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Abstract 

 

Buckling is an instability encountered in a wide variety of problems, both in 

engineering and biology. Almost all engineering structures are designed with 

adequate safety factors to prevent failure due to buckling, yielding, or dynamic loads. 

In a classical sense, design for buckling is done by carefully controlling the modulus 

of elasticity, moment of inertia, and the length of the structure. Further, such an 

approach assumes the material to be homogeneous and does not generally account for 

the microstructural details of the column. In the first part of this thesis, we study the 

buckling of inhomogeneous columns with a two-phase checkerboard microstructure. 

Monte Carlo simulations are used to generate microstructures with arbitrary volume 

fractions and phase contrasts (ratio of the modulus of individual phases). An 

analytical form is obtained for the ensemble averaged critical buckling load based on 

the results of over 18,000 eigenvalue problems at arbitrary volume fractions, phase 

contrasts, and distributions. Further, microstructural realizations that correspond to the 

highest buckling load (best design) and the lowest buckling load (worst design) are 

identified and the corresponding distribution of individual phases is determined. The 

statistical nature of the critical buckling load is discussed by computing the statistical 

moments that include the mean, coefficient of variation, skewness, and kurtosis. Next, 

we consider the buckling of long and slender columns with functionally graded 

microstructure. In such columns, the modulus of elasticity and/or the moment of 

inertia is varied in a controlled manner along the length of the column. The primary 

objective is to identify functionally graded microstructures that maximize (and 

minimize) the critical buckling load when compared to a reference homogeneous 

column. Several columns with a variety of microstructures are examined and a 

constraint is imposed on each of the microstructures so that the volume averaged 

elastic modulus remains the same in all the columns. The buckling load capacity of 

these microstructures is determined using linear perturbation analysis, as well as the 

Rayleigh-Ritz method. Finally, microstructures that maximize the critical buckling 

load are identified and a relationship between the material distribution and the 

corresponding buckling mode shape is established. 

Search Terms: Checkerboard, FGM, Buckling capacity, Inhomogeneous 
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Nomenclature 

 

𝐸(𝑥)    Young modulus of elasticity as a function of length 

𝐼    Moment of inertia 

v     Deflection 

P     Buckling load 

C     Boundary condition constant 

L     Column length 

Β     Set of deterministic checkerboard 

     Realization space 

     Specific microstructural realization 

     Indicator function 

x


    Position vector 

𝐾    Tangent stiffness matrix 

𝑣    Displacement matrix 

k     Contrast 

     Ensemble average 

     Volume fraction 

     Potential energy 

K     Flexural rigidity 

𝑎 , 𝑏 , 𝑐 , 𝑑   Function parameters 

R     Buckling capacity 
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Subscripts 

cr     Critical  

c     Rescaled 

n     Normalized 

hom     Homogenous 

homIn    Inhomogeneous 

Abbreviations 

FPM    Functional Perturbation Method 

FGM    Functionally Graded Materials 

RR    Rayleigh Ritz method 
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Chapter 1.  Introduction 

1.1 Context and motivation  

Load bearing structural members are integral part of any engineering design. 

Designing such members requires satisfaction of certain criteria of strength, 

deflection, and stability. Adequate safety factors must be provided to prevent failure 

due to buckling, yielding, or dynamic loads. Slender structural members such as 

columns typically buckle prior to yielding. Buckling specifically is an instability 

phenomenon that leads to failure of slender members typically subjected to 

compressive loads. The most widely used criteria for buckling instability is the 

Euler’s buckling solution, which predicts the maximum axial compressive load that a 

slender, homogeneous, and ideal column can carry. This solution states the critical 

buckling load is directly proportional to the modulus of elasticity, area moment of 

inertia, and boundary conditions, and is inversely proportional to the square of the 

column length. However, the result is limited to long columns and does not account 

for material inhomogeneity, in spite the fact that inhomogeneous materials exist 

everywhere in nature, and that most materials exhibit inhomogeneity when the 

microstructural details are taken into account. Such materials can also be engineered 

to design columns with performance better than their homogeneous counterparts (for 

instance using 3D printing to create a functionally graded microstructure). Thus, there 

is a clear need to understand the effect of a material’s inhomogeneity on the overall 

response of such columns.  

Inhomogeneous materials are composites consisting of two or more materials 

with variable properties or orientation. Such materials behave differently when 

compared to their homogeneous counterparts. The focus of this thesis will be 

specifically on two types of inhomogeneous materials: a) columns with checkerboard 

microstructure (piecewise continuous), and b) columns with a functionally graded 

microstructure. In the checkerboard problem, the microstructure of the column is 

made up of two materials with very different elastic moduli. In the case of a 

Functionally Graded Materials (FGM), the material property, composition, and 

orientation is varied gradually over the volume. This guided variation helps in 

controlling the characteristics of the materials in target applications to enhance the 

performance and optimize the design of structures. Functionally graded materials can 
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be used to enhance the buckling capacity by utilizing the distribution of the material 

in a matter and configuration that resists or counteracts the buckling mode and thus 

increases the buckling load. 

 Inhomogeneous materials are currently applied in different fields such as 

aircraft industries and biomedical industries. In the aircraft industry, space shuttles 

utilize ceramic tiles for thermal protection from heat generation upon the entry of 

earth atmosphere [1]. The normal ceramic tiles are prone to cracking due to 

differences in thermal expansion coefficients. However, if metal-ceramic FGM tiles 

are used instead, then it will provide better thermal protection and load carrying 

capabilities thereby decreasing the chances of the tiles cracking. Additionally, because 

of their thermal properties, FGM materials can be used for aircraft exhaust washes as 

well. Moreover, in biomedical industries, FGM is being tested as artificial bone 

implants [2]. An artificial biomaterial for a knee joint replacement is being developed 

by tailoring an FGM that consists of ultra-high molecular weight polyethylene 

(UHMWPE) fiber reinforced high-density polyethylene combined with a surface of 

UHMWPE. In addition, new dental implants are being designed by using FGM this is 

because it can carry a greater load at a smaller size than the original amalgam being 

used. 

1.2 Objective and scope of work 

The aim of this research is to investigate the use of inhomogeneous materials such 

as checkerboard and functionally graded materials in column design. Additionally, the 

research aims to identify a closed-form solution for the buckling of checkerboard 

columns. Finally, optimized distributions of functionally graded materials in columns 

will be studied. The research will be split into two main subjects areas as follows: 

 Buckling of checkerboard type column with the young’s modulus defined using 

indicator functions: 2211 )()()( ErErrE


  . Here, r


is the position vector, 1E  

and 2E are the young’s moduli of the individual phases, and )(ri


  is the indicator 

functions of the region occupied by phase i. This problem will be considered in 

one, two, and three dimensions, as well as in certain exact analytical solutions. 
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 An evaluation of the improvement of buckling capacity of FGM columns 

compared to its homogenous counterpart. In this situation, )(rE


can be interpreted 

as a Taylor’s series expansion about a reference Young’s Modulus, 0E . 

1.3 Thesis organization  

This thesis is organized into five chapters as follows: 

Chapter 1 is an introduction to the thesis and includes brief description of the buckling 

problem and inhomogeneous materials as well as the objectives and scope of work. 

Chapter 2 is a literature review on prior research related to the buckling of 

checkerboard columns and the functionally graded materials. 

Chapter 3 is titled “Checkerboard Columns” in which the buckling of inhomogeneous 

columns with a two-phase checkerboard microstructure is examined. The chapter will 

also include the results of different checkerboards columns, the corresponding best 

and worst designs, and the statistical analysis of the data obtained.  

Chapter 4 pertains to the buckling of functionally graded columns. It also will show 

the research methodology used in analyzing and obtaining results. The chapter will 

include results showing the best functions to be used, the effect of varying 

homogenous young modulus, and the relationship between the mode shapes and the 

functionally graded materials. 

Chapter 5 will conclude the thesis, summarize the results, and present possible topics 

for future research. 
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Chapter 2.  Background 

2.1  Checkerboard columns 

This research is perhaps the first study on the behavior of columns with 

checkerboard microstructure, although such microstructures have been studied in 

other areas that pertain to heat conduction, flow through porous media, and planar 

elasticity. A column with a checkerboard microstructure is made up of two materials 

with different elastic moduli at arbitrary volume fractions, phase contrasts, and 

morphology. The most relevant literature to the present study would be the buckling 

of inhomogeneous columns as discussed in the subsequent paragraphs. 

A study by Elishakoff and Rollot investigated columns with variable stiffness [3]. 

In their study, Euler’s buckling equation was modified to allow for variable stiffness 

across the length of the material. Then using a preselected variable stiffness, the 

modified Euler equation was solved using Mathematica software to produce possible 

solution sets in order to obtain the critical buckling load. As a continuation to their 

study, Elishakoff posed the same problem as an inverse buckling problem [4]. The 

inverse method, determined the stiffness distribution and the critical buckling load for 

a non-uniform beam with specified boundary conditions by using a preselected 

function for the buckling mode. Such a method produces results for certain classes of 

inhomogeneous materials, and yet it does not provide exact solutions for general 

heterogeneity. Li derived a solution for the buckling load of non-uniform columns 

subjected to concentrated axial and distributed loads [5]. In his approach, the 

governing equations were initially reduced using functional transformation and later 

solved using Bessel function. The analytical solution provided results for twelve 

different cases that are important in engineering applications such as high-rise 

buildings subjected to distributed loads. In yet another study, Huang and Li presented 

an analytical approach to determine the critical buckling load of a non-uniform 

column with or without continuous elastic restraint [6]. Their study identified an 

optimal ratio between the radius in the middle of the cylinder and the radius at the end 

for maximum carrying load capacity.  

Atlus et al. introduced a new method for obtaining the buckling load analytically 

for linear inhomogeneous materials using the Functional Perturbation Method (FPM) 

[7]. According to these researchers, the FPM method provided more accurate results 
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for linear inhomogeneous materials than the conventional Galerkin and Rayleigh-Ritz 

methods. Along similar lines, Huang and Luo derived a solution for the buckling of 

inhomogeneous beams by using the power series to represent the mode shapes [8]. 

The power series method used was illustrated by studying a composite beam under 

various end supports. In addition, Morimoto et al. investigated the buckling of 

inhomogeneous rectangular plates subjected to uniform in-plane shear [9]. In their 

study, an inhomogeneity parameter was introduced which in turn contributed to the 

bending rigidity. Also, as the inhomogeneity parameter was increased, the buckling 

load increased but the buckling mode shape remained unaffected.  

Furthermore, Earls emphasized on the numerical limitations of using finite 

element modeling and eigenvalues in the solution of buckling equation [10]. The 

limitations included differing results for the same structures using different software’s 

and the stability of the results. This indicates the necessity of carefully assisting the 

finite element solution with closed-form analytical solutions or experiments wherever 

possible. More recently, Li et al. solved the buckling equation for composite non-

uniform columns with distributed axial loads or tip forces. Thereby utilizing the 

solution to tailor materials such that the ratio of the buckling load to the weight is 

maximized for axially graded inhomogeneous composite columns with uniform cross-

section [11]. The optimization technique was performed on a column with clamped 

and free ends resulting in the need to increase material density around the free end in 

order to increase the maximum load carrying capacity. In the problem, Li et al. 

approximated a non-homogenous column with a piecewise function with constant 

geometrical and material properties. The resulting eigenvalue problem was then 

solved using a new numerical algorithm with different boundary conditions. 

2.2 Functionally graded materials 

Functionally graded materials are composites with variable stiffness or geometry 

along their length. Elishakoff and Calio investigated the axially graded beam to obtain 

a generalized solution for columns and beams with functionally graded materials [12]. 

For simply supported beams, a closed form solution was obtained which indicated 

that using a semi inverse problem and Rayleigh quotient method can be a very helpful 

tool in the design of buckling problems. The design method utilized to investigate the 

axially graded material is dependent on using a pre-selected natural frequency or a 
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buckling load as a preliminary solution for the problem. Furthermore, Elishakoff 

compared the solution of Rayleigh Ritz (RR) non-integer power method and the 

normal Rayleigh-Ritz two-term solution for different cases, such as prismatic 

cantilever column, stepped column, prismatic column under its own weight, and on a 

smoothly tapered column [13]. The RR non-integer power method and the normal RR 

two-term solution is then applied in all the cases mentioned in order to compare both 

methods and define their usage. The results obtained showed that both methods are 

accurate with a main difference in the complexity of the solution for the RR non-

integer solutions. The solution used in this situation can be used as a bench mark for 

smoothly tapered columns. 

 Additionally, Pradhan and Chakraverty performed a free vibration analysis of 

functionally graded materials subject to a different set of boundary conditions by 

using RR method [14]. The analysis resulted in the ability to use the RR method in 

solving FGM, especially when using high number of polynomials. Also, when they 

deducted this the FGM beams behaved in a similar manner to the isotropic beam 

despite the changes in boundary conditions and the complications of material 

properties and configuration. Likewise, Sankar obtained an elastic solution for FGM 

sinusoidal transverse loading. The FGM beam was designed to vary in an exponential 

manner [15]. One of the key findings stated the stress concentration, in case of the 

FGM, is dependent on the soft or hard face of the FG thereby indicating the need to 

distribute the material in a manner that equalizes the stress concentration. Along 

similar lines, Elishakoff and Miglis studied a clamped-free beam with compressive 

loadings on the free edge [16].The study involved solving a semi inverse problem of 

buckling of a functionally graded beam with only the young modulus varying along 

the beam. The study resulted in an interesting behavior of the beam where three 

different buckling modes occurred for the same load. These results could either 

indicate a special phenomenon for the buckling of inhomogeneous materials or the 

existence of a great deal of numerical instabilities. Yet the results were very intriguing 

as it it ended up showing inhomogeneous materials had different properties than 

normal homogenous materials; this was of interest for further studies. Huang and Li 

developed a new approach to solve free vibrations of an Euler-Bernouli beam with 

continuous elasticity and density [17]. Their approach is based on indirectly solving 

the fourth order governing equation using a system of Fredholm intergral equations. 
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Their solution insures the validity of a solution to arbitrary axial grading or cross 

section varying in a buckling problem.  

Moreover, Swenson, Jr. performed a simple DC network analysis on non-uniform 

columns and beams [18]. This analysis was further performed on a stepped column 

with a variable flexural rigidity as well as a tapered column with varying cross 

section. Nonetheless, the solution was performed only on pin-pin boundary 

conditions. Coskun and Attay managed to solve for the buckling load of columns with 

variable cross sections using a variation iteration method (VIM) [19]. The VIM 

method proved to be a very powerful method in solving nonlinear partial differential 

equations, and because the results where efficient and reliable, it remains an important 

tool in solving such buckling problems as. The downside of this tool is its inability to 

find the analytical solution for any random variation in flexural rigidity. On the other 

hand, Oyekoya and El Zafrany studied functionally graded columns using a finite 

element analysis [20]. They used the element formulation of type Mindlin and 

Reissner employed to solve for the critical buckling load and to study the finite strain 

model and smooth fiber distribution. Also, they provided optimum fiber distribution 

to obtain the maximum buckling load. In a similar context, Zhong and Yu presented a 

plane elasticity solution for functionally graded beams utilizing the semi inverse 

method [21]. Such solutions can be utilized as a benchmark for other approximate 

solutions of similar manner. Similarly, Yilmaz et al. provided a solution for the same 

problem as Zhong by utilizing a localized differential quadrature method (LDQM) 

and providing a generalized solution for Eigen value problem governed by fourth 

order differential equations [22]. Likewise, Chandran and Rajendran provided an 

exact solution for the same problem using the principle of conservation of energy 

[23]. Their solution is only limited to an assumed deflection function. In a similar 

manner, Singh and Li proposed a solution for different FGMs by utilizing Newton’s 

Eigen value iteration method (NEIM) [24].  However, their method indicated the 

buckling of functionally graded columns occurred for different FGMs such as 

checkerboard, axially graded columns under free weight, and axially graded column 

subjected to concentrated loads. The NEIM helps in introducing a low dimensional 

mathematical model and transcendental Eigen value problems, which can be helpful 

in different applications for shape optimization. In an attempt to improve previous 
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models, Huang and Li suggested an approach that includes shear deformations at the 

circular cross section in the model [25]. 

Further studies on FGM included Ding et al. solving plane anisotropic 

functionally graded beams [26]. Also, Shariat and Eslami performed a buckling 

analysis of functionally graded thick plates under mechanical and thermal loadings 

[27]. The study compared between the first order and third order shear deformation 

theory in obtaining buckling load values. The comparison showed that using a 1st 

order shear deformation theory over predicts the buckling values while a 3rd shear 

deformation provides precise results. Bagherizadeh et al. studied buckling of FGM 

cylindrical shells [28]. The findings showed that a critical buckling load of a 

cylindrical shell is greater under axial pressure than under a lateral or combined 

pressure load. In additional research, Batra and Li investigated the relationship 

between the buckling loads of functionally graded Timoshenko element and 

homogenous Euler-Bernouli beams [29]. Closed form solutions presented a 

relationship between the Timoshenko, Euler-Bernouli beams, and homogenous Euler-

Bernouli beams for simply supported, clamped, and clamped-free beams. The closed 

form solution defined aided in deriving an eigenvalue problem to determine the 

critical buckling load of an FGM Timoshenko beam. The relationship between the 

different beams displays a solution to buckling of FGM Timoshenko beams by using 

an equivalent homogenous Euler-Bernouli beam with two additional constants that are 

dependent on the young modulus and Poisson ratio.  Kadoli et al. studied the effect of 

power law exponent of metal ceramic FGMs [30]. Outcomes of studying the static 

behavior of metal ceramic FGMS for different power laws showed that deflections, 

stresses, and location of neutral surfaces are highly dependent on power law index. 

On the same subject, Heydari found exact solutions for FGM beams with rectangular 

and annular cross-sections [31]. Main outcomes presented revealed the dimensionless 

mode shapes for a specific buckling load is independent of the material used . 

Despite the fact that researchers conducted studies on the buckling of 

inhomogeneous materials, in only a few cases did  the researchers concern themselves 

with the buckling of checkerboard and FGM columns. The current study focuses on 

two aspects. First, it determines the buckling load of checkerboards columns, 

investigates the effects of phase contrast on the buckling capacity, and identifies the 

microstructures that provide the highest and lowest buckling mode. Second, it focuses 
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on investigating the FGMs that enhance the buckling capacity, identifies the young 

modulus parameter change on the buckling capacity, and presents the relationship 

between mode shapes and FGMs.  
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Chapter 3.  Buckling of Checkerboard Columns 

3.1 Introduction 

This chapter presents a new study that investigates the buckling capacity of 

inhomogeneous columns with two-phase checkerboard microstructures at arbitrary 

phase contrasts and volume fractions. To the best of our knowledge, the buckling of 

such two-phase checkerboard columns has not been investigated in the past. The 

microstructure of this column is made up of two materials with very different elastic 

moduli. A Monte Carlo technique is used to generate checkerboard microstructures at 

arbitrary phase contrasts, volume fractions, and the spatial distributions of the phases. 

After generating the microstructure, the eigenvalue problem is then solved 

numerically using a linear perturbation analysis that is implemented in the 

commercial finite element software ABAQUS [31]. This procedure is repeated for all 

microstructural realizations with the following objectives−being investigated, i) 

determine the critical buckling load for checkerboard columns as a function of the 

volume fraction; ii) study the effect of phase contrast on the critical buckling load; iii) 

identify the microstructural realizations (spatial distribution of individual phases) that 

result in achieving the highest and the lowest buckling loads for a given volume 

fraction. 

3.2 Problem Formulation 

3.2.1. General Buckling Equation 

The governing equation for the buckling of an inhomogeneous long column is 

provided by the following equation: 

0)(
2

2





vP

x

v
IxE cr ,         (1)  

where 𝐸(𝑥) indicates the spatial dependence of the modulus of elasticity, I represents 

the area moment of inertia, 𝑣  is the transverse deflection, and crP is the critical 

buckling load. It is well-known that for a homogeneous column with ExE )( , the 

critical buckling load is given by 
2

2

L

EIC
Pcr


 . Here, C is a constant representing the 

type of boundary condition and L is the column length.  
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In the present study, the microstructure is a two-phase material with a random 

checkerboard microstructure. Such a random checkerboard can be seen as a set of 

deterministic checkerboards:     ;BΒ  (see [32]). Here,   is the realization 

space and   is the specific microstructural realization under consideration. For a 

two-phase checkerboard column with phases 1 and 2,   21 BBB  , with the 

local modulus of elasticity given by 𝐸1 and 𝐸2 , respectively. Mathematically, the 

microstructure can be defined completely using the indicator function defined as [32]: 
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Bxf
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

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Using Eq. (2), the local modulus of elasticity at any point in the column can be 

identified as follows: 

   2111 ),(1),(),( ExExxE 


 ,      (3)  

where x


 is a position vector, and 1E  and 2E are the modulus of elasticity of the 

individual phases. The volume fraction of phase 1 can be simply recovered by the 

ensemble averaging of the indicator function 

1            (4) 

Due to the randomness in the modulus of elasticity [as seen in Eq. (3)], it is 

difficult to find an explicit closed-form analytical solution for Eq. (1). Thus, in this 

study we used Monte Carlo runs along with finite element analysis to solve Eq. (1) 

and to obtain the critical buckling load. 

3.2.2. Finite Element Modeling using Linear Perturbation Analysis 

As mentioned previously, a Monte Carlo technique is employed in order to 

generate checkerboard microstructures at arbitrary phase contrasts, volume fractions, 

and the spatial distributions of the phases. After generating the microstructure, the 

eigenvalue problem is then solved numerically using linear perturbation analysis with 

the finite element software ABAQUS; this is due to its versatility in handling such 

problems. A linear perturbation analysis step provides the linear response of the 

system at the base state, and utilizes estimating elastic buckling by the use of 

eigenvalue extraction. Eigenvalue buckling is generally used to approximate the 
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critical buckling loads of stiff structures. Usually the loading on stiff structures is 

either an axial or membrane loading. The response to such loading involves small 

deformation before buckling. A simple example of a stiff structure is the Euler 

column, which responds firmly to a compressive axial load until a critical load is 

reached, when it bends suddenly and exhibits a much lower stiffness. However, 

estimation using general eigenvalue extraction is useful especially if the perturbation 

loads are elastic before the buckling occurs. The eigenvalue solution is obtained by 

making the model stiffness matrix singular. The model matrix is then described by 

𝐾𝑖𝑗𝑣𝑖 = 0 where 𝐾𝑖𝑗 is the tangent stiffness matrix and 𝑣𝑖 is the displacement matrix 

[33].  

In the proposed study, a circular cross-section column with a diameter of 50 mm 

and length of 4000 mm was used for the proposed analysis (see Figure 3.1). The 

dimensions were chosen so as to make sure elastic buckling is always ensured. Pinned 

connections were considered for both ends. The column is modeled with different 

material configurations for each simulation using deformable Timoshenko beam 

elements coded as B21 in ABAQUS. This type of line element accounts for the 

transverse shear stress. This happens because as shown with Shnabl and Planinc [34] 

the transverse shear stress does affect the critical buckling load. Also, as it provides 

better results for slender beam, the B21 element is relevant to the current study [33]. 

As for the boundary condition used in the FE modeling, the pin-pin connection was 

modeled by stopping the deformation in the axial and transverse directions for the 

bottom end. The restriction of deformation was only applied on the transverse 

direction for the top end to allow loading in the axial direction. 
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Fig  3.1: Two-phase checkerboard column with circular cross section  

3.3 Materials combinations 

In each analysis step, the column consists of two materials with different elastic 

modulus (E). The choice of the two materials used is based on the contrast, which is 

the ratio between the largest and the lowest elastic modulii, and can be calculated 

using the following equation: 

2

1

E

E
k                       (5) 

Table 3.1 presents the material combinations considered in the present study. The 

choice of materials is based purely on providing different levels of contrast varying 

from very low to very high ratios. Columns made of steel and wood have the highest 

contrast while columns made of aluminum and copper hold the lowest contrast. The 

other two conditions have almost equal contrasts. The use of a similar contrast helps 

in identifying behavioral similarities of the material combinations. 

Table 3.1: Material combinations 

Material 1 Material 2 𝑬𝟏(𝐆𝐏𝐚) 𝑬𝟐(𝐆𝐏𝐚) 𝒌 

Steel Magnesium 200 45 4.44 

Steel Wood 200 11 18.2 

Magnesium Wood 45 11 4.1 

Copper Aluminum 168 69 2.43 

 



 

26  

3.4 Methodology 

For each analysis realization, the column is discretized into 100 segments, and 

each segment is assigned a random combination of 𝐸1 𝑎𝑛𝑑 𝐸2. The volume fraction 

will be changed by increasing the fraction of the 𝐸1 gradually from 0 to 100%. The 

numerical simulations are performed 500 times for each volume fraction to account 

for material randomness. Table 3.2 summarizes the contrast, volume fractions, and the 

number of realizations employed in the numerical simulations. In all, over 18,000 

runs were conducted in order to determine the critical buckling load and to identify 

the microstructural realizations (spatial distribution of individual phases) resulting in 

the highest and lowest buckling loads for each volume fraction. 

Figure 3.2 highlights the methodology employed in the current study. In step (a), a 

particular realization of the checkerboard is sampled randomly and its finite element 

model is set up in ABAQUS. The pin-pin boundary conditions are then applied at the 

column ends. Next, in step (b), a concentrated unit load was applied and the 

eigenvalue problem was solved in order to obtain the mode one critical buckling load 

and the corresponding mode shape. The procedure was repeated over 18,000 times in 

order to cover the entire realization space highlighted in Table 3.2. Subsequently in 

step (c), the results were compiled to determine the minimum, maximum, and 

ensemble averaged buckling load for each volume fraction and contrast. In addition, 

the spatial distributions of the phases corresponding to the maximum and minimum 

buckling load were determined to identify the microstructure that corresponds to the 

best and worst designs, respectively. Finally, a statistical analysis of the results was 

performed in order to obtain various statistical moments such as coefficient of 

variation, skewness, and kurtosis. 

Table  3.2: Number of runs and the total realization space 

10 20 30 40 50 60 70 80 90 

2.43 500 500 500 500 500 500 500 500 500 

4.1 500 500 500 500 500 500 500 500 500 

4.4 500 500 500 500 500 500 500 500 500 

18.2 500 500 500 500 500 500 500 500 500 

Total runs =  

18,000 

Volume fraction (in percentage) 

Contrast 

 (k) 
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Fig  3.2: Methodology employed: a) Microstructure of the column; b) Buckling mode 

shape; c) Statistical moments 

 Figure 3.3 displays the methodology used in generating random checkerboards 

for the sake of the study. The thesis utilized Matlab to generate the input files and ran 

them through Abaqus. The output results are then imported to Matlab and analyzed 

using the software.   

 

Fig  3.3: Methodology used in checkerboard study 
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3.5 Results 

3.5.1. Critical buckling load of the checkerboard column as a function of the volume 

fraction  

Prior to a discussion on the numerical results, it is important to define a rescaled 

buckling load as follows: 

I

LP
P cr

c 2

2


           (6) 

where 𝑃𝑐𝑟 is the numerically obtained mode in one critical buckling load and 𝑃𝑐 is the 

rescaled buckling load (typically in GPa). An alternative interpretation of 𝑃𝑐 would be 

the equivalent effective elastic modulus of the checkerboard column. Depending upon 

the context, 𝑃𝑐  could represent either the mean, minimum, or maximum rescaled 

buckling load. 

Figure 3.4a, presents the rescaled buckling load (average, maximum, and 

minimum) for a checkerboard column made up of steel and wood. The modulus of 

elasticity for wood is 11 GPa and  for steel is 200 GPa; therefore, the contrast of the 

microstructure is k=18.2. It is evident from this figure that the lower modulus material 

(wood) affects the rescaled buckling load significantly more than the material with a 

higher modulus (steel). Even at a 50% volume fraction, the average value of the 

rescaled buckling load is only about 20.85 GPa. Similarly, the rescaled buckling load 

(average, maximum, and minimum) for checkerboard columns made up of steel and 

magnesium (k=4.44) and magnesium and wood (k=4.1) are plotted in Figures 3.4b 

and 3.3c, respectively. The material properties for this individual phase are provided 

in Table 1. It is evident from these plots that as the volume fraction of the stiffer 

material increases, the rescaled buckling capacity of the column increases. At a 

volume fraction of 50%, the rescaled buckling loads are 73.46 GPa and 17.68 GPa, 

respectively. Further, it can be noted that the trends for the average, minimum, and 

maximum rescaled buckling loads are identical for microstructures with similar 

contrasts. Finally, the rescaled buckling load (average, minimum, and maximum) for 

ductile iron and aluminum is plotted in Figure 3.4d. This particular microstructure has 

a contrast of 2.43. 
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(a) 

(b)
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(c)

(d) 

Fig . 3.4: Rescaled buckling load (average, maximum, and minimum) as a function 

of the volume fraction: a) steel and wood microstructure (k=18.2); b) steel and 

magnesium microstructure (k=4.44); c) magnesium and wood microstructure (k=4.1); 

d) ductile iron and aluminum (k=2.43). 
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Based on the numerical results obtained, it is possible to infer the analytical form 

for the average value of the rescaled buckling load as well as the ensemble averaged 

critical buckling load as given in the equations below. 
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
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 (Ensemble averaged buckling load)            (7b) 

In the above, 𝐸1 and 𝐸2 are the individual phase elastic moduli, α is the volume 

fraction of the phase 1 and the operator   indicates the ensemble averaging. 

3.5.2. Effect of phase contrast on critical buckling load  

In order to clearly understand the effect of the phase contrast, the notion of 

normalized buckling load is introduced. This is obtained by normalizing the 

maximum and minimum buckling load for each material in combination with the 

ensemble averaged buckling load for the given combination.  

cr

cr
n

P

P
P                                                         (8) 

In Figure 3.5a, the normalized buckling load is plotted as a function of contrast 

and volume fraction of the stiffer phase. When the volume fraction is 0 or 100%, all 

the curves converge to nP =1. This is because the microstructure is essentially 

homogeneous at these volume fractions. It is also evident from this plot that with an 

increasing contrast the curves for maximum and minimum normalized buckling loads 

are farther apart. Furthermore, from Figure 3.5b, it is evident these curves are 

identical when the contrasts are similar. Based on these observations, one can 

postulate the following functional form for the normalized buckling load 
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 kfPn ,           (9)

(a)

(b) 

Fig . 3.5: Normalized buckling load (maximum and minimum) as a function of 

the volume fraction of the stiffer phase: a) differing contrasts; b) similar contrasts. 
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3.5.3. Spatial distribution of individual phases 

In order to determine the spatial distribution of individual phases corresponding 

to the maximum (best column design) and minimum (worst column design) buckling 

loads, the corresponding buckling mode shapes are plotted as a function of volume 

fraction, as shown in Figures 3.6a and 3.6b. The former figure corresponds to a 

contrast of 2.43 and the later to a contrast of 18.2. From these figures, it is evident that 

for maximizing the buckling load, it is desirable to distribute the phase with higher 

stiffness in the middle of the column and vice versa for the minimum buckling load. 

This essentially implies that by allocating the phase with higher stiffness in the region 

with higher deflection, the buckling capacity is enhanced. 

 

  

(a) (b) 

Fig  3.6: Buckling mode shapes corresponding to the maximum and minimum 

buckling load as a function of volume fraction: a) Contrast (k=2.43); and b) Contrast 

(k=18.2) 
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3.5.4. Statistical analysis 

The numerical simulations performed in this study resulted in 18,000 

simulations and the pool of results for the buckling load is best analyzed using 

statistical tools that include the mean, coefficient of variation, skewness, and kurtosis. 

The result on the mean value of the buckling load has been extensively discussed in 

the previous sections. The coefficient of variation for the data set is plotted as a 

function of contrast and volume fraction in Figure 3.7a. As expected, it is zero when 

for a homogeneous material that corresponds to 0 or 100% volume fraction. In 

general, as the contrast increases, the coefficient of variation also increases. It is 

interesting that the coefficient of variation for the steel-magnesium checkerboard 

(k=4.44) and that of the magnesium-wood microstructure (k=4.1) are about the same 

when the magnesium volume fraction is kept the same. In Figure 3.7b, the skewness 

of the data set is plotted as a function of contrast and volume fraction. By definition, 

for a perfectly symmetric distribution, skewness is zero. As expected, the skewness is 

zero at volume fractions of 0 and 100%. In general, it is observed that the skewness is 

positive for the data set, highlighting that the data set is skewed to the right. Finally, 

kurtosis (Fig 3.7c) measures the degree to which the data is peaked. By definition, for 

a normal distribution, kurtosis is zero. Kurtosis is also zero for homogeneous 

microstructures. It is observed that for the given data, kurtosis is positive indicating 

relatively a sharp peak for the distribution. 

(a)
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(b) 

(c) 

Fig  3.7: Data statistics: a) Coefficient of Variation; b) Skewness; c) Kurtosis 

3.6 Conclusion 

In this chapter, a Monte Carlo technique was used to generate checkerboard 

microstructures at arbitrary phase contrasts, volume fractions, and spatial distributions 

of the phases. Subsequently, the resulting eigenvalue problems was solved 
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numerically in ABAQUS by using a linear perturbation analysis. The maximum, 

average, and minimum values for the critical buckling load were determined and the 

corresponding buckling mode shapes were identified under pin-pin boundary 

conditions. It was demonstrated that the ensemble averaged rescaled buckling load 

cP  was simply the volume fraction weighted harmonic mean of the individual phase 

elastic moduli. Also, the normalized buckling load nP
 was identical for 

microstructures with similar contrasts. Furthermore, it was demonstrated that by 

distributing the phase with higher stiffness in regions of higher deflections (middle), 

that it then maximizes the buckling capacity of the column and vice versa. Finally, a 

statistical analysis on the numerical results was conducted by studying the mean, 

coefficient of variation, skewness, and kurtosis as a function of contrast and volume 

fraction.  To the best of our knowledge, this is the first time an analytical result has 

been proposed for the critical buckling load of a column with a random checkerboard 

microstructure. 
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Chapter 4.  Buckling of FGM Columns 

4.1 Introduction  

This chapter proposes the use of functionally graded material to enhance the 

buckling capacity of columns. Additionally, the research aims to test different 

functions for distributing the young modulus; from there it will indicatewhat functions 

provide the optimal buckling load. The functions utilized will take the form of linear, 

quadratic, cubic, sinusoidal, and power roles. The common factor between all these 

functions will be a homogenous column with a young modulus of 150 𝐺𝑃𝑎. The 

homogenous column will be used as a comparison tool to understand the effect of 

changing the FGMs on the buckling of columns. All of the FGMs will be tested on a 

column with the same length and end conditions. The FGMs will be solved using two 

different methods. Firstly, the buckling problem will use the linear perturbation 

analysis tool implemented in the commercial software ABAQUS. Secondly, the 

buckling problem will use the Rayleigh-Ritz method. The main objectives of this 

study are to: i) investigate functions that enhance buckling capacity; ii) define the 

changes in the buckling capacity as seen in case of changing the homogenous column 

modulus of elasticity; and iii) present the impact of implementing FGMs on the 

resulting mode shapes and describe the relation between the FGM distribution and the 

final mode shape. 

The theoretical background for the linear perturbation analysis has been presented 

in Chapter 3, section 3.2.2, whereas the Rayleigh-Ritz method is briefly explain in the 

following section.  

4.2 Rayleigh Ritz Method (RR) 

The RR method, also known as the minimum potential energy method, is 

extremely useful in obtaining a solution for this type of problem because the deflected 

shape of the buckling load is unknown and has to be assumed. 

The RR method is normally used to obtain the modal frequencies of multi degree 

freedom systems. The method relies on the minimum potential energy approach, 

which states that if the potential energy of a conservative structure is minimized, then 

the admissible function used shows the equilibrium state is stable. In this study, the 

expression of potential energy is given by [35] 
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where the first term denotes the strain energy while the second term denotes the work 

potential.  

The RR method involved obtains a solution in two simple steps. Firstly, an 

admissible function satisfies the essential boundary conditions is substituted into the 

potential energy expression. Secondly, the new potential energy expression is 

minimized. The desired solution is then obtained by solving the minimized potential 

energy expression. The solution is then compared with both the literature and the 

FEM model results. The RR method will be applied on all the different FGMs 

discussed in the chapter.  

4.3 Methodology  

The FGM concept applied throughout the literature is dependent on changing the 

flexural rigidity )()( xIxEK   of a certain column. In this paper, The FGM concept 

applied was only dependent on varying the young modulus along the length while 

keeping the moment of inertia as a constant value. Different functions were used to 

distribute the material over the column length. A common factor in developing the 

different functions used was
homE  as defined in Eq.11, which was solved for the 

different proposed functions. Each function was solved several times with only one 

variable changing, which is 𝐸(𝑥 = 0). The introduction of Eq.11 was to produce a 

common homogenous column for comparison purposes. The main concern regarding 

this solution was ensuring the symmetry of the function obtained. 
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dxxE
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                    (11) 

The second step after obtaining the functions and their parameters will be in 

solving the differential equations separately using FEM and RR and then comparing 

their results with the literature. In the FE modeling, the material’s modulus of 

elasticity will be introduced as segments along the length. The column was discretized 
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into 100 segments and each segment was assigned an increment of E  value thereby 

allowing the function to be depicted as accurately as possible. Table 4.1 displays the 

different mathematical functions used to distribute the young modulus and represents 

them graphically. Tables A.1 and A.2 in the appendix provide the function parameters 

for each mathematical equation used. 

Table  4.1: Mathematical and graphical FGM Representations for each 

function 

 

Function 

 

Mathematical representation 

 

Graphical representation 

Bilinear Function 
LxL

Lx

dxc

bxa
xE


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




2/

2/0
)(

 

 

Quadratic Function cbxaxxE  2)(  
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Cubic Function dcxbxaxxE  23)(  

 

Sinusoidal Function )sin()(
L

x
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Squared Sinusoidal 

2

)sin()( 




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
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Power Function bb axaxLcxE 2)()()(   

 

 

As for RR method, an assumed polynomial admissible function was implemented 

and the order of the polynomial was increased until the solution became stable. Then 

this order was used to solve for the critical buckling load for each function. An 

example for the different variations of the functionally graded materials is shown in 

Fig 4.1. 

 

Fig  4.1: FGM distribution for different functions for )0( xE at 50 GPa   
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4.4 Model Validation  

4.4.1.  Validation with examples from the Literature  

In order to validate the functionality of both models developed using RR and 

linear perturbation analysis, similar examples from literature were utilized to verify 

the accuracy of these models. Elishakoff [13] solved both equations available in Table 

4.2 using the RR non-integer power method and RR two-terms solution for a 

smoothly tapered column. Also, Singh and Li [24] verified their transcendental 

eigenvalue problem by solving both of the functions in Table 4.2. 

Table  4.2: Functions used in literature to distribute the material along the 

column [13] [24] 

Linear 
)1()( 0

L

x
ExE 

 

Quadratic 
2

0 )1()(
L

x
ExE 

 

 

The results obtained for the different models were then compared based on a 

dimensionless buckling load  

IE

LCP
P cr

0

2

                    (12) 

 where C denotes the boundary condition factor. 

Linear and quadratic functions shown in Table 4.3 were investigated using FEM 

and RR models. The results obtained indicate the validity of both models as the 

results were equal with a round off error of 0.0015 (See Table 4.3). These results 

indicate the possibility to utilize the developed model to further investigate other 

functions. 
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Table  4.3: Literature validation 

 P  for Linear  P for quadratic 

Elishakoff [2] 14.51316 20.8356 

Singh and Li [13] 14.5132 20.8356 

RR method (current work) 14.5147 20.8356 

FEM (current work) 14.5147 20.8356 

 

4.4.2. Comparison between Linear Perturbation Analysis and the Rayleigh Ritz Method 

The validation of FEM model is based on literature aids in trusting the FEM 

model results. The FEM model results were then used to find the closest admissible 

function satisfying boundary conditions. The solutions for both the RR method and 

linear perturbation analysis were then compared in order to obtain linear and quadratic 

functions (See Figure 4.2, 4.3). The comparison showed that in order to obtain 

accurate results for the RR method, an admissible high order polynomial function 

should be used. Other functions were also validated using FEM results to indicate the 

number of polynomial terms to be used in the admissible function for the RR method 

(See Table 4.4).  

 

Fig  4.2:Rayleigh-Ritz Vs Perturbation analysis in ABAQUS (Bilinear) 
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Fig  4.3: Rayleigh-Ritz Vs Perturbation analysis in ABAQUS (Quadratic)  

Table  4.4: Number of terms used for RR method 

Function 1st order 2nd order 3rd order Sine  Squared 

sine 

Power  

Number of terms 24 24 24 18 15 19 

 

4.5 Results and Discussion 

4.5.1. Buckling Capacity 

A buckling analysis was performed on various functions with various 𝐸(𝑥 = 0). 

The percentage increase in the buckling capacity has been used as a mean of 

comparison between the different FGM functions and the original critical buckling 

load of the column. This quantity, R, was calculated using the following equation: 

100
hom

homhom 



P

PP
R in                                                                                               (14) 

The R  values indicate the enhancement of imposing an FGM compared to the 

homogenous column. Figure (4.4) shows the buckling capacity increase for the 
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different function is mostly maximum when the 𝐸(𝑥 = 0)  are close to 0 GPa. The 

cubic order polynomial and sine function provide the maximum increase in the 

buckling capacity with around 21% increase. An interesting observation was noticed 

for the squared sine and the 1
st
 order function where the buckling capacity value 

increases until it reaches a maximum, then it starts decreasing again. 

 

Fig  4.4:  Buckling capacity for different functions and )0( xE  

4.5.2. Effect of changing the average value of the elastic modulus  

In an attempt to obtain a higher buckling capacity , a 3
rd

 order polynomial 

produced a maximum buckling capacity at 150 GPa modulus of elasticity was 

investigated thoroughly to study the impact of increasing or decreasing of the average 

young modulus. Figure (4.5) shows the maximum buckling capacity obtained for 

different average modulus of elasticity values varying from 0.5 GPa to 200 GPa. The 

simulations were all performed for the same end condition of 0 GPa to ensure 

comparability. As it can be noted from the figure, the buckling capacity is a straight 

line indicating that changing the average modulus of elasticity has no impact on the 

buckling capacity increase. This observation indicates the maximum buckling 

capacity that can be obtained for a pin-pin column with an average E will have a 
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maximum of 21% increase regardless of changing E and only depending on the shape 

function of the FGMs. 

 

Fig  4.5: Effects of changing average E 

4.5.3. Mode shapes  

Tables (4.5) and (4.6) display the distribution functions that produced the 

maximum and minimum buckling loads for different mathematical functions. The 

tables also pose a critical question on how the FGM distribution can be controlled in 

order to produce a higher buckling load. 

In order to investigate the effects of FGM on mode shapes and the possibility of 

any given relationship between them, a graph showing mode shape and FGM 

distribution is constructed. For the sake of comparison, both modulus of elasticity 

function and mode shape were normalized to obtain a function between 0 and 1. 

 In Figure (4.6), bilinear functions that produced maximum (𝐸1) and minimum 

(𝐸2) buckling loads and their corresponding mode shapes 𝑣 are displayed. It is  noted 

from the figure that the FGM producing maximum buckling load is shaped to be close 

to the mode shape. On the other hand, the FGM that produces minimum buckling load 

is far from the mode shape. 
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Table  4.5: FGM distribution functions producing maximum P 

Function )(min xE  minP (N) 

Bilinear  
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Table  4.6: FGM distribution functions producing minimum P 

Function )(max xE
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As for Figure (4.7), the quadratic function that produced maximum (𝐸3) and 

minimum (𝐸4) buckling loads and their corresponding mode shapes 𝑣 are displayed. 

It can be noted that the FGM producing maximum buckling load is distributed similar 

to the mode shape. In contrast the relation between 𝐸4 and 𝑣(𝐸4) is inversed. 

 

Fig  4.6: Effects of material distribution on buckling mode  )(),(,, 2121 EvEvEE  

In attempt to further emphasize the relationship between FGM and the mode 

shape, Figure (4.8) displays both 𝐸5 and 𝐸7  and their corresponding mode shapes 

𝑣(𝐸5) and 𝑣(𝐸7). Functions 𝐸5and 𝐸7 produced the maximum buckling load and this 

relationship sets a trend. This trend indicates distributing the FGM to fit the mode 

shape will produce a maximum buckling load for a given column.  
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Fig  4.7: Effects of material distribution on buckling mode )(),(,, 4343 EvEvEE  

 

Fig  4.8: Effects of material distribution on buckling mode )(),(,, 7575 EvEvEE  
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4.6 Conclusion 

In this chapter, different distribution functions of FGM columns were studied. 

The buckling analysis was conducted using linear perturbation via ABAQUS and the 

Rayleigh-Ritz minimum potential energy approach. Buckling loads and their 

corresponding mode shapes were obtained for different FGMs for a column with a 

circular cross-section and pin-pin boundary conditions. It was shown that the sine and 

the cubic function produced the maximum buckling load with about 21% buckling 

capacity increase. Also, it was demonstrated that the change in the modulus of 

elasticity for the basic homogenous column has no effect on the buckling capacity. 

Finally, it was demonstrated that in order to optimize the column, the FGM should be 

distributed to fit the corresponding mode shape and this is why a normal sine function 

and a cubic function produced higher buckling capacity than other functions. 
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Chapter 5. Summary and Future Work 

Inhomogeneous materials are considered as a new emerging field of interest in 

structural and biological applications. This thesis presents studies of buckling capacity 

of inhomogeneous materials for checkerboard or functionally graded materials. 

Firstly, The Monte Carlo technique was used to arbitrary generate different 

microstructural checkerboard columns. These columns presented an eigenvalue 

problem that was solved using a linear perturbation analysis implemented in 

ABAQUS software. The results included maximum, average, and minimum values 

for critical buckling loads for different microstructures and their relative mode shapes. 

The ensemble averaged rescaled buckling load was simply the volume fraction 

weighted harmonic mean of the individual phase elastic moduli. Additionally, 

microstructures with similar contrast have shown a similar normalized buckling load. 

As for the mode shapes, it has been demonstrated that by distributing the phase with 

higher stiffness in an area of maximum deflection provides a maximum buckling load 

and vice versa. Also, an additional statistical analysis of the realizations was done 

providing the mean and coefficient of variation for the sample studied.  

Secondly, columns with different functionally graded materials were analyzed. 

The functionally graded materials imposed on the column were generated to have an 

equivalent average young modulus to a homogenous column with a Young modulus 

of 150 𝐺𝑃𝑎. The introduction of FGM presents an eigenvalue problem, which was 

solved using both a linear perturbation analysis and the Rayleigh Ritz method. This 

was verified with results from the literature. The analysis showed that for a pin-ended 

column, a maximum buckling load was achieved when either a sine or a cubic 

distribution FGM was used. Both sine and cubic distribution had an overall increase 

in buckling capacity of 21%. It was also noticed that changing the equivalent 

homogenous column Young’s modulus has no impact on the buckling capacity 

improvement. Finally, it was observed in order to optimize the column against 

buckling, the FGM distribution should match the mode shape in a way where the 

normalized stiffness will be exactly fitting the unity mode shape.  

To the extent of our knowledge, this thesis presented a basic analysis of 

checkerboard column that was not studied before. Moreover, the study provided an in-

depth analysis of FGM impact on buckling. Future work needs to be done to further 
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investigate inhomogeneous materials effects on buckling. Firstly, studies regarding 

the non-linear buckling of both checkerboard and FGMs should be conducted because 

it provides more accurate results and accounts for materials and geometric non-

linearities. Additional research regarding the buckling capacity should be conducted 

to investigate the reason why the maximum buckling capacity is limited to a 21% 

increase for pin-pin boundary conditions. Finally, different types of inhomogeneous 

materials should be analyzed for its buckling behavior, such as investigating the effect 

of anisotropy on the buckling mode, capacity, and behavior. 
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Appendix 

 

Table A.1: Function parameters for bilinear,𝒔𝒊𝒏𝟐(𝒙),𝒔𝒊𝒏, cubic functions 

Bilinear     2)sin()( xxE    

a )(MPa  b )(
mm

MPa
 c )(MPa  d )(

mm

MPa
 a )(MPa  b )(MPa  

0 149 597000 -149 0 300000 

10000 140 570000 -140 10000 280000 

20000 130 540000 -130 20000 260000 

30000 120 510000 -120 30000 240000 

40000 110 480000 -110 40000 220000 

50000 100 450000 -100 50000 200000 

60000 90 420000 -90 60000 180000 

70000 80 390000 -80 70000 160000 

80000 70 360000 -70 80000 140000 

90000 60 330000 -60 90000 120000 

100000 50 300000 -50 100000 100000 

Cubic    )sin()( xxE    

a )(
3mm

MPa
 b )(

2mm

MPa
 c )(

mm

MPa
 d )(MPa  a )(MPa  b )(MPa  

0 -0.05625 225 0 0 353429.174 

0 -0.0525 210 10000 10000 329867.229 

0 -0.04875 195 20000 20000 306305.284 

0 -0.045 180 30000 30000 282743.339 

0 -0.04125 165 40000 40000 259181.394 

0 -0.0375 150 50000 50000 235619.449 

0 -0.03375 135 60000 60000 212057.504 

0 -0.03 120 70000 70000 188495.559 

0 -0.02625 105 80000 80000 164933.614 

0 -0.0225 90 90000 90000 141371.669 

0 -0.01875 75 100000 100000 117809.725 
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Table A.2: Function parameters for quadratic and power functions 

Quadratic   Power   

a )(
2mm

MPa
 b )(

mm

MPa
 c )(MPa  a b c )(MPa  

-0.0525 210 10000 1.135 0.8174 0 

-0.04875 195 20000 1.138 0.8131 10000 

-0.045 180 30000 1.142 0.8084 20000 

-0.04125 165 40000 1.146 0.8033 30000 

-0.0375 150 50000 1.15 0.7978 40000 

-0.0338 135 60000 1.155 0.7918 50000 

-0.03 120 70000 1.161 0.7851 60000 

-0.02625 105 80000 1.167 0.7777 70000 

-0.0225 90 90000 1.173 0.7693 80000 

-0.01875 75 100000 1.181 0.7595 90000 

-0.015 60 110000 1.191 0.748 100000 
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