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Abstract: Diabetes is sweeping the world as a silent epidemic, posing a growing threat to public 
health. Modeling diabetes is an effective method to monitor the increasing prevalence of diabetes 
and develop cost-effective strategies that control the incidence of diabetes and its complications. 
This paper focuses on a mathematical model known as the diabetes complication (DC) model. The 
DC model is analyzed using different numerical methods to monitor the diabetic population over 
time. This is by analyzing the model using five different numerical methods. Furthermore, the effect 
of the time step size and the various parameters affecting the diabetic situation is examined. The DC 
model is dependent on some parameters whose values play a vital role in the convergence of the 
model. Thus, parametric analysis was implemented and later discussed in this paper. Essentially, 
the Runge–Kutta (RK) method provides the highest accuracy. Moreover, Adam–Moulton’s method 
also provides good results. Ultimately, a comprehensive understanding of the development of dia-
betes complications after diagnosis is provided in this paper. The results can be used to understand 
how to improve the overall public health of a country, as governments ought to develop effective 
strategic initiatives for the screening and treatment of diabetes. 

Keywords: diabetes mellitus; diabetes prevalence; diabetes complications; diabetes control; ODEs; 
numerical methods; mathematical model; stability analysis 
 

1. Introduction 
Diabetes is sweeping the globe as a silent epidemic, posing a rising threat to public 

health. On a global scale, there has been a significant increase in the prevalence and inci-
dence of diabetes. According to the most recent 2021 data from the International Diabetes 
Federation (IDF), 537 million adults, aged 20–79 years, are living with diabetes [1]. This 
number is estimated to increase to 784 million by 2045. Moreover, diabetes caused 6.7 
million deaths in 2021, which is one in every five seconds [1]. Diabetes is the second most 
prevalent comorbidity in COVID-19, according to epidemiological research [2]. Diabetes 
patients are more likely to have disease severity, slower recovery, and COVID-19 conse-
quences, including ICU admission, mechanical ventilation, and even death [3]. These is-
sues indicate the dire need for effective intervention techniques and policies critical to the 
prevention of the rise in the number of individuals with diabetes [1]. 

Diabetes is a non-communicable, long-term illness characterized by elevated blood 
sugar levels. Diabetes may affect anyone, irrespective of size, age, or gender. Diabetes can 
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be mainly categorized into two types. Type 1 diabetes is a chronic disease in which the 
pancreas generates little or no insulin [4]. Type 2 diabetes, the most common type of dia-
betes, arises when the body grows resistant to insulin or does not produce enough of it 
[5]. Some of the most common symptoms of diabetes are increased thirst, hunger, fatigue, 
weight loss, frequent urination, infections, blurry vision, and slow healing of wounds [6]. 
Several factors might increase the risk of developing the condition, such as physical inac-
tivity, an improper diet, smoking, obesity, stress, increasing age, and family history [5]. 

If left untreated, diabetes can precede the development of severe complications over 
time that can harm the heart, blood vessels, eyes, teeth, kidneys, nerves, and ultimately 
lead to death [7]. Diabetic complications are a leading cause of amputations, which leave 
the victim permanently disabled. Some of the major complications include cardiovascular 
disease, which causes mortality among diabetics [1]. Diabetic adults have a two to three 
times higher risk of heart attacks and strokes [8]. Another complication is diabetic neu-
ropathy, which is defined as nerve damage due to high blood sugar. The most common 
type is peripheral neuropathy, which mostly affects the feet. When combined with re-
stricted blood flow, it raises the risk of foot ulcers and infections, eventually leading to 
limb amputations [9]. Furthermore, diabetic retinopathy, or diabetic eye disease, is a com-
mon cause of blindness due to long-term damage to the retina’s tiny blood vessels. Dia-
betes has rendered almost one million individuals blind [10]. Finally, diabetic nephropa-
thy is another major complication. It causes damage to tiny blood arteries in the kidneys 
and causes kidney disease, which causes the kidneys to become less functional or com-
pletely fail. It is one of the most common causes of kidney failure [11]. 

Diabetes and its complications can be life-threatening and costly. Essentially, effec-
tive measures can be taken to help prevent prediabetes and the progression of type 2 dia-
betes. Maintaining blood glucose, blood pressure levels, and a healthy lifestyle can help 
delay or prevent diabetes and its complications. The increasing costs of diabetes-related 
diagnosis, treatment of complications, and management are extremely high. Thus, com-
plications are an essential part of the diabetes epidemiology discussion. 

In biomedical sciences, mathematical models and numerical methods have been uti-
lized as theoretical tools for years to study fundamental elements of a wide range of 
healthcare and biomedical processes, and to develop healthcare strategies [12]. Diabetes 
modeling is an effective method for countries to monitor the prevalence of diabetes 
throughout the years and develop cost-effective strategies that control the incidence of 
diabetes and its complications. 

Most of the literature associated with diabetes modeling focuses on glucose and in-
sulin regulatory systems [2,13], diabetes pathways [14], diabetes epidemiology [15–21], 
diagnostic test evaluations [18], and the burden of complications [22,23]. The modeling of 
glucose control in type 2 diabetes, for example, has represented the metabolic problems 
of this illness using biological mathematical models. In past studies, large mathematical 
models have been constructed to simulate, examine, and comprehend the dynamics of the 
diabetes population. For example, both the works of Boutayeb and Chetouani [19] and 
Derouich et al. [20] provided mathematical models for the dynamics of the diabetic pop-
ulation. Moreover, Nasir and Daud [24] provided a detailed review of different popula-
tion models of diabetes using ordinary differential equations and their limitations. In ad-
dition, Widyaningsih et al. [15] and Kouidere et al. [17,21] created a discrete mathematical 
model emphasizing the effect of the living environment on diabetes. Likewise, several 
studies have been conducted on this topic and its related themes. According to the Na-
tional Diabetes Statistics Report, the incidence of newly diagnosed diabetes among US 
adults was 5.9 per 1000 people or 1.4 million new cases of diabetes in 2019 [25]. Studies 
indicate that a significant portion of people with Type 2 diabetes already had diabetic 
complications in addition to the formation of new diabetes complications at the time of 
diabetes diagnosis [19,26]. According to Gatwood et al., more than 30% of veterans had 
chronic kidney disease before being issued a diabetes diagnosis [27]. 
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This paper focuses on a mathematical model simulating the population dynamics of 
diabetes and its complications. The model was introduced by Boutayeb et al. in 2004, also 
known as the diabetes complication (DC) model [22]. It is divided into two compartments, 
diabetics with complications (C) and diabetics without complications (D). In their study, 
two methods were used to analyze the DC diabetes model: Method I and Euler [5]. Simi-
larly, Akinsola and Oluyo used Euler and Range-Kutta to analyze the DC model [28]. This 
study used the explicit Euler method, implicit Euler method, Heun’s method, the 4th or-
der Runge–Kutta method, and the Adam-Moulton method to analyze the DC model. The 
DC model is analyzed using different numerical methods to monitor the size of the dia-
betic population with and without complications over time. This will provide intriguing 
opportunities for developing and testing theories, estimating and regulating parameters, 
comprehending the dynamics of the population, and suggesting practical and effective 
preventive measures depending on various scenarios [19]. The effect of a growing or de-
clining incidence of diabetes and its complications can be visualized using parameters. 
The model demonstrates the various strategies that may be developed by varying the pa-
rameters that characterize the incidence of diabetes, and diabetes-related comorbidities. 

The contributions of this paper are summarized as follows: 
• Investigation of five different numerical methods to analyze the diabetes mathemat-

ical model; two have not been used before for this problem. This allows for a com-
prehensive comparison of the numerical methods and an understanding of the best 
method to analyze the biological system; 

• Examination of the system behavior for different values of all the parameters, which 
has not been addressed in the literature. Based on the results, we comment on the 
best values of the parameters for stability analysis; 

• Investigating the system for different values of diabetes incidence. The incidence of 
diabetes with complications is significant and of concern, necessitating early and ef-
fective strategic initiatives for screening, treatment, and management of diabetes. 

2. Materials and Methods 
Stability, analytical, and numerical methods were used to examine the model. The 

codes were made using MATLAB software to generate graphs and numerical data. Figure 
1 illustrates the DC mathematical model proposed by Akinsola and Temitayo [29]. This is 
the model that was used in this paper for numerical analysis and to study the control of 
diabetes epidemiology over the years. 

 
Figure 1. The DC model. 
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The model examines parameters such as the natural mortality rate (𝜇𝜇), probability of 
developing a complication (λ), the rate at which complications are controlled (𝛾𝛾), the rate 
at which patients with complications become severely disabled (𝑣𝑣), and mortality rate due 
to complications (𝛿𝛿). All those parameters affect the model; however, parameters 𝜇𝜇, 𝛾𝛾, 
𝑣𝑣, and 𝛿𝛿 are natural rates that describe death or control to patients with diabetes. The only 
parameter that can be changed is λ, which could be controlled by providing society with 
motivation to adopt good habits and develop policies such as diet, exercise, regular med-
ical checkups, and more. Therefore, the model examines and analyzes the effect of chang-
ing this value that correlated to developing complications, to see its overall effect on the 
system. The effect of different values of other parameters is also explored. The model is 
implemented while keeping the incidence of people with diabetes constant. At the time of 
diagnosis, many patients already have microvascular and macrovascular complications 
[26], which is reflected in the model. In general, the model’s independent variable is time. 
In addition, the dependent variables are the number of people who have diabetes without 
complication D(t) and the number of people who have diabetes with complication C(t). 
N(t) is the total number of people with diabetes. 

2.1. ODEs for Modeling Diabetes 
The model is explained mainly through two differential equations. One is for diabet-

ics with complications (1) and the other is for non-complication diabetics (2). 

𝐷𝐷′(𝑡𝑡) =
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝐼𝐼 − (𝜆𝜆 + 𝜇𝜇)𝐷𝐷(𝑡𝑡) + 𝛾𝛾𝛾𝛾(𝑡𝑡) (1) 

𝐶𝐶′(𝑡𝑡) =
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝐼𝐼 + 𝜆𝜆𝜆𝜆(𝑡𝑡) − (𝛾𝛾 + 𝜇𝜇 + 𝑣𝑣 + 𝛿𝛿)𝐶𝐶(𝑡𝑡) (2) 

Formulas (3) and (4) made a first-order system of differential equations where 𝜃𝜃 =
 𝛾𝛾 + 𝜇𝜇 + 𝑣𝑣 + 𝛿𝛿 ,𝑁𝑁′(𝑡𝑡) =  𝑑𝑑𝑑𝑑(𝑡𝑡)

𝑑𝑑𝑑𝑑
 and N(t): is the total number of diabetics (N = C + D). The 

initial conditions of C(t) and N(t) are denoted as C0 and N0. 

𝐶𝐶′(𝑡𝑡) =  𝐼𝐼 − (𝜆𝜆 + 𝜃𝜃)𝐶𝐶(𝑡𝑡) + 𝜆𝜆𝜆𝜆(𝑡𝑡) , 𝑡𝑡 > 0 (3) 

𝑁𝑁′(𝑡𝑡) =  2𝐼𝐼 − (𝑣𝑣 + 𝛿𝛿)𝐶𝐶(𝑡𝑡) − 𝜇𝜇𝜇𝜇(𝑡𝑡) , 𝑡𝑡 > 0 (4) 

Thus, the analytical solutions (5) and (6) were used to find the true value of C(t) and 
N(t). Hence, the true values were used for comparison and computing the percentage er-
ror. 

𝐶𝐶(𝑡𝑡) = 𝐾𝐾1𝑒𝑒−𝜂𝜂1𝑡𝑡 + 𝐾𝐾2𝑒𝑒−𝜂𝜂2𝑡𝑡 +
𝛼𝛼
𝛽𝛽
𝐼𝐼 (5) 

𝑁𝑁(𝑡𝑡) = 𝐾𝐾1𝑒𝑒−𝜂𝜂1𝑡𝑡 + 𝐾𝐾2𝑒𝑒−𝜂𝜂2𝑡𝑡 +
𝛼𝛼
𝛽𝛽
𝐼𝐼 +

𝜃𝜃
𝜆𝜆
𝐾𝐾1𝑒𝑒−𝜂𝜂1𝑡𝑡 +

𝜃𝜃
𝜆𝜆
𝐾𝐾2𝑒𝑒−𝜂𝜂2𝑡𝑡 +

𝜃𝜃𝜃𝜃
𝜆𝜆𝜆𝜆

𝐼𝐼 −
𝐼𝐼
𝜆𝜆

−
1
𝜆𝜆

(𝜂𝜂1𝐾𝐾1𝑒𝑒−𝜂𝜂1𝑡𝑡𝜂𝜂2𝐾𝐾2𝑒𝑒−𝜂𝜂2𝑡𝑡) 
(6) 

where the parameters of (5) and (6) are defined as follows in (7)–(14): 

𝜃𝜃 = 𝛾𝛾 + 𝜇𝜇 + 𝜈𝜈 + 𝛿𝛿 (5) 

𝜂𝜂1 =
1
2

(𝜎𝜎 − �𝜎𝜎2 − 4𝛽𝛽2 ) (6) 

𝜂𝜂2 =
1
2

(𝜎𝜎 + �𝜎𝜎2 − 4𝛽𝛽2 ) (7) 

𝜎𝜎 = 𝜌𝜌 + 𝜃𝜃 + 𝜇𝜇 (8) 

𝛽𝛽 = 𝜌𝜌(𝜈𝜈 + 𝛿𝛿) + 𝜇𝜇(𝜌𝜌 + 𝜃𝜃) (9) 

𝛼𝛼 = 2𝜌𝜌 + 𝜇𝜇 (10) 
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𝐾𝐾1 =
𝛽𝛽(𝜌𝜌 + 𝜃𝜃 − 𝜂𝜂2)𝐶𝐶0 + 𝐼𝐼(𝛼𝛼𝜂𝜂2 − 𝛽𝛽) − 𝜌𝜌𝜌𝜌𝑁𝑁0

𝛽𝛽(𝜂𝜂1 − 𝜂𝜂2)
 (11) 

𝐾𝐾2 =
−𝛽𝛽(𝜌𝜌 + 𝜃𝜃 − 𝜂𝜂1)𝐶𝐶0 + 𝐼𝐼(𝛽𝛽 − 𝛼𝛼𝜂𝜂1) − 𝜌𝜌𝜌𝜌𝑁𝑁0

𝛽𝛽(𝜂𝜂1 − 𝜂𝜂2)
 (12) 

2.2. The Parameters of the ODEs 
The parameters of the ODEs play an important role in identifying major changes in 

diabetic patients over time, with respect to the incidence of diabetes. The critical points of 
N(t) and C(t) as has been found by Akinsola and Temitayo [29] to be as (15) and (16): 

𝐶𝐶∗(𝑡𝑡) =
(2𝜌𝜌 + 𝜇𝜇)𝐼𝐼

𝜌𝜌(𝑣𝑣 + 𝛿𝛿 + 𝜇𝜇) + 𝜇𝜇𝜇𝜇
 (13) 

𝑁𝑁∗(𝑡𝑡) =
(2(𝜌𝜌 + 𝜃𝜃) − (𝜇𝜇 + 𝛿𝛿))𝐼𝐼
𝜌𝜌(𝑣𝑣 + 𝛿𝛿 + 𝜇𝜇) + 𝜇𝜇𝜇𝜇

 (14) 

Then the initial values, as suggested by [22], are (17) and (18): 

𝐶𝐶0 = 𝐶𝐶∗ ± 500 (15) 

𝑁𝑁0 = 𝑁𝑁∗ ± 500 (16) 

The probabilistic parameters and rates of the ODE model are defined in Table 1. 
These parameters were used to analyze the numerical solutions of the model. It was ob-
served that most of the authors [19,22,28,30] define γ as the rate at which complications 
are cured. Similar to Akinsola and Temitayo [29], for ease of comprehension, this paper 
will refer γ to the rate at which complications are controlled due to the understanding that 
most of the complications of diabetes are chronic and not curable. The other complications 
are acute and mostly medical emergency cases [31]. 

Table 1. Parameter description and values used in discretization of ODE. 

Parameter Definition Value 

C(t) Number of diabetic patients with complications 
Determined by the method used after dis-

cretization of ODE 

D(t) Number of diabetic patients without complications 
Determined by the method used after dis-

cretization of ODE 

N(t) Total number of people with diabetes 
Determined by the method used after dis-

cretization of ODE 
𝜆𝜆 Probability of developing a complication 0.85 
𝛿𝛿 The mortality rate due to complications 0.05 
𝜇𝜇 Natural mortality rate 0.02 
𝛾𝛾 The rate at which complications are controlled 0.5 

𝑣𝑣 The rate at which patients with complications become se-
verely disabled 

0.05 

𝐼𝐼 Incidence of diabetes 6×106 

2.3. Stability Analysis 
If critical points are applied to the system, it reaches a steady state. Through that, we 

were able to obtain the characteristic equation of the model (21). The quadratic equation 
is used to find the discriminant (22) and ultimately calculate the eigenvalues (23). Further-
more, the eigenvalues can be analyzed to identify the type of critical point and type of 
stability of the system. If the determinant is (Δ > 0), then eigenvectors are real and negative. 
Furthermore, if Δ = 0, both eigenvectors equal each other, considered real and negative. 
Finally, if Δ < 0, both eigenvectors are complex conjugates with negative parts. Finally, 
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the type of critical point and stability of the system are shown in Table 2. Using (15)–(18), 
the eigenvalue is equal to χ1  = −0.156665 and χ2  = −0.943351. Furthermore, our ∆ = 
0.6189. According to Table 2, For the determinant, if (Δ  > 0), then the eigenvectors are 
both real and negative [5]. Furthermore, Table 2 suggests that the model is asymptomati-
cally stable. 

    𝜒𝜒2 + ( 𝜆𝜆 + 𝜃𝜃 + 𝜇𝜇)𝜒𝜒 + 𝜆𝜆(𝜈𝜈 + 𝛿𝛿) + 𝜇𝜇(𝜆𝜆 + 𝜃𝜃) = 0 (17) 

Δ = ( 𝜆𝜆 + 𝜃𝜃 + 𝜇𝜇)2 − 4[𝜇𝜇(𝜆𝜆 + 𝜃𝜃) + 𝜆𝜆(𝜈𝜈 + 𝛿𝛿)] (18) 

χ1 =
−(λ + μ + δ + γ + 2v) + ∆

1
2

2
 (19) 

χ2 =
−(λ + μ + δ + γ + 2v) − ∆

1
2

2
 (20) 

Table 2. Type of critical points and stability based on the eigenvalues and determinants [5]. 

Eigenvalues Type of Critical Point Stability 
𝜒𝜒1 > 𝜒𝜒2 > 0 Node Unstable 
𝜒𝜒1 < 𝜒𝜒2 < 0 Node Asymptomatically stable 
𝜒𝜒2 < 0 < 𝜒𝜒1 Saddle point Unstable 
𝜒𝜒1 = 𝜒𝜒2 > 0 Proper or improper node Unstable 
𝜒𝜒1 = 𝜒𝜒2 < 0 Proper or improper node Asymptomatically stable 

𝜒𝜒1 = 𝜒𝜒2 = 𝜆𝜆 ± 𝑖𝑖 𝜇𝜇 Spital point Unstable 
𝜒𝜒1 = 𝑖𝑖𝑖𝑖 𝜒𝜒2 = −𝑖𝑖𝑖𝑖 Center Asymptomatically stable 

𝜒𝜒1  and 𝜒𝜒2 are the eigenvalues, 𝜆𝜆 is the probability of developing a complication, and 𝜇𝜇 is the nat-
ural mortality rate. 

2.4. Numerical Methods Analysis 
Numerical analysis is the process of generating numerical solutions to mathematical 

expressions using numerical methods [29]. It entails developing, analyzing, and imple-
menting computer systems to solve continuous numerical problems [29]. If the numerical 
solution approaches the exact solution as the step size approaches zero, the numerical 
method is convergent [32]. Furthermore, the method must be both convergent and stable 
because a slight disturbance of the input data does not disrupt the convergence and causes 
only a minor increase in error [29,33]. The numerical analysis of the model was performed 
using the MATLAB environment. 

The (3) and (4) ODEs were discretized using explicit Euler, implicit Euler, Heun’s, 
Runge–Kutta (RK) 4th order, and Adam Bashforth–Moulton 4th order methods. 

2.4.1. Explicit Euler Method 
In the explicit method, the forward finite difference O(h) was used to represent the 

system of ODEs by obtaining an approximate solution. 
Although the explicit method is rather simple, it has the limitation of being condi-

tionally stable. To solve this issue, the amplification factor is suggested to be equal ap-
proximately to 1 (when we compare the new value with the one before) to improve the 
stability of the ODEs in the explicit method and the error as well, since this method has 
the highest percentage of error out of the other methods. 

𝐶𝐶𝑖𝑖 + 1 − 𝐶𝐶𝑖𝑖
𝐷𝐷𝐷𝐷

= −𝛼𝛼𝛼𝛼 (21) 

𝑁𝑁𝑖𝑖 + 1 − 𝑁𝑁𝑖𝑖
𝐷𝐷𝐷𝐷

= −𝛼𝛼𝛼𝛼 (22) 
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where they have a common factor of 𝐶𝐶i+1= −𝛼𝛼𝛼𝛼i∆𝑡𝑡 + 𝐶𝐶 i, (similarly applied for N as well), 
thus, the amplification factor (G) is equal to: 

𝐺𝐺 =
𝐶𝐶𝑖𝑖 + 1
𝐶𝐶𝑖𝑖

= 1.007566 ≈ 1 (23) 

The discretization of Equations (3) and (4) using the Explicit Euler method results in 
the following numerical equations: 

𝐶𝐶𝑖𝑖+1 =  ∆𝑡𝑡(𝐼𝐼 − (𝜆𝜆 + 𝜃𝜃)𝐶𝐶𝑖𝑖 + 𝜆𝜆𝑁𝑁𝑖𝑖) + 𝐶𝐶𝑖𝑖 (24) 

𝑁𝑁𝑖𝑖+1 =  2∆𝑡𝑡𝑡𝑡 − ∆𝑡𝑡(𝑣𝑣 + 𝛿𝛿)𝐶𝐶𝑖𝑖 + 𝑁𝑁𝑖𝑖(1 − ∆𝑡𝑡𝑡𝑡) (25) 

2.4.2. Implicit Euler Method 
The explicit method calculates the future or the new value from the currently known 

system status. However, the implicit method calculates the future value from the system 
at present and future times. When the state of Ci and Ni is known, Ci+1 and Ni+1 can be 
calculated. Ultimately, the implicit method is unconditionally stable and allows the use of 
larger step sizes (∆𝑡𝑡). 

The discretization of Equations (3) and (4) using the implicit Euler method results in 
the following numerical equations: 

𝐶𝐶𝑖𝑖+1 =  
∆𝑡𝑡(𝐼𝐼 + 𝜆𝜆𝑁𝑁𝑖𝑖+1) + 𝐶𝐶𝑖𝑖

1 + ∆𝑡𝑡(𝜆𝜆 + 𝜃𝜃)
 (26) 

𝑁𝑁𝑖𝑖+1 =  
∆𝑡𝑡(2𝐼𝐼 − 𝐶𝐶𝑖𝑖+1(𝜈𝜈 + 𝛿𝛿)) + 𝑁𝑁𝑖𝑖

1 + ∆𝑡𝑡𝑡𝑡
 (27) 

2.4.3. Heun’s Method 
Heun’s method is also another Euler method that is both explicit and implicit. Alt-

hough it is also based on Euler methods, it provides higher accuracy than both. This 
method provides an improved accuracy compared to the last two methods due to improv-
ing the slope estimation and determination of the two derivatives, one at the beginning of 
the interval and one at the end. Then, these two derivatives are averaged together to ob-
tain a better slope estimation. Ultimately, Heun’s method is a modified Euler method us-
ing the predictor and corrector equations for better results. Heun’s method is a 2nd-order 
error 𝑂𝑂(ℎ2) method, which yields better error percentages. 

The discretization of Equations (3) and (4) using Heun’s method results in the fol-
lowing numerical equations: 

𝐶𝐶𝑖𝑖+1𝑃𝑃 =  ∆𝑡𝑡(𝐼𝐼 − (𝜆𝜆 + 𝜃𝜃)𝐶𝐶𝑖𝑖 + 𝜆𝜆𝑁𝑁𝑖𝑖) + 𝐶𝐶𝑖𝑖 (30) 

𝑁𝑁𝑖𝑖+1𝑃𝑃 =  ∆𝑡𝑡(2𝐼𝐼 − (𝑣𝑣 + 𝛿𝛿)𝐶𝐶𝑖𝑖 − 𝑁𝑁𝑖𝑖𝜇𝜇) + 𝑁𝑁𝑖𝑖 (31) 

𝐶𝐶𝑖𝑖+1𝐶𝐶 =  
∆𝑡𝑡
2
�(𝐼𝐼 − (𝜆𝜆 + 𝜃𝜃)𝐶𝐶𝑖𝑖+1𝑃𝑃 + 𝜆𝜆𝑁𝑁𝑖𝑖+1𝑃𝑃 ) + (𝐼𝐼 − (𝜆𝜆 + 𝜃𝜃)𝐶𝐶𝑖𝑖 + 𝜆𝜆𝑁𝑁𝑖𝑖+1)� + 𝐶𝐶𝑖𝑖  (32) 

𝑁𝑁𝑖𝑖+1𝐶𝐶 =  
∆𝑡𝑡
2
�(2𝐼𝐼 − (𝑣𝑣 + 𝛿𝛿)𝐶𝐶𝑖𝑖+1𝑃𝑃 − 𝜇𝜇𝑁𝑁𝑖𝑖+1𝑃𝑃 ) + (2𝐼𝐼 − (𝑣𝑣 + 𝛿𝛿)𝐶𝐶𝑖𝑖 − 𝜇𝜇𝑁𝑁𝑖𝑖)� + 𝑁𝑁𝑖𝑖 (33) 

2.4.4. Runge–Kutta 4th Order Method 

The Runge–Kutta (RK) method consists of an ODE that defines 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 

 𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 at initial 
time t(0). The RK method is useful since it is able to find an unknown value of function t 
(time) at any C or N. The formulas (34)–(37) are used for calculating the next value for Ci+1 
and Ni+1 from the previous value Ci and Ni. ∆C1 represents the slope at the beginning, ∆C2 
represents the slope occurring at the midpoint of the interval between t and ∆C1, ∆C3 
represents the slope of the midpoint interval between t and ∆C2, ∆C4 represents reaching 
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the end of the interval, and similarly for ∆N1,2,3,4. The RK method is said to be stable if the 
Eigen values are real without a complex conjugate, less than zero, which is the case in this 
study. 

The discretization of Equations (3) and (4) using the RK 4th method results in the 
following numerical equations: 

∆𝐶𝐶k =  ∆𝑡𝑡 �𝐼𝐼 − (𝜆𝜆 + 𝜃𝜃)(𝐶𝐶𝑖𝑖 +
∆𝐶𝐶k−1

2
) + 𝜆𝜆(𝑁𝑁𝑖𝑖 +

∆𝑁𝑁k−1
2

)� (28) 

∆𝑁𝑁k =  ∆𝑡𝑡(2𝐼𝐼 − (𝑣𝑣 + 𝛿𝛿) �𝐶𝐶𝑖𝑖 +
∆𝐶𝐶k−1

2
� + 𝜇𝜇(𝑁𝑁𝑖𝑖 +

∆𝑁𝑁k−1
2

)) (29) 

where k = 1,2,3,4, and ∆𝐶𝐶0 and ∆𝑁𝑁0 equal zeros, then: 

𝐶𝐶𝑖𝑖+1 =  𝐶𝐶𝑖𝑖 +
1
6

(∆𝐶𝐶1 + 2∆𝐶𝐶2 + 2∆𝐶𝐶3 + ∆𝐶𝐶4) (30) 

𝑁𝑁𝑖𝑖+1 =  𝑁𝑁𝑖𝑖 + 1
6

(∆𝑁𝑁1 + 2∆𝑁𝑁2 + 2∆𝑁𝑁3 + ∆𝑁𝑁4)   (31) 

2.4.5. Adam–Moulton Method 
The Adam–Moulton method of the 4th order allows us to explicitly compute the ap-

proximate solution at an instant time from the solution in previous instants. As the initial 
value at the initial time step is known, then the RK method can be used to get the mid-
points at the intervals (C1, C2, C3, and C4), and apply them to the predictor and corrector 
formulas of Adam–Moulton. The predictor formula is used to calculate a rough approxi-
mation of Ci and Ni from the RK method, and then approximate the solution by using the 
corrector formula. 

The RK method is used to find Ck and Nk when k = 0,1,2,3: 

𝐶𝐶k′ = 𝐼𝐼 − ( 𝜆𝜆 + 𝜃𝜃)𝐶𝐶k + 𝜆𝜆𝑁𝑁k (32) 

𝑁𝑁k′ = ∆𝑡𝑡(2𝐼𝐼 − (𝑣𝑣 + 𝛿𝛿) 𝐶𝐶k − 𝜇𝜇𝜇𝜇𝑘𝑘) (33) 

Then the predictor and corrector equations for k = 4: 

𝐶𝐶4𝑃𝑃 =  𝐶𝐶3 +
∆𝑡𝑡
24

(55𝐶𝐶3′ − 59𝐶𝐶2′ + 37𝐶𝐶1′ − 9𝐶𝐶0′) (34) 

𝑁𝑁4𝑃𝑃 =  𝑁𝑁3 +
∆𝑡𝑡
24

(55𝑁𝑁3′ − 59𝑁𝑁2′ + 37𝑁𝑁1′ − 9𝑁𝑁0′) (35) 

𝐶𝐶4′ = 𝐼𝐼 − ( 𝜆𝜆 + 𝜃𝜃)𝐶𝐶4𝑃𝑃 + 𝜆𝜆𝑁𝑁4𝑃𝑃 (36) 

𝑁𝑁4′ = ∆𝑡𝑡(2𝐼𝐼 − (𝑣𝑣 + 𝛿𝛿)𝐶𝐶4𝑃𝑃  − 𝜇𝜇𝑁𝑁4𝑃𝑃) (37) 

𝐶𝐶4𝐶𝐶 =  𝐶𝐶3 +
∆𝑡𝑡
24

(9𝐶𝐶4′ + 19𝐶𝐶3′ − 5𝐶𝐶2′ + 𝐶𝐶1′) (38) 

𝑁𝑁4𝐶𝐶 =  𝑁𝑁3 +
∆𝑡𝑡
24

(9𝑁𝑁4′ + 19𝑁𝑁3′ − 5𝑁𝑁2′ + 𝑁𝑁1′) (39) 

3. Results 
We implemented the five methods and compared the results with the true values. By 

calculating the error, the accuracy of the proposed model for the methods used can be 
evaluated. As real changes in the prevalence will require years to be noted, it is recom-
mended to begin calculating the prevalence after five years of the current time. In addi-
tion, the time step (∆𝑡𝑡) has been chosen to be one year. Therefore, once the prevalence is 
noted, the government can plan properly and act quickly on implementing different 
measures for the sake of the population. 

Table 3 shows the results for Ci and Ni using the explicit Euler, implicit Euler, Heun’s, 
Adam–Moulton, and RK methods from five years and above with ∆𝑡𝑡 = 1 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦. Noting 
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that the years that we chose to include are only the years 5, 10, 15, and 20, as significant 
changes can be noticed only every couple of years. The table shows that the RK method is 
more efficient than the others for this mathematical model. 

Table 3. The results using the five methods. 

t (Year) Ci Ci (True Value) Error (Ci) Ni Ni (True Value) Error (Ni) 
Explicit Euler 

5 90,880,914.61 90,880,136.51 0.0009% 150,029,621.02 150047685.76 0.0120% 
10 90,641,567.00 90,657,024.59 0.0171% 149,656,724.42 149681776.36 0.0167% 
15 90,492,596.39 90,507,781.43 0.0168% 149,413,117.27 149437930.11 0.0166% 
20 90,394,964.97 90,408,340.72 0.0148% 149,253,601.86 149275456.17 0.0146% 

Avg.   0.0124%   0. 0150% 
Implicit Euler 

5 90,879,176.47 90,880,136.51 0.0011% 150,064,146.12 150,047,685.76  0.0110%  
10 90,671,086.35 90,657,024.59 0.0155% 149,704,989.60  149,681,776.36 0.0155% 
15 90,522,098.11 90,507,781.43 0.0158% 149,461,324.77 149,437,930.11 0.0157% 
20 90,421,162.05 90,408,340.72 0.0142% 149,296,404.69 149,275,456.17 0.0140% 

Avg.   0.0117%   0.0140% 
Heun’s 

5 90,813,160.25 90,880,136.51 0.0737% 150,043,360.49 150,047,685.76 0.0029% 
10 90,652,836.25 90,657,024.59 0.0046% 149,682,137.68 149,681,776.36 0.0002% 
15 90,507,893.51 90,507,781.43 0.0001% 149,438,600.88 149,437,930.11 0.0004% 
20 90,408,696.63 90,408,340.72 0.0004% 149,276,070.68 149,275,456.17 0.0004% 

Avg.   0. 0197%   0.00098% 
Adam-Moulton (4th order) 

5 90,983,291.97 90,880,136.51 0.1135% 150,055,113.24 150,047,685.76 0.0049% 
10 90,659,713.29 90,657,024.59 0.0030% 149,681,969.31 149,681,776.36 0.0001% 
15 90,363,636.94 90,507,781.43 0.1593% 149,427,550.24 149,437,930.11 0.0069% 
20 90,259,489.65 90,408,340.72 0.1646% 149,264,737.44 149,275,456.17 0.0072% 

Avg.   0.1101%   0.0048% 
RK (4th order) 

5 90,879,229.41 90,880,136.51 0.00099813% 150,047,620.61 150,047,685.76  0.00004342% 
10 90,657,022.33 90,657,024.59 0.00000249% 149,681,776.42 149,681,776.36 0.00000004% 
15 90,507,781.57 90,507,781.43 0.00000015% 149,437,930.34 149,437,930.11 0.00000015% 
20 90,408,340.85 90,408,340.72 0.00000014% 149,275,456.38 149,275,456.17 0.00000014% 

Avg.   0.00025023%   0.00001094% 
𝐶𝐶𝑖𝑖 is the number of diabetic patients with complications, 𝑁𝑁𝑖𝑖  is the total number of people with dia-
betes, t is the time in years, and Error() is the difference between 𝐶𝐶𝑖𝑖 or 𝑁𝑁𝑖𝑖 and their true values. 

3.1. Stability Analysis 
The following sections will provide a comprehensive analysis of the effects of varying 

the time step size and the parameters of the model on the stability of the system. 

3.1.1. The Effect of Varying the Time Step Size (∆𝑡𝑡) 
The changes in ∆𝑡𝑡 affect the accuracy of the results. Therefore, the lower the value 

of ∆𝑡𝑡, the better the results. Table 4 compares the results of the error rate between ∆𝑡𝑡 =
1 𝑎𝑎𝑎𝑎𝑎𝑎 ∆𝑡𝑡 = 0.5, for all the methods for Ci only, while Table 5 compares the results of Ni. It 
can be seen that the error rates are much lower for ∆𝑡𝑡 = 0.5, resulting in better accuracy 
rates of the model. 
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Table 4. The effect of changing ∆𝑡𝑡 on the results of Ci. 

t (Year) 
Explicit Implicit Heun’s Adam-Moulton RK 

E(Ci) at 
∆𝒕𝒕 = 𝟏𝟏 

E(Ci) at 
∆𝒕𝒕 = 𝟎𝟎.𝟓𝟓 

E(Ci) at 
∆𝒕𝒕 = 𝟏𝟏 

E(Ci) at 
∆𝒕𝒕 = 𝟎𝟎.𝟓𝟓 

E(Ci) at 
∆𝒕𝒕 = 𝟏𝟏 

E(Ci) at ∆𝒕𝒕 =
𝟎𝟎.𝟓𝟓 

E(Ci) at 
∆𝒕𝒕 = 𝟏𝟏 E(Ci) at ∆𝒕𝒕 = 𝟎𝟎.𝟓𝟓 E(Ci) at ∆𝒕𝒕 = 𝟏𝟏 E(Ci) at ∆𝒕𝒕 =

𝟎𝟎.𝟓𝟓 
5 0.0009%     0.0053% 0.0011%     0.0016% 0.0737%     0.001449%     0.1135%     0.00045917%     0.00099813%     0.00002555%     

10 0.0171%     0.0083% 0.0155%     0.0080% 0.0046%     0.000109%     0.0030%     0.00000053%     0.00000249%     0.00000004%     
15 0.0168%     0.0083%  0.0158%     0.0080%     0.0001%     0.000114%     0.1593%     0.00000003%     0.00000015%     0.00000001%     
20 0.0148%     0.0073%     0.0142%     0.0072%     0.0004%     0.000101%     0.1646%     0.00000003%     0.00000014%     0.00000001%     

Avg. 0.0124% 0.0073% 0.0117% 0.0062% 0. 0197% 0.000430% 0.1101% 0.00014940% 0.00025023% 0.00000640% 
𝐶𝐶𝑖𝑖  is the number of diabetic patients with complications, E(𝐶𝐶𝑖𝑖) is the difference between 𝐶𝐶𝑖𝑖 and its 
true value, t is the time in years, and ∆𝑡𝑡 is the time step size. 

Table 5. The effect of changing ∆𝑡𝑡 on the results of Ni. 

t (Year) 
Explicit Implicit Heun’s Adam-Moulton RK 

E(Ni) at 
∆𝒕𝒕 = 𝟏𝟏 

E(Ni) at ∆𝒕𝒕 =
𝟎𝟎.𝟓𝟓 

E(Ni) at 
∆𝒕𝒕 = 𝟏𝟏 

E(Ni) at 
∆𝒕𝒕 = 𝟎𝟎.𝟓𝟓 

E(Ni) at 
∆𝒕𝒕 = 𝟏𝟏 

E(Ni) at ∆𝒕𝒕 =
𝟎𝟎.𝟓𝟓 

E(Ni) at 
∆𝒕𝒕 = 𝟏𝟏 

E(Ni) at ∆𝒕𝒕 =
𝟎𝟎.𝟓𝟓 E(Ni) at ∆𝒕𝒕 = 𝟏𝟏 E(Ni) at ∆𝒕𝒕 =

𝟎𝟎.𝟓𝟓 
5 0.0120% 0.0061% 0.0110%  0.0057% 0.0029% 0.000017% 0.0049% 0.00002001% 0.00004342% 0.00000111% 

10 0.0167% 0.0082% 0.0155% 0.0079% 0.0002% 0.000112% 0.0001% 0.00000001% 0.00000004% 0.00000001% 
15 0.0166% 0.0082% 0.0157% 0.0079% 0.0004% 0.000001% 0.0069% 0.00000003% 0.00000015% 0.00000001% 
20 0.0146% 0.0072% 0.0140% 0.0071% 0.0004% 0.000101% 0.0072% 0.00000003% 0.00000014% 0.00000001% 

Avg. 0. 0150% 0.00743% 0.0140% 0.0072% 0.0010% 0.000058% 0.0048% 0.00000502% 0.00001094% 0.00000029% 
𝐶𝐶𝑖𝑖  is the number of diabetic patients with complications, E(𝐶𝐶𝑖𝑖) is the difference between 𝐶𝐶𝑖𝑖 and its 
true value, t is the time in years, and ∆𝑡𝑡 is the time step size. 

As the stability is hugely affected by the step size (∆𝑡𝑡), this paper aims to study the 
stability of all the methods used while changing the ∆𝑡𝑡. The values of ∆𝑡𝑡 used in this 
paper range from 0. 1 to 1.5. Figure 2 shows the results for both Ci and Ni for (a) explicit 
Euler, (b) implicit Euler, (c) Heun’s, (d) Adam–Moulton, and (e) RK methods. It can be 
seen that some methods are diverging, beginning from ∆𝑡𝑡 = 1.5 and above. In addition, 
the results with smaller ∆𝑡𝑡 are much more accurate and stable. 

  
(a) 
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Figure 2. (a) Stability analysis of Ci and Ni in terms of ∆t for implicit Method; (b) for explicit method; 
(c) Heun’s method; (d) RK method; (e) Adam’s method, where 𝐶𝐶 is the number of diabetic patients 
with complications and 𝐶𝐶𝑇𝑇𝑇𝑇 is its true value, 𝑁𝑁 is the total number of people with diabetes and 𝑁𝑁𝑇𝑇𝑇𝑇 
is its true value, and d𝑡𝑡 is the time step size. 

3.1.2. The Effect of Varying the Parameters Values 
The parameters of the system defined in Table 1 are specific values that ensure the 

stability of the system. In addition, the stability of the model using the RK method was 
evaluated while altering the parameters mentioned in Table 1, which are 𝛾𝛾, λ, 𝛿𝛿, 𝜇𝜇, and 𝑣𝑣. 

The Rate at Which Complications Are Controlled (γ) 
The investigated γ values in this paper are 0.04, 0.08, 0.5, and 1.0. These values were 

obtained from [22]. Figure 3 shows the results of Ci and Ni for the RK method in terms of 
γ and ∆𝑡𝑡, where (a) γ = 0.04, (b) γ = 0.08, (c) γ = 0.5, and (d) γ = 1.0. It can be seen that 
as larger the γ value, the larger the error rates. After γ = 1.0, the results started to di-
verge. 

  
(a) 

  
(b) 
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Figure 3. (a) Stability analysis for RK method when γ = 0.04, (b) γ = 0.08, (c) γ = 0.5, and (d) γ =
1.0, where 𝐶𝐶 is the number of diabetic patients with complications and 𝐶𝐶𝑇𝑇𝑇𝑇 is its true value, 𝑁𝑁 is 
the total number of people with diabetes and 𝑁𝑁𝑇𝑇𝑇𝑇 is its true value, and d𝑡𝑡 is the time step size. 

Probability of Developing a Complication (λ) 
The investigated λ values in this paper are 0.04, 0.66, 0.85, and 1.2. Figure 4 shows 

the results of Ci and Ni for the RK method in terms of λ and ∆𝑡𝑡, where (a) λ = 0.04, (b) 
λ = 0.66, and (c) λ = 0.85. 

  
(a) 
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Figure 4. (a) Stability analysis for RK method when λ = 0.04, (b) λ = 0.66, and (c) λ = 0.85. Where 
𝐶𝐶 is the number of diabetic patients with complications and 𝐶𝐶𝑇𝑇𝑇𝑇 is its true value, 𝑁𝑁 is the total num-
ber of people with diabetes and 𝑁𝑁𝑇𝑇𝑇𝑇 is its true value, and d𝑡𝑡 is the time step size. 

The Mortality Rate Due to Complications (𝛿𝛿) 
The investigated 𝛿𝛿 values in this paper are 0.02, 0.05, 0.1, and 0.35. Figure 5 shows 

the results of Ci and Ni for the RK method in terms of 𝛿𝛿 and ∆𝑡𝑡, where (a) 𝛿𝛿 = 0.02, (b) 
𝛿𝛿 = 0.05, (c) 𝛿𝛿 = 0.1, and (d) 𝛿𝛿 = 0.35. 

  
(a) 
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Figure 5. (a) Stability analysis for RK method when 𝛿𝛿 = 0.02, (b) 𝛿𝛿 = 0.05, (c) 𝛿𝛿 = 0.1, and (d) 
𝛿𝛿 = 0.35, where 𝐶𝐶 is the number of diabetic patients with complications and 𝐶𝐶𝑇𝑇𝑇𝑇 is its true value, 
𝑁𝑁 is the total number of people with diabetes and 𝑁𝑁𝑇𝑇𝑇𝑇 is its true value, and d𝑡𝑡 is the time step size. 

Natural Mortality Rate (𝜇𝜇) 
The investigated 𝜇𝜇 values in this paper were 0.005, 0.02, and 0.45. Figure 6 shows the 

results of Ci and Ni for the RK method in terms of 𝜇𝜇 and ∆𝑡𝑡, where (a) 𝜇𝜇 = 0.005, (b) 𝜇𝜇 =
0.02, (c) and 𝜇𝜇 = 0.45.  
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Figure 6. (a) Stability analysis for the RK method when 𝜇𝜇 = 0.005, (b) 𝜇𝜇 = 0.02, (c) and 𝜇𝜇 = 0.45, 
where 𝐶𝐶 is the number of diabetic patients with complications and 𝐶𝐶𝑇𝑇𝑇𝑇 is its true value, 𝑁𝑁 is the 
total number of people with diabetes and 𝑁𝑁𝑇𝑇𝑇𝑇 is its true value, and d𝑡𝑡 is the time step size. 

The Rate at Which Patients with Complications Become Severely Disabled (𝑣𝑣) 
The investigated v values in this paper are 0.03, 0.05, 0.1, and 0.35. Figure 7 shows 

the results of Ci and Ni for the RK method in terms of v and ∆𝑡𝑡, where (a) v = 0.03, (b) 
v = 0.05, (c) v = 0.1, and (d) v = 0.35. 
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Figure 7. (a) Stability analysis for RK method when v = 0.03, (b) v = 0.05, (c) v = 0.1, and (d) v =
0.35, where 𝐶𝐶 is the number of diabetic patients with complications and 𝐶𝐶𝑇𝑇𝑇𝑇 is its true value, 𝑁𝑁 is 
the total number of people with diabetes and 𝑁𝑁𝑇𝑇𝑇𝑇 is its true value, and d𝑡𝑡 is the time step size. 

4. Discussion 
The mathematical modeling of diabetes aids in the analysis and interpretation of pop-

ulation changes. In previous studies, some papers have solved the diabetic model using 
parameters related to the specific country under study. This paper adds to the literature 
by performing a comprehensive evaluation of the effect of the time step and all the possi-
ble values of relevant parameters using multiple methods that can be applied to any coun-
try. 

In this study, two ODEs were to analyze the development of diabetic patient numbers 
with complications. The ODEs were solved using five numerical methods, namely, ex-
plicit Euler, implicit Euler, Heun’s, RK (4th order), and Adam–Moulton (4th order). The 
implicit, explicit, and RK methods were used in previous studies, and in this paper, 
Heun’s, and Adam–Moulton’s methods are presented for the first time to study and ana-
lyze the prevalence of diabetes. After discretization and implementation of all methods, 
the RK method resulted in the best accuracy rates, with a low 1 × 10−6 % error rate. RK 
method is compared to other implemented methods in this paper due to its superior per-
formance. particularly, the performances of the RK and the Adam–Moulton methods are 
always compared for first-order ODEs. According to Gofe and Gebregiorgis [30], the 
Adam–Moulton method is considered the most efficient due to the predictor and modifier 
equations in the model. However, in terms of accuracy, there is no generalization on the 
best method, and it depends solely on the ODEs used. As a result, it is recommended to 
observe the performance of each method based on the performance of ODE after doing 
the stability analysis. Moreover, in the literature, the implicit Euler method showed a 
smaller percentage error than the explicit Euler. This paper highlights similar results [23]. 
Also, the Implicit method proved more accurate than Heun’s method for the problem at 
hand. 

It can be noticed that the model is stable using implicit Euler, Heun’s, and RK’s meth-
ods, as they perform and calculate implicitly. The explicit Euler and Adam–Moulton’s 
methods are stable for ∆𝑡𝑡 less than 1.0 and begin to become unstable for ∆𝑡𝑡 values larger 
than one year, as shown in Figure 2; this is because both work explicitly. When ∆𝑡𝑡 = 1.5, 
the model shows a damping error as shown in Figure 2a for the explicit method. Although 
Adam–Moulton’s method is less accurate than the RK method, it still shows good stability 
analysis, as indicated in Figure 2e for values of ∆𝑡𝑡 ranging from 0–0.5. Thus, the Adam 
method is suitable for those who require frequent examination of the prevalence of diabe-
tes to monitor minor changes. Note that the nature of Adam–Moulton’s method depends 
on four previous values, as shown in Equations (40)–(45), to calculate the current value. 
Therefore, the values of the stability analysis of Adam–Moulton’s method start after four 
steps. 

Furthermore, the stability analysis of λ, γ, and more parameters in the diabetes model 
for the RK method was investigated. Figure 3 shows the analysis of the parameter γ (the 
rate of control of complications) which ranged between 0.04 and 1. it can be visualized 
that as the rate of complications increases, the number of diabetic patients with complica-
tions decreases. Hence, when gamma equals zero, meaning the complications are uncon-
trollable, death of diabetic people will occur due to the rise of diabetic patients with com-
plications. However, if the rate of controlling the complications is slightly controlled, at a 
rate of 0.5, a substantial effect will be seen on the value of C. Moreover, for γ = 0.04, the 
value of C is more evened out. Ultimately, complications are always on the rise for diabetic 
patients since there is no permanent cure. 

Consequently, Figure 4 shows the analysis for λ. The higher the probability of devel-
oping complications, the higher the number of diabetics with complications. It can be con-
cluded from Figure 4, that the lower the probability of developing complications, diabetic 
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patients without complications will increase. In developed countries, diabetes is an epi-
demic with most cases without complications. This is due to the low rate of developing 
complications and a high rate of controlling the complications through laws implemented 
by public health authorities [30]. Ultimately, our model shows consistent findings of the 
parametric analysis with Akinsola et al., who conducted a similar investigation [29]. 

In addition, the mortality of diabetic patients arises from the complications associ-
ated with the disease. In the DC model of diabetes, there are two parameters that are con-
cerned with the mortality of diabetic patients with complications: the natural mortality 
rate (𝜇𝜇) and the mortality rate due to complications (𝛿𝛿). Figure 5 shows that the mortality 
rate due to complications increases, which corresponds to statistically more death cases 
of diabetic patients. Thus, the overall prevalence of diabetes in society decreases. Simi-
larly, as the natural mortality rate increases in Figure 6, the value of C decreases. 

Another parameter (𝜈𝜈) was analyzed using the RK method, as shown in Figure 7. 
This parameter is the rate at which patients with complications became severely disabled. 
People with diabetes-related disabilities [34] are at a higher risk of mortality as they are 
unable to control and manage their condition effectively. Therefore, this will increase the 
mortality rate due to diabetic complications, and eventually decrease the value of C. Care 
must be taken to reduce this rate by providing management programs to assist and sup-
port people in this category. 

In Figure 8, the true value of Ci is plotted in blue. However, it is not shown because 
it is very close to the values of the RK method. Thus, the graph distinctly illustrates that 
RK has the highest accuracy, followed by Adam–Moulton’s method. 

Ultimately, for the RK method, the C values do not vary for different values of 
gamma, and this is due to the high accuracy of this method for the suggested ODE system. 
On the other hand, the Adam–Moulton method shows C values that are oscillating at γ 
equal to 0.5. This value was recommended by Boutayeb’s paper [14]. However, it does not 
fit the model since it causes unstable results for the Adam–Moulton method. Hence, this 
paper proposes using γ to be equal to 0.08, which provides good stability for the Adam–
Moulton method and the rest of the methods. 

 
Figure 8. Comparison between the results of all the methods, where 𝐶𝐶  is the number of diabetic 
patients with complications and 𝐶𝐶𝑇𝑇𝑇𝑇 is its true value. 

For further analysis, the incidence of diabetes was considered in this paper. Three 
levels of incidence of diabetes are considered: low, medium, and high levels of incidence. 
Additionally, three different values of the parameters λ are studied for the various levels 
of incidence. By varying the parameter values, nine different events may be taken into 
consideration as can be seen in Table 6. For example, the scenario “high–high” denotes 
both a high rate of complications and a high incidence of diabetes. 
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Table 6. The effect of changing incidence of diabetes and parameter λ on the results of C and N. 

λ                        I  Low (2 × 106) Medium (3 × 106) High (6 × 106) 

Low (0.3) 
C 25,856,897.3 38,785,345.96 77,570,691.9 
N 72,685,790.24 109,028,685.4 21,805,7371.0 

Medium (0.4) 
C 27,369,403.59 41,054,105.38 82,108,210.8 
N 64,835,059.16 97,252,588.74 194,505,177.0 

High (0.5) 
C 28,374,387.21 42,561,580.82 85,123,161.6 
N 59,592,864.31 89,389,296.47 178,778,593.0 

𝐶𝐶 is the number of diabetic patients with complications, 𝑁𝑁 is the total number of people with dia-
betes, 𝜆𝜆 is the probability of developing a complication, and 𝐼𝐼 is the incidence of diabetes. 

From the above table, it can be noticed that there is an increase in both the longitudi-
nal and latitudinal directions of the table. This indicates that the number of diabetics with 
complications and the total number of people with diabetes increase as the incidence of 
diabetes increases and as the rate of developing complications increases. This suggests 
that without effective health strategies and policies in place, the diabetes population may 
surge to a level beyond control, posing a threat to the resources of the country. In the 
situation of uncontrolled diabetes, the health authorities may not be able to serve or pro-
vide care for all the affected people, causing a significant threat to the socioeconomic wel-
fare of a country. 

The burden of diabetes can be significantly reduced if proper measures and schemes 
are employed at different levels to check the increase in diabetes incidence. First, by low-
ering the number of individuals who acquire prediabetes and individuals who get diabe-
tes without complications, be it through diabetes education and health policies to promote 
good health and raise awareness, especially among the youth. There is a strong probabil-
ity of reversing the effects of diabetes in its early stages. Secondly, by lowering the number 
of individuals with diabetes who have complications. This action has two main implica-
tions. Early detection of diabetes requires preventative measures, and after someone has 
been diagnosed with diabetes, care and precaution should be taken to prevent or, at the 
very least, delay the development of complications with the available resources [29]. 

Therefore, if the incidence is reduced, the number of pre-diabetics, diabetics, and di-
abetics with complications will also decrease. This goal can be realized through strategies 
that focus on raising awareness about a healthy diet, encouraging physical exercise, man-
aging obesity, addressing blood pressure, reducing stress levels, quitting smoking and 
bad drinking habits, and regular screening. 

We noted the ambiguity and dearth of data on the incidence of diabetes with compli-
cations and the worldwide status of diabetes complications rates. This gap in data on 
trends in complications has hindered the effective evaluation of the health situation of a 
country [35]. Future research on global trends in diabetes complications is necessary for 
better resource management and the identification of underlying factors and risks faced 
by the population. 

The mathematical model illustration supports the diagnoses and recommendations 
of diabetes specialists and healthcare managers in general. Moreover, the results of our 
model are concurrent with the results from literation on similar models [19,22,29]. Thus, 
it provides health decision-makers with a framework for comparing the socioeconomic 
consequences of uncontrolled diabetes, and an effective strategy is a better investment in 
healthcare to reduce costs in the long run [19]. 
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5. Conclusions 
Diabetes and its complications pose an increasing threat to healthcare systems across 

the world. In this paper, a mathematical model of diabetes and the possible complications 
in a population was investigated and numerically analyzed. This paper added more nu-
merical methods than were previously used. New methods such as the Heun’s and the 
Adam–Moulton fourth-order methods were added. In addition, the step size (∆𝑡𝑡) and its 
effect on the system were evaluated by computing the percentage error at every time-step 
size. The stability, numerical analysis, and simulations were determined for various stated 
values of the parameters for the analysis of the model. According to the results provided 
in the paper, the RK fourth-order method had the highest accuracy when compared with 
the other methods. Furthermore, by analyzing the parameters based on different varia-
tions, different situations can be generated, and subsequent strategies can be used in ac-
cordance with the available resource options. The optimal parameters’ values were rec-
ommended to get the best results. From the graphs, if the incidence of diabetes is con-
trolled, then the number of diabetics with or without complications also reduces. 

In conclusion, controlling the rate of developing diabetes and monitoring complica-
tions in real life can be achieved through health education, healthy diet awareness, regular 
exercise, quitting smoking, and reducing other metabolic risks like obesity and hyperten-
sion. These actions will help in implementing optimal strategies to reduce the incidence 
of diabetes and the total number of diabetic patients. The numerical analysis of the model 
affirms the facts of rising diabetes incidence and prevalence around the world, according 
to IDF statistics. This emphasizes the significance of early diagnosis, monitoring, and 
treatment of diabetes mellitus to minimize complications, as well as provide diabetes pa-
tients with sufficient medical care. Special consideration should be given to policies and 
strategies that promote awareness of good health and the benefits of the prevention of 
diabetes rather than focusing primarily on curing the sick. 

In the future work of this project, the partial differential equations can be investigated 
for more specific modeling of diabetes. Moreover, there should be more research with a 
special emphasis on finding the incidence of diabetes with and without complications. 
Research to find the incidence of diabetes showed that most international organizations 
do not report on the incidence of diabetes with complications. It is important to report this 
number for a better assessment of the health status of a country. To conclude, this paper 
can be improved by adding more mathematical methods to compare and make an affirm-
ative conclusion in which method is highly recommended. Moreover, real-life diabetic 
data acquired from the public to be utilized for further testing of the model and provide 
attestation to our results. Lastly, if habits, health education and awareness, and diet are 
changed over the years, the results obtained from the model might differ significantly. the 
aforementioned points are considered as limitations in this paper. 
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