideals of commutative rings

We recall the following definition from [12] which is a generalization of primary
ideal. A proper ideal I of R is said to be a 2-absorbing primary ideal of R if whenever
a,b,c ∈ R with abc ∈ I, then ab ∈ I or ac ∈ Rad(I) or bc ∈ Rad(I).

In the following result, we collect some basic properties of 2-absorbing primary
ideals of commutative rings.

Theorem 8.1 1. ([12, Theorem 2.2]). If I is a 2-absorbing primary ideal of R, then
Rad(I) is a 2-absorbing ideal of R.

2. ([12, Theorem 2.3]). Suppose that I is a 2-absorbing primary ideal of R. Then
one of the following statements must hold.

a. Rad(I) = P is a prime ideal,
b. Rad(I) = P1∩P2, where P1 and P2 are the only distinct prime ideals of R that

are minimal over I.

3. ([12, Corollary 2.5]). Let R be a commutative ring with 1 6= 0, and let P1,P2 be
prime ideals of R. If Pn

1 is a P1-primary ideal of R for some positive integer n≥ 1
and Pm

2 is a P2-primary ideal of R for some positive integer m≥ 1, then Pn
1 Pm

2 and
Pn

1 ∩Pm
2 are 2-absorbing primary ideals of R. In particular, P1P2 is a 2-absorbing

primary ideal of R.
4. ([12, Theorem 2.8]). Let I be an ideal of R. If Rad(I) is a prime ideal of R, then I

is a 2-absorbing primary ideal of R. In particular, if P is a prime ideal of R, then
Pn is a 2-absorbing primary ideal of R for every positive integer n≥ 1.

5. ([12, Theorem 2.10]). Let R be a commutative divided ring with 1 6= 0 (for exam-
ple, if R is a valuation domain). Then every proper ideal of R is a 2-absorbing
primary ideal of R.

6. ([12, Theorem 2.20]). Let f : R→ R′ be a homomorphism of commutative rings.
Then the following statements hold.

a. If I′ is a 2-absorbing primary ideal of R′, then f−1(I′) is a 2-absorbing pri-
mary ideal of R.
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b. If f is an epimorphism and I is a 2-absorbing primary ideal of R containing
Ker( f ), then f (I) is a 2-absorbing primary ideal of R′.

7. ([12, Theorem 2.22]). Let R be a commutative ring with 1 6= 0, S be a multi-
plicatively closed subset of R, and I be a proper ideal of R. Then the following
statements hold.

a. If I is a 2-absorbing primary ideal of R such that I ∩ S = ∅, then S−1I is a
2-absorbing primary ideal of S−1R.

b. If S−1I is a 2-absorbing primary ideal of S−1R and S∩ZI(R) =∅, then I is a
2-absorbing primary ideal of R.

The following result is a characterization of Dedekind domains in terms of 2-
absorbing primary ideals.

Theorem 8.2 ([12, Theorem 2.11]). Let R be a Noetherian integral domain with
1 6= 0 that is not a field. Then the following statements are equivalent.

1. R is a Dedekind domain.
2. A nonzero proper ideal I of R is a 2-absorbing primary ideal of R if and only if

either I = Mn for some maximal ideal M of R and some positive integer n ≥ 1
or I = Mn

1 Mm
2 for some maximal ideals M1,M2 of R and some positive integers

n,m≥ 1.
3. If I is a nonzero proper 2-absorbing primary ideal of R, then either I = Mn for

some maximal ideal M of R and some positive integer n ≥ 1 or I = Mn
1 Mm

2 for
some maximal ideals M1,M2 of R and some positive integers n,m≥ 1.

4. A nonzero proper ideal I of R is a 2-absorbing primary ideal of R if and only
if either I = Pn for some prime ideal P of R and some positive integer n ≥ 1 or
I = Pn

1 Pm
2 for some prime ideals P1,P2 of R and some positive integers n,m≥ 1.

5. If I is a nonzero proper 2-absorbing primary ideal of R, then either I = Pn for
some prime ideal P of R and some positive integer n ≥ 1 or I = Pn

1 Pm
2 for some

prime ideals P1,P2 of R and some positive integers n,m≥ 1.

The following result determines the 2-absorbing primary ideals in the product of
any finite number of rings.

Theorem 8.3 ([12, Theorem 2.24]). Let R = R1×R2×·· ·×Rn, where 2≤ n < ∞,
and R1, R2, ..., Rn are commutative rings with 1 6= 0. Let J be a proper ideal of R.
Then the following statements are equivalent.

1. J is a 2-absorbing primary ideal of R.
2. Either J =×n

t=1It such that for some k ∈ {1,2, ...,n}, Ik is a 2-absorbing primary
ideal of Rk, and It = Rt for every t ∈ {1,2, ...,n} \ {k} or J = ×n

t=1It such that
for some k,m ∈ {1,2, ...,n}, Ik is a primary ideal of Rk, Im is a primary ideal of
Rm, and It = Rt for every t ∈ {1,2, ...,n}\{k,m}.

A proper ideal I of R is said to be a strongly 2-absorbing primary ideal of R if
whenever I1, I2, I3 are ideals of R with I1I2I3 ⊆ I, then I1I2 ⊆ I or I1I3 ⊆ I or I2I3 ⊆ I.
We have the following result.
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Theorem 8.4 [12, Theorem 2.19]). Let I be a proper ideal of R. Then I is a 2-
absorbing primary ideal of R if and only if I is a strongly 2-absorbing primary ideal
of R.

Remark 8.5 Many topics related to the concept of n-absorbing ideals have been
left untouched; the interested reader may consult the many articles mentioned in
the references and MathSciNet. In the following, we will outline some of the related
topics.

1. For topics on 2-absorbing preradicals, see ([23]-[25])
2. For topics related to 2-absorbing commutative semigroups, see [29].
3. For topics related to (weakly) n-absorbing ideals of commutative rings, see [2],

[3], [6], [7], [9], [10], [12], ([15]-[17]), [20], [30], and ([36]-[38]).
4. For topics related to n-absorbing ideals in semirings, see [18], [22], [35], [42],

[43], [57], [58], and [61].
5. For topics related to (weakly) n-absorbing submodules, see [19], ([25]-[27]),

[32], [34], ([47]-[50]), [53], [55], [60], and [62].
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