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Abstract 

The motion of small particles in a fluid is a classical fluid mechanics problem. The 

present study investigates the motion of axisymmetric prolate spheroids and Cassini 

ovals of micro-scale through Newtonian and non-Newtonian fluids, bounded by a 

cylindrical pore. The drag force is numerically obtained over a range of Reynolds 

number, from creeping flow condition to Re = 40 (for steady state simulations). Both 

Newtonian and non-Newtonian fluid simulations are carried out, with power-law index 

values of 0.6, 0.8, 1.0, 1.2, and 1.4, while considering the wall effects due to the 

cylindrical pore confinement. CFD software package ANSYS CFX is used to model 

the steady motion of a particle translating in a quiescent fluid along the axis of a coaxial 

cylinder and to numerically solve the flow around the particle to calculate the 

coefficient of drag. It is shown that for the different values of power-law index, the drag 

coefficient increased with increased confinement and decreased with an increase in 

Reynolds number. The results for bounded creeping Newtonian flow were validated 

against analytical solutions in the literature. The results are found to be in accordance 

with the results available in the literature and based on theoretical expectations. 

 

Search Terms: Non-Newtonian fluids, power law fluids, prolate spheroid, Cassini 

oval, drag force, wall effects 
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Nomenclature 

a  length of spheroid from the origin along the major axis (μm) 

a/b  spheroid shape factor (dimensionless) 

b  length of spheroid from the origin along the minor axis (μm) 

b/R  confinement ratio (dimensionless)  

c  Focus length of Cassini oval from the origin along the minor axis (μm) 

Cd   coefficient of drag (dimensionless) 

(c/d)2  Cassini oval shape factor (dimensionless) 

d  length of Cassini oval from the origin along the minor axis (μm) 

F/Fo  normalized drag force (dimensionless) 

K  consistency index for power law fluid (Pa.sn) 

n  power-law index (dimensionless) 

R  radius of the cylindrical pore (μm) 

Re  Reynolds number, Newtonian fluids (dimensionless) 

ReCS  Collins-Schowalter Reynolds number, non-Newtonian fluids 

(dimensionless) 

ReMR Metzner and Reed Reynolds number, non-Newtonian fluids 

(dimensionless) 

v  velocity of the particle (m/s) 

Greek letters 

ρ  density of the fluid (kg/m3) 

ω  intermediate variable ω = log Re (dimensionless) 

τ  shear stress (Pa) 
   shear rate (s-1) 

ψ  stream function 

λ   time constant for Bird Carreau and Carreau-Yasuda fluid models 

μ  viscosity of the fluid (Pa.s) 
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Chapter 1. Introduction 

1.1 Problem Statement 

This thesis will investigate the effects of Newtonian and non-Newtonian 

properties of fluid, the effects of Reynolds number and the effects of flow confinement 

on the motion of particles of selected shapes. The study attempts to numerically 

investigate the translational motion of stationary axisymmetric prolate particles 

(spheroids and Cassini ovals), through Newtonian and non-Newtonian (shear-thinning 

and shear-thickening) fluids bounded by the walls of cylindrical pores. 

Each prolate particle moves in the cylindrical pore through the fluid with a 

certain speed, while the cylindrical pore and the fluid are assumed to be stationary. As 

the particle moves through the fluid, it experiences a combination of drag forces, 

including pressure drag and friction drag. The total drag force is obtained using ANSY 

CFX to solve the equations governing the flow, i.e. the Navier-Stokes equations. The 

problem is normalized to get a dimensionless form by considering Reynolds number 

instead of velocity and coefficient of drag instead of drag force. This non-

dimensionalization also takes into account the dimensions of the particle, the density 

and the viscosity of the fluid. The flow around the particle can also be visualized 

through velocity streamlines and pressure contours using built-in options in ANSYS 

CFX. 

The axisymmetric prolate particles can be divided into two categories: spheroids 

and Cassini ovals. Each shape is defined by a unique equation where the shape of the 

particle varies with a shape factor. Each case will be solved for a range of shape 

parameters over a range of Reynolds number while varying the pore diameters with 

respect to the particle size. 

1.2 Significance of the Research 

The bounded and unbounded motion of small particles through a viscous fluid 

is of great practical importance in various fields of engineering and science, including 

applications in the fields of biomedical engineering, chemical and environmental 

engineering, and in interface and colloidal sciences.  
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In biomedical engineering, the motion of blood cells in plasma and other 

particles in the blood stream, such as vesicles and lipoproteins, is of great significance. 

The case of vesicles is of interest as these particles can be of various shapes depending 

on the external forces from the surrounding fluid. A vesicle can be modeled as a small 

sack of liquid enclosed in a membrane. The membrane is a plasma membrane and can 

be deformed easily. Vesicles can store or transport substances such as enzymes, 

digested cellular products and waste. They can also act as chemical reaction chambers. 

More importantly, artificially prepared vesicles, called liposomes, are of interest to 

modern biomedical engineers as they can be used for transportation of nutrients and 

pharmaceutical drugs through blood stream. It is reported that the vesicles, both natural 

and artificial, are affected by the flow [1] and the walls of the capillary [2]. Low density 

lipoproteins (LDLs) undergo similar shape shifting as they are also made of easily 

influenced proteins and lipids. 

 

 

Figure 1: Vesicle of various shapes in blood [1] 

 

Furthermore, blood behaves as a non-Newtonian fluid for shear stress values 

less than 100 s-1 as its viscosity is a function of the applied shear. In fact, blood is a 

shear-thinning fluid, i.e. its viscosity decreases with increase in shear rate.  

Hong et al. [3] and Gijsen et al. [4] investigated the effects of non-Newtonian 

characteristics of plasma on LDL transportation in arterial wall. It was seen that for 

non-Newtonian flows, the filtration velocity was enhanced by the shear thinning effect 

when compared to Newtonian flows. The accumulation of macromolecules such as 
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low-density lipoprotein (LDL) in the intima layer is one of the risk factors for 

atherosclerosis. The increase in filtration velocity resulted in a higher LDL 

concentration, thus, elevating the risks of atherosclerosis. Therefore, it is important to 

model blood as a non-Newtonian fluid rather than a Newtonian fluid to properly 

evaluate risk factors. 

Similarly, Wang and Bernsdorf [5] also suggested the use of more accurate 

rheology of blood and demonstrated the difference between Newtonian and non-

Newtonian flow regimes using simulations for aneurysms. An aneurysm is the 

widening of a blood vessel to the point that, if ruptured, it can be life threatening. One 

of the solution is to divert the flow using a metal frame, medically known as a stent. 

Another solution, known as coiling, is to reinforce the vessel with wire. Both of these 

modifications can be studied extensively using computer simulations and their behavior 

can be predicted to ensure safety before installation. It was seen that for the case of non-

Newtonian shear thinning blood model, the wall shear stress was lower when compared 

to the case of Newtonian fluid model. Therefore, it is important to model blood as non-

Newtonian to avoid overestimation of wall stress as it can lead to adverse effects on the 

flow. 

Other studies [4], [6]-[10] also concluded that non-Newtonian models of blood 

provide better results over Newtonian model when compared to experimental values 

especially for low shear rates. Other applications where the non-Newtonian properties 

of blood play an important role include the work of Sharma and Bhat [11], who 

performed experiments regarding non-Newtonian rheology of leukemic blood and 

plasma and found the power-law constants, n and K, to have different values when 

compared to the constants for healthy blood. In other words, these factors can be used 

as a measure of blood health. 

In chemical engineering, microfluidics is an important field that deals with 

particles and flow on a micro scale. Microfluidics include microflows, microdrops, 

diffusion of nanoparticles, transport of nanoparticles, bioMEMS, reactions in biochips, 

micromechanical control of cells, and controlling the cellular environment [12]-[15]. It 

must be noted that most of the theory of macrofluidics, such as equations of motion, 

Navier-Stokes equations, etc., also apply to microfluidics. However, it is of interest to 
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investigate the non-Newtonian behavior of fluids in these micro systems. Another 

example in chemical engineering includes modeling the viscosity of emulsions which 

are often non-Newtonian in nature. 

Wei et al. [16] studied the water-in-crude oil emulsions and developed a 

prediction model for the apparent viscosity of the non-Newtonian emulsions. Crude oil 

forms stable emulsions with water in presence of surface active components, namely 

asphaltenes and resins. These emulsions have higher apparent viscosity and exhibit 

non-Newtonian, shear-thinning behavior. This behavior affects most of the petroleum 

processes including exploitation, gathering and transportation. Therefore, it is 

important in chemical engineering to create accurate rheological models of such fluids 

by including non-Newtonian characteristics. Other applications can be found in 

transport phenomena. Examples include various studies in mass transport [17]-[20] and 

in heat transfer [21]-[23]. 

In environmental engineering, geophysical phenomena such as the flow of lava, 

snow avalanches, mud slides and debris flows, all have non-Newtonian characteristics. 

Lava is composed of molten rocks with silicate crystals and a microstructure of 

suspended bubbles. Although it can be up to 100,000 times more viscous than water, 

lava tends to flow great distances due to its non-Newtonian shear-thinning properties 

[24]. Lingyan Huang et al. demonstrated the effect of non-Newtonian rheology of mud 

flow [25]. 

A snow avalanche is the accelerating non-Newtonian flow of snow down a 

sloping surface, usually caused by mechanical failure in the snowpack. Bovet et al. [26] 

proposed a model for snow avalanche dynamics based on Bingham fluids model. 

Similar models can be used for mud avalanches. In debris flows, water-laden soil 

masses and rock fragments travel downhill as streams, carrying objects in their paths. 

Although they have higher overall densities compared to those of rock avalanches, due 

to the water content, the liquefaction of sediments as a result of high pore-fluid 

pressures, and the shear thinning effect, debris flows can flow almost as fluidly as water 

[27]. 

On micro level, environmental phenomena such as sedimentation and aerosol 

technology are of interest with regards to non-Newtonian characteristics of fluids in 
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environmental sciences. The settling of small particles in various non-Newtonian fluids 

has been studied thoroughly in various studies [28]-[31]. Similarly, aerosol technology 

applications also include the settling of particles in air. Some examples of aerosol 

technologies using non-Newtonian elements include biomedical technologies, 

microelectronics, occupational hygiene, pollution control, and coating of electronic 

chips. Certain types of particles tend to be micropolar fluids, such as polymers, 

lubricants, and paints, and cannot be modeled as Newtonian fluids without losing 

important non-Newtonian characteristics [32]. Therefore, non-Newtonian models 

should be used to describe the flow more accurately. 

In interface and colloidal sciences, a colloid is defined as a heterogeneous 

system composed of nanoparticles dispersed throughout a continuous medium. Colloids 

are not like solutions, where one material is chemically dissolved in the other, as 

colloids are mechanical mixtures. Interface and colloid sciences have applications in 

nanotechnology, microfluidics, biotechnology, pharmaceuticals, minerals, and 

ceramics. The settling of particles in colloids is called flocculation. Although some 

studies [33], [34] exist that investigate the phenomenon by assuming Newtonian 

models, it must be noted that only few of the colloids can be modeled close to 

Newtonian behavior. 

1.3 Objectives 

The objectives of this study are to numerically investigate the effects of non-

Newtonian characteristics, the effects of Reynolds number and on the translation of 

axisymmetric prolate particles in cylindrical pores for the following cases: 

1. A Newtonian fluid model for creeping flow condition (Re<<1) 

2. A Newtonian fluid model for low Reynolds number flows 

3. A non-Newtonian fluid model for creeping flow condition 

4. A non-Newtonian fluid model for low Reynolds number flows 
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1.4 Thesis Organization 

The framework for the thesis report is given as follows: 

 Chapter 1: Introduction, including problem statement, significance of the 

research, and objectives of the present study. 

 Chapter 2: Review of the literature highlighting the effects of Newtonian and 

non-Newtonian characteristics, a review of non-Newtonian models, and the 

effect of Reynolds number. 

 Chapter 3: Modelling, including problem formulation with the definitions of the 

cylindrical pore, the prolate particles (spheroids and Cassini ovals), the 

properties of the working fluid, the Reynolds number for Newtonian and non-

Newtonian fluids, the boundary conditions, and the normalized Drag Force and 

coefficient of drag. This section also provides a brief introduction to CFD and 

how the fluid domain was solved using the CFD software package ANSYS 

CFX. 

 Chapter 4: Results for creeping motion in Newtonian fluid (Case 1) including 

the effect of confinement ratio and the effect of particles shape for both 

spheroids and Cassini ovals. 

 Chapter 5: Results for low Reynolds number motion in Newtonian fluid (Case 

2) including the effect of Reynolds number, the effect of confinement ratio and 

the effect of particle shape for spheroids and Cassini ovals 

 Chapter 6: Results for creeping motion in non-Newtonian fluid (Case 3) with 

similar analysis to Case 1.  

 Chapter 7: Results for low Reynolds number motion in non-Newtonian fluid 

(Case 4) with similar analysis to Case 2. The effect of power-law index is also 

studied. 

 Chapter 8: Conclusion highlighting the key findings of the study and ideas for 

future studies. 
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Chapter 2. Literature Review 

2.1 Effects of Newtonian and non-Newtonian Flow Characteristics 

 Depending on the type of non-Newtonian fluid under study, non-Newtonian 

properties effect fluid behavior in various ways. This section reviews both the 

Newtonian model and the non-Newtonian fluid models. 

2.1.1 Newtonian Flow Characteristics 

 The drag on particles moving in Newtonian fluids has been investigated 

thoroughly by various researchers. A variety of particles, including solids and liquids, 

have been studied in various fluids, using analytical methods for simplified models, 

numerical methods, and experimental procedures.  

The most common problem of motion of a rigid sphere body in an unbounded 

Newtonian medium has been studied over the years since the works of Stokes [35]. 

Rewriting the non-dimensional momentum equation for spherical coordinates in terms 

of the stream function ψ, a highly non-linear equation is obtained, as follows: 
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Where, ∇ is called the del operator. Since the above equation is highly non-

linear, finding a general solution is not possible. However, approximate solution can be 

obtained for special cases. One such approximation is the creeping flow condition (Re 

= 0, or Re << 1) where the highly non-linear inertial terms on the right hand side of the 

equation are neglected. This yields what is known as the biharmonic equation: 

0*4           (2) 

Stokes solved the above fourth-order PDE and derived the expression for drag force FD 

and the corresponding expression for coefficient of drag CD are given as follows: 

RvFD 6          (3) 

Re
24

DC          (4) 
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Where μ is the viscosity, R is the radius of the sphere, v is the velocity of the fluid and 

Re is the Reynolds number. Note that the expression for drag is only valid for low 

Reynolds number flow. Experimentally, it is observed that the equations stay valid for 

flows with Reynolds number up to a value of 0.1. Beyond this value, the experimental 

results deviate from the Stokes solution.  

Other researchers developed on the expression and increased the range of 

Reynolds number for which the expressions are valid. Oseen [36] came up with the 

following expression which is valid up to Reynolds number value of 1, with maximum 

1% error from the experimental results:  

 







 Re

16
31

Re
24

DC   (5) 

Further improvements were made, first by Proudman and Pearson [37] and then 

by Ockendon and Evans (1972) [38] using series expansion, as follows: 









 ...Re

4
1879.0

2
RelogRe

160
9Re

16
31

Re
24 22

DC     (6) 

Similar extensions of the creeping flow solution can be found in the literature 

[39]-[42]. However, as the Reynolds number value increases above 1, these extensions 

of the creeping flow solution are no longer valid and the analytical solutions are not 

possible due to the increased significance of the non-linear inertial terms in the 

momentum equations. Therefore, to solve the momentum equation for Reynolds 

number higher than 1, the use of numerical methods is advised.  

Jenson [43], using a finite difference method, obtain numerical results of drag 

coefficient for Reynolds number up to Re = 40. LeClair et al. [44] solved the Navier-

Stokes equations numerically and obtained values of drag coefficient for Reynolds 

number up to Re = 400, while Fornberg [45] obtained values of drag coefficient for 

Reynolds number up to Re = 5000. A special case of finding the drag coefficient for 

the limit Re→∞ was documented by Weisenborn and Bosch [46] using the method of 

induced forces. It was seen that over such large range of Reynolds number, the flow 

regimes for uniform flow over a sphere change drastically. 
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Johnson and Patel [47] and Cliffe et al. [48] studied, both numerically and 

experimentally, the various flow regimes including steady and unsteady laminar flow 

for Re < 300, while Mittal [49] studied the gradual changes in flow regime from steady 

axisymmetric flow, to steady non-axisymmetric flow, and then to unsteady non-

axisymmetric. All these results can be collated in the form of a single curve relating the 

drag coefficient to the Reynolds number. This is referred to as the standard drag curve 

for translation of a sphere in an unbounded Newtonian fluid. Clift et al. [50] provides 

recommended drag correlations for the complete range of standard drag curve which 

are summarized in the Table 1.  

Table 1: Drag correlations for standard drag curve, where ω = log Re [50] 

Range Correlation 
Re < 0.01 









 Re

16
31

Re
24

DC  

0.01 < Re ≤ 20 
  05.082.0Re1315.01

Re
24 DC  

20 ≤ Re ≤ 260 
 6305.0Re1935.01

Re
24 DC  

260 ≤ Re ≤ 1500 21558.01242.16435.1log DC  
1500 ≤ Re ≤ 1.2 x 104 32 1049.09295.05558.24571.2log  DC  
1.2 x 104 ≤ Re ≤ 4.4 x 104 20636.0637.09181.1log DC  
4.4 x 104 ≤ Re ≤ 3.38 x 105 21546.05809.1339.4log DC  
3.38 x 105 ≤ Re ≤ 4 x 105 3.578.29 DC  
4 x 105 ≤ Re ≤ 106 49.01.0  DC   
106 < Re  








 


Re
10819.0

4

DC  

 

As noted, the standard drag curve is valid for unbounded flows over a sphere 

only and cannot be used for cases of bounded flow or for different shape of solids. Yeh 

and Keh [51] did an analytical study of the drag on a prolate particle moving in a 

cylindrical pore through a Newtonian fluid for axisymmetric creeping flow conditions 

and developed expressions for the drag force experienced. It was found that the 
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normalized drag force is a function of the shape of the particles and the relative size of 

the particle with respect to the pore. These results will be used as the basis to compare 

the numerical results obtained using CFD analysis in this study to the analytical results 

for the case of creeping motion of axisymmetric prolate particle in Newtonian fluids. 

However, the effects of non-Newtonian properties of fluid and the effects of Reynolds 

number are to be investigated.  

2.1.2 Non-Newtonian Flow Characteristics 

Research on the drag experienced by particles in non-Newtonian fluids is 

scarce. Non-Newtonian fluids considered for the purpose of this thesis are shear-

thinning and shear-thickening power-law fluids. Shear-thinning fluids have the 

property that their viscosity decreases with increase in shear rate. Shear-thickening 

fluids, on the other hand, have the property that their viscosity increases with increase 

in shear rate. The properties of non-Newtonian fluids will further be explained in 

section 2.2. 

The efforts so far have been directed to establish a non-Newtonian standard drag 

curve equivalent to the Newtonian standard drag curve for spheres in unbounded 

domain. Starting with the creeping flow condition, the continuity and momentum 

equations are simplified by ignoring the inertial terms. However, unlike the case of 

Newtonian fluids with constant viscosity, the simplified equations are highly non-linear 

because of the viscosity being a function of the shear rate. Therefore, a solution similar 

to the aforementioned Stokes solution cannot be obtained for the case of non-

Newtonian fluids. 

Theoretical or numerical approximations are used instead to find solution to the 

governing equations. Theoretical methods such as forms of variational principle or 

linearization and perturbation methods can be used. Numerical methods such as finite 

element, finite volume, finite difference, boundary elements, and extended moment 

method are commonly used.  

Analytical solutions for non-Newtonian flow over a sphere are very rare. Ceylan 

et al. [52] proposed a theoretical model for estimation of drag force on spherical solid 

particles flowing in weak non-Newtonian fluids only for a wide range of Reynolds 
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number, ranging from creeping flow to Re = 1000. Modifying Navier-Stokes equation 

using a stream function and the energy dissipation equation, analytical relations were 

derived for the drag coefficients. 

Variational principles method is the most widely used in older research. Tomita 

[53] derived the fundamental equations of motion for shear thinning and shear 

thickening non-Newtonian fluids and proved that for a case where inertia terms are 

neglected, i.e. the creeping flow condition, and the external forces are derived from a 

potential or zero, the minimum energy dissipation equations are equivalent to the 

equations of motion. The solution was obtained using velocity variational principle. 

Wallick et al. [54] developed on these results and provided necessary corrections. 

Slattery [55], and Foster and Slattery [56] also used the velocity variational principle 

but for Reiner-Rivlin fluid model. These results are not considered accurate as certain 

assumptions were questioned by Leigh [57]. 

Other examples of velocity variational principle include works of Leonov 

(1988) [58] for power-law model, Ziegenhagen et al. [59] for truncated power-law 

model, Slattery [60] for power-law and Sisko fluid models, Ziegenhagen [61] for 

Powell-Eyring model, Mitsuishi et al. [62] for Sutterby model, Chhabra et al. [63] and 

Chhabra and Uhlherr [64] for power-law and Carreau viscosity model. Wasserman and 

Slattery [65] used velocity variational principles as well as stress variational principles 

for power-law model. The method calculates the upper and lower bounds of the drag 

coefficient. However, the results showed poor agreement with the experimental results 

and, hence, were later extended by Cho and Hartnett [66]. Hopke and Slattery [67] also 

used velocity and stress variational principles but for Ellis fluid model. The results of 

Hopke and Slattery were later extended by Chhabra et al. [68]. 

Linearization and perturbation methods are also used for non-Newtonian fluids. 

Acharya et al. [69] linearized momentum equations for power-law model fluids, 

resulting in an approximate closed from expression for drag coefficient. This expression 

was later corrected by Lockyear et al. [70] and further improved by Kawase and 

Ulbrecht [71]. In a separate work, Kawase and Ulbrecht [72] linearized the field 

equations for power-law model and studied the influence of power-law index on drag 

coefficient and on wall effects. 
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Rathna [73] used perturbation scheme for Reiner-Rivlin model fluids providing 

a first order correction for the Stokes drag. Yoshioka and Nakamura [74] used 

perturbation method for generalized Newtonian fluid observing that the predicted 

results provided very little deviation from the Stokes drag. Koizumi [75] used 

perturbation method for power-law model fluids and provided an approximate closed 

from expression for drag coefficient. A similar method was used by Kawase and Moo-

Young [76]. Shmakov and Shamakova [77] evaluated drag on a sphere for shear-driven 

flow of power-law fluids using perturbation method. 

With the advent of Computational Fluid Dynamics (CFD) solvers, numerical 

methods for solving have become more popular for finding solutions for the Navier-

Stokes equations. Adachi et al. [78] provided numerical solution for power-law model 

fluids and provided results for drag coefficient for a range of power-law index between 

0.8 < n < 1 and for Reynolds number value Re = 60. Adachi et al. [79] also provided 

numerical solution for extended Williamson model. Crochet et al. [80] used finite 

element method and provided drag results for shear-thinning power-law fluids (0.1 < n 

< 1). 

Gu and Tanner [81] provided solution for drag and wall effects using finite 

element method for power-law fluids with index between 0.1 < n < 1. Tripathi et al. 

[82] and Tripathi and Chhabra [83] calculated drag on spheres and spheroids for power-

law fluids using finite element method for index 0.4 ≤ n ≤ 1.8 and Reynolds number Re 

≤ 100. Graham and Jones [84] provided drag values on spheres for Re ≤ 130. Whitney 

and Rodin [85] provided drag correction factor for a sphere and a cylinder for power-

law fluids. Kishore et al. [86] studied the drag on a single fluid sphere translating in 

non-Newtonian power-law fluids at moderate Reynolds numbers (5<Re<500). 

Other studies of motion of particles in non-Newtonian medium are 

experimental. These are, however, very specific problems and do not directly contribute 

to the development of the non-Newtonian drag curve. Becker et al. [30] studied the free 

sedimentation of a rigid sphere near a single vertical plane wall in a non-Newtonian 

fluid. The sedimentation particles not only experience non-Newtonian effects while 

settling, they are also effected by fluid inertia and the presence of solid bounding 

surfaces. Examples include process such as the motion of drilling muds in boreholes, 
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gravity-driven drainage of paints, coating processes for thin films, falling-ball 

viscometry, and pumping of slurries. 

The sedimentation process included the settling of the particle while 

simultaneously rotating. This process was studied using Deborah number for second 

order non-Newtonian fluids for Reynolds number of up to first order. It was found, both 

numerically and experimentally, that the shear-thinning effects of the fluid viscosity 

cause the sphere to rotate more slowly when compared to a Newtonian fluid. It was also 

found that for higher Deborah numbers, this effect may lead to anomalous rotation of 

the particle. The anomalous rotation referred to the observation that for low Reynolds 

number motion in non-Newtonian fluids, due to non-linearities, the spheres would drift 

towards the wall, opposite to the direction expected in Newtonian fluids. This effect 

was also observed earlier by Tanner [87]. Therefore, it can be seen that the behavior of 

particles Newtonian and non-Newtonian fluids can differ significantly. Shah et al. [31] 

also proposed a new model to find the drag and terminal velocity of spherical 

sedimentation particles. 

Other similar cases in literature include the investigation of the drag to find the 

free settling velocity of cylinders and disks falling in non-Newtonian fluids by Rajitha 

et al. [88], the experimental and numerical investigation of the motion of spherical and 

cylindrical particles in non-Newtonian fluids inside a tube by Pereira [89], and the work 

of Sahu et al. [90] in study of two-dimensional laminar flow of power-law fluids across 

a square cylinder.  

2.2 Review of non-Newtonian Models 

Newtonian fluids are defined by a linear relationship between the shear stress 

and shear strain graph passing through the origin. If the graph in non-linear or if it 

doesn’t pass though the origin, the fluid is regarded as non-Newtonian. In other words, 

the viscosity of a non-Newtonian fluid, measured as the slope of the shear stress-shear 

strain curve, is not constant like the viscosity of a Newtonian fluid. Non-Newtonian 

fluids can be divided into three main categories: 
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1. Viscoelastic fluids 

2. Time-dependent non-Newtonian fluids  

3. Time-independent non-Newtonian fluids 

A viscoelastic fluid, as the name suggests, is a fluid that exhibits both viscous 

and the elastic properties when deformed. In other words, he fluid behaves both as a 

fluid due to its viscosity and as a solid due to its elasticity. Examples of viscoelastic 

fluids include polymeric solutions and polymeric melts, emulsions, foams, gels, soap 

solutions, and synovial fluid. The elastic properties of viscous fluids show similar 

behavior as the elastic properties of solid. When stress is applied, an elastic solid 

deforms elastically based on the linear slope of the stress-strain curve known as 

Young’s modulus. Upon releasing the stress in the linear elastic region, the body 

deforms back to the original condition. This can be seen in Figure 2. However, if the 

applied stress exceeds the characteristic yield of the material, the material deforms 

plastically and upon releasing the stress, it is unable to restore to the original condition. 

The phenomenon of not achieving a complete recovery is known as creep. Similar 

analysis can be done for elasticity of viscoelastic fluids. When stress is applied and 

removed from a viscoelastic substance, it loses energy. Hysteresis, as seen in Figure 3, 

is observed in the stress-strain curve. The energy lost can be obtained by calculating 

the area of the hysteresis.  

 

 

Figure 2: Stress-strain curves for purely elastic material for (a) loading (b) unloading 
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Figure 3: Stress-strain curves for viscoelastic material for (a) loading condition, (b) unloading 

condition, (c) hysteresis and energy lost (shaded) 

 

Most substances like pharmaceuticals, personal care products and food items 

tend to change their properties over time. One such property is the change of viscosity 

of the fluid components with the passage of time. Examples include yogurt, gum 

solutions, various gels including iron oxide, gelatin, and pectin, castor oil, specific types 

of clay, some types of drilling mud, and many types of paint. A time-dependent fluid 

has a viscosity that is dependent on the shear rate and on the kinematic history of the 

shear rate for which the fluid has been under the application of a shear stress. Depending 

upon their response to shear over a period of time, time dependent behavior can be 

divided into two categories, thixotropy and rheopexy. Thixotropic behavior can be 

defined as when the apparent viscosity of a fluid decreases with the duration of stress. 

On the other hand, when the apparent viscosity of the fluid increases with the duration 

of stress, it is known as rheopecty. 

Time-independent fluids are not affected by the prior history of the shear rate. 

The viscosity of these fluids depends only on the instantaneous shear rate and the 

corresponding shear stress value. In other words, such fluids do not have a memory of 

their past. Time-independent fluids may be divided into three further categories, 

Newtonian fluids, shear thinning fluids, and shear thickening fluids. Newtonian fluids, 

as discussed in earlier, exhibit a linear relationship between shear stress and shear strain 

rate. A fluid is called shear thinning, or pseudoplastic, when the apparent viscosity of 

the fluid increases with an increase in applied stress. Examples include blood, ketchup, 

syrups, whipped cream, paper pulp, nail polish, latex paint, and molasses. Conversely, 

a fluid is called shear thickening, or dilatant, when the apparent viscosity of the fluid 
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increases with an increase in applied stress. Examples include sand and water mixtures 

and corn starch suspensions in water. This study deals with the shear-thinning and 

shear-thickening effects of non-Newtonian fluids on the flow characteristics.  

Although there is no general consensus among researchers and the CFD 

community about one standard model for numerically modeling non-Newtonian fluids, 

there are numerous models available in the literature to accomplish this task. Each 

model has its own advantages and disadvantages. Some of these models are already 

available in ANSYS CFX. The models that are not preprogrammed in ANSYS can, 

however, be programed by the users manually. Although case specific models can be 

developed, such as Cho and Kensey model, Walburn and Schneck model, model by 

Ballyk et al., and Fung model for modeling blood as a non-Newtonian fluid, this section 

summarizes the important models for general non-Newtonian fluids. 

2.2.1 Power-law or Ostwald-de Waele model 

Power-law [91], [92] is a generalized model for Newtonian and non-Newtonian 

fluids for which the shear stress can be given as follows: 

n

y
uK 











         (7) 

where τ is the shear stress, K is called the consistency index, ∂u/∂y is the velocity 

gradient or the shear rate, and n is called the power-law index and it depends on the 

type of fluid. For pseudoplastics (shear-thinning fluids), n is less than 1. For Newtonian 

fluids, n is equal to 1. For dilatants (shear-thickening fluids), n is greater than 1. 

Rearranging the equation to get an equation similar to Newtonian fluids: 
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Comparing the above equation to the equation for Newtonian fluids given as: 

y
u





         (9) 
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The effective viscosity (also known as the apparent viscosity), μ, for power-law fluids 

can be given as follows: 

1















n

eff y
uK              (10) 

The Ostwald–de Waele power-law model is the most widely used viscosity 

model because of the simplicity of the mathematical relationship. However, it must be 

noted that this model, like all other models, only approximates the behavior of an actual 

non-Newtonian fluid, resulting in deviations from the real case. Here, the model 

behavior is not bounded on both the low and the high shear limits. In case of n being 

less than one, according to the power-law, increasing the shear rate would result in the 

effective viscosity decrease indefinitely. Such a fluid would, therefore, have infinite 

viscosity at rest and zero viscosity when the shear rate approaches infinity. This is not 

physically possible in real fluids where the minimum and the maximum effective 

viscosities of the fluid depend on the physical chemistry at the molecular level. Hence, 

the power-law is a good model for fluids only over a range of shear rates values. 

Although other models exist that can model shear-dependent fluids over a 

broader range and are better at describing the entire flow behavior, they are more 

complex and come at the expense of simplicity. Experimental data for aqueous 

dispersion of polymer latex spheres, molten chocolate, and ball point pen ink can be 

fitted using the Ostwald–de Waele power law model. It must be noted that ANSYS 

CFX provides built-in support for power-law modeling of non-Newtonian fluids. For 

older versions of the software, the model is easy to program manually. 

2.2.2 Bird Carreau model 

The Bird Carreau model [93], or simply known as the Carreau model, is a 

constitutive model that models the entire shear history of the fluid. Most types of non-

Newtonian fluids can be modeled using this model. However, it is more widely used 

for shear-thinning fluids.  
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Where, μ0 is low shear viscosity, μ∞ is high shear viscosity, λ time constant, n is the 

power-law index and   is the shear rate.  

 The Carreau model is better compared to power-law model as it takes into 

account the upper and lower boundaries μ0 and μ∞, respectively, in the model. At high 

shear rates the non-Newtonian fluid acts as a Newtonian fluid with viscosity μ∞ and at 

low shear rates the non-Newtonian fluid acts as a Newtonian fluid with viscosity μ0. 

However, it is more complex compared to power-law since it takes into account the 

shear history, introducing time constant λ into the model. 

 Experimental data for molten polystyrene, blood and other common shear-

thinning fluids can be fitted using the Bird Carreau model. It must be noted that ANSYS 

CFX provides built-in support for Bird Carreau model for non-Newtonian fluids.  

2.2.3 Carreau-Yasuda model  

The Carreau-Yasuda model [94] for effective viscosity can be given as follows: 
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



                  (12) 

Where, μ0 is low shear viscosity, μ∞ is high shear viscosity, λ time constant, n is the 

power-law index,  is the shear rate and a is called the Yasuda exponent. 

 Similar to the Carreau model, the Carreau-Yasuda model takes into account the 

upper and lower boundaries of viscosity μ0 and μ∞, respectively, in the model. At high 

shear rates the non-Newtonian fluid acts as a Newtonian fluid with viscosity μ∞ and at 

low shear rates the non-Newtonian fluid acts as a Newtonian fluid with viscosity μ0. 

Furthermore, the Yasuda exponent, a, provides a better model of non-Newtonian fluids. 

However, this model is more complex as it requires finding Yasuda exponent for the 

fluid empirically. It must be noted that ANSYS CFX provides built-in support for 

Carreau Yasuda model for non-Newtonian fluids. 

2.2.4 Casson model  

The Casson model [95] for effective viscosity can be given as follows: 
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KY 
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

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Where τY is the yield stress, K is called the consistency index, and  is the shear rate. 

 The Casson model provides good curve fit for experimental data with shear rates 

greater than 1. However, the Casson model fails to fit the data over a wide range and is 

only valid over a small range of the shear rate values. Therefore, it is mostly assumed 

that the entire range of data can rather be fit by three separate Casson equations; first 

for the lowest range of data, second for the intermediate range and third for the highest 

range of shear rates. The first equation, with the lowest shear rate range, can be used to 

extrapolate to get the true yield stress from the zero shear rate condition. It must be 

noted that ANSYS CFX provides built-in support for Casson model for non-Newtonian 

fluids. 

2.2.5 Cross model 

 The effective viscosity according to Cross model [96] is given as: 

 n
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
 

 1
0                  (14) 

Where μ0 is low shear viscosity, μ∞ is high shear viscosity, n is the power-law index, 
  is the shear rate and α is the model constant. 

 Cross model is based on the assumption that the non-Newtonian flow is 

associated with formation and rupture of structural links. Similar to the Carreau and the 

Carreau Yasuda model, Cross takes into account the upper and lower boundaries of 

viscosity μ0 and μ∞, respectively, in the model. At high shear rates the non-Newtonian 

fluid acts as a Newtonian fluid with viscosity μ∞ and at low shear rates the non-

Newtonian fluid acts as a Newtonian fluid with viscosity μ0. Furthermore, the constant 

α relates to the rate of rupture of linkages is to be evaluated numerically. This adds to 

the complexity of the model. It must be noted that ANSYS CFX provides built-in 

support for Casson model for non-Newtonian fluids. 
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2.3 Effect of Reynolds number  

 It is known that the drag force on a body can be calculated using the following 

equation: 

2

2
1 AvCF DD                              (15) 

Where FD is the drag force which depends on the density ρ, the drag coefficient CD, the 

area A, the velocity of the body v.  

 For a case where a one fluid is being studied, the density remains the same. 

Furthermore, when the same body is being studied, the drag coefficient remains 

constant since it is a geometric parameter, and the area remains the same. Therefore, 

the only factor that effects the drag is the velocity, or in more general terms, the 

Reynolds number. 

 As seen in section 2.1.1, solutions for unbounded flow over a sphere are have 

been obtained over a large range of Reynolds number starting from the Stokes solution 

for Newtonian creeping flow. It can be seen in section 2.1.2 that efforts to create a 

similar standard drag curve for non-Newtonian fluids are still very limited. 
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Chapter 3. Numerical Modelling of the Fluid Domain 

3.1 Problem Formulation 

The axisymmetric motion of a general prolate particle moving with a velocity 

U along the axis of a cylindrical pore through a motionless fluid, whether Newtonian 

or non-Newtonian, is modelled in this section by considering each element individually. 

The model can be divided into the cylindrical pore, the moving particle, the viscous 

fluid through which the particle is moving, and the velocity of the particle in terms of 

the Reynolds number. Figure 4 shows a general geometric sketch for the model. In 

theory, it is assumed that the cylinder of infinite length, i.e. the inlet and the outlet are 

far away from the particle. It is also known that the walls of the cylindrical pore are 

stationary.  

 

 

Figure 4: Model of the cylindrical pore and the prolate particle 

 

3.1.1 Cylindrical Pore 

The cylindrical pore that contains the fluid and particle is shown in Figure 4, 

where (ρ, ɸ, z) form the cylindrical coordinate system. The prolate particle, with length 

a in the major axis and length b in the minor axis, moves along the axis z with a velocity 

U. This direction is given in vector form as the unit vector ez. The cylinder has a radius 

of R. As the radius R changes, while b remains constant, the ratio b/R changes and as a 

result, the drag force on the particle changes. This happens because the presence of the 

wall leads to the confinement of the flow near the particle. Therefore, the drag force is 

calculated for different b/R ratios (between 0.1 to 0.8). It is expected that the drag force 

in case of bounded flow is greater than the case unbounded flow. 
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3.1.2 Prolate particles 

The types of prolate particles can be divided into two main categories: prolate 

spheroids and prolate Cassini ovals. This section provides a detailed description of each 

type. 

3.1.2.1 Prolate Spheroid 

 

Figure 5: Prolate spheroid force case b < a and corresponding sphere when b = a 

 A spheroid, as seen in Figure 5, (also known as ellipsoid of revolution) is an 

axisymmetric surface which is obtained by rotating an ellipse about either its major axis 

or its minor axis. When the ellipse is rotated about its minor axis, the resulting spheroid 

is called an oblate spheroid. This can be seen in Figure 6. When the ellipse is rotated 

about its major axis, the resulting spheroid is called a prolate spheroid. This can be seen 

in Figure 7. 

In blood, most of the particles are can be modeled as prolate spheroids instead 

of oblate spheroids. The ellipse, from which the prolate spheroid is constructed, takes 

different shapes based on the lengths of the two axes. The length from the origin to the 
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ellipse parameter along the major axis is usually donated by a whereas the length from 

the origin to the ellipse parameter along the minor axis is usually donated by b. The 

equation of the ellipse is given as follows: 
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Based on the ratio a/b, the ellipse changes from a sphere when a/b is 1 to a 

needle when a/b is ∞. As the a/b ratio changes, the drag force on the particle also 

changes. Therefore, the drag force is calculated for different a/b ratios. 

 

 

Figure 6: Oblate Spheroid 

 

 

Figure 7: Prolate Spheroid 

 

3.1.2.2 Prolate Cassini Oval 

 The Cassinian Ovals (also called Cassini ellipses and Ovals of Cassini) were 

first studied by Giovanni Domenico Cassini in 1680 as a proposed model for the then 

believed phenomenon of movement of the Sun around the Earth. A Cassini oval 

consists of two foci separated by a distance of 2c (one foci at +c and other at -c) and 
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any point on the surface of the oval can be described such that the product of its 

distances from two foci, r1 and r2, is constant d2. This can be seen in Figure 8. 

 

 

Figure 8: Cassini Oval 

 

Mathematically, the surface of a Cassini oval can be defined as follows: 
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The Cassini oval differs from a spheroid in the way that it can transform from a 

convex contour to a partially concave contour. The shape depends on the ratio (c/d)2. 

As the ratio changes, the drag force experienced by the particle also changes. Hence, 

the drag force is calculated for different (c/d)2 ratios. Some of the cases are shown in 

Figure 9. 

 

 

Figure 9: Cassini Ovals for (c/d)2 ratios of (a) 0.3, (b) 0.5, (c) 0.8, (d) 1.0 [27] 
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Rotating the Cassini oval about its major axis results in a prolate oval, whereas 

rotating it about the minor axis results in an oblate oval. The prolate and oblate cases 

are shown in Figure 10 and Figure 11, respectively. 

 

 

Figure 10: Prolate Cassini oval 

 

 

Figure 11: Oblate Cassini oval 

 

3.1.3 Working fluid  

The most important property that separates Newtonian and non-Newtonian 

fluids is the relationship of viscosity with the shear stress. When simple shear is applied, 

a Newtonian fluid responds linearly between the applied shear stress and the rate of 

shear. If the response is not characterized by such behavior, it is classified as a non-

Newtonian fluid. It must be noted that sometimes non-Newtonian fluids can be modeled 

as a Newtonian fluid, especially for small shear rates, for simplification of problems.  

3.1.3.1 Newtonian fluids 

When modeling a Newtonian fluid, the viscosity is taken to be constant. 

Furthermore, as discussed in the literature review, for Newtonian fluids the viscous 

stresses due to the flow are directly proportional to the strain rate. In other words, they 

have a linear stress. Mathematically: 
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dy
du

                     (18) 

where τ is the shear stress, μ is the viscosity and du/dy is the rate of change of velocity 

u with respect to y.  

 Special cases exist where a non-Newtonian fluid may behave as a Newtonian 

fluid under certain conditions. For example, based on the work of Repogle et al. [97], 

it is widely accepted that blood acts as a Newtonian fluid, with constant viscosity for 

shear rates higher than 100 s-1. This can be seen from Figure 12. 

 

 

Figure 12: Shear stress versus shear rate for blood [97]  

 

3.1.3.2 Non-Newtonian fluids 

Of the various models for non-Newtonian fluids discussed in detail in the 

literature review section, the simplest model for the effective viscosity, μ, is the power 

law model. This can be given as follows: 
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where K is the consistency factor and n is the power law index. For example, in the case 

of blood, K is equal to 0.0035 Pa.s [98], [99] and n is taken to be between 0.6-0.7 [100].  

3.1.4 Reynolds Number 

 The Reynolds number of a particle moving though a Newtonian fluid can be 

calculated as follows: 



vD
Re                       (20) 

where, ρ is the density of the fluid, v is the velocity of the particle, D is the length of 

the particle along the direction of flow and μ is the viscosity of the fluid. Referring to 

the general model in figure 4, D is given as 2a measured along the direction of flow, z-

axis. 

For non-Newtonian fluids, calculating the Reynolds number is not as trivial. As 

explained by Chhabra and Richardson [101], since the viscosity of non-Newtonian 

fluids is variable, it is difficult to correctly define a Reynolds number as the ratio of 

inertia forces to viscous forces. One of the most straightforward definition for Reynolds 

number of non-Newtonian fluids, based on a characteristic shear rate, is called the 

Collins-Schowalter Reynolds number and is defined as follows: 
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where, n is the power-law index and K is called the consistency index. This relation is 

simply derived from simple dimensional analysis. Although Collins-Schowalter 

Reynolds number is simple and has been used almost exclusively in the past, it is known 

that it is not the best definition.  

Alternatively, Metzner and Reed [102] correlated the pressure drop data for a 

fully-developed flow of non-Newtonian fluid in a pipe and derived the following 

definition for Reynolds number: 
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 The definitions of Collins-Schowalter and Metzner and Reed Reynolds numbers 

can be related as follows: 

CS
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n Re
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 For creeping motion, the velocity is selected such that the Reynolds number is 

very small, almost equal to zero. For cases with higher order Reynolds number, the 

velocity is calculated based on the Reynolds number. 

3.1.5 Boundary Conditions 

 Based on the model definition, the particle moves with a velocity U through a 

stationary fluid and the pore walls are at rest as well. This can conversely be defined 

as the particle being stationary, and the fluid and wall moving at the velocity U. In 

this case the boundary conditions become:  

1. Velocity U at the inlet 

2. Static pressure at the outlet 

3. Velocity U at the wall 

3.1.6 Normalized Drag Force and Coefficient of Drag  

 The drag force for the creeping flow condition calculated from ANSYS is 

normalized using the following parameter as F/Fo [51]: 
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F0 is the hydrodynamic drag force acting on a prolate spheroid translating in an 

unbounded fluid, η is the viscosity of the fluid, b is the length in the major axis, and U 

is the velocity of the particle. For all other cases, the drag coefficient is calculated: 
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3.2 Modeling of the Fluid Domain using CFD 

3.2.1 Introduction to CFD 

Computers have been used to find solutions to fluid flow problems, especially 

when finding the analytical solution is not possible. This is regarded as Computational 

Fluid Dynamics or CFD. These computer programs can be written for specific problems 

or for specific classes of problems. Today with the advancement of technology, 

computers have better computing power and provide graphical user interface for 3D 

representation and manipulation of models that simplify the process of creating 

geometry, generating and visualizing the mesh, applying the boundary conditions and 

obtaining visual outputs by processing the results, thus, reducing set-up, computational 

and post-processing time, and hence, cost. Furthermore, CFD provides an accurate, 

time and cost-effective alternative to model testing. 

Numerical methods gained popularity with the advent of CFD solvers. All CFD 

solvers are based on the Navier-Stokes equations. Upon ignoring the viscous terms, the 

Navier-Stokes equations can be simplified to a new set of equations, known as the Euler 

equations. Furthermore, upon ignoring the vorticity terms the Euler equations yield the 

full potential equations. These equations can be linearized for subsonic and supersonic 

flows with small perturbations. The earliest numerical methods developed were for 

solving the linearized potential equations using conformal transformations for flow 

over a cylinder and flow over an airfoil [103]. It is, however, the work of Richardson 

[104] that can be considered a predecessor of modern CFD as Richardson used finite 

differences method in his calculations by physically dividing the space in cells. 

Although the experiments were flawed and failed severely, there are a lot of similarities 

between early CFD calculations using ENIAC (Electronic Numerical Integrator and 

Computer) and in Richardson's 1922 book [105]. Soon after ENIAC, with the rapid 

development in computational power, it was possible to develop three-dimensional 

methods for solving more complex CFD problems. 

The first CFD program to solve fluid flow model based on Navier Stokes 

equations was created by a group led by Francis H. Harlow at Los Alamos National 

Lab [106], [107]. During the late sixties, the group created a number of numerical 

methods to simulate 2D transient fluid flow, including the particle-in-cell method by 
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Harlow [108], the fluid-in-cell method by Gentry et al. [109], the vorticity-stream-

function method by Fromm [110] and the marker-and-cell method by Harlow and 

Welch [111]. Among these methods, the vorticity-stream-function method by Fromm 

has since became the basis for most CFD programs as it was the first real effort in 

modeling incompressibility for 2D, transient flows, as opposed to the simpler case of 

compressible flows.  

In 1967, Hess and Smith [112] published the first paper on solving a three-

dimensional fluid domain outlining the method of discretizing the geometry’s surface 

with panels. It must, however, be noted that the Panel method had its limitations as it 

was a simplified model and could not simulate lifting flows. Hence, the primary 

applications included motion of ship hulls and aircraft fuselages. In 1968, Rubbert and 

Saaris of Boeing Aircraft [113] published a paper for a lifting Panel code. Soon after, 

more advanced Panel codes for three-dimensional flows were developed at Boeing 

[114], Lockheed [115], Douglas [116], McDonnell Aircraft [117], NASA [118] and 

Analytical Methods [119]-[122].  

For cases that can be solved as 2D problems, for example airfoils. Panel codes 

were developed. These codes also include boundary layer analysis to account for the 

viscous effects. Eppler’s [124] program, named the PROFILE code, was made available 

in the early 1980s. The PROFILE code was followed by the XFOIL code [125]. Both 

are commercially used for airfoil design. Panel codes, however, have their limitations, 

the most prominent one being the failure to model non-linear flows at transonic speeds. 

For such purposes, Full Potential codes were developed based on the panel codes 

algorithm. Earliest form of the Full Potential equations was published by Murman and 

Cole [126] of Boeing in 1970. Bauer et al. [127] wrote several Full Potential codes for 

the case of two-dimensional airfoils, including the Program H code which was most 

widely used of the series. Melnik [128] developed on the Program H code, creating 

Grumfoil. Jameson and Caughey [129] developed a three-dimensional Full Potential 

code named FLO22. This code was of great importance as it directly led to the 

development of Boeing's Tranair code [130] which is still actively used in the industry. 

For more accurate results for transonic flow solutions, developers turned to the 

Euler equations. Based on the work Jameson on his three-dimensional FLO57 code 
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[131] Lockheed developed the TEAM program [132], and IAI/Analytical Methods 

developed the MGAERO program [133]. MGAERO is of importance as the code was 

unique in utilizing a Cartesian mesh, when other similar softwares relied on structured 

body-fitted grids. Jameson’s other work include development of three-dimensional 

code [134] which discretizes the fluid domain using a tetrahedral grid. This has become 

a standard for most modern CFD solvers like ANSYS CFX. 

It is important to note that the Full Potential codes and the Euler codes are based 

on equations derived from simplification of Navier-Stokes equations. Therefore, these 

codes are valid for special cases only and can rarely capture the entirety of a flow 

described by the Navier-Stokes equations. Therefore, developers urged the ultimate 

need to create codes for solving the entire Navier-Stokes equations. First, simpler two-

dimensional codes were created, including NASA Ames' ARC2D code, leading to 

development of a variety of three-dimensional codes, including NASA’s ARC3D, 

OVERFLOW, and CFL3D. These codes then lead to development of various 

commercial CFD packages being used today. 

3.2.2 ANSYS CFX 

ANSYS CFX is one such CFD software package that is designed based on 

finite volume technique [135]. In fluid mechanics, the equations that describe the flow 

are known as the Navier-Stokes equations. The Navier-Stokes equations, in general 

terms, are given as: 

𝜕𝜌

𝜕𝑡
+ ∇. (𝜌𝒗) = 0       (26) 

𝜌 (
𝜕𝒗

𝜕𝑡
+ 𝒗. ∇𝒗) = −∇𝑝 + ∇𝑻 + 𝑓      (27) 

Where ρ is the fluid density, v is the velocity, p is the pressure, T is the stress tensor, f 

represents forces acting on the fluid and ∇ is the del operator. 

These equations are partial differential equations that were derived in the early 

nineteenth century. It must be noted that the Navier-Stokes equations have no known 

general analytical solution. These equations can often be simplified to find analytical 

solutions only for special cases. However, for more general cases, the Navier-Stokes 
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equations can be discretized and solved numerically. The discretization is done using 

the aforementioned finite volume technique where the domain is divided into much 

smaller sub-regions, known as control volumes. The Navier-Stokes equations are 

discretized and solved iteratively for each individual control volume providing an 

approximation of the value of a particular variable at specific points throughout the 

domain. Combining the individual results, the overall results can be obtained.  

In general, the steps of obtaining the solution can be divided into three main 

categories, which can further be divided into subcategories as follows: 

1. Pre-processing 

a. Geometry: A 3D CAD model of the fluid domain is created. This can be 

achieved using the built in modeler or by importing the model from an 

external CAD software like Autodesk Inventor. It must be noted that the 

DesignModeler in ANSYS has limited capabilities and therefore, 

external softwares must be used when necessary. Since, the flow is 

axisymmetric, symmetry can be used to solve half or even quarter of the 

domain to in order to save solution time. 

b. Mesh generation: A finite volume mesh is generated using tetrahedral 

elements. It must be noted that the student version of ANSYS has 

limitations on the maximum number of elements. Therefore, the mesh 

should be generated such that it is fine close to the particle body to 

capture the boundary layer and boundary layer separation. 

c. Boundary conditions: The boundary conditions are defined including 

velocities at the inlet and the wall, static pressure at the outlet and 

symmetry if applicable. 

d. Material properties: A new material, with blank properties, was created. 

Material properties including density and viscosity were defined. The 

density was input as a constant value. The viscosity was set as a constant 

value for Newtonian fluid. An expression was created for the variable 

viscosity in the case of non-Newtonian fluids based on the power-law 

model.  
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e. Solver initialization: The solution scheme was selected as Advection 

Scheme and the convergence criteria was selected as 10-5. 

2. Solver 

a. ANSYS CFX solver: Once the initialization is completed in the pre-

processing phase, the solver starts and iteratively solves the governing 

equations of the flow in the fluid domain based on the Advection 

scheme. The solver stops once the selected convergence criteria 

condition is met. 

b. Create result files: The output files are created from which the results 

can be derived in post-processing. 

3. Post Processing 

a. Plot results: Various plots can be obtained, including velocity and 

pressure contours, streamlines, and velocity vs length in the wake 

region. 

b. Calculate function values: The drag force on the article was calculated 

using the function calculator option. The force was values can then be 

used to calculate the coefficient of drag. 

c. Export data: Data can be exported to be used in external programs. 

Tabular data can be exported as an Excel sheet. Similarly, images of 

plots and graphs can be transported in various formats. 

A flowchart of the process can be found in Appendix A.  
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Chapter 4. Results for Creeping Motion in Newtonian Fluid 

 This section presents the numerical results for axisymmetric prolate spheroids 

and Cassini ovals for different shape factors and different confinement ratios, for the 

case of creeping motion in Newtonian fluid. 

 First, the results for the spheroids will be shown and the effect of confinement 

ratio and the effect of particle geometry will be examined. Five different shape factors 

a/b will be studied with values 1, 1.1, 2, 5 and 10. For each shape factor, confinement 

ratio b/R values of 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 and 0.8 will be studied. The results are 

shown in section 4.1. 

Similar analysis will be repeated for the case of Cassini ovals. Six different 

shape factors (c/d)2 will be studied with values 0.1, 0.3, 0.5, 0.7, 0.9, 0.95. For each 

shape factor, confinement ratio b/R values of 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 and 0.8 will 

be studied. The results are shown in section 4.2. 

Sample velocity streamlines and pressure contours will be shown to help 

understand the flow dynamics. These results are shown in section 4.3. 

4.1 Spheroid 

4.1.1 Effect of Confinement Ratio 

 As seen from figures 13-17, as the confinement ratio increases, the normalized 

drag force also increases. These results were validated against analytical solutions 

available in the literature. The confinement ratio is defined as b/R, i.e. the ratio between 

the length of the particle in the minor axis measured from the axis of translation denoted 

as ‘b’ and the radius of the cylindrical pore denoted as ‘R’. The particle and the pore 

are coaxial, as explained previously. As the confinement ratio increases, for the same 

value of b, R decreases. Therefore, the area for the fluid to pass between the particle 

and the decreases. Physically, based on the continuity equation, the velocity in the 

confined region increases and the drag force also increases.  
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4.1.1.1 a/b = 1 

Table 2: Numerical and analytical [51] results for Case 1, spheroid a/b = 1 

b/R F/Fo numerical F/Fo analytical %error 
0.1000 1.3084 1.2632 3.5812 
0.2000 1.6975 1.6795 1.0755 
0.3000 2.3622 2.3701 0.3340 
0.4000 3.5295 3.5914 1.7224 
0.5000 5.7650 5.9474 3.0656 
0.6000 10.9833 11.0919 0.9788 
0.7000 23.9145 24.6759 3.0855 
0.8000 73.2583 74.6687 1.8889 
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Figure 13: F/Fo vs b/R, numerical and analytical [51], for Case 1, spheroid a/b = 1 
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4.1.1.2 a/b = 1.1 

Table 3: Numerical and analytical results [51] for Case 1, spheroid a/b = 1.1 

b/R F/Fo numerical F/Fo analytical %error 
0.1000 1.2697 1.2697 5.2346e-3 
0.2000 1.6792 1.6993 1.1838 
0.3000 2.4239 2.4165 0.3035 
0.4000 3.6621 3.6917 0.8002 
0.5000 6.0361 6.1637 2.0711 
0.6000 11.4181 11.5882 1.4679 
0.7000 25.2353 25.9827 2.8765 
0.8000 76.1410 79.2303 3.8992 
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Figure 14: F/Fo vs b/R, numerical and analytical [51], for Case 1, spheroid a/b = 1.1 
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4.1.1.3 a/b = 2 

Table 4: Numerical and analytical results [51] for Case 1, spheroid a/b = 2 

b/R F/Fo numerical F/Fo analytical %error 
0.1000 1.3172 1.3302 0.9802 
0.2000 1.8547 1.8831 1.5091 
0.3000 2.8432 2.8334 0.3464 
0.4000 4.5440 4.5595 0.3414 
0.5000 7.9354 7.9760 0.5097 
0.6000 15.2587 15.6331 2.3948 
0.7000 35.2352 36.3869 3.1652 
0.8000 110.7995 114.7770 3.4654 
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Figure 15: F/Fo vs b/R, numerical and analytical [51], for Case 1, spheroid a/b = 2 
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4.1.1.4 a/b = 5 

Table 5: Numerical and analytical results [51] for Case 1, spheroid a/b = 5 

b/R F/Fo numerical F/Fo analytical %error 
0.1000 1.5173 1.5280 0.7002 
0.2000 2.3812 2.4210 1.6420 
0.3000 3.8788 3.9294 1.2878 
0.4000 6.5904 6.6712 1.2107 
0.5000 11.9282 12.1464 1.7968 
0.6000 24.0164 24.5529 2.1851 
0.7000 56.4037 58.5477 3.6620 
0.8000 178.9283 188.2540 4.9538 
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Figure 16: F/Fo vs b/R, numerical and analytical [51], for Case 1, spheroid a/b = 5 
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4.1.1.5 a/b = 10 

Table 6: Numerical and analytical results [51] for Case 1, spheroid a/b = 10 

b/R F/Fo numerical F/Fo analytical %error 
0.1000 1.7933 1.7935 0.0109 
0.2000 3.0403 3.0200 0.6697 
0.3000 5.0158 5.0436 0.5523 
0.4000 8.7258 8.7088 0.1944 
0.5000 15.9315 16.0329 0.6327 
0.6000 32.2995 32.6570 1.0948 
0.7000 76.7198 78.2899 2.0055 
0.8000 232.7087 252.6770 7.9027 
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Figure 17: F/Fo vs b/R, numerical and analytical [51], for Case 1, spheroid a/b = 10 
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4.1.2 Effect of Particles Shape 

As seen in figure 18, the normalized drag force F/Fo increases with increase in 

the shape factor a/b. The case of a/b = 1 represents the special case of spheroid, the 

sphere. As defined previously, ‘a’ is the length in the major axis and ‘b’ is the length in 

the minor axis. As the shape factor increases, for the same value of ‘a’, the value of ‘b’ 

decreases. The spheroid goes from a sphere at a/b = 1 to a needle as a/b approaches ∞. 

The increase in the drag force can be explained by the increase in surface area of the 

particle with the increase in shape factor. This becomes more prominent in the cases 

with more severe confinement. 
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Figure 18: F/Fo vs b/R for different shape factors, numerical, for Case 1, spheroids 
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4.2 Cassini Oval 

4.2.1 Effect of Confinement Ratio 

As seen from figures 19-24, as the confinement ratio increases, the normalized 

drag force also increases. These results were validated against analytical solutions 

available in the literature. The confinement ratio is defined as b/R, i.e. the ratio between 

the maximum length of the particle in the minor axis measured from the axis of 

translation denoted as ‘b’ and the radius of the cylindrical pore denoted as ‘R’. The 

particle and the pore are coaxial, as explained previously. As the confinement ratio 

increases, for the same value of b, R decreases. Therefore, the area for the fluid to pass 

between the particle and the decreases. Physically, based on the continuity equation, 

the velocity in the confined region increases and the drag force also increases. The 

dynamics in the confinement region and the wake region as well can be observed by 

plotting the velocity streamlines and the pressure contours.  
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4.2.1.1 (c/d)2 = 0.1 

Table 7: Numerical and analytical results [51] for Case 1, Cassini oval (c/d)2 = 0.1 

b/R F/Fo numerical F/Fo analytical %error 
0.1000 1.5496 1.2705 21.9713 
0.2000 1.7142 1.7017 0.7330 
0.3000 2.4293 2.4223 0.2887 
0.4000 3.7086 3.7045 0.1098 
0.5000 6.1703 6.1925 0.3576 
0.6000 11.5642 11.6571 0.7971 
0.7000 25.8326 26.1741 1.3047 
0.8000 77.0576 79.9433 3.6097 
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Figure 19: F/Fo vs b/R, numerical and analytical [51], for Case 1, Cassini oval (c/d)2 = 0.1 
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4.2.1.2 (c/d)2 = 0.3 

Table 8: Numerical and analytical results [51] for Case 1, Cassini oval (c/d)2 = 0.3 

b/R F/Fo numerical F/Fo analytical %error 
0.1000 1.4117 1.2920 9.2630 
0.2000 1.8088 1.7684 2.2851 
0.3000 2.5927 2.5791 0.5261 
0.4000 4.0483 4.0450 0.0811 
0.5000 6.9328 6.9353 0.0367 
0.6000 13.3261 13.3944 0.5100 
0.7000 30.2628 30.8832 2.0087 
0.8000 92.9081 97.0826 4.3000 
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Figure 20: F/Fo vs b/R, numerical and analytical [51], for Case 1, Cassini oval (c/d)2 = 0.3 
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4.2.1.3 (c/d)2 = 0.5 

Table 9: Numerical and analytical results [51] for Case 1, Cassini oval (c/d)2 = 0.5 

b/R F/Fo numerical F/Fo analytical %error 
0.1000 1.3490 1.3319 1.2814 
0.2000 1.8974 1.8941 0.1789 
0.3000 2.8754 2.8788 0.1177 
0.4000 4.6695 4.7100 0.8597 
0.5000 8.4234 8.4410 0.2092 
0.6000 17.0225 17.1162 0.5475 
0.7000 40.8695 41.8098 2.2491 
0.8000 136.4038 141.9780 3.9261 
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Figure 21: F/Fo vs b/R, numerical and analytical [51], for Case 1, Cassini oval (c/d)2 = 0.5 
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4.2.1.4 (c/d)2 = 0.7 

Table 10: Numerical and analytical results [51] for Case 1, Cassini oval (c/d)2 = 0.7 

b/R F/Fo numerical F/Fo analytical %error 
0.1000 1.3888 1.3773 0.8384 
0.2000 2.0322 2.0312 0.0500 
0.3000 3.1828 3.1801 0.0860 
0.4000 5.3124 5.3142 0.0341 
0.5000 9.6563 9.6530 0.0343 
0.6000 19.4978 19.6686 0.8683 
0.7000 46.2972 47.6320 2.8024 
0.8000 152.5172 155.9440 2.1974 
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Figure 22: F/Fo vs b/R, numerical and analytical [51], for Case 1, Cassini oval (c/d)2 = 0.7 
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4.2.1.5 (c/d)2 = 0.9 

Table 11: Numerical and analytical results [51] for Case 1, Cassini oval (c/d)2 = 0.9 

b/R F/Fo numerical F/Fo analytical %error 
0.1000 1.4173 1.4069 0.7395 
0.2000 2.1042 2.0977 0.3068 
0.3000 3.2503 3.2528 0.0785 
0.4000 5.2723 5.2910 0.3539 
0.5000 9.2157 9.2349 0.2079 
0.6000 17.7385 17.8918 0.8567 
0.7000 39.9164 40.8357 2.2512 
0.8000 119.4542 125.3450 4.6996 
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Figure 23: F/Fo vs b/R, numerical and analytical [51], for Case 1, Cassini oval (c/d)2 = 0.9 
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4.2.1.6 (c/d)2 = 0.95 

Table 12: Numerical and analytical results [51] for Case 1, Cassini oval (c/d)2 = 0.95 

b/R F/Fo numerical F/Fo analytical %error 
0.1000 1.4213 1.4127 0.6059 
0.2000 2.1143 2.1065 0.3701 
0.3000 3.2537 3.2476 0.1893 
0.4000 5.2028 5.2344 0.6032 
0.5000 9.0150 9.0443 0.3229 
0.6000 17.2282 17.3608 0.7636 
0.7000 38.3850 39.3496 2.4514 
0.8000 113.1589 120.3680 5.9892 
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Figure 24: F/Fo vs b/R, numerical and analytical [51], for Case 1, Cassini oval (c/d)2 = 0.95 

 

 



67 
 

4.2.2 Effect of Particle Shape 

As seen in figure 25, the normalized drag force F/Fo increases with increase in 

the shape factor (c/d)2. As explained earlier, the ratio (c/d)2 changes the particle shape 

from a convex shape to a shape with a concave curve in the middle. This concavity 

effects the flow in different ways. The normalized drag force values increased in the 

following order. (c/d)2 = 0.1, (c/d)2 = 0.3, (c/d)2 = 0.95, (c/d)2 = 0.9, (c/d)2 = 0.5 and 

(c/d)2 = 0.7. It can be seen that for moderate concavity cases, (c/d)2 = 0.5 and (c/d)2 = 

0.7, the drag force is higher compared to low concavity cases, (c/d)2 = 0.1 and (c/d)2 = 

0.3, and high concavity cases, (c/d)2 = 0.95 and (c/d)2 = 0.9.  
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Figure 25: F/Fo vs b/R for different shape factors, numerical, for Case 1, Cassini ovals 
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4.3 Velocity Streamlines and Pressure Contours (Selected Cases) 

 As an example, the velocity streamlines and the pressure contours for the case 

of spheroid with shape factor a/b = 1.1 are shown here. The velocity streamlines are 

shown in figures 26-33 while the pressure contours are shown in figures 34-41. From 

the streamlines we can conclude that the flow is attached with no separation in the wake 

region. This is expected of creeping flows.  

 

Figure 26: Velocity streamlines, case 1, spheroid a/b = 1.1, b/R = 0.1 
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Figure 27: Velocity streamlines, case 1, spheroid a/b = 1.1, b/R = 0.2 

 

Figure 28: Velocity streamlines, case 1, spheroid a/b = 1.1, b/R = 0.3 
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Figure 29: Velocity streamlines, case 1, spheroid a/b = 1.1, b/R = 0.4 

 

Figure 30: Velocity streamlines, case 1, spheroid a/b = 1.1, b/R = 0.5 



71 
 

 

Figure 31: Velocity streamlines, case 1, spheroid a/b = 1.1, b/R = 0.6 

 

Figure 32: Velocity streamlines, case 1, spheroid a/b = 1.1, b/R = 0.7 

 

Figure 33: Velocity streamlines, case 1, spheroid a/b = 1.1, b/R = 0.8 
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Figure 34: Pressure distribution, case 1, spheroid a/b = 1.1, b/R = 0.1 
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Figure 35: Pressure distribution, case 1, spheroid a/b = 1.1, b/R = 0.2

 

Figure 36: Pressure distribution, case 1, spheroid a/b = 1.1, b/R = 0.3 
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Figure 37: Pressure distribution, case 1, spheroid a/b = 1.1, b/R = 0.4 

 

Figure 38: Pressure distribution, case 1, spheroid a/b = 1.1, b/R = 0.5 
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Figure 39: Pressure distribution, case 1, spheroid a/b = 1.1, b/R = 0.6 

 

Figure 40: Pressure distribution, case 1, spheroid a/b = 1.1, b/R = 0.7 

 

Figure 41: Pressure distribution, case 1, spheroid a/b = 1.1, b/R = 0.8 
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Chapter 5. Results for Low Reynolds Number Motion in Newtonian Fluid 

 This section presents the numerical results for axisymmetric prolate spheroids 

and Cassini ovals for different shape factors and different confinement ratios, for the 

case of low Reynolds number motion in Newtonian fluid.  

 First, the results for the spheroids will be shown and the effect of confinement 

ratio and the effect of particle geometry will be examined. Three different shape factors 

a/b will be studied with values 1, 2, and 10. For each shape factor, confinement ratio 

b/R values of 0.1, 0.3, 0.5, and 0.7 will be studied with the exception for the case of a/b  

= 1, for which confinement ratio b/R values of 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 and 0.8 

will be studied. For each confinement ratio, six different values of Reynolds number 

will be studied. Re values of 0.01, 0.1, 1, 10, 20, 40 will be examined for steady cases. 

The results are shown in section 5.1. 

Similar analysis will be repeated for the case of Cassini ovals. Three different 

shape factors (c/d)2 will be studied with values 0.3, 0.7, and 0.95. For each shape factor, 

confinement ratio b/R values of 0.1, 0.3, 0.5, and 0.7 will be studied. For each 

confinement ratio, six different values of Reynolds number will be studied. Re values 

of 0.01, 0.1, 1, 10, 20, 40 will be examined for steady cases. The results are shown in 

section 5.2. 

Sample velocity streamlines and pressure contours will be shown to help 

understand the flow dynamics. These results are shown in section 5.3. 

5.1 Spheroid 

5.1.1 Effect of Reynolds Number 

 As seen from figures 42-44, as the Reynolds number increases the coefficient 

of drag decreases. This is valid for all cases solved here. This follows the same pattern 

as the standard drag curve for unbounded flow over a sphere. Therefore, for bounded 

flows over spheroids, the drag coefficient is inversely proportional to the Reynolds 

number. 
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5.1.1.1 a/b = 1 

Table 13: Numerical results for Case 2, spheroid a/b = 1 

 Cd 
Re b/R = 0.1 b/R = 0.2 b/R = 0.3 b/R = 0.4 

0.0100 3221.7498 4063.3770 5709.0248 8569.6316 
0.1000 322.4085 406.0134 570.1666 855.9470 
1.0000 32.8640 40.8190 57.1231 85.6589 
10.0000 4.6869 5.0692 6.3579 8.9945 
20.0000 2.9315 3.0907 3.6772 4.9201 
40.0000 1.9236 1.9977 2.2940 2.9202 

 

 Cd 
Re b/R = 0.5 b/R = 0.6 b/R = 0.7 b/R = 0.8 

0.0100 14069.3050 25668.7678 54555.4516 166364.4618 
0.1000 1405.2031 2564.5941 5453.3683 16633.7141 
1.0000 140.5714 256.4339 544.9587 1663.2304 
10.0000 14.3684 25.8365 54.4295 166.4676 
20.0000 7.5346 13.1973 27.4264 83.5571 
40.0000 4.2253 7.0381 14.1709 42.3617 

 

 

 

 

 

 

 

 



78 
 

Cd vs Re
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Figure 42: Cd vs Re for Case 2, spheroid a/b = 1 (individual cases) 
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5.1.1.2 a/b = 2 

Table 14: Numerical results for Case 2, spheroid a/b = 2 

 Cd 
Re b/R = 0.1 b/R = 0.3 b/R = 0.5 b/R = 0.7 

0.0100 3866.2063 8180.4150 22632.7239 95708.5421 
0.1000 386.5845 817.5100 2262.2324 9570.7661 
1.0000 39.3725 81.8240 226.2550 956.0101 
10.0000 5.4526 8.6613 22.8332 95.0308 
20.0000 3.3306 4.7514 11.6532 47.5105 
40.0000 2.1130 2.7886 6.1487 23.9952 
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Figure 43: Cd vs Re for Case 2, spheroid a/b = 2 (individual cases) 
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5.1.1.3 a/b = 10 

Table 15: Numerical results for Case 2, spheroid a/b = 10 

 Cd 
Re b/R = 0.1 b/R = 0.3 b/R = 0.5 b/R = 0.7 

0.0100 11427.9461 31844.0586 97859.1374 462559.5568 
0.1000 1142.8739 3183.6038 9786.9714 46255.8675 
1.0000 114.8850 318.4661 978.0978 4644.1400 
10.0000 13.4686 32.2001 97.7639 463.8199 
20.0000 7.7165 16.4095 48.9948 231.9558 
40.0000 4.5923 8.5592 24.6951 116.2313 

 

Cd vs Re

Re
0.01 0.1 1 10 100

C
d

1e+0

1e+1

1e+2

1e+3

1e+4

1e+5

b/R = 0.1

Cd vs Re

Re
0.01 0.1 1 10 100

C
d

1e+0

1e+1

1e+2

1e+3

1e+4

1e+5

b/R = 0.3

Cd vs Re

Re
0.01 0.1 1 10 100

C
d

1e+1

1e+2

1e+3

1e+4

1e+5

1e+6

b/R = 0.5

Cd vs Re

Re
0.01 0.1 1 10 100

C
d

1e+1

1e+2

1e+3

1e+4

1e+5

1e+6

b/R = 0.7

 

Figure 44: Cd vs Re for Case 2, spheroid a/b = 10 (individual cases) 
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5.1.2 Effect of Confinement Ratio 

As seen from figures 45-47, the coefficient of drag increases with an increase 

in the confinement ratio following the same reasoning as for case 1, creeping 

Newtonian flow. 

5.1.2.1 a/b = 1 
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Figure 45: Cd vs Re for different confinement ratios, for Case 2, spheroid a/b = 1, all cases and 

unbounded [50] 
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5.1.2.2 a/b = 2 
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Figure 46: Cd vs Re for different confinement ratios, for Case 2, spheroid a/b = 2  

5.1.2.3 a/b = 10 
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Figure 47: Cd vs Re for different confinement ratios, for Case 2, spheroid a/b = 10   
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5.1.3 Effect of Particle Shape 

The effect of particle shape, figures 48-51, also follows the same reasoning as 

for case 1, creeping Newtonian flow. 

5.1.3.1 b/R = 0.1 
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Figure 48: Cd vs Re for different shape factors ratios, for Case 2, spheroid b/R = 0.1 

5.1.3.2 b/R = 0.3 
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Figure 49: Cd vs Re for different shape factors ratios, for Case 2, spheroid b/R = 0.3 
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5.1.3.3 b/R = 0.5 
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Figure 50: Cd vs Re for different shape factors ratios, for Case 2, spheroid b/R = 0.5 

5.1.3.4 b/R = 0.7 
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Figure 51: Cd vs Re for different shape factors ratios, for Case 2, spheroid b/R = 0.7 
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5.2 Cassini Oval 

5.2.1 Effect of the Reynolds number 

As seen from figures 52-54, similar to the case of spheroid, the coefficient of 

drag decreases with increase in Reynolds number. 

5.2.1.1 (c/d)2 = 0.3 

Table 16: Numerical results for Case 2, Cassini oval (c/d)2 = 0.3 

 Cd 
Re b/R = 0.1 b/R = 0.3 b/R = 0.5 b/R = 0.7 

0.0100 3884.6663 6761.3296 17520.0496 75133.0825 
0.1000 388.3193 675.5528 1750.3948 7510.2430 
1.0000 39.4722 67.6501 175.0585 750.6679 
10.0000 5.4266 7.3691 17.7471 74.9641 
20.0000 3.3403 4.1740 9.1593 37.6200 
40.0000 2.1450 2.5388 4.9676 19.1408 
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Figure 52: Cd vs Re for Case 2, Cassini oval (c/d)2 = 0.3 (individual cases) 
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5.2.1.2 (c/d)2 = 0.7 

Table 17: Numerical results for Case 2, Cassini oval (c/d)2 = 0.7 

 Cd 
Re b/R = 0.1 b/R = 0.3 b/R = 0.5 b/R = 0.7 

0.0100 4555.8300 10163.4745 31221.0157 142498.5897 
0.1000 455.4960 1015.2836 3014.4645 14246.1060 
1.0000 46.3645 101.6200 301.4227 1423.9409 
10.0000 6.3960 10.7041 30.3943 142.1138 
20.0000 3.8996 5.8093 16.1067 71.1788 
40.0000 2.4692 3.3648 8.1675 35.9466 
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Figure 53: Cd vs Re for Case 2, Cassini oval (c/d)2 = 0.7 (individual cases) 
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5.2.1.3 (c/d)2 = 0.95 

Table 18: Numerical results for Case 2, Cassini oval (c/d)2 = 0.95 

 Cd 
Re b/R = 0.1 b/R = 0.3 b/R = 0.5 b/R = 0.7 

0.0100 4965.1785 11320.8380 30601.5975 126037.8934 
0.1000 496.3760 1131.1781 3058.8347 12603.5490 
1.0000 50.4005 113.2403 305.8429 1259.4292 
10.0000 6.8139 11.9614 30.9426 125.5304 
20.0000 4.1384 6.4757 15.9168 63.0036 
40.0000 2.6193 3.7332 8.5212 32.1455 
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Figure 54: Cd vs Re for Case 2, Cassini oval (c/d)2 = 0.95 (individual cases) 
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5.2.2 Effect of Confinement Ratio 

As seen from figures 55-57, the coefficient of drag increases with the increase 

in the confinement ratio. This is similar to the previous cases. 

5.2.2.1 (c/d)2 = 0.3 
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Figure 55: Cd vs Re for different confinement ratios, for Case 2, Cassini oval (c/d)2 = 0.3  
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5.2.2.2 (c/d)2 = 0.7 
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Figure 56: Cd vs Re for different confinement ratios, for Case 2, Cassini oval (c/d)2 = 0.7  

5.2.2.3 (c/d)2 = 0.95 
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Figure 57: Cd vs Re for different confinement ratios, for Case 2, Cassini oval (c/d)2 = 0.95  
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5.2.3 Effect of Particle Shape 

The effect of particle shape, figures 58-61, also follows the same reasoning as 

for case 1, creeping Newtonian flow. 

5.2.3.1 b/R = 0.1 
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Figure 58: Cd vs Re for different shape factors, for Case 2, Cassini oval b/R = 0.1 

5.2.3.2 b/R = 0.3 
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Figure 59: Cd vs Re for different shape factors, for Case 2, Cassini oval b/R = 0.3 



91 
 

5.2.3.3 b/R = 0.5 
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Figure 60: Cd vs Re for different shape factors, for Case 2, Cassini oval b/R = 0.5 

5.2.3.4 b/R = 0.7 
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Figure 61: Cd vs Re for different shape factors, for Case 2, Cassini oval b/R = 0.7 
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5.3 Velocity Streamlines and Pressure Contours (Selected Cases) 

As an example, the velocity streamlines and the pressure contours for the case 

of Cassini oval with shape factor (c/d)2 = 0.7 with confinement ratio b/R = 0.7 are 

shown here. The velocity streamlines are shown in figures 62-67, while the pressure 

contours are shown in figures 68-73. From the streamlines we can conclude that the 

flow is attached with no separation in the wake region for lower Reynolds number 

values. For other cases, very small separation was seen at Re = 40 for some shapes. 

 

Figure 62: Velocity streamlines, Case 2, Cassini oval (c/d)2 = 0.7, b/R = 0.7, Re = 0.01 

 

Figure 63: Velocity streamlines, Case 2, Cassini oval (c/d)2 = 0.7, b/R = 0.7, Re = 0.1 

 

Figure 64: Velocity streamlines, Case 2, Cassini oval (c/d)2 = 0.7, b/R = 0.7, Re = 1 
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Figure 65: Velocity streamlines, Case 2, Cassini oval (c/d)2 = 0.7, b/R = 0.7, Re = 10 

 

Figure 66: Velocity streamlines, Case 2, Cassini oval (c/d)2 = 0.7, b/R = 0.7, Re = 20 

 

Figure 67: Velocity streamlines, Case 2, Cassini oval (c/d)2 = 0.7, b/R = 0.7, Re = 40 
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Figure 68: Pressure contour, Case 2, Cassini oval (c/d)2 = 0.7, b/R = 0.7, Re = 0.01 

 

Figure 69: Pressure contour, Case 2, Cassini oval (c/d)2 = 0.7, b/R = 0.7, Re = 0.1 

 

Figure 70: Pressure contour, Case 2, Cassini oval (c/d)2 = 0.7, b/R = 0.7, Re = 1 
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Figure 71: Pressure contour, Case 2, Cassini oval (c/d)2 = 0.7, b/R = 0.7, Re = 10 

 

Figure 72: Pressure contour, Case 2, Cassini oval (c/d)2 = 0.7, b/R = 0.7, Re = 20 

 

Figure 73: Pressure contour, Case 2, Cassini oval (c/d)2 = 0.7, b/R = 0.7, Re = 40 
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Chapter 6. Results for Creeping Motion in non-Newtonian Fluid 

This section presents the numerical results for axisymmetric prolate spheroids 

and Cassini ovals for different shape factors and different confinement ratios, for the 

case of creeping motion in non-Newtonian fluid. 

 First, the results for the spheroids will be shown and the effect of confinement 

ratio and the effect of particle geometry will be examined. Five different shape factors 

a/b will be studied with values 1, 1.1, 2, 5 and 10. For each shape factor, confinement 

ratio b/R values of 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, and 0.7 will be studied. This will be 

repeated for four different values of power-law index n values including 0.6 and 0.8 for 

shear-thinning fluids and 1.2 and 1.4 for shear-thickening fluids. The results are shown 

in section 4.1. 

Similar analysis will be repeated for the case of Cassini ovals. Six different 

shape factors (c/d)2 will be studied with values 0.1, 0.3, 0.5, 0.7, 0.9, 0.95. For each 

shape factor, confinement ratio b/R values of 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, and 0.7 will be 

studied. This will be repeated for four different values of power-law index n values 

including 0.6 and 0.8 for shear-thinning fluids and 1.2 and 1.4 for shear-thickening 

fluids. The results are shown in section 4.2. 

Sample velocity streamlines and pressure contours will be shown to help 

understand the flow dynamics. These results are shown in section 4.3. 

 

  



97 
 

6.1 Spheroid 

6.1.1 Effect of Confinement Ratio  

As seen from figures 74-77, the drag coefficient increases with increase in the 

confinement ratio. This results is similar to the previous cases. 

6.1.1.1 n = 0.6 

Table 19: Numerical results for Case 3, spheroids, n = 0.6 

 Cd 
b/R a/b = 1 a/b = 1.1 a/b = 2 a/b = 5 a/b = 10 
0.1 74912.45347 76720.93591 94478.36616 160388.9061 299110.968 
0.2 82616.74028 84872.86575 108082.8994 198225.1147 420064.5961 
0.3 96828.25201 99947.63474 133043.082 269212.6202 575921.9048 
0.4 121208.017 126061.5639 175623.2615 399835.5967 1016573.226 
0.5 162823.2718 170685.9576 248908.2792 655474.7848 1812087.064 
0.6 237834.3517 252740.5051 399666.6974 1277423.512 3648623.879 
0.7 398255.4573 427990.2407 794237.4199 2981360.7 8566352.736 

 

Note that the coefficient of drag for a/b = 1, for n = 0.6 is given as 69468.40 [81]. 

6.1.1.2 n = 0.8 

Table 20: Numerical results for Case 3, spheroids, n = 0.8 

 Cd 
b/R a/b = 1 a/b = 1.1 a/b = 2 a/b = 5 a/b = 10 
0.1 48605.77553 49069.18318 60526.86231 104619.1436 202787.9718 
0.2 57764.86885 58980.57203 76137.41809 148371.9109 324730.2583 
0.3 73661.31018 76642.21456 104076.2835 227896.8916 468215.2779 
0.4 100684.6361 105767.4676 150907.69 371466.6344 899275.0797 
0.5 148555.5089 149896.363 242450.4094 664674.6461 1628276.47 
0.6 248690.5698 263452.2509 440037.4559 1343012.124 3293935.672 
0.7 482684.7274 495965.1136 993950.728 3168518.201 7742617.965 

 

Note that the coefficient of drag for a/b = 1, for n = 0.8 is given as 42972.22 [81]. 
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6.1.1.3 n = 1.2 

Table 21: Numerical results for Case 3, spheroids, n = 1.2  

 Cd 
b/R a/b = 1 a/b = 1.1 a/b = 2 a/b = 5 a/b = 10 
0.1 19720.61084 18948.97044 22289.87027 27070.46542 33815.74607 
0.2 27739.73974 28070.53643 33585.30232 42676.42465 56955.36174 
0.3 42646.91386 44620.35067 53010.33999 69331.96841 83193.21116 
0.4 69703.64098 72943.73646 85770.9131 116950.237 161126.8866 
0.5 121610.7519 127343.3191 150284.6389 211538.5747 291946.1301 
0.6 243046.5145 246002.7134 290438.6949 428780.3197 590722.3859 
0.7 536023.5007 550786.4621 675045.6296 1012368.196 1388588.899 

 

6.1.1.4 n = 1.4 

Table 22: Numerical results for Case 3, spheroids, n = 1.4 

 Cd 
b/R a/b = 1 a/b = 1.1 a/b = 2 a/b = 5 a/b = 10 
0.1 11596.13108 10337.58313 6793.886823 3476.86584 2426.394561 
0.2 16439.16431 15287.04251 9685.972787 5456.75221 4086.39735 
0.3 24726.59475 23279.86488 14747.62847 8863.432176 5968.683209 
0.4 38298.11895 35850.61553 23590.41454 14950.58056 11560.11705 
0.5 62704.60417 59304.01359 41251.73501 27042.17993 20945.60888 
0.6 120410.6467 111888.1856 79690.64295 54813.28437 42381.31521 
0.7 262779.1273 249111.4913 185194.9913 129413.9422 99624.99895 
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Figure 74: Cd vs b/R for Case 3, spheroids, n = 0.6 (individual cases) 

  

  



100 
 

 

Cd vs b/R

b/R

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

C
d

0

1e+5

2e+5

3e+5

4e+5

5e+5

6e+5

a/b = 1

Cd vs b/R

b/R

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

C
d

0

1e+5

2e+5

3e+5

4e+5

5e+5

6e+5

a/b = 1.1

Cd vs b/R

b/R

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

C
d

0.0

2.0e+5

4.0e+5

6.0e+5

8.0e+5

1.0e+6

1.2e+6

a/b = 2

Cd vs b/R

b/R

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

C
d

0.0

5.0e+5

1.0e+6

1.5e+6

2.0e+6

2.5e+6

3.0e+6

3.5e+6

a/b = 5

Cd vs b/R

b/R

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

C
d

0

2e+6

4e+6

6e+6

8e+6

1e+7

a/b = 10

 

Figure 75: Cd vs b/R for Case 3, spheroids, n = 0.8 (individual cases) 
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Figure 76: Cd vs b/R for Case 3, spheroids, n = 1.2 (individual cases) 
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Figure 77: Cd vs b/R for Case 3, spheroids, n = 1.4 (individual cases) 
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6.1.2 Effect of Particle Shape 

As seen from figures 78-81, the coefficient of drag increases with the increase 

in the shape factor value. This is similar to case 1 results, creeping Newtonian flow. 

6.1.2.1 n = 0.6 
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Figure 78: Cd vs b/R for different shape factor, for Case 3, spheroids, n = 0.6 (all cases) 
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6.1.2.2 n = 0.8 
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Figure 79: Cd vs b/R for different shape factor, for Case 3, spheroids, n = 0.8 (all cases) 

6.1.2.3 n = 1.2 
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Figure 80: Cd vs b/R for different shape factor, for Case 3, spheroids, n = 1.2 (all cases) 
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6.1.2.4 n = 1.4 

Cd vs b/R

b/R

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

C
d

0

5e+4

1e+5

2e+5

2e+5

3e+5

3e+5

a/b = 1

a/b = 1.1

a/b = 2

a/b = 5

a/b = 10

 

Figure 81: Cd vs b/R for different shape factor, for Case 3, spheroids, n = 1.4 (all cases) 
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6.2 Cassini Oval 

6.2.1 Effect of Confinement Ratio  

 The effect of confinement ratio can be seen in figures 82-85. The results are in 

accordance with the previous cases.   

6.2.1.1 n = 0.6 

Table 23: Numerical results for Case 3, Cassini ovals, n = 0.6 

 Cd 
b/R (c/d)2 = 0.1 (c/d)2 = 0.3 (c/d)2 = 0.5 
0.1 76725.7466 83875.6777 95748.5272 
0.2 84852.9341 93070.7682 109542.9286 
0.3 100229.1182 111883.4751 135466.5101 
0.4 126553.1259 143893.3930 180193.7088 
0.5 171632.3860 199213.9993 258175.3588 
0.6 253866.9163 301749.7108 406946.6986 
0.7 425626.9645 519798.0782 751794.0277 

 

 Cd 
b/R (c/d)2 = 0.7 (c/d)2 = 0.9 (c/d)2 = 0.95 
0.1 109878.1546 119813.1010 121934.0468 
0.2 129546.6447 142903.3492 144845.6256 
0.3 164750.3555 182108.6838 183862.3334 
0.4 222876.1687 242671.4616 245416.6975 
0.5 325922.3598 346246.7704 348022.2965 
0.6 525043.4267 548444.3847 548656.4701 
0.7 1015108.3449 1033041.9530 1032705.4627 
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Figure 82: Cd vs b/R for Case 3, Cassini ovals, n = 0.6 (individual cases) 
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6.2.1.2 n = 0.8 

Table 24: Numerical results for Case 3, Cassini ovals, n = 0.8 

 Cd 
b/R (c/d)2 = 0.1 (c/d)2 = 0.3 (c/d)2 = 0.5 
0.1 50298.4635 56322.6485 61979.9424 
0.2 59940.2970 66429.9605 78080.0975 
0.3 77348.6714 87077.1405 106464.4619 
0.4 107196.0921 123259.7780 156132.9077 
0.5 160756.7588 189495.5220 250496.9386 
0.6 267010.7001 322809.5650 446985.4380 
0.7 515951.2601 637805.8527 964615.3530 

 

 Cd 
b/R (c/d)2 = 0.7 (c/d)2 = 0.9 (c/d)2 = 0.95 
0.1 70967.0914 77440.2171 78766.4550 
0.2 92489.7443 102190.0101 103683.4294 
0.3 130134.6893 142826.3729 144410.6308 
0.4 195066.3614 209552.7877 211113.0915 
0.5 318158.6311 334955.3063 335489.1809 
0.6 585037.3881 597864.9991 596492.4512 
0.7 1306775.8486 1294237.8228 1282932.8172 

 

 

 

 

 

 

 



109 
 

Cd vs b/R

b/R

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

C
d

0

1e+5

2e+5

3e+5

4e+5

5e+5

6e+5

(c/d) 2̂ = 0.1

Cd vs b/R

b/R

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

C
d

0

1e+5

2e+5

3e+5

4e+5

5e+5

6e+5

7e+5

(c/d) 2̂ = 0.3

Cd vs b/R

b/R

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

C
d

0.0

2.0e+5

4.0e+5

6.0e+5

8.0e+5

1.0e+6

1.2e+6

(c/d) 2̂ = 0.5

Cd vs b/R

b/R

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

C
d

0.0

2.0e+5

4.0e+5

6.0e+5

8.0e+5

1.0e+6

1.2e+6

1.4e+6

(c/d) 2̂ = 0.7

Cd vs b/R

b/R

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

C
d

0.0

2.0e+5

4.0e+5

6.0e+5

8.0e+5

1.0e+6

1.2e+6

1.4e+6

(c/d) 2̂ = 0.9

Cd vs b/R

b/R

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

C
d

0.0

2.0e+5

4.0e+5

6.0e+5

8.0e+5

1.0e+6

1.2e+6

1.4e+6

(c/d) 2̂ = 0.95

 

Figure 83: Cd vs b/R for Case 3, Cassini ovals, n = 0.8 (individual cases) 
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6.2.1.3 n = 1.2 

Table 25: Numerical results for Case 3, Cassini ovals, n = 1.2 

 Cd 
b/R (c/d)2 = 0.1 (c/d)2 = 0.3 (c/d)2 = 0.5 
0.1 20620.3649 24560.4240 24136.1627 
0.2 29092.9268 33018.6146 38244.2775 
0.3 45602.6233 52125.2371 64683.9544 
0.4 77061.6239 90427.8546 114800.5214 
0.5 142983.4526 173415.8391 221010.6105 
0.6 303548.5994 370519.6597 458272.6903 
0.7 786536.0444 895034.2721 1109432.4790 

 

 Cd 
b/R (c/d)2 = 0.7 (c/d)2 = 0.9 (c/d)2 = 0.95 
0.1 27412.2229 29372.1567 29564.3185 
0.2 45114.3511 47411.7988 47471.8443 
0.3 76022.2768 76022.7214 75715.3305 
0.4 132745.8153 125822.6452 122791.0516 
0.5 244960.3272 220900.0218 213362.7861 
0.6 496742.6978 425437.6371 407705.1706 
0.7 1180237.2934 956962.4106 907972.0999 
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Figure 84: Cd vs b/R for Case 3, Cassini ovals, n = 1.2 (individual cases) 
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6.2.1.4 n = 1.4 

Table 26: Numerical results for Case 3, Cassini ovals, n = 1.4 

 Cd 
b/R (c/d)2 = 0.1 (c/d)2 = 0.3 (c/d)2 = 0.5 
0.1 13009.4566 16119.3038 13999.9763 
0.2 20033.9181 23069.4933 22679.1315 
0.3 34866.6582 40029.6636 37027.9062 
0.4 65425.9938 73168.6731 61676.2944 
0.5 135700.5004 139016.0716 111716.7941 
0.6 327186.7799 277615.2504 226000.4381 
0.7 982183.5127 636982.6875 543212.2842 

 

 Cd 
b/R (c/d)2 = 0.7 (c/d)2 = 0.9 (c/d)2 = 0.95 
0.1 12158.0355 9974.5456 9485.8136 
0.2 18854.6010 15102.7233 14289.5580 
0.3 29882.3293 23338.2087 22016.4980 
0.4 49934.4316 37841.2830 35258.1410 
0.5 90850.5804 66215.5505 61123.7372 
0.6 183640.6522 127449.2813 116743.2234 
0.7 435941.0882 286621.1466 259961.6409 
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Figure 85: Cd vs b/R for Case 3, Cassini ovals, n = 1.4 (individual cases) 
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6.2.2 Effect of Particle Shape 

The coefficient of drag changes with the change in the shape factor as shown in 

figures 86-89 for different power law index values. The trend between the drag 

coefficient and the confinement differs for each power law index value. 

6.2.2.1 n = 0.6 
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Figure 86: Cd vs b/R for different shape factor, for Case 3, Cassini ovals, n = 0.6 (all cases) 

6.2.2.2 n = 0.8 
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Figure 87: Cd vs b/R for different shape factor, for Case 3, Cassini ovals, n = 0.8 (all cases) 
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6.2.6.3 n = 1.2 

Cd vs b/R
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Figure 88: Cd vs b/R for different shape factor, for Case 3, Cassini ovals, n = 1.2 (all cases) 

6.2.2.4 n = 1.4 
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Figure 89: Cd vs b/R for different shape factor, for Case 3, Cassini ovals, n = 1.4 (all cases) 
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6.3 Velocity Streamlines and Pressure Contours (Selected Cases) 

As an example, the velocity streamlines and the pressure contours for the case 

spheroid a/b = 1.1 with confinement ratio b/R = 0.7 are shown here. The velocity 

streamlines are shown in figures 90-93, while the pressure contours are shown in figures 

94-97. From the streamlines we can conclude that the flow is attached with no 

separation in the wake region. This is expected of creeping flows. 

 

Figure 90: Velocity streamlines, Case 3, spheroid a/b = 1.1, b/R = 0.7, n = 0.6 

 

Figure 91: Velocity streamlines, Case 3, spheroid a/b = 1.1, b/R = 0.7, n = 0.8 
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Figure 92: Velocity streamlines, Case 3, spheroid a/b = 1.1, b/R = 0.7, n = 1.2 

 

Figure 93: Velocity streamlines, Case 3, spheroid a/b = 1.1, b/R = 0.7, n = 1.4 

 

Figure 94: Pressure contours, Case 3, spheroid a/b = 1.1, b/R = 0.7, n = 0.6 
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Figure 95: Pressure contours, Case 3, spheroid a/b = 1.1, b/R = 0.7, n = 0.8 

 

Figure 96: Pressure contours, Case 3, spheroid a/b = 1.1, b/R = 0.7, n = 1.2 

 

Figure 97: Pressure contours, Case 3, spheroid a/b = 1.1, b/R = 0.7, n = 1.4 
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Chapter 7. Results for Low Reynolds Number Motion in Non-Newtonian Fluid 

This section presents the numerical results for axisymmetric prolate spheroids 

and Cassini ovals for different shape factors and different confinement ratios, for the 

case of low Reynolds number motion in non-Newtonian fluids.  

 First, the results for the spheroids will be shown and the effect of the power-law 

index, the effect of the confinement ratio, and the effect of particle geometry will be 

examined. Three different shape factors a/b will be studied with values 1, 2, and 10. 

For each shape factor, confinement ratio b/R values of 0.1, 0.3, 0.5, and 0.7 will be 

studied. For each confinement ratio, six different values of Reynolds number will be 

studied. Re values of 0.01, 0.1, 1, 10, 20, 40 will be examined for steady cases. This 

will be repeated for power-law index n values of 0.6 and 0.8 for shear-thinning fluids 

and 1.2 and 1.4 for shear-thickening fluids. The results are shown in section 5.1. 

Similar analysis will be repeated for the case of Cassini ovals. Three different 

shape factors (c/d)2 will be studied with values 0.3, 0.7, and 0.95. For each shape factor, 

confinement ratio b/R values of 0.1, 0.3, 0.5, and 0.7 will be studied. For each 

confinement ratio, six different values of Reynolds number will be studied. Re values 

of 0.01, 0.1, 1, 10, 20, 40 will be examined for steady cases. This will be repeated for 

power-law index n values of 0.6 and 0.8 for shear-thinning fluids and 1.2 and 1.4 for 

shear-thickening fluids. The results are shown in section 5.2. 

Sample velocity streamlines and pressure contours will be shown to help 

understand the flow dynamics. These results are shown in section 5.3. 

7.1 Spheroid 

7.1.1 Effect of Reynolds number 

 The effect of Reynolds number follows the same trend as case 2, i.e. the drag 

coefficient decreases with increase in Reynolds number. This can be seen in figures 

98-109. 
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7.1.1.1 n = 0.6 

7.1.1.1.1 a/b = 1 

Table 27: Numerical results for Case 4, n = 0.6, spheroid a/b = 1 

 Cd 
Re b/R = 0.1 b/R = 0.3 b/R = 0.5 b/R = 0.7 

0.0100 7491.2533 9688.4568 16819.5658 55644.7747 
0.1000 814.3759 1166.5181 2528.4635 10486.9228 
1.0000 119.2933 198.9503 484.0174 2023.5579 
10.0000 22.3229 38.4286 93.5131 390.8467 
20.0000 14.2048 23.5575 57.0646 238.2991 
40.0000 9.3178 14.5635 34.8779 145.3226 
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Figure 98: Cd vs Re for Case 4, n = 0.6, spheroid a/b = 1 (individual cases) 
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7.1.1.1.2 a/b = 2 

Table 28: Numerical results for Case 4, n = 0.6, spheroid a/b = 2 

 Cd 
Re b/R = 0.1 b/R = 0.3 b/R = 0.5 b/R = 0.7 

0.0100 9521.3802 14491.6260 33125.0654 143506.9110 
0.1000 1247.7230 2230.6835 6164.9103 27659.9305 
1.0000 205.1134 425.4163 1189.5087 5339.9911 
10.0000 39.1112 82.1865 229.7263 1031.0587 
20.0000 24.4226 50.1626 140.0655 628.4739 
40.0000 15.5914 30.6809 85.4305 383.1205 
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Figure 99: Cd vs Re for Case 4, n = 0.6, spheroid a/b = 2 (individual cases) 
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7.1.1.1.3 a/b = 10 

Table 29: Numerical results for Case 4, n = 0.6, spheroid a/b = 10 

 Cd 
Re b/R = 0.1 b/R = 0.3 b/R = 0.5 b/R = 0.7 

0.0100 43785.6071 99353.4743 347517.5898 1652728.3143 
0.1000 7797.7200 19118.1024 67085.8785 319086.9758 
1.0000 1500.5901 3690.8071 12952.1725 61606.0612 
10.0000 290.0131 712.4433 2500.6080 11895.0633 
20.0000 177.0333 434.2052 1524.1077 7250.3797 
40.0000 108.3052 264.6286 928.9592 4419.5353 
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Figure 100: Cd vs Re for Case 4, n = 0.6, spheroid a/b = 10 (individual cases) 
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7.1.1.2 n = 0.8 

7.1.1.2.1 a/b = 1 

Table 30: Numerical results for Case 4, n = 0.8, spheroid a/b = 1 

 Cd 
Re b/R = 0.1 b/R = 0.3 b/R = 0.5 b/R = 0.7 

0.0100 4862.7808 7471.4562 16009.0649 64704.3395 
0.1000 553.3353 934.9724 2267.6262 9479.6710 
1.0000 76.5250 136.3942 332.7616 1391.4571 
10.0000 12.4146 20.2684 48.9740 204.4146 
20.0000 7.7025 11.6436 27.6124 114.8255 
40.0000 4.9753 6.9067 15.6895 64.6040 
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Figure 101: Cd vs Re for Case 4, n = 0.8, spheroid a/b = 1 (individual cases) 
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7.1.1.2.2 a/b = 2 

Table 31: Numerical results for Case 4, n = 0.8, spheroid a/b = 2 

 Cd 
Re b/R = 0.1 b/R = 0.3 b/R = 0.5 b/R = 0.7 

0.0100 6316.2012 11885.5949 32239.0349 144520.2574 
0.1000 810.5086 1689.7525 4724.5763 21211.5778 
1.0000 116.1860 247.9765 693.5198 3113.1637 
10.0000 18.2409 36.5461 101.8947 457.0719 
20.0000 11.0538 20.6664 57.2696 256.5828 
40.0000 6.9467 11.8450 32.2550 144.0685 
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Figure 102: Cd vs Re for Case 4, n = 0.8, spheroid a/b = 2 (individual cases) 
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7.1.1.2.3 a/b = 10 

Table 32: Numerical results for Case 4, n = 0.8, spheroid a/b = 10 

 Cd 
Re b/R = 0.1 b/R = 0.3 b/R = 0.5 b/R = 0.7 

0.0100 27784.3538 68093.4362 238931.3130 1136454.1683 
0.1000 4062.6355 9993.6572 35070.0444 166805.7816 
1.0000 596.4993 1466.6810 5147.5070 24484.3901 
10.0000 88.3313 215.2215 755.5205 3594.5997 
20.0000 50.3209 120.8136 424.0160 2017.8183 
40.0000 29.1987 67.8938 237.9872 1132.9301 
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Figure 103: Cd vs Re for Case 4, n = 0.8, spheroid a/b = 10 (individual cases) 
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7.1.1.3 n = 1.2 

7.1.1.3.1 a/b = 1 

Table 33: Numerical results for Case 4, n = 1.2, spheroid a/b = 1 

 Cd 
Re b/R = 0.1 b/R = 0.3 b/R = 0.5 b/R = 0.7 

0.0100 1602.1326 2959.0390 7228.4025 30236.3071 
0.1000 92.9612 166.6255 406.5770 1700.5627 
1.0000 6.6863 9.8390 23.0938 95.8295 
10.0000 1.1405 1.3111 2.2163 6.8837 
20.0000 0.7289    
40.0000 0.5044    
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Figure 104: Cd vs Re for Case 4, n = 1.2, spheroid a/b = 1 (individual cases) 
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7.1.1.3.2 a/b = 2 

Table 34: Numerical results for Case 4, n = 1.2, spheroid a/b = 2 

 Cd 
Re b/R = 0.1 b/R = 0.3 b/R = 0.5 b/R = 0.7 

0.0100 1411.7031 3023.4651 8456.3750 37963.5366 
0.1000 79.8524 170.0729 475.6134 2135.1737 
1.0000 6.0462 9.9936 26.9623 120.2223 
10.0000 0.9965 1.1858 2.2576 7.8633 
20.0000 0.6058 0.7775   
40.0000 0.3421    
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Figure 105: Cd vs Re for Case 4, n = 1.2, spheroid a/b = 2 (individual cases) 
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7.1.1.3.3 a/b = 10 

Table 35: Numerical results for Case 4, n = 1.2, spheroid a/b = 10 

 Cd 
Re b/R = 0.1 b/R = 0.3 b/R = 0.5 b/R = 0.7 

0.0100 1901.8555 4678.2297 16417.2158 78086.9486 
0.1000 107.6381 262.9725 923.1730 4391.9957 
1.0000 8.0228 15.2376 52.0870 248.1606 
10.0000 1.1543 1.5943 3.5103 15.8098 
20.0000 0.7686 0.8041   
40.0000     
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Figure 106: Cd vs Re for Case 4, n = 1.2, spheroid a/b = 10 (individual cases) 
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7.1.1.4 n = 1.4 

7.1.1.4.1 a/b = 1 

Table 36: Numerical results for Case 4, n = 1.4, spheroid a/b = 1 

 Cd 
Re b/R = 0.1 b/R = 0.3 b/R = 0.5 b/R = 0.7 

0.0100 308.2095 554.7414 1353.7936 5662.8573 
0.1000 8.0927 12.3451 29.3626 122.1775 
1.0000 0.7880 0.9334 1.4997  
10.0000 0.1114 0.0822 0.1018  
20.0000     
40.0000     
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Figure 107: Cd vs Re for Case 4, n = 1.4, spheroid a/b = 1 (individual cases) 
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7.1.1.4.2 a/b = 2 

Table 37: Numerical results for Case 4, n = 1.4, spheroid a/b = 2 

 Cd 
Re b/R = 0.1 b/R = 0.3 b/R = 0.5 b/R = 0.7 

0.0100 148.7456 317.8037 888.8304 3990.4928 
0.1000 4.7218 7.3727 19.4122 86.1549 
1.0000 0.4630    
10.0000     
20.0000     
40.0000     
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Figure 108: Cd vs Re for Case 4, n = 1.4, spheroid a/b = 2 (individual cases) 
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7.1.1.4.3 a/b = 10 

Table 38: Numerical results for Case 4, n = 1.4, spheroid a/b = 10 

 Cd 
Re b/R = 0.1 b/R = 0.3 b/R = 0.5 b/R = 0.7 

0.0100 53.4275 128.5601 451.2284 2147.2723 
0.1000 2.4032 3.6343 10.1622 47.9848 
1.0000     
10.0000     
20.0000     
40.0000     
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Figure 109: Cd vs Re for Case 4, n = 1.4, spheroid a/b = 10 (individual cases) 
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7.1.2 Effect of Confinement Ratio 

The trend for coefficient of drag versus Reynolds number is similar to the 

previous cases, i.e. the drag coefficient increases with increase in confinement ratio. 

This can be seen from figures 110-121. 
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Figure 110: Cd vs Re for different confinement ratios, for Case 4, n = 0.6, spheroid a/b = 1 (all 

cases and unbounded [52])  

 . 
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7.1.2.1.2 a/b = 2 
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Figure 111: Cd vs Re for different confinement ratios, for Case 4, n = 0.6, spheroid a/b = 2  
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Figure 112: Cd vs Re for different confinement ratios, for Case 4, n = 0.6, spheroid a/b = 10  
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7.1.2.2 n = 0.8  

7.1.2.2.1 a/b = 1 
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Figure 113: Cd vs Re for different confinement ratios, for Case 4, n = 0.8, spheroid a/b = 1 (all 

cases and unbounded [52]) 
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7.1.2.2.2 a/b = 2 
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Figure 114: Cd vs Re for different confinement ratios, for Case 4, n = 0.8, spheroid a/b = 2  
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Figure 115: Cd vs Re for different confinement ratios, for Case 4, n = 0.8, spheroid a/b = 10   
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7.1.2.3 n = 1.2 

7.1.2.3.1 a/b = 1 
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Figure 116: Cd vs Re for different confinement ratios, for Case 4, n = 1.2, spheroid a/b = 1  
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7.1.2.3.2 a/b = 2 
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Figure 117: Cd vs Re for different confinement ratios, for Case 4, n = 1.2, spheroid a/b = 2  
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Figure 118: Cd vs Re for different confinement ratios, for Case 4, n = 1.2, spheroid a/b = 10  
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7.1.2.4 n = 1.4 

7.1.2.4.1 a/b = 1 
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Figure 119: Cd vs Re for different confinement ratios, for Case 4, n = 1.4, spheroid a/b = 1  
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7.1.2.4.2 a/b = 2 
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Figure 120: Cd vs Re for different confinement ratios, for Case 4, n = 1.4, spheroid a/b = 2  
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Figure 121: Cd vs Re for different confinement ratios, for Case 4, n = 0.6, spheroid a/b = 10  
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7.1.3 Effect of Particle Shape 

The effect of particle shape can be seen in figures 122-137. For lower n values, 

Cd increases with increase in a/b. For higher n, Cd decreases with increase in a/b. 
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Figure 122: Cd vs Re for different shape factors, for Case 4, n = 0.6, spheroid b/R = 0.1 

7.1.3.1.2 b/R = 0.3 
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Figure 123: Cd vs Re for different shape factors, for Case 4, n = 0.6, spheroid b/R = 0.3 
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7.1.3.1.3 b/R = 0.5 
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Figure 124: Cd vs Re for different shape factors, for Case 4, n = 0.6, spheroid b/R = 0.5 

7.1.3.1.4 b/R = 0.7 
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Figure 125: Cd vs Re for different shape factors, for Case 4, n = 0.6, spheroid b/R = 0.7 
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7.1.3.2 n = 0.8 

7.1.3.2.1 b/R = 0.1 
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Figure 126: Cd vs Re for different shape factors, for Case 4, n = 0.8, spheroid b/R = 0.1 

7.1.3.2.2 b/R = 0.3 
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Figure 127: Cd vs Re for different shape factors, for Case 4, n = 0.8, spheroid b/R = 0.3 
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7.1.3.2.3 b/R = 0.5 
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Figure 128: Cd vs Re for different shape factors, for Case 4, n = 0.8, spheroid b/R = 0.5 

7.1.3.2.4 b/R = 0.7 
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Figure 129: Cd vs Re for different shape factors, for Case 4, n = 0.8, spheroid b/R = 0.7 
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7.1.3.3 n = 1.2 

7.1.3.3.1 b/R = 0.1 
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Figure 130: Cd vs Re for different shape factors, for Case 4, n = 1.2, spheroid b/R = 0.1 

7.1.3.3.2 b/R = 0.3 
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Figure 131: Cd vs Re for different shape factors, for Case 4, n = 1.2, spheroid b/R = 0.3 
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7.1.3.3.3 b/R = 0.5 
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Figure 132: Cd vs Re for different shape factors, for Case 4, n = 1.2, spheroid b/R = 0.5 

7.1.3.3.4 b/R = 0.7 
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Figure 133: Cd vs Re for different shape factors, for Case 4, n = 1.2, spheroid b/R = 0.7 



146 
 

7.1.3.4 n = 1.4 

7.1.3.4.1 b/R = 0.1 
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Figure 134: Cd vs Re for different shape factors, for Case 4, n = 1.4, spheroid b/R = 0.1 

7.1.3.4.2 b/R = 0.3 
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Figure 135: Cd vs Re for different shape factors, for Case 4, n = 1.4, spheroid b/R = 0.3 
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7.1.3.4.3 b/R = 0.5 
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Figure 136: Cd vs Re for different shape factors, for Case 4, n = 1.4, spheroid b/R = 0.5 

7.1.3.4.4 b/R = 0.7 
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Figure 137: Cd vs Re for different shape factors, for Case 4, n = 1.4, spheroid b/R = 0.7 

  



148 
 

7.1.4 Effect of Power-Law Index 

For all cases, Cd decreases with increase in the power law index value, as seen 

in figures 138-149. 
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Figure 138: Cd vs Re for different power law values, Case 4, spheroid a/b = 1, b/R = 0.1 

7.1.4.1.2 b/R = 0.3 
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Figure 139: Cd vs Re for different power law values, Case 4, spheroid a/b = 1, b/R = 0.3 
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7.1.4.1.3 b/R = 0.5 

Cd vs Re

Re

0.01 0.1 1 10 100

C
d

1e-2

1e-1

1e+0

1e+1

1e+2

1e+3

1e+4

1e+5

n = 0.6

n = 0.8

n = 1.0

n = 1.2

n = 1.4

 
Figure 140: Cd vs Re for different power law values, Case 4, spheroid a/b = 1, b/R = 0.5 

7.1.4.1.4 b/R = 0.7 
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Figure 141: Cd vs Re for different power law values, Case 4, spheroid a/b = 1, b/R = 0.7 
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7.1.4.2 a/b = 2 

7.1.4.2.1 b/R = 0.1 

Cd vs Re

Re

0.01 0.1 1 10 100

C
d

1e-1

1e+0

1e+1

1e+2

1e+3

1e+4

1e+5

n = 0.6

n = 0.8

n = 1.0

n = 1.2

n = 1.4

 
Figure 142: Cd vs Re for different power law values, Case 4, spheroid a/b = 2, b/R = 0.1 

7.1.4.2.2 b/R = 0.3 

Cd vs Re

Re

0.01 0.1 1 10 100

C
d

1e-1

1e+0

1e+1

1e+2

1e+3

1e+4

1e+5

n = 0.6

n = 0.8

n = 1.0

n = 1.2

n = 1.4

 

Figure 143: Cd vs Re for different power law values, Case 4, spheroid a/b = 2, b/R = 0.3 
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7.1.4.2.3 b/R = 0.5 
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Figure 144: Cd vs Re for different power law values, Case 4, spheroid a/b = 2, b/R = 0.5 

7.1.4.2.4 b/R = 0.7 
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Figure 145: Cd vs Re for different power law values, Case 4, spheroid a/b = 2, b/R = 0.7 
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7.1.4.3 a/b = 10 

7.1.4.3.1 b/R = 0.1 
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Figure 146: Cd vs Re for different power law values, Case 4, spheroid a/b = 10, b/R = 0.1 

7.1.4.3.2 b/R = 0.3 
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Figure 147: Cd vs Re for different power law values, Case 4, spheroid a/b = 10, b/R = 0.3 
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7.1.4.3.3 b/R = 0.5 
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Figure 148: Cd vs Re for different power law values, Case 4, spheroid a/b = 10, b/R = 0.5 
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Figure 149: Cd vs Re for different power law values, Case 4, spheroid a/b = 10, b/R = 0.7 
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7.2 Cassini Oval 

7.2.1 Effect of Reynolds number 

As seen from figures 150-161, the drag coefficient decreases with increase in 

Reynolds number. This follows the same trend as the previous cases. 

7.2.1.1 n = 0.6 

7.2.1.1.1 (c/d)2 = 0.3 

Table 39: Numerical results for Case 4, n = 0.6, Cassini Oval (c/d)2 = 0.3 

 Cd 
Re b/R = 0.1 b/R = 0.3 b/R = 0.5 b/R = 0.7 

0.0100 16767.2075 22365.7277 40267.0997 126215.4265 
0.1000 1740.9470 2458.0664 5363.7960 22758.7975 
1.0000 232.9199 378.1367 1004.2610 4386.7720 
10.0000 43.0268 72.5860 193.8800 847.0848 
20.0000 27.5512 44.5344 118.2683 516.4241 
40.0000 18.2159 27.5861 72.2444 314.9310 
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Figure 150: Cd vs Re for Case 4, n = 0.6, Cassini Oval (c/d)2 = 0.1 (individual cases) 
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7.2.1.1.2 (c/d)2 = 0.7 

Table 40: Numerical results for Case 4, n = 0.6, Cassini Oval (c/d)2 = 0.7 

 Cd 
Re b/R = 0.1 b/R = 0.3 b/R = 0.5 b/R = 0.7 

0.0100 10994.9722 16959.6060 38574.7428 171546.0044 
0.1000 1298.4213 2356.7273 6888.0306 32988.0311 
1.0000 201.6689 437.7131 1327.4547 6368.3905 
10.0000 37.8318 84.5488 256.3722 1229.7540 
20.0000 23.7810 51.6337 156.3263 749.6593 
40.0000 15.3279 31.6219 95.3664 457.0744 
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Figure 151: Cd vs Re for Case 4, n = 0.6, Cassini Oval (c/d)2 = 0.7 (individual cases) 
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7.2.1.1.3 (c/d)2 = 0.95 

Table 41: Numerical results for Case 4, n = 0.6, Cassini Oval (c/d)2 = 0.95 

 Cd 
Re b/R = 0.1 b/R = 0.3 b/R = 0.5 b/R = 0.7 

0.0100 12396.6789 19716.1854 44508.5903 182565.2919 
0.1000 1576.3790 3018.5363 8279.4772 35194.5174 
1.0000 258.8234 575.7034 1597.6808 6794.8446 
10.0000 49.4239 111.2306 308.5570 1312.0446 
20.0000 30.7807 67.8944 188.1376 799.7985 
40.0000 19.5731 41.5363 114.7678 487.6768 

 

Cd vs Re

Re

0.01 0.1 1 10 100

C
d

1e+1

1e+2

1e+3

1e+4

1e+5

b/R = 0.1

Cd vs Re

Re

0.01 0.1 1 10 100

C
d

1e+1

1e+2

1e+3

1e+4

1e+5

b/R = 0.3

Cd vs Re

Re

0.01 0.1 1 10 100

C
d

1e+1

1e+2

1e+3

1e+4

1e+5

b/R = 0.5

Cd vs Re

Re

0.01 0.1 1 10 100

C
d

1e+2

1e+3

1e+4

1e+5

1e+6

b/R = 0.7

 

Figure 152: Cd vs Re for Case 4, n = 0.6, Cassini Oval (c/d)2 = 0.95 (individual cases) 
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7.2.1.2 n = 0.8 

7.2.1.2.1 (c/d)2 = 0.3 

Table 42: Numerical results for Case 4, n = 0.8, Cassini Oval (c/d)2 = 0.3 

 Cd 
Re b/R = 0.1 b/R = 0.3 b/R = 0.5 b/R = 0.7 

0.0100 11259.6872 17406.6531 39072.3593 156227.7327 
0.1000 1201.1947 1998.5488 5207.8142 22732.9195 
1.0000 160.8542 284.8635 763.4184 3336.4931 
10.0000 26.2682 42.2976 112.2195 489.9600 
20.0000 16.3446 24.2738 63.1775 275.1800 
40.0000 10.5655 14.3620 35.7774 154.7322 
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Figure 153: Cd vs Re for Case 4, n = 0.8, Cassini Oval (c/d)2 = 0.3 (individual cases)  
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7.2.1.2.2 (c/d)2 = 0.7 

Table 43: Numerical results for Case 4, n = 0.8, Cassini Oval (c/d)2 = 0.7 

 Cd 
Re b/R = 0.1 b/R = 0.3 b/R = 0.5 b/R = 0.7 

0.0100 7153.7711 13871.2459 39312.8271 187661.9013 
0.1000 865.1063 1893.1907 5739.9176 27536.8154 
1.0000 121.5986 277.6099 842.5182 4042.0327 
10.0000 19.2587 40.9470 123.7967 593.5606 
20.0000 11.7473 23.1910 69.5960 333.2993 
40.0000 7.4279 13.3150 39.2376 187.2517 
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Figure 154: Cd vs Re for Case 4, n = 0.8, Cassini Oval (c/d)2 = 0.7 (individual cases) 
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7.2.1.2.3 (c/d)2 = 0.95 

Table 44: Numerical results for Case 4, n = 0.8, Cassini Oval (c/d)2 = 0.95 

 Cd 
Re b/R = 0.1 b/R = 0.3 b/R = 0.5 b/R = 0.7 

0.0100 8132.3317 16293.7123 43825.5443 186145.8290 
0.1000 1038.4862 2314.8219 6423.7790 27320.1691 
1.0000 148.9693 339.7136 942.9389 4010.1855 
10.0000 23.1908 50.0739 138.5540 588.9160 
20.0000 13.9704 28.3333 77.8974 330.6423 
40.0000 8.7274 16.2291 43.9338 104.1458 
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Figure 155: Cd vs Re for Case 4, n = 0.8, Cassini Oval (c/d)2 = 0.95 (individual cases) 
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7.2.1.3 n = 1.2 

7.2.1.3.1 (c/d)2 = 0.3 

Table 45: Numerical results for Case 4, n = 1.2, Cassini Oval (c/d)2 = 0.3 

 Cd 
Re b/R = 0.1 b/R = 0.3 b/R = 0.5 b/R = 0.7 

0.0100 4539.5690 8703.9823 23596.2050 103184.1717 
0.1000 275.5284 495.2993 1327.6920 5802.8708 
1.0000 18.7409 28.5627 74.9115 326.6196 
10.0000 2.7684 3.1095 2.8882 20.4455 
20.0000 1.7846 1.9390   
40.0000     
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Figure 156: Cd vs Re for Case 4, n = 1.2, Cassini Oval (c/d)2 = 0.3 (individual cases) 
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7.2.1.3.2 (c/d)2 = 0.7 

Table 46: Numerical results for Case 4, n = 1.2, Cassini Oval (c/d)2 = 0.7 

 Cd 
Re b/R = 0.1 b/R = 0.3 b/R = 0.5 b/R = 0.7 

0.0100 1970.1754 4555.6365 13829.1411 66350.0087 
0.1000 112.2366 256.2721 777.7624 3731.3713 
1.0000 8.1215 14.8581 43.9999 210.2343 
10.0000 1.2050 1.5601 3.3810 13.3886 
20.0000 0.7570 0.9451   
40.0000     

 

Cd vs Re

Re

0.01 0.1 1 10 100

C
d

0.1

1

10

100

1000

10000

b/R = 0.1

Cd vs Re

Re

0.01 0.1 1 10 100

C
d

0.1

1

10

100

1000

10000

b/R = 0.3

Cd vs Re

Re

0.01 0.1 1 10 100

C
d

1e+0

1e+1

1e+2

1e+3

1e+4

1e+5

b/R = 0.5

Cd vs Re

Re

0.01 0.1 1 10 100

C
d

1e+0

1e+1

1e+2

1e+3

1e+4

1e+5

1e+6

b/R = 0.7

 

Figure 157: Cd vs Re for Case 4, n = 1.2, Cassini Oval (c/d)2 = 0.7 (individual cases) 
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7.2.1.3.3 (c/d)2 = 0.95 

Table 47: Numerical results for Case 4, n = 1.2, Cassini Oval (c/d)2 = 0.95 

 Cd 
Re b/R = 0.1 b/R = 0.3 b/R = 0.5 b/R = 0.7 

0.0100 1890.1816 4322.8100 11999.7449 51035.1894 
0.1000 106.7895 243.1551 674.8856 2870.1095 
1.0000 7.8351 14.2384 38.3222 161.8174 
10.0000 1.1847 1.5648 3.2403 11.3485 
20.0000 0.7466 0.9845   
40.0000     

 

Cd vs Re

Re

0.01 0.1 1 10 100

C
d

0.1

1

10

100

1000

10000

b/R = 0.1

Cd vs Re

Re

0.01 0.1 1 10 100

C
d

0.1

1

10

100

1000

10000

b/R = 0.3

Cd vs Re

Re

0.01 0.1 1 10 100

C
d

1e+0

1e+1

1e+2

1e+3

1e+4

1e+5

b/R = 0.5

Cd vs Re

Re

0.01 0.1 1 10 100

C
d

1e+0

1e+1

1e+2

1e+3

1e+4

1e+5

b/R = 0.7

 

Figure 158: Cd vs Re for Case 4, n = 1.2, Cassini Oval (c/d)2 = 0.95 (individual cases) 
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7.2.1.4 n = 1.4 

7.2.1.4.1 (c/d)2 = 0.3 

Table 48: Numerical results for Case 4, n = 1.4, Cassini Oval (c/d)2 = 0.3 

 Cd 
Re b/R = 0.1 b/R = 0.3 b/R = 0.5 b/R = 0.7 

0.0100 1294.8949 2347.4860 6293.2228 27505.6152 
0.1000 30.9895 50.9981 135.7305 592.8191 
1.0000 2.2863 2.5283 4.5860 15.3772 
10.0000     
20.0000     
40.0000     
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Figure 159: Cd vs Re for Case 4, n = 1.4, Cassini Oval (c/d)2 = 0.3 (individual cases)  
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7.2.1.4.2 (c/d)2 = 0.7 

Table 49: Numerical results for Case 4, n = 1.4, Cassini Oval (c/d)2 = 0.7 

 Cd 
Re b/R = 0.1 b/R = 0.3 b/R = 0.5 b/R = 0.7 

0.0100 281.6281 644.6465 1956.6258 9387.4414 
0.1000 7.8935 14.3481 42.4274 202.6622 
1.0000 0.7095 0.8808   
10.0000     
20.0000     
40.0000     
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Figure 160: Cd vs Re for Case 4, n = 1.4, Cassini Oval (c/d)2 = 0.7 (individual cases) 
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7.2.1.4.3 (c/d)2 = 0.95 

Table 50: Numerical results for Case 4, n = 1.4, Cassini Oval (c/d)2 = 0.95 

 Cd 
Re b/R = 0.1 b/R = 0.3 b/R = 0.5 b/R = 0.7 

0.0100 207.7503 474.2009 1316.2942 5598.0528 
0.1000 6.2832 10.8690 28.8178 121.1098 
1.0000     
10.0000     
20.0000     
40.0000     
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Figure 161: Cd vs Re for Case 4, n = 1.4, Cassini Oval (c/d)2 = 0.95 (individual cases) 
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7.2.2 Effect of Confinement Ratio 

 The effect of confinement ratio also follow the same trend as all previous 

cases. This can be seen in figures 162-173. 
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Figure 162: Cd vs Re for different confinement ratios, Case 4, n = 0.6, Cassini Oval (c/d)2 = 0.1  
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Figure 163: Cd vs Re for different confinement ratios, Case 4, n = 0.6, Cassini Oval (c/d)2 = 0.7  
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7.2.2.1.3 (c/d)2 = 0.95  
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Figure 164: Cd vs Re for different confinement ratios, Case 4, n = 0.6, Cassini Oval (c/d)2 = 0.95  
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Figure 165: Cd vs Re for different confinement ratios, Case 4, n = 0.8, Cassini Oval (c/d)2 = 0.3  
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7.2.2.2.2 (c/d)2 = 0.7 
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Figure 166: Cd vs Re for different confinement ratios, Case 4, n = 0.8, Cassini Oval (c/d)2 = 0.7  

7.2.2.2.3 (c/d)2 = 0.95  
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Figure 167: Cd vs Re for different confinement ratios, Case 4, n = 0.8, Cassini Oval (c/d)2 = 0.95  
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7.2.2.3.n = 1.2 

7.2.2.3.1 (c/d)2 = 0.3 
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Figure 168: Cd vs Re for different confinement ratios, Case 4, n = 1.2, Cassini Oval (c/d)2 = 0.3  

7.2.2.3.2 (c/d)2 = 0.7 
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Figure 169: Cd vs Re for different confinement ratios, Case 4, n = 1.2, Cassini Oval (c/d)2 = 0.7  
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7.2.2.3.3 (c/d)2 = 0.95  
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Figure 170: Cd vs Re for different confinement ratios, Case 4, n = 1.2, Cassini Oval (c/d)2 = 0.95  
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Figure 171: Cd vs Re for different confinement ratios, Case 4, n = 1.4, Cassini Oval (c/d)2 = 0.3  
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7.2.2.4.2 (c/d)2 = 0.7 
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Figure 172: Cd vs Re for different confinement ratios, Case 4, n = 1.4, Cassini Oval (c/d)2 = 0.7  

7.2.2.4.3 (c/d)2 = 0.95  
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Figure 173: Cd vs Re for different confinement ratios, Case 4, n = 1.4, Cassini Oval (c/d)2 = 0.95  
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7.2.3 Effect of Particle Shape 
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Figure 174: Cd vs Re for different shape factors, Case 4, n = 0.6, Cassini Oval, b/R = 0.1 

7.2.3.1.2 b/R = 0.3 
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Figure 175: Cd vs Re for different shape factors, Case 4, n = 0.6, Cassini Oval, b/R = 0.3 
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7.2.3.1.3 b/R = 0.5 

Cd vs Re

Re

0.01 0.1 1 10 100

C
d

1e+1

1e+2

1e+3

1e+4

1e+5

(c/d) 2̂ = 0.3

(c/d) 2̂ = 0.7

(c/d) 2̂ = 0.95

 
Figure 176: Cd vs Re for different shape factors, Case 4, n = 0.6, Cassini Oval, b/R = 0.5 

7.2.3.1.4 b/R = 0.7 
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Figure 177: Cd vs Re for different shape factors, Case 4, n = 0.6, Cassini Oval, b/R = 0.7 
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7.2.3.2 n = 0.8 

7.2.3.2.1 b/R = 0.1  
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Figure 178: Cd vs Re for different shape factors, Case 4, n = 0.8, Cassini Oval, b/R = 0.1 

7.2.3.2.2 b/R = 0.3 
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Figure 179: Cd vs Re for different shape factors, Case 4, n = 0.8, Cassini Oval, b/R = 0.3 
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7.2.3.2.3 b/R = 0.5 

Cd vs Re
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Figure 180: Cd vs Re for different shape factors, Case 4, n = 0.8, Cassini Oval, b/R = 0.5 

7.2.3.2.4 b/R = 0.7 
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Figure 181: Cd vs Re for different shape factors, Case 4, n = 0.8, Cassini Oval, b/R = 0.7 
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7.2.3.3 n = 1.2 

7.2.3.3.1 b/R = 0.1 

Cd vs Re
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Figure 182: Cd vs Re for different shape factors, Case 4, n = 1.2, Cassini Oval, b/R = 0.1 

7.2.3.3.2 b/R = 0.3 
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Figure 183: Cd vs Re for different shape factors, Case 4, n = 1.2, Cassini Oval, b/R = 0.3 
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7.2.3.3.3 b/R = 0.5 

Cd vs Re
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Figure 184: Cd vs Re for different shape factors, Case 4, n = 1.2, Cassini Oval, b/R = 0.5 

7.2.3.3.4 b/R = 0.7 
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Figure 185: Cd vs Re for different shape factors, Case 4, n = 1.2, Cassini Oval, b/R = 0.7 
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7.2.3.4 n = 1.4 

7.2.3.4.1 b/R = 0.1 

Cd vs Re
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Figure 186: Cd vs Re for different shape factors, Case 4, n = 1.4, Cassini Oval, b/R = 0.1 

7.2.3.4.2 b/R = 0.3 

Cd vs Re

Re

0.01 0.1 1 10 100

C
d

0.1

1

10

100

1000

10000

(c/d) 2̂ = 0.3

(c/d) 2̂ = 0.7

(c/d) 2̂ = 0.95

 
Figure 187: Cd vs Re for different shape factors, Case 4, n = 1.4, Cassini Oval, b/R = 0.3 
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7.2.3.4.3 b/R = 0.5 

Cd vs Re
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Figure 188: Cd vs Re for different shape factors, Case 4, n = 1.4, Cassini Oval, b/R = 0.5 

7.2.3.4.4 b/R = 0.7 
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Figure 189: Cd vs Re for different shape factors, Case 4, n = 1.4, Cassini Oval, b/R = 0.7 
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7.2.4 Effect of Power-Law Index 

Similar to spheroids, Cd decreases with increase in power law index value n. 
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Figure 190: Cd vs Re for different power law values. Case 4, Cassini Oval, (c/d)2 = 0.3, b/R = 0.1 

7.2.4.1.2 b/R = 0.3 
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Figure 191: Cd vs Re for different power law values. Case 4, Cassini Oval, (c/d)2 = 0.3, b/R = 0.3 
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7.2.4.1.3 b/R = 0.5 

Cd vs Re
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Figure 192: Cd vs Re for different power law values. Case 4, Cassini Oval, (c/d)2 = 0.3, b/R = 0.5 

7.2.4.1.4 b/R = 0.7 
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Figure 193: Cd vs Re for different power law values. Case 4, Cassini Oval, (c/d)2 = 0.3, b/R = 0.7 
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7.2.4.2 (c/d)2 = 0.7 

7.2.4.2.1 b/R = 0.1 
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Figure 194: Cd vs Re for different power law values. Case 4, Cassini Oval, (c/d)2 = 0.7, b/R = 0.1 

7.2.4.2.2 b/R = 0.3 
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Figure 195: Cd vs Re for different power law values. Case 4, Cassini Oval, (c/d)2 = 0.7, b/R = 0.3 
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7.2.4.2.3 b/R = 0.5 

Cd vs Re
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Figure 196: Cd vs Re for different power law values. Case 4, Cassini Oval, (c/d)2 = 0.7, b/R = 0.5 

7.2.4.2.4 b/R = 0.7 
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Figure 197: Cd vs Re for different power law values. Case 4, Cassini Oval, (c/d)2 = 0.7, b/R = 0.7 
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7.2.4.3 (c/d)2 = 0.95 

7.2.4.3.1 b/R = 0.1 
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Figure 198: Cd vs Re for different power law values. Case 4, Cassini Oval, (c/d)2 = 0.95, b/R = 0.1 

7.2.4.3.2 b/R = 0.3 
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Figure 199: Cd vs Re for different power law values. Case 4, Cassini Oval, (c/d)2 = 0.95, b/R = 0.3 
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7.2.4.3.3 b/R = 0.5 
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Figure 200: Cd vs Re for different power law values. Case 4, Cassini Oval, (c/d)2 = 0.95, b/R = 0.5 

7.2.4.3.4 b/R = 0.7 
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Figure 201: Cd vs Re for different power law values. Case 4, Cassini Oval, (c/d)2 = 0.95, b/R = 0.7 
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7.3 Velocity Streamlines and Pressure Contours (Selected Cases) 

As an example, the velocity streamlines and the pressure contours for the case 

of Cassini oval with shape factor (c/d)2 = 0.3, with confinement ratio b/R = 0.5 for 

power law index n = 1.2 are shown here. The velocity streamlines are shown in 

figures 202-205, while the pressure contours are shown in figures 206-209. It was 

observed from the streamlines that for higher power law indexes, the flow separates 

more easily at lower Reynolds number. Little to no separation is seen for the shear 

thinning and Newtonian fluids. Similar trend of the flow becoming unsteady at lower 

Reynolds numbers for higher power law indexes was also observed. 

 

Figure 202: Velocity streamlines, Case 4, Cassini oval (c/d)2 = 0.3, b/R = 0.5, n = 1.4, Re = 0.01 
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Figure 203: Velocity streamlines, Case 4, Cassini oval (c/d)2 = 0.3, b/R = 0.5, n = 1.4, Re = 0.1 

 

Figure 204: Velocity streamlines, Case 4, Cassini oval (c/d)2 = 0.3, b/R = 0.5, n = 1.4, Re = 1 
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Figure 205: Velocity streamlines, Case 4, Cassini oval (c/d)2 = 0.3, b/R = 0.5, n = 1.4, Re = 10 

 

Figure 206: Pressure contours, Case 4, Cassini oval (c/d)2 = 0.3, b/R = 0.5, n = 1.4, Re = 0.01 
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Figure 207: Pressure contours, Case 4, Cassini oval (c/d)2 = 0.3, b/R = 0.5, n = 1.4, Re = 0.1 

 

Figure 208: Pressure contours, Case 4, Cassini oval (c/d)2 = 0.3, b/R = 0.5, n = 1.4, Re = 1 
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Figure 209: Pressure contours, Case 4, Cassini oval (c/d)2 = 0.3, b/R = 0.5, n = 1.4, Re = 10 
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Chapter 8. Conclusion 

 A numerical investigation was carried out in this study for the flow caused by 

the translational motion of micro-scale axisymmetric prolate spheroid and Cassini oval 

particles in a stationary viscous fluid along the axis of revolution of a coaxial cylindrical 

pore bounding the flow. A parametric study was carried out to investigate the effects of 

wall confinement, Reynolds number, and Newtonian and non-Newtonian 

characteristics of the fluid on the flow regime and the drag force experienced by the 

particles.  

 For the case of creeping motion of prolate particles in Newtonian fluids, it was 

seen that as the confinement ratio increased, the normalized drag force on the 

particles also increased. The force increased rapidly for higher confinement 

ratio. The results are in agreement with the physics of the problem and were 

validated against the analytical solution of Yeh and Keh [51].  

 For the case of low Reynolds number motion of prolate particles in Newtonian 

fluids, it was seen that for the same confinement ratio, the coefficient of drag 

decreased with increase in Reynolds number. It was also seen that for the same 

Reynolds number, the coefficient of drag increased with increase in the 

confinement ratio. Analytical results for unbounded flow over a sphere were 

only available [50]. These results were used as a benchmark to relate and justify 

the rest of the results.  

 For the case of creeping motion of prolate particles in non-Newtonian fluids, it 

was seen that for the same power law index as the confinement ratio increased, 

the drag coefficient on the particles also increased. It was also seen that for the 

same confinement ratio, the coefficient of drag force increased while the 

coefficient of drag decreased with increase in the power law index. Analytical 

results for unbounded flow over a sphere for shear thinning were only available 

[81]. These results were used as a benchmark to relate and justify the rest of the 

results. 

 For the case of low Reynolds number motion of prolate particles in non-

Newtonian fluids, it was seen that for the same confinement ratio and the same 

power law index, the coefficient of drag decreased with increase in Reynolds 
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number. It was also seen that for the same Reynolds number and the same 

confinement ratio, the coefficient of drag decreased with increase in power law 

index. Furthermore, it was seen that for the same Reynolds number and the same 

power law index, the coefficient of drag increased with increase in the 

confinement ratio. It was noted that for shear thickening fluids, the flow 

separation was induced at lower Reynolds number when compared to 

Newtonian and shear thinning fluids. Following the same idea, the shear 

thickening flows became unsteady at lower Reynolds number compared to 

Newtonian and shear thinning fluids. Analytical results for unbounded flow 

over a sphere for shear thinning were only available [52]. These results were 

used as a benchmark to relate and justify the rest of the results. 

 The present study contributes towards the development of the standard drag 

curve for non-Newtonian fluids. It also contributes the data on wall effects for 

shapes other than the sphere. These are useful in studies focusing on the motion 

and settling of particles inside a tube. As evident from the literature review, 

existing data on shear thinning and specially shear thickening fluids is 

insufficient. This study provides such results through numerical simulations, 

thus, opening more research options for the case of shear thinning and shear 

thickening fluids by providing a reference point. 

 Future research ideas may include simulations at higher Reynolds number. 

Efforts were made to simulate the non-Newtonian flow for Reynolds number 

high enough to induce vortex shedding in the wake region since research on 

non-Newtonian vortex shedding is scarce. Although these simulations were 

unsuccessful in the present case, it is a valid problem that can be studied in 

future research. Furthermore, the particles in the present study exhibit 

translation only. It is of interest to investigate the combined translational and 

rotational motion of such particles. Unfruitful efforts were made to simulate 

such flows for non-Newtonian. These can investigated in future studies. 
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