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Abstract

We propose a new mixed finite element formulation for solving radiation–conduction heat transfer in optically thick
nisotropic media. At this optical regime, the integro-differential equations for radiative transfer can be replaced by the simplified
N approximations using an asymptotic analysis. The conductivity is assumed to be nonlinear depending on the temperature
long with anisotropic absorption and scattering depending on both the direction and location variables. The simplified PN

approximations are enhanced by considering a diffusion tensor capable of describing anisotropic radiative heat transfer. In the
present study, we investigate the performance of the unified and mixed formulations combining cubic P3, quadratic P2, and
linear P1 finite elements to approximate the temperature in the simplified P3 model. To demonstrate the performance of the
proposed methodology, three-dimensional examples of nonlinear radiation–conduction equations in optically thick anisotropic
media are presented. The obtained numerical results demonstrate the accuracy and efficiency of the proposed mixed finite
element formulation over the conventional unified finite element formulation to accurately solve the simplified P3 equations in
anisotropic media.
©2023TheAuthor(s).PublishedbyElsevierB.V.onbehalfof InternationalAssociationforMathematicsandComputers inSimulation
(IMACS). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Radiation–conduction heat transfer; Simplified PN approximations; Mixed finite element methods; Three-dimensional optically thick
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1. Introduction

Modeling and simulation of radiative heat transfer is an important research area in all physical and engineering
pplications that involve high temperatures such as combustion chambers for gas turbines [15,34], powerful
ndustrial furnaces [13,16], continuous casting [8,27,32], glass manufacturing [14,24] among others. In these
pplications, modeling heat transfer mainly involves conduction and radiation mechanisms as well as other processes
ncluding convection and chemical reactions. Conduction occurs in a relatively long time scale and transfers heat
ithin the proximity of the heat source compared to radiation which transfers heat at the speed of light and it

an affect objects far away from the heat source. At high temperatures, radiative transfer is also a key in these
pplications and it cannot be neglected in their modeling. For instance, experiments on semitransparent materials
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have shown that the heat transfer cannot be estimated only by conduction but also by radiation. Indeed, in many
annealing processes, the media temperature is higher than 1000 K and at this temperature, the radiation may
dominate conduction. Mathematical modeling of radiative heat transfer in these applications requires solving integro-
differential equations for the radiative transfer coupled to a set of parabolic-type partial differential equations for the
thermal behavior of the medium, see [29,44] among others. However, solving these equations is not easy essentially
because of the large set of dependent unknowns, the coupling between the radiation and the conduction, and
the specular reflecting boundary conditions. Several numerical methods have been developed in the literature to
overcome these difficulties including the zonal, Monte Carlo, and discrete ordinates methods. For mode details on
these methods, the reader is referred to [29,38,39,42] and further references are therein. However, these numerical
methods still require high computational time and large memory storage particularly for radiative heat transfer
problems in three space dimensions. Therefore, to produce large scale numerical simulations, fast and robust
numerical solvers are needed to solve the radiation–conduction equations in optically thick anisotropic media.

During the last decade, research on radiative heat transfer has been shifted to the derivation of simple
pproximations which accurately predict the important physical phenomena at a reasonable computational cost.
he most common approximate models are the simplified spherical harmonics method (also known by SPN

approximations) widely used when the medium is isotropic and optically thick, see for example [18,24–26].
Although these simplified approximations were derived using an asymptotic analysis for a large optical thickness
of the medium, they still yield encouraging results in the optically thin regime. The SPN approximations were first
proposed in [25] and implemented in [24,26] for glass manufacturing, in [3] for crystal growth, in [15,38] for gas
turbines, in [40,41] for flows at low Mach number, and in [1] for natural convection. Validation of results obtained
using the SPN approximations and experimental measurements has also been carried out in [36] for radiative transfer
in combustion systems. Recently, comparison of SPN approximations and the discrete ordinates method has been
reported in [17] for radiative transfer in a turbulent jet flame. It should be stressed that the main advantage of
the SPN approximations is the use of a set of elliptic-type partial differential equations independent of the angular
direction instead of the integro-differential radiative transfer equations. Furthermore, comparative results presented
in the above-mentioned references have demonstrated that in optically thick media, the SPN models approximate the
full radiative heat transfer problem with an extremely low computational cost. However, only radiative heat transfer
in isotropic media and with linear conductivity have been considered in these references. In many applications in
thermal engineering at high temperatures, the conductivity becomes nonlinear depending on the temperature solution
whereas the anisotropy in these applications is crucial. Our interest in the present study is on the SPN approximations
for nonlinear radiation–conduction problems in optically thick anisotropic media.

Numerical methods for solving the SPN approximations have also attracted much research in the literature.
For instance, a block Arnoldi method has been proposed in [43], continuous finite element methods have been
implemented in [1,24], discontinuous finite element methods have been investigated in [19,21], enriched partition
of unity finite element methods have been used to solve the SPN models in [30,31], a static solution of the SP3
approximation has been investigated in [28], and adaptive methods have been developed to accurately solve the SPN
models in [9,20,33]. For conduction–radiation problems with linear conductivity in isotropic media, these techniques
have shown a significant gain in the computational time. However, they still require further study and improvements
for nonlinear conduction–radiation problems in anisotropic media. It should also be noted that all the finite element
methods for SPN approximations employ the unified approach for which the same finite element spaces are used for
the temperature and radiative solutions. For most applications for radiative heat transfer in optically thick media,
the solution of interest is the temperature whereas the radiative solutions can be viewed as auxiliary variables
in the problem under study. This would allow sacrificing some accuracy for the radiative solutions in the SPN
approximations while the temperature solution retains the higher accuracy. Thus, following similar ideas as those
used for finite element methods for solving Navier–Stokes equations and Darcy problems, we propose a new mixed
finite elements for solving the SPN approximations. To our knowledge, mixed formation where the temperature and
radiative solutions are discretized in different finite element spaces has never been proposed in the literature.

In the present study, our proposed mixed finite element formulation for solving the SPN models consists of using
different spaces for the discretization of temperature and radiative solutions. Here, we implement the mixed Pm/Pm−1
finite elements for which the high-order elements Pm are used for the temperature solution and the low-order
elements Pm−1 are used for the radiative solutions. This results in a fast and accurate solver for nonlinear conduction–

radiation problems in anisotropic media at optically thick regimes. Notice that the emphasis in the current work is on
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the implementation of the proposed mixed finite element method for solving the SP3 model but our method can be
traightforwardly applied to other SPN approximations without major conceptual modifications. To demonstrate our
ethodology, we consider the three-dimensional SP3 equations where the conductivity is assumed to be nonlinear

epending on the temperature describing anisotropic radiative heat transfer. In addition, the performance of the
roposed mixed formulation is assessed using different discretizations combining the cubic P3, quadratic P2 and

linear P1 finite elements. To integrate the equations in time, we consider a fully implicit second-order Gear-based
scheme and the Newton method is implemented to deal with the nonlinearity in the resulting system of equations. It
should be pointed out that unlike the numerical methods in [1,24,30,31,40,41] where heat conduction and radiation
equations are decoupled at each time step, the proposed mixed finite element method solves monolithically the
fully coupled SP3 equations. This provides an additional advantage related to the selection of timesteps in the
simulations. Three numerical test examples for conduction–radiation problems, including a nonlinear problem in a
three-dimensional anisotropic medium, are used to examine the performance of the proposed method. The mixed
finite element method is assessed for various combinations of P1, P2, and P3 finite elements. The obtained results
re also compared to those obtained using the unified finite element methods and against each others.

The rest of the paper is organized as follows. In Section 2 we introduce the nonlinear SP3 approximation of the
adiative heat transfer employed in this study. The formulation of the mixed finite element method for the SP3 model
s presented in Section 3. This section includes the time integration scheme and the different space discretizations
sed in the current study. Section 4 is devoted to numerical results using several three-dimensional test examples.
oncluding remarks are summarized in Section 5.

. Nonlinear SP3 approximations of radiative heat transfer

In general, the radiation–conduction model consists of a heat conduction equation for the temperature T (x, t)
oupled with an integro-differential equation for the radiative intensity I (x, s) at the point x and with the propagation
irection s, see for example [23,24,26,39,44]. In a dimensionless form, these equations read⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂T
∂t

− ∇ ·
(
K∇T

)
= −

1
τ 2 ∇ · Q, (x, t) ∈ Ω × [0, T f inal],

τ s · ∇ I + (κ + σ )I =
σ

4π

∫
S2

I (x, s)ds + κB(T ), (x, s) ∈ Ω × S2,

τn(x̂) · K∇T + hc(T − Tb) = απ
(

B(Tb) − B(T )
)
, (x̂, t) ∈ ∂Ω × [0, T f inal],

I (x̂, s) = B(Tb), (x̂, s) ∈ ∂Ω−
× S2,

T (x, 0) = T0(x), x ∈ Ω ,

(1)

here Ω ⊂ R3 is a bounded domain of an absorbing and emitting material with ∂Ω being its boundary and [0, T f inal]
s the time interval. The parameters σ , κ , hc and K are the scattering coefficient, the absorption coefficient, the
onvective heat transfer coefficient and the thermal conductivity, respectively. In (1), S2 denotes the unit sphere,

n(x̂) the outward normal at x̂ to the boundary ∂Ω , α the mean hemispheric surface emissivity, τ is a diffusion
cale, and Tb a given ambient temperature of the surrounding. Here, ∇ · Q denotes the radiative source term which
an be calculated by the radiative information from the radiative transfer equation as

∇ · Q = κ

(
4πB(T ) −

∫
S2

I (x, s)ds
)
, (2)

ith B(T ) being the spectral intensity of the black-body radiation defined as

B(T ) = σR T 4, (3)

here σR = 5.67 × 10−8 is the Stefan–Boltzmann constant, see for instance [29]. Note that on the boundary we
onsider the transmitting conditions where the boundary region ∂Ω− in (1) is defined as

∂Ω−
=

{
x̂ ∈ ∂Ω : n(x̂) · s < 0

}
.

t should be noted that Eqs. (1) have been widely used in the literature for modeling radiative heat transfer
roblems in participating media, see for example [26,29] and further references are therein. Numerical solutions

f the radiative heat transfer Eqs. (1) have also been investigated and they cover statistical algorithms [29],
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Table 1
Parameters and their values used in the SP3 model.

Parameter Value Parameter Value

α1 2.3984 α2 1.1432
β1 0.0471 β2 0.1612
η1 32.1656 η2 14.9583
µ1 0.5888 µ2 1.4915
γ1 −16 221 γ2 3.0617

raytracing techniques [23], direct Sn discrete-ordinates [22], and iterative solvers [38] among others. However,
the main drawbacks of these methods are related to high computational costs and dense storage requirements in
their implementations, see for example the comparative study reported in [15]. Furthermore, the radiative transfer
equation in (1) is in a non-differential form, which presents a significant inconvenience when they are solved in
conjunction with the differential equations governing the heat conduction, flow and combustion. One way to avoid
these difficulties is to use the SPN approximations for the radiative heat transfer Eqs. (1). These simplified equations
re derived using an asymptotic analysis and they show excellent performance when the medium under consideration
s optically thick (opaque), see for instance [24,26]. In the present study, we propose a mixed finite element method
or solving the SP3 model for anisotropic media but its application to SP2 and SP1 models can be carried out using

the same manner. Hence, for heterogeneous and anisotropic media, the SP3 equations are defined as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂T
∂t

− ∇ ·
(
K∇T

)
= −

κ

τ 2

(
4πB(T ) −

γ2ψ1 − γ1ψ2

γ2 − γ1

)
, (x, t) ∈ Ω × [0, T f inal],

−τ 2µ2
1∇ ·

(
E∇ψ1

)
+ κψ1 = 4πκB(T ), (x, t) ∈ Ω × [0, T f inal],

−τ 2µ2
2∇ ·

(
E∇ψ2

)
+ κψ2 = 4πκB(T ), (x, t) ∈ Ω × [0, T f inal],

τ K∇T · n(x̂) + hc(T − Tb) = απ
(

B(Tb) − B(T )
)
, (x̂, t) ∈ ∂Ω × [0, T f inal],

τ 2µ2
1E∇ψ1 · n(x̂) +

τµ2
1α1

3
ψ1 = −

τµ2
1β2

3
ψ2 +

τµ2
1η1

3
B(Tb), (x̂, t) ∈ ∂Ω × [0, T f inal],

τ 2µ2
2E∇ψ2 · n(x̂) +

τµ2
2α2

3
ψ2 = −

τµ2
2β1

3
ψ1 +

τµ2
2η2

3
B(Tb), (x̂, t) ∈ ∂Ω × [0, T f inal],

T (x, 0) = T0(x), x ∈ Ω ,

(4)

here the parameters αi , βi , ηi , µi , and γi (i = 1, 2) are derived using a variational analysis as detailed in [26] and
for completeness their values are listed in Table 1. Note that the SP3 Eqs. (4) form a set of coupled elliptic- and
parabolic-type equations and do not depend on the angle direction. These properties render the SP3 (4) model more
cost effective than the full radiative heat transfer model (1). It should also be stressed that most of studies reported
in the literature for solving the SP3 equations are only limited to linear problems with isotropic thermal and optical
coefficients. In the current work, the interest is on heterogeneous anisotropic media for which the conductivity,
absorption and scattering coefficients depend on the spatial location x and the direction θ as well. In addition, the
hermal conductivity may also depends on the temperature in a nonlinear manner and in this case the tensors K
nd E are defined by

K = R(θ )

⎛⎝K11(T ) 0 0
0 K22(T ) 0
0 0 K11(T )

⎞⎠R−1(θ ),

E = R(θ )

⎛⎜⎜⎜⎜⎜⎝
1

3 (κ + σ1)
0 0

0
1

3 (κ + σ2)
0

0 0
1

⎞⎟⎟⎟⎟⎟⎠R−1(θ ),

(5)
3 (κ + σ3)
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where Ki i (T ) (i = 1, 2, 3) are nonlinear coefficients depending on the temperature solution, and R(θ ) is the rotation
matrix given by

R(θ ) =

⎛⎝1 0 0
0 cos θ − sin θ
0 sin θ cos θ

⎞⎠ .
ote that the nonlinearity in the SP3 Eqs. (4) is supported by the fact that at high temperatures, the medium

onductivity depends on the temperature and it should not be taken as a constant. In addition, by setting θ = 0 in
the rotation matrix, the Eqs. (4) yield the conventional SP3 model proposed in [26]. In general, when the nonlinearity
appears in the heat equation and not in the radiative transfer equation for which the asymptotic analysis is carried
out, the SP3 approximation originally proposed for linear isotropic problems is still valid for the nonlinear case. For
the anisotropic problems, the asymptotic analysis can be carried out for each direction in the scattering tensor (i.e.
for σ1, σ2 and σ3 separately). In the current study, numerical simulations are carried out to show the performance
of the mixed formulation for both linear and nonlinear cases.

3. Mixed finite element method

In the current study, Eqs. (4) are integrated in time using a second-order implicit backward differentiation formula
(BDF2) also known as Gear scheme, see for example [2,6,7]. Thus, the time interval [0, T f inal] is divided into sub-
intervals [tn, tn+1] with length ∆t = tn+1 − tn and we use the notation un

= u(x, tn) as the value of a generic
function u at time tn . We also discretize the three-dimensional domain Ω into a finite set of conforming elements
T j ( j = 1, 2, . . . Ne) with Ne being the total number of elements. Here, the computational domain Ωh ⊆ Ω is the
combination of all these finite elements. Hence, using (φ1, φ2, φ3) as test functions, the weak formulation of the
SP3 Eqs. (4) reads as: Find

(
T n+1, ψn+1

1 , ψn+1
2

)
∈ Vh × Wh × Wh , such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ω

3T n+1
− 4T n

+ T n−1

2∆t
φ1 dx +

∫
Ω

K∇T n+1
· ∇φ1 dx

=

∫
Ω

κ

τ 2

(
γ2ψ

n+1
1 − γ1ψ

n+1
2

γ2 − γ1
− 4πB

(
T n+1))φ1 dx+∫

∂Ω

(
hc

τ

(
Tb − T n+1)

+
απ

τ

(
B(Tb) − B

(
T n+1)))φ1 dx,

τ 2µ2
1

∫
Ω

E∇ψn+1
1 · ∇φ2 dx +

∫
Ω

κψn+1
1 φ2 dx =

∫
Ω

4πκB
(
T n+1)φ2 dx

+

∫
∂Ω

τµ2
1

3

(
η1 B(Tb) − β2ψ

n+1
2 − α1ψ

n+1
1

)
φ2 dx,

τ 2µ2
2

∫
Ω

E∇ψn+1
2 · ∇φ3 dx +

∫
Ω

κψn+1
2 φ3 dx =

∫
Ω

4πκB
(
T n+1)φ3 dx

+

∫
∂Ω

τµ2
2

3

(
η2 B(Tb) − β1ψ

n+1
1 − α2ψ

n+1
2

)
φ3 dx,

(6)

here Vh and Wh are the conforming finite element spaces. In this study, unlike the unified finite element methods
or which both spaces Vh and Wh are the same, we propose different finite element discretizations for the temperature

T and radiative solutions (ψ1, ψ2). In fact, inspired by the mixed finite element method widely used for solving
he Darcy and Navier–Stokes equations, we propose a mixed finite element formulation where the finite element
paces Vh and Wh are defined by

Vh =
{
Th ∈ C0(Ω ) : Th

⏐⏐
T ∈ Pm(T ), ∀ T ∈ Ωh

}
,

Wh =
{
ψh ∈ C0(Ω ) : ψh

⏐⏐
T ∈ Pm−1(T ), ∀ T ∈ Ωh

}
,

where Pm(T ) and Pm−1(T ) are polynomial spaces defined in the finite element T of degree m and m−1, respectively.
Notice that, we also compare the proposed mixed formulation to its unified counterparts widely used in the literature
where the finite element spaces Vh and Wh are the same defined as{ 0 Ω ) : T

⏐⏐ ∈ P (T ), ∀ T ∈ Ω
}
.
Vh = Wh = Th ∈ C ( h T m h

19
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It is well known that most mixed finite element formulations face numerical stability issues if function spaces for
their unknowns are not chosen consistently. Typically, spurious oscillations in the numerical solution may arise and
affect the accuracy of the method. The theory of mixed finite element formulations [10] provides compatibility
conditions on spaces to ensure the numerical stability of the problem. Here, the SP3 approximation fits into the
classical framework of perturbed saddle-point problems. Therefore, it ensures the stability conditions relevant to
this class of problems, following closely Brezzi’s classical treatment [10]. It is also possible to describe the inf-sup
test [12], which is a numerical test widely used for checking the compatibility of specific functions spaces in the
discrete formulation. It should also be noted that the mixed finite element method proposed in this study should
not be confused with the one used for solving the incompressible Navier–Stokes equations, the Darcy equations or
linear elasticity problems. In those problems, the governing equations are coupled through a differential operator
such as the gradient of the pressure in the Navier–Stokes equations and conditions as those reported in [5,11]
are required to ensure stability in the mixed finite element methods. In our case, the coupling between the heat
conduction equation and the SP3 equations is through polynomial functions at the right-hand side of each equation
in (4). Therefore, there will be no stability issues related to the low-order elements of the radiative solutions because
only a source function needs to be evaluated at those elements and no differential operator in the heat equation is
affected by these low-order elements. This has clearly been confirmed in the numerical results presented in this
study for both linear and nonlinear SP3 equations. Note that the finite element discretization of the weak form (6) is
trivial and for brevity in the presentation it is omitted here. In our simulations presented in the current study for the
SP3 model, we consider linear P1, quadratic P2 and cubic P3 finite elements as depicted in Fig. 1 for both unified
and mixed discretizations. To solve the nonlinear systems (6), the Newton’s method is used at each timestep. The
linear systems resulting from the Newton’s method are solved by an incomplete LU decomposition GMRES solver
from the PETSc1 library, see for example [4,35]. The convergence of the Newton’s iterations was achieved when
the residual norm is less than 10−6. For all numerical results presented in this study, three to five iterations were
sufficient to achieve this required convergence.

4. Numerical results and examples

In this section we examine the accuracy and the reliability of the mixed finite element method proposed in
this study using examples of radiation–conduction problems in three-dimensional enclosures. In the first example,
quantitative results are examined for a radiation–conduction problem with known analytical solutions. Comparisons
between results obtained using both unified and mixed finite elements for the SP3 model are presented for a
radiation–conduction problem in isotropic media. The third example examines the performance of the proposed
method for solving a nonlinear radiation–conduction problem in anisotropic media. All the computations are
performed on a Dell Precision 7920 Tower with 20C Dual Intel Xeon Gold 6148 2.4 GHz processor and 64 GB
2666 MHz DDR4 Memory.

4.1. Accuracy example

In this example, we investigate the performance of unified and mixed discretizations with the considered finite
elements for a problem with known exact solutions. Here, a manufactured solution of the model (4) is reconstructed
by adding extra source functions in the right-hand side of the equations which are determined such that the analytical
solutions are given by

T (x, y, z, t) = sin(2π x) sin(2π y) sin(2π z) exp(t),
ψ1(x, y, z, t) = tanh(T + 1), (7)
ψ2(x, y, z, t) = tanh(T − 1).

his problem is solved in the unit cube Ω = [0, 1]×[0, 1]×[0, 1] and the initial temperature and boundary functions
re also calculated according to the exact solutions in (7). Here, the absorption coefficient κ = 1, the scattering

coefficient σ1 = σ2 = σ3 = 0, the anisotropy angle θ = 0, the surface emissivity α = 0, the optical scale τ = 1,
and the heat conductivity K = I, with I is the unity matrix. A fixed timestep ∆t = 0.001 is used in the simulations
nd the obtained results are displayed at the final time T f inal = 0.1.

1 http://www.mcs.anl.gov/petsc/.
20
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Fig. 1. Unified and mixed finite elements used for the discretization of SP3 equations.

Our aim in this test example is to present the convergence rates of the proposed mixed finite element method
and compare these convergence results to those obtained using its unified counterparts. To this end we define the
relative error as

L2-error =
∥Tex − Tnum∥L2(Ω)

∥Tex∥L2(Ω)
,

where Tex and Tnum are the exact and numerical solutions, respectively. The obtained convergence plots are presented
in Fig. 2 for the considered finite elements. Obviously, refining the spatial discretization improves the accuracy in
both unified and mixed finite element methods. In addition, high-order accuracy is ensured when using the high-order
P3 finite elements in the simulation. As can be seen from these plots, the expected convergence order is achieved for
each corresponding discretization in the considered finite element method. Note that these numerical results need
to be supported by a rigorous analysis of convergence and error estimates for the proposed mixed finite element
method. However, the purpose of the present study is on the computational assessment of the mixed finite element
method for solving three-dimensional SP3 approximations of radiation–conduction in optically thick anisotropic

edia and its analysis will be addressed in a future work.
Next we examine the efficiency of the proposed mixed method for this problem. Table 2 summarizes the obtained
rrors and computational costs for each timestep using the proposed discretizations. It is evident that the error using
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u

Fig. 2. Convergence plots obtained using the unified discretization (left) and mixed discretization (right) for the accuracy example.

Table 2
Errors and computational costs obtained using the unified and mixed discretizations
with the considered finite elements for the accuracy example. Here, CPU times are
given in seconds.

Unified discretization

Finite elements L2-error CPU time

P1/P1/P1 7.6426E−03 77
P2/P2/P2 8.1175E−05 219
P3/P3/P3 2.5152E−06 1428

Mixed discretization

P2/P1/P1 8.9647E−05 116
P3/P2/P2 2.5164E−06 482

P2 for T and P2 for ψ1 and ψ2, referred to in the table as P2/P2/P2 discretization, is almost the same as the error
using P2 for T and P1 for ψ1 and ψ2, referred to in the table as P2/P1/P1 discretization. Similarly, the error using
P3 for T and P3 for ψ1 and ψ2, referred to in the table as P3/P3/P3 discretization is almost the same as the error

sing P3 for T and P2 for ψ1 and ψ2, referred to in the table as P3/P2/P2. However, the computational time using
the mixed finite elements P2/P1/P1 or P3/P2/P2 finite elements is much smaller compared to the computational
time using the unified P2/P2/P2 or P3/P3/P3 finite elements, respectively. For instance, using the mixed finite
elements P3/P2/P2 produces the same accuracy as using the unified finite elements P3/P3/P3 in terms of errors but
with a computational time about 3 times lower. This clearly shows that the proposed mixed finite element method
is more suitable for a fast and accurate solution of the SP3 model compared to the unified finite element method.

4.2. Radiation–conduction problem in isotropic media

To examine the performance of the proposed mixed formulation on a radiative heat transfer example, we
consider the benchmark problem widely used in the literature for modeling cooling materials such as glass,
see [24,37] among others. Thus, we solve the coupled radiation–conduction problem (4) in the computational domain
Ω = [0, 1] × [0, 1] × [0, 1] subject to an initial temperature T0 = 1500 K and a boundary temperature Tb = 300 K.
The remaining parameters are selected as hc = 1, κ = 1, σ1 = σ2 = σ3 = 0, θ = 0, and τ = 1. The medium is
assumed to be isotropic for which the heat conductivity K = I, with I is the unity matrix and the surface emissivity
is set to zero. In all results presented for this example, a time step fixed to ∆t = 10−6 and a structured mesh with
step size h = 0.025 are used in the simulations. Computational results are presented at three different instants using

both unified and mixed finite elements.
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m

Fig. 3. Snapshots of the temperature obtained using the mixed P2/P1/P1 discretization at three different instants for the radiation–conduction
problem in isotropic media.

Table 3
Mesh statistics, errors and computational costs obtained using the unified and
mixed discretizations with the considered finite elements for the radiation–conduction
problem in isotropic media. Here, CPU times are given in minutes.

Unified discretization

Finite elements # DoFs Error CPU time

P1/P1/P1 206 763 27.5259 1.2
P2/P2/P2 1 594 323 8.5857 21
P3/P3/P3 2 981 883 5.8735 140

Mixed discretization

P2/P1/P1 669 283 8.5127 2.5
P3/P2/P2 2 056 843 5.8612 43

As in this previous example, different discretizations are investigated to assess the difference between the
ixed and unified formulations. Here, we consider P3/P3/P3, P3/P2/P2, P2/P2/P2, P2/P1/P1, and P1/P1/P1 finite

elements. The number of degrees of freedom (#DoFs) associated with these discretizations is listed in Table 3. It
is evident that the number of degrees of freedom in the mixed P2/P1/P1 and P3/P2/P2 discretizations is lower
than their unified counterparts P2/P2/P2 and P3/P3/P3, respectively. Obviously, this reduction in the number of
degrees of freedom has an impact on the computational cost required for each discretization. In Fig. 3 we present
distributions of the temperature obtained using the mixed P2/P1/P1 finite elements at three different times namely
t = 10−5, 5×10−5 and 10−4. Notice that for a better insight, only part of the computational domain is illustrated in
Fig. 3. It should also be noted that similar temperature distributions are obtained using the mixed P3/P2/P2 finite
elements and therefore are not included here. It is clear from the computed results in Fig. 3 that the heat patterns
formed in the domain along with the cooling process are well captured. There is also a good agreement with these
results to those reported in [24,37] for a similar radiative heat transfer problem. It is worth remarking that all these
thermal features are achieved by solving systems of algebraic equations smaller than those required for the unified
discretizations using P2/P2/P2 and P3/P3/P3 finite elements.

To further quantify the computational results for this example, we calculate the difference between the solutions
obtained using the considered discretizations as

Error =
Tre f − Tnum


L2(Ω) ,

where Tre f is the reference solution obtained on a fine mesh with 57 83 853 degrees of freedom using the P3/P3/P3

discretization, and Th is the numerical solution obtained using the other different discretizations. Table 3 summarizes
the obtained results for errors and computational costs by the considered unified and mixed discretizations at time
t = 5 × 10−5. Clearly, the errors obtained using the unified P3/P3/P3 and P2/P2/P2 discretizations are almost the

same as those errors obtained using the mixed P3/P2/P2 and P2/P1/P1 discretizations, respectively. However, the
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Fig. 4. Domain configuration (top plot) and computational mesh (bottom plot) for the radiation–conduction problem in anisotropic media.

PU time using the mixed P2/P1/P1 or P3/P2/P2 discretizations is far smaller compared to the CPU time using
the unified P2/P2/P2 or P3/P3/P3 discretizations, respectively. This saving in the computational cost shows that
for a similar accuracy, the mixed finite elements are more suitable for the SP3 model compared to the unified finite
elements. In addition, differences in the results obtained for the unified P2/P2/P2 and P3/P3/P3 finite elements are
ess than 8.5% and 5.8%, respectively. Using the mixed P2/P1/P1 and P3/P2/P2 finite elements, these differences
emain roughly the same. Furthermore, the computational time required for the proposed mixed P3/P2/P2 finite
lements, is 69% less than the time required for P3/P3/P3 finite elements, while the implementation using the mixed
2/P1/P1 finite elements reduces this computational cost to 98%. As a result, the mixed P2/P1/P1 finite element
ethod is considered as a good candidate for obtaining accurate and efficient numerical results for solving coupled

adiation–convection problems.

.3. Nonlinear radiation–conduction problem in anisotropic media

Our final example consists of a nonlinear radiation–conduction problem in an anisotropic plate including four
ollow cylinders modeling for example embedded pipes for radiant cooling and heating systems. Here, we solve
he Eqs. (4) in a plate domain Ω = [0, 10] × [0, 10] × [−1, 1] as illustrated in Fig. 4. The four cylinders span the
hole lateral distance with the same radius of 0.3 equidistantly distributed in the plate with their centers located at

0, 2, 0), (0, 4, 0), (0, 6, 0) and (0, 8, 0). In our simulations, the scattering coefficients σ1 = 0, σ2 = 0.1, and σ3 = 0,
he absorption coefficient κ = 1, the convective heat transfer hc = 1, the surface emissivity α = 0.01, the diffusion
cale τ = 1, and the thermal conductivity K is assumed to be nonlinear and anisotropic defined by (5) with

2 2
K11(T ) = 0.1 + 0.02T + 0.0005T , K22(T ) = 0.1 + 0.02T, K33(T ) = 0.1 + 0.02T + 0.0005T ,
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Fig. 5. Temperature distribution in the entire plate (top plots) and in the plane z = 0 (bottom plots) obtained at three different instants for
the radiation–conduction problem in anisotropic media.

and the anisotropy angle θ =
π

4
. On the boundaries of the domain we use Dirichlet-type conditions with fixed

temperature Tb = 1000 K on the surface of the cylinders whereas Robin-type conditions with Tb = 300 K are
employed on the other surfaces of the plate. The initial temperature is set to T0 = 1000 K, the time step ∆t = 10−5

and the computed results are displayed at three different times using an unstructured mesh with 1 08 884 tetrahedrals
as shown in Fig. 4. It should be pointed out that the main objective of this example is to examine the performance of
the proposed mixed finite element method for solving nonlinear three-dimensional radiation–conduction problems
in anisotropic media. To this end we consider the mixed P2/P1/P1 finite elements and the obtained results are
compared to those obtained using the unified P1/P1/P1 and P2/P2/P2 finite elements. Hence, the total numbers of
degrees of freedom are 496 596, 211 274 and 68 613 for the discretizations using P2/P2/P2, P2/P1/P1 and P1/P1/P1

finite elements, respectively.
Fig. 5 depicts snapshots of the temperature in the plate obtained using the P2/P1/P1 finite elements at three

different instants t = 0.0005, 0.001 and 0.005 along with parts of the plate at z = 0 for a better visualization.
As expected, the heat released from the hot cylinder walls is transferred inside the plate and covers the whole
plate as the time progresses. At earlier times, steep thermal gradients are also detected in the domain due to the
difference between the heat isolation boundary conditions and the high heat release rates near the cylinder walls.
Despite using a relatively coarse mesh, the proposed mixed P2/P1/P1 finite elements accurately captures these steep
gradients and their changes in time. Notice that results obtained using the unified P2/P2/P2 finite elements reveal
the same thermal structures and therefore are not included in Fig. 5.

Comparison between the considered mixed and unified discretizations is also carried out for this nonlinear
radiation–conduction problem in anisotropic media. In Fig. 6 we present one-dimensional cross-sections of the
temperature at x = z = 0 obtained using the unified P1/P1/P1 and P2/P2/P2 finite elements compared to the
mixed P2/P1/P1 finite elements at time t = 0.001. For comparison reasons, differences between these results are
also included in the plots shown in Fig. 6. Noticeably, results obtained using the P1/P1/P1 finite elements are
less accurate than those obtained using the P2/P2/P2 finite elements with a maximum difference of 50 K. On the
other hand, the temperature profiles obtained using the P2/P2/P2 and P2/P1/P1 finite elements are very similar
with a maximum difference less than 4 K. This confirms that the mixed P2/P1/P1 formulation is the most suitable

discretization for the SP3 model since the results obtained using the mixed P2/P1/P1 finite elements are as accurate

25



Y. Belhamadia and M. Seaid Mathematics and Computers in Simulation 216 (2024) 15–29

f
e

t
o

Fig. 6. Comparison between the unified discretizations (left plot) and the mixed discretizations (right plot) obtained at time t = 0.001 for
the radiation–conduction problem in anisotropic media.

as those obtained using the unified P2/P2/P2 finite elements but with a computational cost more than two times
aster. Note that the results obtained for this heat transfer problem also confirm the previous conclusions about the
fficiency and accuracy of the mixed finite elements. Indeed, the proposed mixed P2/P1/P1 finite element method

as can be seen in the results shown in Figs. 5 and 6 performs very well. The temperature solution in this case is
highly accurate and stable even on a relatively coarse mesh. It should also be mentioned that the efficiency of the
proposed mixed finite element method is reflected in the reduction in the total number of degrees of freedom and
the reduction in the size of associated systems of algebraic equations required to be solved at each time step to
update the solution. Finally, we also note that the proposed mixed finite element method is highly attractive for
computational heat transfer.

Our next concern with this example is to examine the performance of the proposed mixed P2/P1/P1 finite
elements for different anisotropic conditions for this radiation–conduction problem. For this end we run the
simulations for three different anisotropy angles θ = 0,

π

6
and

π

2
, and the obtained temperature distributions at time

t = 0.001 are displayed in Fig. 7. For the considered anisotropy conditions, the heat exhibits different patterns for
each value of the angle θ . Higher heat release is observed in the plate for larger values of the anisotropy angle and
he proposed mixed finite element method accurately resolves these thermal features with no spurious oscillations
r excessive numerical diffusion. This can also be seen in the temperature profiles at x = z = 0 presented in Fig. 8

for θ = 0,
π

6
,
π

4
,
π

3
and

π

2
. Furthermore, steeper thermal gradients appear at the vicinity of cylinder walls for

small values of the anisotropy angle and as the angle increases higher temperatures are released with smoother
boundary layers at these walls. It should also be noted that this resolution is captured on a relatively coarse mesh
and without any mesh refinements implemented at the cylinder walls.

5. Conclusions

A new mixed finite element method has been developed for solving nonlinear radiation–conduction equations in
optically thick anisotropic media. Under the assumption that the medium is optically thick, the integro-differential
equation for radiative transfer is asymptotically approximated by the SP3 model. This results in a coupled system of
one parabolic-type equation for the temperature distribution and two elliptic-type equations for the radiative field.
We assumed nonlinear anisotropic conductivity depending on the temperature and both the direction and location
coordinates. The proposed mixed finite element method consists of using different spaces for the discretization
of temperature and radiative solutions. Here, we used mixed Pm/Pm−1/Pm−1 finite elements for which high-
order elements Pm are used for the temperature solution and the low-order elements Pm−1 are used for the
radiative solutions. This is supported by the fact that the solution of interest in most applications of radiative
heat transfer in optically thick media is the temperature. The performance of the proposed mixed finite element
26
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d

Fig. 7. Temperature distribution in the entire plate (top plots) and in the plane z = 0 (bottom plots) obtained at time t = 0.001 using three
ifferent anisotropy angles for the radiation–conduction problem in anisotropic media.

Fig. 8. Temperature profiles obtained at time t = 0.001 using different anisotropy angles for the radiation–conduction problem in anisotropic
media.

method has been examined using various test examples of radiation–conduction problems in three-dimensional
enclosures. The obtained numerical results using the mixed finite element method confirm a significant reduction
in the computational cost compared to the results using the unified finite element method at the same accuracy.
Furthermore, results obtained for the considered examples have also shown the capabilities of the proposed mixed
finite element method in simulations of complex radiative heat transfer applications in three space dimensions

using unstructured tetrahedral meshes. Future work will concentrate on the extension of the mixed finite element
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method to coupled problems of flow and radiative heat transfer in non-gray participating anisotropic media. It
should be stressed that the emphasis of the present has been exclusively on the computational assessment of the
proposed mixed finite element method for solving three-dimensional radiation–conduction equations in optically
thick anisotropic media. However, using the compatibility conditions on the finite element spaces proposed in [10]
and following the arguments reported in [12], it is possible to establish a theoretical analysis of convergence and
stability for the proposed mixed formulation. Results on this analysis along with error estimates will be carried out
separately in a future work.
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