# DESALINATION USING SOLAR PONDS

Murtaza Ali Khan (CHE) Mohammed Rashid (COE) Mohammad Usamah Shaikh (MCE) Shoaib Ahmed (CHE)

## SITUATION

The growing demand of freshwater is placing huge pressure on existing supplies. Seawater is a vast source to satisfy this demand. However, seawater cannot be directly consumed and therefore, desalination of seawater is a necessity [1].



Figure 1: Water distribution around the world [2]

# **PROBLEMS**

The current methods of desalination have problems associated with them:

- . Usage of non-renewable resources of energy, therefore adding to the depletion of these resources
- . Contribution to greenhouse gas emissions, such as oxides of nitrogen, carbon and CFCs
- Inefficiency



Figure 2: 50 kWh of energy consumption in thermal desalination [1]

# THE SOLUTION

### What is a solar pond?

A solar pond is a shallow body of saline water several meters deep, set up in such a way that there is increasing salinity with depth. Solar radiation entering the pond is stored as heat in the lower layer. This heat (up to 80 °C) is then available on a 24 hour basis [3].



Figure 3: A solar pond [4]

#### How does it work?

The Organic Rankine Cycle (ORC) is a thermodynamic cycle that converts heat into mechanical energy. The ORC uses organic, high molecular mass fluids, such as n-pentane or toluene. The working process of the ORC which consists of a solar pond are as follows [5]:

- (4-1) Pumping of working fluid
- (1-2) Extraction of heat by the working fluid
- (2-3) Expansion of the working fluid to generate mechanical energy
- (3-4) Cooling of the working fluid



Figure 4: Desalination by ORC (adapted) [5]

## **EVALUATION**

There are three things to take into consideration while using solar ponds as a solution:

#### Cost

Solar ponds in Northern Victoria in Australia were found to produce heat at a lower cost than LPG and electricity. However, solar ponds are not very effective in regions where natural gas is cheaply available [3].



Figure 5: Cost of heat production methods [3]

#### Efficiency

For the conversion efficiency of electricity generation of 30%, the reverse osmosis process consumes the least amount of energy [6].

Table 1: Energy consumption of desalination systems [6]

| Process                 | Energy consumption (kJ/kg of product) |
|-------------------------|---------------------------------------|
| Multi-stage flash       | 338.4                                 |
| Multiple-effect boiling | 149.4                                 |
| Vapor Compression       | 192                                   |
| Reverse Osmosis         | 120                                   |

#### Size

As the demand for freshwater increases, more energy is required to carry out desalination and therefore, solar ponds need to be larger.

### References

[1] H. Lu, J.C. Walton and A.H.P. Swift, "Desalination coupled with salinity-gradient solar ponds," Desalination, vol. 136, no. 1-3, pp. 13-23, May 2001. [Online]. Available: ScienceDirect, http://www.sciencedirect.com.ezproxy.aus.edu/science/article/pii/S0011916401001606# [Accessed: Apr. 12, 2014]

[2] I.A. Shiklomanov, SHI (St. Petersburg) and UNESCO (Paris). 1999. [Online] Available: http://www.unep.org/dewa/vitalwater/jpg/0101-water-quantity-EN-2.jpg

[3] "Solar Pond Project," RMIT University. [Online]. Available: http://www.rmit.edu.au/browse/Our% 20Organisation%2FScience%20Engineering%20and%20Health%2FSchools%2FAerospace,%20Mechanical% 20and%20Manufacturing%20Engineering%2FAbout%2FDisciplines%2FMechanical%20and%20Automotive% 20Engineering%2FResearch%20Specialties%2FSolar%20Pond/ [Accessed: Mar. 22, 2014]

[4] "Cross Section Of A Solar Pond," Figure 6.4a. [online]. Available: http://courses.engr.illinois.edu/npre201/coursematerial/solar\_thermal/lecture06figures/Figure6.4a.html [Accessed: Apr. 15, 2014]

[5] "Technology Blog Week 7: Organic Rankine Cycle," CarbonSignal. [Online]. Available: http://www.hacaustralia.com/carbonsignal/?p=2787 [Accessed: Apr. 15, 2014]

[6] S.A. Kalogirou, "Seawater desalination using renewable energy sources," Progress in energy and combustion science, vol. 31, no. 3, pp. 242-281, May 2005. [Online]. Available: ScienceDirect, http://www.sciencedirect.com/science/article/pii/S0360128505000146 [Accessed: Apr. 15, 2014]