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Abstract: The aim of this paper is to quantify the day-to-day variations of motion models derived from 

pre-treatment 4-dimensional cone beam CT (4DCBCT) fractions for lung cancer stereotactic body 

radiotherapy (SBRT) patients. Motion models are built by 1) applying deformable image registration (DIR) 

on each 4DCBCT image with respect to a reference image from that day, resulting in a set of displacement 

vector fields (DVFs), and 2) applying principal component analysis (PCA) on the DVFs to obtain principal 

components representing a motion model. Variations were quantified by comparing the PCA eigenvectors 

of the motion model built from the first day of treatment to the corresponding eigenvectors of the other 

motion models built from each successive day of treatment. Three metrics were used to quantify the 

variations: root mean squared (RMS) difference in the vectors, directional similarity, and an introduced 

metric called the Euclidean Model Norm (EMN). EMN quantifies the degree to which a motion model 

derived from the first fraction can represent the motion models of subsequent fractions. Twenty-one 

4DCBCT scans from five SBRT patient treatments were used in this retrospective study. Experimental 

results demonstrated that the first two eigenvectors of motion models across all fractions have smaller RMS 

(0.00017), larger directional similarity (0.528), and larger EMN (0.678) than the last three eigenvectors 

(RMS: 0.00025, directional similarity: 0.041, and EMN: 0.212). The study concluded that, while the motion 

model eigenvectors varied from fraction to fraction, the first few eigenvectors were shown to be more stable 

across treatment fractions than others. This supports the notion that a pre-treatment motion model built 

from the first few PCA eigenvectors may remain valid throughout a treatment course. Future work is 

necessary to quantify how day-to-day variations in these models will affect motion reconstruction accuracy 

for specific clinical tasks. 

Keywords: Four-dimensional cone beam CT (4DCBCT), PCA motion model, stereotactic body radiation 

therapy (SBRT), inter-fraction variations. 

1. Introduction

Motion modeling is a technique that uses prior information to enable the reconstruction of a full three-

dimensional (3D) image based on limited information. In radiation therapy, this technique has been 

demonstrated as a potentially useful way to reconstruct 3D computed tomography (CT) scans based on 
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single planar kV images or using respiratory motion surrogates. The resultant 3D images can then be used 

to identify any aberrant patient motion and to calculate delivered dose. This technique has particular utility 

in hypo-fractionated treatments such as stereotactic body radiotherapy (SBRT) in which a few large doses 

of radiation are delivered to small, well-defined tumors [1].  

SBRT has been used successfully to treat early-stage non-small cell lung cancer, however, 

respiratory motion can be a cause of uncertainty in localizing the tumor and other organs during 

radiotherapy delivery, potentially compromising the effectiveness of the therapy. Uncertainties caused by 

respiration can affect the accuracy of imaging, treatment planning, and treatment delivery [2]. Respiratory 

motion modeling techniques have been developed to address these respiratory-induced uncertainties by 

enabling the estimation of  the locations of lesions and anatomical structures in 3D at all times throughout 

treatment [3]–[8], enabling clinicians to assess the impact of motion during therapy.  

Planning for SBRT is typically performed using 4-dimesional CT (4DCT) images, which are often 

captured days or weeks before treatment. In many motion modeling approaches, these planning images are 

used for building patient-specific motion models [5], [8]–[11]. These models are often generated by 

applying principal component analysis (PCA) to a set of deformation vector fields (DVFs) between the 

phases of the 4DCT. The first few PCA eigenvectors, which describe most of the variance in the 4DCT, 

serve as the motion model.   

One potential issue of using pre-treatment planning imaging to generate motion models is the 

applicability of these models at the time of treatment. A patient’s anatomy or respiratory pattern may change 

in the intervening time, and thus, motion models built using the planning 4DCT may not reliably represent 

patient anatomy and/or organ motion at the time of treatment delivery [12]. In fractionated SBRT, 

radiotherapy treatment is delivered in a few fractions (typically 3 to 5), and it is possible that no single 

motion model may reliably and adequately represent the patient motion and anatomy on each day of 

treatment, limiting the clinical utility of a technique based on a planning 4DCT-derived model. This may 

make it necessary to generate motion models at the time of each treatment fraction. 

 Onboard image guidance techniques available in the treatment room, such as cone-beam CT 

(CBCT), can obtain patient images in the treatment position immediately before and/or after treatment, 

making CBCT particularly well-suited for image-guided radiotherapy. The development of 4-dimensional 

CBCT has further allowed the changes in a patient’s anatomy due to respiratory motion to be imaged at the 

time of treatment. These 4DCBCT scans can be reconstructed by sorting projection images into phases by 

extracting a respiratory signal and reconstructing each set of projections into separate 3D images [13]–[16]. 

4DCBCT images are acquired immediately before treatment when the patient is in treatment 

position. Building motion models based on 4DCBCT images has the potential to resolve problems with 

inter-fraction organ motion or changes in respiratory patterns which could therefore help in reducing 

modeling uncertainties [17], [18]. However, the 4DCBCT images being used to build the motion model 

may contain artifacts due to the small number of projections used for the image reconstruction at each 

respiratory phase [19]–[24]. Thus, the quality of 4DCBCT images may presents a significant challenge 

when using them in building motion models. 

This paper aims to quantify and discuss the inter-fraction variations of PCA-based motion models 

built from 4DCBCT images captured immediately prior to each fraction of a radiotherapy treatment course. 

This analysis method can be applied to any motion model involving displacement vectors, not only the 

specific PCA motion model studied in this paper. Several studies have explored the changes in patient 



anatomy and motion patterns over the course of fractionated radiotherapy [25]–[29].These studies showed 

that safety margins added to account for respiratory motion may not be adequate if they are based on a 

single imaging session, especially when relying on external or internal surrogate motion. They also showed 

that margins for lung targets should include inter-fraction variations in breathing. Several works 

investigated the inter-fraction variations over a course of radiotherapy treatment for lung cancer [1], [30]–

[32]. Matsugi et al. studied the day-to-day variations in the gross tumor volume (GTV), position, and motion 

range over a course of radiotherapy for lung cancer using 4DCT. Their study found that there are small day-

to-day variations in GTV, position, and motion range which may require additional assessment to the size 

of the inferred safety margins [1]. Using 4DCBCT, Sonke et al. quantified the day-to-day variability in lung 

tumor trajectory and mean position during a radiotherapy treatment course [30]. Their study showed that 

tumor trajectory shape and baseline variations can be accurately monitored using 4DCBCT which can help 

develop image-guided strategies for motion correction to reduce safety treatment margins [30]. Rit et al. 

have also studied the day-to-day variability of the diaphragm motion throughout a radiotherapy treatment 

course of lung cancer and its effect on safety margins [31]. Their study showed that the diaphragm position 

and the intra-acquisition variability have a limited impact on dose distributions and derived safe margins.  

As discussed, day-to-day variations in the motion patterns of the tumor or other individual 

anatomical structures during the course of radiation therapy have been studied in the literature, but the 

relationship between these variations and their effect on the validity of a pre-treatment motion model have 

not been established. This work aims to quantify these variations and study their effect on the validity of a 

pre-treatment motion model built from 4DCBCT-based images captured prior to the first fraction of a 

radiotherapy treatment course. A preliminary version of this work has been reported [32]. 

The manuscript is organized as follows: Section 2 describes the materials and the methods used to 

generate the fraction-specific motion models and the evaluation criteria. Section 3 presents the experimental 

results. Section 4 discusses the results. Section 5 concludes the paper. 

 

2.  Materials and methods 

2.A. Data acquisition  

Twenty-one 4DCBCT scans from five SBRT patient treatments acquired using the Elekta Synergy system 

(Elekta Oncology Systems Ltd., Crawley, West Sussex, UK) were used retrospectively in this study. 

Projection images were acquired at 5.5 fps for 4 min over an arc of 200 degrees to optimize the sampling 

for 4DCBCT. Each patient dataset has between 3 and 5 fraction scans with a total of 1304 to 1356 

projections in each scan. To produce the 4DCBCT images, respiratory signals from each scan have been 

extracted using Amsterdam Shroud method [10], [13] and used to sort the scan projections into six phase 

bins. Projections at each phase bin were reconstructed independently to produce six 4DCBCT images for 

each scan using the Feldkamp, Davis and Kress (FDK) reconstruction algorithm [33] implemented in the 

Reconstruction ToolKit (RTK) [34].  

2.B. Principal Component Analysis (PCA) for motion modeling 

Building PCA motion models from a set of 4DCBCT images captured at each fraction requires performing 

the following two steps: 



1) Applying deformable image registration (DIR) on each 4DCBCT image from the dataset of each 

fraction with respect to a reference image chosen from that set. In this study, the first image was chosen 

as a reference image where the respiratory phase was peak exhale. DIR finds the displacement between 

each voxel of the reference image and its correspondence in each other image in the set. This will result 

in displacement vector fields (DVFs) representing the voxel-wise displacements between the reference 

image and all other images of the set. The Demons algorithm was used in this study with double force 

implementation [35].  

2) Performing dimensionality reduction using PCA on the DVFs. This step takes a high-dimensional DVF 

dataset and enables it to be represented using only a few parameters. PCA determines a new set of basis 

eigenvectors that span the subspace defined by the set of DVFs by finding the directions of maximum 

variance. Dimensionality can be reduced by discarding basis vectors which explain negligible parts of 

the total overall variance. Thus, PCA results in a smaller subspace spanned by a set of basis eigenvectors 

that capture the largest modes of variance in the DVFs. A PCA motion model is defined by a linear 

combination of a few basis eigenvectors and weighting parameters (2-3), known as PCA coefficients 

[4], [36]. Using this definition, the DVF can be represented as [5], [37]:  





M

m

mm twu
1

)(DVFDVF    (1) 

where DVF is the mean DVF. um are the eigenvectors obtained from PCA and are defined in space, while 

the parameters wm (t) are PCA coefficients and are defined in time. M is the number of eigenmodes. 

2.C. Evaluation of the day-to-day variations in motion models  

The following criteria comprising of three metrics is used to evaluate and compare motion models built 

from different fractions. 

2.C.a. Evaluation Metrics 

1) Root mean square (RMS) difference between the eigenvectors of the motion model derived from 

the reference fraction and the corresponding eigenvectors of the motion models derived from 

subsequent fractions. The RMS measures the absolute differences between the corresponding normalized 

eigenvectors. It is computed by finding the square root of the mean square difference between the compared 

eigenvectors as follows:  

𝑹𝑴𝑺 = √
∑ (𝒗𝟏,𝒎,𝒏−𝒗𝒇,𝒎,𝒏)𝟐𝑵

𝒏=𝟏
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where 𝒗1,𝑚,𝑛 corresponds to the nth element in the eigenvector in the first fraction of treatment (reference 

fraction), and 𝒗𝑓,𝑚,𝑛corresponds to the nth element in the eigenvector in the fth  fraction of treatment. 𝑚 is 

the eigenmode and N is the number of elements in the eigenvectors. 

2) Directional similarity of the eigenvectors of the motion model derived from the reference fraction 

and the corresponding eigenvectors of the motion models derived from subsequent fractions. The 

directional similarity is computed by finding the dot product between the compared eigenvectors. The dot 

product is the directional multiplication between vectors. It used in this study as a measure of the projection 

of one eigenvector onto another which can find how much the vectors vary in direction. If two compared 



eigenvectors are pointing in the same direction, their dot product will result in 1. It will result in zero if they 

are perpendicular, and -1 if they are pointing in opposite directions. In this study, the dot product is 

computed for eigenvectors of the motion model of the first fraction, as the reference fraction, and the 

corresponding eigenvectors in the subsequent fractions to quantify their directional similarity. 

3) Euclidean Model Norm (EMN) defined as the Euclidean norm of each eigenvector in the basis 

formed by the set of the first three eigenvectors in the reference fraction. This quantity is defined to 

represent how well an eigenvector can be reconstructed using a motion model built using the first three 

eigenvectors from the motion model of the first day of treatment. This metric is introduced to account for 

the fact that even though the eigenvectors of the motion may change day-to-day, the model formed by a 

subset of these vectors from a prior day may still be able to represent the motion on a subsequent day. EMN 

is defined as:  

𝐸𝑀𝑁𝑓,𝑚 =  √∑ |𝑣1,𝑘 ∙ 𝑣𝑓,𝑚|
2𝐾

𝑘=1     (3) 

where 𝑣1,𝑘 is the eigenvector from the first fraction at the kth eigenmode and 𝑣𝑓,𝑚 is the eigenvector from 

the fth fraction at the mth eigenmode. The eigenvectors used are all normalized to unit length and K is the 

number of eigenmodes used to define the reference-day motion model. In this study we have selected K = 

3.  Previous studies showed that the organ motion measured by the DVFs can be represented by a linear 

combination of only a few (2–3) PCA basis eigenvectors and coefficients [4], [36]. Thus, using EMN, we 

want to find quantitatively the degree to which such a motion model built from the first three eigenvectors 

from the first fraction can represent other eigenvectors from subsequent fractions. The EMN is calculated 

as the square root of the sum of the squares of the dot products of the reference model eigenvectors and 

other eigenvectors from subsequent fractions. An EMN of unity would reflect that an eigenvector is 

completely represented in a motion model derived from the first fraction, whereas an EMN of zero would 

indicate that the motion captured by a particular eigenvector would not be captured in that motion model. 

The EMN, equation (3), has been used as a global measure of quantifying day-to-day variations among 

different motion models formed by the first three eigenvectors of the first fraction showing the most 

variances of the dataset. This criteria is relevant if the eigenvectors of the first fraction are different than 

the eigenvectors from later fractions, but cover a similar range of possible motion combinations (i.e., span 

the same subspace). For example, if eigenvector 1 and eigenvector 2 switch places between fractions, these 

criteria reflect that the motion models would be equivalent. 

2.C.b. Alignment 

The evaluation criteria discussed above are applied on the datasets under two alignment cases:  

Alignment #1: Rigid registration according to bony anatomy is applied to register the entire 4DCBCT 

images in the subsequent fractions to the entire images in the first fraction. 

Alignment #2: Rigid registration according to a region of interest (ROI) around the tumor is applied 

to register the entire 4DCBCT images in the subsequent fractions to the corresponding ROI in the 

images in the first fraction.  



This alignment procedure is performed to avoid bias due to mis-registration of the images, and 

simulates the clinical practices of either aligning to bony anatomy (Alignment #1) or the target 

(Alignment #2). 

3. Experimental results 

 
In this section, the day-to-day variations of motion models derived from several treatment fractions are 

evaluated on patient datasets according to the evaluation criteria proposed in Section 2.C. Figure 1 shows 

the first three eigenvectors of the PCA motion model obtained from the first fraction of Patient #1. The 

PCA eigenvectors are plotted on a coronal slice from that dataset. In this figure, the eigenvectors are 

normalized but not scaled. The vector’s length and direction correspond to the magnitude and direction of 

its motion, respectively. The first PCA eigenvector in (a) show a superior-inferior motion, while the second 

and third eigenvectors in (b) and (c), respectively show a combination of left-right (LR) and anterior-

posterior (AP) motion. 

 

     

          (a)        (b)          (c) 

Figure 1: PCA eigenvectors for Patient #1 at Fraction #1 for the eigenmodes (a) 1, (b) 2, and (c) 3. 

Figure 2 (a) shows the spectrum of the eigenvalues obtained from PCA motion models generated from all 

treatment fractions for Patient #1. As can be seen from the figure, the eigenvalues decrease with higher 

eigenmodes and they drop drastically after the third eigenmode in all treatment days. This may indicate that 

the higher eigenmodes contain minimal variance compared to the first ones. Figure 2 (b) shows the 

explained variance ratio for each eigenvector. In this figure, the individual explained variance and the 

cumulative explained variance are shown. As can be seen from the figure, most of the variance (79.32% of 

the variance) can be explained by the first eigenvector alone. The second eigenvector still holds some 

information (14.60% of the variance), while the third and the fourth principal components contain 3.20% 

and 2.41% of the variance, respectively. In this case, the first two eigenvectors together contain about 94% 

of the information (i.e., explain 94% of the variance).  



 
Figure 2: Variance explained by eigenvectors. (a) Eigenvalues’ spectrum of the motion models of       

Patient #1 over a treatment course. (b) Explained variance ratio of the motion model of Patient #1 at Day 

1.  

In the following Sections 3.A – 3.C, the day-to-day variations of the motion models built from each fraction 

of treatment are presented. The evaluation criteria discussed in Section 2.C is applied on all the eigenmodes 

resulted from applying PCA on the DVF dataset (five in this study) to give the reader insights about the 

variability and stability of all eigenvectors of PCA motion models built from subsequent fractions of 

treatment. The results are discussed and compared to relevant studies in the field in Section 4.  

3.A. Root mean square (RMS) difference  

In this section, the RMS difference between the eigenvectors of the first fraction and the corresponding 

eigenvectors in the subsequent fractions is quantified. Figure 3 shows the average RMS differences for all 

patient datasets used in this study at different eigenmodes considering both alignment cases. As can be seen 

from the figure, the RMS difference between the eigenvectors of the motion model derived from the first 

fraction and the corresponding eigenvectors in the subsequent fractions increases with the higher 

eigenmodes in both alignment cases. For higher eigenmodes, the RMS difference between the eigenvectors 

in the first fraction and the eigenvectors in the subsequent fractions remained unchanged in both alignment 

cases. This may indicate that the eigenvectors at higher eigenmodes (4 and 5) have minimal variance and 

may only contain random information that has no useful implications on the organ motion represented by 

the DVFs.   
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Figure 3: The average RMS difference between the eigenvectors of the reference motion model derived 

from the first fraction and the corresponding eigenvectors of the motion models derived from subsequent 

fractions for all patient datasets at each eigenmode, considering two alignment cases: (a) Alignment #1 

uses rigid registration with respect to bony anatomy and (b) Alignment #2 uses rigid registration with 

respect to an ROI around the tumor, as defined in Section 2.C.b. 

3.B. Directional similarity  

In this section, the directional similarity between eigenvectors of the first fraction and the eigenvectors of 

the subsequent fractions is measured. Table 1 shows the average dot product between the eigenvectors of 

the motion model derived from the first fraction and the eigenvectors derived from all other fractions at 

each eigenmode for all datasets. The results in Table 1 are under Alignment #1. As seen in Table 1, the dot 

product decreases with higher eigenmodes, i.e., corresponding eigenvecors at the first few eigenmodes have 

more similarities in direction than those at the higher eigenmodes. 

 

Table 1: Average dot product between the eigenvectors of the motion model derived from the first fraction 

and the corresponding eigenvectors of the motion models derived from subsequent fractions for all patient 

datasets under Alignment #1.  

Eigenmodes Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Average 

1 0.777 0.669 0.294 0.754 0.811 0.661 

2 0.192 0.653 0.229 0.371 0.532 0.395 

3 0.255 0.063 -0.018 0.172 0.351 0.165 

4 -0.013 0.076 -0.100 -0.096 -0.288 -0.084 

5 -0.011 0.137 -0.016 -0.036 0.129 0.041 

 

Table 2 shows the average dot product between the eigenvectors of the motion model derived from the first 

fraction and the eigenvectors in the subsequent fraction at each eigenmode for all datasets under Alignment 

#2. 

 

 



Table 2: Average dot product between the eigenvectors of the motion model derived from the first fraction 

and the corresponding eigenvectors of the motion models derived from subsequent fractions for all patient 

datasets under Alignment #2. 

Eigenmodes Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Average 

1 0.619 0.143 0.542 0.542 0.387 0.446 

2 0.380 0.001 0.128 0.571 0.305 0.277 

3 0.081 -0.050 -0.074 0.266 -0.043 0.036 

4 0.056 -0.018 0.081 0.081 -0.033 0.033 

5 0.015 0.002 0.019 0.055 -0.020 0.014 
 

Table 2 showed that the first few eigenmodes typically had larger dot products than the last few ones. The 

dot product decreases with higher eigenmodes, which also indicates that corresponding eigenvecors at the 

first few eigenmodes have more similarities in direction than those at the higher eigenmodes. The clinical 

relevance of these results are discussed in Section 4. 

3.C. Euclidean Model Norm  

The EMN evaluates how well an eigenvector in the subsequent fractions can be represented by a motion 

model derived from a reference fraction. EMN evaluation metric has been described in Section 2.C.a. Table 

3 shows the average EMN between the motion model formed by the first three eigenvectors of the first 

fraction and all other eigenvectors in the subsequent fractions for all datasets under Alignment #1. As shown 

in Table 3, EMN decreases with higher eigenmodes.  

Table 3: The average EMN between the motion model formed by the first three eigenvectors of the first 

fraction and all other eigenvectors in the subsequent fractions in all patient datasets under Alignment #1. 

Eigenmodes Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Average 

1 0.804 0.757 0.674 0.776 0.819 0.766 

2 0.531 0.718 0.595 0.549 0.554 0.589 

3 0.349 0.209 0.204 0.371 0.426 0.312 

4 0.316 0.110 0.126 0.320 0.123 0.199 

5 0.063 0.118 0.128 0.196 0.117 0.124 

Similarly, Table 4 shows the average EMN between the motion model formed by the first three eigenvectors 

of the first fraction and all other eigenvectors in the subsequent fractions for all datasets under Alignment 

#2.  

Table 4: The average EMN between the motion model formed by the first three eigenvectors of the first 

fraction and all other eigenvectors in the subsequent fractions in all patient datasets under Alignment #2. 

Eigenmodes Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Average 

1 0.735 0.502 0.544 0.821 0.835 0.687 

2 0.609 0.517 0.332 0.736 0.668 0.572 

3 0.414 0.347 0.369 0.405 0.335 0.374 

4 0.258 0.185 0.252 0.241 0.167 0.220 

5 0.336 0.199 0.148 0.121 0.237 0.208 

 



Table 3 and Table 4 show the same trend where the EMN decreases with higher eigenmodes. To summarize 

the results, the average RMS, directional similarity (dot product), and EMN of the first two eigenvectors 

are calculated and compared to those of the last three eigenvectors. Results showed that the eigenvectors at 

the first two eigenmodes have smaller RMS (0.00017), larger dot product (0.528), and larger EMN (0.678) 

than those at higher eigenmodes (RMS: 0.00025, dot product: 0.041, and EMN: 0.212) considering 

Alignment #1. 

  Figure 4 shows the result of applying the evaluation criteria used in this paper (i.e., RMS, dot 

product, and EMN) on a sample patient underwent a five-day radiotherapy course. In this figure, the 

variations between the eigenvectors of the reference motion model derived from the first fraction and the 

corresponding motion models derived from the subsequent fractions are demonstrated at each eigenmode 

across fractions. As can be seen from the plots in Figure 4, the inter-fraction differences between the 

reference motion model and the subsequent ones are noticed in all fractions, even among the first few 

eigenmodes. However, there is no time trend noticed. These results are in agreement with the results 

obtained in Figure 3 and Tables 1- 4 where the eigenvectors at the first (2-3) eigenmodes remained the most 

stable, having smaller RMS, larger dot product, and larger EMN than those at higher eigenmodes. The 

relative standard deviation in RMS across fractions was no more than 3.5% for the first three eigenmodes. 

It did not exceed 12% in dot product (1.6%, 5.8%, and 12% for the first, second, and third eigenmodes, 

respectively), and 15% in EMN (1.4%, 7.8%, and 15% for the first, second, and third eigenmodes, 

respectively). 

   
(a)                       (b)      (c) 

Figure 4: The evaluation metrics applied on the eigenvectors of the reference motion model derived from 

the first fraction and the corresponding eigenvectors derived from subsequent fractions at each eigenmode 

for Patient #5 under Alignment #1. Metrics are: (a) RMS difference, (b) dot product, and (c) EMN 

between the motion model formed by the first three eigenvectors of the first fraction and all other 

eigenvectors in the subsequent fractions. 

4. Discussion 

In this work, the variations of motion models derived from several fractions of a radiotherapy treatment 

course have been measured based on different criteria: 1) the RMS differences between the eigenvectors of 

the motion model derived from the first fraction and the corresponding eigenvectors of subsequent fractions, 

2) the directional similarity calculated as the dot product between the eigenvectors of the motion model 

derived from the first fraction and the corresponding eigenvectors of subsequent fractions, and 3) the EMN 

1-2               1-3                1-4               1-5 1-2              1-3                1-4               1-5 1-2               1-3               1-4                1-5 



between a motion model formed by the first three eigenvectors of the first fraction and every eigenvector 

in the subsequent fractions. The criteria is measured on sets of images considering two alignment settings 

where: 1) the entire 4DCBCT images in the subsequent fractions are registered using rigid registration with 

respect to the bony anatomy to the corresponding 4DCBCT images in the first fraction (Alignment #1), and 

2) the entire 4DCBCT images in the subsequent fractions are registered using rigid registration with respect 

to an ROI around the tumor in the 4DCBCT images in the first fraction (Alignment #2). 

 Results showed that the first eigenvectors (associated with the largest eigenvalues) contain more 

variance than the eigenvectors at higher eigenmodes, as depicted in Figure 2 (a). The individual explained 

variance and the cumulative explained variance plotted in Figure 2 (b) showed that most of the variance in 

the DVF dataset was explained by the first 2-3 eigenvectors. This may indicate that the rest of the 

eigenvectors can be dropped safely without losing important information. This may also support the 

findings of other studies that have shown that a motion model built from the first 2-3 eigenvectors was able 

to fully represent organ motion extracted in the DVFs [5], [37].  

RMS represents an absolute difference between the values of the corresponding eigenvectors. It 

was noticed that the RMS difference between the corresponding eigenvectors increases with higher 

eigenmodes in both alignment cases as seen in Figure 3. This indicates that the eigenvectors in the first few 

eigenmodes are more stable and represent similar motion to the reference motion model than the ones at 

higher eigenmodes. The eigenvectors at higher eigenmodes (4 and 5) showed no increase in RMS which 

may indicate that these eigenvectors only contain random information that will not contribute to the motion 

model.  In Figure 3 (b), the RMS is calculated from datasets after using rigid registration of an ROI around 

the tumor (Alignment #2). The larger scale gives an indication that the RMS differences (absolute distance) 

between these eigenvectors are larger. Having an ROI around soft tissues may increase the difference 

between the bone alignment (especially if the tumor is localized adjacent to the bone), and this may increase 

the difference between the eigenvectors of the different fractions. The RMS has some limitations as it results 

in a single number calculated from all vectors in the DVFs including the DVFs representing the motion of 

image areas that are not clinically of interest. Thus, RMS is not used in this study as a standalone evaluation 

metric to evaluate the day-to-day variations of motion models. However, it can be useful to understand the 

behavior of the motion vectors across fractions.  

 The values of the dot product between any two eigenvectors can indicate the directional similarity 

between them. The purpose of using this metric is to measure the directional similarity between the 

eigenvectors of the reference motion model derived from the first fraction and the eigenvectors of motion 

models derived from subsequent fractions. Low values of dot product, i.e. below or around zero, for 

eigenvectors at specific eigenmodes across fractions may indicate that these eigenvectors cannot be used to 

represent a reliable motion model. Using the dot product as an evaluation measure between the 

eigenvectors, it is noticed that the directional similarity between the eigenvectors of the first fraction and 

their correspondences in subsequent fractions decreases with higher eigenmodes. Eigenvectors at higher 

eigenmodes show no similarity to those at the first reference motion model which may indicate that these 

eigenvectors may only contain noise. The higher directional similarity seen between the eigenvectors at the 

first few eigenmodes can imply that a reference motion model formed by these eigenvectors can have higher 

stability, therefore can represent the organ motion variations through a treatment course, which we are 

further investigating using the EMN metric introduced in this paper.  



 The EMN metric was intended to be used as a global measure to evaluate how effectively a set of 

eigenvectors from the first fraction can represent the organ motion in the subsequent fractions. We chose 

the first three eigenvectors from the first fraction because, as shown by the explained variance plot depicted 

in Figure 2, we anticipate that the PCA sorts the eigenvectors by the amount of variance they can describe 

in the dataset and thus can be used to represent the motion patterns in the subsequent fractions (i.e., the first 

three eigenvectors form the reference motion model). This criteria can also estimate how much information 

can be lost if the motion model built from the first fraction is used in the subsequent treatment days. Results 

showed that EMN values decrease with higher eigenmodes. This may indicate that only the first few 

eigenvectors in the subsequent fractions can be represented by a reference motion model formed by the first 

three eigenvectors obtained from the reference fraction.  

According to the results obtained using all the evaluation metrics considering two alignment cases, 

it has been noticed that Alignment #1 resulted in less variability between the reference fraction and the 

subsequent fractions compared to Alignment #2. This indicates that image registration with respect to an 

ROI around soft-tissues may increase the difference between the bone alignment in the images which may 

result in increasing the difference between the eigenvectors at the different fractions. Thus, according to 

our results, rigid registration with respect to bony anatomy between fractions may be preferred when 

dealing with PCA motion models or other motion models that involve using motion displacement vectors. 

Using the three metrics discussed in this study, the clinical implications of our findings are 

summarized as follows:  

(1) Lung motion at each fraction of the 4DCBCT datasets can be completely represented by 2-3 

eigenvectors.  

(2) A single reference motion model derived from the first few (2-3) eigenvectors from the first fraction 

may stay stable and reliable to represent the motion in the subsequent fractions.  

(3) Variances are still seen even in the first few PCA eigenvectors on a day-to-day basis. Quantifying the 

effect of these variations on the motion reconstruction accuracy need to be studied for specific clinical tasks. 

(4) Applying rigid registration according to bony anatomy on the entire 4DCBCT images in the subsequent 

fractions to align them to the entire images in the first fraction may reduce the day-to-day variations in PCA 

eigenvectors. 

 The clinical importance of studying the inter-fraction variability of PCA motion model is not 

limited to the ability of using one motion model to represent the entire lung motion through several 

fractions. Incremental motion modeling techniques can be derived to update/enhance the reference motion 

model to include additional motion variations that were not known in the reference motion model. 

Moreover, other imaging techniques may contribute to update the reference patient-specific motion model. 

The work presented in this paper can be useful in clinical applications such as 4D dose accumulation or 

tumor tracking. For tumor tracking, having knowledge of the day-to-day variations in patient anatomy or 

motion patterns can be useful in verifying the position of the tumor and normal structures during 

radiotherapy treatment delivery [8]. Also the motion models estimated from each fraction can be used to 

estimate and/or verify the delivered dose distributions [38], [39]. 4DCBCT-based motion models are used 

to generate 3D time-varying images [17]. 3D fluoroscopic images may be more accurate if estimated at 

each treatment fraction than using the planning 4DCT images or the 4DCBCT images of the first treatment 

fraction to derive the motion model, especially when there are uncertainties in the setup, tumor position or 

respiratory motion pattern, between simulation and treatment, or changes in the patient anatomy. However, 



using 4DCBCT images to estimate motion models can present other challenges that make dose calculation 

difficult such as the poor quality of the 4DCBCT images used in building the motion model. One cause of 

poor image quality in 4DCBCT volumes is having too few projections for image reconstruction.  

It is important to discuss other sources of uncertainty that may cause variations in motion models 

other than the actual day-to-day variations. First, the accuracy of the PCA motion models depends on the 

accuracy of the 4DCBCT images that are used to build the models. Second, the DIR algorithm applied to 

these images may also introduce inaccuracies or uncertainties. Both image and motion artifacts in 4DCBCT 

are likely to degrade the quality of DIR. PCA as a dimensionality reduction method is able to remove small 

independent noise in the DVFs generated by DIR methods but it is does not eliminate large errors in the 

deformation [8]. Li et al. studied the contribution of the error produced by the PCA motion model derived 

from 4DCT image datasets on the tumor localization error in the generated 3D time-varying images [8]. 

Their study showed that the error introduced by the PCA lung motion model is insignificant comparing to 

the error produced by the 2D/3D registration used in that work. Similarly, Dhou et al. studied the effect of 

the undersampling of 4DCBCT data on tumor localization in the generated 3D time-varying images using 

PCA motion models and 3D registration [17]. Their study showed that the error in tumor localization was 

around 3 times larger using a severely undersampled data set than using a well-sampled one. In this work, 

the 4DCBCT images used to build the model suffer from the poor quality because of the too few projections 

used to reconstruct these images. The streaking artifacts in these images may have contributed to degrade 

the quality of DIR which subsequently affected the PCA motion models built based on the resulting DVFs. 

Various methods have been proposed to address the undersampling problem and to improve image quality 

in 4DCBCT, such as compressed sensing [19]–[23], motion compensated reconstruction [24], [40]–[42], 

intermediate frame interpolation [43]–[47], and other advanced methods [48], [49]. Future studies may 

consider these methods to improve 4DCBCT images before using them in building motion models. Day-

to-day variations may also be studied using these improved 4DCBCT images and compared to the findings 

of this study.   

5. Conclusion 

This paper presented a quantitative evaluation of the day-to-day variations of PCA motion models built 

from 4DCBCT images. The experiments and analysis was performed on five patient datasets each with 

multiple treatment fractions. The findings of this study supported the findings of other relevant studies in 

the assumption that lung motion at a specific treatment day can be completely represented by 2-3 

eigenvectors. The study also showed that the first few eigenvectors (2-3) of the PCA motion model 

remained the most stable (similar to those of the reference model built from the first fraction images) over 

a course of radiotherapy treatment. For a sample patient, the RMS, dot product, and EMN did not vary more 

than 3.5%, 12%, and 15%, respectively across five fractions for the first three eigenmodes. Thus, a motion 

model built from the first few PCA eigenvectors can represent the patient motion during a radiotherapy 

treatment course. Despite their relatively greater stability, day-to-day variations are still noticed among the 

first few motion model eigenvectors. The study also found that registering the entire 4DCBCT images in 

the subsequent fractions to the entire images in the first fraction with respect the bony anatomy may reduce 

the day-to-day variations in PCA eigenvectors. In future work, the effect of these day-to-day variations on 

motion modeling applications will be investigated for target localization and dose calculation.  
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