
 

 

 

 

DESIGN OF ROBUST CONTROLLERS FOR A ROTARY WING HELICOPTER 

 

 

 

by 

 

Rabiya Ahmed 

 

 

A Thesis Presented to the Faculty of the  

American University of Sharjah 

College of Engineering  

in Partial Fulfillment  

of the Requirements  

for the Degree of 

 

Master of Science in  

Mechatronics Engineering 

 

 

 

 

 

 

Sharjah, United Arab Emirates 

June 2013 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2013 Rabiya Ahmed. All rights reserved. 



Approval Signatures  
We, the undersigned, approve the Master’s Thesis of Rabiya Ahmed. 
 
Thesis Title: Design of Robust Controllers for a Rotary wing helicopter:  
 
Signature                          Date of Signature 
          
___________________________     _______________ 
Dr. Ali A. Jhemi  
Assistant Professor, Department of Mechanical Engineering 
Thesis Advisor 

 
___________________________     _______________ 
Dr. Mohammad Abdel Kareem Rasheed Jaradat  
Visiting Associate Professor, Department of Mechanical Engineering 
Thesis Committee Member 
 
___________________________     _______________ 
Dr. Aydin Yesildirek  
Associate Professor, Department of Electrical Engineering 
Thesis Committee Member        
 
___________________________     _______________ 
Dr. Taha Landolsi  
Associate Professor 
Department of Computer Science and Engineering 
Thesis Committee Member 
 
___________________________     _______________ 
Dr. Aydin Yesildirek  
Director, Mechatronics Graduate Program 
 
___________________________     _______________ 
Dr. Hany A El-Kadi  
Associate Dean, College of Engineering 
 
___________________________     _______________ 
Dr. Leland Blank 
Interim Dean, College of Engineering 
 
___________________________     _______________ 
Dr. Khaled Assaleh 
Director of Graduate Studies 

http://www.aus.edu/engr/mce/people/mohammad_al-jarrah.php


Acknowledgements 

First of all, I would like to express my gratitude to my advisor Dr. Ali Jhemi, Assistant 

professor Mechanical Engineering, from American University of Sharjah, for being 

highly patient and sharing with me his knowledge and enthusiasm throughout the 

development of my research. His suggestions and feedback were extremely important for 

the success of this research. I am grateful to my examiners Dr. Aydin Yesildirek, Dr. 

Taha Landolsi and Dr. Mohammad Abdel Kareem Rasheed Jaradat for accepting to join 

my examination committee and providing me with their wise suggestions and comments.  

I wish to thank the Director of Mechatronics Graduate program Dr. Aydin Yesildirek and 

the program coordinator Ms. Salwa Mohammad for their constant support and guidance 

during the course of my studies without which I wouldn’t have been able to complete my 

research on time. I want to thank my friends and fellow students Muhannad A.R Al-

Omari, Amina Ammour, Milad Roigari, Alexander Avdeev, Bara Emran, Shilpa 

Baburajan and Syed Ali for helping me during my time here at AUS and for all the 

fruitful technical discussion we have had. My word of thanks also goes to Kent Bernales 

Roferos and John Mempin for their useful suggestions for my thesis and for providing a 

resourceful environment at the Mechatronics center. Finally I am most grateful to my 

parents without their loving support and guidance conducting this research wouldn’t have 

been possible. My gratitude goes to Farrukh my loving fiancé for his patience and 

support while I conducted my research miles away from him. 



5 
 

Abstract 
 

Due to inherent instability, parametric variations, changing properties during flight, and 

uncertainties in predicting aerodynamic coefficients, helicopter flight control requires 

strategies with enough robustness to cope with these uncertainties. The control laws 

developed in the last few decades are mostly of the PID type that does not take advantage 

of the helicopter full potential. In this thesis four different controller techniques have  

been explored for a small scaled single rotor joker 3 Helicopter. Uncertainties of system 

parameters have been injected in the Helicopter model and performance of each the 

controller has been evaluated. All controllers are tested in simulation.  Hovering mode 

and robustness properties are verified within the range of inaccuracies expected to be  

encountered in real flight. The suggested controllers show excellent performance 

compared to classical controllers and can be good candidates for real flight test. 
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Chapter 1 

Introduction 

 

1.1 Background 

Unmanned Aerial Vehicles (UAV) are used in many military and civilian applications. 

Some applications require high agility and maneuverability, single rotor helicopters are 

considered to be best in these aspects. They are mainly used in civilian, military, rescue 

and search, transportation and construction purposes [1, 2]. When related to the fixed- 

wing aircraft, helicopters present a unique advantage in terms of maneuverability as they 

are able to fly forwards, backwards, sideways and can do vertical landing and take-off. 

The unmanned small helicopters are more attractive than the full size helicopters and can 

be used for applications like surveillance, monitoring of high voltage lines etc [3]. 

Moreover they are quite promising in environmental issues and in infrastructure 

maintainence since these helicopters are unmanned they provide a cost efftective and safe 

way to protect the pilots from dangerous situations. For high performance the unmanned 

aerial vehicles will see a cumulative need to perform flight missions where the dynamics 

of the UAV are not known. This together with the need of performance near stability for 

different maneuvers especially hovering gives the concept of modeling uncertainties a 

quite important role in flight control [3, 4]. Basically a mathematical model represents the 

dynamics of a real aircraft; however model uncertainties have profound effects on the 

performance and the stability of the UAV especially for an aircraft that has a low stability 

margin such as the joker 3 single rotor helicopter [4]. Robust controllers are developed 

for rotorcrafts to deal with the uncertainties, these controllers are first tested in 

simulation, if the response of these controllers is accurate then they are tested on the real 

rotorcraft for different flight missions. 
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1.2 Literature Review  

Where the small scaled helicopters have advantages to a fixed wing aircraft they also 

have certain disadvantages. They are noisier and considerably more tedious to fly and 

have extremely vibrating systems, probably because of these aspects the aeronautical 

community all over the world is more dedicated in research of fixed-wing aircrafts rather 

than their rotary wing counterparts. In fact the commercial fixed wing aircraft has been 

flying fly-by-wire (FBW) technology for years now and the first fly-by-wire rotary wing 

aircraft flight took place in 2008 which is considered quite recent [3, 4]. In order to 

achieve enhanced performances for rugged applications a single rotor helicopter from the 

small scaled UAV’s was considered because of its small size, unique flight capabilities, 

outstanding maneuverability and low cost [4]. An unmanned single rotor helicopter 

requires optimal flight control laws that shouldn’t just provide the tracking of the 

reference inputted by the pilot but also stabilization of the helicopter in harsh weather 

conditions and in the presence of uncertainties. Many control laws have been developed 

for a UAV flight control system. In the last few years control techniques have been 

developed that include the classical control design techniques proportional integral 

derivative (PID) [5, 6], model following design technique Dynamic Inversion (DI) and 

methodologies that guarantee robustness like H∞ control. Flight control systems are 

mainly classified as linear or nonlinear where the classification mainly depends on the 

model of the rotorcraft that is used by the particular controller. Linear control is more 

application oriented and is usually implemented on the majority of the rotorcraft 

applications. Linear controllers are well known because of their simplicity which reduces 

the computational efforts. Nonlinear controllers are important because they provide more 

theoretical learning but are not used for actual flight missions [1]. In this thesis linearized 

model of the Joker 3 helicopter is used to implement different control laws mainly for the 

inner loop controlling i.e. the angular rates of a Joker 3 helicopter. The parameters used 

for the model of the helicopter are deduced from [7]. The parameters are obtained from 

complete system identification of real time flight test data. Four different control laws 

have been designed for the Joker 3 helicopter starting with the DI technique, H∞ design, 

loop shape designing procedure (LSDP) and the  -synthesis design. H∞ mixed sensitivity 

problem has been optimized using the H∞ control theory. It uses  frequency dependent 
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weights for tuning the controller and to minimize the ∞ norm of the closed loop 

sensitivity function. H∞ loop-shaping uses the H∞ control theory [8]. It was developed 

by McFarlane and Glover [9]. It uses the classical loop-shaping techniques. The designer 

can beforehand specify the performance specifications such as disturbance rejection by 

shaping the open loop gains. The LSDP has been used in many different real time 

aerospace missions like the westland Lynx [10], Bell 205 helicopters [11] and the DERA 

VAAC research Harrier [12]. The flight test for VAAC research Harrier was performed 

first in December 1993; it was the first H∞ controller to be flight tested on a real 

helicopter.  -Synthesis is an extension of H∞ control theory. It uses the singular 

structured value   for analysis. It is a technique that attempts to structure an uncertainty 

in the system model and design a controller that is robust for a special class of 

perturbations. It requires iterative cycles to find the best optimal solution but produces a 

high order controller as comapred to H∞ control design and thus requires reducing of the 

order. However this technique has been used in various aerospace application [13, 14]. A 

step by step procedure of how to develop the control laws has been provided in the 

chapters, as the thesis progresses one can see how the techniques differ from each other 

and how the next one overcomes the flaws of the one that precedes it. 

1.3 Thesis Organization  

The thesis has been organized in the following manner. Chapter 2 gives a description of 

the DI control technique development for the Joker 3 helicopter, it describes how the 

overall technique is integrated by using different blocks, also it shows the perfect 

responses achieved and concludes with the fact that DI lacks robustness. Chapter 3 covers 

a step by step procedure of how H∞ controller is developed for both the pitch and the roll 

rate of the Joker 3 helicopter, it even contains the robust control toolbox commands used 

for the purpose of developing the controller, responses for nominal performance, robust 

performance and robust stability are checked. Chapter 4 envelopes the LSDP, it gives a 

thorough explanation of how the uncertainties are modeled and added to the system, the 

new controller is developed and its performance is measured by checking its response for 

nominal performance and robustness analysis is implemented. 



17 
 

Chapter 5 evolves the  -synthesis technique, it first gives a theoretical background to the 

singular structured value  , the small gain theorem and how the   bounds are computed. 

As the chapter progresses the   controller has been developed and its performance has 

been analyzed for different perturbed systems. Chapter 6 provides a comparison between 

the robust controllers H∞, LSDP and  -synthesis and chapter 7 provides a summary of 

the thesis. 
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Chapter 2 

Design of Dynamic Inversion Controller 

2.1 Introduction 

Dynamic Inversion (DI) synthesis mainly cancels out the undesirable or deficient 

dynamics of the system and replaces them with desired dynamics. The replacement of the 

undesired dynamics is done through careful selection of feedback function which is why 

this technique is also known as feedback linearization [15, 16]. In this research DI 

controls the inner loop which means it controls the rates of the Joker 3 helicopter. DI 

applies to both single input single output systems (SISO) and multi input and multi output 

systems (MIMO). The DI control law exists for both non-linear and linear systems as 

mentioned in the literature review the linearized model of the joker 3 helicopter is used in 

this thesis therefore the linear DI technique would be studied in detail.                                                                                        

DI provides superior performance as compared to that of PID type controllers but the 

fundamental assumption in this methodology is that the plant dynamics are accurately 

modeled i.e. it requires perfect knowledge of the plant [15]. Dynamic inversion is similar 

to model-following control, in that both methodologies invert dynamical equations of the 

plant [15, 16]. Section 2.2 gives a brief description of how the control law works would 

be given followed by a detailed description of how each component of the controller 

works. Section 2.3 describes the implementation of DI process on the Joker 3 rotary wing 

helicopter. 

 

2.2 Dynamic Inversion Concept 

In general aircraft dynamics can be expressed as follows [19]: 

( , )x F x u  (2.2-1) 

( )y H x  (2.2-2) 
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Where x is the state vector, u is the control vector and y is the measurement vector. 

The aircraft dynamic equation can also be rewritten as: 

( ) ( )x f x g x u   (2.2-3) 

The dynamic inversion control law can be obtained by subtracting      and multiplying 

both sides with       . If we assume that      to be invertible then the control input u is 

given as: 

1( )[ ( )]u g x x f x   (2.2-4) 

Next, it is required to command the aircraft to desired states. Instead of commanding the 

desired states the rates of the desired states is commanded as it is the favored form of 

inputs for DI. Replacing x with desx  equation 2.2-4 can be rewritten as the final form of 

Dynamic Inversion control law [15]. 

1( )[ ( )]desu g x x f x   (2.2-5) 

 

The dynamic inversion process can be represented in the below figure: 
 

 
Figure 1: Dynamic Inversion concept flow diagram [15] 

 

Figure 1 represents the DI process which seems to be simple but a few points need to be 

kept in consideration while designing a DI controller. First of all g(x) is assumed to be 

invertible for all values of x, this may not be the case if there are more states than 

controls. Also even if the g(x) is invertible the control effort u become large and result in 

actuator saturation.  
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2.3 Applying the Dynamic Inversion control to Joker 3 helicopter 

The DI control laws will be developed in the further sections and would be integrated 

into an overall control structure. Figure 2 shows DI being used as an inner loop controller 

accompanied by   and   feedback outer loops. Although any type of feedback control 

technique can be used for the outer loop a simple feedback has been used for this 

research. The overall DI controller requires the commanded values of the pitch      and 

the roll      as inputs. Then the measured values       and       are subtracted from 

the commanded values to result in        and        this forms the outer loop. These 

error values are then fed into the command inverter block to be changed into the 

respective rate commands given as      and     . The next block is the desired 

dynamics block that uses the outputs from the command inverter block which are the rate 

commands and the rate measurements to create the desired acceleration terms, which are 

basically the favored forms of commands for the DI controller [15, 17]. The main block 

is the DI block which implements the control laws to produce the control efforts that are 

the control deflection angle commands. These deflection angles are then fed to the Joker3 

longitudinal and lateral model to produce the rates. 

 

 
Figure 2: Overall Dynamic Inversion block [15] 
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2.3.1 Command Inverter 
In most aircraft applications it’s more appropriate to command the displacements   and   

rather than the body axis rates   and   [15, 16]. However the next block which is the 

desired dynamics block requires the body axis rates as it’s input therefore the command 

inverter block is used to produce the rates. The command inverter block converts the 

angular displacement commands into angular rate commands so that the displacement 

could be directly implemented into the DI controller. This section deals with how the 

displacement commands are transformed into the rate commands. 

 

 
Figure 3: Command inverter block 

 

As shown in Figure 3 the commanded roll rate can be obtained by simply differentiating 

the roll angle whereas the commanded pitch rate can be obtained by differentiating the 

pitch angle as given in the equations 2.3-1 and 2.3-2. 

cmd cmd
dp
dt
  (2.3-1) 

cmd cmd
dq
dt
  (2.3-2) 

2.3.2 Desired Dynamics 
The desired dynamics block which was introduced in section 2.3 is revisited here to come 

up with a detail explanation of how it works. The main purpose of a desired dynamics 

block is to achieve the desired rates and its derivatives. The desired dynamics block acts 

as a mapping function between the rate commands and the desired acceleration terms 

which are required form for the DI equations. There are no limitations to the desired 

dynamics block, it can take any form, usually the different forms of desired dynamics 

consist of proportional dynamics, proportional integral dynamics etc. [15, 17]. 
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The desired dynamics block used to develop the DI control for longitudinal input and for 

lateral input for the Joker 3 helicopter is considered to be a 2nd order system that follows 

equation 2.3-3 and 2.3-4 respectively. 

2 22des des des inq wq w q w q    (2.3-3) 

2 22des des des inp wp w p w p    (2.3-4) 

Where qin is the pitch rate output and pin is the roll rate output from the command inverter 

block. The system used for the desired dynamics block has a natural frequency w of 

50rads/sec and a damping ratio   of 0.7 for both pitch and roll rate. It produces the 

desired pitch rate, the desired roll rate, the desired accelerations and its derivatives. These 

are further inputted to the next block which is the Dynamic Inversion block.  

2.4 Dynamic Inversion Block 

2.4.1 Simplified longitudinal controller for the Joker 3 helicopter 
Longitudinal input to pitch rate behaves like a 2nd system given by the transfer function  

2.4-1 [7]. In time domain it can be written as equation 2.4-2. 

 
2

2 22
q

q q q

wq
e s w s w 


 
 (2.4-1) 

2 22 q q q q eq w q w q w     (2.4-2) 

The  ̈,  ̇ and   can be replaced by  ̈des,  ̇des obtained from section 2.3.2 and       to give 

equation 2.4-3. 
2 22des q q des q meas q eq w q w q w     (2.4-3) 

Equation 2.4-3 can be rewritten in the DI control form: 

2
2

1 ( 2 )des q q des q meas e
q

q w q w q
w

     (2.4-4) 

Response for the   and the   using a DI controller are presented in Figure 4 and Figure 5. 

It can be observed from Figure 5 that the DI   follows the desired   perfectly. It is so 

good that the difference between both is not visible. The outer loop response for   gives a 

settling time of 0.2 sec and a small overshoot of 5%.  
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Figure 4: DI controller response for θ 

 

 

 
Figure 5: DI controller response for   

 

Similarly the DI controller needs to be developed for the roll rate of the Joker 3 
helicopter. Section 2.4.2 describes the simplified lateral controller and plots the response 
for the DI controller developed for the roll rate in Figure 6 and Figure 7. 
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2.4.2 Simplified lateral controller for the Joker 3 Helicopter 
Lateral input to roll rate behave like a 2nd order system given by the following transfer 

function 2.4-5 [7].  In time domain it can be written as equation 2.4-6. 
2

2 22
p

p p p

wp
a s w s w 


 
 (2.4-5) 

2 22 p p p p ap w p w p w     (2.4-6) 

The  ̈  ̇ and   can be replaced by  ̈des,  ̇des obtained from the previous desired dynamics 

block and       to give the equation 2.4-7. 

2 22des p p des p meas p ep w p w p w       (2.4-7) 

Equation 2.4-7 can be rewritten in the DI control form: 

2
2

1 ( 2 )des p p des q meas a
p

p w p w p
w

     (2.4-8) 

The response for the   and the   using a DI controller are presented in Figure 6 and 

Figure 7. Figure 6 is a plot of the outer loop response for    which gives a settling time of 

0.2 sec and a small overshoot of 5%. It can be observed from Figure 7 that the DI    

follows the desired   perfectly; it shows a perfect match between both such that the 

difference is not visible.  

 

 
Figure 6: DI controller response for Φ 
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Figure 7: DI controller response for   

 

It can be seen from section 2.4 that DI results in perfect response but a few points need to 

be emphasized here, DI is essentially a special case of model following it requires the 

exact knowledge of the parameters to achieve good performance therefore any parametric 

uncertainty causes a degradation in the controllers performance. Figure 8 and Figure 9 

show the response of   and    respectively when uncertainties that amount to 10% in the 

natural frequency wp and  5% in the damping ration    have been added resulting in   

and    degradation in performance. 

 

 
Figure 8: DI controller response for pitch rate when uncertainties are added 
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Figure 9: DI controller response for roll rate when uncertainties are added  

 

Therefore robustness plays a significant process during the design process of the 

controller for Joker 3 helicopter. In the next 3 chapters three different robust controller 

have been designed to control the pitch rate and the roll rate of the Joker 3 helicopter. 
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Chapter 3 

Design and Implementation of H∞ Controller 
 

3.1 Introduction 

Typically a control engineer is required to design a controller that will not only stabilize 

the plant but also satisfy certain performance criterion in the presence of noise, 

parametric variations and unmodelled plant dynamics [8, 18]. Multivariable design 

techniques were introduced in the 1960’s, these techniques were mainly based on linear 

quadratic performance techniques, and the main focus of these techniques was good 

performance more than robustness. This led to a substantial research effort to develop a 

theory that would deal with the robustness issue on a feedback design basis thus 

introducing the H∞ technique. In the H∞ technique the designer beforehand specifies the 

uncertainties, such as additive perturbation and/or output disturbance that are most suited 

to the problem at hand [18, 19]. Only the structured (Parametric) uncertainties are 

considered in this case. By structured it means that the uncertainties can be described as a 

diagonal matrix with its diagonal elements equal to the uncertain terms [8, 18, 19, 20].  

3.2 Steps followed to design H∞ controller 

The following steps need to be followed to design and implement H∞ controller 

1. System Modeling 

2. Frequency Analysis of uncertain systems 

3. Design requirements of a closed loop system 

4. Selecting the weighing functions 

5. Creating the open loop structure (system interconnection) 

6. Optimal H∞ controller design 

7. Robust control toolbox commands. 

8. Analysis of Closed loop system with H∞ controller 
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3.3 System modeling 

3.3.1 Dynamics of inputs to angular rate outputs 
The dynamics of a longitudinal input to pitch rate output can be described by equation 2nd 

order differential equation [7, 41, 42]:                                   

2

21 q
e

q q

q q q
w w


    (3.3-1) 

The dynamics of a lateral input to roll rate can be described by the following 2nd order 

differential equation [11, 31]: 

2

21 p
a

p p

p p p
w w


      (3.3-2) 

The proceeding sections describe general framework of H∞ controller for pitch rate 

simultaneously roll rate controller would be developed. The second order system 

describing the longitudinal to pitch rate can be considered as a mass damper spring 

system where the following substitutions are considered   
 

  
 ,  

   

  
,    ,      

and    . 

 The differential equations can thus be written as:  

mx cx kx u    (3.3-3) 

1 ( )x cx kx u
m

     (3.3-4) 

Figure 10 shows the block diagram representation of equation 3.3-4 

1
m

1
s 1

s

c

k

x x x


u


 
Figure 10: Block diagram representation of a 2nd order system [8] 
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3.3.2 Modeling the uncertainties 
Basic idea in modeling an uncertain system is to isolate the known elements from the 

unknown elements in a feedback type connection called the linear fractional 

transformation (LFT) [21, 22, 23]. Practically the values of           are not known 

exactly but they are within certain limits of the nominal values of the parameters that are 

given as  ̅   ̅     ̅. The values of m, c and k can be written as a function of their 

nominal value and uncertainty as given in equations 3.3-5,  3.3-6 and 3.3-7. 

 

(1 )m mm m p    (3.3-5) 

(1 )c cc c p    (3.3-6) 

(1 )k kk k p    (3.3-7) 

 

The three constants blocks in Figure 10 can be replaced by blocks in terms of   ̅  ̅  ̅ 

                        The 1st, 2nd and 3rd block formulation is given as: 

 

The first block is given by equation 3.3-8 and can be rewritten as 3.3-9. 

1 1
(1 )m mm m p 




  (3.3-8) 

11 1 1 (1 )
(1 )

m
m m m

m m

p p
m m p m m

 


   


 (3.3-9) 

Using LFT technique [1, 8] the following configuration is obtained: 

m

miM
 

Figure 11: LFT representation of the 1st block [18, 27] 
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The upper LFT formulation is given as: 

1
22 21 11 12( , ) ( )u mi mF M M M I M M       (3.3-10) 

Equation 3.3-8 can be compared with the upper LFT equation 3.3-10 to find the 

interconnected matrix M that doesn’t have the uncertainty embedded in it. The matrix 

    is given as: 

11 12

21 22

1

1

m

mi

m

pM M mM
M M p

m

 
  

    
   

  

 

The second block can be written as equation 3.3-11 

c cc c cp    (3.3-11) 

Using LFT technique the following configuration is obtained: 

 

c

cM
 

Figure 12: LFT representation of the 2nd block [18, 27] 

 

3.3-11 is compared with the upper LFT formulation given in 3.3-10 to find the 

interconnected matrix cM . 

11 12

21 22

0
c

c

cM M
M

p cM M
  

    
     

 

The third block can be written as equation 3.3-12 

(1 )k k k kk k p k kp      (3.3-12) 
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Figure 13 represent the configuration that is obtained using the LFT technique. 

 

k

kM
 

Figure 13: LFT representation of the 3 rd block [18, 27] 

 

3.3-12 is compared with the upper LFT formulation given in 3.3-10 to find the 

interconnected matrix kM that has the following elements in it: 

11 12

21 22

0
k

k

M M k
M

M M p k
  

    
     

 

The system model as an LFT of the unknown real perturbations δm, δc and δk is 

represented in  the Figures 11, 12 and 13 and denote the inputs and outputs of δm, δc and 

δk as ym, yc, yk and um, uc, uk respectively. 

 

u x x x

um ymm

Mm

ukyk k

Mk

1
s

1
s

ucyc c

Mcqc

qk



 
Figure 14 : Block diagram representation of 2nd order system with uncertainties [18] 
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The outputs from the first perturbation related to the inputs to the block Mmi can be 

written as: 

1

1

m
mm

c k
m

p uy m
u v vx p

m

 
    

           
  

 

The outputs from the second perturbation related to the inputs to the block Mc can be 

written as: 

0c c

c c

y c u
q p c x
     

     
    

 

The outputs from the third perturbation related to the inputs to the block Mk can be 

written as: 

0k k

k k

y uk
q xp k

    
     

    
 

 

Figure 14 is used to obtain the following equations: 

m m mu y  (3.3-13) 

c c cu y  (3.3-14) 

k k ku y  (3.3-15) 

By setting     ,     ̇ and      the following equations are obtained: 

1 2x x  (3.3-16) 

2
1 ( )m m c kx x p u u q v
m

        (3.3-17) 

1 ( )m m m c ky p u u q q
m

      (3.3-18) 

2cy cx  (3.3-19) 

1ky kx  (3.3-20) 

2c c cq p u cx   (3.3-21) 

1k k kq p u kx   (3.3-22) 
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Eliminating the intermediate variable    and    the equations 3.3-17, 3.3-18 can be  

rewritten as: 

2 1 2 c k
m m c k

p pk c ux x x p u u u
m m m m m
 

       (3.3-23) 

1 2 c k
m m m c k

p pk c uy x x p u u u
m m m m m
 

       (3.3-24) 

If we let Gmds denote the input/output dynamics of the system which also takes in account 

of the uncertainty of parameters. The inputs are given as um, uc, uk and u, the outputs are  

ym, yc, yk, y and the states are given as x1 and x2. 

 

um
uc
uk
u

ym

y
yk

yc
mdsG

 
Figure 15: Input/Output block diagram of 2nd order system with uncertainties 

 

The state space realization of Gmds is given as: 

1 2

1 11 12

2 21 22

mds

A B B
G C D D

C D D

 
 


 
  

 

The Equations governing the system dynamic behavior can be written as a system matrix: 

1 1

2 2

0 1 0 0 0 0
1

1

0 0 0 0 0
0 0 0 0 0

1 0 0 0 0 0

c k
m

m mc k
m

c c

k k

x xp pk c px xm m m m m
y up pk c p
y um m m m m

cy u
ky u

 
           
    
            
    
    
    
    
 
 

 

0 0
0 0
0 0

m m m

c c c

k k k

u y
u y
u y







     
     


     
          
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Where A is a 2 by 2 matrix (n by n where n is the number of states) 

0 1
A k c

m m

 
    
  

 

B1 is a 2 by 3 matrix (n by p where n is the number of states and p is the number of inputs 

here the inputs are the 3 uncertain inputs) 

1

0 0 0

c k
m

B p pp
m m

 
 
   
 

 

B2 is a 2 by 1 matrix (n by p where n is the number of states and p is the number of input 

in this case it is the control input). 

2

0
1B
m

 
 
 
 

 

C1 is a 3 by 2 matrix (q by n where q represents the outputs from the uncertain block and 

n represents the states). 

1 0
0

k c
m m

C c
k

  
 
 

  
 
 
  

 

D11 is a 3 by 3 matrix which shows the relation between the input and output of the 

perturbations. 

11 0 0 0
0 0 0

c k
m

p pp
m m

D

 
   
 

  
 
 
 

 

D12 is a 3 by 1 matrix which shows the relation between the uncertainty output and the 

control input u. 
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12

1

0
0

m
D

 
 
 

  
 
 
 

 

D21 is a 1 by 3 matrix (it’s all zero because it links the y with the inputs for uncertainty, 

since the output has no link to it therefore it’s a null row vector). 

 21 0 0 0D   

D22 1 by 1 matrix (q by q here the main output is 1 also there is no connection between 

the measurement and the control input therefore its 0). 

 22 0D   

The uncertain behavior of the original system can be described by the below diagram that 

shows upper LFT formulation for the system and the uncertainties block [8]. 

 

0 0
0 0
0 0

m

c

k







 
 
 
  

Gmds  
Figure 16: LFT representation of a 2nd order system with uncertainties [18] 

3.4 Frequency analysis of uncertain systems 

In order to compute the frequency response of the open perturbed system MATLAB was 

used for different values of perturbations, three values of each perturbation are chosen 

that lie within the range from -1 to 1, then the open loop transfer function matrix is found 

and the corresponding frequency response is plotted in Figure 17 for pitch rate and 

Figure18 for roll rate [8, 24].  
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Figure 17: Frequency analysis of open loop perturbed pitch rate  

 

 
Figure 18: Frequency analysis of open loop perturbed roll rate  

 

3.5 Design requirements of a closed loop system 

The main design objective of this H∞ optimization is to find a linear output feedback 

control               such that the following properties of the closed loop system are 

ensured. 
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Nominal Stability and Performance: 

1. The controller designed should make the closed loop system internally stable and for 

the nominal plant Gmds the closed loop performance should be stable. 

2. The performance criterion is mixed sensitivity i.e. S over KS design [8, 18, 19]. 

3.5.1 Mixed sensitivity function 
It’s not recommended for an engineer to develop a controller that minimizes just a single 

cost function. In this thesis a controller that minimizes the mixed sensitivity function (S 

over KS) [18, 20] i.e. providing a good tracking as well as restricting the control effort u 

is developed. 
1

1

( )
min

( )Kstabilizing

I GK
K I GK








 

Consider the block diagram as shown in Figure 19, G represents the model of the 

helicopter and K is the controller that needs to be developed. 

 

K G

1z

2z

r e u y+

-

 
Figure 19: Closed loop system with unity feedback [19] 

 

Good tracking performance/ Disturbance attenuation is one of the most important 

performance criterions. To achieve good tracking performance the transfer function that 

represents the tracking error with respect to the reference needs to be minimized. Finding 

the transfer function of the tracking error with respect to the reference input: 

 

The error can be deduced from the block diagram as: 
e r y   (3.5-1) 
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Where the output is given as: 

 y Gu GKe   (3.5-2) 

Therefore the error can be written as: 

(1 )e GK r   (3.5-3) 

Thus the transfer function that represents the tracking error with respect to the reference 

input is given as: 

1( )Ter I GK    (3.5-4) 

This transfer function is also known as sensitivity function and it needs to be minimized 

to reduce the tracking error. The second performance criterion that needs to be achieved 

is reduced control effort so as to avoid the saturation of servomechanism. Finding the 

transfer function that represents the control input u with respect to the reference signal. 

The control input from the block diagram Figure 19 is given as: 

u Ke    (3.5-5) 

The error given in equation 3.5-1 can be given by the equation 3.5-6 

 e r Gu    (3.5-6) 

Therefore, the control input can be given by the equation 3.5-7 

( )u I GK Kr   (3.5-7) 

Thus, the transfer function that represents the control effort with respect to the 

reference input is given by 3.5-8 and is known as KS function and needs to be 

minimized to avoid saturation. 

1( )Tur K I GK    (3.5-8) 

3.6 Weighting functions 

3.6.1 Selecting the weighting function 

H∞ control is a design technique with a state space computational solution that utilizes 

frequency dependent weighting function to tune the controller’s performance and 

robustness characteristics. The weights on the input and output variables are chosen to 
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reflect the frequency dependence of the respective signals and performance criterion [25, 

26]. These input and output weighting functions are defined as rational, stable, minimum 

phase transfer functions. Also they are defined as such that the input and output energies 

are normalized to one. Figure 20 shows a closed loop system with weighing functions 

integrated to it. 



GmdsuK pw

uw

d
ep

eu





r +

 
Figure 20: Closed loop system with weighting functions [18, 19] 

The performance criteria of good tracking is now formulated with the weighting 

functions integrated to the closed loop system as shown in Figure 20. Finding the transfer 

function that represents the ep with respect to the disturbance [8, 18]: 

The error in performance ep can be calculated from Figure 20. 

( )p pe w Gu d   (3.6-1) 

The control input is given by the equation 3.6-2 

u Ke  (3.6-2) 

Considering the reference input to be zero the error in performance can be given by the 

equation 3.6-3 

( ( ) )p pe w GK y d    (3.6-3) 

Thus, the transfer function that represents the error in performance with respect to the 

disturbance input is given by the equation 3.6-4 
1( )p pTe d w I GK    (3.6-4) 

The performance criteria of restricted control effort is again formulated with weighting 

functions integrated to the closed loop system as shown in Figure 20. Finding the transfer 

function that represents the control input u with the weighing function with respect to the 
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disturbance. The error in control effort eu can be calculated from Figure 20. Since the 

reference input is zero the error in control input is given by 3.6-6. 

u ue w Ke  (3.6-5) 

. ( )u ue w K Gu d    (3.6-6) 

The transfer function that represents the error in performance with respect to the 

disturbance input is given by 3.6-7. 

1( )u uTe d w K I GK     (3.6-7) 

The mixed sensitivity function that needs to be minimized can be written as: 
1

1

( )
1

( )
p

u

w I GK
w K I GK









 

The weighting functions wp and wu are chosen to represent the frequency characteristics 

of external (output) disturbance d and performance requirement (including consideration 

of control-effort constraint) respectively they are used to reflect the relative significance 

of the performance requirement over different frequency ranges. Satisfaction of the norm 

proves that the closed loop system that consists of the controller successfully rejects the 

disturbance and achieves the desired performance mainly limiting the control effort. 

3.6.2 Weighting functions for pitch and roll rate 
For pitch rate and roll rate the weighting functions for performance and disturbance 

attenuation have been selected such that apart from disturbance rejection, good transient 

response for the nominal system is also ensured. The settling time is less than 10sec and 

the overshoot is less than 20%. The weighting transfer functions for pitch rate are given 

as: 
2

2

6.5 30( ) 0.95
2.55 0.01p

s sw s
s s

 


 
 

0.01uw   

 

The weighting transfer functions for roll rate is given as: 
2

2

7 27( ) 0.95
3 0.01p

s sw s
s s

 


 
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0.01uw   
The inverse of the weighing functions are calculated and shown in Figure 21 for pitch 

rate and in Figure 22 for roll rate. As specified in the mixed sensitivity function norm in 

order to achieve the desired disturbance rejection or to reduce the tracking error it is 

necessary that the following inequality is satisfied. 
1( ) 1pw I GK    

This occurs if and only if for all frequencies the maximum value of the sensitivity 

function for all frequencies is less than the inverse of the weighting function which is 

given as  [            ]  |
 

  
| 

 

 
Figure 21: Singular values of 1/Wp for pitch rate 

 

 
Figure 22: Singular values of 1/Wp for roll rate 
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3.7 System interconnection 

The state space representation of the generalized (interconnected) system P [8, 18, 19, 

25] is given in the following equations. 

1 2( ) ( ) ( )x Ax t B w t B u t    (3.7-1) 

1 11 12( ) ( ) ( )z C x t D w t D u t    (3.7-2) 

2 21 22( ) ( ) ( )y C x t D w t D u t      (3.7-3) 

Here x(t)   is the state vector, w(t)    is the exogenous input vector whereas               

u(t)      is the control input vector, z(t)    is the error output vector and      

    is the measurement vector. The state space realization of P(s) is given as: 

 

1 2

1 11 12

2 21 22

( )
A B B

P s C D D
C D D

 
 


 
  

 

 

In this section the open-loop structure P is developed using the sysic command from 

MATLAB Robust Control Tool box [8, 24]. Figure 23 shows the structure of the open-

loop system. 

 

 1 2 3pertin  1 2 3pertout

wp

wu

ep

eu

yc 
0

dist 
control

Gmds

 
Figure 23: Open loop structure [18] 
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As shown in Figure 23 open loop structure has three main inputs: perturbation entering 

pertin, control and disturbance whereas the perturbation input itself has three elements 

therefore a total of five inputs are present whereas the outputs are: perturations going out 

pertout, ep, eu and yc. Where pertout is the output due to the perturbation input therefore,  

it has three elements,  ep is the effect of the disturbance and eu is the control effort. The 

main performance criterion is to reduce infinity norm of the transfer function from d to ep 

and eu. It needs to be noted that yc is taken negative because the robust control toolbox 

creates positive feedback. The open loop system has five inputs, six outputs as described 

above and four states. 

 

pertin
dist

control

pertout
ep
eu
yc

sysic

 
Figure 24: Generalized block diagram of open loop structure 

 

The open loop structure gives the following matrix which is a system matrix: 

 

1

2

1 1 11 12 1

2 2 21 22 2

1 2

0 1 0 0 0 0 0 0 0
10 0 0

0 0 0 0 0
0 0 0 0 0

10 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0_
0 0 0 0 0_

0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0

c k
m

m c k
m

c

k

u

x p pk c px m m m m m
s B A A B
s B A A B
y p pk c p
y m m m m m

cy
ke p
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Here s1 and s2 are the states that are introduced because of the weighting function wp, the 

system matrix equations of wp are given as: 

 

 

   

1 11 12 1
1

2 21 22 2

1
1 2 1

2

1
2

_ [ ]

s A A s B
x d

s A A s B

s
e p C C D x d

s

       
         

      

 
   

 

 

3.7.1 Open loop interconnected matrix for pitch rate 
The open loop interconnected matrix for pitch rate is calculated for the Joker 3 helicopter 

and gives the following result: 

 
0 1 0 0 0 0 0 0 0

121.00 4.40 0 0 0.30 24.20 12.10 0 121.00
3.3731 0 0.0040 0.0065 0 0 0 3.3731 0

2.7528 0 0.0065 2.4960 0 0 0 2.7528 0
121.00 4.40 0 0 0.30 24.20 12.10 0 121.00

0 0.03 0 0 0 0 0 0 0
1.00 0 0 0 0 0 0 0 0
0.95 0 3.37 2.75 0 0 0 0.9

Ppitch

    

   



    


  5 0
0 0 0 0 0 0 0 0 0.01

1.00 0 0 0 0 0 0 1.00 0
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 
 
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 
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 
 
 
 
 
 
   

 

3.7.2 Open loop interconnected matrix for roll rate 
The open loop interconnected matrix for pitch rate is calculated for the Joker 3 helicopter 

and gives the following result: 

 
0 1.00 0 0 0 0 0 0 0

225.00 9.00 0 0 0.300 45.00 22.50 0 225.00
3.34 0 0.0039 0.0063 0 0 0 3.34 0

2.6682 0 0.0063 2.546 0 0 0 2.66 0
225.00 9.00 0 0 0.30 45.00 22.50 0 225.00

0 0.04 0 0 0 0 0 0 0
1.00 0 0 0 0 0 0 0 0
0.95 0 3.34 2.66 0 0 0 0.95 0

0 0

Proll

    

   



    


 

0 0 0 0 0 0 0.01
1.00 0 0 0 0 0 0 0 1.00
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 
 
 
 
 
 
 
   
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3.8 Optimal H∞ controller design: 

A control system is robust if it remains stable and achieves certain performance criteria in 

the presence of possible uncertainties. The robust design is to find a controller such that 

the closed loop system is robust. 

3.8.1 H∞ Controller design theory 
 

The H∞ solution formulae uses solutions of two ARE (Algebraic Ricatti Equations). The 

Algebraic Ricatti Equation are introduced first; basically ARE is a matrix quadratic 

equation non-linear in nature with a quadratic term, two linear terms and a constant term. 

It usually arises in optimal control problems for continuous or discrete systems. In such a 

problem, one cares about the value of some variable of interest arbitrarily far into the 

future, and one must optimally choose a value of a controlled variable right now, 

knowing that one will also behave optimally at all times in the future. The optimal current 

values of the problem's control variables at any time can be found using the solution of 

the Riccati equation and the current observations on evolving state variables. The 

Algebraic Riccati equation is given in equation [8, 19]. 

0TE X XE XWX Q     (3.8-1) 

Here  ,  ,   are real n by n matrix and   and   are symmetric matrices. To each 

Riccati Equation belongs the following Hamiltonian matrix: 

T

E W
H

Q E
 

  
  

 

The special property of H is that if Λ is an eigenvalue of H then so is – Λ. Specifically, if 

H has no eigenvalues on the imaginary axis, then n of the eigenvalues of H are in the 

open left half plane and the remaining are in the open right half plane. Let   be the 

matrix of eigenvectors of H ordered in such a way that the first n columns starting from 

the left correspond to eigenvalues in Re s<0 and the remaining n columns correspond to 

eigenvalues in Re s>0. Partitioning the matrix into four   by   block matrix: 

11 12

21 22

U U
U

U U
 

  
 
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If U11 is non-singular, solution of the Riccati equation   is given as          
    

Therefore, a special class of Hamiltonian matrices that exhibit the following twin 

properties are required. 

 H has no eigenvalues on the imaginary axis. 

 U11 is non- singular.  

 

The following points need to be kept in consideration if           that is if H 

possesses the above twin properties and          that is X is a solution of Riccati 

Equation then the following are also true [8, 18, 19]. 

 X is symmetric. 

 X is the solution to the Riccati Equation 3.8-1.  

 X shows signs definite properties. 

      is stable. 

 

Also let B and C be full rank matrices with       where the rank of W is equivalent 

to the rank of B and       where the rank of Q is equivalent to the rank of C. 

Therefore H can be redefined as: 
T

T T

E BB
H

CC E
 

  
 

 

The sufficiency conditions in reference to the Riccati equation (3.8-1) are given as: 

 If (A, B) is controllable, then there exists a solution     (X would be positive semi 

definite). 

 If (A, B) is controllable and (C, A) is observable then there exist a unique solution 

    and further it is a stabilizing solution in the sense that       is 

asymptotically stable. 

 

Therefore if X is defined as the stabilizing solution of the Riccati equation then it can be 

denoted as: 

T

E W
X Ric

Q E
 

  
  
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Also [10, 27] defines: 

1

2 0

0 0
mT

n x x

I
R D D

 
   

  
 (3.8-2) 

1

2 0

0 0
pT

n y y

I
R D D

 
   

  
 (3.8-3) 

 

  11
11 12

21

  and x y

D
where D D D D

D
 

   
 

 

Assuming that nR  and nR  are non- singular, two Hamiltonian matrices H and J are 

defined as [10, 27]: 

1
1

11 1

0 T T
n xTT T

x

BA
H R D C B

C DC C A
  
           

 (3.8-4) 

 

1
1

11 1

0 TT
T

n yTT
y

CA
J R D B C

B DB B A


  
             

 (3.8-5) 

 

Also the solution of the above Hamiltonian matrices that represent the Riccati Equations 

can be given as           and            Based on   and  , a state feedback matrix 

F and an observer gain matrix L can be constructed, which is  used in the solution 

formulae. 

11
11

1 12
2

2

( )T T
n x

F
F

F R D C B X F
F

F



 
   

       
    

 (3.8-6) 

   1
1 1 2 11 12 2( )T T

y nL B D YC R L L L L L      (3.8-7) 

 

[18] derived necessary and sufficient conditions for the existence of an H∞ suboptimal 

solution and further parameterized all such controllers. The results are obtained under the 

following assumptions for P. 
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1. (A, B2) is stabilizable and (C2, A) is detectable. 

2. D12 is full column rank and D21 is full row rank. 

3. 2

1 12

A jwI B
C D
 

 
 

 Has a full rank for all values of w. 

4. 1

2 21

A jwI B
C D
 

 
 

 Has a full rank for all values of w. 

Assumption 1 is necessary and sufficient for the existence of admissible controllers. 

Assumption 2 is merely required for normalization purpose and does not have any other 

significance. Assumptions 3 and 4 are required to ensure that the Ricatti Equations have 

stabilizing solutions. Suppose P(s) satisfies the above given assumptions [8] then:  

1. There exists an internally stabilizing controller K(s) such that ||FL(P,K)||∞ <   if 

and only if 1111 1112 1111 1121max( [ , ], [ , ])T TD D D D    . 

2. There exist stabilizing solutions X ≥ 0 and Y ≥ 0 satisfying the two AREs 

corresponding to the Hamiltonian matrices H and J, respectively, and such that 
2( )XY   where ρ (・) denotes the spectral radius. 

3. Given that the conditions of part (a) and (b) are satisfied, then all rational, 

internally stabilizing controllers, K(s), satisfying ||FL(P,K)||∞ <   are given by

( ) ( , )lK s F M   For any rational ( )s H   such that ‖    ‖    where M(s) has 

the realization: 

1 2

1 11 12

2 21 22

ˆ ˆ ˆ

ˆ ˆ ˆ( )
ˆ ˆ ˆ

A B B

M s C D D

C D D

 
 

  
 
  

 

The elements of M can be found out in the following way: 

2 1
11 1121 1111 1111 1111 1112 1122

ˆ ( )T TD D D I D D D D      (3.8-8) 

Where 2 2 2 2
12 21

ˆ ˆ and m m p pD R D R 
   are any matrices satisfying the two equations 3.8-9 

and 3.8-10. 
2 1

12 12 1121 1111 1111 1121
ˆ ˆ ( )T T TD D I D I D D D     (3.8-9) 
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2 1
21 21 1112 1111 1111 1112

ˆ ˆ ( )T T TD D I D I D D D     (3.8-10) 

The matrix elements can therefore, be calculated as [10, 27]: 

1 2 12
ˆ ˆ  ( )A A BF B C F     (3.8-11) 

1 2 2 12 11
ˆ ˆ( )B ZL Z B L D     (3.8-12) 

2 2 12 12
ˆ ˆ( )B Z B L D   (3.8-13) 

1 2 11 2 12
ˆ ˆ ( )C F D C F    (3.8-14) 

2 21 2 12
ˆ ˆ ( )C D C F    (3.8-15) 

2 1( )Z I YX     (3.8-16) 

 

When        is chosen, the corresponding suboptimal controller is called the central 

controller that is widely used in the H∞ optimal design and has the state-space form: 

1

1 11

ˆ ˆ
( )

ˆ ˆo

A B
K s

C D

 
  
  

 

3.9 Robust control toolbox commands (MATLAB) 

An H∞ suboptimal controller is the first controller to be designed for the connection of 

type system. The standard state-space technique to calculate H∞ output feedback 

controllers is to select a value of   (positive constant) and determine if there exists a 

controller K such that ||FL(P,K)||∞ <  . This value of   is updated based on a modified 

bisection algorithm, called  iteration. This iteration procedure continues until the 

magnitude of the difference between the smallest  value that has passed and the largest 

 value that has failed is smaller than the tolerance specified. Also the transfer function 

matrix of the nominal closed loop system FL(P,K) is that from disturbance to the errors e. 

( , )F P Kl
dist e

 
Figure 25: Closed loop LFT in H∞ design [8] 
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Therefore, we need to extract from the open loop transfer function matrix P from the 

system matrix that relates the specific inputs and outputs. 

3.9.1 Using sel command from MATLAB 
Sel command from MATLAB selects desired outputs and inputs from a system matrix 

[24]. The outputs and inputs are row vectors with the desired inputs/outputs specified. 

For pitch rate the command is given as follows: 

                                  

where long_main_sys is given as: 
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2

0 1 0 0 0 0 0 0 0
121.0000 4.4000 0 0 0.3000 24.2000 12.1000 0 121.0000
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2.7528 0 0.0065 2.4960 0 0 0 2.7528 0
121.0000 4.4000 0 0 0
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Therefore, the following matrix is saved in hin_ic: 
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Similarly for roll rate using the command sel from MATLAB the specific inputs and 

outputs are selected from the lat_main_sys given below: 

1

2

1

2

0 1.00 0 0 0 0 0 0 0
225.00 9.00 0 0 0.300 45.00 22.50 0 225.00
3.34 0 0.0039 0.0063 0 0 0 3.34 0

2.6682 0 0.0063 2.546 0 0 0 2.66 0
225.00 9.00 0 0 0.30 45.00 22.50 0 225

_
_
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   

 

Therefore, the following matrix is saved in hin_ic for roll rate: 
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-225.0000 9.0000 0 0 0 225.0000

3.3402 0 0.0039 0.0063 3.3402 0
2.6682 0 0.0063 2.5461 2.6682 0

_ 0.9500 0 3.3402 2.6682 0.9500 0
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3.9.2 Using the H  command from MATLAB 
The design uses hinfsyn command from MATLAB to compute a centralized H∞ 

controller based on the open loop structure P [8, 24]. The hinfsyn command assumes the 

following about the open loop matrix P: 

1. (A, B2) is stabilizable and (C2, A) is detectable. 

2. D12 is full column rank and D21 is full row rank. 

3. 2

1 12

A jwI B
C D
 

 
 

 Has a full rank for all values of w. 

4. 1

2 21

A jwI B
C D
 

 
 

 Has a full rank for all values of w. 

The hinfsyn command returns the H∞ controller, the closed loop system and the value of 

  achieved. The bisection algorithm stops when the difference between the smallest 

value of   that has passed and the largest value of   that has failed is less than tolerance 



52 
 

limit. The syntax, input and output arguments of hinfsyn command are provided in 

Table1 and Table 2. 

[     ]                                       

 
Table 1: Input Arguments of the H∞ MATLAB command 

INPUT ARGUMENTS  

Open-loop interconnection (matrix of type 

SYSTEM 

P 

Number of measurements nmeas 

Number of controls ncons 

Lower bound of bisection   low 

Upper bound of bisection   high 

Absolute tolerance for the bisection method tol 

 
Table 2: Output arguments of the H∞ MATLAB command 

OUTPUT ARGUMENTS:  

H∞ optimal controller K 

Closed loop system with controller implemented clp= (starp(P,K)) 

 
Table 3: Extract of code 

 GAMA HAMX_EIG XINF_EIG HAMY_EIG YINF_EIG NRHO_XY P/F 

10.000 3.4E+00 1.9E-04 3.9E-03 -5.5E-17 0.0000 P 

5.500 3.4E+00 1.9E-04 3.9E-03 0.0E+00 0.0000 P 

3.250 3.4E+00 1.9E-04 3.9E-03 -5.5E-17 0.0000 P 

2.125 3.4E+00 1.9E-04 3.9E-03 0.0E+00 0.0000 P 

1.563 3.4E+00 1.9E-04 3.9E-03 0.0E+00 0.0000 P 

1.281 3.4E+00 1.9E-04 3.9E-03 0.0E+00 0.0000 P 

1.141 3.4E+00 1.9E-04 3.9E-03 0.0E+00 0.0000 P 

1.070 3.4E+00 2.0E-04 3.9E-03 0.0E+00 0.0000 P 

1.035 3.4E+00 2.0E-04 3.9E-03 0.0E+00 0.0000 P 

1.018 3.4E+00 2.0E-04 3.9E-03 0.0E+00 0.0000 P 
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From Table 3 it can be concluded that the following conditions need to be true for the   

to pass: 

 H and J Hamiltonian matrices (which are formed from the state-space data of P ) 

must have no eigenvalues at the imaginary axis. 

 The stabilizing Ricatti solutions X∞ and Y∞ associated with the Hamiltonian 

matrices H and J must exist and be positive, semi-definite. 

 Spectral radius of (X, Y) must be less than or equal to 2 . 

The results for the H∞ controller for pitch rate and for roll rate are given as: 

3 2

4 3 2

1731 2020 2.648 05 1.522 06
329.5 5.289 04 1.302 05 520.7

s s e s eKpitch
s s e s e s

  


   
 

 
3 2

4 3 2

1675 26640 4.81e05 2.603e06
426.4 8.967e04 2.259e05  885.9

s s sKroll
s s s s

  


   
 

3.10 Analysis of closed loop system with H∞ controller: 

3.10.1 Nominal performance 
Nominal performance can be achieved by the optimization of the mixed sensitivity S/KS 

cost problem where S is the sensitivity function and K is the H∞ controller developed in 

section 3.9. Nominal performance of the closed loop system can be analyzed by 

computing the sensitivity function for both pitch rate and roll rate and comparing them 

with their respective inverse of weighing function. In both cases the following in equality 

should be true 

1( ) 1pw I GK 


   

 

This occurs if and only if for all frequencies the maximum of the sensitivity function is 

less than the inverse of the weighing function. 
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 Plots of sensitivity function and inverse of weighing function for both pitch rate and roll 

rate are shown in Figure 26 and Figure 27. For both cases it can be observed that the 

closed loop system achieves nominal performance. 

 

 
Figure 26: Closed loop sensitivity function for pitch rate 

 

 

 
Figure 27: Closed loop sensitivity function for roll rate  
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3.10.2 Robustness analysis of the closed loop system 
Robustness analysis for a closed loop system means whether stability is preserved as the 

system varies within a specified set of uncertainties (for both pitch rate and roll rate 

analyzed the uncertainty is a ∆ block which is structured and bounded). Therefore ideally 

a feedback control system should be robust with respect to the uncertainties or 

perturbations in the plant characteristics [8, 20]. In performing robustness analysis there 

are two principal concerns, namely robust stability and robust performance. Robust 

stability addresses the qualitative question as to whether or not the system remains stable 

for all plant perturbations within a specified class of uncertainties. A related problem 

involves determining the largest class of plant perturbations under which stability is 

preserved. The test for robust stability is conducted on the leading 3 by 3 diagonal block 

of the of the closed loop transfer matrix function that represents the uncertainties. The 

upper bound of   (singular structured value) [27] should be less than one then robust 

stability is achieved.  

 

 
Figure 28: Robust stability for pitch rate 

 

It can be observed from Figure 28 and Figure 29 that the upper and lower bound of 

  value is less than one for all frequencies under consideration for pitch rate of the 

helicopter. The maximum value of   for pitch rate is        that shows that structured 

perturbations with norm less than         are allowable, i.e. the stability maintains for 
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‖ ‖  
 

      
. The maximum value of   for roll rate from Figure 29 is        that shows 

that structured perturbations with norm less than         are allowable, i.e. the stability 

maintains for ‖ ‖  
 

      
 

 

 

 
Figure 29: Robust stability for roll rate 

 

To find out quantitatively the performance degradation of a feedback closed loop system 

within the given robust stability range is called robust performance [20]. The robust 

performance of a closed loop system with H∞ controller can be tested by means of 

  analysis. The closed loop transfer function for both pitch rate and roll rate plant has for 

inputs and five outputs where the initial three inputs and outputs represents the relation 

between the uncertainties whereas the 4th input to 4th output and the 4th input to the 5th 

output represents the mixed sensitivity case. Therefore the   analysis for robust 

performance should have a block structure that contains a 3 by 3 uncertainty block and a 

1 by 2 block for performance. The robust performance is thus achieved if the value of   

is less to 1 for all frequencies considered. Figure 30 and Figure 31 are plots for robust 

performance and nominal performance for the pitch rate and the roll rate respectively. 
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Figure 30: Nominal and robust performance measure for pitch rate 

 

 
Figure 31: Nominal and robust performance for roll rate 

 

It can be seen from Figure 30 and Figure 31 that both the angular rates with H∞ 

controllers achieve nominal performance but fail to satisfy the robust performance 

specification. This conclusion comes from the fact that the frequency response of the 

nominal performance for pitch rate as shown in Figure 30 has a maximum of       , 

while the   curve for the robust performance for pitch rate has a maximum of       and 

the frequency response of the nominal performance for roll rate as shown in Figure 31 
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has a maximum of       , while the   curve for the robust performance for pitch rate 

has a maximum of      . For both pitch and roll rate the maximum value of   is above 

one thus, failing to satisy the robust performance specification. 

3.10.3 Transient analysis of the closed loop system 
The transient responses to a reference input are shown for both pitch rate and roll rate. 

The transient responses have a maximum overshoot of     and settling time of      . 

Different uncertainties are added to natural frequency (   and   ) and to the damping 

ration (   and   ). The range of uncertainty in the natural frequency is given from      

to     and that in the damping ratio is given from      to    , the transient 

responses for the uncertain plants as well as the nominal plant are plotted. Figure 32 and 

Figure 33 show that the response for systems with parametric variations is also stable and 

close to the nominal plant representing nominal performance and robust stability as 

already shown in section 3.10.2. 

 

 
Figure 32: Transient response to a reference input for pitch rate 
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Figure 33: Transient response to a reference input for roll rate 

 

Figure 34 and Figure 35 show the transient response of the pitch rate and roll rate plant 

respectively when a step disturbance of             is added to it. Disturbance 

rejection/attenuation can be seen for both the figures as the response goes back to zero 

within the range of      of the added disturbance. 

 

 
Figure 34: Pitch rate response for a disturbance of 0.1 magnitude  
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Figure 35: Roll rate response for a disturbance of 0.1 magnitude  
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Chapter 4 

Loop Shaping Design Procedure 

4.1 Introduction 

A well-known method for the design of robust feedback controller for single input single 

output (SISO) as well as multi input and multi output (MIMO) systems is the so-called 

Loop Shaping Design Procedure (LSDP). It is a robust design method based on the H∞ 

control theory. This method has been proposed by Mc Farlane and Glover [9] and has 

been successfully used in various applications. For this thesis LSDP is used to create 

controllers for the Joker 3 rotary wing helicopter longitudinal input to pitch rate and 

lateral input to roll rate system. LSDP is different from H∞ optimal controller design 

introduced in the Chapter 3 as it provides an alternate way of representing uncertainty. 

The uncertainty is described by the perturbations directly on the co-prime factors of the 

plant [9, 28] unlike the linear fractional transformation method that was used in chapter 3. 

This design method is called H∞ loop shape designing method procedure (LSDP) [29, 

30]. 

4.2 Advantages of Loop Shaping Designing Procedure (LSDP) 

When the perturbed system doesn’t have the same number of poles in the closed right 

half plane as the nominal model this method need to be implemented since the iterative or 

bisection method of finding the optimal solution cannot be implemented in this case [8, 

31]. Advantages of this method are: 

 It relaxes the restrictions on the number of right half plane poles. 

 Doesn’t produce any pole-zero cancellation between the nominal model and the 

controller designed. 

 The computer efficiency is increased by application of this process as it doesn’t 

adopt an iterative procedure or method to obtain the optimal solution. 

 It is easier to understand as it applies the classical loop-shaping design techniques. 
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4.3 Theoretical background 

4.3.1 Co-Prime factorization: 
In order to understand co-prime factorization we will consider a linear time invariant 

system that is governed by differential equations and can be represented by the following 

state space model [8, 18].  

( ) ( ) ( )x t Ax t Bu t   (4.3-1) 

( ) ( ) ( )y t Cx t Du t   (4.3-2) 

Where x(t) is a state vector, u(t) is a control vector and y(t) is a measurement vector. The 

transfer function matrix for the above model is given as: 

1( ) ( )G s C sI A B   (4.3-3) 

The state space realization of the above transfer function is given as: 

( )
A B

G s
C D
 

  
 

 

Let’s assume 4 matrices      ̃  ̃      here H∞ denotes the space of functions where 

no poles exist in the closed right-half complex plane, constitute of right and left co-prime 

factors if and only if the following conditions are true [8, 19]: 

1. M  or M  need to be a square matrix and det( M ) or det( M ) shouldn’t be equal to 

zero that is it cannot be singular at any value. 

2. The plant model should be given by: 1G M N  or 1G NM  depending whether 

the left or the right co-prime factorization is being calculated. 

3. Bezout right and left identity need to be true. The Bezout identities are given as (4.3-

4) and (4.3-5). 

Two matrices M and N( M  and N ) are right co-primes (left co-primes) if and only if 

there exist two unimodular matrices U and V (U  and V ) that give the following relation: 

 

(   )UN VM I Bezout Right Identity    (4.3-4) 

(   )NU MV I Bezout Left Identity    (4.3-5) 
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4.3.2 State space for left and right co–prime factorization 

The state space realization for the normalized left co-prime factorization can be obtained 

in terms of the solution of the generalized filter algebraic Ricatti equation that is given in 

equation 4.3-6 [27]. Where         and     is the unique stabilizing solution. If 

               then the state space realization of the co-prime factors is given as 

the matrix after equation 4.3-6. 

1 1 1 1( ) ( ) ( ) 0T T T T T TA BD R C Z Z A BD R C ZC R CZ B I D R D B            (4.3-6) 

1 1 1
2 2 2

[ , ]
A HC B HD H

N M
R C R D R  

  
  
  

 

Similarly the state space construction and realization for the normalized right co-prime 

factorization can be obtained in terms of the solution to the generalized control Algebraic 

Riccati Equation shown in equation 4.3-7. Where  TS I D D   and 0X   is the unique 

stabilizing solution. 

1 1 1 1( ) ( ) ( ) 0T T T T T TA BS D C X X A BS D C XBS B X C I DS D C           (4.3-7) 

The perturbed /disturbed plant transfer function is described in equation 4.3-8 [8]. 

1( ) ( )M NG M N    (4.3-8) 

The uncertainties    ̃   ̃  are unknown but are stable transfer functions therefore; this is 

an alternative way of representing the perturbations on a plant by directly adding them on 

the co-prime factors of the plant. The design objective is not only to stabilize the main 

nominal plant but a family of perturbed plants that can be represented in 4.3-9. 

1{( ) ( ) : , }M N M NG M N 


       (4.3-9) 

Where η>0  is the stability margin. The LSDP method augments the plant with 

appropriately chosen weights so that the frequency response of the open loop system (the 

weighted plant) is reshaped in order to meet the closed loop system performance 

requirements. Then a robust controller is created to meet the stability. 
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4.4 Loop Shape Designing Procedure 

In classical control systems using the single input and single output (SISO) systems a 

very well-known technique to acquire stability, good performance and certain robustness 

from unity feedback system is to alter the frequency response (Bode Plot) of the open 

loop transfer function [30, 46, 47]. As we wish to have the unity feedback system to be 

stable, robust and have a minimum tracking error therefore we alter the frequency 

response of the open loop system by adding pre-compensator or/and post compensator to 

it [25, 26, 32]. Loop Shape design procedure can be divided into the following three 

steps: 

1. Using a pre compensator W1 and/or a post compensator W2 the singular values of the 

nominal system are altered to give a desired loop shape. The nominal plant G and 

shaping functions W1, W2 are combined to form the shaped plant as given equation 4.4-

1. 

1 2sG W GW  (4.4-1) 

2. It is assumed that the weighting functions W1 and W2 when combined with the 

nominal system G give Gs with no hidden unstable modes.  

 

 

1W G 2W

K
 

Figure 36: Closed loop system with pre and post compensators 

 

3. Next a feedback controller K∞ is synthesized that robustly stabilizes the normalized 

left co-prime factorization of Gs with a stability margin η, it can be shown that if the 
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stability margin is not less than    , the frequency response         would be almost 

equivalent to      . 

4. The final controller is then created by obtaining the product of the weighting 

functions with the feedback controller K∞ given as: 

 

1 2finalK W K W  

4.5 Selecting the pre-compensator and post-compensator 

functions. 

The pre-compensator and post-compensator functions are selected such that after 

modification of the plant the modified singular values should achieve the following [8, 

33, 44, 46]: 

 For good performance in tracking the least singular value of the weighted system 

should be large over the low-frequency range. 

 To handle the unmodelled dynamics the largest singular value should be small 

over the high frequency range.  

 Also the bandwidth affects the speed of the system’s response still the slope of the 

singular value near the bandwidth frequency shouldn’t be too steep. 

 

4.5.1 Pitch rate 
The pre-compensator and the post compensator for the pitch rate have been chosen so as 

to introduce an integrating effect in the low frequency range which leads to good 

rejection of disturbance inputs. 

 

1
0.8 7( ) 9

0.03
sw s

s





 

 

2 ( ) 1w s   
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Figure 37: Frequency response of the pre-compensator selected 

 

 
Figure 38: Frequency response of the original and the shaped plant  

4.5.2 Roll rate: 
The pre-compensator for the roll rate has been chosen such that gain is sufficiently high 

at frequencies where good disturbance rejection is required and is sufficiently low at 

frequencies where robust stability is required. The pre and post compensator are given as: 

1
6.5( ) 10

0.02
sw s

s





 

 

2 ( ) 1w s   
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Figure 39: Frequency response of the pre-compensator selected 

 

 
Figure 40: Frequency response of the original and shaped plant 

4.6 Robust control toolbox commands (MATLAB): 

4.6.1 Using ncfsyn command from MATLAB 
The H∞ LSDP controller is developed using the ncfsyn function from MATLAB. The 

ncfsyn synthesizes an H∞ LSDP controller to robustly stabilize a family of systems that 

contain uncertainty in the normalized co-prime factors of the system. The syntax, input 

and output arguments of ncfsyn are given in Table 4 and Table 5 [24, 27]: 

 

[                ]                           



68 
 

Table 4: Input arguments of the μ analysis MATLAB command [27] 

Input 

Arguments  

sysgw The weighted system to be controlled 

factor =1 implies that an optimal controller is required. 

>1 implies that a suboptimal controller is required achieving a 

performance FACTOR less than optimal. 

opt 'ref' the controller includes an extra set of reference input 

 

 
Table 5: Output arguments of the μ analysis MATLAB command [27] 

Output 

arguments 

 

sysk H∞ loopshaping controller 

emax Stability margin as an indication robustness to unstructured 

perturbations. emax is always less than 1 and values of emax 

greater than 0.3 generally indicate good robustness margins. 

sysobs H∞ loopshaping observer controller. This variable is created only if 

factor>1 and opt = 'ref' 

 
By using the ncfsyn command to build the H∞ we get a stability margin      

        for the pitch rate and a stability margin of              which are less than 

1 and value of stability margin greater than 0.3 indicates good robustness margin. For the 

pitch rate and roll rate controllers we get the following results: 

 
2

3 2

-516.6 8325 5.634 04_
275.1 1.939 04 1.496 05

s s eKpitch lsdp
s s e s e

 


  
 

 
2

3 2

-645 1543 9.517e04_
380.8 3.773e04 2.296e05

s sKroll lsdp
s s s

 


  
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4.6.2 Using mmult command 
In order to find the final LSDP controller the command mmult from the robust control 

toolbox is used, mmult performs the arithmetic operation of multiplication of two system 

type matrices. The syntax used for performing mmult is given as [24]: 

 

                 

 

 

 

 

 
 

 

Figure 41: Block diagram representation of the mmult 

 

The mmult command is used to find the product of the controller created with the pre-

compensator and post-compensator function. The final negative feedback controller for 

pitch rate and roll rate are given as: 

 
3 2

4 3 2

   4133 s  + 1.028e05 s  + 1.033e06 s + 3.944e06_
  s  + 275.1 s  + 1.94e04 s  + 1.501e05s + 4487

Kfinal pitch   

3 2

4 3 2

   6450 s  + 1.962e05 s  + 1.954e06 s + 6.186e06_
  s  + 380.8 s  +3.774e04 s  +  2.304e05s + 4593

Kfinal roll   

4.7 Analysis of closed loop with controller obtained using LSDP: 

4.7.1 Nominal performance 
Nominal performance can be achieved by the optimization of the mixed sensitivity S/KS 

cost problem where S is the sensitivity function and K is Loop Shape design procedure 

that is developed in section 4.6. Nominal performance of the closed loop system can be 

analyzed by computing the sensitivity function for both pitch rate and roll rate and 

comparing them with their respective inverse of pre-compensator or/and post 

compensator transfer function.  

   Mat1 Mat2 
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In both cases the following in equality should be true 
1

1( ) 1w I GK 


   

This occurs if and only if for all frequencies the maximum of the sensitivity function is 

less than the inverse of the pre-compensator transfer function since for both pitch rate and 

roll rate the post compensator has been defined as one. Figure 42 and Figure 43 show 

plots of sensitivity function and inverse of pre-compensator function for both pitch rate 

and roll rate. For both cases it can be observed that the closed loop system achieves 

nominal performance. 

 

 
Figure 42: Sensitivity function for pitch rate on implementation of LSDP controller 

 

 
Figure 43: Sensitivity function for roll rate on implementation of LSDP controller 
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4.7.2 Robust stability 
The test for robust stability is conducted on the leading uncertainty diagonal block of the 

closed loop transfer matrix function M that is created by using the starp command in 

MATLAB for the open loop interconnected matrix Ppitch and the final controller 

developed in the section 4.6.2 for pitch rate given by Kfinal_pitch.  

 

0 0
0 0
0 0

m

c

k







 
 
 
  

M  
Figure 44: Block diagram representation for robust stability [8] 

 

It can be recalled that starp command in MATLAB gives the star product realization 

(LFT) of the two matrices. The upper bound of   (singular structured value) should be 

less than one then robust stability is achieved.  

 

 
Figure 45: Robust stability for pitch rate 
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Figure 45 shows that the upper bound of   have a value of less than 1 for all the 

frequencies under consideration therefore robust stability is achieved. The maximum 

value of is        that shows that structured perturbations with norm less than          

are allowable, i.e., the stability maintains for ‖ ‖  
 

      
 

 

 
Figure 46: Robust stability for roll rate 

 

It can be observed from Figure 46 that the upper bound of μ have a value of less than 1 

for all the frequencies under consideration therefore robust stability is achieved. The 

maximum value of is 0.1509 that shows that structured perturbations with norm less than 

        ⁄  are allowable, i.e. the stability maintains for ‖ ‖  
 

      
 

 

4.7.3 Robust performance 
To find out quantitatively the performance degradation of a feedback closed loop system 

within the given robust stability range is called robust performance. The robust 

performance of a closed loop system with controller (LSDP) can be tested by means of 

  analysis. The  -analysis for robust performance should have a block structure that 

contains a 3 by 3 uncertainty block and a 1 by 2 block for performance. The difference 

between robust stability and robust performance is the uncertainty block; robust stability 

is checked on the leading diagonal of the closed loop transfer function matrix whereas for 
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robust performance the uncertainty block structure has a 3 by 3 uncertainty block and 1 

by 2 performance block which is given as: 

3 3 1 20
 R ,

0p f
f

C 
   

      
   

 

 

0
0 f

 
 
 
 
 





M
 

Figure 47: Block diagram representation of robust performance  

 

The robust performance is thus achieved if the value of   is less than one for all 

frequencies considered. Figure 48 and Figure 49 represent plots for robust performance 

and nominal performance for the pitch rate and the roll rate. 

 

 
Figure 48: Nominal and robust performance for pitch rate 



74 
 

 
Figure 49: Nominal and robust performance for roll rate 

 

It can be observed that both nominal performance and robust performance have been 

achieved for pitch and roll rate while using the LSDP controller whereas for the H∞ 

controller which was developed in the chapter 3 robust performance was not achieved. 

 

4.7.4 Transient analysis of the closed loop system: 
The transient responses to a reference input are shown for both pitch rate and roll rate. 

The transient responses have a settling time of        which is way better than the H∞ 

controller developed in chapter 3 but the overshoots reach a maximum of    .The 

uncertainties allowed are    ‖ ‖   , the different uncertainties injected range in 

natural frequency from            and that in the damping ratio is given from -

          . The transient responses for the uncertain plants as well as the 

nominal plant are shown in Figure 50 and Figure 51. These figures show that the 

response for systems with parametric variations is also stable and close to the nominal 

plant representing nominal performance and robust stability as proved in section. 
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Figure 50: Transient response to reference input for pitch rate 

 

 
Figure 51: Transient response to a reference input for roll rate  

 

Figure 52 and Figure 53 show the transient response of the pitch rate and roll rate plant 

respectively when a step disturbance of            magnitude is added to it. 

Disturbance rejection/attenuation shows that the closed loop system has achieved 

nominal performance. 
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Figure 52: Pitch rate response for a disturbance of 0.1 magnitude  

 

 

 
Figure 53: Roll rate response for a disturbance of 0.1 magnitude  

  



77 
 

Chapter 5 

μ-Synthesis 

5.1 Introduction 

For building a robust controller another technique has been developed in the past few 

years called the  -synthesis for the plant. Where the H∞ design achieves robust stability 

and nominal performance it lacks robust performance therefore design methods that use 

the structured value   are implemented [9, 10, 14]. Also for uncertainties that are 

structured the frequency response in terms of   values needs to be found out. Conversion 

of robust design problems with structured or unstructured perturbations are converted to 

robust stabilization problem with structured uncertainty using   synthesis. In order to 

understand the background of the singular structured value   the small gain theorem need 

to be understood. 

5.2 Small gain theorem 

5.2.1 Background 
The small gain theorem has central importance in the derivation of many stability tests 

[8]. Let’s consider a closed system of the plant G and controller K as shown in Figure 52, 

the system is robustly stable if it remains stable for all possible (under certain definition), 

perturbations on the plant, this also includes the nominal plant because the case in which 

the perturbations are all to zero is also considered. 

 

GK



yr 



u
v

 
Figure 54: Closed loop feedback system with uncertainty  [18] 
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The transfer function from u to v can be easily calculated as: 

1( )uvT K I GK     (5.2-1) 

The small gain theorem states that for stable ∆ the closed loop system is robustly stable if 

K stabilizes the nominal plant and either of the following inequalities is true: 
1( ) 1K I GK 


    

1( ) 1K I GK 


    

The above inequalities can be re-written as: 

1 1( )K I GK 





 


 

5.2.2 General framework for uncertainty 
The general framework for uncertainty together with the open loop interconnection and 

the controller is shown in Figure 55 [19]. The uncertainty block outputs the perturbations 

wp that are inputted to the P block. The measurement variable y is inputted to the 

controller K which gives the control effort u as output. 

 



P

K
yu

w z

wp zp

 
Figure 55: Lower and upper LFT representation of uncertainty and controller  [18] 
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The interconnection matrix between P and K can be found out by applying lower linear 

fractional transformation. Therefore, the interconnected matrix can be given by equation 

5.2-2 and has the following realization: 

11 12

21 22

( )
M M

M s
M M
 

  
 

 

( ) ( ( ), ( ))lM s F P s K s  (5.2-2) 

The uncertainty framework is reduced from Figure 55 to Figure 56 and has two elements 

the interconnected matrix M and the uncertainty block   as shown in Figure 56. 

M



w z
 

Figure 56: LFT representation of M (closed loop transfer function) [18, 19] 

 

For the feedback system shown in Figure 56, to be internally stable the transfer function 

from the reference w to the error output z should be stable and for it to fulfill the 

performance criterion it needs to be less than the stability margin  .The transfer function 

from w to z is given by the upper linear fractional transformation formulation. 

1
22 21 11 12( , ) [ ( ) ]Fu M M M I M M       (5.2-3) 

Transfer function 5.2-3 can only be stable if and only if          is non- singular for 

all frequencies in consideration and for performance requirement the norm of transfer 

function given in the above equation should be less than the stability margin given as: 

( , )Fu M    

 

Therefore the internal stability of the perturbed system depends on     . The small gain 

theorem leads to the fact: 
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11det[ ( ) ( )] 0I M jw jw    (5.2-4) 

Here M is the nominal closed loop plant (closed loop transfer function matrix that 

includes the feedback controller K in it) equation 5.2-4 represents that for a closed loop 

system to be stable the uncertainties should be small enough not to violate the above 

condition  that is not to make                  singular at any frequency. 

5.3 Structured singular value μ 

Structure Singular value is the measurement such that for a given M with a fixed K 

(closed loop system) and given known structure of uncertainty, the smallest value of   

that makes                   singular at any frequency describes how robustly stable 

the controller K is in dealing with such structured uncertainty [27]. For any structured 

uncertainty we need the frequency response in terms of the structured singular value 

  where       can be defined as the number such that   
      is equal to the smallest  

     that makes                  singular. If the nominal feedback system M is 

stable and     (the uncertainty bound) i.e.  ‖ ‖    then the system is stable if and 

only if   
 

 
 where β is the smallest value at which ∆ gets unstable therefore   

 

 
. 

5.4 Upper and lower bounds of μ 

It is extremely difficult to find the singular structured value instead the bounds of   are 

calculated, but the upper and lower bound of    are not useful for the computation of   

itself because there is a large gap between them. Therefore certain transformations need 

to be done on M so as to close the gap between them without altering the value of   [9, 

27]. The bounds of   are given as: 

( ) ( ) ( )M M M     

Where M is a constant square matrix and      is the spectral radius of M and      is 

the maximum value of M. For the purpose of reducing the gap between the bounds two 

new matrices U and D are introduced which are given as: 

 1: nU UU I  U  
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 1 1 m1 m[ ,..., , I ,.... I ]s fD diag D D d df D  

The matrices U and D match the structure of   where U is a block-diagonal structure of 

unitary matrices and for any    ,     commutes with  . Therefore, the most 

important relation to keep in mind is given as: 
1 1( ) ( ) ( ) ( ) ( )MU MU M DMD DMD          

The relations lead to the following theorem: 
1max ( ) ( ) inf ( )

DU
MU M DMD   


 

DU
 

5.5 D-K Iteration method 

For the robust stability robust performance criteria it is required to find a controller K and 

a diagonal constant scaling matrix that minimizes the optimization problem given by the 

following norm. 
1min min ( , )

stabilizing stable

lK D
DF P K D  

By minimizing the above optimization problem the upper bound of   is minimized which 

means that the peak value of    is reduced thus increasing the size of uncertainty allowed. 

The D-K iteration method used follows the given steps [9, 18, 27]: 

 

1.  Starts with an initial guess for D, usually sets D=I. 

2. Fix D and solve the optimization problem for K. 

arg  inf ( , )lK
K F P K  

3. Fix K and solve the optimization problem for D at each frequency over a selected 

range of frequencies. 

4. Curve fit D to get a stable minimum phase D matrix step 2 is then repeated until a 

pre specified tolerance is achieved or the maximum iteration number is reached. 
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5.6 Robust control toolbox commands (MATLAB) 

5.6.1 Using DKit command 
The   synthesis is executed by the M file dkit in the robust control toolbox, which 

automates the procedure by using D-K iterations [18]. To implement the dkit function it 

is important for certain variables to be in the workspace.  
Table 6: Variables used for DK iterations [27] 

NOMINAL DK A variable containing the nominal open-loop system 

NMEAS DK Number of measurements (number of inputs of K) 

NCONT DK Number of control inputs (number of 

outputs of K) 

BLK DK Block structure for computation of μ 

(involves the uncertainty blocks as well as 

the performance block) 

OMEGA DK Frequency response range 

AUTINFO DK Variable, which is used for full automation 

of the D-K-iteration. 

It has the following components: 

AUTOINFO DK(1) Initial iteration 

AUTOINFO DK(2) Final iteration 

AUTOINFO DK(3) Visualization flag (1 - the results appear on the 

display, 2 - the results are not displayed) The rest 

elements in AUTOINFO DK (their number is equal 

to the number of blocks in BLK DK) set the 

maximum dynamic order of the transfer functions  

NAME DK Suffix to the names of the saved variables 

 

Table 7 and Table 8 show the iteration summary for pitch rate and roll rate obtained after 

the dk iterations script is run. 
 

Table 7: Iteration summary for pitch rate 

Iteration # 1 2 3 4 
Controller Order 4 6 22 22 

Total D-Scale 
Order 

0 2 18 18 

Gamma Achieved 61.819 1.845 1.144 0.987 
Peak mu-Value 12.638 1.647 1.143 0.975 
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Table 8: Iteration summary for roll rate 

Iteration # 1 2 3 4 
Controller Order 4 6 22 22 

Total D-Scale 
Order 

0 2 18 18 

Gamma Achieved 64.57 1.798` 1.1388 0.925 
Peak mu-Value 13.34 1.567 1.079 0.966 

5.7 Analysis of closed loop with μ-synthesis controller 

5.7.1 Nominal performance: 
Figure 57 and Figure 58 show the sensitivity function of the closed loop system with the 

μ-controller. It is obvious for both pitch rate and roll rate that the sensitivity function lies 

below the inverse of the weighing function specified in chapter 3 section 3.6.3. Thus the 

nominal performance is observed for both the closed loop systems. 

 

 
Figure 57: Closed loop sensitivity function for roll rate 
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Figure 58: Closed loop sensitivity function for pitch rate 

5.7.2 Robust stability: 
The test for robust stability is conducted on the leading 3 by 3 diagonal block of the 

closed loop transfer matrix function that is created by using the starp command from 

MATLAB for the open loop interconnected matrix P and the   controllers developed. 

The upper bound of   (singular structured value) should be less than one for robust 

stability.  Figure 59 shows that the maximum value of   is equal to 0      therefore the 

system stability is preserved for ‖ ‖  
 

      
. Figure 60 shows that the maximum value 

of   is equal to        therefore the system stability is preserved for ‖ ‖  
 

      
.  

 

 
Figure 59: Robust stability for pitch rate 
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Figure 60: Robust stability for roll rate 

5.7.3 Robust performance: 
The frequency responses of the nominal and robust performance criteria are obtained in 

the Figure 61 and Figure 62 for pitch rate and roll rate. The maximum value of   in the 

robust performance analysis for the pitch rate is equal to 1. This means that the closed 

loop system with the   -controller achieves robust performance since: 
1

1

( ( , ) )
0.98

( ( , ) )
p U mds

u

w I F G K
w K I FU Gmds K





  
 

  
 

 

 
Figure 61: Nominal and robust performance for pitch rate with   -controller 
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Figure 62: Nominal and robust performance for roll rate with   -controller 

 

5.7.4 Robustness analysis with perturbed systems 
To illustrate the robust properties of the system with the   -controller the frequency 

response of the sensitivity function of the perturbed closed loop systems is shown in 

Figure 63 and Figure 64 for pitch and roll rate respectively. It can be observed from both 

the Figures that the frequency responses of the perturbed sensitivity functions remain 

below the frequency response of the inverse of the weighing function. 
 

 
Figure 63: Sensitivity functions of perturbed systems for pitch rate 
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Figure 64: Sensitivity function of perturbed systems for roll rate 

The Performance of Perturbed Systems with μ controller is checked to find the 

performance of the controller. The magnitude responses of the weighted mixed sensitivity 

function given as: 
1

1

( ( , ) )
( ( , ) )

p U mds

u

w I F G K
w K I FU Gmds K





  
 

  
 

Figure 65 and Figure 66 show are plotted for all the perturbed systems using μ controller 

for pitch rate and roll rate. It can be seen that for all the perturbed systems, the 

magnitudes over the frequency range are below the criterion for the closed loop robust 

performance for both cases. 

 

 
Figure 65: Nominal and robust performance for perturbed pitch rate  
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Figure 66: Nominal and robust performance for perturbed roll rate systems  

5.7.5 Transient analysis of the closed loop system 
The transient response (to a reference input) for a nominal plant as well as a family of 

perturbed closed loop systems for both pitch rate with K-μ controllers are shown below. 

Comparing with the responses in the case of LSDP controllers μ -controller ensures 

smaller overshoot (10%) while the settling time is almost 1.8secs. For the perturbed 

closed loop systems it can be observed that the overshoot does not exceed 20% that 

demonstrates satisfactory performance in the presence of parametric perturbations. 

 

 
Figure 67: Transient response to a reference input for pitch rate 
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Figure 68: Transient response to reference input for roll rate 

 

Figure 69 and Figure 70 show the transient response of the pitch rate and roll rate plant 

respectively when a step disturbance of 0.1 magnitude is added to it. Disturbance 

rejection/attenuation shows that the closed loop system has achieved nominal 

performance. 

 

  
Figure 69: Pitch rate response for disturbance of 0.1 magnitude 
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Figure 70: Roll rate response for disturbance of 0.1 magnitude 
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Chapter 6 

Comparison between the controllers 

6.1 Criteria of comparison: 

The criteria of comparison for robust controllers are nominal performance, robust 

stability and robust performance. To check the nominal performance means to check if 

the controllers have achieved optimization of the mixed sensitivity function as described 

in Chapter 3 in section 3.5.1. Where robust analysis includes robust stability and robust 

performance and is done to check whether the stability of a system is preserved for a 

system as it varies for a bounded set of uncertainties. The controllers discussed in the 

chapter 3: H∞, chapter4: LSDP controller and chapter 5:  -synthesis controller has been 

compared in this chapter according to the different criteria of comparison. 

6.2 Nominal performance: 

Figure 71 represents the nominal performance for all three controllers for pitch rate. In 

order to calculate the nominal performance of all the controllers the frequency response 

of the weighted sensitivity functions is calculated. It can be observed that the entire three 

controllers perform well, as for the considered range the magnitude of the norm is less 

than one, which represents the internal stability of the system. 

 

 
Figure 71: Comparison of nominal performance for all controllers 
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6.3 Robust stability: 

The system which uses LSDP is considered to have achieved the best robust stability as 

can be seen in the Figure 72 since for LSDP response the perturbations would have the 

largest value because the value of   is smallest for it. The point to remember here is that 

the norm of the uncertainty is inversely proportional to the maximum value of   

achieved. 

 
Figure 72: Comparison of robust stability for all controllers 

6.4 Robust performance: 

The   values over a frequency range are plotted for all 3 controllers it can be observed 

here again as it was derived in chapter 3 that the H∞ controller doesn’t achieve robust 

performance criteria whereas the remaining two show robust performance since the value 

of   is equal or less than 1 for both. 

 
Figure 73: Comparison of robust performance for all controllers 
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Chapter 7 

Summary 
 

In conclusion it can be said that this thesis has explored different robust control laws for a 

small scaled Joker 3 helicopter, the controllers developed have high potential of being 

implemented in real time flight tests. Chapter 2 of the thesis discusses a model following 

control law Dynamic Inversion and it shows that the rate responses obtained from this 

controller is almost perfect but with the disadvantage of it not being robust. In chapter 3 

the first robust controller has been developed for the Joker 3 helicopter pitch and roll rate, 

the uncertainties injected in the system are structured and follow linear fractional 

transformation formulation, the controller is seen to achieve nominal performance and 

robust stability but fails to achieve robust performance. Chapter 4 describes another way 

of designing a robust controller which is loop shape designing procedure that utilizes the    

H∞ technique but the uncertainties injected here are directly on the co-prime factors of 

the plant. Again the robust controller is tested for the difference performance criterion 

and the controller succeeds in achieving all. Chapter 5 describes the   synthesis which 

uses   analysis for the development of the controller, here the perturbed performance of 

the system are checked to prove that robust performance is achieved. Chapter 6 describes 

a comparison between all the controller’s performance criteria. 
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