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a b s t r a c t 

Heat diffusion processes are generally modeled based on Fourier’s law to estimate how the temperature 

propagates inside a body. This type of modeling leads to a parabolic partial differential equation, which 

predicts an infinite thermal wave speed of propagation. However, experimental evidence shows that dif- 

fusive processes occur with a finite velocity of thermal propagation in many applications. In this paper, 

we develop a mathematical formulation to predict the finite speed of heat propagation in multidimen- 

sional phase change problems. The model generalizes the enthalpy formulation by adding a hyperbolic 

term. The governing equations are simulated by the finite element method. The proposed model is first 

verified by comparing numerical and experimental results illustrating the difference between the infi- 

nite and finite propagation velocity for heat inside biological tissues. Then, the results of the two and 

three-dimensional numerical solution of the continuous steel casting process are presented. We will il- 

lustrate that the effects of the initial conditions vanish faster when using the parabolic equation, while 

they persist in the hyperbolic modeling approach. The results demonstrate significant differences in the 

initial thermal dynamics and at the solid-liquid interface position when adding the hyperbolic term. The 

changes are more noticeable in the regions of the steel beam where rapid heat loss and, consequently, 

faster phase change occur. 

© 2023 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Heat transfer is one of the most fundamental problems studied 

hen considering energy transport. Given a temperature difference 

n a body, heat flows until thermal equilibrium is reached. The 

ow, in this case, is called heat conduction, a phenomenon related 

o the direct microscopic exchange of kinetic energy between the 

articles in the body. Regarding heat transfer modeling, the con- 

uctive heat transport across the macroscopic scale is generally de- 

cribed by a parabolic partial differential equation (PDE) obtained 

y defining the heat flux given by Fourier’s law. In Fourier’s law, 

n initial temperature gradient in a conductive medium causes an 

mmediate heat flux and instantly propagates throughout the body 

ut still decays exponentially [1] . However, this issue cannot be ig- 

ored in some applications, and using a parabolic equation may 

e inaccurate enough for practical purposes. Experimental evi- 

ence shows that diffusive processes occur with a finite velocity 
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f thermal propagation inside matter, such as materials with non- 

omogeneous structures [2] , nano-wires or nano-structure materi- 

ls [3] , and materials subjected to extremely fast thermal distur- 

ances [4,5] . 

Several contributions have addressed the paradox of infinite 

ropagation speed over the years. Most of these consider either a 

yperbolic or a nonlinear parabolic equation as the system model. 

ased on the kinetic theory, Cattaneo proposed, in Cattaneo [6] , a 

odified flux that took into account thermal inertia, resulting in a 

yperbolic equation when applied to the energy balance. This type 

f model was later on also derived based on Boltzmann’s equa- 

ion [7] or using the correlated random walk [8] . In King et al. 

9] and Novikov et al. [10] , the numerical and analytical solutions 

f the hyperbolic heat equation in an infinite space were shown. 

Although the hyperbolic equation can be seen as an extension 

f the parabolic model, there have been several contributions de- 

iving other models from it or criticizing its use, showing the lim- 

tations and restrictions of different lagged heat flux models. In 

11] , the relaxed flux was considered for heat conductor models 

ith fading memory by different approximations of dual-phase-lag 
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heory. While assuming an approximate constitutive equation for 

he heat flux, the parametric limitations on the equations obtained 

ere analyzed. In [12] , it was shown that using a telegrapher’s 

quation is not a fitting solution for transport problems in more 

han one dimension. Similarly, Rukolaine [13] showed in their sim- 

lations that a type of lagged heat flux model might present a non- 

hysical solution for different values of the parameters. The con- 

ributions from Bright and Zhang [14] , Maillet [15] criticize models 

sing Cattaneo and Vernotte hyperbolic heat equation or derived 

rom it, stating assumptions as to why some previous published 

xperimental results might have been biased and not accurate. Fi- 

ally, in Both et al. [16] , a heat pulse experiment at room tempera-

ure was conducted, showing that the results could not be modeled 

roperly either by the Fourier or non-Fourier approaches. 

Nonetheless, there are several recent contributions that still use 

he hyperbolic approach and show that a Fourier heat flux is not 

ble to describe some systems properly. In [17–20] , the hyperbolic 

ype model was used to model the propagation on a heterogeneous 

ixture to predict the effect of extremely fast thermal distur- 

ances in microscopic sliding contact, to estimate the heat propa- 

ation in biological tissues, and to model the finite speed of prop- 

gation seen in cardiac electrophysiology, respectively. More re- 

ently, the thermal behavior of hyperbolic conduction semi-spaces 

n perfect thermal contact was investigated in Nosko [21] . In [22] , 

he analytical solution of a non-Fourier model was used to de- 

cribe the temperature behavior obtained when using a heat pulse 

ethod on different rock samples, a continuation of the work pre- 

iously shown in Both et al. [16] . Thus, even though the hyperbolic 

quation might have fundamental limitations, its utility as an em- 

irical model is evident. 

One type of heat transfer problem is related to the phase 

hange phenomenon, where the material state is transformed from 

olid, liquid, or gas to another state without a change in chem- 

cal composition. Phase change problems have been the subject 

f many experimental and theoretical studies. The classical two- 

hase Stefan formulation is considered for the mathematical equa- 

ion representing these problems. In this formulation, the heat is 

odeled on each phase separately while the interface, the bound- 

ry between different phases, is considered without any a priori 

nowledge of its dynamics [23] . 

For phase change problems, the hyperbolic Stefan problem has 

een considered in some contributions in the literature. In Socio 

t al. [24] , the difference between the Fourier and non-Fourier 

odels of heat conduction associated with a change of phase in 

 solid material has been investigated. In Showalter et al. [25] , the 

nthalpy formulation corresponding to the hyperbolic Stefan prob- 

em has been discussed. In Glass et al. [26] , the enthalpy formula- 

ion of the hyperbolic Stefan problem has been used to analyze the 

ffects of the Stefan number and thermal conductivity on the prop- 

gation of the phase change interface. Recently, in Jitendra et al. 

27] , a numerical solution of a non-Fourier heat conduction model 

as been applied to the phase change problem in the presence of 

ariable internal heat generation. 

Most of the aforementioned references considered only one- 

imensional cases of the phase change problem. For multi- 

imensional cases, numerical simulation of the Stefan problem is 

hallenging due to the explicit imposition of the Stefan condition 

n the interface. To our knowledge, only Kumar et al. [28] where 

 two-dimensional hyperbolic phase change heat transfer process 

n cryosurgery of the lung has been presented, where the enthalpy 

ormulation was used, and the governing equations were solved by 

 finite difference method. 

The main goal of this paper is to present a multi-dimensional 

ormulation and numerical technique for solving the hyperbolic 

hase change problem. Specifically, the model and numerical 

ethod are used to simulate the continuous casting process, an 
2 
co-friendly method that enhances the production of metals and is 

he most important production process in the steel industry. Thus, 

rst, a novel formulation based on the enthalpy technique is devel- 

ped to solve the hyperbolic classical Stefan problem. The main ad- 

antage of this approach is that both solid and liquid temperatures 

re solved in the entire domain, and the Stefan condition is au- 

omatically satisfied at the interface. For the numerical solution of 

he proposed formulation, a finite element method is considered. A 

omparison between numerical and experimental results illustrat- 

ng the difference between the infinite and finite propagation ve- 

ocity for heat inside biological tissues is first presented. Then, two 

nd three-dimensional simulations are presented, showing the dif- 

erence between the Fourier and non-Fourier consideration of heat 

onduction associated with the phase change in continuous casting 

xamples. 

The present paper is organized as follows: The hyperbolic for- 

ulation for the phase change problem is presented in Section 2 . 

he finite element discretizations of the proposed formulation are 

resented in Section 3 . Two- and three-dimensional numerical re- 

ults are presented in Section 4 , while Section 5 is devoted to the 

onclusion. 

. Mathematical model 

In this section, we will briefly review the parabolic Stefan prob- 

em and the enthalpy formulation. Then, the derivation of the hy- 

erbolic phase change model is presented. 

.1. Parabolic Stefan problem and the enthalpy formulation 

The Stefan problem is the basic mathematical model for the so- 

idification and melting of materials. It consists of the following 

quations: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ρi c i 
∂T 

∂t 
− ∇ · ( K i ∇T ) = f i in �i i = s, l 

T = T f on �

( K l ∇T l ) · n l − ( K s ∇T s ) · n s = ρl L V � on �

(1) 

here subscripts s and l refers to the solid and liquid phases, ρi is 

he density, c i is the specific heat, K i is the thermal conductivity 

ensor, f i is a possible heat source, L is the latent heat of fusion, 

nd V � is the interface velocity. 

The main difficulties in solving this system are the fact that 

he interface � and its velocity V � are not known a priori and are 

lso varying with time. The heat flux equilibrium condition often 

alled the Stefan condition, must also be imposed. The classic way 

o avoid these difficulties in many numerical methods is the use of 

he enthalpy formulation for the simulation of phase change prob- 

ems. It consists of the following set of equations: 

∂H 

∂t 
− ∇ · ( K∇T ) = f, (2) 

here the enthalpy H is a function of the temperature T and takes 

he form: 

 = F (T ) = 

{ 

ρs c s T if T < T f , 

ρs c s T f + ρL + ρl c l (T − T f ) if T > T f . 
(3) 

The conductivity K and the source term f are now given by: 

 = 

{
K s if T < T f , 

K l if T > T f . 
and f = 

{
f s if T < T f , 

f l if T > T f . 
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As illustrated in Fig. 2 , the relation enthalpy-temperature has a 

iscontinuity of height ρL and it can be shown that the problems 

1) and (2) are equivalent, where the Stefan condition is automati- 

ally satisfied. 

.2. Derivation of hyperbolic phase change model 

To consider the hyperbolicity, we will use a delayed flux for the 

aterial in the Stefan problem, as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ρi c i 
∂T 

∂t 
− ∇ ·

(
1 − τi 

∂ 

∂t 

)
( K i ∇T ) = f i in �i i = s, l 

T = T f on �

(
1 − τl 

∂ 
∂t 

)
( K l ∇T l ) · n l −

(
1 − τs 

∂ 
∂t 

)
( K s ∇T s ) · n s = ρl L V � on �

(4) 

The equivalent enthalpy formulation to the above hyperbolic 

tefan problem can be written as: 

∂H 

∂t 
− ∇ · [ (1 − τ∂ t ) K∇T ] = f . (5) 

Now, we will introduce a step function φ as follows 

= F (T ) = 

{
0 in �s , 

1 in �l . 

o that the enthalpy function can be written as 

 = H c + ρl Lφ, 

here H c is a continuous function: 

 c = 

{
ρs c s T in �s , 

ρs c s T f + ρl c l (T − T f ) in �l , 

nd therefore the enthalpy formulation can be re-written as 

∂H c 

∂t 
+ ρL 

∂φ

∂t 
− ∇ · [ (1 − τ∂ t ) K∇T ] = f, 

here it is assumed that τ is the same for both phases.It is im- 

ortant to notice that a step function is considered for φ because 

f the step change in the enthalpy, which is characteristic of an 

sothermal or non-isothermal phase-change. 

Considering the inverse approximation of the delayed flux (i.e., 

1 − τ∂ t ) −1 ≈ 1 + τ∂ t ), the energy balance becomes: 

1 + τ∂ t ) 
∂H c 

∂t 
+ ρL (1 + τ∂ t ) 

∂φ

∂t 
− ∇ · ( K∇T ) = (1 + τ∂ t ) f . 

This gives the second-order hyperbolic enthalpy formulation for 

he Stefan problem: 

∂H c 

∂t 
+ τ

∂ 2 H c 

∂t 2 
+ ρL 

∂φ

∂t 
+ τρL 

∂ 2 φ

∂t 2 
− ∇ · ( K∇T ) = f + τ

∂ f 

∂t 
. 

Given that 

∂H c 

∂t 
= 

⎧ ⎪ ⎨ 

⎪ ⎩ 

ρs c s 
∂T 

∂t 
in �s , 

ρl c l 
∂T 

∂t 
in �l , 

and 

∂ 2 H c 

∂t 2 
= 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

ρs c s 
∂ 2 T 

∂t 2 
in �s , 

ρl c l 
∂ 2 T 

∂t 2 
in �l . 

The final hyperbolic phase change modelis given by 

 

 

 

 

 

 

 

 

 

 

 

α(φ) 
∂T 

∂t 
+ τα(φ) 

∂ 2 T 

∂t 2 
+ ρL 

∂φ

∂t 
+ τρL 

∂ 2 φ

∂t 2 
− ∇ · ( K(φ) ∇T ) 

= f (φ) + τ
∂ f 

∂t 
(φ) , 

φ = F (T ) . 
3 
(6) 

here: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

K(φ) = K s + φ( K l − K s ) , 

α(φ) = ρs c s + φ( ρl c l − ρs c s ) , 

f (φ) = f s + φ( f l − f s ) , 

∂ f 

∂t 
(φ) = 

∂ f s 

∂t 
+ φ

(
∂ f l 
∂t 

− ∂ f s 

∂t 

)
. 

Notice that, if τ = 0 , we obtain the parabolic semi-phase-field 

odel for simulation of phase problems as presented in Belhama- 

ia et al. [29,30] and successfully compared with experimental re- 

ults in Fortin and Belhamadia [31] . Also the above equations con- 

ider isothermal-phase-change. However, phase change may not 

ot be instantaneous and occurs in a small interval [ T f − ε, T f + ε]

here ε is a small parameter depending on the mushy region. 

hus, the function φ = F (T ) can be regularized in this interval 

o that the resulting function φ = F ε (T ) considers both isothermal 

nd non-isothermal phase-change. 

The above model does not include the mechanism of heat con- 

ection. However, an extension of the present work is feasible fol- 

owing the ideas presented in Belhamadia et al. [32] , El Haddad 

t al. [33] . 

.3. Dimensionless form 

To introduce the non-dimensional form of the model (6) , we 

se the following change of variables. The dimensionless variables 

re represented with superscript ∗: 

 

∗ = 

x 

˜ x 
, t ∗ = 

t 

˜ t 
, and T ∗ = 

T − T f 


T 
, 

here ˜ t , ˜ x , and 
T are the reference time, length and temperature 

ifference. 
T can be chosen as any constant, relevant tempera- 

ure difference, depending on the case considered. The same will 

e considered for ˜ x . 

Using ˜ t = 

ρl c l ̃  x 2 

k l 
, and the Stefan number Ste = 

c l 
T 

L 
, the di- 

ensionless form of the model (6) is: 
 

 

 

 

 

 

 

 

 

 

 

α∗(φ) 
∂T ∗

∂t ∗
+ τ ∗α∗(φ) 

∂ 2 T ∗

∂t ∗2 
+ 

1 

Ste 

∂φ

∂t ∗
+ 

τ ∗

Ste 

∂ 2 φ

∂t ∗2 

−∇ · ( K 

∗(φ) ∇T ∗) = f ∗(φ) + τ ∗ ∂ f ∗

∂t ∗
(φ) , 

φ = F (T ∗) . 

(7) 

here 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

K 

∗(φ) = 

(
k s 

k l 
+ φ

(
1 − k s 

k l 

))
I , 

α∗(φ) = 

ρs c s 
ρl c l 

+ φ
(

1 − ρs c s 

ρl c l 

)
f ∗(φ) = 

f s 
f l 

+ φ

(
1 − f s 

f l 

)
, 

∂ f ∗

∂t ∗
(φ) = 

∂( f s / f l ) 

∂t ∗
(1 − φ) , 

τ ∗ = 

τk l 
ρl c l ̃  x 2 

. 

nd the step function φ is given by 

= F (T ∗) = 

{
0 if T ∗ < 0 , 

1 if T ∗ > 0 . 

From here on, the dimensionless model (7) will be employed, 

nd for simplicity, we will henceforward drop the symbol ( ∗) on 

ll the variables. 
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Fig. 1. Enthalpy-temperature relation in a phase change problem. 

Table 1 

Parameters used for the reproduction of the results from Mitra et al. [37] 

Case I Case II 

Parameter Value Unit Parameter Value Unit 

α 1 α 1 
˜ t 284 s ˜ t 161.161 s 

T 0 (x, y ) 0 T 0 (x, y ) = 

{
0 , for 0 < x < 1 

2 , for 1 < x < 4 

x o 1 x o 0.2 

L x 3 L x 4 

L y 1 L y 1 

τ 0.0556 τ 0.0962 

c

p

p

i

t

b

m

t

t

c

p  

(

p

(  

b

o  

r

t  

p  

(

a




s

t

b

. Numerical method 

A finite element method is used to numerically solve the hyper- 

olic phase-change model (7) . The variational formulation of this 

ystem is straightforward and is obtained by multiplying the gov- 

rning equation by a weighting function w and integrating over the 

omputational domain � as follows: 

 

�

(
α(φ) 

∂T 

∂t 
w + τα(φ) 

∂ 2 T 

∂t 2 
w + 

1 

Ste 

∂φ

∂t 
w + 

τ

Ste 

∂ 2 φ

∂t 2 
w 

+(K(φ) ∇T ) · ∇w ) d� = 

∫ 
�

(
f (φ) w + τ

∂ f 

∂t 
(φ) w 

)
d�, 

(8) 

Homogeneous boundary conditions were considered for the 

emperature T to simplify the expression in (8) . However, the gen- 

ral case can easily be obtained following the same lines. 

The finite element discretization is based on quadratic polyno- 

ials for the temperature, which provides a second-order accuracy 

n space (O (h 2 )) . For the time derivatives, backward formulas are 

sed for the first and second-order time derivatives. For instance, 

iven the approximations T n −1 , T n and T n +1 at times t n −1 , t n and

 

n +1 , respectively, the first and second time derivatives at time t n +1 

re approximated by: 

∂T 

∂t 
(t n +1 ) � 

T n +1 − T n 


t 
and 

∂ 2 T 

∂t 2 
(t n +1 ) � 

T n +1 − 2 T n + T n −1 


t 2 
. 

The variational formulation becomes: 

 

�

(
α(φn +1 ) 

(
T n +1 − T n 


t 

)
+ τα(φn +1 ) 

(
T n +1 − 2 T n + T n −1 


t 2 

))

 d� + 

∫ 
�

K(φn +1 ) ∇T n +1 · ∇w d� = −
∫ 
�

(
1 

Ste 

(
φn +1 − φn 


t 

)

+ 

τ

Ste 

(
φn +1 − 2 φn + φn −1 


t 2 

))
w d�

 

∫ 
�

(
f (φn +1 ) + τ

∂ f 

∂t 
(φn +1 ) 

)
w d�. 

(9) 

In the above system, we replaced φn +1 with F (T n +1 ) , which 

akes the system nonlinear, and therefore Newton’s method is 

mployed at each time step. Iterative methods were used to solve 

he linear systems resulting from Newton’s method. An incomplete 

U decomposition (ILU) GMRES solver from the PETSc library is 

sed [34] . 

For the case where τ = 0 , the numerical method (9) is the 

ame as the one presented in Belhamadia et al. [29,30] . The ap- 

roach was validated using an analytical solution in two and three- 

imensional cases. It has also been validated using experimental 

ata in Fortin and Belhamadia [31] . For the case where τ � = 0 , the

odel has no analytical solution. However, we validated our ap- 

roach using a manufactured solution and we obtained the ex- 

ected theoretical order. 

As we shall see, for a large value of τ the interfaces become 

harper, and efficient numerical methods might be needed. Adap- 

ive mesh methods as presented in Belhamadia et al. [35,36] can 

e employed. However, in this work we used fine meshes to get 

ccurate results. 

. Numerical results 

.1. Experimental evidence of hyperbolic heat diffusion 

The evidence of the hyperbolic behavior in heat diffusion has 

een experimentally shown in the literature. In particular, exper- 

mental data on heat propagation in processed meat for different 
4 
onditions can be found in Mitra et al. [37] . Although there is no 

hase change in this example, the data shows the finite speed of 

ropagation of the heat wave through the solid body with a delay 

n the response. First, we will numerically illustrate the evidence of 

he hyperbolic behavior by comparing our numerical results using 

oth the parabolic and hyperbolic heat diffusion with the experi- 

ental data available in Mitra et al. [37] . 

Our numerical results will be compared to two experimen- 

al cases examined in Mitra et al. [37] . The first case considers 

wo identical samples at different initial temperatures brought into 

ontact with each other. One sample is initially refrigerated (tem- 

erature of T C = 1 (8.2 ◦C)) and the other is at room temperature

 T r = 0 (23.1 ◦C)). A thermocouple is embedded in the room tem- 

erature sample at x = 1 (6.3 mm) from the interface of contact 

see the left side of Fig. 2 ). In the second case, three samples are

rought into contact, two initially refrigerated ( T C = 1 (8.5 ◦C)) and 

ne at room temperature ( T r = 0 (17.4 ◦C)), such that the body at

oom temperature is in between the refrigerated ones. The room 

emperature sample has a length of 2 ( 9 . 5 mm ), and a thermocou-

le is placed inside it at x = 0 . 2 ( 0 . 95 mm ) from the middle of it

see the right side of Fig. 2 ). For both cases, the reference temper- 

ture difference used in the dimensionalization is 
T = T C − T r . So, 

T = −14 . 9 ◦C for case 1 and 
T = −8 . 9 ◦C for case 2. 

The physical parameters considered for these two cases are 

ummarized in Table 1 . For the first case, the comparison between 

he experimental and simulation results is shown in Fig. 3 . As can 

e seen in this figure, the experimental results show that the heat 
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Fig. 2. “Mitra et al.” [37] : Cases 1 and 2. 

Fig. 3. Comparison between the experimental and simulation results: Thermal pro- 

file at x = 1 for case 1. 
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Fig. 4. Comparison between the experimental and simulation results: Thermal pro- 

file at x = 0 . 2 for case 2. 

Fig. 5. Representation of the continuous steel casting process. The black lines rep- 

resent the sampled regions shown in the simulations results. 
aves take a finite time to reach a particular point inside the sam- 

le, which is not predicted by the instantaneous heat propagation 

sing the Fourier flux. Thus, the numerical temperature profile ob- 

ained with the parabolic model does not show the behavior ex- 

ected. However, the hyperbolic model provides good results in 

omparison with the experimental data. 

For the second case, the comparison between the experimen- 

al and simulation results is shown in Fig. 4 . The experimental 

ata clearly shows two temperature jumps associated with the two 

avefronts originated from the interfaces between the room tem- 

erature sample and the two cold samples. As can be observed in 

his figure, the presence of the two jumps cannot be obtained by 

ourier flux and the associated parabolic PDE. However, this behav- 

or is well obtained via heat waves represented by the hyperbolic 

odel. 

It is worth mentioning that the value of τ in the hyperbolic 

odel is experimentally estimated from the non-dimensionless 

ata by noting the instant at which the imposed temperature 

oundary condition causes the measured data to be significantly 

ifferent from the initial temperature. 

The results of the experiments described above offer compelling 

vidence of the finite wave speed nature of heat conduction. The 

act that a finite time occurs before the thermocouples embedded 

ithin the media register any temperature deviations, and that the 

emperature changes abruptly indicate a wave behavior of the con- 
5 
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Fig. 6. Simplified 2D case in the continuous casting mold zone. 
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Table 2 

Dimensionless parameters for the 

simplified 2D case. 

Parameter Value 

T f 0 

T a −0.9737705 

T 0 0.02623 

k s (T ) 35.512 + 16.775 T 

h m 
230 . 79 

35 . 512+16 . 775 T 
k s 
k l 

0.5 
ρs c s 
ρl c l 

1 

Ste 3.82 
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uction mechanism. These phenomena are clearly evident from the 

xperimental data shown in Figs. 3 and 4 and clearly obtained with 

he hyperbolic approach rather than the parabolic one. 

For phase change problems, there is a jump in the enthalpy at 

he interface position, as shown in Fig. 1 . This delays the propaga- 

ion of the heat between the liquid and solid phases, which makes 

he hyperbolic approach more suitable for these types of problems, 

s will be presented in the following examples. 

.2. Solidification of steel 

In continuous casting, metal is heated until it liquefies, then the 

olten metal is cast through a mold and is solidified as it keeps 

raveling downward. The molten metal is continuously supplied to 

he mold at the same rate to match the solidifying casting. The 

eam is continuously drawn into a partially solidified billet, bloom, 

r slab, such that the process allows the casting of slabs with un- 

nterrupted lengths and long strands of metal [38] . 

Due to the high complexity and danger of the operation, a care- 

ully controlled process is necessary to reduce errors and lead to 

etter quality steel casts, which increases productivity and yields. 

ppropriate numerical modeling of continuous casting is thus fun- 

amental for better understanding the process and enhancing steel 

roductivity. The thermal transport phenomenon plays a key role 

n this process and needs to be accurately modeled as a phase 

hange problem since the material changes from a state of liquid 

o a solid. 

Generally, three different cooling zones are considered in this 

rocess: The mold (wall) cooling zone, or the primary zone, which 

ives the initial shape of the steel beam. The spray cooling zone 

ontrols the cooling of the solidifying strand as it progresses 

hrough the continuous casting machine. Then the radiation zone 

ounts for heat lost through thermal radiation. 

In our numerical simulation, we will consider a two- 

imensional simplification case to simulate the solidification pro- 

ess in the primary zone. Then, a three-dimensional case also pre- 

enting the spray and radiation zones will be considered to show 

he difference between the hyperbolic and parabolic approaches in 

hase change problems. 

.2.1. Simplified 2D model - mold zone 

The primary zone has the highest temperature difference in the 

ontinuous casting process. The solidification process in this zone 

s a crucial step where all the external walls of the steel should be

olidified by the end of the mold zone for the continuity of the rest 

f the casting process. Thus, accurate simulation of this primary 

one is essential, not only due to the initial temperature difference. 

s we shall see, the difference between hyperbolic and parabolic 

quations will be more evident. 
6 
To simulate the solidification process in the primary zone of the 

ontinuous casting, we will first consider the mold temperature to 

e at steady-state, assuming the mold diffusivity is much higher 

han the steel (see Kumar et al. [39] ) and therefore, the process 

an be simplified to only a two-dimensional heat transfer problem. 

lso, as shown in Fig. 6 , only a one-quarter model can be consid- 

red as the heat transfer problem is symmetric. The heat trans- 

er coefficient between the steel and the environment through the 

old can be defined as: 

 m 

= h m 

(T a − T ) (10) 

All other dimensionless parameters needed for the simulation 

re presented in Table 2 using ˜ x = L x = L y , ˜ t = 

ρc P ̃  x 2 

k l (T 0 ) 
≈ 18 s , and

T = T 0 − T a = 1525 K . 

The material is initially in a melted state, just above the melt- 

ng point, and the boundaries are at a temperature lower than 

he melting point. Therefore, the mold starts to solidify with time, 

nd the surface begins to cool down immediately. The numeri- 

al results are presented in Fig. 7 . The three cases correspond to 

= 0 , τ = 0 . 005 , and τ = 0 . 01 . The case where τ = 0 corresponds

o the commonly used parabolic approach. As can be observed in 

his figure, the heat transfer throughout the surface is more pro- 

ounced in the case τ = 0 , and the solidification front moves faster 

hen compared to the numerical results obtained for τ = 0 . 005 

nd τ = 0 . 01 . Furthermore, the temperature profile is sharper for 

he larger value of τ . This is clearly seen in the temperature pro- 

les, where the edges of the solutions for τ = 0 . 01 are distinguish-

ble. This is expected from the wave-like behavior of the hyper- 

olic equation and the non-Fourier damped heat flux. 

The difference in the heat propagation is not only seen in the 

olidification of the steel but also in the propagation in the solid- 

fied phase. For τ = 0 . 01 , the initial temperature difference takes 

onger to dissipate, which can be seen for t = 0 . 005 and t = 0 . 05

n the last row of Fig. 7 , where the temperature distribution is still 

harpened in the corner. For τ = 0 , the temperature difference in 

he corner is rapidly dissipated, and by t = 0 . 1 , the corner effects

re not noticeable. 

Similar to the problem analyzed in the previous section, the dif- 

erences between results in the Fourier model and the non-Fourier 

eat conduction model should decrease at increasing times and 

end to disappear as t increases. This is perceptible when com- 

aring figures in the last column in Fig. 7 , where the difference 

etween the temperature profiles is less discernible. However, the 

ifference in the temperature distribution at the corners still is ev- 

dent. 

Figure 8 shows the difference in the interface dynamics for the 

hree values of τ . The interface position is clearly affected by the 

alue of the τ mainly because the heat diffusion is initially faster 

s τ goes to zero. Thus, the body cools down faster for, for in- 

tance, τ = 0 . 005 , and the dynamic of the interface follows a sim-

lar trend when compared to the interface position for τ = 0 . 01 .
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Fig. 7. Temperature profile of the 2D steel solidification in 2D in different time instances for τ = 0 , τ = 0 . 005 , and τ = 0 . 01 . The temperature profile is sharper for the larger 

value of τ . 

Fig. 8. Interface position at different time instances for τ = 0 (black curve), τ = 0 . 05 (blue curve), and τ = 0 . 1 (red curve). (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article.) 

7 
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Fig. 9. 1D cross section at the diagonal y = x for both variables T and φ. 

Fig. 10. Tthree-dimensional simulation results in different time instances for τ = 0 , and τ = 0 . 01 . 
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Table 3 

Parameters used for the 

3D case. 

Parameter Value 

T f 0 

T a −0.9501 

T 0 0.05 
k s 
k l 

1.4984 
ρs c s 
ρl c l 

0.9375 

γ 1.1445 

Ste 3.7735 
his is also observed in Fig. 9 where the 1D cross section at the

ain diagonal y = x for both variables T and φ is presented. 

Once again, as expected, the differences between the two types 

f heat conduction decrease at increasing times and tend to disap- 

ear as t is getting larger and this effect is more easily noticeable 

hen analyzing the interface dynamics. 

.2.2. Complete 3D model 

In this section, the complete 3D model (as shown in Fig. 5 ) 

s considered. The parameters used were taken from Kumar et al. 

39] and are summarized in Table 3 . The dimensionless parameters 

onsidered are ˜ x = 0 . 14 m , ˜ t = 

ρc ̃  x 2 

k l 
= 2060 s , and 
T = T 0 − T a =

533 K . 
8 
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Fig. 11. Temperature profile at a cross section of the primary zone region for τ = 0 , 

τ = 0 . 005 , and τ = 0 . 01 . 

Fig. 12. Interface position at a cross-section of the primary zone region for τ = 0 

(black curve), τ = 0 . 005 (green curve) and τ = 0 . 01 (red curve). (For interpretation 

of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 
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At the boundary, the beam is considered as solid, k = k sol . In the

old zone, the following boundary condition is used: 

T | � = −3 . 1896 [ T | � − T a ] (11) 

A similar type of boundary condition is used in the spray zone: 

T | � = −0 . 4870[ T | � − T a ] (12) 

nd for the radiation zone: 

T | � = −0 . 4974 

{ 

(T | �) 4 − (T a ) 4 + 4 γ [(T | �) 3 − (T a ) 3 ] 

+6 γ 2 [(T | �) 2 − (T a ) 2 ] + 4 γ 3 [(T | �) − (T a )] 

} (13) 
9

Homogeneous boundary conditions are used on the left and 

ight sides for both spray and radiation zones. To make a better 

ssessment of the difference between the models, both the tem- 

erature distribution and the interface dynamics are considered. 

igure 10 shows three-dimensional plots of the temperature dis- 

ribution and the position of the interface corresponding to the 

urface φ = 0 . 5 using two values of τ : τ = 0 and τ = 0 . 01 . The

ase where τ = 0 corresponds to the commonly used parabolic 

pproach. As can be observed in this figure, the heat transfer 

hroughout the surface is more pronounced in the case τ = 0 , and 

he solidification front moves faster when compared to the numer- 

cal results obtained with τ = 0 . 01 . This is clearly shown in the last

olumn of Fig. 10 . 

Furthermore, the temperature profile is sharper for the higher 

alue of τ . This is shown in Figs. 11 and 12 where the temperature

rofile and the interface curves at a cross-section of the primary 

one region are presented for value τ = 0 , τ = 0 . 005 , and τ = 0 . 01 ,

s it can be observed, the edges of the hyperbolic equation solu- 

ions for τ = 0 . 01 are distinguishable. This is expected from the 

ave-like behavior of the hyperbolic equation and the non-Fourier 

amped heat flux. It can also be observed that for τ = 0 . 01 , the

nitial temperature difference takes longer to dissipate, as shown 

n the interface position at time t = 0 . 01 in Fig. 12 . For τ = 0 , the

emperature difference in the corner is rapidly dissipated, and by 

 = 0 . 05 , the corner effects are not noticeable. 

. Conclusions 

Although the infinite speed paradox may be ignored in some 

pplications, there are many other heat transfer applications where 

 finite speed of propagation is observed. In this paper, we pro- 

osed a hyperbolic heat diffusion mathematical model for simulat- 

ng the finite speed of heat propagation in phase change problems 

ith application to steel continuous casting. We first illustrated the 

ifference between the infinite and finite velocity of propagation 

n biological tissues, where numerical and experimental results 

ere compared. Then, we presented two and three-dimensional 

umerical results in the case of a continuous steel casting process. 

he difference between parabolic and hyperbolic approaches was 

learly illustrated. First, we showed a clear difference in the ini- 

ial thermal dynamic and that the temperature profile is sharper 

or the larger value of τ in the hyperbolic model. We also illus- 

rated the difference in the solid-liquid interface when simulating 

 continuous steel casting process. We concluded that the hyper- 

olic leads to a distinctive temperature behavior when the solidifi- 

ation happens faster in the mold region. Although we considered 

ontinuous casting as an example, our model and methodology are 

eneral and can be applied to other phase change problems. Nu- 

erically, for a large value of τ , the interfaces become sharper, 

nd efficient numerical methods might be needed. Adaptive mesh 

ethods can be used, and this will be a subject of a future work. 

n addition, it will be interesting to couple the proposed model in 

his paper with the mechanism of heat convection. 
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