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Abstract

The main objective of this research is to present a reactive navigation algorithm for wheeled

mobile robots under non-holonomic constraints and in unknown environments. Two tech-

niques are proposed: a geometrical based technique and a neural network based technique.

The mobile robot travels to a pre-defined goal position safely and efficiently without any

prior map of the environment by modulating its steering angle and turning radius. The

dimensions and shape of the robot are incorporated to determine the set of all possible

collision-free steering angles. The algorithm then selects the best steering angle candidate.

In the geometrical navigation technique, a safe turning radius is computed based on an

equation derived from the geometry of the problem. On the other hand, the neural-based

technique aims to generate an optimized trajectory by using a user-defined objective func-

tion which minimizes the traveled distance to the goal position while avoiding obstacles.

A mobile robot is developed to test the performances of the two algorithms. The results

demonstrate that the algorithms are capable of driving the robot safely across a variety of

indoor environments.

Search Terms: Robots, reactive navigation, obstacle avoidance, autonomous ground robots,

recurrent neural networks, autonomous ground robots, navigation.
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1. Introduction

Mobile robots have rapidly evolved over the past years to encompass a wide spectrum of

applications: Robots are assisting in driving vehicles, aiding in medical tasks, and tak-

ing charge in hazardous rescue missions. During the catastrophic oil spill in the Gulf of

Mexico, for example, multiple underwater vehicles helped monitor the spread of oil in the

ocean [4]. Another event that also highlighted the importance of robots is the Japanese

Fukushima nuclear crisis [5]. Robots were used to monitor the radiation and assist in clean

up operations.

Autonomous navigation is a key feature in all of these applications. It deals with the prob-

lem of navigating to a target location while avoiding collision with obstacles that may be

present in the environment. The building functionc which compose an autonomous navi-

gation system are: perception, localization, path planning, and motion control. Perception

is the robot ability to perceive and extract information about its surrounding environment

through sensors. Localization is the robot ability to locate its position in the global frame.

Path planning is the robot ability to decide the required actions inorder to achieve its goal.

Finally, motion control is the robot ability to execute a desired trajectory through its actua-

tors [6]. Each of these functions is a research area of its own. The Robot control scheme is

depicted in Figure 1.1

The focus of this thesis is path planning in unknown environment. The problem comes in

several variants that assume different givens and constraints. It is classified according to

the supplied information as:

• Global Path Planning: It requires full knowledge of the workspace; a global map is

supplied as an input.

• Local Path Planning (Sensor-Based Path Planning): It requires partial knowledge of

9



Figure 1.1: Robot scheme

the workspace; an incomplete map is supplied.

• Reactive Navigation (Obstacle Avoidance): No a priori information is required about

the workspace. Instead, obstacles are discovered in real time while the robot is exe-

cuting its motion.

While the algorithms developed for global path planning may produce efficient paths and

guarantee global convergence, reactive navigation algorithms do not have this properties.

This is due to the inherited local nature of the obstacle avoidance problem. Because a

global map of the environment is not required, the robot may produce inefficient paths or

converge to a local minimum (trap situation). The combination of global path planning

and reactive navigation produces a sensor-based path planning strategy which has softer

requirements and may be able to guarantee global convergence.
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Implementing path planning and obstacle avoidance techniques on real mobile robots im-

pose different types of constraints such as kinematic and dynamic constraints, as well as

time constraints. Due to the kinematic constraint, a robot can not reach a desired point

in space instantly; instead, it must follow a curve. Path planning and obstacle avoidance

techniques that disregard this constraint are not safe because the transitional curve may

intersect with obstacles and hence a collision may occur.

The aim of this work is to produce a novel obstacle avoidance technique for wheeled mobile

robots under non-holonomic constraints and unknown environments. Experimental valida-

tion is carried out on a mobile robot built at the mechatronics center to verify the operation

of the algorithm.

This thesis is organized as follows: Essential autonomous navigation concepts is presented

in chapter 2. Related work on reactive navigation algorithms is discussed in chapter 3.

Chapter 4 presents the autonomous navigation algorithm and chapter 5 presents the exper-

imental results. Finally, the conclusions are drawn in chapter 6.

11



2. Autonomous Navigation Concepts

The Configuration Space

A complete specification of the location of every point on the robot is called a configuration,

q. The set of all possible configurations is called a configuration space or C-space (q ∈

C ). For a two-dimensional robot, the robot configuration can be fully described by rigidly

attaching a frame to the robot and then specifying the position and orientation of this frame.

Thus, the configuration of a rigid object moving in the plane is specified by the triple

q = (x,y,θ), and the configuration space can be represented by C = R2× SO(2), where

SO(2) is the special orthogonal group of 2-D rotations [7].

To describe collisions, some additional notations need to be introduced. Let W denote the

workspace in which the robot moves. For a robot moving in a plane, the workspace can be

represented by a Cartesian space W =R2. Let the subset of the workspace occupied by the

obstacles be O ⊂W and the subset of the workspace occupied by the robot at configuration

q be A(q) ⊂W . For a robot to avoid collision it should not arrive at a configuration that

will bring it to physical contact with any obstacle. The set of configurations for which the

robot collides with an obstacle is known as the obstacle configuration space and is defined

by

Cobst = {q ∈ C |A(q)
⋂

O = /0}. (2.1)

On the other hand, the set of collision-free configurations is known as the free configuration

space. It is defined as the set difference

C f ree = C \Cobst (2.2)

Consider a rigid robot that translates in the plane W = R2. For this case, the robot’s
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configuration space is two-dimensional and hence easy to visualize C = R2. As depicted

in Figure 2.1, the robot has a circular shape and there is a single obstacle in the workspace.

The boundary of the obstacle configuration space can be found by sliding the robot around

the workspace obstacle while tracing the configurations it went through. Motion planning

for the robot in the workspace has been converted to motion planning for a point robot in

the configuration space [8].

Figure 2.1: Construction of the configuration space.

Obstacle Avoidance Definition

Let qtarget be a target configuration. In time ti the robot is at configuration q(ti). With the aid

of onboard sensors, the robot senses a portion of the environment. Let the set of workspace

obstacles seen at configuration q(ti) be O(q(ti))⊂W . The objective is to compute a motion

control vector ui such that:

• The trajectory does not collide with the obstacles A(Qti,T )
⋂

O(q(ti)) = /0 ,where

Qti,T is the set of configurations of the trajectory followed from q(ti) to q(ti + T ).

T > 0 is the sampling period.

• It makes the vehicle progress to the target location F(q(ti),qtarget)<F(q(ti+T ),qtarget),

where F : C ×C →R+ be a function that evaluates the progress of one configuration

to another [1].
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The solution of the problem is a sequence of control vectors {u1, . . . ,un} computed in real-

time that guide the robot eventually to the target configuration while avoiding the sensed

obstacles in the environment as shown in Figure 2.2.

Figure 2.2: Obstacle Avoidance problem[1].

Kinematics of a Two-Wheel Differential Drive Robot

A two wheel differential drive robot is composed of two coaxial, fixed, and active wheels

and one passive wheel to guarantee stability. The robot is steered by modulating the veloc-

ities of the active wheels. If the wheels have equal velocities the robot moves in a straight

line; If one wheel is faster than the other the robot turns; and if both wheels turn at equal

speeds but in opposite directions the robot pivots. One major advantage of this robot is the

availability of a zero turning radius. Motion in any direction can be achieved by an initial

rotation. In additional, this robot has a simple mechanical structure, a simple kinematic

model, and low fabrication cost. On the other hand, this robot has few drawbacks: the

wheels must be driven along exactly the same velocity profile, which can be challenging

considering variations between wheels, motors, and environmental differences. Also, it is

difficult for the robot to move on irregular surfaces. Moreover, if one active wheel loses

contact with the ground, then the orientation of the robot may change abruptly [9].

There are two types of non-holonomic constraints governing the motion of the robot plat-

form: no lateral slip constraint and pure rolling constraint [10]. The no lateral slip con-

straint implies that the robot’s center point velocity is only in the direction of the axis of
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symmetry and its lateral component is zero. It is given by

ẏcosθ− ẋsinθ = 0. (2.3)

The pure rolling constraint implies that the robot wheels have a pure rolling motion without

any slipping and is given by

ẋcosθ+ ẏsinθ+Lθ̇ = ωrRw, (2.4)

ẋcosθ+ ẏsinθ−Lθ̇ = ωlRw. (2.5)

Robot kinematics refers to the equations of motion or the mathematical relations between

the robot position and its right and left wheel velocities without reference to force and mass.

In this section, we analyze the kinematics of a two-wheeled ground vehicle that moves on

a differential drive mechanism as shown in Figure 2.3.

Figure 2.3: Kinematics of a two-wheel robot.

Let the rotational velocities of the left and right wheel be ωL and ωR respectively and Rw

be the wheel radius, then assuming no slipping of the wheels, the wheels translational

velocities are:

vl = ωlRw, (2.6)

vr = ωrRw. (2.7)

15



Let the robot velocity in the local frame be v, the angular velocity about its Instantaneous

Center of Rotation (ICR) axis be ω, and let L be half the distance between the wheels, then:

 v

ω

=

 1
2

1
2

−1
2L

1
2L

 vl

vr

 . (2.8)

Let θ be the robot orientation with respect to the global x-axis, then the robot velocity

vector in the global frame is given by:
ẋ

ẏ

θ̇

=


cosθ

sinθ

0

0

0

1


 v

ω

 . (2.9)

The instantaneous turning radius rc is shown in Figure 2.4 and can be evaluated by:

rc = L
(vr + vl

vr− vl

)
. (2.10)

Figure 2.4: Instantaneous turning radius.

Dead Reckoning

Dead reckoning is a way to measure the robot’s position in the global frame. It estimates the

position by starting from a known location and integrating the incremental movements. The
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incremental movements are measured through wheel encoders and a compass. The robot

orientation θ is right away available from the compass sensor while the robot (x,y) position

is estimated by first measuring the angular velocities of the left and right wheels ωl, and ωr

using the encoders. The encoders measure the angular velocities by recording the arrival

time of the encoder pulses. Let p be the encoder resolution and ∆t be the time elapsed

between two consecutive rising edges of the encoder, then the wheel angular velocities can

be defines as

ωr,l =
2π

p∆t
. (2.11)

Next, we use the robot kinematics equations (2.6-2.9) to find the velocities components ẋ

and ẏ. Let T denote a fixed sampling time. In order to find x and y, we need to perform

trapezoidal integration

x = xold +
T
2
(ẋ+ ẋold), (2.12)

y = yold +
T
2
(ẏ+ ẏold). (2.13)

Note that the measurements are integrated to compute the position. Therefore, the error in

position accumulates over time and hence the dead reckoning cannot provide a meaningful

position estimate in the long run.

Dead reckoning is subjected to two types of errors: systematic errors and non-systematic

errors. Unequal diameters and misalignment of wheels contribute to systematic errors. On

the other hand, possible sources of non-systematic errors are traveling over uneven floors

and wheel slippage.
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3. Literature Review

We describe here a number of representative techniques to solve the obstacle avoidance

problem as well as a number of neural-based algorithms. Obstacle avoidance techniques

can be divided into two groups: Methods that compute motion in one step, and methods

that do that in more than one step. The first group directly maps the sensor information into

a motion control command. An example of one step methods is the potential field method

[11]. The second type computes motion in more than one step. It is further divided into

two categories. The first category includes methods that compute an intermediate subset

of motion controls, and then choose among them, such as the vector field histogram [12].

The second category includes methods that compute intermediate high level information

and translate it to an appropriate motion control such as nearness diagram [13]. On the

other hand, neural-based techniques can be classified into two categories: techniques that

use multiple neural networks and methods that use a single neural network. In this section,

we describe the algorithms outlined and state their benefits and drawbacks. Finally, the

contribution of our proposed method is brought forward.

An elegant solution to the motion planning problem is the Potential Field Method (PFM)

first proposed by Khatib in 1986 [11]. The method computes the motion command in one

step by mapping the sensor information directly into a vehicle steering direction. PFM uses

a physical analogy that the robot is a particle moving in the configuration space under the in-

fluence of an artificial field (see figure 3.1). The target location produces an attractive force,

Fatt , while obstacles produce repulsive forces Frep. The total force, Ftot , acting on the robot

is a weighted sum of the two forces. The total force points to the most promising direction

to avoid obstacles while driving to the target configuration. Fatt(qti),Frep(qti),andFtot(qti)
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Figure 3.1: Motion Direction with PFM [2].

are given by equations 3.1, 3.2, 3.3.

Fatt(qti) = Kattnqtarget (3.1)

Rsa f e =

Frep(qti) = Krep ∑ j
1

d(qti ,p j)
− 1

d0
np j d(qti, p j)< d0;

0 otherwise.
(3.2)

Ftot(qti) = Fatt(qti)+Frep(qti) (3.3)

where Katt and Krep are the weights of the forces, d0 is the influence distance of the obstacle

p j, qti is the current vehicle configuration, and nqtarget and np j are the unit vectors that point

from qti to the target and each obstacle point p j, respectively.

From equation 3.1 we can notice that the target has a global effect on the robot steering.

No matter where the robot is located, there is an attractive force that is pulling it towards

the target location. On the other hand, equation 3.2 shows that obstacles have a local effect

on Ftot . Only obstacles that are within the proximity of the robot influence the steering

direction.

PFM is one of the widely used techniques in motion planning. This is due to its clear

mathematical formulation. However, PFM has several drawbacks. PFM does not allow

the robot to temporarily move away from the target configuration. There can be some

scenarios that initially requires movements away from the target. Another drawback is

that PFM can get caught in local minima when Fatt = Frep and hence Ftot = 0. Figure 3.2

shows an example of a local minimum. Also, PFM can produce oscillatory motion when

passing through a door or a narrow corridor. The side walls produce forces that are equal
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in magnitude but opposite in direction if the robot is exactly at the middle. However, if the

robot for example slightly deviates to the left direction, then the left wall will produce a

larger force and therefore, the robot will steer to the right. After steering to the right, the

right wall will produce a higher force and the robot steers left. The steering commands will

keep on fluctuating between left and right resulting in oscillatory motion.

Figure 3.2: Local Minimum Problem [2].

Another popular approach to motion planning is the vector field histogram (VFH) devel-

oped by Borenstein and Koren in 1991 [12]. The environment is modeled as a two dimen-

sional Cartesian histogram grid as shown in Figure 3.3. The value of each cell in the grid

represents the certainty that an obstacle lies within the cell. A portion of this histogram is

transformed to a one dimensional polar histogram. From the polar histogram the gaps that

are large enough for the robot to pass through are identified. The gap closest to the goal

location is used to generate the motion direction. The algorithm is further developed to

take into account the robot kinematic constraints [14], and to consider the consequences of

choosing a particular direction before it chooses its new direction [15]. The algorithm has

the advantage of dealing with sensor uncertainties. However, the algorithm gets trapped in

local minima and it is difficult to tune the empirical threshold associated with it.

• Low Safety 1 (LS1): This action moves the robot away from the nearest obstacle,

and directs it towards the gap that is closest to the goal of the free walking area. The

free walking area is the closest navigable region to the goal location.
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Figure 3.3: Construction of polar histogram.

• Low Safety 2 (LS2): Centers the robot between the two closest obstacles at both

sides of the gap (closest to the goal) of the free walking area, while moving the robot

toward this gap.

• High Safety Goal in Region (HSGR): Moves the robot towards the goal.

• High Safety Wide Region (HSWR): Moves the robot alongside the obstacle.

• High Safety Narrow Region (HSNR): Move the robot through the center of the free

walking area.

The use of neural networks for robot navigation is introduced in [16]. The authors de-

scribe modularity as a manifestation of the principle of divide and conquer, which enables

us to solve complex tasks by dividing them to smaller sub-tasks. The individual solutions

are then combined to acquire the final solution. When applying the concept of modularity

to neural networks, a better generalization is achieved because the network can be better

trained. they solve the obstacle avoidance problem by using four neural networks. All of

these networks cooperate to make a decision on the direction the robot should take. The

space around the robot is divided into quadrants named: north, east, south, and west. The
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Figure 3.4: Criteria to define situations.

north is always along the front direction of the robot and is different from the earth mag-

netic north. The first neural network is called the north module. The output can take four

possibilities: front, front right, front left, and not front. The inputs to this network are the

range measurements residing in the north quadrant. The other three networks are identi-

cal and their outputs indicate the confidence that an obstacle is present in their respective

quadrant. The inputs to each of these networks are the range measurements in their respec-

tive quadrant. When the north network labels the front direction as occupied (not front),

the other modules’ outputs are considered to determine the motion direction that the robot

should follow. All networks were trained using the back-propagation algorithm and verified

through simulation.

The algorithm presented in [17] uses two neural networks to solve the path planning prob-

lem. The first neural network solves the ‘find space’ problem while the second solves the

‘find path’ problem. The two neural networks are connected in cascade i.e. the output of

the first network is connected to the input of the second. The role of the ‘find space’ net-

work, as the name suggests, is to find the free configuration space. The area in the front

side of the robot is divided into 9 space segments. If the motion across a space segment

is possible then it takes a value of ‘1’, otherwise it takes ‘0’. The ‘find space’ network

is composed of four layers: input layer, Principle Component Analysis (PCA) layer, hid-
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den layer, and output layer. The range measurements which is composed of 29 elements

are fed to the input layer. Then, the PCA layer condenses the input by finding the set of

uncorrelated data from the range measurements. Next, nonlinear classification of the con-

densed input is performed through the hidden and output layers. The output layer consists

of 9 neurons where each neuron is associated with a space segment. The learning of this

network is achieved through unsupervised and supervised methods. PCA condenses the

input data to the principle components in an unsupervised manner while the feed-forward

network requires supervised training. The second ‘find path’ neural network is responsible

of finding the robot motion direction. The network is composed of three layers: input,

hidden, and output. The output vector of the ‘find space’ neural network is fed as an input

to the ‘find path’ network along with 9 additional inputs called goal segments. The goal

segments are segments in the front side of the robot that contain information about the de-

sired goal location: If a segment contains the target coordinates then it takes the value of

‘1’, otherwise it is set to ‘0’. This network is trained using a decision table that contains

all potential combinations of the space segments and the goal segments. The algorithm is

further enhanced by adding two neural networks (H and D) to give the robot the capabilities

of passing through narrow openings. The network ‘H’ recognizes when the robot is located

in hazardous narrow locations. It acts like a switch which decides whether the output of

the ‘D’ network or the output of the ‘find path’ network should be used. The ‘D’ network

executes safe motion in narrow locations.

The autonomous navigation problem in [18] is viewed as a static pattern classification

problem. The input vector consists of obstacle information and relative target orientation.

The output can take one of three possible classes: right turn, forward, and left turn. The

relationship between the input and output pairs of the training dataset is constructed by

a decision table. A Probabilistic Neural Network (PNN) is used as a classifier. When a

(testing) input vector is presented, the PNN calculates an Euclidean distance vector from

the input vector to the training input vectors. The elements of the vector indicate how close

the input is to a training input. Then, the elements that belong to a single class are summed.

The class that produced the highest value is selected. The advantage of using PNN is that it

needs no analytical model of the mapping function between the sensors data and the control

action. However, a huge amount of data is required to be generated in order to train the

network.
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The proposed algorithm in [19] uses several neural networks to solve the obstacle avoid-

ance problem. It divides the problem into: avoiding obstacles, following a wall, and passing

through a door. A neural network is dedicated for each sub-problem. Nevertheless, all these

neural networks have the same architecture and training procedure. The neural network is

a feed-forward network consisting of three layers: input, output, and hidden. The input to

the neural network is the robot accessible space. The accessible space is found by com-

bining information from the laser range finder, the wheelchair dimensions, and the encoder

sensors. The output of the network is the steering and velocities. The number of neurons in

the hidden layer is determined by using a Bayesian framework which is an automated way

to determine the optimal number of neurons in the hidden layer based on a value known as

the evidence. Supervised learning is used to train the neural network. A dataset is gener-

ated for each sub-problem. The dataset for ‘passing through a door’ is generated by having

the vehicle follow a number of predefined paths in environments that resemble the event

of ‘passing through a door’. The datasets for ‘following a wall’, and ‘avoiding obstacles’

are generated similarly. Based on their experimental results, the authors claimed that their

algorithm produces smoother trajectories than the widely used VFH algorithm. However,

it is not an equal comparison: the trajectory produced by the VFH algorithm is compared

with the trajectory produced by a specific neural network. The former solves the problem of

avoiding obstacles while navigating to a goal location for any obstacle arrangement, while

the latter solves only the problem of avoiding obstacles for a specific obstacle arrangement.

By combining the neural networks in a single algorithm via a framework that recognizes

the current event and selects the appropriate network outputs not only a better comparison

can be made, but also the technique will be autonomous. The authors divide the obstacle

avoidance problem into sub-problems because they claimed that a single neural network

could not provide the desired performance. However, It is not clear whether it is necessary

to separate the ‘avoiding obstacle’ and ‘passing through a door’ tasks since they do not

produce a conflict in training the network. A training conflict is created when the same

input pattern is mapped to two different output values.

In this thesis, we present an obstacle avoidance technique based on recurrent neural net-

works that take into consideration the kinematic constraints of differential drive robots.

While the common trend is to use more than one neural network, we use a single dynamic

neural network. As discussed earlier, multiple neural networks were useful because they
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avoid conflict in training when a single pattern takes totally different values at different

instances. In fact, this conflict in training suggests that the obstacle avoidance problem

is a dynamic problem that should be solved using dynamic methods. A recurrent neural

network is a dynamic network that has a context layer. The context layer provides us with

a tool to look at the current input ‘in context’. With such a tool, we will have a further

dimension in which to classify patterns and hence conflict in training that is due to similar

obstacle scenarios will no longer be encountered. Nevertheless, recurrent neural networks

come at a cost. They are more difficult to train than static networks. In order to guarantee

optimal convergence, we require the neural network learning environment to satisfy certain

conditions that are derived using Lyapunov stability method. Also, the earlier presented

neural networks techniques generated a dataset by manually driving the robot across differ-

ent scenarios, as opposed to our methodology which automates the process of generating a

dataset by using a computer algorithm. However, the dataset is sub-optimal because it was

not generated by an expert human driver. Therefore, we train our neural network using the

real-time recurrent learning algorithm along with a customized objective function to equip

the robot with the capability of improving its learning while in motion.
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4. Obstacle Avoidance Algorithm

The proposed obstacle avoidance algorithm can be outlined as follows: At instant ti, the

robot is at configuration q(ti) and senses a portion of the environment P (q(ti)). The

robot uses P (q(ti)) to build a partial polar map of the workspace. From the polar map,

the workspace obstacles set O(q(ti)) is identified and the configuration space C is com-

puted. Next, we operate in C to simplify motion planning of a robot to motion planning

of a point. The desired steering angle γdesired is found by identifying all the gaps in the

environment and selecting the best candidate. To take into account the non-holonomic

constraints, the radius of curvature rc is computed such that Qti,T which is the set of con-

figurations of the trajectory followed from q(ti) to q(ti + T ) does not intersect with any

obstacle, A(Qti,T )
⋂

O(q(ti)) = /0. This is achieved by restricting the radius of curvature to

an adaptive upper bound. Finally, the robot executes the control action ui = (γdesired,rc).

The process is repeated until the robot converges to qtarget . The algorithm is pictorially

illustrated in Figure 4.1.

26



(a) (b)

(c) (d)

Figure 4.1: Reactive Navigation Algorithm in Action.

Identify the Reference Steering Angle

The reference steering angle, γre f represents the steering angle the robot takes in the ab-

sence of obstacles. It is an intermediate tool that will later help us find γdesired . γdesired is

derived as follows. Let the robot configuration shown in Figure 4.2 be:

qr = (xr,yr,θr), (4.1)

where (xr,yr) is the position of the robot in the x− y plane, and θr ∈ [0,2π) is the robot’s

orientation with respect to the x axis.

Let the target configuration be:

qtarget = (xtarget ,ytarget ,θtarget). (4.2)
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Let ~ue be the vector connecting the robot reference point to the target location. The phase

angle of~ue is given by:

α = arctan
ytarget− yr

xtarget− xr
. (4.3)

To correct the error in orientation, the robot should turn by a reference steering angle γre f

defined as:

γre f = α−θr, −π≤ γre f ≤ π. (4.4)

The range of γre f is chosen such that the smaller turning angle is selected. The robot can

turn clockwise (right) or counter clockwise (left). Figure 4.2 illustrates the steps taken by

the robot to move to the target configuration. As time passes, the robot’s x axis gets aligned

with the error vector. When this is achieved, the robot proceeds in a straight line to the

target.

Figure 4.2: The robot’s trajectory to qtarget in the absence of obstacles.

Model the Environment

A partial polar map of the workspace is constructed in the local frame. The laser range

finder is programmed to scan the 200◦ front view of the robot in 20 sectors, with 10◦

angular resolution, as shown in Figure 4.3. The sensor returns a set of points:

P (q(ti)) = {p1, p2, ..., p j, ..., p20}. (4.5)

28



A point p j is expressed by a pair (d j,β j) where d j is the distance between the robot and

Figure 4.3: Polar map of the workspace.

the obstacle at sector j. β j is the orientation of the jth sector, S j, with respect to the local x

axis. The subset of workspace obstacles seen at configuration q(ti) is identified by applying

a threshold on d j,

O(q(ti)) = {p j ∈ P (q(ti))|d j ≤ Rsa f e}. (4.6)

The choice of Rsa f e plays an important role in the obstacle avoidance algorithm. If Rsa f e

is large, then the obstacle avoidance will start too soon which results in a sub-optimal

path. Also, by selecting a large Rsa f e, the algorithm may fail to detect any gaps in the

environment and therefore incorrectly reports a trap situation. For example, the robot in

Figure 4.4 successfully detects a gap in the environment with Rsa f e1, but fails to do so

when using Rsa f e2. The detection range Rsa f e is allowed to take different values depending

on the situation encountered:

Rsa f e =

0.1 m if robot is close to target configuration;

0.5 m otherwise.
(4.7)
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Figure 4.4: The effect of using a large value for Rsa f e.

The robot is considered close to the target configuration if:

(xtarget− xr)
2 +(ytarget− yr)

2 ≤ ε (4.8)

Compute the Configuration Space

Given the workspace obstacles set O, the objective is to compute Cobst for a 2-D robot disk

of radius R. First, consider the case where only a point obstacle exists in the workspace,

O = {p j}. To find Cobst , we slide the robot around p j and trace the configurations it went

through, as illustrated in Figure 4.5. Hence, Cobst is enclosed by a circle C j of radius R and

center I j = (I j,x, I j,y):

Cobst = {q ∈ C |(x− I j,x)
2 +(y− I j,y)

2 ≤ R2}, (4.9)

I j,x = R+d j cosβ j, (4.10)

I j,y = d j sinβ j,−100◦ ≤ β j ≤ 100◦. (4.11)
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Figure 4.5: C-space Algorithm.

Next, we find Li which is the radial distance between the robot and the boundary of C j at

angle βi. The equation of C j in polar coordinates is:

ρ j =
√

I2
j,x + I2

j,y, φ j = atan2(
I j,y

I j,x
), (4.12)

L2
i +ρ

2
j −2ρ jLi cos(βi−φ j) = R2. (4.13)

Equation 4.12 can be solved for Li, giving:

Li = min{ρ j cos(βi−φ j)±
√

R2−ρ2
j sin2 (βi−φ j)}, αmin ≤ βi ≤ αmax. (4.14)

Equation 4.14 has a real value if αmin and αmax are selected as:

αmin = min{φ j± sin
R
ρ j
}, αmax = max{φ j± sin

R
ρ j
} (4.15)

The above analysis is for the case when O contains a single obstacle point. In the common

case where O consists of m obstacle points, Cobst is found by:

Cobst =
⋃

1≤ j≤m

C j. (4.16)

The obstacle points have been enlarged by exactly the robot radius R. Although using the

exact robot dimension allows the detection of small spaces, the algorithm will be sensitive
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to control errors. To avoid these errors, the radius of C j is modified to a = R+dsa f e. In our

implementation dsa f e is chosen to be 20% of the robot radius.

Select Desired Steering Angle

The sectors in C are classified as free or occupied. The jthsectorS j is occupied if L j ≤

Rsa f e; otherwise it is free. Adjacent free sectors are grouped together to form gaps. Let

N f ree denote the number of sectors forming a gap. The gaps are classified as:

gap =


wide if N f ree > 3,

medium if N f ree = 3,

narrow if N f ree < 3.

(4.17)

Every gap edge is a candidate for the desired steering angle. The angle of the gap edge that

has the minimum cost is selected to be the desired steering angle γdesired . The selection

of the desired steering angle is first done within the wide gaps. If none is available the

search is performed within the medium gaps. The final choice is the narrow gaps. The cost

function is

Cost = c1(γre f −β j)+ c2β j. (4.18)

The first term in the cost function represents how close the desired steering direction is to

the goal location and the second term represents how close the current steering direction

is to the current robot heading. The coefficients c1 and c2 are chosen to be 0.7 and 0.3

respectively. However, if the robot detects oscillation in its motion then c1 and c2 are

chosen to be 0.3 and 0.7 respectively. This choice give more weight for steering angles that

produces smother trajectory. The robot is considered to be in oscillatory motion if one of

the the following conditions is true:

A(t) = R & A(t−T ) = L & A(t−2T ) = R, (4.19)

A(t) = L & A(t−T ) = R & A(t−2T ) = L, (4.20)

where A(t) is the action taken by the robot, R and L refer to turn right and turn left motions

respectively, and T is the sampling time. Rsa f e associated with an oscillation motion is
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used for the next 5 samples after an oscillation is detected. Figure 4.6 illustrates a case

where the robot trajectory oscillates. At time t0, the polar map has two gaps: G1 and G2.

The robot steers towards G2 because it is closer to qtarget . However, at t = t0+T , the robot

achieves a better view and therefore G2 no longer exists. Hence, the robot steers towards

G1. This action will bring the robot back to its initial state and G1 and G2 will appear in

the polar map. The robot keeps performing the same action again and again and as a result

it produces an oscillatory trajectory and gets trapped in this loop.

a cost function is introduced to select a steering angle that will maintain a smooth trajectory

as will be described later in this chapter.

Figure 4.6: A problematic situation where the robot trajectory oscillates.

The pseudo code for selecting a desired steering angle is given as:

Let G be the set of angles that falls in a gap.

Let Gwide be the set of angles that falls in a wide gap.

Let Gmedium be the set of angles that falls in a medium gap.

Let Gnarrow be the set of angles that falls in a narrow gap.

if γre f ∈ G then

γdesired = γre f

else

if Gwide 6= φ then
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γdesired = arg min
β j∈Gwide

Cost(β j).

else if Gmedium 6= φ then

γdesired = arg min
β j∈Gmedium

Cost(β j).

else if Gnarrow 6= φ then

γdesired = arg min
β j∈Gnarrow

Cost(β j).

else

Turn 180◦ around.

end if

end if

Select Desired Radius of Curvature

Due to the kinematic constraints, the robot can not achieve the desired steering angle in-

stantly. Instead, the robot follows a circular arc if the wheels’ velocities are constant. The

path from the initial configuration to the final configuration may intersect with Cobst(q(ti))

causing a collision. Figure 4.7 shows a case where a collision occurs because the robot

steered left with a relatively large radius. Therefore, using a radius of curvature that is a

function of the surrounding obstacles is safer than using a fixed radius for all obstacle sce-

narios. Let S0 be the sector that contains the local x axis and Sdesired the sector that contains

the desired steering angle Sdesired . Let Lm
j be the distance between the obstacle point o j and

the reference point m shown in Figure 4.8. The relationship between L j and Lm
j is given by:

Lm
j =

√
(L jcosβ j +a)2 +(L jsinβ j)2, (4.21)

where a is the distance between the robot reference point and the reference point m. Define

Lmin as the distance of the nearest obstacle point that exists anywhere between S0 and

Sdesired . The turning radius rc is chosen such that the trajectory passes through the point

(Lmin,γdesired) as shown in Figure 4.8. The turning radius is derived as follows. Consider

the isosceles triangle where the two equal sides have length rc and the remaining side has
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Figure 4.7: The robot collides with an obstacle because it uses a large turning radius

Figure 4.8: Turning Radius Selection.

length Lmin. From the law of cosines,

L2
min = 2r2

c −2r2
c cosα1. (4.22)
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α1 can be found as

α1 +2α2 = 180, (4.23)

α2 = 90− γdesired, (4.24)

⇒ α1 = 2γdesired. (4.25)

Using the double angle formula and equation 4.22, we can find rc as

rc =
Lmin

2sin(γdesired)
. (4.26)

To include a safety buffer, the turning radius is designed to pass through the point (Lmin−

dsa f e2,γdesired) instead. Also, the turning radius rc saturates if it is greater than a threshold

value rlarge. In our implementation, dsa f e2 is selected to be 1.2R and rlarge = 0.5m.
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5. Dynamic Neural Networks

Artificial Neural Networks (ANNs) are classified into Static Neural Networks (SNNs) and

Dynamic Neural Networks (DNNs). Neurons in SNN are soley connected via feedfor-

ward connections. Such networks are memmory-less, therefore, it statically maps the input

space to the output space. Applications suitable for this type of networks include static

pattern recognition. On the other hand, neurons in DNN are allowed to have feedback

loops. Hence, DNN is capable of capuring temporal dependencies. Appliations for this

type of networks include sequential pattern recognition (such as speech recognition), and

time series prediction that are beyond the power of SNN. One type of DNNs is Diagonal

Recurrent Networks (DRNs). Figure 5.1 depicts the network architecture and the notation

used. The network weights are divided into 3 groups: Weights between input and hid-

Figure 5.1: Neural Network Architecture.

den layers W hi, recurrent (self-feedback) weights in hidden layer R, and weights between
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hidden and output layers W oh.

W hi =

whi
11 whi

12 whi
13

whi
21 whi

22 whi
23

 , R =

rh
11 0

0 rh
22

 ,

W oh =
(

woh
11 woh

12 woh
13

)
.

For all groups, the index is composed of two terms. The first term referes to the destinatin

neuron and the second referes to the source neuron. For example, whi
i j is the weight of the

connection from the jth input unit to the ith hidden unit. To model the DRN, we introduce

the following notations:

ui(t): The ith external input at time t.

neth
i (t): Net input to the ith hidden unit at time t.

neto(t): Net input to the output neuron at time t.

Oh
i (t): Output of the ith hidden neuron at time t.

y(t): Output of the output neuron at time t.

fh: Hidden layer activation function.

fo: Output layer activation function.

η: is the network learning rate.

Now, we can write the output of the network as

y(t) = fo(neto(t)). (5.1)

The net input at the output neuron is given by

neto(t) = woh
11 +woh

12Oh
1(t)+woh

13Oh
2(t). (5.2)

In matrix format, equation 5.2 can be written as

neto(t) =W ohOh
b(t), (5.3)

Oh
b(t) =


1

Oh
1(t)

Oh
2(t)

 . (5.4)
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The output of the ith hidden unit is given by

Oh
i (t) = fh(neth

i (t)), i ∈ {1,2}. (5.5)

The net input at the ith hidden neuron is given by

neth
i (t) = whi

i1 +whi
i2u1(t)+whi

i3u2(t)+ rh
iiO

h
i (t−1), i ∈ {1,2}. (5.6)

In matrix format, equation 5.6 can be written as

neth(t) =W hiX(t)+ROh(t−1), (5.7)

X(t) =


1

u1(t)

u2(t)

 , Oh(t−1) =

Oh
1(t−1)

Oh
2(t−1)

 . (5.8)

Let D(t) denote the desired output value. Then, define the error vector e(t) as

e(t) = D(t)− y(t). (5.9)

Let the overall network error at time t be

J(t) =
1
2

eT (t)e(t). (5.10)

Assume that the network run starts at time to up to some final time t f , then the total error is

given by

Jtotal =
t f

∑
t=to

J(t). (5.11)

The objective is to adjust the network weights such that the total error Jtotal is minimized.

The network weights are adjusted according to the gradient descent method as

∆wi j =−η
∂Jtotal

∂wi j
. (5.12)
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Since the total error is just the sum of the instantaneous errors, then

∆wi j =
t f

∑
to

∆wi j(t). (5.13)

and ∆wi j(t) is given by

∆wi j(t) =−η
∂J(t)
∂wi j

, (5.14)

∆wi j(t) = η(D(t)− y(t))
∂y(t)
∂wi j

. (5.15)

Now, we differentiate y(t) with respect to whi
i j , rii, and woh

i j to get

∂y
∂whi

11
= f ′o(neto(t))woh

12
∂Oh

1(t)
∂whi

11
, (5.16)

∂y
∂whi

12
= f ′o(neto(t))woh

12
∂Oh

1(t)
∂whi

12
, (5.17)

∂y
∂whi

13
= f ′o(neto(t))woh

12
∂Oh

1(t)
∂whi

13
, (5.18)

∂y
∂whi

21
= f ′o(neto(t))woh

13
∂Oh

2(t)
∂whi

21
, (5.19)

∂y
∂whi

22
= f ′o(neto(t))woh

13
∂Oh

2(t)
∂whi

22
, (5.20)

∂y
∂whi

23
= f ′o(neto(t))woh

13
∂Oh

2(t)
∂whi

23
, (5.21)

∂y
∂r11

= f ′o(neto(t))woh
12

∂Oh
1(t)

∂r11
, (5.22)

∂y
∂r22

= f ′o(neto(t))woh
13

∂Oh
2(t)

∂r22
. (5.23)

This can be written in a compact way as

∂y
∂whi

i j
= f ′o(neto(t))woh

1,i+1
∂Oi

∂whi
i j
, (5.24)

∂y
∂rii

= f ′o(neto(t))woh
1,i+1

∂Oi

∂rii
. (5.25)
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To completely define the gradient of the output with respect to the weights, the derivatives

of the output of the hidden layer with respect to the weights are found as

∂Oh
1(t)

∂wh
11

= f ′h(neth
1(t))(1+ r11

∂Oh
1(t−1)
∂wh

11
), (5.26)

∂Oh
1(t)

∂wh
12

= f ′h(neth
1(t))(u1(t)+ r11

∂Oh
1(t−1)
∂wh

12
), (5.27)

∂Oh
1(t)

∂wh
13

= f ′h(neth
1(t))(u2(t)+ r11

∂Oh
1(t−1)
∂wh

13
), (5.28)

∂Oh
2(t)

∂wh
21

= f ′h(neth
2(t))(1+ r22

∂Oh
2(t−1)
∂wh

21
), (5.29)

∂Oh
2(t)

∂wh
22

= f ′h(neth
2(t))(u1(t)+ r22

∂Oh
2(t−1)
∂wh

22
), (5.30)

∂Oh
2(t)

∂wh
23

= f ′h(neth
2(t))(u2(t)+ r22

∂Oh
2(t−1)
∂wh

23
), (5.31)

∂Oh
1(t)

∂r11
= f ′h(neth

1(t))(O
h
1(t−1)+ r11

∂Oh
1(t−1)
∂r11

), (5.32)

∂Oh
2(t)

∂r22
= f ′h(neth

2(t))(O
h
2(t−1)+ r22

Oh
2(t−1)

r22
). (5.33)

This can be written in a more compact way as

∂Oi(t)
∂whi

i j
= f ′h(neth

i (t))((X j(t)) j + rii
∂Oh

i (t−1)
∂whi

i j
), (5.34)

and
∂Oi(t)

∂rii
= f ′h(neth

i (t))(O
h
j(t−1)+ rii

∂Oh
i (t−1)
∂rii

). (5.35)

The gradient of the output with respect to the output layer weights is

∂y(t)
∂woh

11
= 1, (5.36)

∂y(t)
∂woh

12
= Oh

1(t), (5.37)

∂y(t)
∂woh

13
= Oh

2(t). (5.38)

This can be written in a more compact form as

∇Wohy(t) = Oh
b(t). (5.39)
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After deriving all required equations, the update rules for the network weights are

∆whi
i j(t) = ηe(t)

∂y(t)
∂whi

i j
, (5.40)

∆ri j(t) = ηe(t)
∂y(t)
∂ri j

, (5.41)

∆woh
i j (t) = ηe(t)

∂y(t)
∂woh

i j
. (5.42)

To gurantee convergence, and for faster learning adaptive learning rate η is used. To prove

stability, we need to find a lyapunov function V (t) where V (t) > 0and∆V (t) < 0 Let V (t)

be given by

V (t) =
1
2

e2(t). (5.43)

The changes of 5.43 due to training is given by

∆V (t) =V (t +1)−V (t) (5.44)

=
1
2
(
e2(t +1)− e2(t)

)
(5.45)

=
1
2

((
e(t)+∆e(t)

)2− e2(t)
)

(5.46)

= ∆e(t)
(
e(t)+

1
2

∆e(t)
)
. (5.47)

The changes of the error due to training is given by

∆e(t) =
(

∂e(t)
∂W

)T
∆W, (5.48)

where W is an arbitrary weight vector in Rn. From the update equations 5.40, 5.41, 5.42,

∆W is given by

∆W = ηe(t)
∂y(t)
∂W

. (5.49)

Subsituting 5.48, 5.49 and ∂e(t)
∂W =−∂y(t)

∂W in equation 6.15:

∆V =
(

∂e(t)
∂W

)T
ηe(t)

∂y(t)
∂W

(
e(t)+

1
2

(
∂e(t)
∂W

)T
ηe(t)

∂y(t)
∂W

)
(5.50)

=−ηe2(t)
∂y(t)
∂W

2

+
1
2

η
2e(t)2 ∂y(t)

∂W

4

. (5.51)
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Let g(t) = ∂y(t)
∂W , then

∆V =−e2(ηg(t)2− 1
2

η
2g(t)4) (5.52)

Hence, the convergence is guranteed for

0 < η <
2

g2(t)
. (5.53)
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6. Neural Network based Mobile Robot

Navigation Algorithm

Controller Architecture

Training phase 1: Coarse tuning. A neural network is proposed to work in col-

laboration with the navigational algorithm developed earlier to optimize the navigational

capabilities of the overall system. While the navigational algorithm avoids obstacles, it does

not contain any constraints on the length of the path. The neural network is incorporated

into the system to minimize the length of the path taken. The neural network selects the

optimum trajectory based on obstacle information, target configuration, and the radius of

turn proposed by the navigational algorithm. The neural network outputs the most promis-

ing radius of turn of the robot trajectory. For the neural network to achieve this objective,

it needs to overcome few challenges. One of those challenges is that the ‘correct’ radius

of turn is not available. Hence, the training cannot be conducted in a supervised manner

where a dataset is available that helps the network form a map between the input data and

the desired value. To overcome this obstacle, a hybird training scheme is proposed. First,

the neural network will receive supervised training based on a sub-optimal dataset. Sec-

ond, the neural network will be trained to adjust its weights to produce an optimum value

based on an evaluation function. The training phases are further explained in the following

paragraphs.

Training phase 1: Coarse tuning. In this phase the network is trained to map the

input values to a desired value. The data set is generated using the navigational algorithm.

The training is based on backpropogation and is done offline. The purpose of this training
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phase is to provide an adequate initial set of weights for the next phase as opposed of

starting phase 2 from random variables. The data set is generated by having the robot

maneuver a number of obstacle scenarios as shown in Figure 6.1. The different scenarios

are as follows:

• Scenario 1: Moving in a gap between two obstacles. The gap width is slightly wider

than the robot.

• Scenario 2: Avoiding a narrow gap and contouring an obstacle on the right.

• Scenario 3: Contouring an obstacle on the left.

• Scenario 4: Starting in a dead end situation

The testing data set consists of 1 scenario where the robot contours an obstacle on the

right as depicted in Figure 6.1e. The robot trajectories are produced by the navigational

algorithm described in [20]. The training data set consists of 295 different instances while

the testing data set consists of 58 instances. The off-line training scheme is shown in Figure

6.3. The sum squared error (SSE) of the trained network is shown in Figure 6.2a. The

network output versus the desired output for the training and testing data sets are shown in

Figure 6.2b and Figure 6.2c.

Training phase 2: Fine tuning. The optimum turning radius is unknown. How-

ever, the radius taken by a system can be evaluated. In this phase of training, the network

recieves feedback about its performance based on an evaluation function. The evaluation

function is described as:

J =
1
2

e2 =
1
2
(e2

x + e2
y) (6.1)

where:

ex = xt− x (6.2)

ey = yt− y (6.3)

The derivative of the evaluation function with respect to the weights is given by:

∂J
∂W

=−(exJx + eyJy)
∂r
∂W

(6.4)
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(a) (b)

(c)

(d) (e)

Figure 6.1: Training and testing scenarios. (a) Training scenario 1. (b) Training scenario 2.
(c) Training scenario 3. (d) Training scenario 4. (e) Testing scenario.

where Jx and Jy are the sensitivities of the system and are given by:

Jx =
∂x
∂r

= sign
(x(t)− x(t−1)

r(t)− r(t−1)

)
(6.5)

Jy =
∂y
∂r

= sign
(y(t)− y(t−1)

r(t)− r(t−1)

)
(6.6)

∂r
∂W is estimated online using RTRL:

∂r
∂W

=
∂O
∂W

(6.7)
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(a) (b) (c)

Figure 6.2: Training and testing scenarios. (a) The sum squared error versus the number of
training epochs. (b) Network output versus the desired network output using the training
data set. (c) Network output versus the desired network output using the testing data set.

The weight is updated according to:

∆W =−η
∂J
∂W

(6.8)

Subsituting eq.6.1 into 6.8 gives:

∆W =−ηe
∂e
∂W

(6.9)

The training phases are shown in Figure 6.3 and 6.4.

Figure 6.3: Phase 1 Training.
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Figure 6.4: Phase 2 Training

System Stability Proof

We use lyapunov theorem to prove system stability: Define the lyapunov function as:

V (k) =
1
2

e2(k)≥ 0 (6.10)

To prove system stability, we need to show that ∆V ≤ 0.Define ∆V as:

∆V =V (k+1)−V (k) (6.11)

Subsitute eq.6.10 in eq.6.11

∆V =
1
2

(
e2(k+1)− e2(k)

)
(6.12)

e(k+1) can be written as:

e(k+1) = e(k)+∆e(k) (6.13)

Subsitute eq.6.13 in eq.6.12:

∆V = e(k)∆e(k)+
1
2

∆
2e(k) (6.14)

= ∆e(k)
(

e(k)+
1
2

∆e(k)
)

(6.15)

48



∆e(k) is given by:

∆e(k) =
[

∂e(k)
∂W

]T
∆W (6.16)

Subsituting eq.6.9 in 6.16 gives:

∆e(k) =−ηe‖ ∂e
∂W
‖2 (6.17)

In order to find ∂e(k)
∂W ,the chain rule is used:

∂e
∂W

=
∂r
∂W

[
∂e
∂x

∂x
∂r

+
∂e
∂y

∂y
∂r

]
(6.18)

where:

∂e
∂x

=−e1

e
(6.19)

∂e
∂y

=−e2

e
(6.20)

Subsituting equations (6.5, 6.6,6.19,6.20) in eq.6.18 gives:

∂e
∂W

=− ∂r
∂W

(e1Jx + e2Jy

e

)
(6.21)

Subsituting 6.21 in 6.16, gives:

∆e(k) =−η

e
‖ ∂r

∂W
‖2(exJx + eyJy)

2 (6.22)

Subsituting 6.22 in 6.15:

∆V = η‖ ∂r
∂W
‖2(exJx + eyJy)

2
(
−1+

η

2e2‖
∂r
∂W
‖2(exJx + eyJy)

2
)

(6.23)

the term η‖ ∂r
∂W ‖

2(exJx + eyJy)
2 ≥ 0, hence inorder to have ∆V ≤0, η should be chosen as:

η≤ 2e2

‖ ∂r
∂W ‖2(exJx + eyJy)2

(6.24)
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Design DRN

Step 1 and 2. The dataset is divided into training, and testing: The training dataset

are used to adjust the network parameters to match the desired output in the training set.

Once the network is trained, the testing dataset is used to validate the trained network. It is

important for the training dataset to be representative because this will effect the accuracy

and generalization capabilities of the network: The network cannot be more accurate than

the data used to train it and multilayer networks can generalize only within the training

input range. They do not have the ability to accurately extrapolate beyond the training

input range. Before training the inputs are scaled into the range [−1,1] using:

y =
x− xmin

xmax− xmin
(ymax− ymin)+ ymin; (6.25)

The maximum and minimum values are estimated from the trainig dataset, hence, testing

data presented to the network are scaled using the estimated min/max values of the trainig

dataset.

Step 3 and 4: Create and configure the network. The structure of the network

is illustrated in. The implemented network has 22 input units, 5 hidden units, and 1 output

unit. The activation functions for the hidden and output layers are tanh, and linear respec-

tively. The network is trained using RTRL. For the network to be able to generalize and

in other words not suffer from overfitting, regulaization has to be performed. Normally,

the number of hidden units are varied manually for the best performance in training and

validation datasets.

Step 5 and 6: Initialize the weights and biases and train the network.

Step 7: Validate the network. The DRN function is described below:

1: Inputs: W hi, R, W oh, η, xold , yold , rold Oh
old , ∂Oold

∂W hi , ∂Oold
∂R , xtarget , and ytarget .

2: in← 22

3: hi← 5

4: ou← 1

5: fh← ‘tanh’
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6: fo← ‘linear’

7: umin← [.01∗ones(1,20),−180,0]

8: umax← [3∗ones(1,20),180, .05]

9: Dmin← 0

10: Dmax← 0.5

11: un = 2(x−umin)./(umax−umin)−1{ Normalize inputs to [1,−1]}

12: Compute neural networks forward dynamics:

Oh = fh

(
W hi(1 un

)T
+ROh

old

)
, rn =W oh(1 Oh)T

.

13: Compute error J and system sensitivities Jx, Jy:

J =
1
2
(e2

x + e2
y)

Jx = sign
( x− xold

rn− rold

)
Jy = sign

( y− yold

rn− rold

)
.

14: for i = 1 to hi do

15: for j = 1 to in+1 do

16: ∂O
∂whi

i j
= f ′h(neth

i )(X j + rii
∂Oold
∂whi

i j
)

17: end for

18: end for

19: for i = 1 to hi do
∂O
∂rii

= f ′h(neth
i )(O

h
old(i)+ rii

∂Oold
∂rii

)

20: end for

21: ∂r
∂Woh

= (Oh
b)

T ;

22: for i = 1 to hi do

23: for j = 1 to in+1 do
∂r

∂whi
i j
= f ′o(neto)woh

1,i+1
∂Oi
∂whi

i j

24: end for

25: end for

26: for i = 1 to hi do
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∂r
∂rii

= f ′o(neto)woh
1,i+1

∂Oi
∂rii

27: end for

28: Update Weights:

∆W hi = η(exJx + eyJy)
∂r

∂W hi ∆R = η(exJx + eyJy)
∂r
∂R

∆W oh = η(exJx + eyJy)
∂r

∂W oh W hi =W hi +∆W hi

R = R+∆R W oh =W oh +∆W oh

29: g =
[

∂r
∂W hi ,

∂r
∂R ,

∂r
∂W oh

]
30: gnorm = gT g

31: if gnorm > gmax then

32: gmax = gnorm

33: end if

34: η = 1
gmax

35: Update old values:

xold = x yold = y

rold = rn Oh
old = Oh

∂Oold

∂W hi =
∂O

∂W hi
∂Oold

∂R
=

∂O
∂R

36: r = Dmax−Dmin
2 (rn +1)+Dmin {Scale output to [Dmin,Dmax]}

37: return r, W hi, R, W oh, η, xold , yold , rold Oh
old , ∂Oold

∂W hi , ∂Oold
∂R .

DRN Obstacle Avoidance Pseudocode

1: Set initial conditions

η = 0.001

c1 = 0.7 , c2 = 0.3

Rsa f e = 0.5

xgoal = 1, ygoal =−1
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2: load initial weights for Whi, Woh, Rh

3: Set serial communication parameters, e.g. baudrate

4: Set direction and initial value of DIO pins

5: open text file to record robot status {At this point the supervisor should connect the

laser cable to COM2}

6: while start button not pressed do

Do nothing

7: end while

8: Read robot heading from compass sensor (theta)

9: Request measurments collected by microcontroller (NR , NL , omegaR , OmegaL ,

dis).

10: Read obstacle distribution from laser sensor (Obst)

11: Compute robot linear and angular velocities according to:

v = 0.5*r*(omegaR+omegaL)

xdot = v*cos(theta)

ydot = v*sin(theta)

12: Find x, y position of the midpoint of wheel through trapezoidal integration

x = x old +Ts/2*(xdot+xdot old)

x old = x

xdot old = xdot

y = y old + Ts/2*(ydot+ydot old)

y old =y

ydot old = ydot

13: Find location of reference point at the laser location

x laser = x + 0.1*cos(theta)

y laser = y + 0.1*sin(theta)

14: Compute error between refrence point and the goal configuration

dy = ygoal-y laser

dx = xgoal-x laser

alpha = atan2(dy,dx)

angle = diffangles(theta, alpha). Note: −180◦ ≤ angle≤ 180◦

angle no obst = angle
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15: Limit the obstacle scan angle to [−100,100[ and save in (laser pt)

16: Enlarge obstacle in propotion to the robot radius R and the safety buffer Rsafe.

17: Find the distance between laser reference point and the enlarged obstacle (dlarge)

18: Classify cspace sectors to free or occupied

19: if angle no obst is occupied then

20: Form gaps by grouping neighbouring sectors

21: Classify gaps to wide, medium , and narrow

22: Select best gap from wide angle, medium, narrow, turn 180◦ on spot

23: Select turning radius: Finf min obdt point that robot encountert in path

from initial pose to final pose

24: Compute dmin with respect to reference point at mid of wheel axes

25: Include safety distance: d min m = d min m -1.2R

26: Saturate block for dmin

27: if error ≤ 0.3 then

28: if dmin≥ 0.1 then

dmin m = 0.1

29: end if

30: end if

31: end if

32: Calculate rc

rc = fabs(dmin m/2/sin(angle))

33: if error ≤ 0.3 then

34: rc=.3

35: end if

36: if rc≥ 0.5 then

37: rc = 0.5

38: end if

39: Calculate radius using DRN (rn)

40: if rn≤ 0 then

41: rn=0

42: end if

43: if error ≤ 0.3 then
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44: if rn≥ 0.3 then

45: rn = 0.3

46: end if

47: end if

48: if rn≥ 0.5 then

49: rn =0.5

50: end if

51: Convert rc to duty cycle

duty cycle = floor(15*(rnL-1)/(rnL+1))

52: if angle=500 or reverse=1 then

53: duty cycle = 0x1F

54: move(rotate left, duty cycle)

55: else if −2≤ angle and angle≤ 2 then

56: duty cycle = 0x0F

57: move(forward, duty cycle);

58: else if angle≥ angle thresh then

59: move(left, duty cycle);

60: else if angle≤ -angle thresh then

61: move(right, duty cycle);

62: end if

63: Compute the error between current and goal location

error = (xgoal-x laser)*(xgoal-x laser)+(ygoal-y laser)*(ygoal-y laser);

64: if error ≤ .3 then

65: R safe = .2

66: else

67: R safe = .5;

68: end if

69: if oscillatory motion detected then

70: c1=0, c2 = .7

71: else

72: c1=.7, c2 = .3

73: end if
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74: if error≤ dis thresh then

75: Terminate motion

76: end if
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7. Robot Platform and Experimental

Results

Mobile Robot Architecture

The mobile robot platform is designed to operate in an indoor environment with a solid

flat surface. A differential steering system is employed to generate forward and steered

motion. The platform provides a rich computing environment consisting of a single board

computer and a microcontroller. It is also equipped with obstacle detection sensors such

as laser range sensor and ultrasonic as well as localization sensors such as encoders and a

compass. The platform has the flexibility of the addition of new sensors. The mobile robot

platform is shown in Figure 7.1.

Figure 7.1: Mobile robot platform.

The general functions the robot perform to avoid obstacles are depicted in 7.2. The target

location is given by an external source such as a human operator. The robot estimates its
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current location in the localization stage by processing the odometry measurements from

the microcontroller. It also estimates the environment at the current robot configuration

from the range measurements provided by the laser. The environment estimate together

with the difference between the current and target locations are supplied to the obstacle

avoidance algorithm which determines the desired wheel velocities to avoid the obstacles

and reach the target configuration.

Figure 7.2: Mobile robot general functions.

Figure 7.3 illustrates how the different components communicate together. The work flow

starts from the SBC where the desired robot velocity (duty cycle) is determined and trans-

mitted through digital input/output (DIO) lines to the PWM card. In the PWM card, the

actual PWM signal is generated and supplied to the motors driving system (H-bridges) to

deliver the corresponding voltages to the dc motors. The motion of the robot is generated by

the motors driving the rubber wheels. Encoders count the number of revolutions the wheels

take in the form of 128 pulses for every revolution. These pulses are fed to the encoders

interface circuit which performs quadrature counting to enhance the encoders resolution

by a factor of 4. The encoders interface also measure the direction of motion (forward

or backward). The microcontroller captures the clock of the encoders signals to deter-

mine the wheels position and velocities.Also, it triggers the sonar sensor to take new range

measurement. The sonar sensor measures the relative distance between the robot and the

nearest obstacle. Next, the microcontroller arranges the measurements (position,velocity,

and range distance) into a packet and waits for a request from the SBC. Once the SBC

requests data by setting the corresponding DIO high, the packet is transmitted through the

serial port. The SBC asks the laser sensor to send new range measurements and the com-
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pass sensor to send new robot orientation. Serial communication is used to interface the

SBC with the sensors. The SBC should process all data and update the motor velocity

accordingly. The cycle continues till a desired robot configuration is reached. A delay is

added in the main loop in order to have a 1s sampling time. The details of the mechanical

and electrical designs are described in the following sections.

Figure 7.3: Hardware Block Diagram.

Mechanical design.

Robot chassis. The platform is circular in shape and is made up of three wooden

layers. The bottom layer houses the wheels, motors, encoders, batteries, and electric drive

system. The middle layer houses electronic cards and ultrasonic sensors while the upper

layer houses the embedded computing boards and the laser range sensor.

Locomotion. The locomotion of the platform was chosen to maximize the ma-

neuverability, and stability of the robot given the desired work space environment. The

environment the platform is intended to work in is a laboratory environment which has

a solid flat surface. An optimal and widely used choice for such requirements is differ-

entially steering system. Three wheels are used: two motorized wheels and one caster

wheel to guarantee stable balance. On the circular chassis of the robot, the two motorized

wheels are placed at the front and the unpowered caster wheel is placed at the rear. The

front wheels have a radius of 7cm and are made of rubber. The caster wheel is made of

frictionless plastic material.

59



The maneuverability of this locomotion features a zero turn radius: motion in any direction

may be achieved by an initial rotational motion without changing its ground footprint. The

controllability aspect of this locomotion has the drawback of that the two motors attached

to the two wheels must be driven along exactly the same velocity profile, which can be

challenging considering variations between wheels, motors, and environmental differences.

Electrical design.

Power system. The robot is powered by one lead acid 12 V, 7 Ah battery and

two Ni-Mh 7.2 V, 4200mAh batteries connected in series to provide 14.4 V. Figure 7.4

illustrates the power distribution of the system. The 14.4 V source provides power to the

microcontroller and the laser sensor while the 12 V battery provides power to the motors,

single board computer, onboard electronics and the remaining sensors.

Figure 7.4: Power Supply System.

Drive system. The motors attached to the wheels are harmonic drive micro dc

motors. Each motor is controlled by an H-bridge through a pulse width modulated (PWM)

signal which sets the motor velocity and direction. The PWM signal has a resolution of

four bits, resulting in sixteen different levels of speed. The PWM signal is generated using

a PWM card that has 8 input channels to specify the PWM duty cycle for both motors. The

duty cycle is specified using the digital I/O lines of the SBC.

Embedded computing design. As stated in the design consideration, the robot

is designed to have a rich computing environment. This will allow the robot to house
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computationally expensive sensors as well as execute a complex path planning algorithm.

The robot has two processors consisting of a single board computer and a microcontroller.

Single Board Computer. The brain of the robot is a PC compatible single board

computer (SBC). The main advantage of SBC is that it has the computation and memory

capability of a moderate PC running at a 5 Vdc. The SBC is equipped with an AMD

Elan520 processor that is clocked at 133MHz. It is running linux as its operating system.

The responsibilities assigned to the SBC are as follows:

• Set the velocity of the robot by specifying the duty cycle of the PWM signal that will

be generated by an external PWM card.

• Receive data packets from the microcontroller that contains information about the

wheels positions and velocities and the sonar measurement. The SBC will use these

data to make intelligent decision about the robot navigation and obstacle avoidance

problem.

The current functionality of the SBC is depicted in the Figure 7.5.

Microcontroller. The main task for the microcontroller is to interface with the

various sensors that have precise timing requirements such as encoders and ultrasonic sen-

sors. The microcontroller measures the position and speed of the left and right wheels.

It also generates a 10us signal that pings (triggers) the ultrasonic sensor and measures its

pong (echo) which is a pulse whose width varies in proportion to the measured distance.

Figure7.6 shows the the connections between the sensors and the microcontroller. The mi-

crocontroller performs position measurements. The clock of the encoder is connected to

an input capture pin. This pin generates an interrupt when a rising edge has occurred. The

number of times the rising edge had occurred is saved in a variable memory location. These

variables are incremented or decremented depending on the DIR pin of 7084.

Also, the microcontroller performs speed measurements. The angular speed of each wheel

is given by ω = ∆ϕ

∆t . For an encoder with a resolution of p = 128 pulse/rev, the angle

swept between 2 rising edges of the encoder clock is ∆ϕ = 2π

p = 0.0213rad. Thus, ω can

be computed if the time period between the two edges is measured. This is done using

the timer module of the microcontroller. It should be noted that the number of times the
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Figure 7.5: The SBC flowchart.
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Figure 7.6: The connections between the microcontroller and the sensors.

microcontroller timer resets because of overflow should be tracked. This is essential for

objects moving at slow velocities. The 68HC12 microcontroller bus clock is 24MHz. The

prescaler is set to 16 for reasons that will become apparent when discussing the sonar

operation. Thus, the maximum period the timer exhibits before overflowing is Tmax =

16(216

f ) = 43.7ms.

The microcontroller obtain measurements from the sonar sensor. The 68HC12 send a trig-

ger pulse of 10us width at the beginning of the main code. The time just before the sonar is

triggered is recorded. The sonar produces an echo which is a pulse whose width is propor-

tional to the measured distance from the obstacle. The 68hc12 is programmed to generate

an interrupt when the falling edge of the echo signal is detected. To make sure that the mi-

crocontroller timer does not overflow before the falling edge of the echo event, a prescaler

of 16 is chosen. With this prescaler, the maximum pulse width that can be measured is

43.7, which is larger that the maximum width that can be generated by the sonar (40ms).

The microcontroller uses a serial communication with the SBC. The serial communications

settings are describe in Figure 7.7. The order of the data sent by 68HC12 is depicted

Figure 7.7: Communication settings.

in Figure 7.8. All the data are decimal values, therefore, characters are used to segment

between the different sensors values. The sensors readings are defined as float. The size of
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Figure 7.8: Data packet.

a float is 4 bytes. The size of a character is 1 byte. Thus, the size of the whole data packet

is 5*(4bytes+1byte) = 25bytes. The time needed to transmit this packed is: t = 25
115200 =

0.217ms. The SBC requests the microcontroller to send data through serial by using digital

output pins. When I/O pin, PB4, of microcontroller is set high, microcontroller transmits

data. The functionality of the microcontroller is depicted in Figure 7.9.

Figure 7.9: Microcontroller flow chart of the main program.

Laser range sensor. Acquiring information about the presence of an object and

its location remotely without physical contact is a key measurement in a wide range of ap-
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Figure 7.10: Microcontroller interrupts.

plications. Optical (laser) sensors, ultrasonic sensors, computer vision sensors are different

sensors that are capable of acquiring such measurements. Optical is one of the most accu-

rate and fast ranging sensors. This is owed to its optical nature. Light propagates extremely

fast with a speed of 3×108 m/s allowing the sensor to generate new measurements at a high

rate. Also the shortwave allows the detection of extremely small objects such as cloud par-

ticles. To conclude, optical range finders generate high resolution and high frequency data.

Thus, its computation requirement falls between the minimal requirement of ultrasonic and

the expensive requirement of computer vision.

The principle of operation of the optical range sensor is based on the phase shift mea-

surement technique. It measures the distance by first emitting a continuous light beam.

Once the beam hits an object, it gets reflected coaxially (isotropically) back to the sensor.

The sensor measures the phase difference between the transmitted and received wave. The
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distance can be computed as:

d =
φλ

4π
=

φc
4π f

(7.1)

Where:

d is the distance to a target,

φ is the measured phase shift,

c is the speed of light,

f is the modulation frequency,

and λ is the modulation wavelength.

The phase shift is measured by multiplying the transmitted signal with the received signal,

Figure 7.11: Relationship between outgoing and reflected waveforms, where x is the dis-
tance corresponding to the differential phase.[3]

then averaging their product over many cycles. This can be expressed mathematically as:

lim
T→∞

1
T

∫ T

0
sin(

2πc
λ

t)+
4πd

λ
sin(

2πc
λ

)dt (7.2)

which reduces to:

Acos(
4πd

λ
) (7.3)

Where:

t is time,

T is the averaging interval,
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and A is a gain.

As it can be seen, the actual phase shift measured is the cosine of the phase shift, not the

phase shift itself. As a result, there will be more than one distance that map to the same

phase shift φ as expressed in the following equation:

cos(φ) = cos(
4πd

λ
) = cos(

2π(x+nλ)

λ
) (7.4)

where:

d =
x+nλ

2
= true distance to target, (7.5)

x is the distance corresponding to differential phase φ, n is the number of complete modu-

lation cycles.

This introduces a so called ambiguity interval Ra for scenarios where the round trip distance

exceeds λ.Thus, sensors transmitting only a single wave have to limit their maximum mea-

surable distance to less than the ambiguity interval Ra. To solve the ambiguity, successive

measurements of the same object using two different modulation frequencies can be made.

Thus, two equations with x and n as unknowns can be generated allowing to uniquely solve

the ambiguity and determine the true distance d.

The main components composing the hardware of the sensor are: light source, light detec-

tor, rotating mirror (mirror + motor). The mirror serves in converting the vertical transmit-

ted beam into a horizontal beam and the horizontal received beam into a vertical beam. The

hardware of the sensor is depicted in Figure 7.12.

The specifications that can be used to describe and evaluate an optical range sensor

are described below. For example, a certain application may desire a high detection range

while another real time application, such as fast moving robots, may require fast response

time.

Laser Specifications:

• Light source

• Modulated frequency: this affects the accuracy of the measurements and the mini-

mum object size that can be detected.

• Detection range

• Accuracy
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Figure 7.12: Laser Sensor Hardware.

• Angular resolution

• Response time

• Dimensions

• Weight

• Environment: Indoor, outdoor

• Power consumption

Hokuyo sensor

The communication between the sensor and the host can be established using serial RS232C

or USB cable. Sensor’s data are encoded to reduce the transmission time between the host

and sensor. These data should be decoded at the host side before processing them. The

Three-Character encoding technique is applied. This encoding technique is used to express

data having maximum length of 18 bits. Encoding is done by separating data into upper,

middle and lower 6 bits and then 30H is added to convert them into ASCII characters. Fig-

ure 7.13 and Figure 7.14 show examples of character encoding and decoding examples.

Measurement connection and data points

This section gives some basic information on sensor’s measurement parameters. These

parameters are important when reading the measurement data from the sensor. Figure 7.15
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Figure 7.13: Character encoding example

Figure 7.14: Character decoding example

shows the sensor’s measurement details.

The scanner rotates in an anti-clockwise direction when viewed from top. Detection Range

(E) is the maximum angle used by the sensor scans for measurement. Angular Resolution

is defined as the 360 degrees divided by the Slit Division (F). Measurement points are

called Steps. Step 0 is the first measurement point. Step A is the initial measurement point

in the detection range. Step B is the sensor front step. Step C is the end point of the

detection range. Step D is the last measurement point. Figure7.16 shows the measurement

parameters of some sensor models.

Essential Sensor Commands. BM command- Measurement enable command

Initially the laser is switched off and the sensor’s measurement state is disabled by default.

The operator may notice that the sensor LED is blinking on start up indicating that the

measurement state is disabled. To enable the measurement state, a serial command has to

be sent of the following format:
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Figure 7.15: Sensor Measurement parameters

Figure 7.16: The measurement parameters of some sensor models

BM\r

Notice that the commands are case sensitive.

The sensor is expected to reply with the command echo followed with the sensor status

which can take one of the following:

0 command received with no errors

1 unable to control due to laser malfunction

2 laser is already on

GD/GS command send sensors latest measurement upon the reception of the command

Whenever the sensor receives this command it supplies the latest measurement data to the

host. If the laser is switched off, it should be switched on by sending BM-Command before

the measurement. The laser should be switched off if necessary by sending QT-Command

after a measurement is complete.

• Starting Step and End Step: Starting step and End Step can be any points between 0

and maximum step. End Step should be always greater than Starting step. Example:
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Figure 7.17: GD command

To obtain data from step 10 to 750: Starting point : 0010 (30H,30H, 31H, 30H) End

Point : 0750 (30H, 37H, 35H, 30H) Note that the starting/End step has to be specified

using four digits where each digit is a byte.

• Cluster Count: Cluster Count is the number of adjacent steps that can be merged into

single data. It has a range 0 to 99. When cluster count is more than 1, step having

minimum measurement value (excluding error) in the cluster will be the output data.

Example: If Cluster Count is 3 and measurement values of 3 adjacent steps in this

cluster are 3059, 3055 and 3062, the received data from the sensor will be 3055.

• Scan Interval: Skipping the number of scans when obtaining multiple scan data can

be set in Scan Interval. The value should be in decimal. Number of Scans: User

can request number of scan data by supplying the count in Number of Scan. If

Number of Scan is set to 00 the data is supplied indefinitely unless canceled using

[QT-Command] or [RS-Command]. The value should be in decimal.

The sensor reply will vary with the size of the data:

Figure 7.18: Sensor to host
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Experimental Results for Geometrical Obstacle Avoidance Algorithm

The obstacle avoidance algorithms are tested on the mobile robot platform described ear-

lier. The testing is conducted indoors in a lab environment; the lab furniture are to be

avoided. The obstacles are arranged in five different scenarios that vary in difficulty. For

all scenarios, the robot initial configuration is (0,0,−90◦) while the target x-y location is

(1.6m,−1.5m). Hence, the initial error in position is 2.1932m

Environment scenario 1. In scenario 1, shown in Figure 7.19a, an obstacle is

placed along the robot direct path, which is the straight line that connects the robot’s initial

configuration to the target configuration. There are also other obstacles surrounding the

robot. The robot’s trajectory from its initial configuration to its target configuration is

depicted in Figure 7.19b. The length of the trajectory is 2.2711m. The robot velocities in

the global frame are smooth as shown in Figure 7.19c. The control action is shown in Figure

7.19d. It should be noted that when the robot moves in a straight line (-2◦ ≤γdesired ≤ 2◦),

the turning radius is infinite. However, to keep the plot in range the infinite radius are given

as 0.5.

For a detailed analysis of the algorithm, we look at the intermediate values of some of

the critical time samples as shown in Figure 7.20. At sample = 18s, the robot can only

see the front side of the square obstacle. Therefore, most of the front sectors of the robot

in the polar histogram are classified as occupied. The reference steering angle is around

−20◦, hence, it belongs to an occupied sector. The best alternative candidate is specified

by γdesired which is equal to 30◦. The turning radius is around 0.205m as shown in Figure

7.19d. Figure 7.20b shows the robot at sample 26s. The robot can only view the right side

of the obstacle. γre f is around−54◦ and γdesired is chosen to be−10◦. The robot turns right

with a radius of 0.5m. Finally, Figure7.20c shows the robot at sample 49s. γre f resides in a

free sector. Hence, γdesired is simply equated to γre f and the robot moves straight to qtarget .

The robot completed the course in 70s.
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(a) (b)

(c) (d)

Figure 7.19: Experiment 1 using obstacle avoidance algorithm. (a) shows the robot initial
position, target position, and the surrounding obstacles; (b) shows the obstacle points in
green, the area occupied by the robot at each instance in time in red, and the reference
point trajectory in blue. (c) describes the robot velocities; (d) describes the robot control
vector.
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(a)

(b)

(c)

Figure 7.20: Snapshot of the algorithm parameters at different instances. The obstacles
seen by the robot at each instant of time are shown in the Cartesian coordinates as black
dots. The solid yellow line is an approximation to the obstacle contour. The polar histogram
shows the classified sectors and the reference steering angle is shown as a solid red line
while the desired steering angle is shown as a dashed green line.

74



Environment scenario 2. A more complex environment is tested in scenario 2,

shown in Figure 7.21a. Obstacles 1 and 2 are oriented to form a passage that has a wide

entrance and narrow exit. Nevertheless, the passage is wide enough for the robot to pass

through. The robot successfully completes the mission in 74s with a trajectory of length

2.2539m, shown in Figure 7.21b. The robot velocities and control action are depicted

in Figure 7.21c, and Figure 7.21d. The polar histograms when the robot enters, moves

inside, and exits the passage are shown in Figure 7.22. Towards the end of the trajectory,

specifically at sample 59s, the detection range Rsa f e is reduced from 0.5m to 0.2m. This is

especially useful because the target configuration is positioned in the proximity of obstacles

2 and 3. If Rsa f e retained its original large value, the robot will take unnecessary maneuvers

to approach qtarget .
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(a) (b)

(c) (d)

Figure 7.21: Experiment 2 using obstacle avoidance algorithm. (a) shows the robot initial
position, target position, and the surrounding obstacles; (b) shows the obstacle points in
green, the area occupied by the robot at each instance in time in red, and the reference
point trajectory in blue. (c) describes the robot velocities; (d) describes the robot control
vector.
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(a)

(b)

(c)

Figure 7.22: (a) shows the robot entering the passage; (b) shows the robot inside the
passage. (c) shows the robot exiting the passage;
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Environment scenario 3. In scenario 3, the obstacles are arranged such that the

passage between them are narrower than the one in scenario 2 as shown in Figure 7.30a.

Here, the robot is tested on its ability to detect navigable gaps that are slightly larger than

the robot size. The robot successfully passes the narrow passage and settled at the target

configuration as depicted in Figure 7.23b. The robot velocities and control action are de-

picted in Figure 7.23c and Figure 7.23d. The length of the trajectory is 2.3792m. The

instances where the robot detects a passage, moves through it, and exits it are shown in

Figure 7.24.

(a) (b)

(c) (d)

Figure 7.23: Experiment 3 using obstacle avoidance algorithm. (a) shows the robot testing
environment; (b) shows the robot trajectory. (c) describes the robot velocities; (d) describes
the robot control vector.
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(a)

(b)

(c)

Figure 7.24: (a) shows the robot entering the passage; (b) shows the robot inside the
passage. (c) shows the robot exiting the passage;
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Environment scenario 4. Scenario 4 is similar to scenario 3, however, an obsta-

cle is added to block the passage exit in order to form a dead end. The scenario is depicted

in Figure 7.25a while the trajectory is shown in Figure 7.25b. The robot velocities and con-

trol action are depicted in Figure 7.25c and Figure 7.25d respectively. During samples 30s

to 84s the robot exhibits some fluctuations. The turning angle γdesired direction fluctuates

between left and right as shown in Figure 7.25c. At time 25s the robot detects two gaps: a

narrow gap and a large gap, as shown in Figure 7.26a. The robot turns towards the narrow

one because it is closer to qtarget . However, at time sample 31s , the robot gets closer and

finds out that the narrow gap is in fact blocked as shown in Figure 7.26b. Hence, the robot

steers left. After turning left, the dead end will appear as a gap and the robot attempts to

turns towards it as shown in Figure 7.26c. Despite the oscillations, the robot completes the

mission at instant 179s after traveling 6.0243m.
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(a) (b)

(c) (d)

Figure 7.25: Experiment 4 using obstacle avoidance algorithm. (a) shows the robot initial
position, target position, and the surrounding obstacles; (b) shows the obstacle points in
green, the area occupied by the robot at each instance in time in red, and the reference
point trajectory in blue; (c) describes the robot velocities; (d) describes the robot control
vector.
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(a)

(b)

(c)

Figure 7.26: (a) robot detects a passage; (b) robot discovers a dead end and attempt to turn
away (c) after the robot moves away, the dead end appears as a gap.
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Environment scenario 5. The three obstacles in scenario 5 are placed such that

the robot initial steering takes it to a blocked path as depicted in Figure 7.32a. However,

the robot constant search for a gap eventually brings it to the target configuration as shown

in Figure 7.27b. The robot velocities and control action are depicted in Figure 7.27c and

Figure 7.27d respectively.

(a) (b)

(c) (d)

Figure 7.27: Experiment 5 using obstacle avoidance algorithm. (a) shows the robot testing
environment; (b) shows the robot trajectory. (c) describes the robot velocities; (d) describes
the robot control vector.

Experimental Results for Neural Network-based Algorithm

The neural network algorithm is tested on the robot described earlier. The scenario used to

test the network are the same ones in section 7.
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Environment scenario 1. In scenario 1, shown in Figure 7.28a, the robot suc-

cessfully avoids the obstacle. The trajectory is shown in Figure 7.28b. The robot velocities

and control action are shown in Figure 7.28c and Figure 7.28d respectively. The length of

the trajectory is 2.4157m and it is completed in 82s.

(a) (b)

(c) (d)

Figure 7.28: Experiment 1 using neural network-based algorithm. (b) shows the robot
initial position, target position, and the surrounding obstacles; (b) shows the obstacle points
in green, the area occupied by the robot at each instance in time in red, and the reference
point trajectory in blue; (c) describes the robot velocities; (d) describes the robot control
vector.

Environment scenario 2. In scenario 2 depicted in Figure 7.29a, the robot suc-

cessfully avoids the 2 obstacles, and drives its way to qtarget as shown Figure 7.29b. The

robot velocities and control action are shown in Figure 7.29c and Figure 7.29d respectively.

The length of the trajectory is 2.3016 and it takes 106s to execute.
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(a) (b)

(c) (d)

Figure 7.29: Experiment 2 using neural network-based algorithm. (a) shows the robot
initial position, target position, and the surrounding obstacles; (b) shows the obstacle points
in green, the area occupied by the robot at each instance in time in red, and the reference
point trajectory in blue; (c) describes the robot velocities; (d) describes the robot control
vector.

Environment scenario 3. In scenario 3 depicted in Figure 7.30a, the robot cor-

rectly identified the gap as navigable and went in between. However, the left side of the

robot touched the obstacle. The trajectory is shown in Figure 7.30b and the robot motion

and control action are shown in Figure 7.30c and Figure 7.30d. The length of the trajectory

is 2.1349m and is completed in 90s.
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(a) (b)

(c) (d)

Figure 7.30: Experiment 3 using obstacle avoidance algorithm. (a) shows the robot initial
position, target position, and the surrounding obstacles; (b) shows the obstacle points in
green, the area occupied by the robot at each instance in time in red, and the reference
point trajectory in blue; (c) describes the robot velocities; (d) describes the robot control
vector.

Environment scenario 4. In scenario 4 depicted in Figure 7.31a, the robot dis-

covers the dead end and turns around the obstacles to reach qtarget . The trajectory is de-

picted in Figure 7.31b. The robot velocities and control action are depicted in Figure 7.31c

and Figure 7.31d. The trajectory exhibited some fluctuations. The length of the trajectory

is 5.4778m and is completed in 169s.
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(a) (b)

(c) (d)

Figure 7.31: Experiment 4 using obstacle avoidance algorithm. (a) shows the robot initial
position, target position, and the surrounding obstacles; (b) shows the obstacle points in
green, the area occupied by the robot at each instance in time in red, and the reference
point trajectory in blue; (c) describes the robot velocities; (d) describes the robot control
vector.

Environment scenario 5. In scenario 5 depicted in Figure 7.32a, the robot avoids

the narrow gap, discovers a blocked path, and eventually progresses to the target configura-

tion. The trajectory is depicted in Figure 7.32b and the robot velocities and control action

are depicted in Figure 7.32c and 7.32d. The length of the trajectory is 7.4457m and it takes

227s.
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(a) (b)

(c) (d)

Figure 7.32: Experiment 5 using obstacle avoidance algorithm. (a) shows the robot initial
position, target position, and the surrounding obstacles; (b) shows the obstacle points in
green, the area occupied by the robot at each instance in time in red, and the reference
point trajectory in blue; (c) describes the robot velocities; (d) describes the robot control
vector.
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8. Conclusions

The thesis presents two reactive navigation algorithms for wheeled mobile robot under

non-holonomic constraints and in unknown environments. The mobile robot travels to a

pre-defined goal position safely and efficiently without any prior map of the environment.

The first method incorporates the dimensions and shape of the robot to determine the set

of all possible collision-free steering angles. The steering angle that falls in the widest gap

and is closest to the target is selected. The next stage in the algorithm takes into account the

non-holonomic constraints of differentially steered robots by computing circular trajecto-

ries with adaptive radius of curvature. The second reactive navigation algorithm introduces

a neural network based reactive navigation algorithm. The algorithm aims to generate an

optimized path by using a user-defined objective function which minimizes the traveled

distance to the goal position while avoiding obstacles. To this end, a diagonal recurrent

neural network (DRNN) has been employed to achieve the necessary generalization ca-

pability across a variety of indoor environments. The network is trained through off-line

learning followed by an on-line learning algorithm with guaranteed convergence. A mobile

robot was built and used to assess the performances of the algorithms. The performances of

the algorithms are verified over a variety of real unstructured indoor environments using an

autonomous mobile robot platform. The results demonstrated that the algorithm is capable

of driving the robot safely through different obstacle arrangements.
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Appenndix A: Convert Matlab Code to

C Code Guide

Matlab Embedded coder can be used to automatically convert Matlab code into C/C++

code. The generated C/C++ code can be pakaged as an executable or library. The steps

needed are explained below and are illustrated by an example:

• Install prerequiste products

• Set up C/C++ compiler

• Make Matlab code compliant with the embedded matlab subset

• Choose your desired package format

• Write your main function

• Compile the generated C/C++ code

Install prerequiste products

The software packages needed to be installed on your PC are: Matlab, Simulink, C/C++

compiler, and the Real-Time Workshop.

Set up C/C++ Compiler

Run ‘mex -setup’ in matlab command window. Choose your desired compiler. Make sure

you address any repoted warnings saying that matlab does not support the current compiler

version.
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Make Matlab Code Compliant with Embedded Matlab Subset

Not all Matlab functions can be converted. A subset of Matlab functions called Embedded

Matlab subset is supported. An example of unsupported function is ‘plot.’ You can check

at design time for violations by adding ‘%#eml’ to your Matlab file. In this case, The

code analyzer will report the detected violations. To further make sure that all your code

is compliant with the embedded matlab subset, by generating a mex function and checking

for violation at runtime. For a simple example of a compliant matlab code see absval.m.

absval.m

%#eml

funtion y = absval(u)

y = abs(u);

Choose your desired Package Format

The Embedded matlab coder can convert the Matlab file into three packages: Mex, Embed-

dable C/C++ code and complie it into an executable, Embedded C/C++ code and compile

it into a library.

To generate a Mex use: emlc MyFcn

To generate embeddable matlab code and compile it into a library: emlc -T rtw:lib MyFcn

To generate a library for our previous code example run:

emlc -T rtw:lib absval -eg0.0

After envoking this command, several files will be generated. Two important files we will

use further in our code are: absval.h and absval.a.

Write your main Function

Make sure your matlab function include the header file of the generated function. In our

example its absval.h. Also Make sure that you use the initialize and terminate functions

before and after you call the matlab function.

/*
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** main.c

*/

#include <stdio.h>

#include <stdlib.h>

#include "absval.h"

int main(int argc, char *argv[])

{

absval_initialize();

printf("absval(-2.75)=%g\n", absval(-2.75));

absval_terminate();

return 0;

}

Compile the generated C/C++ code

If you have chosen to convert the Matlab code into a C/C++ library, then you can complile

your main code in linux command prompt as follows:

gcc -o main main.c absval.a

To run the executable:

./main
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