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Numerical modeling of phase change problems with convection is known to be computationally expensive. The 
main challenge comes from the coupling between Navier–Stokes and heat energy equations. In this paper, we 
develop a new scheme for phase change problems based on a projection method. The proposed method reduces 
the size of the system by splitting the temperature, the velocity, and the pressure fields while preserving the 
accuracy of the simulations. A single-domain approach using a variant of the enthalpy-porosity formulation is 
employed. Incompressible Navier–Stokes problem with Boussinesq approximation for thermal effects in solid and 
liquid regions is considered. We regularize the discontinuous variables such as latent heat and material properties 
by a continuous and differentiable hyperbolic tangent function. The robustness and effectiveness of the proposed 
scheme are illustrated by comparing the numerical results with numerical and experimental benchmark.

1. Introduction

Numerical modeling of solid-liquid phase change problems have gained interest over the years and is relevant to many natural and industrial 
applications such as ice-ocean coupling in earth’s climate, mould casting in metal processing, ceramics and polymers industries, solar and thermal 
energy storage, etc. Several difficulties are encountered in designing efficient and robust models for these types of problems. Among the main 
challenges one faces is, the evolution of the interface position between the solid and liquid phases, the jump of the physical and thermodynamic 
properties over the interface, the strong coupling between the fluid motion and the heat transport due to the balance laws of mass, momentum and 
energy. In addition, phase change problems are computationally expensive, accurate numerical simulations require very fine meshes and small time 
steps together with appropriate numerical schemes, see for instance [20,48] and the references therein.

Two main approaches exist in the literature to model the evolution of the liquid-solid interface in phase-change problems: The multi-domain 
approach and the single domain approach. The first approach considers solving the liquid problem and the solid one in two different moving grids. 
This requires updating the domains at each time step which makes it difficult to track solid-liquid interfaces with complex geometries and structures 
(see [30,21] and [46]). The second approach uses a single domain for the resolution of the mass, momentum and energy laws in both the solid and 
liquid phases by means of a semi-phase-field method or enthalpy method (see [49,11,12,38], and [6]). The attractive feature about this approach is 
that the system of momentum and energy equations is solved in the entire physical domain making the extension to three dimensional applications 
feasible. For this approach, one needs to solve the Navier–Stokes system of equations in the liquid phase and set the velocity to zero in the solid 
region. This can be done either by a variable viscosity method [49] or by a penalty source term method [11]. The first method sets the viscosity 
artificially to very large values in the solid region, which might cause numerical inconsistencies and consequently blow up the solution. The second 
method is more appropriate, where it imposes a null velocity in the solid region by adding a source term to the momentum equation. This approach 
may consider the fluid flow in the mushy zone as fluid flow through a porous medium using for instance the Carman-Kozeny penalty term. The 
reader is referred to [42], where a recent review about mathematical formulations for solid-liquid problems is presented.
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For both approaches of mathematical models, the numerical simulations are challenging and computationally expensive. Capturing accurately 
the evolution of the moving interface requires fine meshes and small time steps leading to large computational time and memory consumption. The 
effects of grid size and numerical schemes for solving phase change problems with convection have been reported in many papers including [19], 
[41], and [31]. It is also shown that second-order accuracy in time and space is required for these types of problems. To overcome these difficulties, 
mesh adaptation techniques have been recently introduced, where the spatial mesh elements are refined along the interface and flow structure (see 
[15], [52], and [3] and the references therein). Despite these developments, the numerical simulation is still challenging, especially when dealing 
with three dimensional real applications. The main computational cost comes from the coupling between Navier–Stokes equations and heat energy 
equation. For solid-liquid phase change problems with convection, most of the contributions use a mixed formulation where velocity, pressure and 
temperature are coupled ([53], [39] and [40]), or a decoupled mixed formation where the velocity and pressure are coupled and connected to the 
diffusion equations via an extrapolation technique [3]. While these methods are numerically very efficient, they are computationally expensive and 
are almost impossible to use for the three dimensional simulations.

A remedy for such problems is to decouple the unknowns of the problems. Not only decoupling the energy equation from the momentum 
equation but also one may split the incomprehensibility constraint from the diffusion operator in the Navier–Stokes problem using the Helmoltz 
decomposition. Operator splitting approaches were introduced by Chorin [13,14] and Temam [44,45] called also the projection methods. These 
methods are known to be economical for the computational costs and memory requirements. The idea is to solve a sequence of decoupled elliptical 
problems for the velocity field and the pressure respectively instead of a saddle point Navier–Stokes problem. The method owns some imperfections 
that were addressed during the years such as the artificial boundary layers of the pressure. This affects the accuracy of the pressure in the schemes 
and causes artificial boundary layer phenomena next to the interface. Numerical schemes for correcting these defects were studied and analyzed in 
the literature namely the incremental and the rotational incremental pressure-correction schemes (see [29] for an overview about these schemes). 
For the coupling between Navier–Stokes and heat equation, a basic projection scheme where the velocity and temperature are decoupled was 
presented in [27] and [36]. Recently, a coupled projection scheme suitable for thermal-Navier–Stokes coupling was introduced in [16,17]. This 
method couples the velocity and temperature and the fixed-point loop is reduced to a bare minimum producing accurate numerical solutions, while 
reducing the computational time.

The main goal of this paper is to develop an original approach based on the projection method suitable for solid-liquid phase change problems 
with convection. To our knowledge no previous contribution has been reported in the literature using a finite element projection method for these 
types of problems. The developed method is of second order in time and is inspired from the coupled projection schemes presented in [16] for 
the thermal-Navier–Stokes equations. The main advantage of the proposed methods is to reduce the size of the system compared to the mixed 
formulation leading to a reduction in the computational costs and memory requirements, while preserving the accuracy of the numerical solutions. 
The performance of the proposed scheme is illustrated on melting and solidification benchmark problems and comparison with existing experimental 
and numerical results found in the literature is performed as well.

The outline of the paper is as follows: In section 2, we describe the governing equations of the problem as well as the smoothing technique used 
to model the jump of the physical and thermodynamic properties over the interface. In section 3, we present a second order projection method with 
pressure and velocity correction, while section 4 is devoted to a validation of the proposed scheme by comparing it to existing numerical simulations 
and experiments.

2. The mathematical model

In this section, we present the governing system of equations used to model the solid-liquid phase change problem with natural convection. We 
produce the system in terms of dimensionless quantities and introduce the appropriate space definitions. The time discretization is presented as 
well.

A purely mathematical strategy makes it possible to model the phase change problem using a single domain and a single set of equations. We 
assume that both phases (fluid and solid) are determined by a critical temperature, a convection-diffusion model coupled with a Navier-Stokes model 
which drives the phase change with convection. In this type of formulation, the variation of the physical proprieties between liquid and solid states 
is considered in the energy equation only. However, an artificial penalty term is added to the momentum to take into account both fluid and solid 
state. Below the critical temperature where a solid state is assumed, the penalty term dominates forcing the velocity to be null reducing the momentum 
equation to a diffusion equation. Above the critical temperature, the penalty term is null and the dynamics is described by the Navier-Stokes and 
convection-diffusion system.

2.1. Governing equations

We consider a domain Ω ∈ ℝ𝑑 , with 𝑑 = 2 or 3. The subscript 𝑠 will refer to the solid phase and the subscript 𝑙 will refer to the liquid phase. 
We denote by 𝜕Ω the boundary of the domain Ω which admits a partition without overlap into three parts: Γℎ𝑜𝑡, Γ𝑐𝑜𝑙𝑑 and Γ𝑎 such that 𝜕Ω =
Γℎ𝑜𝑡 ∪ Γ𝑐𝑜𝑙𝑑 ∪ Γ𝑎. We consider a fixed final time 𝑡⋆ (a positive real number), and the physical time is denoted 𝜏 ∈ [0, 𝜏⋆] while 𝑿 ∈ Ω denote the 
spatial variable.

We assume that the fluid is Newtonian and follow the Boussinesq approximation: all physical parameters are assumed to be constant and the 
fluid is subject to an external volumetric force which accounts for buoyancy forces (which are null in the solid phase). Therefore, this force 𝐹𝐵 is 
proportional to the variation of the density 𝜌(⋅) (expressed generally in terms of temperature 𝑇 variation with respect to a reference temperature 
𝑇𝑟𝑒𝑓 ). Note that a linear approximation is often introduced to further simplify the problem.

𝐹𝐵 = −𝑔
𝜌(𝑇 ) − 𝜌(𝑇𝑟𝑒𝑓 )

𝜌(𝑇𝑟𝑒𝑓 )
≈ 𝑔𝛽(𝑇 − 𝑇𝑟𝑒𝑓 )

where 𝑔 is the gravity and 𝛽 account for the thermal expansion.

Remark 1. In certain cases (natural air convection for example) the linear Boussinesq forces are plainly justified, however in problems such as water 
convection or water freezing the exact expression, generally nonlinear in 𝑇 , must be used.
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Finally, these definitions of 𝐹𝐵 are essential to have a coherent physical model for the phase change phenomenon. However, as observed in 
[16,17] from a numerical standpoint this definition of 𝐹𝐵 is not essential to the proposed numerical scheme, a more generic function 𝐹𝐵 and even 
thermal dependency of the viscosity and could be considered. However, for sake of simplicity, in the presentation of the different algorithms, the 
linear Boussinesq approximation is used.

With the Boussinesq approximation for thermal effect the fluid flow is modeled with the following incompressible Navier–Stokes equations (or 
Brinkman equations since we have the additional term 𝐴𝑼 ):

⎧⎪⎨⎪⎩
𝜕𝑼

𝜕𝜏
+𝑼 ⋅∇𝑼 =∇ ⋅ (2𝜈𝑙𝑫𝑼 ) − ∇𝑃 +𝐴𝑼 + 𝐹𝐵𝒆𝑑

∇ ⋅𝑼 = 0
(1)

where 𝑼 is the velocity, 𝑫𝑼 = (∇𝑼 +∇𝑼𝑇 )∕2 is the deformation tensor, 𝑃 is the pressure, 𝑇 is the temperature, 𝜈𝑙 = 𝜇𝑙∕𝜌𝑙 is the kinematic viscosity 
(𝜇𝑙 is the dynamic viscosity and 𝜌𝑙 is the density). 𝐴𝑼 is the Carman-Kozeny penalty term that is artificially introduced in the momentum equation 
to impose a null velocity and pressure in the solid region. The function 𝐴 is defined as follows:

𝐴 = −𝑐𝐴
(1 − 𝜂)2

𝜂3 + 𝑏

where 𝑐𝐴 is a constant accounting for the mushy region, 𝜂 is the porosity and 𝑏 is a small nonnegative constant (𝑏 = 10−6) introduced to avoid 
division by 0. The energy equation is modeled by the enthalpy method as follows:

𝜕𝐻

𝜕𝜏
+𝑼 ⋅∇𝐻 −∇ ⋅ (𝑘(𝑇 )∇𝑇 ) = 0

where 𝐻 is the enthalpy defined by

𝐻 =

{
𝐻𝑠 = 𝜌𝑠𝑐𝑠𝑇 if 𝑇 < 𝑇𝑓 ,

𝐻𝑙 = 𝜌𝑙𝐿+ 𝜌𝑠𝑐𝑠𝑇𝑓 + 𝜌𝑙𝑐𝑙(𝑇 − 𝑇𝑓 ) if 𝑇 > 𝑇𝑓

and the thermal conductivity

𝑘(𝑇 ) =
⎧⎪⎨⎪⎩
𝑘𝑙 if 𝑇 ≥ 𝑇𝑓 ,

𝑘𝑠 if 𝑇 < 𝑇𝑓

where 𝜌𝑖, 𝑐𝑖, and 𝑘𝑖 are the density, specific heat and thermal conductivity for each state respectively. In the case of isothermal phase change, as in 
[4–6], the energy equation based on temperature is given by

𝑐(𝑇 ) 𝜕𝑇
𝜕𝜏

+ 𝑐(𝑇 ) (𝑼 ⋅∇𝑇 ) + 𝜕𝑠(𝑇 )
𝜕𝜏

−∇ ⋅ (𝑘(𝑇 )∇𝑇 ) = 0. (2)

The function 𝑠 represents the jump of the enthalpy between the solid and liquid regions. It is zero in the solid region and equal to 𝜌𝑙𝐿 in the 
liquid where 𝐿 is the latent heat of fusion. The phase change is assumed to occur in an artificial mushy zone in a small temperature interval 
𝑇 ∈ [𝑇𝑓 − 𝜀, 𝑇𝑓 + 𝜀] around the temperature of fusion 𝑇𝑓 (where 𝜀 > 0 is a small number) and we have

𝑐(𝑇 ) =
⎧⎪⎨⎪⎩
𝜌𝑙𝑐𝑙 if 𝑇 ≥ 𝑇𝑓

𝜌𝑠𝑐𝑠 if 𝑇 < 𝑇𝑓 .

Obviously for (1) and (2) to be a well posed problem it must be fitted with boundary and initial conditions. Here, for the sake of simplicity, Dirichlet 
condition will be imposed on the velocity 𝑼 of the liquid phase and a set of Dirichlet and Neumann condition is imposed on the temperature

𝑼 = 𝟎, on 𝜕Ω, 𝑇 = 𝑇ℎ𝑜𝑡, on Γℎ𝑜𝑡, 𝑇 = 𝑇𝑐𝑜𝑙𝑑 , on Γ𝑐𝑜𝑙𝑑 , 𝜕𝑛𝑇 = 𝑞𝑎, on Γ𝑎

where 𝜕𝑛𝑇 is the heat flux. As for initial conditions we will simply note

𝑼 (𝑿,0) =𝑼 0(𝑿), ∇ ⋅𝑼 0 = 0, 𝑇 (𝑿,0) = 𝑇0(𝑿), in Ω.

Of course 𝑇ℎ𝑜𝑡, 𝑇𝑐𝑜𝑙𝑑 , 𝑞𝑎, 𝑼 0 and 𝑇0 are given, and parts of the boundary (Γℎ𝑜𝑡, Γ𝑐𝑜𝑙𝑑 , Γ𝑎) could be an empty set although recall that 𝜕Ω = Γℎ𝑜𝑡∪Γ𝑐𝑜𝑙𝑑 ∪Γ𝑎.

2.2. Dimensionless system of equations

We have already introduced 𝑇𝑟𝑒𝑓 , let us introduce some other reference values: 𝐿𝑟𝑒𝑓 for length, 𝜌𝑟𝑒𝑓 for density, 𝑉𝑟𝑒𝑓 the reference velocity and 
𝛿𝑇 the difference of temperature applied on the body along the boundary. We define the following nondimensional variables for the space, velocity, 
temperature and time:

𝒙 = 𝑿

𝐿𝑟𝑒𝑓

, 𝑡 =
𝑉𝑟𝑒𝑓

𝐿𝑟𝑒𝑓

𝜏, 𝒖 = 𝑼

𝑉𝑟𝑒𝑓

, 𝑝 = 𝑃

𝑉 2
𝑟𝑒𝑓

, 𝜃 =
𝑇 − 𝑇𝑟𝑒𝑓

𝛿𝑇
.

The Reynold number 𝑅𝑒, the Prandtl number 𝑃𝑟 and the adimensional external forces are defined as

𝑅𝑒 =
𝑉𝑟𝑒𝑓𝐿𝑟𝑒𝑓

𝜈𝑙
, 𝑃 𝑟 =

𝜌𝑙𝑐𝑙𝜈𝑙

𝑘𝑙
, 𝑓𝐵(𝜃) =

𝐿𝑟𝑒𝑓

𝑉 2 𝐹𝐵(𝛿𝑇 𝜃 + 𝑇𝑟𝑒𝑓 )

𝑟𝑒𝑓
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and, denoting Ω𝑡 =Ω × (0, 𝑡∗), the dimensionless system of equations is written as:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝜕𝒖

𝜕𝑡
+ 𝒖 ⋅∇𝒖− 2

𝑅𝑒
∇ ⋅𝑫𝒖+∇𝑝−𝐴(𝜃)𝒖 = 𝑓𝐵(𝜃)𝒆𝑑 in Ω𝑡,

∇ ⋅ 𝒖 = 0 in Ω𝑡,

𝐶(𝜃) 𝜕𝜃
𝜕𝑡

+𝐶(𝜃)𝒖 ⋅∇𝜃 + 𝜕𝑆(𝜃)
𝜕𝑡

−∇ ⋅
(

𝑘(𝜃)
𝑅𝑒𝑃𝑟

∇𝜃

)
= 0 in Ω𝑡,

𝒖(⋅, 𝑡)|𝜕Ω = 0 𝜃(⋅, 𝑡)|Γℎ𝑜𝑡 = 𝜃ℎ𝑜𝑡 𝜃(⋅, 𝑡)|Γ𝑐𝑜𝑙𝑑 = 𝜃𝑐𝑜𝑙𝑑 𝜕𝒏𝜃(⋅, 𝑡)|Γ𝑎 = ℎ𝑎

𝒖(𝒙,0) = 𝒖0(𝒙), 𝜃(𝒙,0) = 𝜃0(𝒙), in Ω.

(3)

Where 𝜃ℎ𝑜𝑡, 𝜃𝑐𝑜𝑙𝑑 , ℎ𝑎, 𝒖0, 𝜃0 are the rescaled boundary and initial conditions. From the linear Boussinesq hypothesis the buoyancy force 𝑓𝐵 can be 
explicited. Introducing the Rayleigh number 𝑅𝑎

𝑅𝑎 = 𝑔𝛽𝛿𝑇
𝐿3
𝑟𝑒𝑓

𝜌𝑙𝑐𝑙

𝜈𝑙𝑘𝑙
, 𝑓𝐵(𝜃) = 𝑔𝛽𝛿𝑇

𝐿𝑟𝑒𝑓

𝑉 2
𝑟𝑒𝑓

𝜃 = 𝑅𝑎

𝑃𝑟𝑅𝑒2
𝜃.

The non-dimensional function 𝑆, conductivity and specific heat are defined as:

𝑆(𝜃) = 𝑠

𝑠𝑙
=
⎧⎪⎨⎪⎩

𝐿

𝑐𝑙𝛿𝑇
= 1

𝑆𝑡𝑒
if 𝜃 ≥ 𝜃𝑓 ,

0 if 𝜃 < 𝜃𝑓 ,

(4)

where 𝑆𝑡𝑒 is the Stephan number,

𝐾(𝜃) = 𝑘(𝜃)
𝑘𝑙𝑅𝑒𝑃 𝑟

=

{
1∕(𝑅𝑒𝑃𝑟) if 𝜃 ≥ 𝜃𝑓 ,

𝑘𝑠∕(𝑘𝑙𝑅𝑒𝑃 𝑟) if 𝜃 < 𝜃𝑓 ,
𝑎𝑛𝑑 𝐶(𝜃) = 𝑐

𝑐𝑙
=

{
1 if 𝜃 ≥ 𝜃𝑓 ,

𝑐𝑠∕𝑐𝑙 if 𝜃 < 𝜃𝑓 .

We regularize all liquid-solid step functions, such as 𝑆, 𝐾, 𝐶 , using a continuous and differentiable hyperbolic-tangent function 𝐹 as in [15]. For a 
quantity 𝑄(𝜃) having two states, we redefine (i.e. keeping the same notation) 𝑄(𝜃) using the regularized function 𝐹 :

𝑄(𝜃) = 𝐹 (𝜃, 𝑞𝑙, 𝑞𝑠, 𝑎𝑠, 𝜃𝑟,𝑅𝑠) = 𝑞𝑙 +
𝑞𝑠 − 𝑞𝑙

2

[
1 + tanh

(
𝑎𝑠

(
𝜃𝑟 − 𝜃

𝑅𝑠

))]
, (5)

where 𝑞𝑙, 𝑞𝑠 are the imposed values in the liquid and solid regions, 𝜃𝑟 the value around which we regularize and 𝑎𝑠 and 𝑅𝑠 are smoothing parameters. 
Both parameters are used to affect the slope of the tangent hyperbolic curve fitting 𝑞𝑙 and 𝑞𝑠. The bigger (respectively smaller) the ratio 𝑎𝑠∕𝑅𝑠 the 
steeper (respectively flatter) the curve fitting gets. Therefore 𝑎𝑠∕𝑅𝑠 control the thickness of the transition zone. As an example, for a thickness of 0.2 
around the reference value 𝜃𝑟 = 𝜃𝑓 , fixing 𝑅𝑠 = 𝜖 = 0.1 and 𝑎𝑠 = 5 the function 𝑆(𝜃) defined as:

𝑆(𝜃) = 𝐹 (𝜃, 1
𝑆𝑡𝑒

,0; 5, 𝜃𝑓 , 𝜖) =
1

𝑆𝑡𝑒
− 1

2𝑆𝑡𝑒

[
1 + tanh

(
𝜃𝑓 − 𝜃

𝜖∕5

)]
,

is a regularized version of (4) over the artificial mushy region [𝜃𝑓 − 𝜀, 𝜃𝑓 + 𝜀]. The enthalpy-porosity term 𝐴(𝜃) in the momentum equation can be 
written as

𝐴(𝜃) = −
𝐶𝐴(1 −𝐿𝑓 (𝜃))2

𝐿𝑓 (𝜃)3 + 𝑏
, (6)

where 𝐿𝑓 (𝜃) is a regularized Heaviside function (using (5)) defined as 1 in the fluid region and 0 in the solid. 𝐿𝑓 defines the liquid fraction inside 
the artificial mushy-region.

Remark 2. As the objective of this paper is to introduce a new numerical scheme, theoretical considerations will be omitted and treated in a coming 
paper. Nevertheless, we will consider the following functional setting: we assume

𝜃0 ∈𝐿2(Ω), 𝒖0 ∈𝑳
2(Ω) with ∇ ⋅ 𝒖0 = 0

and

𝜃𝑐𝑜𝑙𝑑 ∈𝐿2(0, 𝑡∗;𝐻
1
2 (Γ𝑐𝑜𝑙𝑑 )), 𝜃ℎ𝑜𝑡 ∈𝐿2(0, 𝑡∗;𝐻

1
2 (Γℎ𝑜𝑡)), ℎ𝑎 ∈𝐿2(0, 𝑡∗;𝐻

1
2
00(Γ𝑎)′).

Therefore we assume

𝒖 ∈𝐿2(0, 𝑡∗;𝑯1(Ω)), 𝑝 ∈𝐿2(0, 𝑡∗;𝐿2(Ω)), 𝜃 ∈𝐿2(0, 𝑡∗;𝐻1(Ω)).
0 0
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2.3. Time discretization

Approximation of the time derivative is based on a partition of the adimensional time interval [0, 𝑡⋆] into 𝑁 equal subintervals [𝑡𝑛, 𝑡𝑛+1] for 
simplicity. The uniform time-step is denoted Δ𝑡 = 𝑡⋆∕𝑁 and 𝑡𝑛 = 𝑛Δ𝑡 for 𝑛 = 0, ⋯ , 𝑁 .

For 𝑔(𝒙, 𝑡) we denote by 𝑔𝑛 = 𝑔(𝒙, 𝑡𝑛) the evaluation of 𝑔 at times 𝑡𝑛. We denote by 𝑡 the finite difference scheme used to approximate the time 
derivative of order 𝑝:

𝜕𝑔(𝒙, 𝑡𝑛)
𝜕𝑡

=𝑡𝑔
𝑛 +((Δ𝑡)𝑝).

Introducing the time derivative approximation at time 𝑡𝑛+1 the fully implicit semi-discrete in time problem (3) can be written as a sequence of 
problems:

𝒖
0 = 𝒖0, 𝜃0 = 𝜃0, in Ω

and at each time step (for 𝑛 ≥ 0), we have to solve

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑡𝒖
𝑛+1 + 𝒖

𝑛+1 ⋅∇𝒖𝑛+1 − 2
𝑅𝑒

∇ ⋅𝑫𝒖
𝑛+1 +∇𝑝𝑛+1 −𝐴(𝜃𝑛+1)𝒖𝑛+1 = 𝑓𝐵(𝜃𝑛+1)𝒆𝑑 in Ω,

∇ ⋅ 𝒖𝑛+1 = 0 in Ω,

𝐶(𝜃𝑛+1)𝑡𝜃
𝑛+1 +𝐶(𝜃𝑛+1)𝒖𝑛+1 ⋅∇𝜃𝑛+1 +𝑡𝑆(𝜃𝑛+1) − ∇ ⋅

(
𝐾(𝜃𝑛+1)∇𝜃𝑛+1

)
= 0 in Ω,

𝒖
𝑛+1|𝜕Ω = 0 𝜃𝑛+1|Γℎ𝑜𝑡 = 𝜃ℎ𝑜𝑡 𝜃𝑛+1|Γ𝑐𝑜𝑙𝑑 = 𝜃𝑐𝑜𝑙𝑑 𝜕𝒏𝜃

𝑛+1|Γ𝑎 = ℎ𝑎.

(7)

For the sake of simplicity and clarity, the method proposed in this paper will be based on a second order backward time discretization (BDF2 also 
known as Gear) defined by

𝑡𝑔
𝑛 = 3𝑔(𝒙, 𝑡𝑛) − 4𝑔(𝒙, 𝑡𝑛−1) + 𝑔(𝒙, 𝑡𝑛−2)

2Δ𝑡
.

Although the rest of this work will be presented using BDF2 this choice has no effect on our construction, the methods proposed here could use other (in 
certain cases more suitable) time schemes. The choice of BDF2 is based on our previous experience in a different type of moving interface problem 
[2], where BDF2 scheme provided better numerical solutions compared to Crank-Nisolson scheme.

However, for the Navier-Stokes system alone, it is well known that projection methods have an inherent splitting error and a conjectured ceiling 
of order 2 for the accuracy in 𝐻1 norm. This last observation makes the use of a time discretization of order higher than 2 in the projection pointless; 
for the Navier-Stokes system alone and a fortiori for (7).

Remark 3. For the BDF2 scheme, the first time step 𝑡1, a simple backward Euler or Crank-Nicolson time step could be used.

3. A coupled projection scheme for phase change problems

In this section, we present a projection scheme for the phase change problems. Splitting the Navier–Stokes equation by the projection method as 
originally proposed in [13,43] can be a cause of inaccuracy issues (sub-optimal order of the time scheme and non-consistent boundary conditions). 
In [26], Goda improved the order of the scheme by adding a pressure gradient from the previous step to the velocity prediction problem, producing 
what is called an incremental projection method. Though these schemes were of optimal order for the velocity (in 𝐿2 norm), the pressure was still 
subject of an artificial boundary condition. In [47], the method was enhanced to produce the rotational pressure correction projection which avoids the 
non-physical boundary condition on the pressure and improves the rate of convergence of the pressure (for a clear overview of this development we 
refer the reader to [29]). In [16], constructed and analyzed a new method (the coupled projection scheme (CPS)) for a Navier–Stokes flows coupled to 
a convection-diffusion equation. However in their paper they only treated a BDF1 time scheme, used an incremental projection method and more 
importantly the Carman-Kozeny term (6) was not present in their work. In this work, we propose a extension of the CPS based on a rotational 
pressure correction with a BDF2 time scheme for the enthalpy-porosity formulation of phase change problems.

In preparation and as a comparison to the proposed coupled projection method, we make a quick review of the basic methods consisting in a 
fixed point approach to solve (7). Various strategies could be used to address the difficulties related with the nonlinear and coupling terms in (7). 
Then the convergence of the fixed point (of course, when there is a convergence) would depend on the chosen strategy. We will present in the next 
two subsections two of those possible strategies.

3.1. Mixed coupled scheme

Obviously starting from the global set of equation, one of the most natural choice consist in applying Newton’s method to (7) (this is the method 
proposed in [15,40]). In that case, at each time step 𝑡𝑛+1 we apply the following mixed-coupled algorithm

1. Initialization:

𝒖0 = 𝒖
𝑛, 𝑝0 = 𝑝𝑛, 𝜃0 = 𝜃𝑛 in Ω.

2. Determine (𝒖𝑛+1, 𝑝𝑛+1, 𝜃𝑛+1) as the limit of the fixed point: until convergence, compute (𝒖𝑘, 𝑝𝑘, 𝜃𝑘) solution of
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3
2Δ𝑡

𝒖𝑘 + 𝒖𝑘−1 ⋅∇𝒖𝑘 + 𝒖𝑘 ⋅∇𝒖𝑘−1 −
2
𝑅𝑒

∇ ⋅𝑫𝒖𝑘 +∇𝑝𝑘 −𝐴(𝜃𝑘−1)𝒖𝑘

−𝐴′(𝜃𝑘−1)𝜃𝑘𝒖𝑘−1 − 𝜃𝑘𝑓
′
𝐵
(𝜃𝑘−1)𝒆𝑑 = (𝑓𝐵(𝜃𝑘−1) − 𝜃𝑘−1𝑓

′
𝐵
(𝜃𝑘−1))𝒆𝑑

−
(
−4𝒖𝑛 + 𝒖

𝑛−1

2Δ𝑡

)
+ 𝒖𝑘−1 ⋅∇𝒖𝑘−1 −𝐴′(𝜃𝑘−1)𝜃𝑘−1𝒖𝑘−1

∇ ⋅ 𝒖𝑘 = 0

𝐶(𝜃𝑘−1)
3

2Δ𝑡
𝜃𝑘 +𝐶 ′(𝜃𝑘−1)

(
3𝜃𝑘−1 − 4𝜃𝑛 + 𝜃𝑛−1

2Δ𝑡

)
𝜃𝑘 +𝐶(𝜃𝑘−1)𝒖𝑘 ⋅∇𝜃𝑘−1 +𝐶(𝜃𝑘−1)𝒖𝑘−1 ⋅∇𝜃𝑘

+𝐶 ′(𝜃𝑘−1)𝒖𝑘−1 ⋅∇𝜃𝑘−1𝜃𝑘 +
3

2Δ𝑡
𝜃𝑘𝑆

′(𝜃𝑘−1) − ∇ ⋅
(
𝐾(𝜃𝑘−1)∇𝜃𝑘 + 𝜃𝑘𝐾

′(𝜃𝑘−1)∇𝜃𝑘−1
)

= 𝐶 ′(𝜃𝑘−1)
(
3𝜃𝑘−1 − 4𝜃𝑛 + 𝜃𝑛−1

2Δ𝑡

)
𝜃𝑘−1 −𝐶(𝜃𝑘−1)

(
−4𝜃𝑛 + 𝜃𝑛−1

2Δ𝑡

)
+𝐶(𝜃𝑘−1)𝒖𝑘−1 ⋅∇𝜃𝑘−1 +𝐶 ′(𝜃𝑘−1)𝒖𝑘−1 ⋅∇𝜃𝑘−1𝜃𝑘−1

+ 3
2Δ𝑡

𝜃𝑘−1𝑆
′(𝜃𝑘−1) −

(
3𝑆(𝜃𝑘−1) − 4𝑆(𝜃𝑛) +𝑆(𝜃𝑛−1)

2Δ𝑡

)
−∇ ⋅

(
𝜃𝑘−1𝐾

′(𝜃𝑘−1)∇𝜃𝑘−1
)

𝒖𝑘|𝜕Ω = 0 𝜃𝑘|Γℎ𝑜𝑡 = 𝜃ℎ𝑜𝑡 𝜃𝑘|Γ𝑐𝑜𝑙𝑑 = 𝜃𝑐𝑜𝑙𝑑 𝜕𝒏𝜃𝑘|Γ𝑎 = ℎ𝑎.

(8)

Where, using the smoothness of 𝐴, 𝐶 , 𝑆, 𝐾 and the differentiability of 𝑓𝐵 (recall that we are assuming a Boussinesq approximation)

𝐴′(𝜃) = 𝑑

𝑑𝜃
𝐴(𝜃), 𝐶 ′(𝜃) = 𝑑

𝑑𝜃
𝐶(𝜃), 𝑆′(𝜃) = 𝑑

𝑑𝜃
𝑆(𝜃), 𝐾 ′(𝜃) = 𝑑

𝑑𝜃
𝐾(𝜃), 𝑓 ′

𝐵
(𝜃) = 𝑑

𝑑𝜃
𝑓𝐵(𝜃).

Note that the first time step (𝑛 = 1) is obtained by using a simple backward Euler or Crank-Nicolson scheme, producing minor modifications in 
(8) for the first time step. Obviously through modification of this relatively generic algorithm we could recuperate various strategies.

3.2. Mixed decoupled scheme

As a final observation concerning the mixed approach, we present a second strategy, based on (8), targeting a decrease in computational time. 
It relies on decoupling the Navier–Stokes and heat equations producing two subsystems of smaller size then the original single one. Of course the 
number of fixed point loop is tripled as we need to solve both subsystems which are nonlinear and then recuperate the coupling through a global 
loop. However, as the subsystems are of smaller size it is expected that in some cases the overall computational time could be smaller. This is the 
starting point of the method proposed in [3]. For that strategy, introducing the combined index (𝑘, 𝑖) for the 𝑖–th iteration of the subsystem and 𝑘–th 
global iteration and at each time step 𝑡𝑛+1 we apply the following mixed-decoupled algorithm

1. Initialization:

𝒖0 = 𝒖
𝑛, 𝑝0 = 𝑝𝑛, 𝜃0 = 𝜃𝑛, in Ω.

2. Determine (𝒖𝑛+1, 𝑝𝑛+1, 𝜃𝑛+1) with a fixed point: until convergence, compute (𝒖𝑘, 𝑝𝑘, 𝜃𝑘)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

2.1 Determine (𝒖𝑘, 𝑝𝑘) with a fixed point : until convergence, compute (𝒖𝑘,𝑖, 𝑝𝑘,𝑖)⎧⎪⎪⎪⎨⎪⎪⎪⎩

3
2Δ𝑡

𝒖𝑘,𝑖 + 𝒖𝑘,𝑖−1 ⋅∇𝒖𝑘,𝑖 + 𝒖𝑘,𝑖 ⋅∇𝒖𝑘,𝑖−1 −
2
𝑅𝑒

∇ ⋅𝑫𝒖𝑘,𝑖 +∇𝑝𝑘,𝑖

−𝐴(𝜃𝑘−1)𝒖𝑘,𝑖 = 𝑓𝐵(𝜃𝑘−1)𝒆𝑑 −
(
−4𝒖𝑛 + 𝒖

𝑛−1

2Δ𝑡

)
+ 𝒖𝑘,𝑖−1 ⋅∇𝒖𝑘,𝑖−1

∇ ⋅ 𝒖𝑘,𝑖 = 0

𝒖𝑘,𝑖|𝜕Ω = 0.

2.2 Determine 𝜃𝑘 with a fixed point : until convergence, compute 𝜃𝑘,𝑖⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐶(𝜃𝑘,𝑖−1)
3

2Δ𝑡
𝜃𝑘,𝑖 +𝐶 ′(𝜃𝑘,𝑖−1)

(
3𝜃𝑘,𝑖−1 − 4𝜃𝑛 + 𝜃𝑛−1

2Δ𝑡

)
𝜃𝑘,𝑖 +𝐶(𝜃𝑘,𝑖−1)𝒖𝑘 ⋅∇𝜃𝑘,𝑖

+𝐶 ′(𝜃𝑘,𝑖−1)𝒖𝑘 ⋅∇𝜃𝑘,𝑖−1𝜃𝑘,𝑖 +
3

2Δ𝑡
𝜃𝑘,𝑖𝑆

′(𝜃𝑘,𝑖−1)

− ∇ ⋅
(
𝐾(𝜃𝑘,𝑖−1)∇𝜃𝑘,𝑖 + 𝜃𝑘,𝑖𝐾

′(𝜃𝑘,𝑖−1)∇𝜃𝑘,𝑖−1
)

= 𝐶 ′(𝜃𝑘,𝑖−1)

(
3𝜃𝑘,𝑖−1 − 4𝜃𝑛 + 𝜃𝑛−1

2Δ𝑡

)
𝜃𝑘,𝑖−1 −𝐶(𝜃𝑘,𝑖−1)

(
−4𝜃𝑛 + 𝜃𝑛−1

2Δ𝑡

)
+𝐶 ′(𝜃𝑘,𝑖−1)𝒖𝑘 ⋅∇𝜃𝑘,𝑖−1𝜃𝑘,𝑖−1 +

3
2Δ𝑡

𝜃𝑘,𝑖−1𝑆
′(𝜃𝑘,𝑖−1)

−

(
3𝑆(𝜃𝑘,𝑖−1) − 4𝑆(𝜃𝑛) +𝑆(𝜃𝑛−1)

2Δ𝑡

)
−∇ ⋅

(
𝜃𝑘,𝑖−1𝐾

′(𝜃𝑘,𝑖−1)∇𝜃𝑘,𝑖−1
)

𝜃𝑛+1
𝑘

|Γℎ𝑜𝑡 = 𝜃ℎ𝑜𝑡 𝜃𝑛+1
𝑘

|Γ𝑐𝑜𝑙𝑑 = 𝜃𝑐𝑜𝑙𝑑 𝜕𝒏𝜃
𝑛+1
𝑘

|Γ𝑎 = ℎ𝑎.

(9)
⎩
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Remark 4. Let us underline, that both of these algorithms, as well as the next ones, require some caution concerning the stopping criteria (see 
section 5.1) due to the heterogeneity of the unknowns and the presence of multiple loops. From a practical point of view one must take into account 
𝑅𝑒 when fixing convergence tolerance for step 2.1 since this could lead to unrealistic computation time. More generally, the choice of the tolerance 
should be made taking into account the characteristic of the phenomenon as expressed by the main adimensional numbers 𝑅𝑒, 𝑃𝑟, 𝑅𝑎 etc. Once 
again, using a Newton loop on each subsystem seems more appropriate, but other strategies could be used. For instance, one could consider a 
second order extrapolation for the convective term in of the Navier–Stokes equation leading to a linear subsystem in step 2.1. Similar ideas could 
be considered for the thermal equation. On the same path, reducing the accuracy requirements for the inner loops could be considered as long as 
the accuracy of the outer loop is controlled.

3.3. Splitting algorithm

The method built here relies heavily on the nature and properties of the solution of Navier–Stokes as constructed by a projection method. 
Projection methods are known to have a bounded order of accuracy in 𝐻1 norm inherent to the splitting of the viscous and incompressibility effects. 
The first versions of the projection method (the original approach of Chorin and Temam, and the first modification of Goda [26]) resulted in schemes 
with a (Δ𝑡) 𝐻1-error at best for the velocity for BDF1 and BDF2 time discretization. The projection method proposed in [47], the rotational pressure 
correction projection, overcame this barrier in accuracy. First we recall the rotational pressure correction projection as presented, for instance, in [29]
for an incompressible Newtonian fluid.

At time 𝑡𝑛+1, assuming the temperature 𝜃 is known, the method consists in the following three steps: solving the viscous nonlinear system giving 
a velocity prediction, next is a projection step producing a velocity/pressure correction and finally the pressure updating step.

1. Velocity prediction:

⎧⎪⎪⎨⎪⎪⎩

3�̃�𝑛+1 − 4𝒖𝑛 + 𝒖
𝑛−1

2Δ𝑡
+
(
�̃�
𝑛+1 ⋅∇

)
�̃�
𝑛+1 − 2

𝑅𝑒
∇ ⋅ (𝑫�̃�

𝑛+1)

+ ∇𝑝𝑛 −𝐴(𝜃(𝑡𝑛+1))�̃�𝑛+1 = 𝑓𝐵(𝜃(𝑡𝑛+1))𝒆𝑑

�̃�
𝑛+1 = 0 on 𝜕Ω.

(10)

2. Velocity and pressure corrector (Darcy equation):

⎧⎪⎪⎨⎪⎪⎩
𝒖
𝑛+1 + 2Δ𝑡

3
∇𝜑 = �̃�

𝑛+1

∇ ⋅ 𝒖𝑛+1 = 0

𝒖
𝑛+1 ⋅ 𝒏 = 0 on 𝜕Ω.

3. Pressure update:

𝑝𝑛+1 = 𝑝𝑛 +𝜑− 2
𝑅𝑒

∇ ⋅ �̃�𝑛+1.

Remark 5. This scheme requires an initial pressure. In this paper, this initial pressure is assumed to be the atmospheric pressure 𝑃 which translate 
in a null pressure in the adimensional setting, 𝑝0 = 0.

Let (u, p, 𝜃) be a solution of (3) and �̃�𝑛, 𝒖𝑛 and 𝑝𝑛 the approximation obtained with step 1 - 3 (using a BDF1 scheme for 𝑛 = 1). From [29,18] we get 
the following error estimates

max
𝑛

‖u(𝑡𝑛) − 𝒖
𝑛‖𝐿2 + max

𝑛
‖u(𝑡𝑛) − �̃�

𝑛‖𝐿2 ≤ 𝐶Δ𝑡2

max
𝑛

‖u(𝑡𝑛) − 𝒖
𝑛‖𝐻1 + max

𝑛
‖𝗉(𝑡𝑛) − 𝑝𝑛‖𝐿2 ≤ 𝐶Δ𝑡3∕2.

The 𝐻1 accuracy for the velocity is (Δ𝑡3∕2). Using a BDF1 scheme for this projection method is also valid (then step 1 and 2 must be modified 
accordingly), it would lead, as expected, to a reduced order of accuracy.

Remark 6. The Darcy problem is a mixed system having 𝒖𝑛+1 and 𝜑 as unknown. As we usually do for this method, we will avoid solving this system 
and fall back to the simpler Poisson problem followed by velocity and pressure update

⎧⎪⎨⎪⎩
Δ𝜑 = 3

2Δ𝑡
∇ ⋅ �̃�𝑛+1

𝜕𝑛𝜑 = 0 on 𝜕Ω
,

⎧⎪⎨⎪⎩
𝒖
𝑛+1 = �̃�

𝑛+1 − 2Δ𝑡
3𝜌

∇𝜑

𝑝𝑛+1 = 𝑝𝑛 +𝜑− 2
𝑅𝑒

∇ ⋅ �̃�𝑛+1.
(11)

Note that both systems (Poisson and Darcy) are ill-posed and we seek a solution in 𝐻1(Ω)∖ℝ for 𝜑.

The projection method decouple the incompressibility constraint from the diffusion operator in the momentum equation. At each time step, a 
velocity prediction �̃� is computed from a viscous equation. Then a correction of the pressure and velocity is computed and applied. Based on the 
accuracy of the velocity predictor, following the idea in [16], we can introduce a decoupling of the velocity and temperature.
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3.3.1. A basic mixed coupled projection (BPS) scheme
Obviously the projection approaches can be applied in system (7), giving alternatives to the standard (𝒖, 𝑝) saddle-point formulation in (8)

and (9) by replacing the mixed Navier–Stokes equation by (10)–(11). However apart from avoiding the velocity-pressure saddle-point such a direct 
substitution would hardly show any improvement in efficiency.

As demonstrated in [29], the 𝐿2–error of the predicted velocity �̃� has the same order of accuracy as the 𝐿2–error of 𝒖𝑛+1. As in [16] we 
propose an approach relying on this property of the velocity prediction: the predictor �̃� can be used instead of 𝒖𝑛+1 to approximate the tempera-
ture.

The first algorithm based on this idea, let us call it the mixed coupled projection scheme, is obtained by revisiting the mixed-coupled algorithm 
characterized by (8). We rewrite (8) using the velocity prediction �̃� coupled to 𝜃 instead of 𝒖. As the pressure and velocity are not used to solve the 
(�̃�, 𝜃) system, the velocity and pressure computation (i.e. the Poisson problem and velocity-pressure update (11)) are made outside of the non-linear 
loop. Considering the simplification of the nonlinear loop going from (8) to (12) an obvious gain in computational efficiency is expected at this level 
which translate, in most case, in a gain in global efficiency of the algorithm when compared to the mixed-coupled algorithm.

1. Initialization:

𝒖0 = 𝒖
𝑛, 𝑝0 = 𝑝𝑛, 𝜃0 = 𝜃𝑛.

2. Determine (�̃�𝑛+1, 𝜃𝑛+1) as the limit of the fixed point: until convergence, compute (�̃�𝑘, 𝜃𝑘) solution of

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3
2Δ𝑡

�̃�𝑘 + �̃�𝑘−1 ⋅∇�̃�𝑘 + �̃�𝑘 ⋅∇�̃�𝑘−1 −
2
𝑅𝑒

∇ ⋅𝑫�̃�𝑘 −𝐴(𝜃𝑘−1)�̃�𝑘

−𝐴′(𝜃𝑘−1)𝜃𝑘�̃�𝑘−1 − 𝜃𝑘𝑓
′
𝐵
(𝜃𝑘−1) = (𝑓𝐵(𝜃𝑘−1) − 𝜃𝑘−1𝑓

′
𝐵
(𝜃𝑘−1))𝒆𝑑 −∇𝑝𝑛

−
(
−4𝒖𝑛 + 𝒖

𝑛−1

2Δ𝑡

)
+ �̃�𝑘−1 ⋅∇�̃�𝑘−1 −𝐴′(𝜃𝑘−1)𝜃𝑘−1�̃�𝑘−1

𝐶(𝜃𝑘−1)
3

2Δ𝑡
𝜃𝑘 +𝐶 ′(𝜃𝑘−1)

(
3𝜃𝑘−1 − 4𝜃𝑛 + 𝜃𝑛−1

2Δ𝑡

)
𝜃𝑘 +𝐶(𝜃𝑘−1)�̃�𝑘 ⋅∇𝜃𝑘−1 +𝐶(𝜃𝑘−1)�̃�𝑘−1 ⋅∇𝜃𝑘

+𝐶 ′(𝜃𝑘−1)�̃�𝑘−1 ⋅∇𝜃𝑘−1𝜃𝑘 +
3

2Δ𝑡
𝜃𝑘𝑆

′(𝜃𝑘−1) − ∇ ⋅
(
𝐾(𝜃𝑘−1)∇𝜃𝑘 + 𝜃𝑘𝐾

′(𝜃𝑘−1)∇𝜃𝑘−1
)

= 𝐶 ′(𝜃𝑘−1)
(
3𝜃𝑘−1 − 4𝜃𝑛 + 𝜃𝑛−1

2Δ𝑡

)
𝜃𝑘−1 −𝐶(𝜃𝑘−1)

(
−4𝜃𝑛 + 𝜃𝑛−1

2Δ𝑡

)
+𝐶(𝜃𝑘−1)�̃�𝑘−1 ⋅∇𝜃𝑘−1 +𝐶 ′(𝜃𝑘−1)�̃�𝑘−1 ⋅∇𝜃𝑘−1𝜃𝑘−1 +

3
2Δ𝑡

𝜃𝑘−1𝑆
′(𝜃𝑘−1)

−
(
3𝑆(𝜃𝑘−1) − 4𝑆(𝜃𝑛) + 𝑆(𝜃𝑛−1)

2Δ𝑡

)
−∇ ⋅

(
𝜃𝑘−1𝐾

′(𝜃𝑘−1)∇𝜃𝑘−1
)

𝒖𝑘|𝜕Ω = 0 𝜃𝑘|Γℎ𝑜𝑡 = 𝜃ℎ𝑜𝑡 𝜃𝑘|Γ𝑐𝑜𝑙𝑑 = 𝜃𝑐𝑜𝑙𝑑 𝜕𝒏𝜃𝑘|Γ𝑎 = ℎ𝑎.

(12)

3. Projection step:compute 𝜑 solution of the Poisson problem

Δ𝜑 = 3
2Δ𝑡

∇ ⋅ �̃�𝑛+1 𝜕𝑛𝜑 = 0 on 𝜕Ω.

4. Velocity and pressure correction:

𝒖
𝑛+1 = �̃�

𝑛+1 − 2Δ𝑡
3𝜌

∇𝜑, 𝑝𝑛+1 = 𝑝𝑛 +𝜑− 2
𝑅𝑒

∇ ⋅ �̃�𝑛+1. (13)

3.3.2. A coupled projection (CPS) scheme
Finally we can break (12) in smaller and simpler steps and introduce two subsystems. Once again the price for these smaller systems is 

the necessity to have more fixed point loops. The observations in Remark 4 are still valid: simpler subsystems could be considered or re-
duced accuracy requirements for the inner-loop, however, from our numerical experience, reducing the accuracy of the outer-loop should be 
avoided.

Decoupling the (�̃�, 𝜃) system (12) produce an algorithm that we will call a coupled projection scheme since it is a extension of the CPS proposed in 
[16]. It corresponds to the use of the prediction velocity instead of 𝒖𝑛+1 in the mixed decoupled algorithm characterized by (9). At each time step, 
we have the following procedure:

1. Initialization:

�̃�0 = 𝒖
𝑛, 𝜃0 = 𝜃𝑛 in Ω.

2. Determine (�̃�𝑛+1, 𝜃𝑛+1) with a fixed point: until convergence, compute (�̃�𝑘, 𝜃𝑘)
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2.1 Determine �̃�𝑘 with a fixed point : until convergence, compute �̃�𝑘,𝑖⎧⎪⎪⎨⎪⎪⎩

3
2Δ𝑡

�̃�𝑘,𝑖 + �̃�𝑘,𝑖−1 ⋅∇�̃�𝑘,𝑖 + �̃�𝑘,𝑖 ⋅∇�̃�𝑘,𝑖−1 −
2
𝑅𝑒

∇ ⋅𝑫�̃�𝑘,𝑖 −𝐴(𝜃𝑘−1)�̃�𝑘,𝑖

= 𝑓𝐵(𝜃𝑘−1)𝒆𝑑 −∇𝑝𝑛 −
(
−4𝒖𝑛 + 𝒖

𝑛−1

2Δ𝑡

)
+ �̃�𝑘,𝑖−1 ⋅∇�̃�𝑘,𝑖−1

�̃�𝑘,𝑖|𝜕Ω = 0.

2.2 Determine 𝜃𝑘 with a fixed point : until convergence, compute 𝜃𝑘,𝑖⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐶(𝜃𝑘,𝑖−1)
3

2Δ𝑡
𝜃𝑘,𝑖 +𝐶 ′(𝜃𝑘,𝑖−1)

(
3𝜃𝑘,𝑖−1 − 4𝜃𝑛 + 𝜃𝑛−1

2Δ𝑡

)
𝜃𝑘,𝑖 +𝐶(𝜃𝑘,𝑖−1)�̃�𝑘 ⋅∇𝜃𝑘,𝑖

+𝐶 ′(𝜃𝑘,𝑖−1)�̃�𝑘 ⋅∇𝜃𝑘,𝑖−1𝜃𝑘,𝑖 +
3

2Δ𝑡
𝜃𝑘,𝑖𝑆

′(𝜃𝑘,𝑖−1)

− ∇ ⋅
(
𝐾(𝜃𝑘,𝑖−1)∇𝜃𝑘,𝑖 + 𝜃𝑘,𝑖𝐾

′(𝜃𝑘,𝑖−1)∇𝜃𝑘,𝑖−1
)

= 𝐶 ′(𝜃𝑘,𝑖−1)

(
3𝜃𝑘,𝑖−1 − 4𝜃𝑛 + 𝜃𝑛−1

2Δ𝑡

)
𝜃𝑘,𝑖−1 −𝐶(𝜃𝑘,𝑖−1)

(
−4𝜃𝑛 + 𝜃𝑛−1

2Δ𝑡

)
+𝐶 ′(𝜃𝑘,𝑖−1)�̃�𝑘 ⋅∇𝜃𝑘,𝑖−1𝜃𝑘,𝑖−1 +

3
2Δ𝑡

𝜃𝑘,𝑖−1𝑆
′(𝜃𝑘,𝑖−1)

−

(
3𝑆(𝜃𝑘,𝑖−1) − 4𝑆(𝜃𝑛) +𝑆(𝜃𝑛−1)

2Δ𝑡

)
−∇ ⋅

(
𝜃𝑘,𝑖−1𝐾

′(𝜃𝑘,𝑖−1)∇𝜃𝑘,𝑖−1
)

𝜃𝑛+1
𝑘

|Γℎ𝑜𝑡 = 𝜃ℎ𝑜𝑡 𝜃𝑛+1
𝑘

|Γ𝑐𝑜𝑙𝑑 = 𝜃𝑐𝑜𝑙𝑑 𝜕𝒏𝜃
𝑛+1
𝑘

|Γ𝑎 = ℎ𝑎.

(14)

3. Projection step:compute 𝜑 solution of the Poisson problem

Δ𝜑 = 3
2Δ𝑡

∇ ⋅ �̃�𝑛+1 𝜕𝑛𝜑 = 0 on 𝜕Ω.

4. Velocity and pressure correction:

𝒖
𝑛+1 = �̃�

𝑛+1 − 2Δ𝑡
3

∇𝜑, 𝑝𝑛+1 = 𝑝𝑛 +𝜑− 2
𝑅𝑒

∇ ⋅ �̃�𝑛+1. (15)

Remark 7. Considering the construction of 𝜑 (in this semi-discrete or in a totally discrete form the sum of function in (13) or (15) has to be specified 
since there is, a priori, no reason for these sum to be valid in a pointwise sense. The fundamental element of the projection method is the Helmoltz 
decomposition, see for instance [10,25] which is true in a distribution sense. Therefore the velocity and pressure decomposition in (13) and (15)
must be interpreted as weak equality in the velocity and pressure space respectively.

4. Finite element discretization

Our main goal in the last two sections is to illustrate the validity of the CPS method as a suitable alternative to the mixed coupled or decoupled 
scheme (8) and (9). We are not aiming at performance comparison therefore will not reformulate all four schemes, but focus on the CPS discretization. 
Obviously numerical illustrations necessitate the full discretization of the method. Various Galerkin type methods could be used, here we chose the 
finite element method for the spatial discretization. For details concerning this method in the context of fluid mechanic we refer to readers to [18,33].

We introduce Ωℎ a partitioning of Ω composed of triangles, quadrangles or both for Ω ∈ℝ2 or tetrahedra, hexahedra or both for Ω ∈ℝ3. At each 
time step 𝑡𝑛+1, we are now seeking approximations

�̃�
𝑛+1
ℎ

, 𝒖𝑛+1
ℎ

, 𝑝𝑛+1
ℎ

, 𝜃𝑛+1
ℎ

, 𝜑ℎ.

Since the discrete inf–sup condition must be respected for the prediction equation (10), (12) and (14) (see [9,28] for the details and other choices) a 
quadratic element (𝑃2 interpolation) was chosen for both velocities (�̃�𝑛+1

ℎ
, 𝒖𝑛+1

ℎ
) and a linear interpolation for the pressure. Finally, the temperature 

and the function 𝜑 are also quadratic. Regarding the approximation of 𝜑, a priori, it could be of arbitrary interpolating degree, however we must 
take into account that 𝜑 is solution of a Poisson problem and that it act as velocity and pressure corrections.

The discrete version of Step 2 of the CPS (the fixed-point loop (14)) and Step 3 are obvious. The last step, Step 4, is splitted in two separated 
steps, 4ℎ for the velocity and 5ℎ for the pressure. As underlined in Remark 6, the discrete version of Step 3 must be treated in a special manner as 
the discrete system is under-determined. A unique solution 𝜑ℎ is determined through a supplementary computation included in the last step (see 
Step 5ℎ below). Following Remark 7 to complete the spatial discretization of the algorithm a proper interpretation of Step 4 is needed. We chose to 
interpret both equalities as 𝐿2–projection. Step 4ℎ is the 𝐿2–projection of ∇𝜑ℎ in 𝑽 ℎ a space of continuous piecewise 𝑃2 interpolation. Step 5ℎ is 
the projection of ∇ ⋅ �̃� and 𝜑ℎ in a space of continuous piecewise 𝑃1 approximation noted 𝑀ℎ.

4ℎ. Velocity correction: Compute 𝒖𝑛+1
ℎ

∈ 𝑽 ℎ solution of:

∫
Ωℎ

𝒖
𝑛+1
ℎ

𝒗𝑑Ω= ∫
Ωℎ

�̃�
𝑛+1
ℎ

⋅ 𝒗𝑑Ω− 2Δ𝑡
3 ∫

Ωℎ

∇𝜑ℎ ⋅ 𝒗𝑑Ω ∀𝒗 ∈ 𝑽 ℎ.

5ℎ. Pressure correction: Compute 𝑝𝑛+1
ℎ

∈𝑀ℎ solution of

∫ 𝑝𝑛+1
ℎ

𝜁 𝑑Ω= ∫ 𝑝𝑛
ℎ
𝜁 𝑑Ω+ ∫

(
𝜑ℎ −

2
𝑅𝑒

∇ ⋅ �̃�𝑛+1
ℎ

− 𝜇(𝜑ℎ)
)
𝜁 𝑑Ω ∀𝜁 ∈𝑀ℎ
Ωℎ Ωℎ Ωℎ
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with

𝜇(𝜑ℎ) =
1

𝑚𝑒𝑠(Ωℎ) ∫
Ωℎ

𝜑ℎ 𝑑Ω.

Remark 8. In Step 5ℎ, 𝜇(⋅) correspond to an average on Ωℎ of 𝜑ℎ. This correction gives 𝜑ℎ ∈𝑀
𝜑

ℎ
∖ℝ insuring the uniqueness of the projection in 

Step 5ℎ.

Remark 9. Following Remark 7, the projection in steps 4ℎ and 5ℎ seems to be the most natural and practical choice. Other approaches such 
as gradient reconstruction [51] for both steps, or the use of hierarchical interpolation for 𝜑ℎ (to avoid the projection of 𝜑ℎ in 5ℎ) are either 
computationally expensive or results in loss of information.

5. Numerical illustration

In this section, we test the accuracy and the capability of our proposed CPS algorithm (14) using four benchmark cases commonly used in 
the literature for phase-change problems with convection. First test is about natural convection of air based on a manufactured solution. This 
example illustrates the temporal accuracy of our proposed algorithm. Second and third cases are about water solidification and octadecane melting, 
respectively. In both cases, we compare our numerical solutions with the literature’s experimental and numerical results. Last case consists of a 
challenging melting problem with a high Rayleigh number.

Our intention is not to establish the relative merit of the various methods or to study the computational performance of the CPS but to il-
lustrate the relevance of the approach and the capability of scheme. All our numerical solutions were obtained using FreeFem++ software [32]. 
Computational aspects such as numerical efficiency and high performance implementation of the algorithm were not considered.

From recent works [3,4,15] mesh adaptation is clearly essential in the finite element simulation of phase change problems. Firstly, for a fixed 
accuracy, equidistribution of the error (one of the attributes of mesh adaptation) allows to reduce number of vertex, reducing the size of the discrete 
algebraic system to solve. Secondly, as the mesh is refined in the vicinity of the liquid-solid interface and the thickness of the transition zone is 
fixed the capture of the interface is sharper, giving a more precise definition of the interface. Thirdly, as the transition zone of fixed size is always 
sufficiently discretized we avoid sudden loss of convergence that are frequent when using a fixed mesh. Coherent with those observations, in all our 
tests, with the exception of the accuracy test, we have used mesh adaptation at each time steps. Following [15] the mesh adaptation is based on 𝜃, 
𝒖 and 𝑆. As most of these problems exhibit a slow dynamic, the initial mesh size in all cases is ℎ = 0.01 (all our tests are on a unit square).

5.1. Stopping criterion

Considering the great variety of scales between the unknowns involved in the different loops, it seems important to specify the strategy used 
to establish convergence. Let us introduce the relative errors used as stopping criteria to control the convergence: Let 𝑘 be the index for the 𝑘-th 
iteration of the fixed-point. Based on the respective functional norm ‖ ⋅ ‖𝑚 for the velocity predictionand temperature. We introduce the relative 
variation,

𝑒𝑟𝑟𝑚𝑢
(�̃�𝑘) = max

1≤𝑖≤𝑑
‖‖‖‖ (�̃�𝑘 − �̃�𝑘−1)𝑖

(�̃�𝑘−1)𝑖

‖‖‖‖𝑚𝑢

, 𝑒𝑟𝑟𝑚𝜃
(𝜃𝑘) =

‖‖‖‖ 𝜃𝑘 − 𝜃𝑘−1
𝜃𝑘−1

‖‖‖‖𝑚𝜃

.

In practice we choose 𝑚𝑢 =𝑚𝜃 =∞, corresponding to the pointwise maximal relative variation. For example, for the temperature we have

𝑒𝑟𝑟∞(𝜃𝑘) = sup
𝑥∈Ω

|𝜃𝑘(𝒙) − 𝜃𝑘−1(𝒙)||𝜃𝑘−1(𝒙)| .

Based on these definitions, the control of the convergence of the outer loop in (14) (or the loop (12)) is based on a criterion of the form

max
{
𝑒𝑟𝑟𝑚𝑢

(�̃�𝑘), 𝑒𝑟𝑟𝑚𝜃
(𝜃𝑘)

}
< Tol,

where Tol is a small tolerance. Since all these variations are relative, using a single tolerance for all variables should suffice. As for the inner loop 
in (14) we use the corresponding relative criteria. For the mixed (coupled or decoupled) algorithms, a pressure tolerance would be added for (8), 
the outer loop of (9) and the Navier-Stokes loop inside (9).

Remark 10. The usual trade off between computational costs and precision must be considered. Concerning the flow variable, one must take into 
account the important impact of the Reynold number 𝑅𝑒 which can lead to unrealistic computation time for certain tolerance. The choice of the 
tolerance for both inner loops in (9) and (14) should be made taking into account the characteristic of the phenomenon as expressed by the main 
adimensional numbers 𝑅𝑒, 𝑃𝑟, 𝑅𝑎 etc.

5.2. Accuracy test with a manufactured solution

In this example, we test the time accuracy of our numerical method using a manufactured solution on a square [0, 1] ×[0, 1]. We consider 𝐶 = 𝑘 = 1, 
we set 𝐴(𝜃) = 𝑆(𝜃) = 0 and fixed 𝑅𝑒 = 1, 𝑃𝑟 = 10, and 𝑅𝑎 = 103 or 𝑅𝑎 = 106.

⎧⎪⎪⎨⎪⎪⎩

𝑢1(𝑥, 𝑦, 𝑡) = (𝑥2 + 2𝑥𝑦+ 3𝑦− 4) sin(𝑡),

𝑢2(𝑥, 𝑦, 𝑡) = (−𝑦2 − 2𝑥𝑦+ 𝑥2 − 2𝑥+ 3) sin(𝑡) + 𝑡3,

𝑇 (𝑥, 𝑦, 𝑡) = (𝑥2 − 2𝑦2 − 4𝑥𝑦+ 2)𝑒𝑡,

𝑝(𝑥, 𝑦, 𝑡) = (𝑥− 𝑦) sin(𝑡).
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Fig. 1. Accuracy test, 𝑅𝑒 = 1, 𝑃 𝑟 = 10 and 𝑅𝑎 = 1𝑒3. 𝓁2 norm between the analytical and numerical solutions using the coupled projection scheme. In parentheses 
the computed order of accuracy.

Fig. 2. Accuracy test, 𝑅𝑒 = 1, 𝑃 𝑟 = 10 and 𝑅𝑎 = 1𝑒6. 𝓁2 norm between the analytical and numerical solutions using the coupled projection scheme. In parentheses 
the computed order of accuracy.

The velocity, pressure and temperature error to the exact solution will be computed using a 𝓁2 norm. Denoted 𝑒𝒖, 𝑒𝑝 and 𝑒𝜃 they are defined as 
follows:

‖𝑒𝑄‖𝓁2(𝑆) =
(
Δ𝑡

∑
𝑛

‖𝑄(𝑡𝑛) −𝑄𝑛‖2
𝑆

)1∕2

with 𝑄 ∈ {𝒖, 𝑝, 𝜃}, 𝑆 = 𝐿2(Ω) or 𝑳2(Ω) =
(
𝐿2(Ω)

)𝑑
and 𝑆 =𝐻1(Ω) or 𝑯1(Ω) =

(
𝐻1(Ω)

)𝑑
. We consider a regular mesh using a 40 × 40 uniform grid a 

series of time step length Δ𝑡 = 0.001∕2𝑝 for 𝑝 between 0 and 8. The errors are computed for a final time 𝑡𝑚𝑎𝑥 = 0.01.
The results are presented in Figs. 1 and 2. As can be seen, a variation of three order in the Rayleigh number as little impact on the order of 

accuracy. We obtained the expected second order convergence for the velocity, pressure and temperature (see left of Fig. 1 and 2). Using the 𝓁2(𝐻1), 
a second order of convergence was obtained for the temperature, while the convergence order for the velocity and pressure were approximately 2 
for both values of 𝑅𝑎 (see right of Fig. 1 and 2). This is in agreement with the results of convergence of projection schemes (see for example [29]) 
where the convergence rate is reported to be at least 3∕2.

5.3. Water solidification

Freezing of water is a very common phase change problem. In the experimental results, the ice front is almost perpendicular to the bottom wall 
(see [34,35]). In many numerical results ([23,24,34]), important discrepancies in the ice front form were noticed. However, the recent numerical 
results ([40,3,15,6,7]) have shown a good agreement between numerical and experimental results. In this section, we validate the effectiveness of 
the proposed projection scheme to this type of solidification problem. Our numerical simulations (denoted CPS schemes in the various figures) are 
compared to the experimental results in [34] and numerical results in [3] and [40]. In this example, temperature differences in the melted region 
give rise to nonlinear buoyancy forces that produce significant convective flow. This flow induces modifications in the heat transfer and the position 
of the interface. We employ the variable density suggested in [22]:

𝜌(𝑇 ) = 𝜌𝑚(1 −𝑤(𝑇 − 𝑇𝑚)𝑞)

with 𝜌𝑚 = 999.972 [kg∕m3], 𝑤 = 9.2793.10−6 ([𝑜C])−𝑞 and 𝑞 = 1.894816. The buoyancy force in this case can be written as

𝑓𝐵(𝜃) =
𝑅𝑎

𝑃𝑟𝑅𝑒2
1

𝛽𝛿𝑇

𝜌(𝜃𝑐𝑜𝑙𝑑 ) − 𝜌(𝜃)
𝜌(𝜃𝑐𝑜𝑙𝑑 )

,

where 𝛽 = 𝜌∕(Δ𝑡𝜌𝑚) is the thermal expansion coefficient with 𝛽 = 6.91 ×10−5 [K−1]. The dimensional parameters of the problem are 𝑅𝑒 = 1, 𝑃𝑟 = 6.99, 
𝑅𝑎 = 2.518084 × 106 and 𝑆𝑡𝑒 = 0.125. For the initial condition of this simulation, velocity and pressure are null and the initial fluid temperature is 
just above the freezing point (a “cold start”). The mesh size ℎ equal to = 0.01, a time step Δ𝑡 = 10−3 and the width of the mushy zone 𝜀 = 0.03. The 
Carman–Kozeny constant 𝐶𝐴 = 106 and the penalty parameter 𝑏 = 10−6.
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Fig. 3. Water Freezing at 𝑡 = 2340𝑠. On the left: Projection method; On the right: Experiment of Kowalewski [34].

Fig. 4. Water solidification: Comparison of the solid-liquid interface at 𝑡 = 2340 s.

A comparison between our numerical solution and the experimental result performed in [34] is presented in Fig. 3. As can be seen, we obtain 
a good agreement between numerical and experimental results for water freezing. Good agreement between numerical and experimental results 
has also been obtained in [3] and [40]. In [3] a mixed formulation for Navier–Stokes equations coupled with a mixed formulation for the energy 
equations has been employed and in [40] a coupled mixed formulation has been used. Fig. 4 shows the solid-liquid interface position for water 
solidification presented in these contributions compared to interface position obtained with our coupled projection scheme. As illustrated in this 
figure, all results are very similar.

5.4. Melting of octadecane in a square cavity

In this test case, we consider the melting of octadecane in a square cavity. This benchmark is often used to validate numerical simulations for 
phase change problems (see [15], [40] and [50]) in comparison with experimental results performed in [37]. In [15] a first order in time coupled 
mixed formulation has been used and in [40] a second order in time coupled mixed formulation has been employed for the numerical simulations. 
In [50], the numerical results were obtained with a consistent update technique (CUT) algorithm, where the velocity and pressure satisfy the 
momentum equations explicitly and the continuity equation implicitly (the results were compared to numerical solutions obtained by a SIMPLE 
algorithm that is widely used to solve pressure-linked Navier–Stokes equations).

In this test, a solid cavity filled by octadecane is heated from the left wall by imposing a Dirichlet boundary condition 𝜃ℎ𝑜𝑡 = 1 and a fixed (cold) 
temperature is imposed on the right side 𝜃𝑐𝑜𝑙𝑑 = −0.01. Top and bottom boundaries are adiabatic. The dimensionless parameters are the Prandtl 
number 𝑃𝑟 = 56.2, the Rayleigh number 𝑅𝑎 = 3.27𝑒5 and the Stefan number 𝑆𝑡𝑒 = 0.045. As for the numerical parameters used for this simulation: 
the size of the mesh is fixed at ℎ = 0.01, the time step Δ𝑡 = 10−3 and the width of the mushy zone 𝜀 = 0.03.

In Fig. 5 we compare the evolution of the solid-liquid interface at time 𝑡 = 39.9 s and 𝑡 = 78.7 s with the experimental and numerical data in 
[37] and the numerical results obtained in [50,15,40]. We notice that the shape and position of the liquid-solid interface is in agreement with the 
experimental results in [37] and similar to the recent work performed in [40].
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Fig. 5. Melting of Octadecane 𝑅𝑎 = 3.27 × 105 . On the left, position of the interface at time 𝑡 = 39.9 s. On the right position of the interface at time 𝑡 = 78.8 s.

Fig. 6. Melting of Octadecane with 𝑅𝑎 = 108 : on the left, time evolution of the Nusselt number. On the right position of the interface at time 𝑡 = 1, 𝑡 = 3, and 𝑡 = 5.

5.5. Melting of octadecane with high Rayleigh number

In this case, we consider the same melting problem as in the previous test, but with a very high value of the Rayleigh number. This test is 
frequently treated in the literature and is known as a very challenging case as the natural convection becomes important in the fluid flow. For 
this test, the following dimensionless parameters are imposed: the Prandtl number 𝑃𝑟 = 50, the Rayleigh number 𝑅𝑎 = 108 and the Stefan number 
𝑆𝑡𝑒 = 0.1. The simulations were done with a mesh size of ℎ = 0.01, a time step Δ𝑡 = 10−4 and width of the mushy zone 𝜀 = 0.03.

In [8] a first collection of results, by different authors, concerning this and other benchmark is presented. More recently, [40] proposed some 
numerical results for this test using a second order in time coupled mixed formulation. As observed in [8], such a high Rayleigh number is 
numerically very demanding and can lead to unrealistic numerical results (see Fig. 6 on the left, the results of Delannoy).

We qualitatively compared our results to various results presented in [8] in terms of Nusselt number time evolution and position of the solid-
liquid interface at times 𝑡 = 1 s, 𝑡 = 3 s, and 𝑡 = 5 s. This comparison is presented in Figs. 6 (left for the Nusselt number and right for the interface 
position at different time value). From Fig. 6 the results obtained for the shape and position of the liquid-solid interface and for the Nusselt evolution 
with our method are in good agreement with those presented in [8] and [40].

6. Conclusion

We proposed a projection method for the numerical simulation of phase change problems with natural convection for the melting-solidification 
of solid-liquid phases. We illustrated the convergence of the algorithm by a manufactured solution. We proved the effectiveness of the algorithm 
by comparing to real experiment of the water solidification and melting of octadecane even with high Rayleigh number. The following step is 
to compare rigorously the computational cost of the proposed projection scheme and the mixed formulation for both melting and solidification 
problems. It will also be interesting to extend previous work [3] to investigate the efficiency of the parallel anisotropic mesh adaptation technique 
[1] on the three-dimensional phase change problem with convection. This topic will be subject of a future work.
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