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Abstract 

Lattice-based metamaterials belong to the phononic crystals class of materials which 

are known for their ability to interact with, direct, and block elastic waves. These 

properties made lattice-based metamaterials appealing in wave guiding, noise filtering, 

and vibration isolation applications. However, capitalizing on the full potential of 

lattice-based materials in isolation and filtering applications has been hindered by the 

lack of systematic and efficient design methodologies capable of producing a lattice 

with pre-set band gap characteristics. Existing design methodologies utilize time-

consuming iterative computational schemes and often move towards geometrically 

complex lattices whose fabrication requires expensive additive manufacturing 

techniques. This work proposes an artificial intelligent-assisted design methodology 

that integrates sinusoidal perturbations and the easy-to-fabricate double-wall hexagonal 

lattice. In the proposed approach, sinusoidal perturbations with different frequencies 

and amplitudes are superposed on the double-wall hexagonal lattice to increase the 

number and bandwidth of its band gaps. Finite element analysis is used to determine 

the band gaps in the perturbed lattices. By using five perturbation frequencies, five 

amplitudes, and six lattice porosities, the perturbed lattices delivered a band gap at each 

frequency in the range of 0 to 1000kHz. Machine learning, namely deep neural 

networks, is used to model the relationships among the perturbation parameters, lattice 

porosity, and the corresponding band gap characteristics. Three parallel neural network 

models are developed. These predict the maximum number of band gaps and the width 

and centroid of the band gap with maximum bandwidth. Results showed that the 

developed neural network models had an average accuracy of 90%. The developed 

neural network models constitute the core of the proposed design methodology. They 

are used to determine the coarse design parameters (i.e., porosity and perturbation 

parameters) required to realize prescribed band gap characteristics. The coarse design 

parameters are subsequently refined using finite element analysis. This approach 

accelerates the design process and eliminates the need for time-expensive iterative 

processes. A case study is presented to demonstrate the efficiency and practicality of 

the proposed design process.   

Keywords: Lattice materials, Metamaterials, Band gaps, Finite element, 

Honeycomb lattice, Acoustic characteristics, Neural Networks  
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Chapter 1. Introduction 

1.1. Introduction 

This chapter briefly introduces lattice metamaterials and their ability to deliver unique 

acoustic properties that fit a wide range of noise filtering and isolation applications. In 

addition, this chapter presents the problem investigated in this thesis and highlights this 

work’s contributions. Finally, the general organization of the thesis is presented. 

1.2. Overview 

Recently, Lattice-based Metamaterials have acquired significant interest due to their 

ability to exhibit directional acoustic properties and frequency band gaps. These 

properties made lattice-based metamaterials ideal candidates for vibrational filtering 

and isolation applications. Although lattice-based metamaterials can exhibit a wide 

range of frequency band gaps, designing metamaterials with pre-set band gap 

characteristics has been challenging and expensive. Currently used approaches in 

designing lattice-based metamaterials either utilize forward iterative methods, which 

can be prohibitively time-consuming if used to design lattice materials with pre-set 

band gaps or result in lattice topologies whose manufacturing requires expensive 3D 

printing technologies. Accordingly, though useful, lattice-based materials have yet to 

be used to their full capacity. This work draws on recent efforts which showed that the 

band gaps of lattice materials could be increased in number and width by superposing 

parametric-based curvatures on their cell walls [1]–[4]. By imposing sinusoidal 

perturbations on the cell walls of double-sided regular honeycombs with different 

porosities, this work aims to create an easy-to-fabricate lattice with a rich band gap 

structure that can deliver a frequency band gap at any frequency below the 1000kHz 

limit. Subsequently, this work utilizes machine learning to accelerate the design process 

and relate the sinusoidal perturbation parameters to their corresponding band gap 

characteristics. Users can use the developed machine learning models to create lattice 

materials with pre-set band gap characteristics while eliminating the currently used 

time-consuming iterative processes.  

1.3. Thesis Objectives 

The overreaching goal of this thesis is to create a systematic method for designing 

lattice metamaterials with prescribed band gap characteristics. This goal is satisfied by 
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achieving multiple objectives. First, this work aims to demonstrate the possibility of 

creating band gaps at any frequency from 0 to 1000kHz through superposing sinusoidal 

perturbations on the simple hexagonal double-sided lattice. Second, this work aims to 

create lattices whose manufacturing does not require expensive 3D printing 

technologies. To this end, this work adopts the double-sided honeycomb lattice which 

is often fabricated using conventional machining (e.g., corrugation and welding). Third, 

this work aims to develop machine learning models that can accurately model the 

relationship between the parameters of the imposed sinusoidal perturbations and their 

corresponding band gaps. Finally, this work aims to show, though a case study, the 

practicality and accuracy of the developed machine learning models in designing lattice 

metamaterials with pre-set band gap characteristics.    

1.4. Research Contribution 

The contributions of this research work can be summarized as follows:  

• Enhance the number and width of the band gaps exhibited by the double-sided 

hexagonal honeycomb lattice through superposing sinusoidal perturbations. 

• Perform a parametric study to show the effect of perturbation parameters (i.e., 

amplitude and frequency) and relative density on the band gap properties of the 

double-sided hexagonal lattice.  

• Propose a machine learning-based model to predict the band gap characteristics 

corresponding to any combination of relative density, perturbation frequency, 

and perturbation parameters. 

• Using a case study, show the feasibility of the proposed artificial intelligence-

assisted design approach to create metamaterials with pre-set band gap 

characteristics.   

1.5. Thesis Organization 

The rest of the thesis is organized as follows: Chapter 2 presents the Background and 

Literature review. Chapter 3 discusses the Methodology. Chapter 4 presents the Results 

and Discussion. Finally, the conclusions are listed in Chapter 5.  
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Chapter 2. Background and Literature Review 

Periodic lattice structures have been known for their ability to deliver high stiffness, 

strength, and energy absorption capacity to weight ratios[5]–[8]. These unique 

structural properties made them appealing to industries that favor lightweight materials, 

such as the aerospace and wind energy (turbines) industry [9], [10]. Lately, periodic 

lattice structures have acquired significant interest for their ability to deliver tunable 

acoustic properties that can be used in wave guiding, filtering, and sensing applications. 

Tunable acoustic properties include natural frequencies, natural modes, band gaps and 

phase velocities. One can control waves propagating through a lattice material by tuning 

these properties. Tuning the properties mentioned above can be accomplished by 

exploiting the internal topology of periodic lattice structures. Multiple examples in the 

literature showed that altering the topology of a lattice can change its acoustic properties 

[11]–[18]. These efforts showed that topological parameters such as relative density, 

ligament length, ligament slenderness ratio and topological imperfections (e.g., 

imperfections induced by damage caused by excessive loading) strongly affect the 

acoustic properties of lattice materials. Relative density (i.e., 1-porosity) represents the 

solid phase volume fraction of a lattice material [19], [20]. 

Multiple efforts have investigated the sensitivity of waves propagating in lattice 

materials to relative densities, length of ligaments, and slenderness ratio [11], [17], [21]. 

In reference [17], the fundamentals of band gap formation in lattice materials were 

investigated by analyzing wave behavior in well-known lattice structures (Square, 

Triangular, Kagome, and hexagonal honeycomb lattices). This study concluded that the 

triangular and hexagonal honeycomb lattices exhibit wider band gaps than the other 

lattice structures, particularly at higher relative densities. In reference [11], a parametric 

study was conducted to assess the effect of relative density (i.e., between 5% and 20%) 

on wave propagation characteristics of honeycombs. The parametric study showed that 

relative density increase is associated with a decrease in the band gap frequencies 

appearing below the 100kHz threshold. Also, this study assessed the feasibility of 

utilizing non-destructive ultrasonic testing methods to detect damage in aluminum 

honeycombs subjected to stretching loadings. The feasibility was assessed by analyzing 

the sensitivity of the lattice’s band gaps to deformations induced by stretching loads. In 

reference [21], waves propagating in 3D-based lattice materials (e.g., Kelvin, simple 
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cubic, octet, framed-cubic lattices) were investigated. These 3D- based lattice materials 

are the three-dimensional extension of the two-dimensional lattices examined in [17]. 

The study showed that 3D lattice materials exhibit different wave propagation behavior 

than their corresponding 2D lattice materials.  

The efforts mentioned above, which investigated multiple topologies, showed that 

investigated lattice metamaterials often exhibit limited and narrow band gaps. Lattices 

with this observed behavior are impractical and incompatible with vibrational isolation 

applications. Vibrational isolation applications require lattices that block or interact 

with waves at specific frequency ranges. The investigated lattices are not readily 

functional at the frequencies needed by industrial applications. Therefore, multiple 

efforts have imposed systematic geometrical features to reshape the walls of lattice-

based metamaterials to optimize their band gap properties for vibrational isolation 

applications. Imposing geometrical features such as Koch fractal on the straight cell 

walls square and triangular lattice metamaterials to optimize their band gap properties 

have been proposed in References [1], [2]. These studies showed that the imposing 

Koch fractal with different fractality levels on the cell walls of lattice metamaterial 

leads to wider band gaps than as compared to the band gaps exhibited by the parent 

lattice structure. Increasing the fractality ratio shifted the band gaps to a lower 

frequency range. Parametric-based curvatures were imposed on the cell walls of lattice-

based metamaterials to optimize their band gap properties [3], [4]. Superposing spline-

like shapes [3] and sinusoidal-like shapes on cell walls of lattice-based metamaterial 

were explored. These efforts used parametric studies [4] and optimization algorithms 

(e.g., adjoint sensitivity method) [3]. Both perturbation techniques resulted in wider 

band gaps. These perturbations were also considered in enhancing the buckling strength 

of honeycombs [22]. A different class of geometrical modification was explored to 

enhance lattice materials' band gaps. The geometry of a square lattice material was 

modified by including a core embedment [23]. Different geometrical core 

configurations were considered (i.e., square core, circular core, and re-entrant core). 

Embedded enhanced wave transmission isolation, and therefore, the proposed 

technique was proposed for vibrational isolation applications. 

Modifying lattice geometry by applying loads was explored [24], [25]. These efforts 

showed that applying external loads on lattices can cause significant elastic 
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deformations, which affect their multiband gap properties. Considered deformations 

were induced by bi-axial compression and magnetic actuation. Both loading techniques 

were found to be able to change the band gap size and band gap location in the examined 

frequency ranges. Therefore, these techniques were proposed to develop metamaterials 

compatible with filtering and multi-switches applications. 

Band gap characteristics of lattice materials are usually obtained using mathematical 

and finite element methods. Fast models based on the plane wave expansion methods 

(PWE) were proposed to predict the band structure of lattice metamaterials  [26], [27]. 

However, the accuracy of these models decreased as the size of the lattice decreased. 

On the other hand, multi-scale finite element methods showed better accuracy in 

predicting the band structure of heterogenous lattice metamaterials, even with 

subjectively coarse meshes [27]. 

The emergence of Artificial Intelligence (AI) and its developed capabilities has led the 

material science and industry community to acknowledge its importance. Machine 

learning techniques such as deep learning and hybrid intelligent systems (NN-GA) have 

been utilized in predicting optimal truss architectures that can be utilized effectively in 

a desirable application [28], [29]. Structural optimization was done to attain unique 

mechanical properties to be ideally suited for applications ranging from lightweight 

structures to biomimetic implants. The complexity in attaining a direct relation for the 

failure of an alloyed metal experiencing tensile deformation was solved through ML 

techniques. Artificial neural networks have been used to predict the evolution of local 

strain distribution, plastic anisotropy, and failure caused by the tensile loading of 

ALSi10Mg Aluminum alloy [30]. 

This work proposes an artificial intelligence-assisted design approach to develop lattice 

metamaterial with prescribed band gaps. In this approach, sinusoidal perturbations are 

imposed on the cell walls of double-sided hexagonal honeycombs with different relative 

densities. Subsequently, a parametric study is conducted to investigate the effect of 

imposed sinusoidal perturbations on the band gap properties. The parameters 

considered in the parametric study are relative density, perturbation frequency, and 

perturbation amplitude. The parametric study is focused on the behavior of the widest 

band gap, its centroid and the number of band gaps. Machine learning is then used to 

model the relationship between perturbation parameters and relative density on one side 
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and band gap characteristics on the other. The proposed machine learning models can 

assist in designing lattice metamaterials wit pre-set band gap characteristics. 
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Chapter 3. Methodology 

3.1. Design Methodology 

The artificial intelligence-assisted design process, schematically shown in Figure 1, 

used in this work to develop lattice metamaterials with prescribed band gaps involves 

five sequential steps: First, a periodic lattice material is selected. This lattice material 

is considered a parent lattice. It may exhibit very few, very narrow, or undesirable band 

gaps. Second, the band gaps of the parent lattice are enhanced by increasing their 

number and width through superposing periodic perturbations with various frequencies 

and amplitudes on the parent lattice. The band gaps of the periodic perturbed lattice 

structure are identified using finite element analysis. Third, band gaps dependence on 

perturbation parameters is investigated, and neural networks are trained using finite 

element-based data to predict the band gaps associated with perturbation parameters. 

Fourth, the neural network is used to determine the perturbation design parameters (i.e., 

amplitude and frequency) needed to obtain a prescribed band gap. As the neural 

network predictions might include errors, the design parameters obtained from the 

neural network are considered coarse design parameters. Finally, the design parameters 

are refined/filtered using finite element analysis. Establishing a coarse estimate and 

subsequently refining it using finite element analysis reduces the number of trial-and-

error finite element analysis-based iterations needed to design a lattice metamaterial 

with a prescribed bang gap, thus reducing the design time and cost. The enumerated 

steps are explained in detail in the following.  

 

Figure 1 Schematic representation of the artificial intelligence-assisted approach for designing lattice 

materials with prescribed band gaps. 
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3.2. Parent Lattice Structure and Material 

The parent lattice used in this work is the double-sided honeycomb shown in Figure 2. 

This double-sided aluminum honeycomb, which exhibits a more complex response than 

its single-sided honeycomb counterpart [31], is selected as it is widely used as cores in 

composite sandwich structures, and its fabrication process does not require expensive 

additive manufacturing processes. On the contrary, double-sided aluminum 

honeycombs are mass-produced using the conventional fabrication technique of 

bonding corrugated sheets [32]. Cell walls of the double-sided honeycomb lattice 

shown in Figure 2 are prismatic and have equal lengths (L). However, its bonded cell 

walls have double the thickness (2t) of its unbonded cell walls, as seen in Figure 2. The 

lattice is assumed to be made from isotropic aluminum with a modulus of 70 GPa, a 

Poisson’s ratio of 0.33 and a density of 2700 𝑘𝑔 𝑚3⁄ .  The cell walls of the lattice are 

assumed to have a length (L) of 5 mm throughout this work. The in-plane thickness of 

the cell walls (t) is determined from the lattice’s relative density (𝜌∗), which is defined 

as the ratio of the density of the constituent material to the density of the lattice, using 

[33] 

𝜌∗ =
8

3√3

𝑡

𝐿
−

4

9
(

𝑡

𝐿
)

2

 
(1) 

Multiple relative densities are considered in this work, namely 5%, 10%, 15%, 20% 

and 25%, to explore the sensitivity of band gaps to relative density.  

 

Figure 2 Parent lattice structure, showing its geometry and main features. 

 

 

Figure 1 Parent lattice structure, showing its geometry and main features 
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3.3. Superposing Periodic Sinusoidal Perturbation 

Perturbing the cell walls of the double-sided honeycomb lattice is achieved by 

superposing a sinusoidal shift along the perpendicular direction to the cell walls, as seen 

in Figure 3. The sinusoidal shift is governed by the function 

𝑦(𝑥) = 𝐴sin (
2𝜋𝑛

𝐿
𝑥) 

(2) 

such that L is the cell wall length, A is the perturbation amplitude, and n is the number 

of waves per cell wall (i.e., represents perturbation frequency). As a sine function is 

used to drive the perturbation process, the vertices of the original lattice remain in their 

initial position and are not affected by the perpetuation process. The perturbation 

process is identically applied to all cell walls; thus, perturbed cell walls have identical 

perturbed geometry. The perturbation process can be applied to straight cell walls in 

real real-life manufacturing scenarios using bending and corrugation processes which 

have negligible effects on cell wall thickness. Thus, in this work, the thickness of the 

perturbed cell walls is assumed to be similar to that of the unperturbed cell walls. 

 

Figure 3 Schematics of the sinusoidal perturbations superposed on cell walls 

Upon applying the perturbation shown in Figure 3, the length of each perturbed cell 

wall can be evaluated using  

 

 

Figure 1 Schematics of the sinusoidal perturbations superposed on cell walls 
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𝐿𝑒𝑛𝑔𝑡ℎ = ∫ √𝑑𝑥 + (
𝑑𝑦

𝑑𝑥
)

2

 𝑑𝑥
𝐿

0

= ∫ √1 + A2
4𝜋2𝑛2

𝐿2
cos 2 (

2𝜋𝑛

𝐿
𝑥) 𝑑𝑥

𝐿

0

 

(3) 

According to Equation (3), increasing the perturbation amplitude (A) or frequency (n) 

increases the cell walls’ length which, in turn, increases the mass of the perturbed 

lattice. The increased mass can affect the response of the perturbed lattice and 

complicates differentiating the effect of geometry (i.e., perturbation parameters) from 

that of mass on band gaps. The latter motivated rendering the perturbed cell wall length 

independent of perturbation parameters.  Equation (3) represents a complete elliptic 

integral of the second kind, and its result is independent of the frequency n if the 

coefficient of the cosine term is independent of n. Accordingly, defining the amplitude 

A as follows in Equation (4) renders the length of perturbed cell walls independent of 

perturbation frequency [4].   

𝐴 =
𝐴𝑛𝐿

𝑛
 

(4) 

here, 𝐴𝑛 is a unitless user-prescribed perturbation amplitude that ranges between 0 and 

1. It allows for prescribing perturbation magnitude as a fraction of the unperturbed cell 

wall length (L). Hereafter, An will be referred to as the normalized perturbation 

magnitude. It is important to note that the length of cell walls perturbed using Equation 

(1) in conjunction with Equation (4) is independent of perturbation frequency (n) only 

at constant normalized perturbation amplitudes. As the thickness of perturbed cell walls 

is assumed to be equal to the thickness of their unperturbed counterparts, restricting the 

length of perturbed cell walls to be independent of perturbation frequency ensures that 

the mass of the perturbed honeycombs is independent of perturbation frequency at 

constant normalized perturbation amplitudes. This constraint allows for investigating 

the effect of a range of frequencies at a given normalized perturbation amplitude 

without considering the effect of change in mass. A wide range of perturbation 

frequencies and normalized amplitudes are considered to explore the potential of 

superposed sinusoidal perturbations in enhancing the band gaps of the double-sided 

honeycomb lattice. Perturbation frequencies (n) considered include 0.5, 2, 4, 6, and 10. 

On the other hand, normalized perturbation amplitudes considered include 0.1, 0.2, 0.3, 

0.4, and 0.5. For illustration, samples of the perturbed lattices are shown in Figure 4.  
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Figure 4 Examples demonstrating the geometry of the double-sided honeycomb lattice after the 

sinusoidal perturbation is applied (An=0.3) 

3.4. Band Gap Determination Using Finite Element Analysis 

Bloch wave theorem and finite element analysis are used to determine the band gaps in 

the parent double-sided honeycomb lattice and its perturbed counterparts. To this end, 

unit cell-based models, shown in Figure 5, are selected to represent the infinite periodic 

structures. The unit cells are chosen such that they can reproduce the geometry of their 

corresponding infinite structures if replicated along the basis vectors (e1, e2).  

 

Figure 5 Schematics of the unit cells used in the finite element analysis to represent both unperturbed 

and perturbed honeycomb lattices. 

Each unit cell is subjected to periodic boundary conditions to ensure that its behavior 

mimics that of its infinitely periodic parent lattice. The periodic boundary conditions 

are defined using Bloch wave theory following earlier efforts [11], [14]–[16], [34] that 

applied it to a unit cell similar to the unperturbed unit cell shown in Figure 5. According 

to these efforts, the periodic displacement boundary conditions that ensure the unit cell 

represents the behavior of its infinite parent lattice are  

Bloch wave theorem and finite element analysis are used to determine the band gaps in 

the parent double-sided honeycomb lattice and its perturbed counterparts. To this end, 

unit cell-based models, shown in Figure 1, are selected to represent the infinite periodic 

structures. The unit cells are selected such that they can reproduce the geometry of their 

corresponding infinite structures if replicated along the basis vectors (e1, e2).  

 

 

Figure 1 Schematics of the unit cells used in the finite element analysis to represent 

both unperturbed and perturbed honeycomb lattices 

𝒆𝟏 𝒆𝟐 𝒆𝟐 𝒆𝟏 

Unperturbed unit cell Perturbed unit cell 

0 0 

1 1 2 2 
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𝒖1 = 𝒖0𝑒𝑘1                     𝒖2 = 𝒖0𝑒𝑘1 (5) 

such that 𝒖0, 𝒖1 and 𝒖2 are the displacement vectors at the boundary points named 0, 

1 and 2 in Figure 5. On the other hand, 𝑘1 and 𝑘2 are the complex wave numbers that 

describe the dispersion and attenuation of waves propagating through the lattice. 𝑘1and 

𝑘2 are typically expressed in the reciprocal lattice vectors expressed (b1, b2) as 

𝒌 = 𝑘1𝒃1 + 𝑘2𝒃2 = 𝜉1𝒊 + 𝜉2𝒋    (6) 

The reciprocal lattice vectors are related to the lattice basis vectors using 𝒃𝑖. 𝒆𝑗 = 𝛿𝑖𝑗 

such that 𝛿𝑖𝑗 is the Kronecker delta. To facilitate the modelling process, the wave vector 

components 𝑘1and 𝑘2 are transformed to the Cartesian coordinate system defined using 

the basis vectors i and j. Thus, any wave vector (k) can be expressed using its 

components 𝑘1 and 𝑘2 in the reciprocal space or  𝜉1 and 𝜉2 in the Cartesian coordinate 

system.  For a periodic lattice, the relevant wave vector (k) values are bounded by the 

1st Brillion zone [35]–[37]. For the unit cells of Figure 5, the 1st Brillion zone is shown 

in Figure 6 

 

Figure 6 The 1st Brillion zone corresponding to the unit cell of Figure 5 

Due to the periodic nature of the lattice, each wave vector extending beyond the 1st 

Brillion zone has an image inside the 1st Brillion zone. Thus, considering wave vectors 

beyond the 1st Brillion zone is unnecessary and redundant. The periodic boundary 

conditions and the 1st Brillion zone are independent of the perturbation process as the 

lattice basis vectors and the periodic length scale of the perturbed and unperturbed unit 

cells are identical.   
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Finite element analysis is used to apply the periodic boundary conditions defined by 

Equation (5) to the unit cells representing the investigated lattices (i.e., perturbed and 

unperturbed) and simulate their response. The commercial finite element software 

ABAQUS is used, and the periodic boundary conditions are implemented using the 

EQUATION command.  Each cell wall in the unit cell is discretized using Timoshenko 

elements, namely B31 according to ABAQUS’s terminology. Mesh sensitivity analysis 

showed that 50 elements per cell wall are enough to reach a mesh-independent solution 

for perturbated unit cells with low-frequency ranges (i.e., n=0.5 to n=4) and 100 

elements per cell wall for perturbated unit cells with high-frequency ranges (i.e., n=6 

to n=10). 50 elements per cell wall were sufficient to reach a mesh-independent solution 

in regular honeycombs [11], [14]–[16]. Upon applying the periodic boundary 

conditions, ABAQUS internally formulates the free vibration elastodynamic 

equilibrium equation governing the behavior of the unit cell. This equation can be 

described as [11], [14]–[16] 

[𝑲 − 𝜔2𝑴] [
𝒖𝑜

𝒖𝑖
] = [𝟎] (7) 

where 𝜔 is the Eigenfrequency, 𝑢𝑜 is the reference node shown in Figure 5, and 𝑢𝑖 are 

the non-boundary nodes of the beam elements comprising the discretized cell walls of 

the unit cell. K and M are the reduced stiffness and mass matrices which are functions 

of 𝑘1and 𝑘2. Equation (7) is an Eigenvalue problem, and solving it results in the 

Eigenfrequencies and Eigenmodes. To solve this equation, the values of 𝑘1and 𝑘2 are 

assigned first. Subsequently, the equation is solved using ABAQUS’s Lanczos solver, 

and all Eigenfrequencies below 1000 kHz are determined. This approach delivers the 

Eigenfrequencies associated with every possible wave vector value. 

To determine the band gap structure of a unit cell, the wave vector k is assigned values 

defined by the path (OABCO) shown in Figure 6. For each k value on this path, all 

Eigenfrequencies lower than 1000 kHz are obtained using ABAQUS. As an example, 

the Eigenfrequencies associated with the unperturbed honeycomb lattice with a relative 

density of 10% are shown in Figure 7. 
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Figure 7 The band gap structure of the unperturbed honeycomb lattice with 15% relative density 

Figure 7 shows the Eigenfrequencies obtained by sweeping k along the path OABCO 

shown in Figure 6. The figure shows a frequency zone (shaded region) that the lattice 

cannot support. This zone represents the lattice’s frequency band gap. At 10% relative 

density, the unperturbed lattice shows a single narrow band gap. This behavior does not 

support filtering applications with different frequency ranges. However, as shown in 

the results section, imposing perturbations can change the observed behavior by 

increasing both the number of band gaps and their width.  

3.5. Prediction of Band Gaps Using Machine Learning (ML) 

The perturbation parameters considered in this study comprise five perturbation 

amplitudes and five perturbation frequencies. In addition, six relative densities are 

considered to investigate the interaction between perturbation and relative density. 

Thus, 150 (i.e., 5x5x6) band gap structures similar to the one presented in Figure 7 are 

obtained. Due to the sheer number of inputs and outputs involved, machine learning, 

namely artificial neural network (ANN), is used to establish a predictive relationship 

between the inputs (i.e., relative density, perturbation magnitude and frequency) and 

output (i.e., band gap data). Three key features are used to summarize the band gap data 

obtained for each combination of 𝜌∗, 𝑛, 𝐴𝑛. These are the number of band gaps, the 

widest band gap and the centroid of the widest band gap. These key features not only 

reduce the band gap data’s complexity but can also be used as quantitative key 
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performance indicators to describe the suitability of a lattice to a particular wave 

isolation or filtering application.       

The framework of the implemented machine-learning solution is shown in Figure 8. 

The framework starts by postprocessing the band gap data per combination of 𝜌∗, 𝑛, 𝐴𝑛 

and determining the corresponding key band gap features (i.e., the number of band gaps, 

the widest band gap and the centroid of the widest band gap). The determined key band 

gap features are stored in datasets that are subsequently used to train multilayer artificial 

neural networks (MANN). The framework utilizes a parallel MANN implementation 

with three MANNs: one for predicting the size of the widest band gap, one for 

predicting the centroid of the widest band gap, and one for predicting the number of 

band gaps.  

 

Figure 8 Schematic diagram of the implemented parallel multilayer ANNs 

The architecture of the three parallel ANNs used in the framework is shown in Figure 

9. This figure shows a multilayer feed-forward fully connected artificial neural network 

MANN. 4 layers are used per MANN. The first layer is the input layer and has three 

inputs, which are the relative density, the perturbation frequency, and the perturbation 

amplitude. The second and third layers are hidden layers and consist of multiple 

neurons. The fifth layer is the output layer and consists of a single neuron whose 

activation function provides the prediction. 
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Figure 9 Feed forward multilayer MANN architecture 

The activation functions of the neurons comprising the hidden layers are sigmoidal 

functions and are represented as [30], [38]. 

𝑓(𝜂) =
1

1 + 𝑒−(𝜂)
 

(8) 

where 𝜂 is the corresponding weighted input for each neuron which is defined as 𝜂 =

𝑤𝑝 + 𝑏. Here, 𝑤 is the weight, 𝑝 is the input value, and b is the bias. The activation 

function chosen for the output layer is the pure-line function which is defined as 𝑓(𝜂) =

𝜂. The number of neurons comprising the hidden layers is optimized based on the 

combination that enhances the accuracy of the MANNs. 

The backpropagation supervised learning approach is adopted to find the optimal set of 

the neural network weights. The backpropagation method is used to train the weights 

of the MANNs by utilizing the datasets (of size s×4) created using the key features of 

the band gap structures. Error gradient is introduced for the backpropagation such that 

the difference between the new and old weights during an iteration can be represented 

as 

Δ𝑤𝑗𝑘 = 𝛼 × 𝑦𝑗 × 𝛿𝑘(𝑝) (9) 

where Δ𝑤𝑗𝑘 is the difference between the new and old weights, 𝑦𝑗 the output layer in 

neuron j and 𝛿𝑘(𝑝) is the error gradient at neuron k that corresponds to the output layer 

at iteration (p). The error gradient 𝛿𝑘(𝑝) is represented as: 

𝛿𝑘 =
𝜕𝑦𝑘

𝜕𝜁𝑘
× 𝑒𝑘(𝑝) 

(10) 

where 𝑦𝑘 is the output layer in neuron k, 𝜂𝑘 is the weighted input in neuron k, and 𝑒𝑘(𝑝) 

is the error between the output layer prediction (𝑦𝑘) and the actual value (𝑦𝑎𝑘) from the 
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dataset. This procedure is done iteratively until attaining a predefined threshold for the 

least mean squared error cost function (MSE) defined in Equation (11) 

𝑀𝑆𝐸 =
1

𝑠
∑(𝑦𝑎𝑖 − 𝑓(𝜂𝑖))

2
𝑠

𝑖

≤ 𝜀 
(11) 

where 𝑦𝑎𝑖 is the desired output value and 𝑦𝑖 =  𝑓(𝜂𝑖) is the output value acquired by 

the output layer in the MANN. Once the predefined threshold () is reached, the final 

set of weights of the MANN in each layer presents the nonlinear mapping between the 

network inputs and outputs. The block diagram shown in Figure 10 summarizes the 

training process for the MANNs using a supervised learning approach. The training of 

the MANNs was performed using the neural network toolbox MATLAB.  

 

Figure 10 Block diagram of the training process for MANN using supervised learning 
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Chapter 4. Results  

4.1. Verification of The Finite Element-Approach and Its Implementation 

The finite element-based approach used in this work and its implementation in 

ABAQUS were verified by accurately reproducing the eigenfrequencies of a well-

characterized lattice in literature. To this end, the eigenfrequencies of a single-sided 

honeycomb lattice identical to that used in reference [11] were determined using the 

finite element methodology described above. The lattice used had a cell size of 5 mm, 

a constituent material stiffness and density of 70 GPa and 2700 𝑘𝑔 𝑚3⁄ , respectively, 

and a relative density of 5%, 10%, 15% and 30%. As shown in Figure 11, the resulting 

eigenfrequencies are identical to those reported in reference [11]. Reproducing the 

exact results reported in the literature for different relative densities validates this 

work’s finite element-based methodology and implementation. 

 
𝜌∗ = 5% 

 
𝜌∗ = 10% 

 
𝜌∗ = 15% 

 
𝜌∗ = 30% 

 

Figure 11 Eigenfrequencies of single-sided aluminum honeycomb hexagonal lattice with the relative 

densities of 5%,10%,15%, and 30%. The analyzed lattice and shown results are identical to those 

presented in reference [11]. 

4.2. Bandgaps of The Unperturbed Double-Sided Honeycomb 

To establish a benchmark that facilitates measuring the effect of imposed sinusoidal 

perturbations, the eigenfrequencies and bandgaps, in the 1000kHz range, of the 

unperturbed double-sided honeycomb lattice described in the Methodology section 

were determined at the relative densities of 5%, 10%, 15%, 20%, 25%, 30%.  The 

resulting eigenfrequencies and bandgaps are shown in Figure 12. This figure shows that 

the unperturbed double-sided honeycomb does not exhibit bandgaps at small relative 

densities (i.e., 5% and 10%) and exhibits a single narrow bandgap at the relative 

densities of 15%, 20%, 25%, and 30%. Hence, the unperturbed double-sided lattice is 

not suitable for wave control and filtering applications. However, this unfavorable wave 
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application  behavior can be improved by incorporating perturbations since they would 

substantially increase the number and widths of band gaps as shown in the next section.  

 

Figure 12 Eigenfrequencies of double-sided aluminum honeycomb hexagonal lattice with the relative 

densities of 5%, 10%, 15%, 20%, 25%, and 30%.  

4.3. Band Gaps of The Perturbed Double-Sided Honeycomb 

The Eigenfrequencies and band gaps of the perturbed double-sided honeycomb lattices 

in the 1000kHz range were obtained for all combinations resulting from the selected 

perturbation magnitudes (0.1, 0.2, 0.3, 0.4, 0.5), perturbation parameters (0.5,2,4,6,10), 

and relative densities (5%, 10%, 15%, 20%, 25%, 30%). The band gaps of all analyzed 

perturbed cases are shown in Figure 13. Due to the large number of cases analyzed (i.e., 

125 cases), the eigenfrequency plots of the perturbed cases are not shown; only the 

resulting band gap structures are shown. 

Perturbations, as seen in Figure 13, significantly increased the number and size of the 

double-sided honeycomb band gaps; thus, they transformed a one-band gap structure 

into a band gap-rich structure. This transformation supports the hypothesis that 

perturbations can help design metamaterials with prescribed band gap properties. 

Insights into the effectiveness of incorporating perturbations as an approach for creating 

functional frequency band gaps can be inferred from Figure 13. Effectiveness here can 

be defined in terms of the ability of perturbations to generate a band gap, though by 

different perturbation parameters, at every frequency in the range of 0 to1000kHz. In 
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other words, effectiveness can be defined in terms of the ability of the different 

perturbations to collectively block all the frequencies in the range of 0~1000kHz. 

Superposing all band gaps presented in Figure 13 shows that the imposed perturbations 

can collectively generate a band gap at every frequency from 100kHz to 1000KHz. 

Thus, for every frequency in this range, one can find a perturbation scenario that will 

result in a band gap. This result demonstrates the efficiency of incorporating 

perturbations to create functional band gaps at application-specific frequencies.     

Although incorporating perturbations can generally develop more band gaps and 

increase their widths, the band gap-enhancing effect of perturbations is not easily 

predictable, as demonstrated by Figure 13. The effect of perturbation parameters on 

band gaps seems complex, with nonlinear and non-monotonic patterns. To demonstrate 

the complex effect of perturbation frequency, consider, for example, the case with the 

perturbation magnitude (An) of 0.1. Low perturbation frequency (n=0.5) resulted in 

many narrow band gaps at all relative densities considered. Increasing the perturbation 

frequency (n) to 2, in general, increased the number of band gaps and increased the 

number of band gaps with larger bandwidths. However, increasing the perturbation 

frequency further, to 6 or 10, decreased the number of band gaps but increased the 

widths of the bands exhibited at low relative densities. Moreover, at the highest relative 

densities considered, a single band gap was observed, which is similar to the behavior 

of the unperturbed case. Similarly, to demonstrate the non-intuitive and non-monotonic 

effect of perturbation magnitudes at a constant frequency, consider the case with a 

perturbation frequency of n=0.5. Increasing the perturbation magnitude from 0.1 to 0.2 

and from 0.2 to 0.3 resulted in a rapid increase in the number of band gap frequencies; 

however, increasing the perturbation magnitude from 0.3 to 0.4 resulted in a minor 

increase in the number of band gaps. Moreover, few band gaps disappeared with 

increasing perturbation frequencies. The examples above show that the individual 

effects of perturbation frequency and perturbation amplitude are non-monotonic, 

nonlinear, and not systematically predictable without using experimentation or 

conducting detailed finite element simulations. This complex behavior would hinder 

using perturbations in designing metamaterials with prescribed band gap behavior. The 

complexity of the data shown in Figure 13 motivates using a data-driven approach to 

systematically predict the band gap characteristics corresponding to any combination 
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of perturbation parameters at any relative density. To this end, machine learning, 

namely artificial neural networks, is used. 

 

Figure 13 Band gaps of perturbed double-sided aluminum honeycomb hexagonal lattice, showing the 

band gaps for the perturbation amplitudes of 0.1,0.2,0.3,0.4 and 0.5; perturbation frequencies of 0.5, 2, 

4, 6 and 10 (cycles); and relative densities of 5%, 10%, 15%, 20%, 25%, and 30%. 

To facilitate using machine learning methods, the data presented in Figure 13 is 

summarized using key frequency band gap features observed at every perturbation 

scenario. These are the number of band gaps, the maximum band gap width, and the 

centroid of the band gap with the maximum width. Figure 14 to Figure 19 show the key 

frequency band gap features corresponding to the different perturbation parameters 

used at the relative densities of 5%, 10%, 15%, 25%, and 30%, respectively. These 
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figures show that the perturbation parameters result in different band gap characteristics 

at each relative density.   

 

Figure 14 Key band gap features at 5% relative density, showing (A) the size of widest band gap 

(S.O.W.B) in kHz, (B) its centroid (C.O.W.B) in kHz and (C) the number of band gaps.  

At 5% relative density, according to Figure 14, the perturbation parameters An=0.4 and 

n=10 result in the widest band gap exhibited at this relative density. This band gap has 

a width of 230.53 kHz, a centroid of 736.5 kHz, and is the largest observed at all relative 

densities and considered perturbation parameters. This figure shows that the maximum 

number of band gaps and the widest band gap do not necessarily occur at the same 

perturbation parameters. At 5% relative density, the maximum number of band gaps, 

38, is observed at An=0.5 and n=4, which are different from the parameters resulting 

in the widest band gap at the same relative density.   

 

Figure 15 Key band gap features at 10% relative density, showing (A) the size of widest band gap 

(S.O.W.B) in kHz, (B) its centroid (C.O.W.B) in kHz and (C) the number of band gaps.  

At the relative density of 10%, according to Figure 15, the widest band gap, which has 

a width of 215.83 kHz and a centroid of 810.07 kHz, is observed at a different set of 

perturbation parameters, namely An=0.5 and n=10, than those associated with the 
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widest band gap at 5% relative density. However, similar to the 5% relative density 

case, at the relative density of 10%, the perturbation parameters (An=0.5 and n=10) 

resulting in the maximum number of band gaps do not coincide with those resulting in 

the widest band gap (An=0.5 and n=4).   

 

Figure 16 Key band gap features at 15% relative density, showing (A) the size of widest band gap 

(S.O.W.B) in kHz, (B) its centroid (C.O.W.B) in kHz and (C) the number of band gaps.  

Increasing the relative density to 15%, as seen in Figure 16, further reduces the widest 

obtainable band gap. This band gap, which has a size of 189.88 kHz and a centroid of 

802.45 kHz, is observed at the perturbation parameters of An=0.4 and n=6. These 

parameters are different from those resulting in the widest band gap at both 5% and 

10% relative densities. Although the largest band gap at 15% relative density is 

narrower than the widest band gaps observed at 5% and 10 % relative densities, it covers 

the frequency range between them. This non-monotonic behavior is rather difficult to 

predict. Figure 16 shows a secondary substantially large band gap at the perturbation 

parameters of An=0.5 and n=6. This band gap, which has a size of 144 kHz and a 

centroid of 581.21 kHz, is smaller but comparable in size to the one observed at An=0.4 

and n=6. The perturbation scenario resulting in the second widest band gap at 15% 

relative density also results in the maximum number of band gaps (i.e., 30).  

At 20% relative density, the band gap with maximum width is associated with the 

perturbation parameters of An=0.5 and n=6, as seen in Figure 17. The band gap has a 

size of 181.47 kHz, and it is the smallest bandgap among those classified as widest at 

their respective relative densities. The widest bandgap at 20% relative density covers a 

lower frequency range than that covered by the widest bandgap at the relative densities 

of 5%, 10% and 15%. The maximum number of band gaps observed at 20% relative 

density (28 bands) is comparable to that observed at 5%, 10% and 15% relative 
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densities; however, it appeared at a different set of perturbation parameters, namely 

An=0.5 and n=2. 

 

Figure 17 Key band gap features at 20% relative density, showing (A) the size of widest band gap 

(S.O.W.B) in kHz, (B) its centroid (C.O.W.B) in kHz and (C) the number of band gaps.  

 

Figure 18 Key band gap features at 25% relative density, showing (A) the size of widest band gap 

(S.O.W.B) in kHz, (B) its centroid (C.O.W.B) in kHz and (C) the number of band gaps.  

 

Figure 19 Key band gap features at 30% relative density, showing (A) the size of widest band gap 

(S.O.W.B) in kHz, (B) its centroid (C.O.W.B) in kHz and (C) the number of band gaps.  

Figure 18 presents the key band gap features at the relative density of 25%. Comparing 

this figure to Figure 17 shows that perturbation parameters resulting in the widest band 

gap and maximum number of gaps at 25% relative density are identical to their 
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counterparts at 20% relative density. However, compared to the 20% relative density 

case, the band exhibited at 25% relative density, which has a width of 207.84 kHz, is 

wider.  On the other hand, the maximum number of band gaps at 20% and 25% relative 

densities were very comparable, 28 bands for the former and 27 bands for the latter.  

At the highest relative density considered, 30%, as seen in Figure 19, the widest band 

gap, 199.37 kHz in width, is observed at the perturbation parameters An=0.3 and n=4. 

Comparing this to the results at the other relative densities highlight a trend in which 

the widest band gaps at higher relative densities are observed at smaller perturbation 

frequencies and magnitudes. Also, at higher relative densities, the widest band gap 

decreases in size. However, with respect to the maximum number of band gaps, the 

30% relative density case almost mirrored the behavior of the 25% and 20% relative 

density cases. It exhibited a comparable number of maximum band gaps, 26, at the same 

perturbation parameters that resulted in the maximum number of band gaps at 20% and 

25% relative densities.  

Results summarizing the key band gap features indicate that perturbations are more 

efficient in generating functional band gaps, larger in number and width, at lower 

relative densities. Moreover, results followed a non-monotonic and complex pattern 

that renders predicting them without machine learning difficult. 

4.4. MANNs Implementations for The Three Key Aspects: 

As demonstrated in the diagram of the proposed framework in Figure 8, parallel feed-

forward multilayer artificial neural networks (MANNs) are implemented for predicting 

the three key bandgap features, a MANN for each feature. The inputs of the MANNs 

are relative density, perturbation amplitude (An), and perturbation frequency 

represented by the number of perturbation waves per ligament (n). Each of the three 

MANNs has two hidden layers whose optimal number of neurons is determined using 

sensitivity analysis. Data presented in Figure 14 to Figure 19 are used to train and 

optimize the MANNs. Collected data are divided intro in three sets: 80% for training, 

10% for testing and 10% for validation.  

The first MANN models the bandgap with the maximum width formed at each 

combination of 𝜌∗, An and n. The optimal configuration for this MANN’s is obtained 

when its first and second hidden layers have seven and six neurons, respectively. Figure 
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20 shows the performance (i.e., mean square error (MSE) defined by Equation (11)) 

and regression plot (i.e., describes the correlation between the output and target) of the 

optimal MANN. Both performance (MSE of 0.0067 after 11 epochs) and regression 

plot (with a good fit, R2 of 0.97) suggest the proposed MANN has a promising 

predictive ability. The accuracy of the proposed MANN in predicting the maximum 

bandgap width is measured by comparing the MANN predictions to the finite element 

results. The proposed MANN has a maximum accuracy of 99.94% and a minimum 

accuracy of 78.35%. The minimum accuracy is associated with the parameters of 𝜌∗ =

20%, An=0.1 and n=10. To represent the MANN’s predicting error in a compact 

manner, the mean error measure is computed by averaging the MANN prediction error 

(i.e., magnitude) for all An values (i.e., 0.1, 0.2, 0.3, 0.4 and 0.5) at each combination 

of 𝜌∗ and n. The resulting mean error values are presented in Table 1. This table shows 

that the minimum mean error is observed at 𝜌∗ = 15% and n=0.5, while the maximum 

mean error is observed at 𝜌∗ = 20% and n= 4. Moreover, the maximum mean error is 

less than half of the maximum error corresponding to the 78.35% accuracy. The latter 

indicates that the MANN prediction error is small in most cases. 

The second MANN models the number of band gaps formed at each combination of 

𝜌∗, An and n. This MANN’s optimum configuration has two hidden layers. The first 

has seven neurons, while the second has five neurons. The MANN’s performance (MSE 

plot) and regression plots are shown in Figure 21. Both performance (MSE of 0.0062 

after 9 epochs) and regression plot (with a good fit, R2 of 0.98) suggest the proposed 

MANN has a promising predictive ability. The accuracy of the proposed MANN is 

computed by comparing its predictions with finite element results. It has a maximum 

accuracy of 99.4% and a minimum accuracy of 79.68%. The minimum accuracy is 

observed at the input parameters of 𝜌∗ = 5%, An=0.2 and n=10. The proposed MANN 

for modeling the number of band gaps formed has relatively the same accuracy range 

associated with the MANN proposed for modeling the maximum band gap width.  

Table 2 presents the mean error attained while utilizing the proposed MANN for 

predicting the number of band gaps formed due to imposing sinusoidal perturbations. 

The minimum and maximum mean error corresponding to predicting the number of 

band gaps at different An values are exhibited at 𝜌∗ = 30%, n=4 and 𝜌∗ = 5%, n=10, 

respectively.  
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The third MANN predicts the centroid of the band gap with the maximum width. The 

optimum configuration of the latter MANN is comprised of two hidden layers. The first 

has six neurons and the second has three neurons. The performance (MSE plot which 

shows a minimum value of 0.03 after 10 epochs) and regression plot (which 

demonstrates an acceptable fit with an R2 value of 0.81) of the proposed MANN are 

shown in Figure 22. The performance of the proposed MANN for predicting the 

centroid of the band gap with the maximum width showed lower accuracy than the 

MANNs proposed for predicting the maximum band gap width and maximum number 

of band gaps. This inferior behavior is due to the complex and fluctuating pattern 

followed by the centroid of the band gap with the maximum width. Table 3 presents the 

proposed MANN’s mean error in predicting the centroid of the band gap with maximum 

width.  

 
(A) 

 
(B) 

  

Figure 20 Performance of the MANN proposed for predicting the maximum band gap width exhibited 

by the sinusoidally perturbated hexagonal honeycomb. A) shows MSE plot and B) shows the 

regression plots. 

Table 1 The mean error (%) of the MANN proposed for predicting the maximum band gap width 

exhibited by the sinusoidally perturbed hexagonal honeycomb. Table shows the effect of relative 

density (𝜌∗) and perturbation frequency (n). The mean error (%) is compute by averaging the errors 

corresponding to a range of perturbation amplitudes (An). 

 

𝜌∗ 

Perturbation frequency (n) 

0.5 2 4 6 10 

Mean Error (%) 

5% 3.79 3.6 3.29 4.37 4.95 

10% 2.5 3.6 2.96 2.7 4.97 

15% 1.69 3.33 7.23 2.90 2.51 

20% 3.01 4.43 9.917 9.12 3.46 

25% 5.45 2.927 4.49 7.69 2.54 

30% 3.6 6.50 5.19 4.4 2.24 
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Figure 21 Performance of the MANN proposed for predicting the number of band gaps exhibited by 

the sinusoidally perturbated hexagonal honeycomb. A) shows MSE plot and B) shows the regression 

plots. 

Table 2 The mean error (%) of the MANN proposed for predicting the number of bandgaps exhibited 

by the sinusoidally perturbed hexagonal honeycomb. Table shows the effect of relative density (𝜌∗) and 

perturbation frequency (n). The mean error (%) is compute by averaging the errors corresponding to a 

range of perturbation amplitudes (An). 

 

𝜌∗ 

Perturbation frequency (n) 

0.5 2 4 6 10 

Mean Error (%) 

5% 2.25 3.10 3.36 5.62 6.76 

10% 2.74 3.61 4.80 4.50 3.16 

15% 3.94 4.11 3.82 5.35 4.39 

20% 3.56 4.69 4.20 3.26 4.96 

25% 2.97 5.95 3.70 2.65 1.88 

30% 5.91 5.53 1.67 2.75 2.64 
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Figure 22 Performance of the MANN proposed for predicting the centroid of the band gap with 

maximum width. A) shows the MSE plot and B) shows the regression plots.  
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Table 3 The mean error (%) of the MANN proposed for predicting the centroid of the band gap with 

maximum width in the sinusoidally perturbated hexagonal honeycomb. Results show the effect of 

relative densities and perturbation frequency (n). The mean error (%) is compute by averaging the 

errors corresponding to a range of perturbation amplitudes (An). 

 

𝜌∗ 

Perturbation frequency (n) 

0.5 2 4 6 10 

Mean Error (%) 

5% 17.14 7.47 10.93 8.13 11.04 

10% 19.59 19.33 6.03 13.38 15.02 

15% 8.96 16.81 4.79 11.72 12.05 

20% 15.34 22.06 13.90 16.41 16.81 

25% 12.87 14.92 18.70 12.27 14.30 

30% 18.54 13.67 15.30 11.91 15.24 

 

Again, the mean error is computed by averaging the MANN’s prediction errors for all 

An values at each combination of 𝜌∗ and n. The minimum mean error in predicting the 

centroid of the maximum band gap is observed at 𝜌∗ = 15% and n=4. On the other 

hand, the maximum mean error is observed at 𝜌∗ = 20% and n=2. 

The results above show that the performance of the MANNs in predicting the key band 

gap features varies depending on the feature, perturbation parameters and relative 

density. The MANNs are more accurate at predicting the number of band gaps and 

maximum band gap width than at predicting the centroid of the maximum band gap. 

According to the mean error tables, the proposed MANNs are, on average, at least 90% 

and 94.05% accurate in predicting the maximum band gap width and number of band 

gaps, respectively. On the other hand, at predicting the centroid of the maximum band 

gap, the proposed MANN is, on average, at least 77.94% accurate.  Accordingly, the 

MANNs predict the maximum band gap in a slightly shifted position. As the maximum 

band gaps are wide and the error in centroid is reasonable, the predicted band gaps 

significantly but not fully overlap with the actual band gaps in most cases. Therefore, 

the predictions of the MANNs can be efficient in assisting the design process of 

metamaterials with prescribed band gaps. 
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Chapter 5. Discussion 

The main objective of this work is to demonstrate the potential of imposing 

perturbations as a systematic process for designing metamaterials with prescribed 

functional band gaps. As mentioned in the introduction, this systematic process would 

provide a paradigm shift in the field for two reasons. First, currently designing 

metamaterials that exhibit unique band gaps is based on trial-and-error approaches in 

which a lattice is selected, analyzed computationally or experimentally, and its band 

gaps within a frequency range of interest are determined. If its response is incompatible 

with the required behavior, a different lattice or constituent material is analyzed. Such 

efforts have been applied to many lattices [1]–[4]. Collectively these efforts form a 

database from which one can choose the lattice needed based on its band gap 

characteristics. However, this route is expensive from a design perspective and results 

in lattice structures with very complex geometries whose fabrication requires expensive 

additive manufacturing processes. The highlighted difficulties hindered the 

implementation of the developed lattice metamaterials in applications. On the other 

hand, the systematic approach presented in this work adopts the common hexagonal 

lattice which can be made using simple corrugation-based processes [32]. Fabricating 

the perturbed honeycomb lattices is more complex than regular hexagonal lattices. 

However, it is possible using modified corrugation-based processes that incorporate 

perturbations in the molds used to produce the corrugations. Accordingly, the 

systematic approach allows conventional machining-based fabrication processes to 

fabricate metamaterials with prescribed band gaps. Using corrugated lattices is more 

practical than using complex geometries and additive manufacturing. 

Second, imposing perturbations does not alter the topology of the lattice; it only alters 

its morphology. Accordingly, imposed perturbations can be considered morphological 

changes leading to different behaviors. The latter provides an opportunity for designing 

metamaterials with adaptive behaviors that change in response to an external trigger. 

To this end, the lattice would be made from an active constituent material (e.g., 4D 

printed lattice [39], [40], and perturbations would be imposed by controlling the active 

constituent material using an external trigger (e.g., heat). Subsequently, different 

perturbations can be imposed by varying the level of the trigger, allowing for realizing 

a wide range of adaptive or tunable band gaps using a single lattice.  
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Results confirmed that imposing perturbation can be a very effective approach for 

designing metamaterials with prescribed functional band gaps. This conclusion is based 

on two important aspects. First, results showed that perturbations transformed a simple 

lattice with a single narrow band gap (order of 1000kHz in width) into a lattice that 

exhibits multiple wide band gaps (reaching an order of 200kHz in width). This result 

confirmed that a rich band gap behavior could be created by imposing perturbations on 

a simple lattice, such as the hexagonal honeycomb used in this work. Creating 

numerous band gaps increases the probability of having a band gap in the region of 

interest. Second, and more importantly, results showed that varying the perturbation 

parameters and the lattice’s relative density resulted in a band gap at almost every 

frequency ranging from 0 kHz to 1000 KHz. Imposing perturbations transforms the 

design problem into a parameter selection problem in which one needs to select the 

perturbation parameters and relative density needed to obtain a desirable band gap 

behavior. Accordingly, imposing perturbations is a very effective approach for 

designing metamaterials with prescribed band gap behavior, and it allows for using 

simple lattice structures, such as the honeycomb used in this work.  

The major drawback of creating band gaps using perturbations is that the effect of 

perturbations on band gaps is complex and only readily predictable using detailed finite 

element simulations. The number of band gaps, their width, and covered range 

exhibited non-monotonic and nonlinear dependence on perturbation parameters and 

relative density. Nevertheless, results demonstrated few repeating patterns. 

Perturbations are more efficient in creating band gaps at lower relative densities. Higher 

efficiency is represented by a higher number of band gaps and wider band gaps. Bands 

with the largest widths are narrower and appear at lower perturbation parameters at 

larger relative densities. The latter results are consistent with the literature highlighting 

the ability of lattices with higher porosities to exhibit more dispersive properties and 

gaps [11].   

The complexity of the relationship between band gap characteristics and perturbation 

parameters motivated using machine learning to model it. Accordingly, band gap 

characteristics, represented by the three key features: the number of band gaps as well 

as the width and centroid of the widest band gap, were modeled by multilayer artificial 

neural networks (MANNs). Three parallel MANNs were proposed, and results 
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demonstrated their ability to accurately predict the number of band gaps (94% accurate 

on average) and the width of the widest band gap (90% accurate on average) at each 

perturbation scenario and relative density. However, the MANNs ability to predict the 

centroid of the widest band gap was less accurate (77.94% accurate on average). The 

latter causes the MANNs to predict the widest band gaps at a shifted location. However, 

as the widest bandgaps are wide and errors associated with their predicted centroid do 

not grossly change their location, the predicted band gaps partially overlapped with the 

actual band gaps in most cases. Therefore, the proposed MANNs can be very practical 

in assisting the design process of metamaterials with prescribed band gaps. For 

instance, they can be used to determine the approximate perturbation parameters and 

relative density needed to obtain a specific band gap behavior. The parameters can be 

subsequently refined using finite elements. This process is illustrated in the following 

design case study.  

This case study used perturbations to create a metamaterial with a band gap between 

575 kHz and 625kHz. The proposed MANNs were used to determine the course design 

parameters that can deliver a band gap structure in which the widest band gap has a 

width of 50kHz and a centroid of 600 kHz. The MANNs were used iteratively to 

determine the 5 design points that can deliver the closest behavior to the required one. 

The 𝜌∗, 𝐴𝑛, 𝑛 parameters of the determined design points, which were determined in a 

few seconds, are listed in Table 4. The actual band gap width and centroid 

corresponding to the selected 5 design scenarios were determined using the finite 

element-based approach presented in the Methodology section. Finite element 

predicted values are presented in Table 4. Finite element results demonstrate that 

frequency band gaps corresponding to the parameters of the first 3 cases overlaps with 

band gap required (575 ~ 625 kHz). To demonstrate this overlap, Figure 23 compares, 

for design configuration number 2, the widest band gap predicted by the MANNs with 

that predicted by the finite element analysis. This figure also shows the unit cell 

corresponding to design configuration 2. Figure 23 shows the significant overlap 

between the MANNs’ predicted response and the finite element calculated response. 

Accordingly, by assisting the design process with artificial intelligence, only five 

design cases were analyzed via finite element to determine the design parameters 

needed to obtain the required frequency band gap. The latter demonstrates the MANNs 
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utility in reducing the computational costs associated with designing metamaterials 

with specific band gaps. 

Table 4 MANNs’ predicted perturbation parameters corresponding to the frequency band gap between 

575 kHz and 625kHz. 

 MANNs Estimated Predicted via FE 

Simulations 

Design 

point 

𝜌∗ 𝐴𝑛 𝑛 Maximum 

Band gap 

width 

(kHz) 

Centroid of 

band gap 

with 

Maximum 

width 

(kHz) 

Maximum 

Band gap 

width 

(kHz) 

Centroid of 

band gap 

with 

Maximum 

width (kHz) 

1 27.5 0.44 1 50.27 550.25 70.94 612.26 

2 26.25 0.44 1 49.62 549.46 74.22 599.43 

3 12.5 0.24 1.5 54.08 595.93 69.21 605.00 

4 22.5 0.4 1 50.50 550.36 81.0 639.40 

5 8.75 0.36 0.5 45.08 550.40 45.94 675.86 

 

 

Figure 23 Design Point#2 perturbed unit cell and its corresponding band structure to demonstrate the 

accurate overlapping between its exhibited widest band gap and the prescribed band gap frequency 

range.  
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Chapter 6. Conclusion 

This work examined the potential of a new systematic design process for designing 

metamaterials with prescribed functional band gaps below the 1000kHz limit. This 

design process uses periodic perturbations to modify the morphology of simple lattices 

and enhance their band gap characteristics. Periodic perturbations with various 

amplitudes and frequencies were applied to a double-sided hexagonal honeycomb 

lattice with a relative having a range of relative densities (5%,10%,15%,20%,25% and 

30%). The double-sided hexagonal lattice has a single narrow frequency band gap 

below the 1000kHz frequency. Modifying its morphology by imposing periodic 

perturbation changed its behavior and allowed it to exhibit many band gaps (around 

30), with some reaching a width of~ 200kHz wide. The ability to increase the number 

of band gaps and their width indicates that periodic perturbations can be used to design 

metamaterials with prescribed band gaps systematically. A parametric study was 

conducted by varying the perturbation parameters, namely amplitude and frequency, as 

well as relative density. Results from the parametric study support the conclusions: 

1) The perturbation parameters that result in the maximum number of band 

gaps can be different from those resulting in the frequency band gap with 

the maximum width.  

2) The perturbation parameters that result in the widest frequency band gaps 

depend on relative density. In general, increasing the relative density 

lowered the perturbation parameters associated with the widest frequency 

band gaps. Accordingly, perturbations are more efficient in creating band 

gaps at lower relative densities.  

3) Frequency band gaps dependence on perturbation parameters and relative 

density is complex and non-monotonic.  

The complex relationship among frequency band gaps, relative density and perturbation 

parameters was modeled using multiple artificial neural networks (MANNs). Three 

parallel MANNs were developed to predict the key band gap features (i.e., width and 

centroid of the widest band gap as well as the number of band gaps) at each combination 

of perturbation parameters and relative density. Analysis of the MANNs’ ability to 

predict the key band gap features supports the following conclusion: 
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1) The accuracy of the MANNs in predicting the width of the widest band gap 

ranged between 78.35%~99.94%, while their accuracy in predicting the 

centroid of the widest band gap ranged between 51.97%~100%. These accuracy 

levels allow the predicted band gap to overlap with the actual band gap 

substantially. 

2) The accuracy of the MANNS in predicting the number of band gaps ranged 

between 79.68%-99.94%. 

The level of accuracy provided by the MANNs allows for predicting the perturbation 

parameters needed to realize a predetermined band gap. Accordingly, this work shows 

that metamaterials exhibiting a desired band gap below the 1000kHz frequency can be 

designed using sinusoidal perturbations, the simple hexagonal lattice, and the 

developed MANNs. 
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