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Abstract 

 Stringent environmental regulations for control of pollutants have led to the use of 

effective air pollution control strategies. Biotrickling filter, one of the biological reactors, 

offers a great advantage of being a cost effective and environmental friendly technology. This 

emerging technology has not yet received widespread application. Moreover, there is still a 

need to develop an appropriate biotrickling filter model for general acceptance and equally 

important to design an optimum control strategy before utilizing this technology on a large 

scale. Hence, this thesis aims to develop a representative dynamic model for the biotrickling 

filter based on the review of existing models, provide accurate analytical and numerical 

solution of the model under different conditions, and also select an optimum control strategy 

amongst the different control systems designed in this study. A theoretical model was 

selected, validated and modified to account for continuous, larger biotrickling filter. The 

modified model was solved using the pseudo-steady state assumption to reduce 

computational effort and time. Based on sensitivity analysis of the modified model, it was 

found that gas velocity and inlet concentration had strong effect on the outlet concentration of 

biotrickling filter. To implement the control strategies, simple data driven models were 

obtained using the data from simulation of the modified model. These data driven models 

were needed since the modified model simulation would require considerable computational 

effort and time. In particular, transfer function and neural network models were successfully 

obtained with R2 values above 0.97. Five control strategies were designed, implemented and 

analyzed through set-point and disturbance changes. Three of the five controllers were based 

on transfer function biotrickling filter model while the rest used steady state neural networks 

as the biotrickling filter plant model. Overall, it was found that the proportional-integral, 

proportional-integral with feedforward and the transfer function based model predictive 

controllers provided satisfactory system performance. In case of the neural network based 

model predictive controller, excellent set-point tracking had been observed but an offset error 

had been observed in case of disturbance change. While the addition of an integral controller 

to the neural network based model predictive controller eliminated the offset errors, large 

overshoots had been observed in response to both set-point and disturbance changes. 

Search Terms: biotrickling filter, mathematical modeling, step response model, neural network 

model, biotrickling filter control strategies, conventional control strategies, advanced control 
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Nomenclature 
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d  - disturbance variable 
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ug
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Gf  - feedforward controller transfer function 
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Gm / Gt  - sensor transfer function 

Gp  - process transfer function 

Gv  - control valve transfer function 

gc  - gravitational constant (mh-2) 

H  - Henry’s constant ( - ) 

i, j  - index for finite elements in the dynamic model 
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KIP  - current to pressure transducer gain 

Km  - measurement gain 
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Kv  - control valve gain 
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u  - manipulated variable  

U  - input 
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We  - Weber number 
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Chapter 1. Introduction 
 

Stringent environmental regulations for control of pollutants have led to the use of 

effective air pollution control strategies. Biotrickling filter (BTF), one of the biological 

reactors, offers a great advantage of being a cost effective and environmental friendly 

technology [1]. This emerging technology has not yet received widespread application. 

However, in the future, environmental regulations will become more restricted, forcing 

industries to implement such environmental friendly technologies. As mentioned by 

Devinny and Ramesh [2], no single BTF model exists for general acceptance and most of 

the models are specific to experiments under study. On the other hand, implementing any 

industrial process without control is impossible by all respect and controlling treatment 

processes is by itself a necessity to avoid release of pollutants above the legal limits. 

Hence, accurate model prediction and effective control of a BTF is necessary to render 

this prospective technology feasible for industrial application.  

 

1.1 Background 
 

Harmful pollutants such as volatile organic compounds and odorous compounds 

released from several industries pose a serious threat to human health and environment 

[1]. An even worse situation is the increasing release of these compounds as more 

industries develop to cope with the increasing population. As a result, there is an 

increasing demand to control such emissions for the well-being of humans and the 

environment. Stringent environmental regulations for the emissions of such pollutants 

have led industries to opt for effective air pollution control technologies to comply with 

the governmental regulations as well as minimize costs for treatment [1]. Physical and 

chemical treatment technologies are the conventional methods used in industries to treat 

these pollutants. However, biological treatment technologies have increasingly become 

popular due to some major advantages they offer in comparison to the conventional 

methods. Biological reactors offer greater advantage of being cost-effective as well as 

environmental friendly [1]. There are three main types of bioreactors: 1) biofilters, 2) 

biotrickling filters, and 3) bioscrubbers. The basic removal mechanisms are somewhat 
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similar in all three bioreactors. A biotrickling filter (BTF), the bioreactor of interest, 

consists of a packed-bed column through which there is continuous flow of liquid and 

pollutant laden gas stream [3]. The continuous liquid stream (trickling liquid) consists of 

an aqueous solution of nutrients to sustain micro-organisms immobilized on the inert 

packing material. The reactor is operated either co-currently or counter-currently with 

respect to the gas and liquid phases. A schematic diagram of the biotrickling trickling 

filter is shown in Fig. 1-1.  

 
Figure  1-1. Schematic of a biotrickling filter [3] 

 
The mechanism of a BTF consists of absorption of pollutant from the gas phase 

into the liquid phase and then into an aqueous biological layer known as biofilm. Once in 

the biofilm, the pollutant diffuses and gets biodegraded along the depth of the biofilm. 

Since the packing is inert, biotrickling filters need to be inoculated [3]. Some of the 

factors affecting the performance of a biotrickling filter are as follows: 
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− Nutrient supply 

In general, continuous nutrient supply is needed to support the microbial 

community as well as control biological operating parameters such as pH, amount of 

nutrients, etc [1]. Moreover, the liquid supply may also reduce clogging problems by 

sloughing of biofilm [2]. However, excessive nutrient supply results in excessive biomass 

formation and clogging of filter bed, typically in case of VOC control [4]. On the other 

hand, in case of odor and H2S control, clogging does not occur since thin biofilms are 

formed due to the inefficiency of the micro-organisms with respect to growth and 

biomass formation. 

− Mode of operation 

For VOC control, co-current operation is preferred. In case of counter current 

operation, stripping of the contaminant from the recycled liquid occurs at the gas outlet, 

resulting in lower removal efficiency. For H2S and odor control, where such processes 

are mass transfer limited due to the low solubility of the contaminants in the liquid, 

counter current operation is preferred. [4] 

− Trickling rate 

The effect of trickling rate depends on the nature of process that limits the 

pollutant removal. For treatment of acid producing pollutants such as H2S, pH control can 

be achieved with the trickling liquid. For a low trickling rate, the rate of removal of acid 

products will be low, causing inhibition of the process culture. However, high trickling 

rate results in the formation of a thick liquid layer over the biofilm. A thick layer will 

result in high mass transfer resistance, thereby reducing the removal efficiency.                                                                                      
 

− Oxygen content 

Oxygen, needed by the micro-organisms, has a high value of Henry’s law 

constant, implying that penetration depth of oxygen in biofilm will be lower than the 

pollutant. Hence, limitation of oxygen occurs that might result in the development of 

anaerobic zones. [4] 
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− Inoculation 

As mentioned above, the inert packing requires inoculation since there are no 

microbial populations on the inert packing initially. Inoculation is usually done using 

activated sludge, compost extract, specialized enriched cultures, etc [4]. Initially, water 

supply and purge through the BTF is reduced to avoid possible wash out and facilitate 

attachment of micro-organisms onto the packing.   

 

1.2 Overview of Biotrickling Filter Modeling and Control  
 

To achieve an understanding and improvement of reactor performance, several 

mathematical models have been developed for BTFs [2]. As mentioned earlier, a BTF 

process consists of contaminants being transferred from gas phase to the trickling liquid 

and then into the biofilm, where diffusion and biodegradation of contaminants take place. 

Hence, the major concepts involved in the existing biotrickling filter models are: 1) mass 

transfer, 2) biodegradation, and 3) biomass growth. In the gas phase, most models assume 

plug flow conditions, neglecting axial dispersion effects [2]. However, there are few 

models that have considered axial dispersion effects in cases where axial gradients are 

significant. With regard to pollutant mass transfer through the liquid layer, the liquid 

phase is usually neglected due to the assumption that a thin liquid layer offers less 

resistance to mass flow [5]. However, there are some models that use Henry’s law 

equilibrium at gas-liquid interface. In case of the biofilm phase, mass transfer has been 

described by Fick’s law [2]. The most important process that limits the performance of 

any bioreactor considered is biodegradation [2]. Most of the models incorporate Monod 

type kinetics for biodegradation that considers contaminant as the only limiting substrate. 

More realistic models have considered oxygen limitations and also inhibition effects 

sometimes in addition to the substrate limitation by using the Michaelis-Menten 

relationships and Haldane type kinetics. However, the major challenge in using such 

kinetics is the accurate prediction of biokinetic parameters [2]. Finally, many models 

have incorporated the effect of biomass growth since it affects the formation of biofilm 

and hence, performance of the BTF. As biomass increases, biofilm gets thicker. In this 

case, deeper portions of the biofilm will be deprived of oxygen and nutrients, resulting in 
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the formation of inactive zones [2]. Moreover, thickening of biofilm causes reduction of 

pore size and increase in the pressure drop, thereby resulting in the clogging of the filter 

bed. While some models have considered changes in biofilm thickness due to biomass 

growth, other models usually assume constant biofilm thickness since there is constant 

sloughing of biofilm by the trickling liquid. Despite the achievements made in BTF 

modeling, there hasn’t been a generally accepted BTF model because most of the models 

are specific to a particular application under study [2]. 

 Apart from theoretical modeling, there are few studies that focused on using 

simpler data driven or black-box models to predict the performance of a BTF [6], [7], [8]. 

While there have been major improvements in the model prediction of BTF performance, 

there is a need to design an optimum control scheme for a BTF as well; a major field that 

has not been quite addressed yet. Only one such research could be found where an 

effective control system for a BTF treating hydrogen sulphide (H2S) was designed [9].  

 

1.3 Problem Statement 
 

Based on the overview presented in the previous section, it can be deduced that 

there is a need to develop an appropriate BTF model for general acceptance and equally 

important to design an optimum control strategy before utilizing this technology on a 

large scale. Hence, this thesis aims to develop a representative dynamic model for the 

biotrickling filter based on the review of existing models, provide accurate analytical and 

numerical solution of the model under different conditions, and also select an optimum 

control strategy amongst the different control systems designed in this study.   

 

1.4 Thesis Organization 
 
 Chapters 2 of this thesis pertains to screening of different biotrickling filter 

models available in the literature, and then modify the most appropriate model to be 

simulated and validated against literature experimental data. Next, simulation and 

sensitivity analysis was performed on the proposed model quantifying the effect of 

different operating conditions on process performance. Chapter 3 of the thesis will be 
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dedicated to control system design and system identification of the BTF process. Black-

box reduced-order models for the BTF were fitted with the data generated from the 

rigorous model. The control system design was implemented on these identified models 

via classical and advanced control algorithms outlined in Chapter 3. Finally, major 

conclusions of this study and recommendations for future work are presented in    

Chapter 4.    
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Chapter 2. Modeling and Simulation of Biotrickling Filter 
 

 In general, developing a rigorous model for any given process is essential to 

achieve an accurate representation, prediction and understanding of its expected 

outcomes in real world situations. Likewise, there have been several models proposed to 

predict the performance of biotrickling filters. However, most of these models are only 

specific to the pollutants under consideration and hence, there is still a need for a 

generally accepted BTF model. This chapter focuses on the modeling aspect of the BTF 

where some existing theoretical models will be reviewed and an appropriate model will 

be selected, modified, and validated against process data. In addition, the developed 

model will be simulated and analyzed for its sensitivity towards different process 

parameters. 

 

2.1 Review of Existing BTF Models 
 

To select an appropriate BTF model, a review on existing literature models had 

been performed. Five such literature models had been reviewed and analyzed namely the 

models proposed by Kim & Deshusses [5], Alonso et al. [10], Liao et al. [11], Sharvelle 

et al. [12], and Lee & Heber [13]. Prior to summarizing the model assumptions made in 

these studies, a description of each model is provided in the following sections. 

 

 2.1.1 Model by Kim & Deshusses [5]. A transient model was developed for 

biodegradation of H2S in a counter current biotrickling filter. Moreover, the model had 

been successfully validated with experimental data obtained from a differential BTF in 

batch mode. The dynamic model was developed from existing biotrickling filter models 

with some improvements, mainly in the area of mass transfer effects since it was pointed 

out that the biotrickling filtration of H2S and other reduced compounds is often a mass 

transfer limited process. One of the main contributions made by this model was to 

account for the presence of both wetted and non-wetted biofilm as a result of incomplete 

biofilm wetting by the trickling liquid. This concept leads to removal of the pollutant by 

both direct transfer to the biofilm from the gas stream and indirect transfer to the biofilm 
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from the gas stream with liquid film as the intermediate layer. Biodegradation in the 

biofilm followed Michaelis-Menten relationship with H2S as the only limiting substrate. 

The model also considered mass transfer resistances at gas-liquid, gas-biofilm, and 

liquid-biofilm interfaces (Fig. 2-1) while assuming plug flow conditions in the gas 

stream. Biodegradation of H2S and other reduced compounds usually result in thin 

biofilms, thus the need to account for changes in biofilm thickness had been        

neglected [5]. The resulting model equations consist of mass balances in each of the 

phases considered (gas, liquid and biofilm layers). Mathematically, the equations contain 

finite difference approximations for concentration changes along the packed bed height 

and biofilm depth included in a system of ordinary differential equations for changes in 

concentration with time. 

 

Figure  2-1. Schematic of the BTF model concept proposed by Kim and Deshusses [5] 

 

 2.1.2 Model by Alonso et al. [10]. A dynamic model was developed to describe 

physical and biological processes occurring in a co-current trickle-bed biofilter for 

volatile organic compound (VOC) removal, with the focus being mainly on analyzing the 

“relationship between biofilter performance, biomass accumulation in the reactor, and 

mathematical description of the porous media” [10]. Three models were proposed with 

respect to the description of the porous medium: (a) spheres based model, (b) parallel 
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pipes based model, and (c) parallel plates based model (Fig. 2-2). Each model was 

compared with experimental data and it was concluded that the sphere and parallel pipes 

models were in close agreement with experimental data.  

 
Figure  2-2. Proposed models by Alonso et al. [10]: a) spheres based, b) parallel pipes based, and  

c) parallel plates based 

 
All the three proposed models assumed plug flow conditions in the gas phase 

whereas mass transfer resistance occurred in the liquid phase (Fig. 2-3). However, in 

addition to plug flow assumption, the parallel pipes based model considered a case where 

axial dispersion (in the gas phase) across the cross-section of the BTF existed. 

Biodegradation in the completely wetted biofilm followed Monod kinetics with VOC as 

the only limiting substrate. Moreover, the effect of biomass accumulation had been 

considered, thereby accounting for changes in biofilm thickness. The resulting equations 

consist of a system of partial differential equations for mass balances in the three phases 

and a dynamic model for biofilm thickness.    

 
Figure  2-3. General model concept by Alonso et al. [10] 



23 
 

 2.1.3 Model by Liao et al. [11]. A steady state model was developed describing 

biodegradation of a low concentration VOC in a BTF. The proposed capillary tube model 

considers packed bed as a series of straight capillary tubes with inner walls covered by 

the biofilm, and where the inner region consists of liquid flowing downward and the 

polluted gas flowing either co-currently or counter currently to the liquid flow (Fig. 2-4). 

 
Figure  2-4. Schematic of the capillary tube model proposed by Liao et al. [11] 

 
 The model considers mass transfer effect at gas-liquid interface, mass transfer 

resistance in the liquid phase, variation of liquid film thickness, and velocity distribution 

in the liquid and gas regions (Fig. 2-5). Variation in liquid film thickness was considered 

in response to the significant effect of mass transfer in liquid layer on VOC removal. 

Although equations were derived for changes in liquid film thickness with the height of 

the packed bed, the liquid film thickness was eventually concluded to be constant on 

account of a fully developed gas flow. Over prediction was observed while comparing 

theoretical results with experimental data. It was then proposed that the packing material 

was not fully covered with the biofilm, implying that the original area of active biofilm 

needed to be modified through a correction factor. With the modified area, the 

experimental results were well predicted by the model. Biodegradation in the biofilm 

followed Monod and Andrews type kinetics that considers oxygen limitation and 

inhibition effects in addition to the substrate (VOC) limitation. The resulting equations 

consist of steady state mass balance equations for both VOC and oxygen in the three 

phases and momentum balance equations for derivation of the liquid film thickness 

profile. 
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Figure  2-5. Schematic of the model structure proposed by Liao et. al [11] under a) co-current and  

b) counter-current flows 

 

 2.1.4 Model by Sharvelle et al. [12]. A simple model was developed for 

simultaneous treatment of graywater stimulant and waste gas containing ammonia and 

H2S in a BTF under counter and co-current flow regimes. The model accounts for mass 

transfer effects at gas-liquid and liquid-biofilm interface. Theoretical predictions were 

compared with experimental data obtained from bench-scale reactors. The proposed 

model was based on the combination of models proposed by Diks and Ottengraf & 

Ockeleon et al. and had only considered process parameters with significant effect on 

reactor performance. In addition, the accuracy was improved by introducing the 

following modifications while maintaining the simplicity of the model at the same time: 

a) addition of correction factors to the fraction of wetted area, gas and liquid mass 

transfer coefficients b) accounting for pH effects on Henry’s constants since the Henry’s 

constants for pollutants under consideration are highly dependent on pH. In the biofilm 

(completely wetted), biodegradation of pollutants followed zero order Monod kinetics. 

The model equations consist of steady state mass balances in the gas and liquid phases 

resulting in a system of ordinary differential equations. The Henry’s constant in the 

equations was modified to account for pH effects, and also correction factors were added 

to obtain accurate estimates of wetted area, gas and liquid mass transfer coefficients.    
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 2.1.5 Model by Lee & Heber [13]. A genetic algorithm was implemented using a 

dynamic model to obtain accurate estimates of process parameters for the removal of 

ethylene in a co-current BTF. The model was based on the modified form of the model 

proposed by Alonso et al. [10]. Experimental data were used to get optimum values of the 

parameters that would result in the least mean square errors between model and 

experimental results. Although the pollutant in the gas diffuses into the liquid layer and 

then into the biofilm where biodegradation occurs, it was emphasized that the pollutant 

transfer through the aqueous layers is affected by its hydrophilicity. A hydrophilic 

compound has less resistance to mass flow through the liquid layer than a hydrophobic 

compound. Large mass transfer resistance through a thick liquid film prevents transfer of 

a hydrophobic compound to the biofilm, resulting in an inactive biofilm. Since the 

pollutant under consideration (ethylene) is a hydrophobic compound, it was proposed that 

the liquid film thickness could be minimized to the point of being almost non-existent 

and that the pollutant in the gas phase is directly transferred to the biofilm (Fig. 2-6). On 

the other hand, pollutant removal in the completely non-wetted biofilm is described by 

first order Monod kinetics and that there are dynamic changes in biofilm thickness as 

well. 

 

 
Figure  2-6. Concentration gradient of hydrophobic compound without liquid 

barrier in the model proposed by Lee and Heber [13] 

 
The model equations consisted of partial differential equations (PDEs) describing 

dynamic changes of pollutant concentrations in the gas and biofilm phases. The gas phase 

concentration of pollutant varied with time and height of the BTF whereas the 
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concentration of pollutant in the biofilm varied with biofilm depth, height, and time. The 

PDEs also included an equation for describing dynamic change in the biofilm thickness. 

 

 2.1.6 Summary of models reviewed. A summary of the models reviewed above 

is shown in Table 2-1. As shown, there have been some remarkable achievements in the 

field of BTF modeling. Most of the models reviewed are similar to each other with 

respect to the processes occurring in each of the three phases. It has also been observed 

that in most of the VOC removal BTF models, biomass accumulation effect on biofilm 

thickness has been considered while for H2S removal process the accumulation effects 

have been neglected. This observation has been supported by [5] as well, where it has 

been stated that VOC degrading BTFs produce thicker biofilms than H2S degrading 

BTFs. Regarding the biodegradation of pollutant in the biofilm, there has been a variation 

in the type of kinetics used ranging from the simplest form of Monod kinetics to the more 

realistic Andrews type kinetics. The main limitation observed in these models is their 

specific applicability towards the pollutant being treated. Thus, there may be 

uncertainties in applying a model, specific to one pollutant, over another pollutant [5]. 

Although coming up with a general BTF model would be a great achievement, this task is 

quite challenging and would require considerable effort. One probable cause of facing 

such difficulties may be the “difference in process biology” observed between treating 

different types of pollutants [5]. 
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Table  2-1 
Summary of Reviewed Models 

 Kim & 
Deshusses [5] 

Alonso et al.      
[10] 

Liao et al.        
[11] 

Sharvelle       
et al. [12] 

Lee & Heber 
[13] 

 
Gas Pollutant (s) 

H2S VOC Low conc. 
VOC 

Ammonia   
H2S 

Ethylene 

 
Model Dynamics 

Dynamic 
 

Dynamic Steady state Steady state Dynamic 

Mode of 
Operation 

Countercurrent Co-current Counter &  
Co-current 

Counter & 
Co-current 

Co-current 

 
 
Phases 
Considered  

Gas 

Liquid 

Wetted biofilm 

Non-wetted 
biofilm 

Gas 

Liquid 

Wetted biofilm 

Gas 

Liquid 

Wetted biofilm 

Gas 

Liquid 

Wetted 
biofilm 

Gas 

Non-wetted 
biofilm 

 
 
Gas Phase 
Properties 

Plug flow 

 

Plug flow 

Additional case 
of axial 
dispersion for 
parallel pipes 
based model 

Plug flow Plug flow Plug flow 

 
 
Biofilm Phase 
Characteristics 

Michelis-
Menten 
kinetics  
 
 
Constant 
biofilm depth 

Monod kinetics  
 
 
 
Variation in 
biofilm depth 

Monod and 
Andrews type 
kinetics  
 
Constant 
biofilm depth 

Zero order 
Monod 
kinetics 
 
Constant 
biofilm depth 

First order 
Monod 
kinetics 
 
Variation in 
biofilm 
depth 

 
 
 
 
 
Other  
Characteristics 

Conc. varies 
along  bed 
height and 
biofilm depth 
 
Interfacial 
mass transfer 
resistances  
 
 
 

Conc. varies 
along  bed 
height and 
biofilm depth 
 
Three models 
proposed w.r.t. 
to packing 
geometry 
 

Conc. varies 
along  bed 
height and 
biofilm depth 
 
Considers 
change in liquid 
film thickness 
& incomplete 
coverage of 
packing by 
biofilm 

Conc. varies 
along  bed 
height 
 
Added 
correction 
factors to 
mass transfer 
parameters 
 
pH effects 
considered 

Conc. varies 
along  bed 
height and 
biofilm 
depth 
 
Considers 
non-existent 
liquid layer 
due to min. 
trickling liq. 
rate & 
hydrophobic 
pollutant  
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2.2 BTF Model Selection  
 
 As mentioned earlier, selecting a BTF model is one of the main objectives of this 

study. The main aim here was to select a model that would be simple in terms of getting a 

mathematical solution while at the same time, it would account for most of the 

phenomena occurring in a BTF process. Therefore, the model proposed by Kim & 

Deshusses [5] met these objectives and was selected as the target model for performance 

prediction and analysis of the BTF process. While the modeling achievements made by 

other researchers are worth mentioning, the significant consideration of mass transfer 

resistances and additional phase for non-wetted biofilm in the model by [5] is remarkable. 

However, the only limitation lies in the type of pollutant being treated. As a result, 

hydrogen sulphide (H2S), pollutant of interest in [5], is the target pollutant considered in 

this study. 

 

2.3 BTF Model Formulation 
 
 This section focuses on listing the assumptions and equations used by [5] in 

model formulation of H2S abatement in a BTF. Moreover, Kim & Deshusses’ model [5] 

was modified to account for continuous and larger BTF system. 

 
 2.3.1 Model assumptions. The model had been developed based on the following 

assumptions [5]: 

 

1) There is complete coverage of the packing material by the biofilm, which has 

uniform thickness. The assumption of a constant biofilm thickness has been 

supported by the observation that H2S removing BTFs usually produce thin 

biofilms [5]. 

2) There is presence of both wetted and non-wetted biofilm due to partial wetting of 

the biofilm. 

3) Dynamic changes in the wetting of the biofilm are not considered. 

4) There is no adsorption of contaminant onto the support material 
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5) Plug flow conditions exist in the gas phase. There are no radial changes in 

concentration or axial dispersion. 

6) Interfacial mass fluxes are expressed by mass transfer coefficients. 

7) Gas to liquid and gas to non-wetted biofilm mass transfer coefficients are equal to 

each other 

8) Gas-liquid, gas-biofilm, and liquid-biofilm interfaces are at equilibrium 

9) Diffusion in the biofilm is described by Fick’s law 

10) Biodegradation kinetics in the biofilm follow a Michelis-Menten relationship and 

H2S is the only rate limiting substrate. Hence, there are no oxygen and nutrient 

limitations. Moreover, the biokinetic parameters are same for the wetted and non-

wetted biofilm. 

11) No reaction in the liquid phase since there is negligible amount of biomass in the 

recycled trickling liquid used in [5]. 

12) pH effects are neglected since pH had been controlled in the experiment 

conducted by [5]. 

13) Physical properties like temperature, pressure etc. are assumed to be constant. 

 

 2.3.2 Model equations. The dynamic model equations consist of mass balances in 

each phase, where the height of the BTF and biofilm depth has been discretized into j 

(numbered from bottom of the packed bed) and i (numbered from biofilm interface) 

segments respectively. Hence, the equations contain finite difference approximations for 

changes along the height and biofilm depth, resulting in a system of ordinary differential 

equations. For finite differentiation, each subdivision is assumed to be ideally mixed. A 

schematic of the resulting model structure is shown in Fig. 2-7. 
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Figure  2-7. Model structure proposed by Kim and Deshusses [5]. 

   Note: Notations given in Nomenclature section 

  
Based on the assumptions, the equations developed by Kim and Deshusses [5] are 

as follows:  

 

Gas phase 

Vg
dCg[ j ]

dt
= Fg�Cg[ j -1 ] - Cg [ j ]� - kgl Aw�Cg[ j ] – Cgi1[ j ]� -                                 (2.1) 

 kg2 Anw�Cg[ j ] - Cgi2[ j ]�   

 

Liquid phase 

VL
dCL[ j ]

dt
= FL(CL[ j +1 ] - CL [ j ]) + kgl Aw�Cg[ j ] – Cgi1[ j ]� -                                  (2.2) 

 kL Aw(CL[ j ] - CLi2[ j ])  
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Non-wetted biofilm phase 

 

− For i =1 (biofilm interface), 

dCwb[1 , j]
dt

 = 
𝐷𝐿

�FT2�
 (CL[ j ] - 2Cwb[1 , j] + Cwb[ 2 , j]) - 

Rmax Cwb[1 , j]
Ks+ Cwb[1 , j]

                   (2.3) 

 

− For i = 2 to N -1, 

dCwb[i , j]
dt

= 
𝐷𝐿

�FT2�
 (Cwb[ i -1 , j] - 2Cwb[i , j]+ Cwb[ i+1 , j]) - 

Rmax Cwb[i , j]
Ks+ Cwb[i , j]

           (2.4) 

 

− For i = N (biofilm depth point), 

dCwb[N , j]
dt

= 
𝐷𝐿

(∆𝐹𝑇)2  (Cwb[ N-1 , j] - Cwb[N , j]) - 
Rmax Cwb[N , j]
Ks+ Cwb[N , j]

                               (2.5) 

 
 

Wetted biofilm phase 

− For i =1 (biofilm interface), 

dCnwb[1 , j]
dt

 = 
𝐷𝐿

(∆𝐹𝑇)2  �
Cg[ j ]

H
 - 2Cnwb[1 , j] + Cnwb[ 2 , j]�  - 

Rmax Cnwb[1 , j]
Ks+ Cnwb[1 , j]

          (2.6) 
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− For i = 2 to N -1, 

dCnwb[i , j]
dt

= 
𝐷𝐿

(∆𝐹𝑇)2  (Cnwb[ i -1 , j] – 2Cnwb[i , j]+ Cnwb[ i+1 , j])                                  (2.7) 

 - 
Rmax Cnwb[i , j]
Ks+ Cnwb[i , j]       

 

− For i = N (biofilm depth point), 

dCnwb[N , j]
dt

= 
𝐷𝐿

(∆𝐹𝑇)2  (Cnwb[ N-1 , j] - Cnwb[N , j]) - 
Rmax Cnwb[N , j]
Ks+ Cnwb[N , j]

                         (2.8) 

 
Note: Variable notations have been provided in the Nomenclature section. 

 
Initial conditions 

Gas and liquid phases 

Cg(1) = Cg0 

CL(1) = 
Cg0
H  (Henry's law)                 

Cg(j) = CL(j) = 0,     where j ≠1  

 

Wetted and non-wetted biofilm phases 

Cwb(1,1)= 
Cg0
H

 

Cwb(i,j) = 0,     where j ≠ 1 

Cnwb(i,j) = 0,   for all i and j 

 

 2.3.3 Modified BTF Model. In the modeling study conducted by [5], the 

proposed model was validated with a differential BTF operated in batch mode. This was 

done to ease the effort required in the determination of the biodegradation kinetics 

parameters and also to reduce the mass transfer resistance in the gas film by operating at 

higher gas flows than usual. The model equations for gas phase listed in the previous 
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section account for the gas outlet being continuously recycled to BTF column as the inlet. 

In this case, the inlet concentration decreases and depends on the outlet concentration 

whereas the inlet concentration to a continuous BTF is usually constant and independent 

of outlet concentration. For the purpose of modeling the BTF process in continuous 

mode, equation (2.1) was reconstructed as follows: 

− For j = 1 (reactor inlet), 

Cg(1) = Cg0                (2.9) 

 

− For j = 2 to N (reactor outlet point), 

Refer to equation (2.1) 

 

Another issue that needs discussion is the size of the experimental reactor and the 

estimated parameters used in the validation experiment conducted by [5]. A differential 

reactor had been used and some of the model parameters were experimental. In 

particular, the dynamic liquid hold-up (VL) appearing in equation (2.2) was calculated 

based on an empirical equation and it is applicable only for the size of the packed bed 

considered and not valid for extrapolation [5]. For the control objectives considered in 

this study, using a differential BTF would be inappropriate. Moreover, if the BTF is 

scaled up, there would be uncertainties in using some of the experiment based model 

parameters provided in [5]. Also, determining these parameters using alternative methods 

is quite difficult and in some cases impossible without an experiment. To solve this 

problem, cascade of n-multistage batch reactors were proposed to represent the 

continuous process in the limit as the number of stages goes to a large number n as shown 

in Fig. 2-8. 
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Figure  2-8. BTFs in series model structure 
   

 With the proposed reactors in series model and in addition to the assumptions 

listed earlier, it is assumed that the BTFs connected in series are identical to each other in 

terms of size and performance as predicted by Kim & Deshusses’ [5] model. The 

required changes in the model equations for the proposed model are as follows: 

− For the first reactor, equation (2.9) applies in addition to equations (2.1) – (2.8) 

since this represents the inlet point of the scaled-up reactor and has a constant H2S 

feed concentration. 

 
− For second to nth reactor, only equations (2.1) to (2.8) apply since the inlet 

concentration to each of these reactors is changing. This is due to the fact that the 

outlet of one reactor serves as an input to the other reactor that follows it in series 

and the outlet concentration is changing with time. 
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2.4 Model Simulation 
 
 This section provides a dynamic analysis of the BTF performance through 

simulation of the model formulated in the previous sections. Both Kim and Deshusses’ 

original model [5] and the modified model proposed in this work will be simulated. 

Sensitivity analysis of the important process parameters using steady state outlet 

concentration of H2S as the BTF performance indicator has also been performed. 

However, the dynamic analysis will be based on simulation of the modified model only. 

Kim and Deshusses’ model will be simulated only for the purpose of comparing the 

results with those obtained in [5] and also to verify its validity with experimental data. 

All the required simulations were carried out using MATLAB R2009b numerical solver 

for ODEs. MATLAB codes are given in the Appendix. Moreover, the simulations were 

run on an Intel Core 2 Duo T5800 2.00 GHz processor. 

 

 2.4.1 BTF process conditions and model parameters. In the validation 

experiment conducted by [5], the packed bed consisted of a single cube of open pore 

polyurethane foam (PUF) with the gas and the trickling liquid being continuously 

circulated through the differential BTF in batch mode. Further details about the 

experiment can be found in [5]. The BTF system properties and conditions used for 

model simulations and analyses are shown in Table 2-2. The height of the BTF required 

for scale-up was fixed and determined according to the removal efficiency of the original 

differential BTF in [5]. In other words, the height was adjusted until the removal 

efficiency in the scaled-up BTF was approximately the same as that observed in the 

differential BTF. Hence, according to the BTFs in series model, the resulting pilot scale 

BTF required forty differential BTFs in series.  
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Table  2-2 
BTF process properties and conditions 
 
Packing size (cubic shape) 0.04 m 

Packed bed dimensions - Differential BTF 0.04 m x 0.04 m x 0.04 m [5] 

Packed bed dimensions - Pilot scale BTF 1.6 m x 0.04 m x 0.04 m 

Pollutant Hydrogen sulphide (H2S) 

Pollutant Carrier Air 

Trickling Liquid Water 

Mode of Operation – Pilot scale BTF Continuous 
Counter current flow 

System Temperature (constant) 25oC  

System Pressure (constant) 1 atm 

Inlet H2S concentration 0.1 – 0.25 (g/m3) 

Gas Velocity 100 – 10 000 (m/h) 

0.02778 – 2.778 (m/s) 

Liquid - Gas Velocity Ratio 5 x 10- 4  –  0.05  

 

Some of the model parameters like the dynamic liquid hold up and the biokinetic 

parameters were obtained from experimentally based values given in [5], while others 

were estimated using the correlations. In particular, the mass transfer parameters were 

estimated using Onda’s correlations although there is an uncertainty in extending the 

applicability of these correlations to PUF packing [5].  The correlations are given as 

follows [5], [14]: 

kL= 0.0051 �
L

aw μL
�

2
3

 �
μL

ρL DL
�

-0.5

�aDp�
0.4

 �
ρL
μLgc

�
-0.5

                                             (2.10) 

 

𝑘𝑔 = 5.23 �
G

a μg
�
0.7

  �
μg

ρg 𝐷𝑔
�

1
3

 �a Dp�
−2

 a Dg                                                                  (2.11) 

 

WR = 
Aw

A
 = 1 - exp �-1.45 � 

σp

σ
 �

0.75
Re0.1 Fr -0.05 We0.2�                                                 (2.12) 
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 A summary of the model parameters used excluding the system conditions is 

shown in Table 2-3. Since the value of gas hold up had not been mentioned in [5], it was 

estimated using a simple expression (shown in Table 2-3) involving an approximated gas-

liquid volume ratio and liquid hold up. 

Table  2-3 
BTF model parameters 

Parameter Value/Equation Calculation Method/ 
Reference 

kg (gas-liq. mass transfer coefficient) Equation (2.10) Onda’s correlation [5], [14] 

kL (liq. -biofilm mass transfer coefficient) Equation (2.11) Onda’s correlation [5], [14] 

FT (biofilm thickness) 23 μm [5] 

Rm (maximum reaction rate) 58 400 g/(m3.h) Experiment based value [5] 

KS (Michaelis-Menten constant) 0.0279 g/m3 Experiment based value [5] 

H (Henry’s constant for H2S) 0.387 [5] 

DL (diffusion coefficient of H2S in liq.) 5.796 x 10-6 m2/h [5] 

Dg (diffusion coefficient of H2S in air) 1.6332 x 10-2 m2/h Fuller correlation [15] 

a (specific interfacial area) 600 m2/m3 [5] 

VL (dynamic liquid holdup) (1 x 10-5)FL + (8 x 10-6) Experimental correlation [5] 

Vg/L (gas-liquid volume ratio) 8.6 x 104 Approximation based on 
experimental conditions in [5] 

Vg (gas volume/gas hold up) Vg/L * VL  Estimation 

i,j (discretized segments along  biofilm 
depth and BTF height respectively) 

10 [5] 

 

 In [5], the model results were validated with experimental data at certain process 

conditions. These conditions (shown in Table 2-4) have been considered as the base 

conditions and the term will be used wherever the use of these conditions is required in 

the upcoming discussions.  

Table  2-4 
Base conditions for BTF process 

Variable Value 

Inlet concentration of H2S (g/m3) 0.164 

Gas velocity (m/h) 9 400  

Liquid-gas velocity ratio 1.2553 x 10- 3 
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 2.4.2 Solution Methodology. The simulation of the model required for analyses 

was performed using MATLAB R2009b. The original Kim and Deshusses’ model [5] 

involving system of stiff ordinary differential equations (ODEs) was solved using the 

ode15s solver in MATLAB. The ode15s is a multistep solver based on numerical 

differentiation formulae (NDF) and is used for solving stiff initial value problems for 

ODEs [16]. In case of the proposed model, a different solution methodology was applied 

before solving the model equations in MATLAB. Solving the ODEs for each of the forty 

reactors in series in MATLAB would require tremendous computational effort and time, 

making this solution methodology an unfeasible technique for simulation of the proposed 

model. Hence, a pseudo-steady state assumption was applied while simulating the 

proposed model where all the reactors in series except the first are simulated at steady 

state. For the first reactor, the equations are solved using the ODE solver in MATLAB 

similar to the solution of the original model. This numerical solution generates H2S 

concentrations at each of the discretized time elements. At each discretized time, the 

outlet concentrations are input as the inlet concentrations to the second reactor. In 

addition, the model equations are solved assuming steady state condition at each 

discretized time (Fig. 2-9). Finally, the steady state concentrations at all time elements are 

compiled together to obtain a time dependent concentration profile for the second reactor. 

This algorithm is repeated for all the remaining reactors to obtain the outlet concentration 

profile for the pilot scale BTF overall. Hence, a program was created in MATLAB to 

perform these computations for the proposed model scheme. In case of model sensitivity 

analysis, the model equations for all the reactors were solved at steady state conditions 

since the analyses had been performed based on the effect of process parameters on 

steady state outlet concentration. The system of non-linear equations resulting from the 

steady state assumption of the model equations was solved using the fsolve command     

in MATLAB that uses the trust-region dogleg method of solution for non-linear  

equations [17]. 
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Figure  2-9. Solution scheme for BTFs in series model 

 

 2.4.3 Results and discussion 
 
 2.4.3.1 Simulation and validity of original model. The simulated concentration 

profiles at the inlet of the differential BTF including the experimental data obtained   

from [5] are shown in Fig. 2-10. The CPU time for this simulation was around               

53 seconds. The original model was simulated at the base gas and liquid flows with 

concentration profiles obtained at both high and low initial inlet H2S concentrations. As 

expected, both the profiles show a non-linear decrease in inlet H2S concentration with 

time since the pollutant (H2S) is continuously being removed by mass transfer and 

biodegraded by the micro-organisms during circulation of the gas through the batch 

reactor. At the end of the simulation time, approximately 94 percent H2S removal 

efficiency had been achieved. The profiles in Fig. 2-10 also include the original model 

solution by Kim and Deshusses [5]. It can be clearly seen that the original model profiles 

from [5] have been successfully reproduced by the model solution in this work as both 

the profiles are mostly close to each other. Overall, it can be observed that the model 

agrees well with experimental data at high initial H2S concentration whereas over 

prediction exists at lower concentration. Through sensitivity analysis of nine model 

parameters and examination of concentration profiles in the biofilm at low H2S 
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concentration, [5] deduced that there had been mass transfer limitation in the biofilm 

resulting in the formation of inactive biofilm zones. It was also observed that the 

accuracy of model prediction at lower concentration improved after changing the value of 

H2S diffusivity in liquid [5]. The exact justification for this behavior could not be figured 

out, but was explained to be probably related to inaccuracies in model parameters [5].  

Nevertheless, changes to the H2S diffusivity were unnecessary for this study since the 

inlet H2S concentrations considered for simulations ranged from intermediate to high 

levels. Hence, the model proves to be sufficiently reliable for the range of the inlet 

concentrations considered without the need of modification to H2S diffusivity.      

  
Figure  2-10. Comparisons between original model predictions and experimental data. 
  

 2.4.3.2 Simulation of the modified model. Analogous to the dynamic batch 

concentration profiles in Fig. 2-10, the steady state concentration profile at the base 

conditions along the length (or number of differential BTFs) of the continuous pilot scale 

BTF is shown in Fig. 2-11. A similar non-linear behavior is observed where the steady 

state H2S concentration continuously decreases as the gas flows through the length of the 

BTF column. It can also be deduced that more H2S could be treated by increasing the 

height of packed bed. Since the size of pilot scale BTF had been adjusted according to the 
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performance of the batch BTF in [5] at the base conditions, overall H2S removal 

efficiency of approximately 94 % had been observed with the modified model simulation. 

  
Figure  2-11. Simulation of the proposed BTFs in series model at steady state 

 
 A dynamic concentration profile of H2S at the BTF outlet had also been simulated 

and is shown in Fig. 2-12 at the base conditions. Initially, the H2S concentration is zero 

since the system has not yet “felt” the presence of H2S at the outlet. After a while, there is 

a quasi-linear increase in the outlet concentration before reaching a steady state value in 

approximately 9 minutes (0.15 h). This behavior is analogous to the reaction rate sigmoid 

curve observed in the Michaelis-Menten biodegradation kinetics. It is also observed that 

the continuous BTF column reaches the steady state outlet concentration faster since a 

large BTF indicates faster and efficient removal of the pollutant. Although the proposed 

solution methodology for the modified model had been successfully implemented, the 

simulation of the dynamic response in Fig. 2-12 required CPU time of around 1 hour and 

28 minutes with the Intel Core 2 Duo processor. While the modified model solution is 

computationally challenging in terms of effort, the computational time could be reduced 

with a faster processor. Overall, the modified model simulation has produced reliable 

results in representing the process dynamics of the scaled up BTF.  
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Figure  2-12. Dynamic simulation of the proposed BTFs in series model 

 
 2.4.3.3 Sensitivity analysis of the modified model. Using the modified model 

predictions, sensitivity of the system specific parameters towards the process 

performance had been performed to determine the parameters that significantly affect the 

BTF performance. Moreover, this analysis is a prerequisite to determine the process 

variables that could be effectively used in BTF control. For the sensitivity analysis, the 

effects of gas velocity, liquid-gas velocity ratio (LGVR), and inlet H2S concentration on 

the steady state outlet concentration of H2S had been analyzed. The sensitivity of the 

model specific parameters such as the diffusion coefficient, liquid mass transfer 

coefficient and the biodegradation parameters has not been analyzed in this study. Since 

the modified model is based on Kim and Deshusses’ model [5] and is similar in 

prediction to the original model, the parametric sensitivity analyses have been provided 

in [5] where the maximum elimination capacity has been used as the performance 

variable. To analyze the effects of parameters considered in this study, the modified 

model had been simulated by varying one of the parameters while maintaining the others 

at constant values. Moreover, the simulations were performed at the base conditions 

wherever possible. 

 Fig. 2-13 shows the effect of inlet concentration of H2S on the steady state outlet 

concentration. It is observed that the outlet concentration is proportional to the inlet 
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concentration and that the relationship is non-linear. Alternatively, it could also be said 

that the H2S removal efficiency decreases with the increase in inlet concentration. The 

observed behavior can be accounted to the performance limitation of the BTF since at 

higher pollutant loadings, the extent of effective pollutant treatment by the BTF is 

decreased. However, with the BTF being operated at the base gas and liquid flows, high 

removal efficiencies were observed ranging from 92 to 96 percent overall.  

 
Figure  2-13. Effect of inlet concentration on BTF performance 

 
 The effect of gas velocity on the outlet concentration of H2S is shown in           

Fig. 2-14. Except for the lower values of gas velocity, there is a linear increase in the 

outlet concentration with the gas velocity. Change in gas velocity results in variation of 

the empty bed residence time (EBRT); the time spent by the chemical species in the 

reactor. High EBRT increases the removal efficiency of the pollutant since there is 

enough time for the process to effectively treat the pollutant whereas lower EBRTs 

decrease the removal efficiency due to insufficient time for effective biodegradation. As a 

result, there is an increase in the outlet concentration or a decrease in the removal 

efficiency with an increase in the gas flow through the BTF. At lower gas flows (~100 

m/h – 2000 m/h), the concentration profile is non-linear with complete pollutant removal 
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observed at very low gas flows (~ 100m/h – 500 m/h). Hence, the pollutant removal 

efficiency of a BTF could be improved by decreasing the gas velocity, but only to a 

certain extent since gas phase mass transfer resistances increase at lower gas flows.  

 
Figure  2-14. Effect of gas velocity on BTF performance 

 
 Finally, the effect of liquid-gas velocity ratio (or the liquid velocity in other 

words) at the base inlet concentration and gas velocity is shown in Fig. 2-15. 

Interestingly, a parabolic relationship is observed between the steady state outlet 

concentration and liquid-gas velocity ratio (LGVR) where the outlet concentration 

initially increases with the LGVR until reaching a maximum value and decreasing with 

further increase in LGVR. It can be observed that apart from the maximum point, two 

LGVR values exist for the same outlet concentration. This behavior is indicative of the 

mass transfer limitations in the liquid phase since a change in LGVR causes a change in 

the liquid velocity which in turn affects the thickness of the liquid layer surrounding the 

wetted biofilm. At very low values of LGVR (low liquid velocity), the removal efficiency 

is high (low outlet concentration) since the hydrodynamic layer is almost non-existent 

and offers very less resistance to mass flow of the pollutant to the biofilm. As the LGVR 

increases, the addition of a liquid layer increases the mass transfer resistance resulting in 

the increase of outlet concentration or decrease in removal efficiency. In fact, while 
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performing a trial simulation of the original model with the assumption of a completely 

wetted biofilm, it had been observed that the removal efficiency at the end of the 

simulation time (2 hours) was very low. The increase in the removal efficiency beyond 

the minimum point (maximum point in case of outlet concentration) can be related to the 

decrease in the hydrodynamic layer at higher LGVR values. In other words, the liquid 

velocity is now sufficiently large to cause a decrease in the hydrodynamic layer and also 

a decrease in the mass transfer resistance as a result. Looking at the trend of the 

concentration profile, it is expected that beyond the maximum limit of the LGVR 

considered in this study, the outlet concentration would eventually reach a constant value, 

implying that the removal process is now limited to diffusion and biodegradation in the 

biofilm and that the outlet concentration is no longer affected by higher values of LGVR. 

In general, it can be deduced that BTFs can be operated at lower trickling liquid rates and 

also, that the performance of a BTF is not strongly affected by the trickling liquid. 

 
Figure  2-15. Effect of liquid-gas velocity ratio on BTF performance 

 
 Based on the sensitivity analysis of the physical process parameters, it can be 

concluded that the inlet concentration of H2S and the gas velocity are the most significant 

variables affecting the performance of the BTF and that the performance is only affected 
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at very small range of LGVR. Hence, the LGVR can be considered as a constant and 

optimized to achieve an efficient performance overall. These conclusions would be 

helpful in designing and implementing an efficient control strategy for the BTF; a major 

part of this study that will discussed in the next chapter.  
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Chapter 3. Biotrickling Filter System Identification and Control 

 Designing an optimum control system is one of the most essential phases during 

the implementation of any pollutant treatment process. Complying with environmental 

regulations and meeting the legal pollutant release limits are the primary reasons of 

designing efficient control systems for such processes. However, without accurate 

understanding of the process dynamics, designing and effectively implementing control 

strategies is impossible. Hence, it is essential that accurate and reliable model 

identification of the process dynamics is obtained before implementing any control 

strategy. Moreover, it is also important that simulation of the identified model requires 

less computational effort and time. This chapter focuses on identifying the BTF process 

with simpler and reliable data-driven models followed by proposition of some classical 

and advanced control strategies. Through analyses of alternative control strategies 

developed in this work, an optimum control strategy will also be determined. Although 

the modified model proposed in section 2.3.3 could successfully represent the BTF 

process, simulation still requires some computational effort and time. Hence, control 

strategies have been based on data-driven models of the BTF. Nevertheless, these black 

box models have been fitted with data generated from simulation of the modified model. 

Two empirical models have been obtained for the BTF process: 1) step response model 

and 2) neural network model. 

 

3.1 BTF System Identification 
 

 In general, models developed for identification of process dynamics can be 

classified into the following types [18]: 

1) Theoretical models: these are first-principles models built upon fundamental laws 

of science and simplifying assumptions [19]. Although they provide “physical 

insight into process behavior”, they are time-consuming and require parameters that 

may not be readily available [18]. 

2) Empirical or black-box models: these are experimentally-fitted models and are 

more easily developed than theoretical models. Moreover, they require less 
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computational effort and time when compared to theoretical models. However, they 

have higher certainties of being unreliable for extrapolation [18]. 

3) Semi-empirical models: these widely used models are combination of theoretical 

and empirical models. They offer combined advantages of incorporating theory, 

being safe in terms of their use for extrapolation, and requiring less development 

effort [18]. 

 In case of designing efficient control systems for complex processes, acquiring 

empirical models is more feasible than theoretical models [18]. Several techniques for 

experimental identification of process dynamics exist in literature ranging from simplest 

models like linear and nonlinear autoregressive exogenous (ARX) models, step response 

models to more advanced models like state space models, state estimators or soft sensors, 

and the widely known artificial neural network (ANN) models [18], [19], [20]. While the 

models are usually developed in continuous form, some of these models have been 

developed in discrete form and are applied in cases when the sampling data exist in 

discrete form.        

  Besides the presence of several theoretical BTF models in literature, some studies 

have successfully developed empirical models specific to the experimental BTFs under 

consideration. In a study conducted by [6], a simple second-order empirical model was 

developed for an experimental anoxic BTF treating H2S in biogas. The model had been 

successfully developed to predict BTF performance parameters namely H2S removal 

efficiency and loading rate using H2S inlet concentration and biogas flow rate as the 

inputs. In another study [8], ANN models were developed for three different fungal 

bioreactors treating gas phase styrene. The models were developed for three different 

bioreactor configurations: 1) biofilter, 2) continuous stirred tank reactor, and 3) monolith 

bioreactor also commonly known as BTF [8]. In case of the monolith bioreactor, the 

ANN model was used to predict styrene removal efficiency (performance parameter) 

using inlet concentration of styrene, gas-liquid flow rate ratio, and pressure drop as the 

inputs. Moreover, the ANN parameters were optimized to obtain an optimum value of the 

regression coefficient (R2) between experimental and predicted results. Finally, ANN has 

also been used in another study [7], where a back-propagation neural network (NN) 

model had been successfully developed to predict the performance (elimination capacity 
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and removal efficiency) of a laboratory-scale BTF treating benzene, toluene, and xylene 

compounds. 

 In this work, two data-driven BTF models have been developed prior to the 

design and analyses of different control systems: 1) dynamic step response or transfer 

function model and 2) steady state NN model. The models are based on data generated 

from simulation of the modified model and will predict the outlet concentration of H2S, 

selected as the BTF performance criterion, using the inputs discussed in the next section.  

 3.1.1 BTF input-output structure. In section 2.4.3.3, it had been concluded that 

the inlet concentration of H2S and gas velocity were the most influential parameters 

affecting BTF performance while LGVR effects were significant only for a small range. 

These observations are necessary to list the sufficient number of inputs and outputs for 

system identification of the process. In addition, these observations would aid in 

proposing a control structure for the BTF process. Hence, the set of input-output 

variables used in developing data-driven BTF models is shown in Fig. 3-1. For more 

accurate identification of the BTF process with the NN model, LGVR and liquid velocity 

have also been used as the inputs. It should also be noted that the liquid velocity input 

depends on LGVR and gas velocity by the following relationship: 

uL= UL/g . ug                                                                                                                   (3.1) 

 On the other hand, transfer function models of the BTF process will be based only 

on the first two inputs shown in Fig. 3-1 while maintaining the LGVR at the base values.       

 
Figure  3-1. Input/output structure for system identification of the BTF process 
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 3.1.2 Open loop step response models. Fitting a model to step response data is 

the most direct method of system identification of a process [20]. This method involves 

creating a step change in one of the desired inputs and recording the corresponding output 

behavior as a function of time [20]. Once the data has been collected, an appropriate 

transfer function (TF) is fitted. Besides step function, the input change could also be in 

the form of a pulse signal, sine wave, saw-toothed signal or any arbitrary shaped      

signal [18]. Depending on the degree of accurate process representation, the fitted 

functions, in Laplace domain, can be either first- or higher-order models. These models 

are mainly represented by gain (K), time constant or lag time (𝜏), and sometimes time 

delay (𝜃) parameters. Process gain represents ratio of steady state change in the output 

over the step change in input whereas time constant provides an insight to the time taken 

by the process to reach steady state [20]. Finally, some processes exhibit delays in 

changes to output when disturbed by input changes. Hence, this behavior can be 

represented in the TF models with time delay terms. Most of the chemical engineering 

open loop processes are modeled with first order transfer function models having the 

following general form [20]: 

G(s) = 
𝑌(𝑠)
𝑈(𝑠)

=
  K e -θ s  
τs + 1                                                                                                              (3.2) 

 The parameters required for the TF models can be easily determined by graphical 

or non-linear regression methods [18]. For the BTF process considered in this work, first 

order TF models were obtained to predict the relationship between outlet concentration of 

H2S and the two inputs: 1) inlet concentration of H2S, Cg0 and 2) gas velocity, ug. The 

input-output dynamic data obtained from simulation of the modified model consisted of 

two sets. First, the modified model was simulated to obtain dynamic response of the 

outlet concentration at varying gas velocities while maintaining the other input (inlet 

concentration) at the base condition. The simulation was repeated with the inlet 

concentration being varied at the constant base gas velocity. The input changes were in 

step form and were within the operating ranges shown in Table 2-2. While fitting the TF 

models, the LGVR was maintained at the base value for the entire simulations. The 
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overall equation for predicting outlet concentration consists of two TF models that are 

added together by the superposition principle stated as follows: 

𝑌(s)  = � GK(s)
2

K = 1

UK(s)                                                                                                            (3.3) 

 Each of the two terms in the overall equation represents relationship between 

output (outlet concentration) and one of the inputs with no change in the other input. To 

develop this equation, it was necessary to transform the data into deviation form given as 

follows: 

∆X = X - Xnm                                                                                                                  (3.4) 

 This transformation ensures that while fitting the model between output and one 

of the inputs, the other input has a numeric value of zero. The required nominal values in 

equation (3.4) for the inputs were defined at the base conditions whereas the nominal 

value of the output was defined to be the steady state output resulting from modified 

model simulation at the base conditions. The required parameters for fitting the two TF 

models were obtained from the Design Tools Module in Loop Pro Trainer 5.1      

software [21]. Each of the two sets of input-output data was entered in this software, a 

suitable fitting model from the available models was selected and the final results were 

obtained that includes plots, fitted parameters, and the resulting R2 values. The fitted TF 

model output results from Loop Pro software were recorded and compared with the 

modified model simulation using MATLAB. 

 3.1.3 Neural network model. Artificial neural network (ANN) models are non-

linear empirical models that have increasingly become important nowadays for modeling 

environmental systems [22]. The ANN concept was based on the operation of the human 

brain where substantial parallel computations are performed using “structural constituents 

called neurons and the synaptic interconnections between them”, thereby creating a 

neural network [18]. Likewise, NN computation structure consists of a network of 

interconnected neurons organized in layers [18] and it involves using a series of 

equations that “stimulate learning and memorization process” [8]. Fitting a neural 
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network model consists of two phases: 1) training phase where the model normally 

requires large data sets to estimate the unknown fitting parameters 2) validation and 

testing phase where the model uses another set of data to validate and test the trained 

network [18]. NN models are useful in modeling non-linear complex processes and also 

in replacing models that require significant computational effort and time [18]. Moreover, 

ANNs have the advantages of being simple, noise and fault tolerant, and versatile to 

process changes [8]. However, ANNs have some disadvantages as well: 1) they require 

large data sets for process identification, 2) there is a possibility of over-fitness of the 

model with the data, 3) determining network topology for the model by trial and error  

can be an intensive task, and 5) the model needs to be re-trained whenever data set is 

updated [8].  

 Depending on the nature of signal transmission between the neurons, NN models 

are categorized into two types: 1) feed-forward neural network (FNN) and 2) recurrent 

neural network (RNN) models [23]. RNN models consist of networks with both forward 

and backward or feedback connections and they are particularly useful in modeling 

dynamic systems [23]. FNNs or multilayer perceptrons (MLPs) [23], the model of 

interest in this paper, is the commonly used model where signal is transmitted in the 

forward direction. In this model, neurons, also known as processing elements (PEs), are 

organized into three main layers: 1) an input layer, 2) one or more hidden layers, and 3) 

an output layer [22]. At each PE in the hidden layer, inputs (xi) from the preceding layer 

are weighted with adjustable connection weights (wij) , added to a threshold value (𝜃𝑗), 

combined into an input signal ( Ij ) and finally converted to the output neurons through an 

activation function (  f(Ij) ), as shown in Fig. 3-2. For optimization of the connection 

weights, there are many training algorithms available in literature some of which include 

the widely known back-propagation techniques like Levenberg-Marquardt, Shanno and 

conjugate gradient algorithms and global techniques like annealing and genetic 

algorithms [22]. In back-propagation FNN, input signals are transmitted in the forward 

direction while the error (between measured and predicted values) signals are transmitted 

backwards to re-adjust the connection weights accordingly [23]. This process continues 

until a best fit NN model is obtained. The most common activation function used in the 

FNNs is the logistic sigmoid function that has minimum and maximum values of 0 and 1 
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respectively [8]. Other activation functions include hyperbolic tangent, polynomial, 

rational functions and Fourier series [8]. Due to the nature of the activation functions, the 

measured data set needs to be normalized to fall within the range of these functions. 

Finally, determining the network topology, i.e. the optimum number of neurons in each 

layer, is the most important task that determines how well the model fits to the process 

data. The number of neurons in the input and output layers is equal to the number of 

process inputs and outputs. Although there are some heuristics that help in estimating the 

number neurons in the hidden layer, this task is usually accomplished by trial and error.    

 
Figure  3-2. General FNN structure [22] 

 
 For modeling the BTF process with NNs, four inputs and one output, shown in 

Fig. 3-1, were used. A steady state NN model was obtained using the data from 

simulation of the modified model at steady state. The NN model was obtained using the 

Neural Network Fitting Tool in MATLAB R2009b. This tool uses two-layer FNN with 

log sigmoid function for the hidden layer neurons and a linear function for the output 

layer neurons. Moreover, this tool trains the network using Levenberg-Marquardt back-

propagation algorithm. Due to the limits of the activation function, the input data was 

normalized using the following expression [8]: 

Xn = 
X -  Xmin

Xmax -  Xmin
                                                                                                                          (3.5) 
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 Since the output data fall within the limits of the activation function, the output 

data was not normalized. Moreover, the percentages of overall data used for training, 

validating, and testing the NN model were 70, 20, and 10 respectively. The transformed 

steady state input-output data from the modified model simulation were entered into the 

NN fitting tool, an optimum network topology was determined through trial-and-error 

and the resulting best fitted NN model was finally obtained. The overall results included 

comparisons, error and R2 value between NN model predictions and data. As a final step, 

the fitted NN model was simulated to analyze the output response with a step change in 

gas velocity and inlet concentration. Moreover, the output results were compared with 

those obtained from the modified model. The NN model obtained from the NN Fitting 

Tool was embedded and simulated in Simulink; an add-on software in MATLAB used to 

model, simulate, and analyze dynamic systems. The simulation results from Simulink 

were recorded and compared with the modified model using MATLAB. The Simulink 

block diagram for the NN model simulation is provided in the Appendix.  

 

 3.1.4 Results and discussion 

 
 3.1.4.1 Identified transfer function BTF models. The fitted TF model predictions 

of outlet concentration in response to step changes in gas velocity are compared with the 

modified model simulations and shown in Fig. 3-3. The input and output values represent 

deviation from the nominal values i.e. the base conditions. Since the values of the input 

and output in deviation form are considered to be zero at the base conditions, the negative 

and positive values represent negative and positive deviations from the base conditions 

respectively. In case of the output (outlet concentration), the base value represents the 

outlet concentration resulting from modified model simulation at the base conditions. 

Hence, the negative output values in Fig. 3-3 denote that the outlet concentration has 

decreased relative to the base value meaning that the removal efficiency has increased 

relative to the base removal efficiency (94%). Before commenting on the TF model 

representation of the BTF, some observations can be made on dynamic response of the 

output (outlet concentration) with respect to step changes in gas velocity. Almost all of 

the step changes in gas velocity cause similar step changes in the output. This implies that 
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the dynamic outlet concentration and gas velocity are linearly related to each other. 

Moreover, change in gas velocity causes immediate change in the output, implying that 

there is no time delay between output responses and input changes (gas velocity). 

Looking at Fig. 3-3, it can be seen that the TF model predictions agree well with the data 

except at some input changes where over and under predictions of TF model output 

results. 

 

Figure  3-3. (a) Output comparison between modified model data and fitted TF model for (b) step changes in gas 
velocity (input 1) at base inlet concentration (𝚫Cg0 = 0) 

 

 On the other hand, Fig. 3-4 shows output comparisons between the second TF 

model and modified model data for step changes in inlet concentration in deviation form. 

Analyzing the dynamic response, it can be observed that there is non-linear change in 

output in response to step change in the second input (Cg0). Moreover, it can also be 
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deduced that there is a time delay between inlet (second input) and outlet concentrations 

(output). This behavior can be clearly seen at the initial time of simulation in Fig. 3-4. 

The TF model predictions for this input-output relationship agree quite well with the data 

and hence, give satisfactory results.  However, it is observed that the TF model predicts 

linear change in outlet concentration in response to a step change in inlet concentration. 

These disparities are insignificant since the actual non-linear change occurs over a small 

time interval and can be safely modeled with a linear approximation.    

 

Figure  3-4. (a) Output comparison between modified model data and fitted TF model for (b) step changes in inlet 
concentration (input 2) at base gas velocity (𝚫ug = 0) 

 
 The overall results of the two TF model fits obtained from Loop Pro software are 

shown in Table 3-1. Comparing the time constants of the two TF models, the time 

constant for the first TF model is about forty times smaller than that of the second model. 

This indicates that the response between outlet concentration and gas velocity is faster 

than the response between outlet concentration and inlet concentration. Hence, the output 



57 
 

(outlet concentration) will reach a new steady state much faster with change in gas 

velocity than the inlet concentration. Looking at the time delays, there is also an 

approximately 1 minute time delay between output and input changes for the second 

model whereas the first model has no time delay. These results indicate that the dynamic 

behavior of the output in response to inlet concentration is quite slow and that changes in 

inlet concentration will have a major effect on optimization of BTF process performance 

and control. Finally, the values of R2 and sum of squares for error (SSE) prove that both 

the TF models are collectively reliable in predicting the BTF performance overall. The 

overall transfer function BTF model for predicting the outlet concentration can now be 

formulated in deviation form as follows: 

Δ𝐶𝑔 (s) = 
4.388 x 10-3

(1.8s + 1)  Δ𝑢𝑔 (s) + 
   0.1007 e-54s

(72.57s + 1)  Δ𝐶𝑔0 (s)                                           (3.6) 

 
Table  3-1 
Results summary of fitted BTF transfer function models 

 TF Model 1 
G1 (s) 

TF Model 2 
G2 (s) 

Input Δug (m/s) ΔCg0 (g/m3) 

Output ΔCg (g/m3) ΔCg (g/m3) 

Gain, K 4.388 x 10- 3  �g/m3

m/s
� 0.1007 ( - ) 

Time constant, τ 1.8 s 72.57 s 

Time delay, θ 0 54 s 

R2 value 0.9824 0.9701 

SSE 4.11 x 10-4 1.28 x 10-4 
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 3.1.4.2 BTF neural network model identification and simulation. Table 3-2 

shows the overall summary of the fitted NN model obtained from NN Fitting Tool.  The 

optimum network topology was found to be 4 - 7 - 1. In other words, while the number of 

neurons in the input and output layers were equal to the number of inputs and output used 

for the BTF process, the optimum number of neurons in the hidden layer was found to be 

seven through trial and error. As evident from the R2 and mean squared error (MSE) 

values, perfect NN model fit of the BTF process had been obtained. Hence, the NN 

model proves to be very reliable in predicting steady sate BTF performance. The ability 

of the NN model to accurately represent the BTF process can also be attributed to 

uncomplicated nature of the process itself where the simple relationships between inputs 

and the output can be easily modeled.  

Table  3-2 
Summary of fitted BTF neural network model 

Properties 

Inputs 

ug
n 

Cg0
n 

UL/g
 n 

uL
n 

Output Cg (g/m3) 

Total number of data samples 483 

Number of training samples 

Number of validation samples 

Number of test samples 

338 

97 

48 

Results 
Network topology 
(Input - hidden - output) 

4 - 7 - 1 

MSEs 

Training 

Validation 

Test 

 

1.12 x 10-11 

1.24 x 10-11 

6.14 x 10-12 

R2 values 

Training 

Validation 

Test 

 

1 

1 

1 
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 The dynamic response of the NN and modified models for a 32 % step decrease in 

gas velocity from base value is shown in Fig. 3-5. Although NN model is based on steady 

state data, it is observed that the NN model predictions almost perfectly agree with the 

modified model dynamic results. The NN model predictions are accurate because 

according to the dynamic response shown in Fig. 3-3 earlier, the output (outlet 

concentration) immediately reaches steady state value in response to a change in gas 

velocity. 

 
Figure  3-5. (a) Output comparison between modified model data and NN model for (b) step  

change in gas velocity at base inlet concentration 
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 In response to a 12 % step increase in the inlet concentration from the base value, 

the dynamic output comparisons between the NN model and the modified model are 

shown in Fig. 3-6. Since the steady state NN model does not account for time delay 

between output and inlet concentration, a time delay term was included in the Simulink 

block diagram. Comparing the predictions between the two models, it is clearly observed 

that NN model does not capture the dynamic response observed in the modified model 

output observed between 10 and 15 minutes. This discrepancy between the two models is 

due to the fact that NN model was derived based on the steady state data. However, the 

NN model was able to accurately capture the final steady state values of the modified 

model responses. 

 
Figure  3-6. (a) Output comparison between modified model data and NN model  

for (b) step change in inlet concentration at base gas velocity 
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 To sum up the discussion on system identification of the BTF process, TF and NN 

model representations of the BTF were successfully obtained. Overall, the agreement of 

dynamic responses from both the fitted models with the modified model data was 

satisfactory. With the BTF system being adequately described using simpler 

identification models obtained in this section, different control strategies based on these 

models will be proposed and implemented in the upcoming sections. 
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3.2 BTF Process Control 

 With process control, the goal of safely and efficiently maintaining a process at 

the desired conditions can be achieved [18]. For treatment processes, designing efficient 

control systems is necessary to comply with environmental regulations. To develop an 

effective control system, it is essential that the following characteristic process variables 

are specified first [18]: 

1) Controlled variables (CVs): these are the variables that require to be maintained at 

the desired values or set points [18]. In chemical processes, typical control variables 

include compositions, flow rates, levels, pressures and temperatures [20]. 

 
2) Manipulated variables (MVs): these are the variables adjusted to maintain the 

control variables at their set points. Flow rates of entering or leaving streams are the 

most common manipulated variables [20]. 

 
3) Disturbance variables (DVs): these variables affect the controlled variables and 

cannot be freely manipulated [18] since they are usually dependent on the upstream 

or downstream conditions of the plant [20]. An efficient control system must be 

robust towards preventing process disturbances as much as possible. 

 
 In general, control system design has either traditional or model-based     

approach [18]. In traditional approach, the control system is implemented only after 

major part of the plant design has been completed [18]. The second approach involves 

developing a process model first that would be helpful in: 1) forming a basis for model-

based control strategies, 2) being directly integrated into the control law, and 3) being 

used in computer simulations for analyzing different control strategies and also in 

determining preliminary controller settings, an activity more commonly known as 

controller tuning [18]. For simple processes, traditional approach is adequate while the 

control system design must be model-based in case of complex processes [18]. Finally, 

several control strategies exist ranging from conventional to advanced control systems. 

Conventional techniques are the widely implemented control systems and include 

feedback controllers such as on-off, proportional (P), integral (I), derivative (D), or more 
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commonly combined PID controllers [18]. Other well known strategies include 

feedforward and the hybrid feedback-feedforward control systems. More advanced 

single-loop (single input-single output) strategies include cascade, inferential, selective 

and override, adaptive and non-linear control systems like non-linear PID control and 

fuzzy logic control [18]. Another important and widely known advanced control 

technique that has been advantageous in multivariable control is the model predictive 

control (MPC) [18]. Depending on the characteristic of data signal transmission, the 

controllers could be either analog (for continuous signals) or digital (discontinuous 

signals) [20].        

 Several achievements have been made in the field of BTF modeling, but research 

in the design and analysis of control systems for BTF has not been performed much and 

requires major focus to make the BTF technology viable for widespread application. 

Only one research could be found that focused on the design of an automated control 

system for the removal of H2S in a BTF [9]. A multi-loop control system was 

implemented where five process variables were controlled: temperature of BTF bed, pH 

of nutrient in circulation tank, concentration of accumulated sulphate ions, liquid level, 

and outlet concentration of H2S. Using an advanced integrated controller and a two-

dimensional fuzzy PID controller, it was observed that the implemented control strategy 

gave satisfactory results [9]. 

 As a major contribution to the field of BTF control system design and analysis, 

this work attempted to devise some control strategies and provide theoretical analysis on 

the performance of different control strategies proposed in this work. Moreover, these 

control systems were based on the data driven BTF models developed in section 3.1.  The 

control strategies considered include both conventional and advanced control systems and 

are listed as follows: 

1) Proportional-Integral (PI) feedback control 

2) Hybrid feedback-feedforward control 

3) Model predictive control (MPC) using TF models 

4) Neural network model predictive control (NNMPC) 

5)  NNMPC with feedback integral control 
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 3.2.1 General BTF control structure.  As mentioned earlier in the previous 

section, the process variables need to be identified before designing any control system. 

For the BTF considered in this work, outlet concentration of H2S is clearly the controlled 

variable since it is a performance variable that needs to be maintained at the desired value 

for effective degradation of the pollutant to permissible concentration levels. The outlet 

concentration will be maintained at the set point by manipulating the flow of the inlet gas 

stream. The choice of gas velocity as the manipulated variable is an obvious choice since 

it has direct and immediate effect on the outlet concentration, as observed from the 

dynamic responses in Fig. 3-3. Usually, the concentration of H2S in the inlet gas stream is 

dependent on the upstream conditions especially in case of treating waste gases from 

municipal sewage treatment plants where the level of gas pollutants can fluctuate. There 

have been some full-scale BTFs where the pollutant concentration levels in waste gases 

generated from wastewater and solid waste treatment plants fluctuated during period of 

operation and testing [24], [25]. Hence, inlet concentration of H2S can be considered as a 

disturbance variable in BTF control systems. The general feedback control structure for 

the BTF process is shown in Fig. 3-7. The proposed structure is a single-loop control 

system which consists of a concentration sensor, controller and control valve as the final 

control element. In general, the sensor measures the outlet concentration of H2S and 

transmits this information in the form of an electric signal to the controller. Based on the 

concentration measurement and the desired set point, the controller determines the 

required change in the value of gas velocity and sends this information to the control 

valve to adjust the gas flow. This structure has been applied to all the control strategies 

proposed in this work except the feedback-feedforward (FB-FF) control. In FB-FF 

control, an additional sensor will be used for the measurement of the inlet concentration 

as well, more details of which will be given in section 3.2.2.2.  
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Figure  3-7. Feedback structure for BTF process control 

 

 3.2.2 Conventional control strategies 
 
 3.2.2.1 Feedback PI control. In general, feedback (FB) control systems are 

classical strategies where the controlled variable is measured, compared with the set point 

and the error between the two being fed to the controller which adjusts the manipulated 

variable, forcing the controlled variable back towards the set point [20].  A basic FB 

control loop consists of: 1) process under control, 2) sensor-transmitter device for 

measuring the controlled variable and transmitting this information to the controller, 3) 

feedback controller, 4) current-to-pressure transducer (I/P) that converts electric signal 

from the controller to pneumatic signal in case of adjusting the manipulated variable 

through a control valve, 5) final control element, most commonly a control valve, and 6) 

signal transmission lines, electric and pneumatic, that connect the instruments with each 

other [18]. The general block flow diagram of FB control system for a process with some 

known disturbance and control valve as the final control element is shown in Fig. 3-8. 

The blocks denote transfer function representations of different instruments and process, 

being connected together with signal transmission lines. As shown, the process output 
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(Y) is a combination of the process TF (Gp) and disturbance TF (Gd) with the rest of the 

TF blocks constituting control action elements. 

 
Figure  3-8. Block flow diagram of a FB control system [18]. 
 

 FB controllers initiate control action as soon as the controlled variable deviates 

from the set point regardless of any disturbances [18]. Moreover, FB controllers do not 

necessarily require a process model and are robust in case of PID controllers [18]. 

However, these controllers initiate control action only when the controlled variable has 

deviated from its set point, and they cannot project control action for disturbance 

compensation [18]. Also, FB controllers are unfeasible for processes with large time 

delays or time constants and in situations where the controlled variable cannot                

be measured [18]. The main objective of FB controller is to reduce the error between 

measured control variable and set point. Basically, there are three modes of FB       

control [18]: 

1) Proportional control: this is the simplest control mode where the controller output 

is proportionally adjusted according to the error using adjustable controller gain 

(Kc). The main disadvantage of this control is that there is a steady state offset after 

a set point change or disturbance. [18] 

2) Integral control: in this mode, controller output is adjusted according to the integral 

of the error over time with integral time (𝜏𝐼) as a tunable parameter. It offers a great 

advantage of eliminating offset errors, but it usually gives oscillatory responses and 

may affect the stability of the control system. [18] 
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3) Derivative control: it predicts future behavior of the error signal by determining rate 

of change of the error and hence, manipulate the controller output accordingly using 

adjustable derivative time (𝜏𝐷). While it improves the stability of the controlled 

process, it can cause noise amplification in case of noisy measurement signals. [18] 

 Practically, most FB controllers exist as a combination of these control modes 

with PI and PID being the widely used controllers [18]. Likewise, a feedback control 

system was designed for the BTF in this work using a PI controller. Although several 

forms of PID controllers exist, parallel form of the PI controller was used which is 

defined by the following TF: 

Gc(s) = Kc + 
  Kc   
τIs

                                                                                                                      (3.7) 

 Following the FB block diagram in Fig. 3-8, the process and disturbance TFs are 

defined by the first and second TF expressions in equation (3.6) respectively. On the 

other hand, it has been assumed that control valve and concentration sensor have 

negligible dynamics and that the TFs for these instruments are pure gains. The range or 

span of electric signal, pneumatic signal, gas velocity, and H2S concentration required for 

the calculation of control valve, current to pressure transducer, and concentration 

sensor/transmitter gains is shown in Table 3-3 including the TF representations. It should 

be noted that the concentration span is based on maximum and minimum concentrations 

observed overall during the simulation of the modified model. Hence, the value of the 

sensor gain (Km) is just an approximation and that the accurate value of this gain will 

depend on characteristics of the actual measurement instrument. As a final note, the PI 

control system uses controlled, manipulated, and disturbance variables in deviation form. 
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Table  3-3 
Control valve and sensor/transmitter properties for PI control system 

Electric signal range 4 – 20 mA 

Pneumatic signal range 3 – 15 psig 

Gas velocity span 0.278 – 3.056 m/s 
(1000 – 11000 m/h) 

Concentration span 0 – 0.2 g/m3 

Km
* 351 �  mA

 g m3 ⁄ � 

KI/P 0.75 � psig  
mA

� 

Kv
* 0.231 � m s ⁄

psig
� 

Gm
* 351 �  mA

 g m3 ⁄ � 

Gv
* 0.231 � m s ⁄

psig
� 

 * Calculations were performed based on deviation values of H2S  
    concentration and gas velocity  

 

 The feedback PI control system was simulated using Simulink in MATLAB. 

Although several methods exist for controller tuning, a built-in tuning feature of the PID 

controller in Simulink was used to determine controller parameters. After tuning, the 

system performance was analyzed by observing the ability of the controller to deal with 

step changes in set point and disturbance separately. The resulting responses in deviation 

form were converted back to the actual values and these conversions are included in the 

Simulink simulation. The Simulink block diagram for this control system has been 

provided in the Appendix. 

 

 3.2.2.2 Feedback-feedforward hybrid control. This control configuration 

involves using a feedback control loop with a feedforward control loop. In a feedforward 

(FF) control system, disturbances are measured and control action is initiated accordingly 

to avoid process upsets [20]. Hence, FF control offers the advantage of reducing the 

effects of measurable disturbances by initiating the control action as soon as any 

disturbance is detected [18], [20]. However, FF control system requires a process model 

and is unfeasible if online measurement of disturbances is not possible [18]. Moreover, 
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designing ideal FF controller for perfect control may be “physically unrealizable” [18]. 

Consequently, FF control is not used alone and is practically used in conjunction with a 

FB control loop [18]. With the FB-FF control system, there are combined advantages of 

dealing with model uncertainties, measurement errors, and measured and unmeasured 

disturbances [18]. The block flow diagram of a FF-FB control is similar to a FB control 

system configuration except for the addition of a FF control loop as shown in Fig. 3-9. As 

shown, there is an addition of a FF controller and sensor for measuring disturbance. In 

this configuration, the manipulated variable is adjusted by the combined efforts of FB and 

FF controllers. Any change in controlled variable (Y) will be rectified by the FB 

controller while changes in the measured disturbance (dm) will be identified and 

compensated by the FF controller. For perfect control i.e. in situation where the 

controlled variable is to be exactly maintained at the set point regardless of disturbance 

changes, the TF for an ideal FF controller can be determined as follows [18]: 

Gf (s) = - 
Gd

 Gt 𝐾𝐼 𝑃⁄  GvGp 
                                                                                                          (3.8) 

 
Figure  3-9. Block flow diagram of a FB-FF control system [18] 

 
 The FB-FF control system is the second control strategy that had been 

implemented for the BTF process in this work. For this control configuration, the PI 

controller developed in section 3.2.2.2 and an ideal FF controller were used as FB and FF 
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controllers respectively. The basic BTF control structure in Fig. 3-7 needs to be modified 

for the proposed FB-FF control system and is shown in Fig. 3-10. The control structure 

now consists of an additional sensor that measures inlet concentration of H2S and relays 

this information to the FF controller. The FF control signal is combined with the FB 

control signal and the resulting signal is sent to the control valve for adjusting the gas 

velocity. The TFs and gains developed in section 3.2.2.2 apply to the FB-FF control 

system as well. The disturbance sensor/transmitter (Gt) has the same TF as the 

sensor/transmitter for output measurement (Gm) since the disturbance and controlled 

variables are both concentrations. Using equation (3.8), the resulting ideal FF controller 

TF is given as follows: 

Gf (s)= - 0.376 
   (1.8s + 1) e -54s 

(72.57s + 1)                                                                                           (3.9) 

 As evident from equation (3.9), the ideal FF controller is physically realizable. 

Finally, simulation and analysis of the FB-FF control system was performed using 

Simulink. 

  
Figure  3-10. FB-FF control structure for BTF process 
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 3.2.3 Advanced control strategies 

 3.2.3.1 Model predictive control. In short, model predictive control (MPC) 

represents a class of advanced control methods that explicitly use a process model to 

determine the control signal through minimization of an objective function [26]. The 

various forms of MPC differ from each other with respect to the type of process model 

used and the form of cost function (objective function) minimized [26]. For simple 

processes that could be approximated with a linear model, linear MPC is employed 

whereas for highly nonlinear processes, nonlinear MPC should be employed [18]. MPC 

has received widespread application in academics and industrial processes [26]. In 

addition to applications in medical field, MPC has been applied in several processing 

industries like the cement production industry, drying towers, distillation columns, PVC 

plants, and steam generators [26]. MPC offers several advantages, some of which 

include: 1) it can be applied to several types of processes; from simple to complex 

processes, processes with large time delays, and unstable processes 2) it can offer 

multivariable control 3) its features have a natural feedforward control element to deal 

with measured disturbances 4) its control law can be easily implemented 5) it can 

systematically consider input and output constraints [18], [26]. Nevertheless, MPC has 

drawbacks like complex control law derivation and requirement of high computational 

effort when considering constraints [26]. The most serious drawback of using MPC is its 

requirement of a reliable process model that would provide accurate input-output 

predictions while being easy to implement at the same time [26]. 

 The basic concept of MPC is shown in Fig. 3-11. The methodology involves 

predicting future outputs within a prediction horizon (P) at each sampling time instant 

using the process model [26]. Moreover, the output prediction calculations are dependent 

on past inputs, past actual outputs and future control signals (u) [26]. Next, the set of 

future control moves is optimally obtained within a certain control horizon (M) through 

minimization of the objective function so that the process is maintained at the desired set 

point [26]. The objective function includes a term for errors between the predicted output 

and set point. Usually, the objective function also includes control effort term [26]. 

Finally, from the set of M control moves, only the first control move is implemented 

while the rest are rejected; the approach commonly known as receding horizon      
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concept [26]. These procedures are repeated until the predicted output reaches the set 

point value. The block flow diagram for the implementation of these procedures is shown 

in Fig. 3-12.   

 
Figure  3-11. Basic concept of MPC [18] 

 

 
Figure  3-12. Basic MPC structure [26] 
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 As an important consideration in deriving MPC control law, objective or cost 

functions have various forms. The objective function (J) should be formulated such that 

the predicted future output ( 𝑦� ) within the prediction horizon (P) follows the set point 

signal (w) while avoiding excessive control action (𝛥u) at the same time [26]. The 

objective function with such properties is generally expressed as follows [26]: 

𝐽 (𝑁1,𝑁2, 𝑁𝑢) =  � 𝑞(𝑘)[𝑦�(𝑡 + 𝑘) −  𝑤(𝑡 + 𝑘)]2
𝑁2

𝑘= 𝑁1

                                                       (3.10) 

+ �𝑟(𝑘)
𝑀

𝑘=1

[𝛥𝑢(𝑡 + 𝑘 − 1)]2     

 Parameters N1, N2 are the minimum and maximum cost horizons while q(k) and 

r(k) represent output and input change weighing coefficients respectively [26]. The MPC 

optimization algorithm will determine the set of control actions (𝛥u) that would minimize 

the cost function given in equation (3.10). Overall, for MPC design and tuning, 

following parameters are required [18]: 

1) Sampling time 

2) Control horizon (M): increasing the control horizon results in aggressive control but 

it increases the computational effort as well [18]. 

3) Prediction horizon (P): the prediction horizon should be selected such that adequate 

time is given for the required input changes to reach steady state values. While 

increasing the value of P results in aggressive controller, it is theoretically 

advantageous to use larger values. [18] 

4) Output and input weighing coefficients: input weighing coefficient determines the 

degree of control move suppression. Increasing this coefficient results in smooth 

input changes but can cause large deviation of the output response from the set 

point. On the other hand, increasing output weighing coefficient results in tight 

control. [18]  
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 For the BTF in this work, two MPC systems were implemented: 

1) Transfer function model predictive control. As the name suggests, this linear 

control system involves using TF model as the prediction model for MPC. For the BTF 

process, this control scheme was implemented using BTF transfer function model defined 

in equation (3.6) as the prediction and plant model. The control system was simulated in 

Simulink using MPC Toolbox in MATLAB for designing the controller. The tuning 

parameters required by the toolbox to design the MPC controller were obtained by trial 

and error. Moreover, constraints were defined in the toolbox so that the input (gas 

velocity) and the output (outlet concentration) would not have negative values. The 

toolbox also has an input port for measured disturbances where the inlet concentration 

signal was connected. The resulting system was then analyzed for its performance 

towards set point and disturbance changes. The Simulink block diagram for this system 

has been provided in the Appendix. The results occurring in deviation form due to the TF 

model were converted back to the actual values. These conversions have been shown in 

the Simulink block diagram. 

 

2) Neural network model predictive control (NNMPC). This is a nonlinear model 

predictive control technique where NN is used as the nonlinear model. Generally, the 

nonlinear MPC determines output predictions from solution of the analytical model [27]. 

The main drawback of this control strategy is that optimization of the objective function 

requires repeated solution of the analytical model which may require immense 

computational effort and time [27]. The controller may even be unfeasible for 

complicated models. However, this scenario can be avoided by using NN as the nonlinear 

model because of its advantages listed earlier in section 3.1.3. The NNMPC control 

strategy was implemented on the BTF process and simulated in Simulink where the 

controller was designed using the NN Predictive control block. Before controller tuning, 

this control block requires NN training of the plant dynamics and it can only model single 

input-single output relationship. In other words, multivariable control is not possible with 

NNMPC. For the BTF plant model, modified model could not be used since it requires 

considerable amount of computational effort and time. Hence, the steady state NN model 

developed in section 3.1 was used as the BTF plant model. The NN Predictive controller 
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in Simulink offers the choice of training the NN model from input-output data or from 

the plant model. The latter case was used to train the NN in the NNMPC controller. In 

this case, the controller first obtains input-output training data automatically through 

simulation of the plant model at random step changes of input and then fits a NN model 

to these simulated data. After successful training of the NN model, the controller was 

tuned by trial and error. Finally, the performance of the control system was analyzed 

through set point and disturbance step changes. It should be noted that control was based 

on normalized values of input and output since the BTF NN plant model was fitted with 

normalized data. However, the results were converted back to the actual values and are 

shown in the Simulink block diagram. Since there is single control loop, the LGVR input 

to the BTF NN model was held constant while the inlet concentration was considered as a 

disturbance.  

 
      3.2.3.2 NNMPC with FB integral control. An attempt was made to propose a 

control strategy based on the combination of conventional FB and advanced model 

predictive control. Hence, in this work, an NNMPC controller was used in conjunction 

with an integral FB controller. The block diagram for this control system is shown in  

Fig. 3-13. In this system, the set point and measured output signals are transmitted to both 

the controllers, the corrective actions from the two controllers are combined and finally 

transmitted to the process to maintain the output at the set point. The proposed control 

system was simulated in Simulink and procedures for designing the two controllers are 

same as the ones mentioned in the previous sections. Moreover, NN model developed in 

section 3.1 was used as the process model with LGVR and inlet concentration being 

constant and disturbance inputs respectively.  
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Figure  3-13. Block flow diagram of NNMPC - FB integral control system 

 
 
 3.2.4 Results and discussion. For all the proposed control strategies, the initial 

outlet concentration set point was set at the value that represented base removal 

efficiency of 94% (outlet concentration of 9.52 x 10-3 g/m3). Moreover, during the 

analysis of the controller performance towards set point changes, the changes ranged 

from values representing 94 – 99% (outlet concentration of 1.64 x 10-3 g/m3) removal 

efficiency with respect to the base inlet concentration. For all the control systems  that 

had been analyzed with a single step change in set-point, the set-point was changed from  

9.52 x 10-3 g/m3 to 3.28 x 10-3 g/m3. Moreover, single step change in the disturbance was 

made that consisted of changing the inlet concentration from 0.164 g/m3 to 0.184 g/m3 at 

the initial time (t = 0). The input-output responses obtained from the simulations were 

recorded and plotted using MATLAB. 

 
 3.2.4.1 Analysis of feedback PI controller. The tuning parameters determined 

from the PID controller block in Simulink are as follows: 

Kc = 3.89 

𝝉𝑰 = 0.6 s 

Set-point change 

 Fig. 3-14 shows the output and input responses for a step change in set-point at 

the base inlet concentration (no disturbance). It can be observed that within ten seconds 
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from the step change time instant, the PI controller has successfully driven the output to 

the new set point value. The observed overshoot and slightly oscillatory response signify 

characteristic behavior of proportional and integral control respectively. Due to 

aggressive control, the output response results in an overshoot. However, the error 

tracking ability of the integral action quickly forces the output to the set point. As 

expected, the input response is proportional to the output response and shows a similar 

pattern. This is evident from the fact that to decrease the outlet concentration of H2S, the 

gas velocity has to be decreased so that enough time is available for higher 

biodegradation of H2S by the micro-organisms. 

 
Figure  3-14. (a) Output and (b) input responses for set-point change in case of PI control 
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Disturbance change 

 The output response for step change in disturbance (inlet concentration) is shown 

in Fig. 3-15. Due to the time delay in case of disturbance, the process starts feeling the 

effect of the disturbance only after 54s. As the outlet concentration deviates from the set-

point due to the disturbance change, the integral action of the PI control forces the output 

towards the set-point to minimize the errors. However, the output response is quite slow 

and is continuously oscillating. These behaviors are observed due to the slow dynamics 

of the process itself with respect to the disturbance variable and due to a low value of the 

integral time respectively. In general, the output response becomes more oscillatory at 

higher values of proportional gain (Kc) or lower values of integral time (𝜏𝐼). 

Nevertheless, it can be observed that output deviations from the set point are very small 

and become almost non-existent with time. Hence, it can be said that the PI controller has 

effectively rejected the disturbance. The control input is overall smooth and eventually 

reaches a steady state value with time.  

 
Figure  3-15. (a) Output and (b) input responses for disturbance change in case of PI control 
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 3.2.4.2 Analysis of FB-FF control system. The tuning parameters for the FB 

controller are equal to parameter values listed in section 3.2.4.1 since adding a FF 

controller has no effect on the performance of the PI controller. The transfer function for 

the FF controller had already been determined in section 3.2.2.2. 

Set-point change 

 The output response was the same as in Fig. 3-14 since the same PI controller was 

used and the set-point change was made with no disturbance change. The behavior is 

similar because the PI feedback controller deals with output deviations from the set-point 

whereas the FF controller deals with the disturbance. Hence, when there are only set-

point changes (servo problem), the combined FB-FF corrective action has the entire 

contribution from the PI controller. 

Disturbance change 

 The output response for the step change in disturbance is shown in Fig. 3-16. It 

can be clearly observed that the ideal FF controller has achieved almost perfect 

disturbance rejection since the output is nearly close to the set-point throughout the 

simulation time. Despite the oscillatory response, the controller performance is still 

superior. The combined input response shows a smooth control action and is expected to 

reach steady state condition eventually.  

 Overall, it had been observed that the FB-FF control system provided both good 

set point tracking and nearly perfect disturbance rejection. Based on these responses, it 

can be deduced that FB-FF control strategy offers superior performance when compared 

with the conventional FB controller.  
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Figure  3-16. (a) Output and (b) input responses for disturbance change in case of FB-FF control 

   

 3.2.4.3 Analysis of transfer function MPC controller. The controller settings 

obtained after trial and error are shown in Table 3.4. The value of sampling time is an 

approximation since actual value will depend on the sampling time of the concentration 

sensor used in the actual process. Having a higher output weight implies that the output 

deviation from set-point is more penalized i.e. there will be tight control of output in 

response to set-point changes. 

 
Table  3-4 
Transfer function MPC controller settings 

Sampling time  2s 
Prediction horizon 80 
Control horizon 2 
Input change rate weight 0.008 
Output weight 7.389 
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Set-point change 

 The output behavior in response to a set-point step change is shown in Fig. 3-17. 

Looking at the output and input responses, the tuned MPC controller has successfully 

achieved good set-point tracking with minimal amount of control moves. In addition, the 

response was fast with negligible overshoot. It should be noted that the input response is 

in the form of a discrete signal since the MPC controller collects the data at discrete times 

and calculates the set of control moves at each of these time instants. Overall, good set-

point tracking was observed due to the heavy weighting of the output shown in Table 3-4.  

 
Figure  3-17. (a) Output and (b) input responses for set-point change in case of transfer function MPC 
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Disturbance change 

 In case of step change in disturbance, the output response with MPC controller in 

Fig. 3-18 is similar to the one with the FB controller in Fig. 3-15 except that the response 

is smoother and less oscillatory. In response to the disturbance, a maximum output 

deviation of 0.7% from the set-point is observed with the MPC controller. Although the 

output response takes long time to reach the set-point value, the deviation errors are very 

small. Hence, the MPC controller has successfully dealt with the disturbance effects. 

Looking at the input response, the profile is continuous indicating excessive 

implementation of control moves. This is because the deviation in the output response is 

very small and to force the output back to the set-point very small changes in input are 

required. Hence, the controller provides smooth and slow control action at the expense of 

the control moves. 

 
Figure  3-18. (a) Output and (b) input responses for disturbance change in case of transfer function MPC 
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  3.2.4.4 Analysis of neural network MPC controller. The trained NN results and 

the controller settings determined by trial-and-error are shown in Table 3-5. The MSE 

and R2 values suggest that the NN model had been successfully trained. It can be seen 

that the NNMPC controller requires a search parameter. This parameter is used for 

controlling optimization performance of the controller [28]. 

Table  3-5 
Trained NN and NNMPC controller setting results 

NN Plant Identification results 
Total simulated data samples 1000 

Sampling interval 2 s 

Size of hidden layer 5 

Validation MSE 2.81 x 10-8 

Overall R2 value 0.998 

Controller settings 
Maximum cost horizon (N2) 100 

Control horizon 2 

Control (input) weighting factor 1 x 10- 4 

Search parameter 5 x 10-3 

 

Set-point change 

 The output response for set-point change is shown in Fig. 3-19. It is observed that 

the NNMPC controller provides excellent set-point tracking using less control moves. 

However, there are time delays in the control actions of the controller. While training the 

NN model in the NNMPC controller, the NNMPC control block in Simulink required 

non-zero entry values for input and output delays so that the time variation of variables 

could be accounted in the system. Hence, two delays on input and output were defined 

for the NNMPC controller training that resulted in the response delays observed in      

Fig. 3-19. Towards the end of the simulation time, it can be observed that there is a small 

offset error between the new set-point value and the output response. Nevertheless, this 

small discrepancy is eventually eliminated in the limit as time goes to infinity. 
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Figure  3-19. (a) Output and (b) input responses for set-point change in case of NNMPC 

 

Disturbance change 

 The output response in Fig. 3-20 shows no disturbance rejection by the controller. 

Keeping in mind that there is a time delay between disturbance and output variables, it is 

observed that the process never reaches the set-point after being disturbed i.e. an offset 

occurs. This implies the serious limitation of using a NN based MPC. This behavior had 

also been observed and proven by Chu et al. [29] through experimental implementation 

of feedforward neural network (FNN) MPC and external recurrent network (ERN) MPC 

controllers on pilot-scale distillation column. In [29], it had been experimentally proven 

that FNN based MPC results in an offset error in presence of disturbance while using 

ERN based MPC eliminates the offset. It was also justified analytically that the output 

prediction characteristics of the FNNs have an inherent disadvantage of being unable to 



85 
 

deal with model mismatch when the process is upset by a disturbance [29]. Based on the 

justifications, Chu et al. claimed that using a FNN based MPC is unfeasible for practical 

applications and that ERN based MPC should be used instead [29]. Since the NNMPC 

controller in MATLAB uses a FNN model, it is clear that there will be an offset in case 

of disturbance. Hence, based on the output responses observed towards set-point and 

disturbance changes, it can be said that the NNMPC controller behaves like a 

proportional only controller. 

 
Figure  3-20. (a) Output and (b) input responses for disturbance change in case of NNMPC 
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 3.2.4.5 Analysis of combined NNMPC and integral control. The design 

properties of the controllers are shown in Table 3-6.  

Table  3-6 
NNMPC and integral controller properties 

NNMPC Plant Identification results 
Total simulated data samples 1000 

Sampling interval 2 s 

Size of hidden layer 5 

Validation MSE 3.48 x 10-10 

Overall R2 value 0.999 

Controller settings 
Maximum cost horizon (N2) 150 

Control horizon 2 

Control (input) weighting factor 1 x 10- 4 

Search parameter 5 x 10-3 

Integral gain (for integral controller) 8 

 

Set-point change 

 The output response resulting from set-point change is shown in Fig. 3-21. It can 

be seen that with the addition of an integral controller, the time delay that had been 

observed for the NNMPC in Fig. 3-19 has been eliminated. Although, the combined 

NNMPC-integral controller shows good set-point tracking, the output response has 

overshoots. The overshoot occurs due to the combined control action of the two 

controllers. In other words, the control signals from both the controllers add together, 

resulting in a higher input value than the desired which causes the output to exceed the 

set-point. 
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Figure  3-21. (a) Output and (b) input responses for set-point change in case of NNMPC-integral control 

 

Disturbance change 

 It can be observed in Fig. 3-22 that the controller has managed to deal with 

disturbance that had been initiated at the initial time. During the process upset (after the 

time delay) by the disturbance, corrective action is initiated only by the integral controller 

while the NNMPC becomes ineffective due to the reasons explained earlier in        

section 3.2.4.4. Despite the disturbance rejection, there is a large overshoot where there is 

141% deviation of the output from the desired set-point. The disadvantage of the additive 

control action from the two controllers is the reason for the resulting overshoot. This 

large overshoot is highly unacceptable in practical application since the outlet 
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concentration (output) must be maintained below the legal limit. Hence, this control 

strategy is unfeasible in this case. 

 
Figure  3-22. (a) Output and (b) input responses for disturbance change in case of NNMPC-integral control 
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 3.2.4.6 Comparison of BTF control strategies. Based on the analysis of the 

control strategies in the previous sections, it can be deduced that three BTF control 

strategies provided best control performance: 1) PI, 2) PI – FF, and 3) TF MPC based 

control systems. To determine the optimum control strategy, these TF model based 

control systems were qualitatively compared against each other for their performance 

towards set-point and disturbance changes separately. The set-point changes consisted    

of a set of random step changes ranging from 1.64 x 10-3 g/m3 (99% removal efficiency  

with respect to base inlet concentration) to 9.518 x 10-3 g/m3 (base removal        

efficiency of 94%). For analysis of disturbance rejection, a single disturbance step change 

from base inlet concentration (0.164 g/m3) to a higher concentration (0.2 g/m3) at the 

initial time was used. The results from all the controllers were compiled and plotted in the 

same graph. The Simulink block diagram is provided in the Appendix. 

Set-point changes 

 The output responses of the selected control strategies are shown in Fig. 3-23. 

Overall, all the controllers showed excellent set-point tracking with TF MPC controller 

showing the best control since there are no overshoots. In case of PI and PI-FF 

controllers, there are overshoots which may be disadvantageous in situations where strict 

control is needed. In case of a BTF process or any other environmental treatment 

technology, this may be a serious consideration where safe pollutant release must be 

below the legal limits. However, overshoots could be avoided by either decreasing 

proportional gain or increasing the integral time at the expense of a sluggish response. 
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Figure  3-23. Output responses of TF based controllers in case of step changes 

  

Disturbance change 

 In case of disturbance change, varied responses are observed in Fig. 3-24. 

Looking at the output deviations from the set-point, the hybrid PI-FF controller offers 

superior performance amongst the controllers with perfect disturbance rejection while the 

TF MPC offers the least since it produces largest output deviation from the set-point. For 

the TF MPC controller, the deviations due to inlet concentration disturbance could be 

reduced by reducing the sampling period. The reason for this justification is that the 

sooner the controller detects process upsets the better the control action. Practically, 

however, the sampling period could not be optimized as it would depend on the sampling 

time of the measurement device. Nevertheless, for the PI and TF MPC controllers, 

maximum output deviations of 0.4 % and 1.1 % from the set-point were observed 

respectively. These deviations are quite small and hence, the performances from these 

two controllers are satisfactory. In case of BTF, there could be fluctuations in inlet 
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concentrations and it would be therefore essential to have an efficient control system for 

disturbance rejections. In this situation, using a PI-FF controller would be ideal.  

 
Figure  3-24. Output responses of TF based controllers in case of disturbance change 
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Chapter 4. Conclusion 
 
 This work aimed to provide a theoretical aspect on the modeling and control of a 

BTF for making it a viable air pollution treatment technology on a large-scale. The work 

was focused on selecting an appropriate theoretical model from literature first that would 

provide adequate insight into the dynamics and performance of a BTF in general. From 

the review of five literature BTF models, it had been observed that the models were 

mostly specific to the type of pollutants being treated. Although several achievements 

were observed in these BTF models, there is still a need for an appropriate model that 

could be universally used for practical applications. However, developing such model 

may require a great deal of effort and time. Likewise, the theoretical analyses performed 

in this work were based on a specific pollutant due to the specific nature of the selected 

BTF model. Amongst the models reviewed, Kim and Deshusses’ model [5] was selected 

as the target model with H2S being the target pollutant treated. The choice of the target 

model selection was based on the simplicity of the mathematical model formulation while 

at the same time capturing significant phenomena as well. Kim and Deshusses’ model [5] 

had a simple model formulation which could be easily solved and also the model 

captured many phenomena occurring in the BTF process. The most striking feature of the 

model was its ability to simultaneously account for wetted and non-wetted biofilm due to 

incomplete wetting of biofilm by the trickling liquid. However, the model was developed 

for a differential BTF in batch mode and most of the model parameters were 

experimental. For practical situations, a continuous operation of the BTF is required. 

Moreover, there is also an issue on implementing and analyzing the performance of BTF 

with the control strategies proposed in this work. Since the model parameters listed by 

Kim and Deshusses [5] could not be used in case of a large continuous BTF, an 

alternative strategy was used by considering cascaded n-batch BTFs in series. In this 

configuration, the large BTF could be considered as a combination of differential BTFs 

connected in series with each other. With the proposed configuration and some 

modifications to the original model equations, the BTF reactor was scaled-up with 

continuous mode of operation. Moreover, the need to determine new set of model 

parameters for the large BTF was avoided. The original BTF model had been 
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successfully validated by Kim and Deshusses [5] with experimental data. Hence, it was 

assumed that each of the differential BTFs in the proposed model structure behaved 

exactly like the differential BTF in [5]. There could be an uncertainty in the reliability of 

the proposed model to accurately represent the BTF dynamics in this case. Nevertheless, 

the modified model was successfully simulated and analyzed for performance evaluation. 

To solve the modified model where equations need to be solved for each reactor, a 

pseudo steady state assumption was used. This strategy reduced the computational effort 

and time required to solve the model. The performance was determined by analyzing the 

effect of inlet concentration of H2S, gas velocity, and LGVR on the steady state outlet 

concentration. The outlet concentration was directly related to inlet concentration and gas 

velocity while a parabolic profile was observed in case of LGVR. This parabolic profile 

indicated mass transfer effects occurring in the trickling liquid phase that affected the 

removal efficiency of the pollutant. It had been observed that the inlet concentration and 

gas velocity had strong affect on system performance while LGVR had effect only for a 

small range. 

 For the implementation of control strategies on the BTF process, simple data 

driven models were used. The modified model could not be used since it was still 

computationally challenging in terms of effort and time. Moreover, controlling BTF 

process based on the modified model would require continuous solution of the model 

which is unfeasible. Hence, transfer function and neural network based models were 

selected for identification of the BTF process. Assuming that the modified model 

represents the actual BTF process, the TF and NN models were fitted with data from 

simulation of the modified model. Gas velocity and inlet concentration were considered 

as the main process inputs while outlet concentration was selected as the BTF 

performance variable (output). The TF and NN models had been successfully obtained 

with R2 values above 0.97 overall. For the NN model, the optimum size of the hidden 

layer was 7 and the resulting NN model had a nearly perfect fit. However, the NN model 

had been based on steady state data while the TF was fitted with dynamic step response 

data. Hence, a TF model representation would be more accurate at this stage.    

 Finally, five control strategies were implemented namely PI, FB PI-FF, TF MPC, 

NNMPC and NNMPC with integral control. The first three controllers were based on TF 
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model representation of BTF while the rest used NN model. For the control structure, gas 

velocity, inlet concentration, and outlet concentration were selected as manipulated, 

disturbance and controlled variables respectively. Through set-point and disturbance step 

testing, it was found that the first three controllers provided satisfactory control 

responses. While the NNMPC controller showed excellent set-point tracking, the 

presence of a constant offset error in response to disturbance change was the main 

limitation. The offset errors resulting from the use of NNMPC controller prove that using 

FNN based model for MPC control is unfeasible and as suggested by [29], the use of 

recurrent neural based models is recommended. Although the addition of an integral 

controller to the NNMPC eliminated the offset error due to disturbance change, large 

overshoots had been observed in response to set-point and disturbance changes. Since a 

steady state NN model was used as the BTF plant model for the last two controllers 

(NNMPC and NNMPC with integral controllers), it would be unjust to comment on the 

performance of these controllers. 

 With regard to the theoretical model used for the BTF system, the modified Kim 

and Deshusses’ model [5] could be more realistic by considering a change in biofilm 

thickness due to biomass growth although it had been justified that H2S treating BTF 

produce thin biofilms [5]. The effects of biomass growth can be easily implemented by 

repeating the solution of the modified model with the pseudo steady state assumption at 

different biofilm thickness. On the other hand, for practical implementation of the BTF 

process, it would be essential to analyze the extent of BTF performance by considering 

shock loading effects. For the BTF process, shock loading would refer to sudden large 

change in the inlet concentration of the pollutant. It would be important to consider the 

maximum shock loading as well to analyze the ability of the micro-organisms to 

effectively remove the pollutant under extreme conditions and hence, investigate the 

robustness of the BTF system. It is therefore recommended to consider shock loading 

effects through experimental testing and model predictions. Finally, since the discussions 

in this work are all based on theoretical analyses, it would be recommended to validate 

the findings in this work with experimental testing. 
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Appendix 
 

MATLAB Codes for Biotrickling Filter Model Solutions 

1. Kim & Deshusses’ [5] model solution  

Function file for ODEs 

function 
dC=gLbio_conc_profiles_lat(t,C,D,H,FT,N,kg,kL,r,A,Fg,FL,Vg,VL,Rm,Ks) 
a1=Fg/Vg; 
Aw=r*A; 
a2=(kg*Aw)/Vg; 
a3=(kg*Aw*((1-r)/r))/Vg; 
a4=FL/VL; 
a5=(kg*Aw)/VL; 
a6=(kL*Aw)/VL; 
a7=D/(FT^2); 
  
dCg(1)=-a2*(C(1)-H*C(N+1))-a3*(C(1)-H*C(12*N+1)); 
dCL(1)=a4*(C(2+N)-C(1+N))+a5*(C(1)-H*C(1+N))-a6*(C(1+N)-C(1+2*N)); 
for j=2:N-1 
    dCg(j)=a1*(C(j-1)-C(j))-a2*(C(j)-H*C(j+N))-a3*(C(j)-H*C(j+12*N)); 
    dCL(j)=a4*(C(j+1+N)-C(j+N))+a5*(C(j)-H*C(j+N))-a6*(C(j+N)-
C(j+2*N)); 
end 
dCg(N)=a1*(C(N-1)-C(N))-a2*(C(N)-H*C(N+N))-a3*(C(N)-H*C(N+12*N)); 
dCL(N)=a5*(C(N)-H*C(N+N))-a6*(C(N+N)-C(N+2*N)); 
  
for j=1:N 
    dCwb_interface(j)=a7*(C(j+N)-2*C(j+2*N)+C(j+3*N))-
((Rm*C(j+2*N))/(Ks+C(j+2*N))); 
    dCnwb_interface(j)=a7*((C(j)/H)-2*C(j+12*N)+C(j+13*N))-
((Rm*C(j+12*N))/(Ks+C(j+12*N))); 
    dCwb_iN(j)=a7*(C(j+10*N)-C(j+11*N))-
((Rm*C(j+11*N))/(Ks+C(j+11*N))); 
    dCnwb_iN(j)=a7*(C(j+20*N)-C(j+21*N))-
((Rm*C(j+21*N))/(Ks+C(j+21*N))); 
end 
  
for j=1:N 
    dCwbi2(j)=a7*(C(2*N+j)-2*C((2+1)*N+j)+C((2+2)*N+j))-
((Rm*C((2+1)*N+j))/(Ks+C((2+1)*N+j))); 
    dCwbi3(j)=a7*(C(3*N+j)-2*C((3+1)*N+j)+C((3+2)*N+j))-
((Rm*C((3+1)*N+j))/(Ks+C((3+1)*N+j))); 
    dCwbi4(j)=a7*(C(4*N+j)-2*C((4+1)*N+j)+C((4+2)*N+j))-
((Rm*C((4+1)*N+j))/(Ks+C((4+1)*N+j))); 
    dCwbi5(j)=a7*(C(5*N+j)-2*C((5+1)*N+j)+C((5+2)*N+j))-
((Rm*C((5+1)*N+j))/(Ks+C((5+1)*N+j))); 
    dCwbi6(j)=a7*(C(6*N+j)-2*C((6+1)*N+j)+C((6+2)*N+j))-
((Rm*C((6+1)*N+j))/(Ks+C((6+1)*N+j))); 
    dCwbi7(j)=a7*(C(7*N+j)-2*C((7+1)*N+j)+C((7+2)*N+j))-
((Rm*C((7+1)*N+j))/(Ks+C((7+1)*N+j))); 
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    dCwbi8(j)=a7*(C(8*N+j)-2*C((8+1)*N+j)+C((8+2)*N+j))-
((Rm*C((8+1)*N+j))/(Ks+C((8+1)*N+j))); 
    dCwbi9(j)=a7*(C(9*N+j)-2*C((9+1)*N+j)+C((9+2)*N+j))-
((Rm*C((9+1)*N+j))/(Ks+C((9+1)*N+j))); 
    dCnwbi2(j)=a7*(C((2+10)*N+j)-2*C((2+1+10)*N+j)+C((2+2+10)*N+j))-
((Rm*C((2+1+10)*N+j))/(Ks+C((2+1+10)*N+j))); 
    dCnwbi3(j)=a7*(C((3+10)*N+j)-2*C((3+1+10)*N+j)+C((3+2+10)*N+j))-
((Rm*C((3+1+10)*N+j))/(Ks+C((3+1+10)*N+j))); 
    dCnwbi4(j)=a7*(C((4+10)*N+j)-2*C((4+1+10)*N+j)+C((4+2+10)*N+j))-
((Rm*C((4+1+10)*N+j))/(Ks+C((4+1+10)*N+j))); 
    dCnwbi5(j)=a7*(C((5+10)*N+j)-2*C((5+1+10)*N+j)+C((5+2+10)*N+j))-
((Rm*C((5+1+10)*N+j))/(Ks+C((5+1+10)*N+j))); 
    dCnwbi6(j)=a7*(C((6+10)*N+j)-2*C((6+1+10)*N+j)+C((6+2+10)*N+j))-
((Rm*C((6+1+10)*N+j))/(Ks+C((6+1+10)*N+j))); 
    dCnwbi7(j)=a7*(C((7+10)*N+j)-2*C((7+1+10)*N+j)+C((7+2+10)*N+j))-
((Rm*C((7+1+10)*N+j))/(Ks+C((7+1+10)*N+j))); 
    dCnwbi8(j)=a7*(C((8+10)*N+j)-2*C((8+1+10)*N+j)+C((8+2+10)*N+j))-
((Rm*C((8+1+10)*N+j))/(Ks+C((8+1+10)*N+j))); 
    dCnwbi9(j)=a7*(C((9+10)*N+j)-2*C((9+1+10)*N+j)+C((9+2+10)*N+j))-
((Rm*C((9+1+10)*N+j))/(Ks+C((9+1+10)*N+j))); 
end 
dC=[dCg'; 
    dCL'; 
    dCwb_interface'; 
    dCwbi2'; 
    dCwbi3'; 
    dCwbi4'; 
    dCwbi5'; 
    dCwbi6'; 
    dCwbi7'; 
    dCwbi8'; 
    dCwbi9'; 
    dCwb_iN'; 
    dCnwb_interface'; 
    dCnwbi2'; 
    dCnwbi3'; 
    dCnwbi4'; 
    dCnwbi5'; 
    dCnwbi6'; 
    dCnwbi7'; 
    dCnwbi8'; 
    dCnwbi9'; 
    dCnwb_iN']; 
 
 
M-file for solution 

 
% Kim & Deshusses' Original Model Simulation (2003) 
  
uL=11.8;                      % Trickling rate (m3/m2.h) 
ug=9400;                      % Gas flow rate (m3/m2.h) 
N=10;                 % No of segments along the height of BTF/biofilm 
FT=(23e-6)/N;                 % Biofilm thickness (m) 
Rm=58400;                     % Max reaction rate (g.m3/h) 
Ks=0.0279;                    % Michaelis-Menten constant (g/m3) 
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H=0.387;                      % Henry's constant 
D=5.796e-6;                   % H2S Diffusion coefficient (m2/h) 
Dg=0.016332;                  % H2S diffusion in gas using Fuller 
correlation at 25C and 1 atm (m2/h) 
a=600;                        % Specific interfacial area (m2/m3) 
Dp=0.04;                      % Size of packing (m) 
rhoL=1007;                    % Density of water (trickling liquid) 
(kg/m3) 
rhog=1.1845;                  % Density of gas (kg/m3) 
mL=3600*0.0008904;            % Viscosity of water at 25C (kg/m.h) 
mg=0.0678;                    % Viscosity of gas from HYSYS (kg/m.h) 
gc=1.271376e8;                % Acc. due to gravity (m/h2) 
stw=933120;                   % Surface tension of water at room 
temperature (kg/h2)   
  
ab=Dp^2;                      % Cross-sectional area of bed (m2) 
FL=uL*ab;                     % Volumetric flow rate of liquid (m3/h) 
Fg=ug*ab;                     % Volumetric flow rate of gas (m3/h) 
L=uL*rhoL;                    % Superficial liq. mass velocity(kg/m2.h) 
G=ug*rhog;                    % Superficial gas mass velocity (kg/m2.h) 
V=Dp^3;                       % Volume of bed (m3) 
A=a*V;                        % Interfacial Area (m2) 
  
% Finding surface tension term in equation 13 
  
rr=0.2298;                     % Wetting ratio at FL=0.01888 m3/h  
uLL=11.8;                      % Trickling rate (m3/m2.h) 
FLL=uLL*ab;                    % Volumetric flow rate of liquid (m3/h) 
LL=uLL*rhoL;                 % Superficial liq. mass velocity (kg/m2.h) 
Ree=LL/a/mL;                   % Reynolds number 
Frr=(a*LL^2)/gc/(rhoL^2);      % Froude number 
Wee=(LL^2)/rhoL/stw/a;         % Weber number 
STR=-log(1-rr)/(1.45*(Ree^0.1)*(Frr^(-0.05))*(Wee^0.2));     % Surface 
tension ratio term in equation 13 
  
% Finding wetting ratio, wetted area and specific wetted area 
  
Re=L/a/mL;                                            % Reynolds number 
Fr=(a*L^2)/gc/(rhoL^2);                                 % Froude number 
We=(L^2)/rhoL/stw/a;                                    % Weber number 
r=1-exp(-1.45*STR*(Re^0.1)*(Fr^(-0.05))*(We^0.2));      % Wetting ratio 
Aw=r*A;                                              % Wetted area (m2) 
aw=Aw/V;                                        % Specific wetted area 
(m2/m3) 
  
% Finding mass transfer coefficients 
kg=5.23*((G/(a*mg))^0.7)*((mg/(rhog*Dg))^(1/3))*((a*Dp)^(-2))*a*Dg;                         
% Gas-Liq mass transfer coefficient (m/h) 
kL=0.0051*((L/(aw*mL))^(2/3))*((mL/(rhoL*D))^(-
0.5))*((a*Dp)^0.4)*((rhoL/(mL*gc))^(-1/3));   % Liq-biofilm mass 
transfer coefficient (m/h) 
  
  
% Finding Gas and Liquid Volumes 
VL=(0.00001*FL)+0.0000008;    % Dynamic holdup/liq. phase volume (m3) 
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Vol_ratio=8.6e4;              % Gas/liquid Volume ratio 
Vg=Vol_ratio*VL;              % Gas phase volume (m3) 
  
  
% Solution 
  
tspan=[0 2]; 
Cg0=0.164;                    % Initial concentration of H2S (g/m3) 
C0=zeros(22*N,1); 
C0(1,1)=Cg0; 
C0(N+1,1)=Cg0/H; 
C0(12*N+1,1)=Cg0/H; 
  
[t,C]=ode23s(@gLbio_conc_profiles_lat,tspan,C0,[],D,H,FT,N,kg,kL,r,A,Fg
,FL,Vg,VL,Rm,Ks) 
Time1=[0 0.0132 0.046 0.0658 0.0921 0.112 0.138 0.164 0.1908 0.2171 
0.25 0.283 0.322 0.349 0.388 0.428 0.474 0.513 0.566 0.632 0.704 0.803 
0.941 1.059 1.257 1.368 1.533 1.717 1.967]; 
High_Conc_Exp=[0.1640 0.1633 0.1577 0.1542 0.15 0.1451 0.1408 0.1352 
0.131 0.1261 0.1218 0.1169 0.112 0.1077 0.1035 0.0986 0.0944 0.0894 
0.0845 0.0782 0.0725 0.0655 0.0549 0.0465 0.0345 0.0289 0.0225 0.0162 
0.00986]; 
plot(t,C(:,1),Time1,High_Conc_Exp,'*') 
hold on 
  
%  ------------- Low Inlet Concentration ------------------------------ 
  
Cg0=0.08592;                    % Initial concentration of H2S (g/m3) 
C0=zeros(22*N,1); 
C0(1,1)=Cg0; 
C0(N+1,1)=Cg0/H; 
C0(12*N+1,1)=Cg0/H; 
  
kL=0.0051*((L/(aw*mL))^(2/3))*((mL/(rhoL*D))^(-
0.5))*((a*Dp)^0.4)*((rhoL/(mL*gc))^(-1/3));   % Liq-biofilm mass 
transfer coefficient (m/h) 
[tlow,C_low]=ode23s(@gLbio_conc_profiles_lat,tspan,C0,[],D,H,FT,N,kg,kL
,r,A,Fg,FL,Vg,VL,Rm,Ks) 
Time2=[0 0.0395 0.0658 0.0789 0.1053 0.125 0.1579 0.1908 0.2171 0.2434 
0.2763 0.3158 0.3421 0.3816 0.4211 0.4605 0.5132 0.5632 0.625 0.6974 
0.7895 0.9342 1.0526]; 
Low_Conc_Exp=[0.08592 0.07958 0.07465 0.07183 0.06761 0.06408 0.05986 
0.05634 0.05211 0.04930 0.04577 0.04225 0.03803 0.03521 0.03239 0.02958 
0.02535 0.02254 0.01972 0.01620 0.01268 0.00845 0.00423]; 
plot(tlow,C_low(:,1),'-.',Time2,Low_Conc_Exp,'o') 
xlabel('\bfTime (h)') 
ylabel('\bfInlet H_2S Concentration (g/m^3)') 
legend('Model High Conc.','Exp. Data High Conc.','Model Low 
Conc.','Exp. Data Low Conc.') 
axis([-inf inf 0 0.18]) 
hold off 
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2. Modified model solution 

Function file for 1st reactor 

% Concentration profiles for Reactor in Series Model for 1st Reactor 
  
function 
dC=gLbio_conc_profiles_continuos_RIS_R1(t,C,D,H,FT,N,kg,kL,r,A,Fg,FL,Vg
,VL,Rm,Ks) 
a1=Fg/Vg; 
Aw=r*A; 
a2=(kg*Aw)/Vg; 
a3=(kg*Aw*((1-r)/r))/Vg; 
a4=FL/VL; 
a5=(kg*Aw)/VL; 
a6=(kL*Aw)/VL; 
a7=D/(FT^2); 
  
dCg(1)=0; 
dCL(1)=a4*(C(2+N)-C(1+N))+a5*(C(1)-H*C(1+N))-a6*(C(1+N)-C(1+2*N)); 
for j=2:N-1 
    dCg(j)=a1*(C(j-1)-C(j))-a2*(C(j)-H*C(j+N))-a3*(C(j)-H*C(j+12*N)); 
    dCL(j)=a4*(C(j+1+N)-C(j+N))+a5*(C(j)-H*C(j+N))-a6*(C(j+N)-
C(j+2*N)); 
end 
dCg(N)=a1*(C(N-1)-C(N))-a2*(C(N)-H*C(N+N))-a3*(C(N)-H*C(N+12*N)); 
dCL(N)=a5*(C(N)-H*C(N+N))-a6*(C(N+N)-C(N+2*N)); 
  
for j=1:N 
    dCwb_interface(j)=a7*(C(j+N)-2*C(j+2*N)+C(j+3*N))-
((Rm*C(j+2*N))/(Ks+C(j+2*N))); 
    dCnwb_interface(j)=a7*((C(j)/H)-2*C(j+12*N)+C(j+13*N))-
((Rm*C(j+12*N))/(Ks+C(j+12*N))); 
    dCwb_iN(j)=a7*(C(j+10*N)-C(j+11*N))-
((Rm*C(j+11*N))/(Ks+C(j+11*N))); 
    dCnwb_iN(j)=a7*(C(j+20*N)-C(j+21*N))-
((Rm*C(j+21*N))/(Ks+C(j+21*N))); 
end 
  
for j=1:N 
    dCwbi2(j)=a7*(C(2*N+j)-2*C((2+1)*N+j)+C((2+2)*N+j))-
((Rm*C((2+1)*N+j))/(Ks+C((2+1)*N+j))); 
    dCwbi3(j)=a7*(C(3*N+j)-2*C((3+1)*N+j)+C((3+2)*N+j))-
((Rm*C((3+1)*N+j))/(Ks+C((3+1)*N+j))); 
    dCwbi4(j)=a7*(C(4*N+j)-2*C((4+1)*N+j)+C((4+2)*N+j))-
((Rm*C((4+1)*N+j))/(Ks+C((4+1)*N+j))); 
    dCwbi5(j)=a7*(C(5*N+j)-2*C((5+1)*N+j)+C((5+2)*N+j))-
((Rm*C((5+1)*N+j))/(Ks+C((5+1)*N+j))); 
    dCwbi6(j)=a7*(C(6*N+j)-2*C((6+1)*N+j)+C((6+2)*N+j))-
((Rm*C((6+1)*N+j))/(Ks+C((6+1)*N+j))); 
    dCwbi7(j)=a7*(C(7*N+j)-2*C((7+1)*N+j)+C((7+2)*N+j))-
((Rm*C((7+1)*N+j))/(Ks+C((7+1)*N+j))); 
    dCwbi8(j)=a7*(C(8*N+j)-2*C((8+1)*N+j)+C((8+2)*N+j))-
((Rm*C((8+1)*N+j))/(Ks+C((8+1)*N+j))); 
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    dCwbi9(j)=a7*(C(9*N+j)-2*C((9+1)*N+j)+C((9+2)*N+j))-
((Rm*C((9+1)*N+j))/(Ks+C((9+1)*N+j))); 
    dCnwbi2(j)=a7*(C((2+10)*N+j)-2*C((2+1+10)*N+j)+C((2+2+10)*N+j))-
((Rm*C((2+1+10)*N+j))/(Ks+C((2+1+10)*N+j))); 
    dCnwbi3(j)=a7*(C((3+10)*N+j)-2*C((3+1+10)*N+j)+C((3+2+10)*N+j))-
((Rm*C((3+1+10)*N+j))/(Ks+C((3+1+10)*N+j))); 
    dCnwbi4(j)=a7*(C((4+10)*N+j)-2*C((4+1+10)*N+j)+C((4+2+10)*N+j))-
((Rm*C((4+1+10)*N+j))/(Ks+C((4+1+10)*N+j))); 
    dCnwbi5(j)=a7*(C((5+10)*N+j)-2*C((5+1+10)*N+j)+C((5+2+10)*N+j))-
((Rm*C((5+1+10)*N+j))/(Ks+C((5+1+10)*N+j))); 
    dCnwbi6(j)=a7*(C((6+10)*N+j)-2*C((6+1+10)*N+j)+C((6+2+10)*N+j))-
((Rm*C((6+1+10)*N+j))/(Ks+C((6+1+10)*N+j))); 
    dCnwbi7(j)=a7*(C((7+10)*N+j)-2*C((7+1+10)*N+j)+C((7+2+10)*N+j))-
((Rm*C((7+1+10)*N+j))/(Ks+C((7+1+10)*N+j))); 
    dCnwbi8(j)=a7*(C((8+10)*N+j)-2*C((8+1+10)*N+j)+C((8+2+10)*N+j))-
((Rm*C((8+1+10)*N+j))/(Ks+C((8+1+10)*N+j))); 
    dCnwbi9(j)=a7*(C((9+10)*N+j)-2*C((9+1+10)*N+j)+C((9+2+10)*N+j))-
((Rm*C((9+1+10)*N+j))/(Ks+C((9+1+10)*N+j))); 
end 
  
dCnwb_interface(1)=0; 
dC=[dCg'; 
    dCL'; 
    dCwb_interface'; 
    dCwbi2'; 
    dCwbi3'; 
    dCwbi4'; 
    dCwbi5'; 
    dCwbi6'; 
    dCwbi7'; 
    dCwbi8'; 
    dCwbi9'; 
    dCwb_iN'; 
    dCnwb_interface'; 
    dCnwbi2'; 
    dCnwbi3'; 
    dCnwbi4'; 
    dCnwbi5'; 
    dCnwbi6'; 
    dCnwbi7'; 
    dCnwbi8'; 
    dCnwbi9'; 
    dCnwb_iN']; 
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Function file for 2nd to nth reactor 

% Concentration profiles for Reactor in Series Model for 2nd, 3rd ,    
% 4th,...., nth Reactor at Steady state 
  
function 
F_C=gLbio_conc_profiles_continuos_RIS_Ri(C,M,D,H,FT,N,kg,kL,r,A,Fg,FL,V
g,VL,Rm,Ks) 
a1=Fg/Vg; 
Aw=r*A; 
a2=(kg*Aw)/Vg; 
a3=(kg*Aw*((1-r)/r))/Vg; 
a4=FL/VL; 
a5=(kg*Aw)/VL; 
a6=(kL*Aw)/VL; 
a7=D/(FT^2); 
  
F_Cg(1)=a1*(M-C(1))-a2*(C(1)-H*C(1+N))-a3*(C(1)-H*C(1+12*N)); 
F_CL(1)=a4*(C(1+N)-C(1+N-1))+a5*(M-H*C(1+N))-a6*(C(1+N-1)-C(1+2*N-1)); 
for j=2:N-1 
    F_Cg(j)=a1*(C(j-1)-C(j))-a2*(C(j)-H*C(j+N))-a3*(C(j)-H*C(j+12*N)); 
    F_CL(j)=a4*(C(j+1+N-1)-C(j+N-1))+a5*(C(j-1)-H*C(j+N-1))-a6*(C(j+N-
1)-C(j+2*N-1)); 
end 
F_CL(N)=a5*(C(N-1)-H*C(N+N-1))-a6*(C(N+N-1)-C(N+2*N-1)); 
  
F_Cwb_interface(1)=a7*(C(1+N-1)-2*C(1+2*N-1)+C(1+3*N-1))-((Rm*C(1+2*N-
1))/(Ks+C(1+2*N-1))); 
F_Cnwb_interface(1)=a7*((M/H)-2*C(1+12*N-1)+C(1+13*N-1))-((Rm*C(1+12*N-
1))/(Ks+C(1+12*N-1))); 
F_Cwb_iN(1)=a7*(C(1+10*N-1)-C(1+11*N-1))-((Rm*C(1+11*N-
1))/(Ks+C(1+11*N-1))); 
F_Cnwb_iN(1)=a7*(C(1+20*N-1)-C(1+21*N-1))-((Rm*C(1+21*N-
1))/(Ks+C(1+21*N-1))); 
  
for j=2:N 
    F_Cwb_interface(j)=a7*(C(j+N-1)-2*C(j+2*N-1)+C(j+3*N-1))-
((Rm*C(j+2*N-1))/(Ks+C(j+2*N-1))); 
    F_Cnwb_interface(j)=a7*((C(j-1)/H)-2*C(j+12*N-1)+C(j+13*N-1))-
((Rm*C(j+12*N-1))/(Ks+C(j+12*N-1))); 
    F_Cwb_iN(j)=a7*(C(j+10*N-1)-C(j+11*N-1))-((Rm*C(j+11*N-
1))/(Ks+C(j+11*N-1))); 
    F_Cnwb_iN(j)=a7*(C(j+20*N-1)-C(j+21*N-1))-((Rm*C(j+21*N-
1))/(Ks+C(j+21*N-1))); 
end 
  
  
for j=1:N 
    F_Cwbi2(j)=a7*(C(2*N+j-1)-2*C((2+1)*N+j-1)+C((2+2)*N+j-1))-
((Rm*C((2+1)*N+j-1))/(Ks+C((2+1)*N+j-1))); 
    F_Cwbi3(j)=a7*(C(3*N+j-1)-2*C((3+1)*N+j-1)+C((3+2)*N+j-1))-
((Rm*C((3+1)*N+j-1))/(Ks+C((3+1)*N+j-1))); 
    F_Cwbi4(j)=a7*(C(4*N+j-1)-2*C((4+1)*N+j-1)+C((4+2)*N+j-1))-
((Rm*C((4+1)*N+j-1))/(Ks+C((4+1)*N+j-1))); 
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    F_Cwbi5(j)=a7*(C(5*N+j-1)-2*C((5+1)*N+j-1)+C((5+2)*N+j-1))-
((Rm*C((5+1)*N+j-1))/(Ks+C((5+1)*N+j-1))); 
    F_Cwbi6(j)=a7*(C(6*N+j-1)-2*C((6+1)*N+j-1)+C((6+2)*N+j-1))-
((Rm*C((6+1)*N+j-1))/(Ks+C((6+1)*N+j-1))); 
    F_Cwbi7(j)=a7*(C(7*N+j-1)-2*C((7+1)*N+j-1)+C((7+2)*N+j-1))-
((Rm*C((7+1)*N+j-1))/(Ks+C((7+1)*N+j-1))); 
    F_Cwbi8(j)=a7*(C(8*N+j-1)-2*C((8+1)*N+j-1)+C((8+2)*N+j-1))-
((Rm*C((8+1)*N+j-1))/(Ks+C((8+1)*N+j-1))); 
    F_Cwbi9(j)=a7*(C(9*N+j-1)-2*C((9+1)*N+j-1)+C((9+2)*N+j-1))-
((Rm*C((9+1)*N+j-1))/(Ks+C((9+1)*N+j-1))); 
    F_Cnwbi2(j)=a7*(C((2+10)*N+j-1)-2*C((2+1+10)*N+j-1)+C((2+2+10)*N+j-
1))-((Rm*C((2+1+10)*N+j-1))/(Ks+C((2+1+10)*N+j-1))); 
    F_Cnwbi3(j)=a7*(C((3+10)*N+j-1)-2*C((3+1+10)*N+j-1)+C((3+2+10)*N+j-
1))-((Rm*C((3+1+10)*N+j-1))/(Ks+C((3+1+10)*N+j-1))); 
    F_Cnwbi4(j)=a7*(C((4+10)*N+j-1)-2*C((4+1+10)*N+j-1)+C((4+2+10)*N+j-
1))-((Rm*C((4+1+10)*N+j-1))/(Ks+C((4+1+10)*N+j-1))); 
    F_Cnwbi5(j)=a7*(C((5+10)*N+j-1)-2*C((5+1+10)*N+j-1)+C((5+2+10)*N+j-
1))-((Rm*C((5+1+10)*N+j-1))/(Ks+C((5+1+10)*N+j-1))); 
    F_Cnwbi6(j)=a7*(C((6+10)*N+j-1)-2*C((6+1+10)*N+j-1)+C((6+2+10)*N+j-
1))-((Rm*C((6+1+10)*N+j-1))/(Ks+C((6+1+10)*N+j-1))); 
    F_Cnwbi7(j)=a7*(C((7+10)*N+j-1)-2*C((7+1+10)*N+j-1)+C((7+2+10)*N+j-
1))-((Rm*C((7+1+10)*N+j-1))/(Ks+C((7+1+10)*N+j-1))); 
    F_Cnwbi8(j)=a7*(C((8+10)*N+j-1)-2*C((8+1+10)*N+j-1)+C((8+2+10)*N+j-
1))-((Rm*C((8+1+10)*N+j-1))/(Ks+C((8+1+10)*N+j-1))); 
    F_Cnwbi9(j)=a7*(C((9+10)*N+j-1)-2*C((9+1+10)*N+j-1)+C((9+2+10)*N+j-
1))-((Rm*C((9+1+10)*N+j-1))/(Ks+C((9+1+10)*N+j-1))); 
end 
  
F_C=[F_Cg'; 
    F_CL'; 
    F_Cwb_interface'; 
    F_Cwbi2'; 
    F_Cwbi3'; 
    F_Cwbi4'; 
    F_Cwbi5'; 
    F_Cwbi6'; 
    F_Cwbi7'; 
    F_Cwbi8'; 
    F_Cwbi9'; 
    F_Cwb_iN'; 
    F_Cnwb_interface'; 
    F_Cnwbi2'; 
    F_Cnwbi3'; 
    F_Cnwbi4'; 
    F_Cnwbi5'; 
    F_Cnwbi6'; 
    F_Cnwbi7'; 
    F_Cnwbi8'; 
    F_Cnwbi9'; 
    F_Cnwb_iN']; 
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M-file for solution 

% Kim & Deshusses Modified Model (2003) 
  
  
% CONTINUOS MODE OF OPERATION for Reactor in Series Model 
  
uL=11.8;                      % Trickling rate (m3/m2.h) 
ug=9400;                      % Gas flow rate (m3/m2.h) 
N=10;                 % No of segments along the height of BTF/biofilm 
FT=(23e-6)/N;                 % Biofilm thickness (m) 
Rm=58400;                     % Max reaction rate (g.m3/h) 
Ks=0.0279;                    % Michaelis-Menten constant (g/m3) 
H=0.387;                      % Henry's constant 
D=5.796e-6;                   % H2S Diffusion coefficient (m2/h) 
Dg=0.016332;                  % H2S diffusion in gas using Fuller 
correlation at 25C and 1 atm (m2/h) 
a=600;                        % Specific interfacial area (m2/m3) 
Dp=0.04;                      % Size of packing (m) 
rhoL=1007;               % Density of water (trickling liquid) (kg/m3) 
rhog=1.1845;                  % Density of gas (kg/m3) 
mL=3600*0.0008904;            % Viscosity of water at 25C (kg/m.h) 
mg=0.0678;                    % Viscosity of gas from HYSYS (kg/m.h) 
gc=1.271376e8;                % Acc. due to gravity (m/h2) 
stw=933120;      % Surface tension of water at room temperature (kg/h2)   
  
ab=Dp^2;                      % Cross-sectional area of bed (m2) 
FL=uL*ab;                     % Volumetric flow rate of liquid (m3/h) 
Fg=ug*ab;                     % Volumetric flow rate of gas (m3/h) 
L=uL*rhoL;                   % Superficial liq. mass velocity (kg/m2.h) 
G=ug*rhog;                    % Superficial gas mass velocity (kg/m2.h) 
V=Dp^3;                       % Volume of bed (m3) 
A=a*V;                        % Interfacial Area (m2) 
  
% Finding surface tension term in equation 13 
  
rr=0.2298;                        % Wetting ratio at FL=0.01888 m3/h  
uLL=11.8;                         % Trickling rate (m3/m2.h) 
FLL=uLL*ab;                     % Volumetric flow rate of liquid (m3/h) 
LL=uLL*rhoL;                % Superficial liq. mass velocity (kg/m2.h) 
Ree=LL/a/mL;                      % Reynolds number 
Frr=(a*LL^2)/gc/(rhoL^2);         % Froude number 
Wee=(LL^2)/rhoL/stw/a;            % Weber number 
STR=-log(1-rr)/(1.45*(Ree^0.1)*(Frr^(-0.05))*(Wee^0.2));     % Surface 
tension ratio term in equation 13 
  
% Finding wetting ratio, wetted area and specific wetted area 
  
Re=L/a/mL;                                         % Reynolds number 
Fr=(a*L^2)/gc/(rhoL^2);                                 % Froude number 
We=(L^2)/rhoL/stw/a;                                    % Weber number 
r=1-exp(-1.45*STR*(Re^0.1)*(Fr^(-0.05))*(We^0.2));      % Wetting ratio 
Aw=r*A;                                             % Wetted area (m2) 
aw=Aw/V;                                 % Specific wetted area (m2/m3) 
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% Finding mass transfer coefficients 
kg=5.23*((G/(a*mg))^0.7)*((mg/(rhog*Dg))^(1/3))*((a*Dp)^(-2))*a*Dg;                         
% Gas-Liq mass transfer coefficient (m/h) 
kL=0.0051*((L/(aw*mL))^(2/3))*((mL/(rhoL*D))^(-
0.5))*((a*Dp)^0.4)*((rhoL/(mL*gc))^(-1/3));   % Liq-biofilm mass 
transfer coefficient (m/h) 
  
  
% Finding Gas and Liquid Volumes 
VL=(0.00001*FL)+0.0000008;    % Dynamic holdup/liq. phase volume (m3) 
Vol_ratio=8.6e4;              % Gas/liquid Volume ratio 
Vg=Vol_ratio*VL;              % Gas phase volume (m3) 
  
  
% Solution 
  
tspan=0:0.0014:0.3; 
Cg0(1)=0.164;         % Inlet concentration to the first reactor (g/m3) 
C0=zeros(22*N,1); 
C0(1,1)=Cg0(1); 
C0(N+1,1)=Cg0(1)/H; 
C0(12*N+1,1)=Cg0(1)/H; 
[t,C]=ode15s(@gLbio_conc_profiles_continuos_RIS_R1,tspan,C0,[],D,H,FT,N
,kg,kL,r,A,Fg,FL,Vg,VL,Rm,Ks); 
Ci_out=C(:,N); 
plot(t,Ci_out) 
hold on 
C_Out_SS(1)=C(length(t),N); 
  
n=40; 
  
for I=2:n 
ANS=[]; 
for i=1:length(Ci_out) 
M=Ci_out(i); 
Css0=zeros(22*N-1,1); 
Css=fsolve(@gLbio_conc_profiles_continuos_RIS_Ri,Css0,[],M,D,H,FT,N,kg,
kL,r,A,Fg,FL,Vg,VL,Rm,Ks); 
CSS=[M;Css]; 
ANS=[ANS;M CSS(N)]; 
end 
Ci_out=ANS(:,2); 
C_Out_SS(I)=Ci_out(length(t)); 
plot(t,Ci_out) 
hold on 
end 
xlabel('\bfTime (h)') 
ylabel('\bfC_g_,_o_u_t (g/m^3)') 
title('\bfOutlet Concentration of H_2S for each reactor','FontSize',12) 
hold off 
figure (2) 
plot(t,Ci_out) 
xlabel('\bfTime (h)') 
ylabel('\bfC_g_,_o_u_t (g/m^3)') 
Z=0:n; 
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Cz_ss=[Cg0(1);C_Out_SS']; 
figure(3) 
plot(Z,Cz_ss) 
xlabel('\bfPosition along the length of Reactor') 
ylabel('\bfH_2S Concentration at Steady State (g/m^3)') 
figure(4) 
Lr=0.04*Z;     % Length of reactor (m) 
plot(Lr,Cz_ss) 
xlabel('\bfDistance along the length of Reactor (m)') 
ylabel('\bfH_2S Concentration at Steady State (g/m^3)') 
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Simulink Block Flow Diagrams for Simulation of Data Driven BTF Models 

1. BTF transfer function model simulation 

 

 

Note: the transfer function models for process and disturbance were obtained from Loop Pro TRAINER 5.1 
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2. Steady state BTF NN model simulation 
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Simulink Block Flow Diagrams for Simulation of Control Systems 

1. PI Controller 
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2. FB PI - FF Controller 
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3. TF MPC controller 
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4. NNMPC controller 
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5. NNMPC + Integral controller 
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6. Control system comparisons for set-point changes 
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7. Control system comparisons for set-point changes 

 

 

 

 

 

 

 



118 
 

Vita 

 Originally from Pakistan, Wasim Ahmed Bashir was born on April 28, 1985, in 

Dubai, United Arab Emirates. He started his primary education from an English school 

with British Curriculum in Al Sadiq Islamic English School, conveniently located in the 

city of Dubai. He successfully completed his O’ Level and graduated with top position in 

2002. Aiming for further education, he enrolled in the English Medium School,        

where he completed his A’ Level and graduated as a science student in 2005.                                           

 Mr Ahmed enrolled in American University of Sharjah and graduated cum laude 

with a Bachelor of Science Degree in Chemical Engineering and a Minor in Engineering 

Management in 2009. During his years as an undergraduate student, he received 

academic scholarship and had been in the Dean’s list for four semesters. From his 

undergraduate senior design collaborative project on biofilter process, he got to publish 

two scholarly articles. In 2010, he continued to pursue his education by enrolling in a 

Master’s program in Chemical Engineering at the American University of Sharjah. Under 

the student assistantship program, he worked as a computer lab assistant at the university 

for one year and then as a computer lab instructor for a computer methods undergraduate 

course. He is expected to graduate in 2012. 

 


	Abstract
	List of Figures
	List of Tables
	Nomenclature
	Chapter 1. Introduction
	1.1 Background
	1.2 Overview of Biotrickling Filter Modeling and Control
	1.3 Problem Statement
	1.4 Thesis Organization

	Chapter 2. Modeling and Simulation of Biotrickling Filter
	2.1 Review of Existing BTF Models
	2.2 BTF Model Selection
	2.3 BTF Model Formulation
	2.4 Model Simulation
	2.4.3 Results and discussion


	Chapter 3. Biotrickling Filter System Identification and Control
	3.1 BTF System Identification
	3.1.4 Results and discussion

	3.2 BTF Process Control
	3.2.2 Conventional control strategies
	3.2.3 Advanced control strategies


	Chapter 4. Conclusion
	References
	Appendix

