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ABSTRACT 

Difficult-to-cut materials are widely used particularly in the aerospace and 

automotive industries. However, the high cost of processing these materials limits the use 

of their improved mechanical properties. Tool life is one of the most important factors in 

machining operations of such materials and it is mainly affected by cutting conditions 

including the cutting speed, feed, depth of cut and cooling environment along with the 

generated temperature and cutting forces. In addition, the modern industry is moving 

towards automating the manufacturing processes. Therefore, tool life monitoring is 

important to achieve an efficient manufacturing process. In this study, a tool wear 

prediction model during the turning of Titanium alloys is studied. It is based on the 

monitoring of tool performance in controlled machining tests with measurements of 

cutting forces and vibration under different combinations of cutting parameters (cutting 

speed, feed rate, depth of cut and coolant). The influence of cutting parameters on the 

tool life was studied experimentally by performing more than 300 cutting tests. A 

prediction model was then developed to predict tool wear. The basic steps used in 

generating the model adopted in the development of the prediction model are: collection 

of data; analysis, pre-processing and feature extraction of the data, design of the 

prediction model, training of the model and finally testing the model to validate the 

results and its ability to predict tool wear. In this work, tool wear prediction was 

developed using three different modeling methods: Feed-forward Back-Propagation 

Neural Network, Regression Analysis and Gaussian Mixture Regression (GMR). 

Comparing the predicted tool wear values with the measured ones showed reasonable 

agreement. Neural Network modeling yielded the least prediction error with prediction 

accuracy of 90.876% which is 2.702% and 1.23% higher than the prediction accuracy of 

the GMR and regression models respectively. 

 

Search Terms: Titanium alloys, Turning process, Tool wear, Neural Network, 

Regression Analysis, Gaussians Mixture Regression. 
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1 Introduction  

This chapter provides a general review about turning processes and their 

parameters as well as tool materials and cutting fluids. In addition, machinability of 

difficult to cut materials and tool wear are discussed. 

1.1 Manufacturing Process  

Manufacturing process can be defined as the process of converting raw materials 

into products, including the product design, selection of raw materials and the sequence 

of the manufacturing procedure  [1]. In today’s highly competitive market, the quality of 

manufactured products must be assured in all manufacturing stages  [2]. This has 

increased the demand for efficient manufacturing processes with optimum manufacturing 

cost, high quality and environmental sustainability considerations  [3]. There are two main 

concepts in modern manufacturing: machining automation and advanced engineering 

materials.  

Automation of manufacturing process could be the ideal solution to today’s 

development revolution in terms of the new materials, cutting tools, and machining 

equipment. Automation will help in achieving an economical implementation of 

resources in the manufacturing process (materials, labor, energy, etc.) without 

compromising the high levels of quality and productivity. In addition, the change in 

market demands and product specification requires faster production rates and 

consistency and uniformity of the manufactured parts  [1]. Achieving these requires 

changing the tool just at the right time to get these benefits  [4] [5]. 

The other main issue of modern manufacturing is the use of new advanced 

engineering materials. New industrial applications require materials with modified 

properties for products’ particular requirements with reliable and economical 

manufacturing processes. Such advanced engineering materials are used in aerospace, 

electronics, medical applications and others industries  [6] [7]. The modified properties 

will improve the quality of these materials and help meet certain mechanical, electrical, 

or chemical requirements. Typical properties of interest include: tensile strength, 

hardness, thermal, conductivity, and corrosion and wear resistance  [6] [8] [9]. Despite of 
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1.2.3 Cutting Tool 

The cutting tool used in the turning process is a single point tool that has one 

cutting edge to remove material from the work-piece. Different cutting tool materials are 

used for different machining applications. In order to produce good quality parts, the 

cutting tool material should be harder than the work material and it should have the 

ability to withstand the increased cutting temperature, forces and speeds. Many efforts 

have been made to develop new cutting tool materials to withstand these tough cutting 

conditions  [6]. 

During machining, the cutting tools are subjected to high temperature and 

stresses. Thus their material must have certain properties such as hardness, toughness and 

chemical stability  [1]. Other significant characteristics are wear resistance and having 

acceptable tool life before replacement of the cutting insert is required. Tool wear will be 

much more rapid at elevated temperatures because of the reduction in hardness of the 

cutting tool  [6]. 

One of the oldest tool materials is carbon steel  [1] but its use today is very 

limited. It has low hardness and low wear resistance which make it unsuitable for current 

applications. In industry today, there are many types of tool materials such as high speed 

steel, ceramics, cemented carbides and diamond.  

High-speed steels have high toughness and good wear resistance which make 

them suitable for relatively higher cutting speeds applications. Cemented carbides could 

be considered the most important tool materials today. They have high hardness and wear 

resistance over wide range of temperatures  [1] but low toughness. Diamond is the hardest 

material and is used in general as a coating material  [1]. 

1.3 Tool Wear 

Cutting tools are subjected to extremely severe conditions of very high stress and 

high temperature. Tool wear occurs during the cutting action due to the interactions 

between the cutting tool and work-piece and results in the failure of the cutting tool. 

When the tool wear reaches certain level value, the tool has to be replaced to achieve the 

required shape, dimension and surface finish. Effects of tool wear include the increasing 

of cutting forces and temperatures which adversely affects the quality of the machined 
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Crater wear occurs on the rake face of the cutting tool. It is caused by the friction 

between the produced chip and rake face of the cutting tool. The crater wear depth (KT) 

is usually used as a measurement of crater wear in the rake face. Crater wear causes a 

weakened cutting edge and poor surface finish and may cause breakage of the cutting 

tool. 

1.4 Cutting Fluids 

The aim of any cutting process is to achieve the required accuracy and quality 

good surface finish of the produced work-piece as well as to have a longer tool life. 

However during the cutting process, heat is generated due to the friction at the tool edge. 

This heat can be reduced by using a cutting fluid.  

Many materials can be machined by dry machining without using a cutting fluid. 

However the use of cutting fluid can improve the machining operation. The high 

temperature generated in the cutting zone of titanium alloys will cause rapid tool 

wear  [7]. The use of a cutting fluid will reduce friction and wear and thus improve tool 

life and surface finish. In addition, it will cool the work-piece and the cutting zone  [6] [7] 

and hence reduce cutting forces and energy consumption.  

Four types of cutting fluids are commonly used: oils, emulsion, semisynthetics 

and synthetics  [1]. Oils are very effective in the reduction of friction and tool wear but 

have low thermal conductivity and low specific heat. Moreover, it is usually difficult and 

costly to remove oils from the work-piece. 

Emulsions are mixture of two immiscible liquids such as oil and water and are 

also known as water-based coolants  [1]. The water gives high cooling capacity so 

emulsions are used in high speed machining. Water-base coolants are considered more 

efficient than oil in high speed cutting of titanium alloys  [7]. 

Synthetic solutions contain no mineral oil and are formulated using inorganic and 

other chemicals dissolved in water  [1]. Semi Synthetic solutions contain small amounts 

of emulsifiable oils.  

There are three basic methods of applying cutting fluids: flood cooling, mist 

cooling and high pressure system minimal quantity lubrication. Flooding is the most 

common method wherein a large volume of fluid is applied to the cutting interface. 
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Applying this method guarantees very good cooling and chip removal by applying the 

nozzle to the tool surface. 

In the mist application, cutting fluid is applied at a high pressure in the form of a 

mist. The amount of lubricant used by this method is lower than that of flood cooling. 

The third method is the Minimal Quantity Lubrication (MQL). The amount of lubricant 

used by MQL is very small. 

Coolant is considered an important way to improve the machining process of 

titanium alloys whether standard coolant or cryogenic cooling is used  [8]. 

Cutting fluids play a significant role in machining process and can impact the tool 

life and the quality of produced work. However, environmental liability and the 

operators’ health have become major concerns. Operators may be exposed to many 

hazards caused by the cutting fluids such as chemical fumes or skin damage  [6]. Other 

issues in using the cutting fluids that concern the environment are the disposal of the used 

cutting fluids and the cleaning of the turning machine and the work-piece. Also cutting 

fluids may affect the work-piece material and the cutting tool. This can be minimized by 

using Minimal Quantity Lubrication method  [6] which will reduce the machining cost as 

well as reducing environmental pollution. 
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1.5 Thesis Objectives and Contribution 

The ultimate objective of this work is to enhance the efficiency of the machining 

process and the machined surface quality when machining titanium alloy as a difficult-to-

cut material, while taking into consideration the economic feasibility of the process. The 

main objective is to develop an online tool wear monitoring system that will contribute to 

developing modeling of tool wear while machining titanium alloy, and selection of 

proper machining parameters to maximize tool life. 

The first phase of the work is to generate a database of cutting performance 

during machining of titanium alloys while varying the cutting parameters: depth of cut, 

feed, cutting speed, and cutting coolant. The experimental work consists of turning tests 

with a dynamometer and an accelerometer to measure the cutting force and vibration 

during the turning process of titanium alloy. Measurements of tool wear and surface 

roughness after each cut are also recorded. 

Data collected by sensors will be analyzed and used along with different cutting 

conditions to develop a tool wear prediction model. Modeling techniques used are 

Artificial Neural Network, Gaussian Mixture Regression and Regression Analysis. The 

predicted tool wear by each model will be compared to the measured wear and the 

performance of the different modeling techniques will be compared. The specific 

objectives of this project are:  

1. Develop an experimental set up that will suit the selected tested 

monitoring strategies of cutting forces and vibration. 

2. Develop test matrices to cover the required range of cutting conditions 

using design of experiments. 

3. Collect experimental data that can be used to evaluate the effectiveness of 

the used sensors to measure cutting force and vibration. 

4. Analyze the experimental data of the different sensors and extract the 

significant information related to tool wear. 

5. Quantify the coolant strategies to be used as input to the prediction model 

of tool wear. 
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6. Use Artificial Neural Network, Gaussian Mixture Regression and 

Regression Analysis to find the correlation between monitoring strategy 

output and machining process parameters and tool wear. 

7. Compare the different modeling techniques to determine the most accurate 

technique to predict tool wear while machining titanium alloy.  
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2 Literature review 

2.1 Introduction 

This chapter provides a brief literature review on machinability of titanium alloys 

and different sensors and techniques used to correlate the tool wear to the machining 

parameters and measured signal. In addition, the implemented prediction methods of tool 

wear such as the Artificial Neural Network and Regression Analysis are reviewed. 

2.2 Literature Review 

Metal cutting is one of the most extensively used manufacturing processes, and its 

technology continues to advance in parallel with the developments in material science. 

The productivity and accuracy of the metal removal operations depend on machining 

process parameters, cutting conditions and cutting tool geometry as well as the work-

piece material and material of the tool. An important aspect in manufacturing and 

machining process is to obtain the desired final dimensions and surface finish 

quality  [12].  

The relative ease with which a material can be machined is referred to as its 

machinability  [6]. There is no exact definition of this term but machinability is generally 

assessed in terms of particular process responses such as tool life, surface finish and 

power required to cut  [1] [6] [12]. The tool life obtained is considered to be the most 

important factor in machinability  [1]. 

Rapid progress in the science and technology of materials has resulted in the 

development of a wide range of advanced engineering materials. These materials are 

customized to attain special characteristics of the required applications such as high 

strength-to-weight ratio, high strength at elevated temperatures, excellent wear resistance 

etc. An example of these materials is titanium-based alloy. Although these materials are 

being used in a wide variety of engineering applications (e.g. aerospace, medical, 

petroleum), they are considered difficult-to-cut and their properties impose a lot of 

constraints on their machinability and their machinability imposes a lot of constraints due 

to their properties [7] [8] [13]. 
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Lack of appropriate machining technology is the major constraint to taking 

advantage of advanced materials and there is a great need for reliable and cost effective 

machining processes. One way of achieving this cost-effectiveness in machining 

advanced material is by elongating tool life by reducing replacements of tools and the 

resources used in the machining process. Tool wear causes degradation of the shape and 

efficiency of the tool cutting edge and this influences the surface quality and dimensional 

accuracy of the finished product. 

Titanium and its alloys have been increasingly used in a wide range of applications 

such as aerospace, automotive, and medical industries. Titanium is extensively used due 

to its superior properties of low density, high strength to weight ratio, good temperature 

resistance and corrosion resistance  [6]. These properties harden its machinability so it is 

classified as a “difficult-to-cut” material  [6] [8] [14]. 

Short tool life is the main challenge while machining titanium alloys  [8]. This has 

limited the cutting tools to coated carbide and ceramics tools  [6] [7] and prevents the use 

of high cutting speeds  [8]. The poor machinability of titanium alloys is due to their low 

thermal conductivity which increases the temperature at the cutting tool and the work-

piece creating a very high temperature cutting zone  [7]. Additionally, the interface 

between titanium chips and cutting tools is usually quite small, which results in high 

cutting zone stresses. There is also a strong tendency for titanium chips to pressure-weld 

to cutting tools  [8]. 

The literature reported several ways to improve and ensure efficient and economic 

cutting of titanium. Some studies are presented below such as the use of an alternate 

cutting tool, the use of cryogenic cooling and liquid nitrogen (LN2). 

Ezugwu  [6] has addressed some of the implemented techniques to improve the 

machining of difficult-to-cut aerospace superalloys. One of the techniques is the use of 

rotary tooling in which movement of the cutting tool ensures that the cutting edge will be 

involved in machining for a very short period and then will rest for some period. This 

will improve heat transfer and reduce the heat in the cutting zone. The proper application 

of a rotary cutting tool showed improved machining especially for difficult-to-cut 

materials, and increased tool life. However using rotary tools generates severe chatter and 

increase errors in machined surfaces. 
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Ezugwu also reported on the delivery of the coolant at high pressure to reduce the 

temperature generated at the tool-work-piece and tool-chip interfaces when cutting at 

higher speed conditions - and consequently elongate tool life - by minimizing the friction 

and lowering component forces. The effect of using high pressure coolant depends 

mainly on tool type. For example when machining Inconel 718 or titanium with coated 

carbide tools, results showed improvement in tool life while ceramic tools showed lower 

tool life. This could be a result of high compressive stresses on the cutting edge that 

accelerate notching and/or tool fracture during machining. 

Another way to improve machining processes is the use of modern machining 

techniques. Chinmaya et al.  [8] studied the ability of Laser Assisted Machining(LAM) 

and hybrid machining to elongate tool life and improve the material removal rate while 

machining titanium alloy. LAM is based on localized heating and lowering the cutting 

forces during machining. Results indicated a reduction in the specific cutting energy and 

improvement of surface roughness compared to conventional machining. Laser-assisted 

machining improved the cutting of titanium for the cutting speed range of 60-107 m/min. 

In addition, improvement in surface roughness was reported. 

Liquid Nitrogen (LN2) has been widely investigated as a cryogenic coolant for 

machining titanium and its alloys  [6] [13] [14]. LN2 was proven to be a good lubricant and 

its ability to reduce tool wear and improve tool life were reported. LN2 is considered as a 

coolant in the metal cutting process because of its low viscosity and the fact that it does 

not adhere to metal surfaces easily due to its non-wetting tendency  [14]. In addition it is 

considered to be environmentally friendly since it evaporates quickly into the air. The 

effectiveness of cooling will be enhanced when LN2 is released exactly to the chip-tool 

interface. 

Ezugwu  [6] presented the use of cryogenic cooling by directing a jet of liquefied 

gases under pressure into the cutting zone. When turning titanium alloy, Ti-6Al-4V, with 

cemented carbide using LN2, an improvement in tool performance was shown. 

Temperatures generated at the cutting interface and tool wear rates were lower than those 

achieved by dry machining. 

Hong et al.  [14] studied the effect of LN2 on the friction between the chip and the 

tool while machining Ti-6Al-4V. The reduction of the coefficient of friction was used to 
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evaluate the effectiveness of LN2, along with the chip microstructure. The normal and 

frictional forces on the tool rake were determined from the cutting forces which were 

measured experimentally by a three-dimensional dynamometer. Cutting tests were 

performed for both dry and cryogenic cutting by LN2. An increase in the cutting force 

was noted while using LN2 cryogenic cooling which was explained by the lower 

temperature that makes the work material harder. On the other hand this decreased the 

feed force and frictional force of the chip acting on the tool during the cutting process.  

In another study, Hong et al  [13] tried to find the most effective approach of 

applying cryogenic cooling that will yield to the longest tool life while using minimum 

amounts of liquid nitrogen (LN2). Different cryogenic cooling strategies used in Ti-6Al-

4V machining were compared to develop an economical cryogenic cooling approach 

using micro-nozzles that inject focused LN2 into the chip-tool interface, at the tip of the 

cutting tool where the highest temperature is. In addition, an auxiliary nozzle sprays LN2 

onto the flank at the cutting edge to further reduce the cutting temperature. The test’s 

findings showed an increase in tool life and the author believes it yields the best tool life 

compared with any machining method from current known sources such as LN2 

flooding.  

Ezugwua et al.  [9] studied the correlation between cutting parameters and process 

parameters of high-speed turning of nickel-based alloy ( Inconel 718). An Artificial 

Neural Network (ANN) model was introduced with cutting conditions as inputs, namely 

cutting speed, feed rate, cutting time and coolant pressure. The output parameters are 

component forces, power consumption, machined surface roughness, tool wear measured 

as average and maximum flank wear and nose wear. The study showed that the cutting 

speed has an influence on the surface roughness, cutting forces, power consumption and 

flank wear. When cutting speed increased, surface roughness, tool wear and power 

consumption increased significantly. The cutting force also increased and led to a rise in 

the temperature at the cutting zone and softening of the work-piece material. In addition, 

increasing the feed rate showed a reduction in the surface roughness value but an increase 

in forces and power consumption. A reduction in cutting force and power consumption 

was also noticed with the increase in coolant pressure. 
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Another common approach to ensure effective machining processes is 

implementing a Tool Condition Monitoring system (TCM). Based on acquisition systems 

of in-process signals, the supervision of tool wear will help to exchange the cutting tool at 

the right time and avoid excessive tool wear or tool breakage. 

Various approaches have been taken to monitor tool wear using signal processing 

techniques. Generally the development of a TCM consists of three main stages: selection 

of the sensors, extraction of significant information from the sensors signals, and finally 

the correlation between the processed information and the amount of tool wear.  

Kannan et al.  [15] presented an energy based analytical model for predicting the 

tool wear during orthogonal cutting of particulate metal matrix composites(PMMCs) 

which are considered difficult-to-cut material. The model accounted for the particulate 

size effect, cutting conditions, material and cutting tool hardness and cutting tool 

geometry. 

A developed energy method was utilized by Kishawy et al.  [16] to predict the 

forces generated during machining. The effect of process parameters on the generated 

forces was included. Cutting experiments were carried out for different feeds on different 

matrix materials and volume fractions. The predicted cutting force was compared to the 

experimentally measured forces; the results indicated a very good match. 

Kishawy et al.  [11] derived an analytical model to predict tool wear during bar 

turning of PMMCs. The model accounted for the effects of particulate size and volume 

fraction on tool life during turning with different nose radii tool. The results of the flank 

wear model showed match between the proposed model and the measured wear values. 

One of the most important elements of tool condition monitoring systems is the 

set of sensors used to collect signals. Sensing methodologies may include force, power, 

sound, vibration and acoustic emission. Different signal analysis and feature extraction 

techniques are used to analyze the most useful information for determining the tool 

condition. Methods based on signals measured from a single sensor have been used. 

Alternatively, multiple sensors have been combined to build sensor fusion systems. The 

use of multiple sensors enhances the performance of tool wear monitoring systems, as 

each sensor signal may contain different information related to tool wear. Below is a brief 

review of some of the implemented sensing methods. 
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A significant amount of research has been based on the measurement of cutting 

forces since it has direct effect on the machining accuracy and surface finish  [4] [17] [18]. 

Cutting forces can be measured by mounting a dynamometer or force transducer on the 

tool  [1]. 

Choudhury and Ratch  [4] showed that tool flank wear can be estimated by 

calculating the tangential cutting force coefficient from the average X and Y forces 

during the milling process. A number of milling experiments were carried out with 

different values of speed, feed and depth of cut and cutting force measurements using a 

dynamometer. The effects of cutting conditions on the tangential cutting force coefficient 

were investigated and the results indicated that flank wear can be estimated using the 

tangential cutting force coefficient and cutting parameters. 

Zhang et al.  [17] studied tool wear and cutting forces during end milling of 

Inconel 718 with a coated cemented carbide cutting tool. Milling experiments were 

performed with measurements of cutting forces using Kistler 9257A dynamometer. The 

cutting tests were interrupted at the specified cutting intervals and the tool wear was 

measured with a professional handheld digital microscope. The 0.3 mm average flank 

wear criterion was used to determine the effective tool life. The obtained results proved 

that the cutting forces are very sensitive to the increase in flank wear. Increasing the tool 

wear will increase the tool-workpiece contact area and hence increase the cutting forces. 

Lee et al.  [5] presented an experimental study of tool failure using the dynamic 

component of the tangential cutting force. The results indicated a good correlation 

between tangential cutting force and tool flank wear. Also, the cutting force increased as 

the tool wear increased. 

Kannan et al.  [18] studied the generated forces during cutting metal matrix 

composites (MMCs) and found that they can be correlated to the average dislocation 

density in the matrix. The forces were measured using a three component piezoelectric 

dynamometer. In addition, microstructural change analysis using TEM showed that the 

change in microstructure is due to cutting conditions, material composition, and 

particulate size and volume fraction. 

Another effective important signal in cutting processes is the vibration signal 

collected through an accelerometer. An accelerometer can be used to measure the 
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frequency and amplitude of vibration within the machine structure, spindle, tool and 

work-piece. The occurrence of vibration affects the surface finish and tool life.  

Haddadi et al.  [19] studied the effect of the tool edge condition on tool vibration 

parameters experimentally in the frequency domain. The results obtained indicated that 

the spectrums associated with worn tools contain more energy than sharp tools within 0 

to 3.5 KHz. Also it was observed that the spectrum of the vibration signal is not sensitive 

to varying the tool rake angle. 

Upadhyay et al.  [20] used vibration signals for in-process prediction of surface 

roughness during turning of Ti-6Al-4V alloy. Turning experiments were conducted with 

measurements of vibration using a tri-axial Kistler accelerometer. Different values of 

cutting speed, feed rate and depth of cut were used. Multiple regression and Neural 

Network models were developed using cutting parameters and vibration signals for 

prediction of surface roughness. The results of both models showed a good predictive 

ability. The vibration signal alone was found to be insufficient input to the prediction 

models. 

Salgado et al.  [21] studied the applicability of singular spectrum analysis (SSA) to 

signal processing for tool condition monitoring systems development using vibration. 

The vibration signals were measured using two accelerometers in the longitudinal and 

transverse directions. The tool wear was predicted using multilayer Neural Network 

trained with the features extracted from the SSA-processed vibration signals. Singular 

spectrum analysis depends on dividing the signal in the time series into a set of 

independent additive time series. In this study, decomposed vibration signals were 

interpreted into two signals: the trend signal representing the signal’s local mean, and the 

detrended or noise signal representing the difference between the original signal and the 

trend. The results showed that information about the tool flank wear is mostly contained 

in high-frequency detrended signals.  

Acoustic emission signals are also used in establishing tool condition monitoring 

systems. Li  [22] has conducted a review on using acoustic emissions (AE) and found that 

it can be successfully used to estimate tool wear. Different signal processing techniques 

were used to extract the relevant features of AE signal to tool wear including time series 

analysis, Fourier Transform, Gabor Transform and Wavelet Transform.  



 

29 
 

Arul et al.  [23] used AE sensing to study the effect of drilling parameters on thrust 

force and flank wear while machining glass fiber reinforced plastic composites material. 

AE emitted from the work-piece during drilling was measured with a Kistler wide band 

piezoelectric sensor. Also Kistler two-component dynamometer was used to measure the 

thrust cutting force. It was found that the thrust force is affected by the feed rate more 

significantly compared to the cutting speed. Moreover, results showed that RMS values 

of the measured AE signal can be correlated to the flank wear. 

Pai and Rao  [24] presented a tool monitoring technique based on the analysis of 

acoustic emission in face milling. The acoustic emission signal parameters (ring down 

count and RMS voltage) were correlated with the tool status in face milling of steel using 

one, two, and three inserts. It has been shown that these signal parameters can be used to 

monitor the tool condition effectively. 

Signals measured by deferent sensors are used to develop a model of machining 

process such as prediction of tool wear or surface roughness. Applied signal analysis 

techniques include – but are not limited to - frequency domain 

analysis  [5] [19] [22] [31] [35], Principle Component Analysis (PCA)  [3] [28], and stepwise 

regression  [36]. Signal analysis is an important step that helps in selecting the significant 

features of collected signals to be used in the model. 

Some of the techniques used in modeling machining process are Artificial Neural 

Network (ANN), Fuzzy Logic, Polynomial Classifier and Regression Analysis (RA). 

Neural Network is widely used in modeling the machining process  [3] [25]- [30] [32]. 

Ghosh et al.  [25] presented an ANN model using sensor fusion for tool condition 

monitoring in a face milling. Sensors for the following measurements were used: cutting 

forces, spindle motor current and supply voltage, spindle vibration, acoustic emission and 

machining sound signal. Signal processing and feature extractions from the sensors signal 

are important steps to extract the relevant tool wear data from the measured signal. 

Cutting parameters along with the extracted features were used as input to the Neural 

Network model to predict flank wear. The feed-forward back-propagation Neural 

Network was used to model the flank wear. Results showed that fusion of multiple 

sensors can predict tool wear better than using a single sensor. The best prediction results 
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were obtained from sensor fusion based on cutting force and voltage and current of 

spindle motor.  

D’Addona et al  [26] proposed a tool wear prediction model based on Neural 

Networks. Four main steps were applied to generate the Neural Network: collection of 

input-output dataset, dataset pre-processing, NN training, and finally performance 

evaluation of NN. The input-output dataset was collected by performing machining tests 

with different cutting speed values and a constant feed rate and depth of cut. Cutting 

speed and cutting time were used as inputs to the Neural Network while the output was 

the tool wear. Results showed a good correlation between the experimental and predicted 

tool wear.  

Zain et al.  [27] developed a surface roughness prediction model since that is 

considered an important performance measurement of machining processes. Two 

modeling methods were applied individually: Artificial Neural Network and regression 

analysis. The developed Neural Network model was the feed-forward back-propagation 

Neural Network. It consisted of the input layer that includes the cutting conditions, two 

hidden layers, and one output layer to predict surface roughness. The experimental data 

was divided for the training and testing of the Neural Network with a ratio of 70%: 30%. 

The results showed that the predicted value of surface roughness by the ANN and 

regression was less than the measured value by about 1.05% and 1.57% respectively. 

Segreto et al.  [28] applied a sensor fusion artificial Neural Networks for tool state 

classification during turning of Inconel 718 nickel base alloy. The multiple sensor 

monitoring system compromised measurements of cutting force, acoustic emission and 

vibration signal. Turning tests were carried out with different cutting speeds and feed 

rates using different fresh and worn uncoated carbide inserts. The collected signals were 

analyzed using Principal Component Analysis (PCA) to extract the significant signal 

features that would be used as input variables to the Neural Network. 

Szecsi  [29] presented a method to monitor tool condition on CNC lathes using an 

Artificial Neural Network. The method was based on plastic deformation theory by 

analyzing the axial force generated while pressing of the cutting edge of an insert into the 

work-piece when the cutting process is stopped. ANN Artificial Neural Network was 

used to analyze the experimental data and examine the correlation between axial pressing 



 

31 
 

force and flank wear. Results showed that there is a close relationship between the axial 

force and the flank wear of the cutting tool. 

Rao and Srikant  [30] applied Artificial Intelligence techniques to estimate tool 

condition and the tool wear value online by measuring radial cutting force. The flank 

wear was estimated using three AI techniques: Fuzzy Logic, Neural Network, and neuro-

fuzzy. The neuro-fuzzy model produced the best results. 

Deiab et al.  [3] presented a novel approach to model and predict cutting tool wear 

using statistical signal analysis, pattern recognition, and sensor fusion while machining 

mild steel using coated carbide inserts. Tool wear was predicted using Artificial Neural 

Network (ANN) and Polynomial Classifiers (PC). Measurements of force and acoustic 

emission were used as input to the network along with cutting conditions parameters. The 

pattern recognition used was based on two methods: Artificial Neural Networks and 

Polynomial Classifiers (PC). It was proved that PC had significantly reduced the required 

training time compared to that of ANN without compromising the prediction accuracy. 

The predicted results were compared with the measured tool wear and showed a good 

match.  

Wang et al.  [31] presented a Gaussian Mixture Regression (GMR) based model to 

predict tool wear while machining titanium alloy. A number of milling experiments were 

conducted with titanium alloy Ti-6Al-4V as work piece and measurements of cutting 

force by a piezoelectric dynamometer. Machining parameters were kept constant. An 

optical microscope was used to measure the length of wear after every cutting pass. 

Features extracted from the measured cutting force signal by frequency harmonic method 

were used as input variables to generate a GMR model to predict tool wear. The 

performance of the GMR model was compared with other models such as the back 

propagation Neural Network model and radial basis network based on the same training 

and test data. The results showed that the GMR method is more accurate than the other 

applied methods. 

Korkut et al.  [32] used artificial Neural Network (ANN) and Regression Analysis 

(RA) to predict temperature at the tool-chip interface in machining since it has a direct 

influence in the cutting tool wear. The ANN used is the back-propagation network with 

inputs of cutting conditions and cutting forces. The output of the network is the interface 
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temperature. The data used was obtained from a previous experimental study. In addition, 

the same input variables set were used to generate a regression model to investigate the 

relation between the variables and tool-chip interface temperature. Results showed that 

the Artificial Neural Network and regression analysis models can be used for prediction 

of interface temperature with regression being more accurate. 

Ghani et al.  [33] presents a model for predicting the cutting tool wear using 

regression analysis. The regression model is based on cutting force signals measured 

experimentally while machining of titanium alloy using a Kistler dynamometer. 

Gokulachandran et al.  [34], developed two tool life prediction models using 

regression and fuzzy logic methods. A multiple regression model was used to build a 

relation between tool wear and process parameters (spindle speed, feed, and depth of cut). 

The Taguchi approach was used to design the experiments and to select the factors to be 

included in the model and their levels. Different fuzzy rules were used with triangular, 

Gaussian and trapezoidal functions. The Gaussian function gave the least error. The 

predicted tool wear by each model was compared to the experimentally measured value 

and it was found that the results obtained by the fuzzy model were more accurate.  

Kuo  [35] proposed a tool prediction system using a Fuzzy Neural Network (FNN) 

model. It was based on integrating the two technologies of the Neural Network and fuzzy 

logic. Tool wear was measured experimentally by carrying out turning experiments with 

measurements of cutting force, vibration and acoustic emission. The measured signals 

were analyzed using time series analyzer and frequency analyzer by Fast Fourier 

Transform to extract the significant features of tool wear. These features were used as 

input to the FNN model to estimate the tool wear. In addition, a multi regression model 

and a NN model were also developed to predict the tool wear. The results obtained by 

FNN were found to be better compared with the other methods. 

Shanableh and Assaleh  [36] proposed a stepwise regression as a dimensionality 

reduction method to solve the practical problem of large feature set expanded by 

polynomial expansion technique. Stepwise is a regression technique in which the 

independent (predictor) variables set that best describes the dependent variable is 

selected. Since the best features are selected, training of the polynomial classifier network 

is easier. The method was tested on two applications related to image and video based 
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recognition. Results showed classification rate is higher than the standard polynomial 

classifier but the computational complexity is relatively higher. 

It can be seen from the above review that prediction of tool wear in metal cutting 

is an important field of study. Developing an online tool monitoring system is widely 

implemented to monitor the cutting tool status and maximize its utilization without 

affecting the required accuracy and surface roughness. Sensor fusion is considered more 

effective than single sensor but is economically infeasible especially for industrial 

applications.  

The intention of this work is to experimentally investigate the machinability of a 

difficult-to-cut material: titanium alloys used in the aerospace and automotive industries. 

The main objective of this work is to study the influence of cutting conditions in the tool 

wear in the turning process of titanium alloys. Cutting forces and vibration measurements 

will be implemented to develop a reliable and effective TCM system and predict tool 

wear. 
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3 Experimental work  

3.1 Introduction 

This chapter discusses the procedure used to create the tool monitoring system. 

The objectives of the study are set and the experimental set up, equipment and machine 

used, work-piece and cutting tool inserts are discussed. 

The experimental work consists of controlled machining tests with force and 

vibration measurements, as well as tool wear and surface roughness. Experimental tests 

were carried out using fresh inserts and a test matrix was created to cover all possible 

combinations of machining parameters namely cutting speed, feed rate, depth-of-cut and 

coolant strategy. 

The system design and arguments for the choices made according to the Design of 

Experiment technique (DOE) are described here. The basic requirements to develop the 

system are to measure force, vibration and the wear of the tool and send the results to a 

system that analyzes the information to create a tool condition monitoring system. 

3.2 Design of Experiment (DOE) 

Design of Experiment (DOE) is a scientific approach used to determine the impact of 

a certain process factors on the output of the process. DOE process can be divided into 

three main stages as follows  [37].: 

1. Planning stage 

The planning stage is the most important stage, where the experimentation parameters 

and set up are selected. This stage includes the following: defining the problem, setting 

the objectives of the experiment, selecting the cutting parameters and their levels and 

establishing the measurement system and experiment matrix. 

2. Conducting stage 

This stage includes conducting the experiments, collecting the sensors’ signals, 

measuring tool wear and surface roughness and collecting the chip samples. 

3. Analyzing stage 

In this stage, the experimental tests are analyzed to interpret results. Also, validation 

experiments may be conducted to confirm the results.  
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3.3 Planning of Experiments 

For the current study, the stages of DOE  [37] have been implemented according to the 

following steps: 

1. Identify the problem: machinability of difficult-to-cut material and the need to 

monitor tool wear to achieve the required efficiency. 

2. Determine the objective: establish a tool condition monitoring system to optimize 

the change of tool insert. Also study the effect of cutting parameters on tool wear 

and cutting forces and vibration signal. 

3. Identify the process factors to be studied: cutting parameters (cutting speed, feed 

rate, depth of cut and coolant), cutting force and vibration signal.  

4. Select the cutting condition parameters and all possible combinations to set the 

cutting matrix suitable to the work-piece and cutting insert material selected. 

5. Conduct the experiments: establish the experimental setup, carry out the tests and 

collect the experimental data. 

6. Analyze the data using the appropriate analysis techniques and interpret the 

results. 

3.3.1 Work-piece material  

The material chosen for machining test was Titanium alloy, Ti-6Al-4V. Titanium 

is difficult to machine due to its characteristics of high tensile strength, low density, high 

corrosion resistance, ability to withstand extreme temperatures and low weight 

ratio  [6] [7] [8]. The Titanium bars used have an initial diameter of 100 mm with chemical 

composition of Aluminum, Al 6% and Vanadium, V4%.   

3.3.2 Cutting Tool material  

Since Titanium is considered as difficult-to-cut material  [1] [6] [7] [8], the tool 

material used should be capable of high speed machining and with dry cutting conditions. 

In the present study, cemented carbide inserts were used to machine the Titanium and 

perform the turning experiments. They are generally used for high speed machining of 

titanium alloys  [6]. The inserts are the commercial 16 mm Sandvik triangular tool; 

TCMT 16 T3 08-MM (1105)  [39].  
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3.3.3 Range of cutting conditions investigated 

Using the tool insert manufacturer’s guidelines  [39], a cutting range was selected 

according to the maximum and minimum values of the feed rate, depth of cut and the 

work-piece type. The cutting parameters levels were selected based on tool material and 

work-piece material and by studying different research papers. Depth of cut was kept 

fixed as many researchers indicated that the depth of cut has negligible effect on tool 

wear compared to the cutting speed and feed rate. 

The tests were conducted at feed rates of 100, 150, 200 mm/rev and a fixed depth 

of cut 0.8 mm. The experiments were carried out under cutting condition of dry, mist, 

flood and cryogenic cooling with liquid nitrogen (LN). The cutting speeds selected in the 

experiment were 100,125 and 150 m/min. Cutting conditions employed in the machining 

trials are listed in Table 3.1.  

 

 

Table  3.1: Cutting process variables and their levels 

Cutting Parameter Unit 
Levels 

1 2 3 4 

Cutting speed, v m/min 100 125 150 - 

Feed rate, f mm/rev  0.1 0.15 0.2 - 
Depth of cut, d mm 0.8 - - - 
Coolant, c - Dry Flood Mist LN 

 

 

All possible combinations of machining parameters - cutting speed, feed rate, and 

depth of cut and coolant strategy - are to be varied in order to insure all possible 

machining scenarios (total of 36 experiments). The test matrix is shown in Table  3.2. 
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Table  3.2: Test matrix with the experimental conditions 

Experiment v c d f  Experiment v c d f 

1 1 1 1 1  19 2 3 1 1 
2 1 1 1 2  20 2 3 1 2 
3 1 1 1 3  21 2 3 1 3 
4 1 2 1 1  22 2 4 1 1 
5 1 2 1 2  23 2 4 1 2 
6 1 2 1 3  24 2 4 1 3 
7 1 3 1 1  25 3 1 1 1 
8 1 3 1 2  26 3 1 1 2 
9 1 3 1 3  27 3 1 1 3 
10 1 4 1 1  28 3 2 1 1 
11 1 4 1 2  29 3 2 1 2 
12 1 4 1 3  30 3 2 1 3 
13 2 1 1 1  31 3 3 1 1 
14 2 1 1 2  32 3 3 1 2 
15 2 1 1 3  33 3 3 1 3 
16 2 2 1 1  34 3 4 1 1 
17 2 2 1 2  35 3 4 1 2 
18 2 2 1 3  36 3 4 1 3 

 

 

3.4 Experimental Setup 

The basic configuration of the experimental measuring setup is shown in 

Figure  3.1. It contains a CNC lathe equipped with sensors for measuring cutting force and 

vibration. Machining tests were conducted on a CNC lathe that has a continuously 

variable spindle speed. The sensors implemented were the dynamometer and 

accelerometer to measure cutting forces and vibration. 
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3.5.3 Measurement of Tool Wear and Surface Roughness  

Tool wear measurements were taken using a tool maker’s microscope equipped 

with graduated scale in mm. The surface roughness of the machined surface was 

measured using the portable Surface Roughness Tester "Mitutoyo" which reports the 

roughness average. 

3.5.4 Experimental procedure 

Interrupted turning cuts were carried out at fixed cutting conditions with fresh tool 

inserts. The measured parameter to represent the progress of wear was tool flank wear 

VB. The cutting test run was periodically interrupted and the insert was taken out to 

measure tool wear just after the force and vibration signals had been recorded. Generally 

test cuts lasted for 10 seconds at the beginning of each test run and as the test progressed, 

the duration of each test was systematically increased. The turning operation of a test was 

stopped when the VB reached 0.3 mm. The 0.3mm VB is the standard recommended 

criteria in defining a tool life endpoint by the ISO 368  [41]. 

The surface roughness of the machined surface was measured after each cutting 

test. Readings were taken at three different locations and the average value was recorded. 

Also, chip samples of each cut were collected. The obtained data were analyzed in order 

to investigate the relation between the tool wear and the sensor signals. 

3.5.5 Output of the experiments 

More than 300 cutting tests were performed within the defined 36 experiments. 

The output of these tests were the following: 

1. Cutting time where the cutting tool is removing material.  

2. Cutting forces in the three directions. 

3. Vibration signal in the three directions. 

4. Tool wear, VB in mm. 

5. Surface roughness after the cut, Ra in µm. 

6. The collected chip samples produced while cutting. 
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4 Modeling methods  

4.1 Introduction 

The basic steps used in creating a model of tool wear are: collection of data, 

analysis and pre-processing of the data, design of the network or model, and testing of the 

prediction model. In this chapter a basic review of different tool wear prediction 

modeling methods is presented. Modeling methods include: Neural Network, Regression 

Analysis by polynomial expansion and Gaussians Mixtures Regression (GMR). In 

addition Stepwise Regression Analysis is discussed as a dimensionality reduction 

technique. 

4.2 Artificial Neural Networks (ANNs) 

4.2.1 Introduction to ANN 

The human brain consists of a network of over a hundred billion interconnected 

neurons that can process small amounts of information and then activate other neurons to 

continue the process  [42]. Artificial Neural Networks (ANNs) are based on the idea of 

human brain with the neurons as processing elements and weighted connections. They 

are used in problem solving and process modeling in a way similar to human brain 

functionality  [43]. They are currently being used in many fields of engineering and 

machining  [9], business, finance and medicine  [10].  

Neurons are connected to each other with weighted inputs and outputs in which 

the weight of each input represents its strength. The weighted inputs are then added and 

the output of the neuron is passed through an activation function to be amplified. 

Modeling of a complex process requires the use of many neurons instead of using a 

single neuron  [44]. Figure  4.1 illustrates the architecture of a neuron with the arrowheads 

pointing toward the direction of information flow. In the figure x1, x2, ..., xn are the inputs 

to the neuron and w1, w2, ..., wn are the weights. The weighted sum of the inputs is 

computed as ∑ w୧x୧
୬
୧ୀଵ  and then will be passed through the activation function to produce 

the output of the neuron. Examples of the activation function are threshold and sigmoid 

functions. 
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After training the network, testing (validation) is applied with another set of data. 

From the available data, a testing data set is used to test the network to verify that the 

network can produce the required output. Usually the data is divided randomly into two 

sets allocated for training and testing. A typical partitioning is done with a ratio of 75% 

and 25% of the entire data for training and testing respectively  [43]. 

4.2.3 Neural Network Architecture 

The most common Neural Network architecture is the feed-forward back-

propagation Neural Network which can be applied to many different tasks  [42]. The feed-

forward implies that the neurons are connected foreword to the next layer as it processes 

without any backward connections. The back-propagation term is related to the training 

process of Neural Network  [42]. The back-propagation is considered as a supervised 

training algorithm since the output is fed to the network. In the feed-forward back-

propagation Neural Network, the input data is applied in the input layer, propagate 

through the hidden layers and then to the output layer. Then, an error signal is computed 

by comparing the generated output to the desired output. The computed error signal is 

transmitted backward from the output layer to the neurons in the last hidden layer that is 

connected to the output layer  [43].  

Each neuron in the hidden layer that is connected to the output layer receives a 

weighted portion of the total error signal depending on its earlier weight in generating the 

output signal. This process propagates backward through the layers of the network. The 

total error and the connection weights are updated. The process of feeding the input 

signal with the new weights and transmitting back the error signal to update the 

connection weights is repeated until the network error is reduced to an acceptable value. 

4.2.4 Neural Network for Tool Wear Prediction 

Figure  4.3 shows the architecture of the Neural Network used in the current study 

to predict the tool wear. It is a multilayer feed-forward back-propagation Neural Network 

consisting of three layers: an input layer, a hidden layer and an output layer. The inputs to 

the network are: cutting speed (v), feed rate (f), depth of cut (d), coolant (c), cutting 

forces (F), and vibration (V). The output of the Neural Network is the tool wear. 
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Figure  4.3: Neural Network used in training and predicting tool wear 
 

 

4.3 Regression Analysis 

4.3.1 Introduction to Regression Analysis 

Regression analysis is a simple method for investigating the functional 

relationships among variables expressed in the form of an equation or a model connecting 

the dependent variable and one or more independent variables  [45]. It is commonly used 

to predict values of one variable (response) when given values of the other independent 

variables (regressors). 
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Assuming Y is the dependent variable and X is the independent variables, the 

regression model will relate Y to a function of X and β formalized as Y ൌ fሺX, βሻ, where 

β represents a set of unknown parameters to be determined from the data, called the 

regression parameters or coefficients. The concept of regression analysis is to find the 

best relationship between Y and X that allows for prediction of the response values, given 

the regressor values  [45]. This is mainly accomplished by determining the regression 

parameters (β) given the values of the independent variables (X) and their known 

response value (Y). 

If there is only one independent variable that explains Y, the regression analysis is 

called a single regression but the analysis is termed multiple regression if more than one 

variable is required to describe Y in the regression model. In the multiple regression case, 

Y and X of the model are vectors of response and independent variables respectively. 

4.3.2 Linear Regression Model 

In the linear regression model, the dependent variable is assumed to be a linear 

function of the independent variables. The simple linear regression model can be written 

as:  

Y ൌ β଴ ൅ βଵxଵ ൅ βଶxଶ ൅ ⋯൅ β୩x୩ ൅ ε   (4.1) 

where k is the number of parameters to be estimated in the linear regression 

model and ε is the random term introduced to account for any disturbance or error. The 

primary objective of the regression analysis is to estimate the regression coefficients that 

minimize the error. The most popular method is the least squares method which 

minimizes the sum of squares of the error of each observation data point. Assuming there 

is n number of observations in the data to be analyzed, the errors can be written as  [45]: 

ε୧ ൌ y୧ െ β଴ െ βଵx୧ଵ െ βଶx୧ଶ െ ⋯െ β୩x୧୩,						i ൌ 1,2, … , n  (4.2) 

The sum of squares of these errors is  [45]: 

Sሺβ଴, βଵ, … , β୩ሻ ൌ෍ε୧
ଶ

୬

୧ୀଵ

ൌ෍ሺy୧ െ β଴ െ βଵx୧ଵ െ βଶx୧ଶെ. . . …െ β୩x୧୩ሻଶ				ሺ4.3ሻ

୬

୧ୀଵ
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If the function f is nonlinear as a function of x (i.e. the relationship between the X 

and Y is nonlinear), a general nonlinear regression model could be written as: 

ܻ ൌ ଵ݂ሺߚ ଵܺሻ ൅ ଶ݂ሺܺଶሻߚ ൅ ⋯൅  ௞݂ሺܺ௞ሻ   (4.4)ߚ

4.3.3 Prediction by Regression  

Assuming we have k independent variables x1, x2, …, xk and n observation y1, 

y2, …, yn, a general linear regression model can be constructed in matrix form as: 

ݕ ൌ ߚࢄ ൅  (4.6)   ࢿ

Where: 

ݕ ൌ ቎

ଵݕ
ଶݕ
⋮
௡ݕ

቏ , ࢄ ൌ ൦

1 ଵଵݔ ଶଵݔ
1 ଵଶݔ ଶଶݔ
⋮
1

⋮
ଵ௡ݔ

⋮
ଶ௡ݔ

			

… ௞ଵݔ
… ௞ଶݔ

⋮
… ௞௡ݔ

൪ , ࢼ ൌ ൦

ଵߚ
ଶߚ
⋮
௞ߚ

൪ , ࣕ ൌ ቎

߳ଵ
߳ଶ
⋮
߳௡

቏	 

The estimated values of the regression parameters, ࢼ, can be determined as 

ሺ܆୘܆ሻࢼ ൌ 				ܡ୘܆ → ࢼ					 ൌ ሺ܆୘܆ሻିଵ܆୘ܡ		(4.7)   

Knowing the regression parameters, ࢼ, it is possible to predict the dependent 

variable, y and this can be used to predict tool wear. 

4.3.4 Selection of Variables 

Selection of variables is an important issue in multiple regression analysis where a 

subset of X that best predicts Y is found. There are some procedures that are used to 

select variables to be included in the regression equation. The best regression equation 

will be computed by adding or deleting variables from the equation depending on its 

performance  [46]. Examples of techniques used to choose significant explanatory 

variables are forward selection, backward elimination and stepwise selection  [46]. 

In the forward selection procedure, the modeling equation starts with no variables, 

then each added variable will be tested using a specified criterion. Another variable that 

improves the model will be added and this will be repeated until there are no more 

variables that improve the model. On the other hand, in the backward elimination 
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procedure, modeling will start with an equation that contains all the variables, then 

deletion of each variable will be tested. The process will be repeated until no further 

deletion of variables improves the model. 

The stepwise method is similar to the forward selection procedure but at each 

step, the deletion of the variables will be checked for model improvement  [46].  

Variables are added and removed from the model based on their statistical 

significance in the regression model. The stepwise procedure begins with an initial model 

and then compares the performance of larger and smaller models. At each step, a 

specified statistic is computed to test models with and without the tested variable  [45]. 

4.3.5 Power Transformation of Variables 

A standard assumption of the regression analysis is that the relationship between 

the dependent variable and independent variables is linear but this is not usually the case. 

Analyzing the variables before implementing the regression analysis is important to get 

the model that best describes the data. It is common practice to use a transformed form of 

the variables to fit the linear regression model  [46]. Transformations of the variables are 

applied to achieve the linearity of the regression model or to stabilize the error 

variance  [46]. Since the literature suggests that the relation between the tool wear and 

cutting process parameters is nonlinear, an appropriate transformation of the variables 

can make the relationship between the transformed variables and tool wear linear. 

Some of the transformations implemented are the logarithmic transformation [27], 

square root transformation, and power transformation. In the power transformation the 

variables are raised to a defined power and the new transformed variable matrix is used in 

the regression model instead of the original variables. Raising the independent variables 

matrix to a power of 2 is discussed and used in this study. The predictor matrix X (n × k; 

k columns of independent variables and n observations) is expanded into a quadratic 

design matrix D to be used in the regression analysis. A full quadratic model D of n 

columns matrix X contains the following order of terms  [47]:  

1. The constant term. 

2. The linear terms of X in order of: 1, 2, ..., k. 

3. The products terms of X in order of: (1,2), (1,3), .., (1,k), (2, 3), .., (k-1, k). 
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4. The squared terms of X in order of: 1, 2, ..., k. 

Rewriting equation 4.6, X will be transformed to the matrix D according to the 

following: 

ݕ ൌ ߚࡰ ൅  (4.8)   ࢿ

where:  

ࡰ ൌ

ۏ
ێ
ێ
ێ
1ۍ ଵଵݔ ଶଵݔ
1 ଵଶݔ ଶଶݔ
⋮
1

⋮
ଵ௡ݔ

⋮
ଶ௡ݔ

			

… ௞ଵݔ
… ௞ଶݔ

⋮
… ௞௡ݔ

ଶଵݔଵଵݔ ⋯
ଶଶݔଵଶݔ ⋯
⋮

ଶ௡ݔଵ௡ݔ ⋯

			

ሺ௞ିଵሻଵݔଵଵݔ ଵଵଶݔ ⋯ ௞ଵଶݔ

ሺ௞ିଵሻଶݔଵଶݔ ଵଶଶݔ ⋯ ௞ଶଶݔ

⋮ ⋮
ሺ௞ିଵሻ௡ݔଵ௡ݔ ଵ௡ଶݔ ے௞௡ଶݔ

ۑ
ۑ
ۑ
ې

 

Training set of data will be used to compute the regression parameters and then 

predict the dependent variable (tool wear). 

4.4 Gaussian Mixture Regression 

Gaussian Mixture Models (GMMs) are among the most common methods used in 

clustering  [48]. Clustering is a process in which a data set is divided into number of 

groups combining similar data points. GMMs have been widely applied to data analysis, 

pattern recognition, signal processing, image processing and learning and 

modeling  [48] [49] [50]. GMM is basically a probability density function formed by 

combining a number of Gaussian components. The GMM algorithm described in  [48] is 

summarized below. 

A Gaussian mixture model is a weighted sum of k-component Gaussian densities 

as given by the equation: 

௜ሻ߆|௧ݔሺ݌ ൌ ∑ ௜ሻߠ|௧ݔ௜ሺ݌௜ߙ
௞
௜ୀଵ   (4.9) 

where x is a d-dimensional data vector and α୧(i = 1,2,...,k) are the mixture weights 

or coefficients of the k components that must sum to one. The pሺx|θ୧ሻ are the component 

Gaussian densities (for i = 1,2,…,k) in the form of: 

ሻߠ|ݔሺ݌ ൌ ଵ

ሺଶగሻ೏/మඥ|∑|
exp	 ቀ–

ሺ୶ିஜሻ౐∑షభሺ୶ିஜሻ

ଶ
ቁ ߠ			,		 ൌ ሺμ, ∑ሻ   (4.10) 
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The parameters of each Gaussian component are the mean µ, and the covariance 

∑. The resulting density function of the n-vectors of features X ={x1, x2, . . . , xn} is: 

ሻ߆|ሺܺ݌ ൌෑ݌ሺݔ௧|߆ሻ
௡

௧ୀଵ

ൌ ߆			,		ሻܺ|߆ሺܮ ൌ ሺߙ௜,  ሺ4.11ሻ														௜ሻߠ

The parameters that best match the Gaussian distribution are estimated by 

maximizing the likelihood function LሺΘ|Xሻ. The commonly used strategy is the 

Expectation-Maximization (EM) algorithm  [49]. EM algorithm is performed by taking 

the objective function Q such that:  

ܳ ൌ෍෍ݓ௜௧	logሾߙ௜݌௜ሺݔ௧|ߠ௜ሻሿ

௞

௜ୀଵ

௡

௧ୀଵ

																			ሺ4.12ሻ 

where wit is the probability for individual k classes and is constrained to sum to 

one. 

௜௧ݓ ൌ
௜ሻߠ|௧ݔ௜ሺ݌௜ߙ

∑ ௦ሻ௞ߠ|௧ݔ௦ሺ݌௦ߙ
௦ୀଵ

																								ሺ4.13ሻ 

An iteration of the EM algorithm consists of the E step and M-step. Iterations of 

EM will stop when the value of log-likelihood cannot be increased and the best model 

parameters are provided. The E-step involves computing expected classes wit of all data 

points. In the M-step, the mixture new weights, means and covariance are re-estimated by 

the following formulas: 

௜ߙ
௡௘௪ ൌ

1
݊
෍ݓ௜௧						

௡

௧ୀଵ

																																																					ሺ4.14ሻ	

௜ߤ
௡௘௪ ൌ

∑ ௧௡ݔ௜௧ݓ
௧ୀଵ

∑ ௜௧௡ݓ
௧ୀଵ

																																																			ሺ4.15ሻ	

∑௜
௡௘௪ ൌ

∑ ௧ݔ௜௧ሺݓ െ ௜ߤ
௡௘௪ሻሺݔ௧ െ ௜ߤ

௡௘௪ሻ்௡
௧ୀଵ

∑ ௜௧௡ݓ
௧ୀଵ

																	ሺ4.16ሻ	
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4.4.1 GMR Modeling 

GMM can be used to estimate a response variable for a given independent input 

variables by fitting the data to a Gaussian Mixture Regression (GMR) model. GMR 

model is developed using number of Gaussian mixture models to represent the joint 

density of the data and then compute regression functions from each GMM model  [31]. 

The GMR algorithm  [31] can be described as follows. 

Given the data set (X,Y) of size n, where x is the input independent variables and 

y is the response output, the relationship between X and Y can be described by k-

components GMM models with a joint probability density function of  [31] 

fଡ଼ଢ଼ሺx, yሻ ൌ෍α୧p୧ሺx, y: μ୧, ∑୧ሻ

୩

୧ୀଵ

														ሺ4.17ሻ 

where μ୧ ൌ ቂ
μ୧୶
μ୧୷ቃ	 is the mean, ∑୧ ൌ ൤

∑୧ଡ଼ଡ଼ ∑୧ଡ଼ଢ଼
∑୧ଢ଼ଡ଼ ∑୧ଢ଼ଢ଼

൨ is the variance of each 

Gaussian component and α୧ are the priors. The global GMR function can be written as 

follows: 

fଡ଼׀ଢ଼൫x׀y൯ ൌ෍w୧p୧ሺy:m୧ሺxሻ, σ୧
ଶሻ														ሺ4.18ሻ

୩

୧ୀଵ

	

with mixing weights w୧, mean m୧ሺxሻ and variance σ୧
ଶ that can be described by the 

following formulas: 

w୧ ൌ
α୧p୧ሺx: μ୧ଡ଼, ∑୧ଡ଼ሻ

∑ α୧p୧ሺx: μ୧ଡ଼, ∑୧ଡ଼ሻ୩
୧ୀଵ

														ሺ4.19ሻ	

m୧ሺxሻ ൌ μ୧ଢ଼ ൅෍ ෍ ሺx െ
ିଵ

୧ଡ଼
μ୧୶ሻ

୧ଢ଼ଡ଼
														ሺ4.20ሻ	

σ୧
ଶ ൌ෍ െ

୧ଢ଼ଢ଼
෍ ෍ ෍

୧ଡ଼ଢ଼

														ሺ4.21ሻ
ିଵ

୧ଡ଼୧ଢ଼ଡ଼
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Again, the parameters θ୧ ൌ ሺα୧, μ୧, ∑୧ሻ, of the Gaussian distribution are estimated 

by maximizing the likelihood function using the iterative procedure of EM algorithm by 

computing posterior probability p(i|xi) in the E-step and updating the mixture parameters 

in M-step according to the following formula:  

pሺi|Xሻ ൌ
α୧p୧ሺX: μ୧, ∑୧ሻ

pሺX, θሻ
																																																																		ሺ4.22ሻ	

α୧
୬ୣ୵ ൌ

α୧
୭୪ୢ	p୧ሺX: μ୧, ∑୧ሻ

∑ α୧
୭୪ୢ	p୧ሺX: μ୧, ∑୧ሻ୩

୧ୀଵ
ൌ
1
n
෍pሺi|x୧ሻ
୬

୧ୀଵ

																											ሺ4.23ሻ	

μ୧ ൌ
1
α୧n

෍pሺi|x୧ሻ
୬

୧ୀଵ

x୧																																																																					ሺ4.24ሻ	

∑୧ ൌ
1
α୧n

෍pሺi|x୧ሻ
୬

୧ୀଵ

ሾሺx୧ െ m୧ሻሺx୧ െ m୧ሻ୘ሿ																															ሺ4.25ሻ	

4.5 Description of Statistical Features 

In this study the measured cutting forces and vibration will be represented by 

extracted statistical features. These statistics will be used in the input variables vector to 

the modeling of the tool wear. Features selected are the commonly used statistics of 

maximum, mean, standard deviation, variance, skewness and kurtosis. For a given signal 

x of N data points, these features can be computed as follow: 

Mean xത: 

xത ൌ
1
N
෍x୧

୒

୧ୀଵ

																																																				ሺ4.26ሻ	

Standard deviation: 

σ ൌ ඩ
1
N
෍ሺx୧ െ xതሻଶ
୒

୧ୀଵ

																														ሺ4.27ሻ	
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Skewness:  

skewness ൌ
1
N
෍

ሺx୧ െ xതሻଷ

σଷ

୒

୧ୀଵ

																								ሺ4.28ሻ	

Kurtosis:  

kurtosis ൌ
1
N
෍

ሺx୧ െ xതሻସ

σସ
																								ሺ4.29ሻ

୒

୧ୀଵ

 

4.6 Measurements of Prediction Model Goodness 

After fitting the data, the predicting model should be evaluated. Error can be 

defined as the difference between the real response and the predicted one. Assuming that 

y is the measured value of n observation and mean ȳ, and ŷ is the predicted or fitted 

value, the accuracy of the model can be measured using different statistics such as these 

described below. 

The sum of squares error (SSE) is a measure of the difference between the data 

and predicted model. A small SSE value indicates a good fit of the model to the data. 

SSE can be represented by:  

SSE ൌ 	෍ሺy୧ െ ŷ୧ሻଶ
୬

୧ୀଵ

																														ሺ4.30ሻ	

Another measure to quantify the difference between the real value and predicted 

one is the root mean squared error (RMSE). It is basically the square root of the SSE 

divided by the number of observation, n. 

RMSE ൌ ඨ
∑ ሺy୧ െ ŷ୧ሻଶ୬
୧ୀଵ

n
																														ሺ4.31ሻ		

Relative error (RE) indicates how large the error is relative to the correct value, y. 

It provides a comparison of the error to the size of the measurement and can be computed 

by: 
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RE ൌ ඨ
∑ ሺy୧ െ ŷ୧ሻଶ୬
୧ୀଵ

∑ y୧
ଶ୬

୧ୀଵ
ൈ 100																																ሺ4.32ሻ	

The coefficient of determination (R2) is a number between 0 and 1 that 

demonstrates the goodness of the model where 1.0 indicates that a regression line fits the 

data well.  

Rଶ ൌ 1 െ
SSE
SST

					 , SST ൌ 	෍ሺy୧ െ ȳሻଶ
୬

୧ୀଵ

																							ሺ4.33ሻ	

Where SST is the total sum of squares error computed as the sum of the squared 

differences of each data point from the mean ȳ. 
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5.3 Signal Correction and Pre-processing 

Before using the measured force and vibration signal, the signal in which the real 

cutting happened had to be obtained. The attached sensors were initiated to measure for 

some additional time before and after the cutting to insure that the whole signal was 

recorded. Figure  5.2 below shows an example of force signal before signal correction. 

The corrected force signal is shown in Figure  5.3. 

 

 

 

Figure  5.2: Original measured cutting force signal (N) for v =100 m/min, f =0.1 mm/rev 
under dry cutting.  

 
 

5.4 Experimental Results 

The results of the experiments conducted consist of the cutting time, measured 

tool wear in VB and surface roughness for the different speed, feed rate, depth of cut, and 

0 10 20 30 40 50 60
-500

0

500

1000

F
x

Force signals for for v =100 m/min, f =0.1 mm/rev under dry cutting

0 10 20 30 40 50 60
-200

0

200

400

F
y

0 10 20 30 40 50 60
-200

0

200

400

F
z

Time (sec)



 

56 
 

coolant for each experiment. Results of measured signals, cutting forces, and vibration, 

were analyzed via MatLab software  [47].  

Values of tool wear increased when the cutting time increased. Also the tool wear 

increased when the cutting speed increased for the same feed rate, depth of cut and 

coolant. In a similar way, the tool wear increased when the feed rate increased for the 

same cutting speed, depth of cut and coolant. The effect of coolant can also be observed. 

The tool wear is higher during the dry cutting and lower for the flood or mist cutting. 

These observations are discussed in detail later in this chapter. 

Figure  5.3 and Figure  5.4 show examples of the measured cutting forces and 

vibration signals for the turning test of 100 m/min cutting speed, 0.1 mm/rev feed rate 

and depth of cut of 0.8 mm under dry cutting. The values of force and vibration are 

considerably changed when the tool starts or stops cutting. It can also be seen that the 

cutting forces increased with the cutting time. 

 

 

 

Figure  5.3: Measured cutting force signals for v =100 m/min, f =0.1 mm/rev 
under dry cutting 
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Figure  5.4: Measured vibration signals for v =100 m/min, f =0.1 mm/rev under dry cutting 
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It can be observed from Figure  5.3 that the measured thrust force (Fx) has the 

highest values among the other cutting forces. Additionally, the cutting force (Fy) is 

generally lower than both the thrust (Fx) and radial forces (Fz).  

The maximum value of the cutting force signal (Fx) was considered as the 

analysis criteria of the cutting forces. The maximum value of the cutting force signal (Fx) 

measured during turning process under different cutting speeds and feed rates were 

plotted for the different coolant conditions used. Results are shown in Figure  5.5 for dry 

cutting, Figure  5.6 for mist cutting, Figure  5.7 for flood cutting and Figure  5.8 for the LN 

cutting environment. 

It can be seen that the total cutting time varies in cutting tests with different 

cutting speeds and feed rates. This is because the 0.3 mm average flank wear criterion 

was used to determine the effective tool life. So the turning operation of a test was 

stopped when the VB reaches 0.3 mm. Generally, it took a longer time to reach the 0.3 

mm VB at a lower cutting speed and feed rate. For example, the cutting time for 

100m/min cutting speed and 0.1 mm/rev feed rate under mist cutting was 120 seconds. 

For the same feed rate, the cutting times were 55 and 45 seconds for cutting speeds of 

125 and 150 mm/min respectively. In addition, the cutting time was longer when using 

cutting fluid hence it elongates tool life. 

Figure  5.5 shows the cutting force signal (Fx) with machining time under dry 

cutting at different cutting speed and feed rate. Cutting forces increased when the cutting 

speed increased. The cutting force reached around 2000N when the speed was 150m/min 

while it was in the range of 1000N under 100m/min cutting speed. This can be explained 

by the increase of tool wear as the cutting speed increases and consequently increasing 

the cutting forces. In addition, the increase in tool wear enlarges the contact area between 

the cutting tool and the work-piece and hence increases the cutting forces  [12]. It can also 

be seen that increasing the feed rate showed an increase in the cutting forces for the same 

cutting speed. This is consistent with the results reported in  [9]. 
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Figure  5.5: Cutting force signal (Fx) with machining time under dry cutting at different cutting 

speeds (v) and feed rates (f) 
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forces generated during machining  [6]. Moreover, the cutting fluid acts as a lubricant and 

reduces the tool temperatures and decreases the cutting forces  [7]. Cutting forces are 
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rate while they are lower under LN cooling. The LN cooling has a higher capacity to 

decrease the cutting temperatures and lubricate the cutting zone.  
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Figure  5.6: Cutting force signal (Fx) with machining time under mist cutting at different cutting 
speeds (v) and feed rates (f) 

 

 

0 20 40 60 80 100 120
400

600

800

1000

v = 100 m/min

0 10 20 30 40 50 60
600

800

1000

v = 125 m/min

F
x-

m
ax

 (
N

)

0 5 10 15 20 25 30 35 40 45
500

1000

1500

v = 150 m/min

Cutting time (sec)

 

 

f = 0.1 mm/rev f = 0.15 mm/rev  f = 0.2 mm/rev



 

61 
 

 

Figure  5.7: Cutting force signal (Fx) with machining time under flood cutting at different cutting 
speeds (v) and feed rates (f) 
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Figure  5.8: Cutting force signal (Fx) with machining time under LN cutting at different cutting 
speeds (v) and feed rates (f) 
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The total cutting time varied in cutting tests with different cutting speeds and feed 

rates since the criterion of 0.3 mm average flank wear was used to determine the effective 

tool life and stop the turning test. The wear rate was faster with higher cutting speeds and 

feed rates consequently the total cutting time was shorter. Also, the cutting fluids reduced 

the wear rate therefore the total cutting time under dry cutting was less than that of mist, 

flood, and LN coolant. In addition, the tool wear rate was the slowest with the LN 

coolant. 

The plotted figures show that the vibration amplitude decreased as the cutting 

speed increased under all coolant conditions. In addition, vibration amplitude for the dry 

cutting was higher than that with flood, mist or LN coolant. This can attributed to the 

high cutting forces in the machining of titanium especially under dry cutting  [5] which 

increase the vibration. Also the presence of vibration increases with higher tool wear at 

higher speed  [8]. 

Additionally, the vibration plots show that increasing the feed rate led to an 

increase in the vibration signal amplitude. This can be noticed on the plots of all coolants 

and is consistent with and agrees with results reported in other research  [20]. 
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Figure  5.9: Vibration signal (Vx) with machining time under dry cutting at different 

speeds (v) and feed rates (f) 
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Figure  5.10: Vibration signal (Vx) with machining time under mist cutting at different 

speeds (v) and feed rates (f) 
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Figure  5.11: Vibration signal (Vx) with machining time under flood cutting at different cutting 

speeds (v) and feed rates (f) 
 
 

0 20 40 60 80 100 120 140
0

5

10
v = 100 m/min

0 10 20 30 40 50 60 70 80
0

5

10
v = 125 m/min

V
x-

m
ax

 (
V

)

0 10 20 30 40 50 60
0

2

4
v = 150 m/min

Cutting time (sec)

 

 

f = 0.1 mm/rev f = 0.15 mm/rev  f = 0.2 mm/rev



 

67 
 

 
Figure  5.12: Vibration signal (Vx) with machining time under LN cutting at different cutting 

speeds (v) and feed rates (f) 
 
 

5.4.3 Tool Wear 

The progression of flank wear at different cutting speeds and feed rates was 

plotted for the different coolant conditions. Results are shown in Figure  5.13 for dry 

cutting, Figure  5.14 for mist cutting, Figure  5.15 for flood cutting and Figure  5.16 for the 

LN cutting environment. 

 

0 10 20 30 40 50 60 70 80 90
0

5

10
v = 100 m/min

0 50 100 150
0

5

10
v = 125 m/min

V
x-

m
ax

 (
V

)

0 10 20 30 40 50 60 70 80
0

5

10
v = 150 m/min

Cutting time (sec)

 

 

f = 0.1 mm/rev f = 0.15 mm/rev  f = 0.2 mm/rev



 

68 
 

 

Figure  5.13: Growth of tool wear with machining time under dry cutting at different cutting 
speeds (v) and feed rates (f) 
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Figure  5.14: Growth of tool wear with machining time under mist cutting at different 
cutting speeds (v) and feed rates (f) 
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Figure  5.15: Growth of tool wear with machining time under flood cutting at different cutting 

speeds (v) and feed rates (f) 
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Figure  5.16: Growth of tool wear with machining time under LN cutting at different 
cutting speeds (v) and feed rates (f) 
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wear  [6] [7] [8]. So, overcoming the short tool life is a primary challenge when machining 

titanium because it prevents the use of high cutting speeds  [8]. 

The tool wear rate was higher in dry machining compared to mist, flood and LN 

coolant machining. The improvements in tool life can also be attributed to the use of 

coolants. The use of coolant is considered an important way of improving the machining 

of titanium alloys  [8] [13] [14] and to minimize the effect of high temperature at the 

cutting tool  [7] and thus improve the tool life. 

Liquid nitrogen (LN) has been investigated widely and proven to be an efficient 

way of improving tool life when machining titanium alloys  [6] [14]. The current results 

show that cryogenic cooling by LN can enhance tool life. For example, the tool life with 

a cutting speed of 100 m/min and feed rate of 0.2 mm/rev was 30 sec in dry cutting 

conditions, 48 sec in mist conditions, 51 sec for flood and 70 sec in LN cutting conditions 

based on the 0.3 VB criteria. 

Another example is when cutting with a cutting speed of 125 m/min and a feed 

rate of 0.15 mm/rev, the tool life was 32 sec for dry, 46 sec for mist cutting, 48 sec for 

flood and 135 sec under LN cutting. It can be seen that for the same cutting conditions 

the tool life is longer with cryogenic cooling. 

Some advantages of LN over other coolants are that LN has low viscosity and it 

does not adhere to metal surfaces easily  [14]. Also it enhances the chemical stability of 

the work-piece and the cutting tool  [13] and evaporates quickly into the air  [14]. 

5.5 Signal Processing and Features Extraction: 

After acquiring the force and vibration signals during the turning process, the next 

step was to extract features from these signals that demonstrate an effective trend towards 

the tool wear. The extracted features were then used as inputs to the prediction model 

along with cutting parameters to predict tool wear. 

Many signal processing methods have been used to analyze signals and extract the 

features  [3] [21] [22] for testing or monitoring. The methods applied in the current analysis 

were the Principal Component Analysis (PCA) and Stepwise Regression Analysis. 

There were a total of 319 experimental turning tests. The statistical features 

considered in this study are the common statistics of maximum, standard deviation, 
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variance, skewness and kurtosis for the cutting force and vibration signals at the three 

axis. The matrix generated has a size of 319-by-15. Descriptions of statistical features are 

provided in section  4.5. 

5.5.1 Features extraction by Principal Component Analysis  

Principal Component Analysis (PCA) is a dimensionality reduction technique 

used to represent data according to the maximum variance direction(s)  [3]. A description 

of the Principal Component Analysis algorithm can be found in  [54]. 

Features extraction by Principal Component Analysis was used to extract the 

relevant information from the collected force and vibration signal that showed an 

effective trend towards the measured tool wear. This reduced representation was used 

instead of the full size as input to the Neural Network and other tool wear prediction 

models. 

PCA on force and vibration data was performed using the MatLab built-in 

command (princomp)  [47]. The function returns the principal component coefficients and 

scores. Coefficients are a 319-by-319 matrix, each column containing coefficients for one 

principal component, and the columns are in order of decreasing component variance. 

The scores are the data formed by transforming the original data into the space of the 

principal components. Component Scores contains the coordinates of the original data in 

the new coordinate system defined by the principal components. 

5.5.1.1 PCA of Force Signal  

A plot of the first two columns of scores is shown in Figure  5.17. It shows the 

ratings data projected onto the first two principal components. The MatLab command 

“Gname” was used to graphically identify points far from the concentrate points  [47]. 

These points represent experimental test numbers that have different results from the rest 

of the experiments. The experiments data identified by these points were eliminated when 

obtaining the variance explained by each component to get a better representation of the 

experimental data and its effect on tool wear.  

The percent of variance explained by each principle component is plotted in 

Figure  5.18. The first and second components represent 91.38% and 3.79% of the 

variance respectively. These are the maximum force in the X and Y directions 
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respectively. The component of maximum force at the X direction accounted for the most 

of the variance, so this component was considered an essential input to the tool 

monitoring system. 

 

 

 
Figure  5.17: First two principal components of force signal. 
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Figure  5.18: The percent of variance explained by each principle component for force 

signal. 
 

 

5.5.1.2 PCA of Vibration Signal 
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direction respectively. 
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Figure  5.19: First two principal components of vibration signal. 

 
 

 
Figure  5.20: The percent of variance explained by each principle component for vibration 

signal. 
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As a result of performing PCA on the force and vibration signal independently, 

the maximum value of force and vibration signal at the X direction accounted for more 

than 90% of the variance in each of the signal, so these components were considered an 

essential input to the tool monitoring system. 

5.5.2 Feature dimensionality reduction by Stepwise Regression  

Stepwise multi-linear regression method was performed to find the estimated 

coefficients that best describe the tool wear. Please refer to section  4.3.4 for the technique 

algorithm. The MatLab function stepwisefit(X,y)  [47] was used to carry out the stepwise 

regression algorithm. The stepwise regression model represents the response variable Y 

as a function of the predictor variables represented by the columns of the matrix X. In 

this work, X is the variable matrix that includes all the 35 variables (cutting parameters 

and all the statistical features extracted from the force and vibration signals at the three 

axis X, Y, and Z) and y is the measured tool wear value.  

Since there are many variables, stepwise regression technique was used to create a 

subset of these variables that best described the tool wear. The result of running the 

MatLab command of stepwise showing the procedure of adding and removing variables 

is available in Appendix A.  

A total of 14 variables were specified as significant variables to include in the 

model of the tool wear. These were cutting time, cutting speed, feed rate, coolant, forces 

value of X-maximum, Z-standard deviation, X-variance, Y-skewness and Y-kurtosis), 

and vibration value of X-maximum, Y-standard deviation, X-skewness, Y-skewness and 

Z-skewness). This variables subset was considered as the input to the tool wear prediction 

model. 

5.6 Inputs/Output to the Tool Wear Prediction Model: 

The inputs to the network were: cutting time, cutting speed, feed rate, depth of 

cut, coolant, force and vibration. The force and vibration were represented by different 

statistical features of the measured force and vibration signals determined in 

sections  5.5.1 and  5.5.2 above. The output was tool flank wear measured in VB. 

One of the primary inputs to the structured tool wear model is the coolant 

strategy. Four different strategies were used in this experimental work: dry, flood, mist 
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and cryogenic cooling using liquid Nitrogen. The mist and flood coolant are basically oil 

emulsion formulated by mixing oil (Aquatex 3180) and water at a ratio of 1:40. 

A search for fluid properties revealed that the properties of many used cutting 

fluids are not available (i.e. viscosity and specific heat). In this research, the property of 

density was used to represent the coolant as an input to the Neural Network. The density 

of each coolant is shown in Table  5.1 below  [52]. For dry cutting, density of air at room 

temperature was used. For mist and flood cutting, the density was calculated using the 

concept of composite. The density of a solution is determined as the sum of the weighted 

densities of the components of the solution. The density of coolant is the volume 

contribution percentage of water multiplied by the density of water plus the volume 

percentage of oil multiplied by its density. 

 

 

Table  5.1: Density of different coolant strategies used 

Coolant Density (kg/m3) 

Dry, air at 25 °C 1.184 
Flood 997.317 
Mist 897.437 
LN 808.607 

 

 

5.7 Neural Network for Tool Wear Prediction  

The collected sensors signal along with process parameters were used with 

Artificial Neural Networks to develop an online tool wear monitoring system and predict 

tool life.  

5.7.1 Feed-Forward Back-Propagation Neural Network (FFBPNN) 

The feed-forward network was trained using back-propagation method with 

different properties to investigate the optimum network properties. The performance of 

Neural Network was compared to the experimental data. 
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The Feed-Forward Neural Networks (FFBPNN) type is widely used in tool 

monitoring applications. FFBPNN consists of three main layers: the input layer, the 

hidden layer, and the output layer. The hidden layer consists of number of interconnected 

groups of neurons and the input information moves in forward direction through the 

hidden layer to the output layer. 

The FFBPNN used contained initially 30 neurons in the hidden layer with 

TRAINLM learning function and TANSIG transfer function. These network properties 

were found to be the optimum ones for this study. The input data was divided randomly 

to have 75% of the data for training the network and the other and 25% for testing the 

network. Predicted and measured tool flank wear values were compared and results 

showed good matching. 

For the first trial, the inputs to the network were taken as time, cutting speed, feed 

rate, depth of cut, and the maximum values of force and vibration in the X direction. The 

network's output and the absolute error between measured and predicted tool wear is 

plotted in Figure  5.21. A comparison between the predicted and measured tool flank wear 

value results showed good matching. The training time was 1.0181 second and the mean 

of the absolute error was 0.0183. 



 

Figure  5.21
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In the second trial, the maximum force and vibration values in the Y direction 

were added to the input vector. Therefore the inputs to the network were taken as time, 

cutting speed, feed rate, depth of cut, and the maximum values of force and vibration in 

the X and Y directions. The network's output and the absolute error between measured 

and predicted tool wear is shown in Figure  5.22. The training time was 1.3075 second 

and the mean of the absolute error was 0.0168.  

In another run of the network, the maximum and standard deviation of force and 

vibration values in the Y and Z direction were added as inputs. Therefore the inputs to the 

network were taken as time, cutting speed, feed rate, depth of cut, the maximum values of 

force and vibration in the X, Y and Z direction and standard deviation of force and 

vibration in the X, Y and Z direction. The number of neurons in the hidden layer was 

increased to 50. The training time was 2.6016 second and the mean of the absolute error 

is 0.0240. The network's output and the prediction error is shown in Figure  5.23.  

 



 

Figure  5.22
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Figure  5.23: Simulation of the feed-forward back-propagation network and the absolute error 

between measured and predicted tool wear for trial 3 
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In addition, the FFBPNN was run with all the variables as input. These included 

the cutting parameters (time, cutting speed, feed rate, depth of cut) and the statistical 

features of the force and vibration signals (maximum, standard deviation, variance, 

skewness and kurtosis for the signals at the three axes axis X, Y, and Z). The number of 

neurons in the hidden layer was set to 100. The training time was 51.1223 seconds and 

the mean of the absolute error was 0.0343. The network's output and the prediction error 

is shown in Figure  5.24. Increasing the number of input variables required a longer 

training time. 

The Neural Network was tested with a larger number of neurons in the hidden 

layer (150). This resulted in lower mean error to 0.0299 but a longer training time of 

91.7451 seconds.  

Finally, the FFBPNN, with 50 neurons in the hidden layer, was run with all the 

variables from the stepwise regression analysis (cutting time, cutting speed, feed rate, 

coolant, forces value of X-maximum, Z-standard deviation, X-variance, Y-skewness and 

Y-kurtosis), and vibration value of X-maximum, Y-standard deviation, X-skewness, Y-

skewness and Z-skewness). The training time was 3.4506 seconds and the mean of the 

absolute error was 0.0223. The network's output and the prediction error is shown in 

Figure  5.25. Increasing the number of neurons in the hidden layer to 100 resulted in a 

lower mean error of 0.0164 with a training time of 9.6224 seconds. 
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5.8 Tool Wear Prediction by Regression  

Regression Analysis was applied to predict tool wear. The regression analysis 

model and its algorithm are described in section  4.3. The MatLab function x2fx  [47] was 

used to convert predictor matrix X to a design matrix for regression analysis to estimate 

the tool wear. The design matrix selected was the quadratic model with constant, linear, 

interaction, and squared terms. 

A linear regression model was developed to relate the tool flank wear with the 

different variables. The input data was divided randomly to have 75% of the data for 

training the network and the other 25% for testing the network. The coefficients matrix 

was computed in the training step and then used to predict the tool wear for the testing 

data set.  

For the first trial, the predictor matrix X was taken as all the 35 collected 

variables. It was transformed to a quadratic design matrix and used to predict tool wear. 

The measured and predicted tool wear using regression analysis with quadratic 

polynomial expansion is shown in Figure  5.26. The mean of the absolute error was 

0.0828. 

The regression model then was run with the variables identified by the stepwise 

regression analysis (cutting time, cutting speed, feed rate, coolant, forces value of X-

maximum, Z- standard deviation, X- variance, Y- skewness and Y- kurtosis), and 

vibration value of X-maximum, Y- standard deviation, X- skewness, Y- skewness and Z- 

skewness). The measured and predicted tool wear using regression analysis with 

quadratic polynomial expansion is shown in Figure  5.27. The mean of the absolute error 

was 0.0212. 

 

 



 

 

 

 

 

Figure  5..26: Measuredd and predicte
polyno

88 

ed tool wear u
omial expansi

 

using regress
ion in trial 1 

sion analysis wwith quadratic

 

 

c 



 

89 
 

A
b

so
lu

te
 e

rr
or

  

Sample

Measured and predicted tool wear using regression analysis 

 
Figure  5.27: Measured and predicted tool wear using regression analysis with quadratic 

polynomial expansion in trial 2. 
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5.9 Tool Wear Prediction by GMR 

The Gaussian Mixture Regression (GMR) model was used to estimate the tool 

wear based on cutting parameters and features extracted from force and vibration signals. 

Please refer to section  4.4 for a description of the GMR technique. The GMR model is 

built by the combination of the Gaussian mixture models initialized using k-means 

clustering algorithm and trained by Expectation-Maximization (EM) algorithm. The 

MatLab code obtained from  [55] was modified to fit the current application and predict 

tool wear. 

K-means clustering algorithm was used to estimate the models initial parameters 

(priors, µ, and ∑). Priors are the prior probabilities of the k-GMM components. µ 

represents the means, the centers, of the k-GMM components. ∑ represents the 

covariance matrices of the K GMM components. These parameters were modified by the 

Expectation-Maximization (EM) algorithm where the model is trained by feeding the 

training data. Training data was 75% of the total data set with the input variables and 

corresponding measured tool wear values. Gaussian Mixture Regression (GMR) was 

performed given the input data of the testing data set. The GMR algorithm computes the 

expected tool wear depending on the learnt GMM parameters.  

For the first GMR run, the number of the Gaussian mixture was selected as 5 and 

the input was taken as the entire 35 variables of cutting parameters and features extracted 

from force and vibration. The mean absolute error between the measured and predicted 

tool wear was found to be 0.0243. The measured and predicted tool wear using GMR is 

shown in Figure  5.28.  
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The GMR model also was run with the variables identified by the stepwise 

regression analysis (cutting time, cutting speed, feed rate, coolant, forces values (X-

maximum, Z-standard deviation, X-variance, Y-skewness and Y-kurtosis), and vibration 

values (X-maximum, Y-standard deviation, X-skewness, Y-skewness and Z-skewness). 

The mean absolute error between the measured and predicted tool wear was found to be 

0.0228. The measured and predicted tool wear using GMR is shown in Figure  5.31. 
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5.10 Tool Wear Prediction Models Validation  

The validation of the different implemented tool wear prediction models was 

performed by repeated random sub-sampling validation method. The data was randomly 

divided into training and validation (testing) data subsets. The model was fitted using the 

training data and then tested using the validation data. The process was repeated and the 

results were averaged over the different iterations.  

The data set used as input to the different tool prediction models was grouped into 

five main subsets. Machining parameters (cutting time, cutting speed, depth of cut, feed 

rate, and the coolant) were considered main inputs to all data sets. The statistical features 

extracted from force and vibration signals were taken from the variables identified by 

PCA and stepwise regression analysis as effective parameters of tool wear. 

For each data subset, evaluation of the three selected models - Neural Network, 

Regression and GMR - were repeated 25 times and the obtained test results were 

averaged. The data used comprised a total of 317 observation points from different 

cutting tests. The subsets were generated in such a way that 75% (238 data points) of the 

data was used for training and 25% (79 data points) for the testing. Results are discussed 

in the models comparison section below. 

Data set 1 contained a total of seven variables; machining parameters, and the 

maximum values of force and vibration in the X direction. The maximum values of force 

and vibration in the X direction had the highest percentage in the Principal Component 

Analysis performed. Figure  5.32 shows a sample of the measured and predicted tool wear 

using this data set for the different predicting models. 
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Figure  5.32: Measured and predicted tool wear using data set 1 
 

 

Data set 2 contained a total of nine variables; machining parameters, and the 

maximum values of force and vibration in the X and Y directions. These were the 

features resulted from the Principal Component Analysis performed. Figure  5.33 shows a 

sample of the measured and predicted tool wear using this data set. 
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Figure  5.33: Measured and predicted tool wear using data set 2 
 

 

In Data set 3, the maximum standard deviation of force and vibration values in the 

Y and Z direction were added to the data set. Therefore the dataset included cutting time, 

cutting speed, feed rate, depth of cut, coolant, the maximum values of force and vibration 

in the X, Y and Z direction and standard deviation of force and vibration in the X, Y and 

Z direction. There were total of seventeen variables in this set. Figure  5.34 shows a 

sample of the measured and predicted tool wear using this data set. 
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Figure  5.34: Measured and predicted tool wear using data set 3 
 

 

Data set 4 had all thirty five variables. These included the cutting parameters and 

all the statistical features extracted from the force and vibration signal (maximum, 

standard deviation, variance, skewness and kurtosis for the signals at the three axis X, Y, 

and Z). Figure  5.35 shows a sample of the measured and predicted tool wear using this 

data set. 
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Figure  5.35: Measured and predicted tool wear using data set 4 
 

 

Data set 5 included the fourteen significant variables indicated by the stepwise 

regression. These variables were cutting time, cutting speed, feed rate, coolant, forces 

values (X-maximum, Z-standard deviation, X-variance, Y-skewness and Y-kurtosis), and 

vibration values (X-maximum, Y-standard deviation, X-skewness, Y-skewness and Z-

skewness). Figure  5.36 shows a sample of the measured and predicted tool wear using 

this data set. 
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Figure  5.36: Measured and predicted tool wear using data set 5 
 

 

5.11 Comparison of modeling methods as predictors of tool 
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error (MAE). These criteria are discussed in section 4.5. Tables 5.2- 5.6 list the results of 

the three models for the five specified data subsets of different variable combinations.  

 

 

Table  5.2: Comparison of the models performance in the Data Set 1 

 SSE R2 RMSE %RE MAE 
FFBPNN  0.03793 0.78913 0.02171 9.12439 0.01609 
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GMR 0.06334 0.66912 0.02824 11.82676 0.02224 
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Table  5.3: Comparison of the models performance in the Data Set 2 

SSE R2 RMSE %RE MAE 
FFBPNN  0.04863 0.72930 0.02444 10.25848 0.01807 
Regression 0.06611 0.65272 0.02800 11.78239 0.01975 
GMR 0.06374 0.65101 0.02828 11.93360 0.02188 

 

 

Table  5.4: Comparison of the models performance in the Data Set 3 

SSE R2 RMSE %RE MAE 
FFBPNN  0.06700 0.62805 0.02793 11.69275 0.02014 
Regression 0.41915 -1.37957 0.06425 26.82602 0.03415 
GMR 0.09161 0.49689 0.03364 14.21671 0.02440 

 

 

Table  5.5: Comparison of the models performance in the Data Set 4 

SSE R2 RMSE %RE MAE 
FFBPNN  0.08522 0.51432 0.03153 13.22406 0.02212 
Regression 30.88359 -166.76326 0.52919 223.10398 0.16781 
GMR 0.35600 -1.01080 0.06648 27.99556 0.03801 

 

 

Table  5.6: Comparison of the models performance in the Data Set 5 

SSE R2 RMSE %RE MAE 
FFBPNN  0.04608 0.74816 0.02392 9.99185 0.01772 
Regression 0.31786 -0.68022 0.05518 23.12839 0.02676 
GMR 0.07580 0.59432 0.03090 12.97346 0.02425 

 

 

The performance criteria show that the Neural Network is better in predicting tool 

wear than the regression model and GMR in all the data subsets tested. The SSE, 

RMSE, %RE, and MAE values of the FFBPNN model are the lowest for all the data 

subsets. Also its coefficient of determination R2 is the highest among the three tested 

models based on the same training and testing data. 
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FFBPNN showed a better performance when data set 1 was used. This included 

the cutting parameters and the maximum values of force and vibration in the X-direction. 

This shows that these variables are the most informative variables toward the tool wear. 

Among the different data subsets, data set 4 showed very high prediction errors 

and low R2 compared to other data sets. Data set 4 included all the variables as inputs to 

the prediction model which indicates that many variables may not carry relevant relative 

information toward tool wear. 

The GMR and regression model performance varied depending on the input data 

sets. The regression model performed better when using data sets 1 and 2 which included 

the least number of variables. Moreover the results of the regression model with data set 

4 indicated the largest prediction error and lowest R2 compared to other data sets and 

prediction models. GMR model performance was better than the regression model when 

data sets 3, 4, and 5 were used. The regression model develops a linear relationship 

between the tool wear and the process variables.  

Although the variables were transformed using power transformation techniques, 

still the model has a larger error than the Neural Network and GMR models. Other 

transformation techniques could be implemented to investigate the possibility of 

improving the prediction of tool wear using the regression analysis. 

The modeling based on Neural Network has proven to be more accurate than the 

other techniques; this may be attributed to the ability of Neural Networks to model a non-

linear process such as tool wear  [27]. 

The Neural Network with the least prediction error was when the machining 

parameters and the maximum values of force and vibration in the X direction were used 

as inputs to the network. The predictive accuracy of the Neural Network was 90.88% 

which is 2.70% and 1.23% higher than the predictive accuracy of the GMR and 

regression models respectively. 

In addition using the significant input variables indicated by the stepwise 

regression resulted in an accuracy of 90.01% for the Neural Network model. This is 

2.98% and 13.14% higher than the prediction accuracy of the GMR and regression 

models respectively. 
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Using all the machining parameters and all the features extracted from the force 

and vibration signal resulted in the lowest prediction accuracy for all three models. The 

prediction accuracies were 86.78%, 123.10%, and 72.00% for the Neural Network, 

Regression, and GMR models respectively. 
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6 Conclusions and future work 

6.1 Conclusions 

In the present study, the importance of tool wear monitoring while machining 

Titanium alloys is discussed and prediction models of tool wear are presented. 

This work presented an experimentation approach to study the tool wear in turning 

operations of titanium alloys as a difficult to cut material. Since tool wear is very critical to 

the process, different modeling approaches to predict tool wear are presented to help improve 

the efficiency of the machining process. 

The experimental work consisted of controlled machining tests with force and 

vibration measurements, as well as tool wear and surface roughness. Experimental tests 

were carried out using fresh inserts and a test matrix was created to cover combinations 

of machining parameters namely cutting speed, feed rate, depth-of-cut and coolant 

strategy. The measurements were used to analyze the relation between the cutting 

conditions and the measured cutting force, vibration and tool wear. It was observed that 

the tool wear rate was more rapid at higher cutting speed and feed rates especially when 

cutting under dry conditions, which is due to the high temperature that increases the tool 

wear. 

The collected signals were processed to acquire the features to be used as input to 

the model of predicting the tool wear using PCA and stepwise regression techniques. 

Features that demonstrated an effective trend towards the tool wear were used as inputs to 

the prediction model with the cutting conditions. 

The implemented modeling methods included feed-forward back-propagation 

Neural Network, regression analysis and Gaussian Mixture Regression. Based on the 

prediction results presented in previous sections, it can be concluded that tool wear can 

be predicted using these models and that the Neural Network based method is the most 

accurate among these methods. Modeling with Neural Networks provided a better 

prediction because of its capability to model more complex non-linear process such as 

tool wear. 

Neural network modeling yielded the least prediction error when the machining 

parameters and the maximum values of force and vibration in the X direction were used 
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as inputs to the network. The prediction accuracy of the Neural Network was 90.88% 

which was 2.70% and 1.23% higher than the prediction accuracy of the GMR and 

regression models respectively. 

In addition using the significant input variables indicated by the stepwise 

regression resulted in an accuracy of 90.01% for the Neural Network model. This was 

2.98% and 13.136% higher than the prediction accuracy of the GMR and regression 

models respectively 

Using all the machining parameters and all the features extracted from the force 

and vibration signal resulted in the lowest prediction accuracy for all the three models. 

The prediction accuracies were 86.78%, 123.10%, and 72.00% for the Neural Network, 

Regression, and GMR models respectively.  

6.2 Future Work 

The primary purpose of this study was to produce a reliable estimate of tool life in 

metal cutting process of Titanium alloys. The mechanism of material removal, cutting 

performance, and tool failure characteristics were analyzed during the turning process of 

titanium alloys. 

As a result of this study, a detailed database summarizing the results of cutting 

tests was created. It includes the different cutting parameters used (cutting speed, feed 

rate, depth-of-cut and coolant strategy), measured cutting force, vibration, tool wear and 

surface roughness. In addition, a sample of the chips produced in each cutting test was 

collected. The study can be extended as follows: 

1. Include the measurements of temperature and lathe machine power consumption 

that may help optimize the turning process of titanium alloys. 

2. Develop a model to predict the surface roughness and the cutting forces using 

Neural Network and GMR. 

3. Study the chip characteristics and establish a relationship with tool wear. 
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Appendix: Stepwise Regression Results  

 

b = stepwisefit(p,t); 
Initial columns included:  none 
Step 1, added column 1, p=0 
Step 2, added column 6, p=0 
Step 3, added column 4, p=2.04134e-005 
Step 4, added column 3, p=0.000187989 
Step 5, added column 5, p=0.00114043 
Step 6, added column 30, p=0.00681707 
Step 7, added column 31, p=0.000684678 
Step 8, added column 11, p=0.00403615 
Step 9, added column 32, p=0.018959 
Step 10, added column 25, p=0.0257861 
Step 11, added column 21, p=0.00577326 
Step 12, added column 19, p=0.0218164 
Step 13, added column 16, p=0.000552005 
Step 14, added column 12, p=0.0181981 
Final columns included:  1 3 4 5 6 11 12 16 19 21 25 30 31 32  
    'Coeff'           'Std.Err.'       'Status'    'P'           
    [      0.0015]    [8.4928e-005]    'In'        [1.9789e-048] 
    [           0]    [6.5253e+012]    'Out'       [          1] 
    [      0.2807]    [     0.0749]    'In'        [2.1294e-004] 
    [ 7.4510e-004]    [1.0428e-004]    'In'        [6.7765e-012] 
    [-1.9966e-005]    [5.9364e-006]    'In'        [8.6953e-004] 
    [ 7.6214e-005]    [1.8019e-005]    'In'        [3.1062e-005] 
    [-4.5341e-005]    [8.3883e-005]    'Out'       [     0.5892] 
    [ 1.0721e-004]    [6.4401e-005]    'Out'       [     0.0970] 
    [-5.9170e-005]    [3.0763e-004]    'Out'       [     0.8476] 
    [-3.4390e-004]    [5.3621e-004]    'Out'       [     0.5218] 
    [-4.9401e-004]    [1.3016e-004]    'In'        [1.7815e-004] 
    [ 6.8176e-007]    [2.8712e-007]    'In'        [     0.0182] 
    [-5.6700e-006]    [6.5841e-006]    'Out'       [     0.3898] 
    [-1.6864e-006]    [4.4700e-006]    'Out'       [     0.7062] 
    [ 1.6175e-004]    [     0.0028]    'Out'       [     0.9542] 
    [      0.0162]    [     0.0044]    'In'        [2.7148e-004] 
    [ 7.5044e-004]    [     0.0015]    'Out'       [     0.6191] 
    [ 2.5974e-004]    [2.6790e-004]    'Out'       [     0.3330] 
    [      0.0025]    [5.5947e-004]    'In'        [1.4988e-005] 
    [-3.9012e-005]    [1.3997e-004]    'Out'       [     0.7806] 
    [      0.0047]    [     0.0015]    'In'        [     0.0023] 
    [      0.0028]    [     0.0019]    'Out'       [     0.1535] 
    [-3.4761e-004]    [     0.0040]    'Out'       [     0.9314] 
    [     -0.0030]    [     0.0038]    'Out'       [     0.4383] 
    [     -0.0172]    [     0.0073]    'In'        [     0.0195] 
    [      0.0194]    [     0.0359]    'Out'       [     0.5894] 
    [-2.8294e-004]    [3.6804e-004]    'Out'       [     0.4426] 
    [      0.0072]    [     0.0090]    'Out'       [     0.4241] 
    [      0.0323]    [     0.1105]    'Out'       [     0.7704] 
    [      0.0705]    [     0.0163]    'In'        [2.0174e-005] 
    [     -0.0208]    [     0.0062]    'In'        [8.4482e-004] 
    [      0.0088]    [     0.0028]    'In'        [     0.0018] 
    [-1.1619e-004]    [3.8228e-004]    'Out'       [     0.7614] 
    [-5.2060e-005]    [5.7314e-005]    'Out'       [     0.3644] 
    [-1.0867e-005]    [3.2799e-005]    'Out'       [     0.7406]



 

113 
 

VITA 

 

Azza Al Hassani received the B.Sc. degree in Mechanical Engineering with honor 

from United Arab Emirates University, Al Ain, UAE in 2005. After her graduation, she 

joined the Mechanical Engineering Department at UAE University where she worked as 

Scientific Assistant. From 2006 to 2011 she was employed as a Mechanical Engineer at 

the Engineering and Commissioning departments of Abu Dhabi Transmission and 

Dispatch Company (TRANSCO), Al Ain. In 2011, she received a Master degree of 

Management Sciences (MMSC) from the University of Waterloo, Ontario, Canada under 

a program developed by Abu Dhabi Water and Electricity Authority (ADWEA).  

In July, 2011, she joined Emirates Nuclear Energy Corporation (ENEC), Abu 

Dhabi, UAE as a Senior Mechanical Engineer in the Chief Program Office. Currently she 

holds the position of Head of Reactor System at ENEC. 

Azza is a member of the American Society of Mechanical Engineers (ASME) and 

Society of Engineers-UAE.  

 

 


