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Abstract 

Auto takeoff and landing has been considered as the most challenging part in 

performing a flight with a high degree of autonomy. Hence, many researchers have 

addressed the problem of developing a precise auto takeoff and landing system for 

unmanned miniature helicopters. The work on enhancing autonomous takeoff and 

landing for unmanned aerial vehicles can be categorized into two groups. The first 

group works on designing a robust control algorithm in which the controller performs 

auto takeoff and auto landing. The second group focuses on utilizing sensors with high 

accuracy to get accurate state measurements. As a result, the performance of both the 

estimator and the controller would be improved. The present research addresses the use 

of optical flow sensors to augment the Global Positioning System/ Inertial measurement 

unit (GPS/INS) solution in the terminal phases of the flight (i.e., takeoff and landing). 

The GPS/INS unit has an internal estimator to estimate the vehicle’s state vector which 

is not accurate enough to perform precision landing. The GPS/INS estimated position 

using Commercial-Off-The-Shelf COTS components is inaccurate with a few meters 

error, which is called the radius of uncertainty (ROU). To perform a precise landing, an 

optical flow sensor is used to augment the GPS/INS readout while performing the 

takeoff and landing phases of the flight. In this research, we use a sensor fusion 

algorithm between the optical flow sensor measurements of the location of a predefined 

pattern within the ROU of the GPS/INS and the GPS/INS location measurements. This 

estimator is used to output the helicopter’s position and velocity during takeoff and 

landing. The proposed estimator has succeeded in performing an auto takeoff with a 

maximum error of 0.26 m and a precise landing with a maximum error of 0.27 m in Z-

position. The novelty in this study is in the use of GPS/INS/Optical Flow fusion 

algorithm to perform a precise auto takeoff and landing for a small-scale helicopter. In 

addition, an accurate model for the OF sensor is used for developing the control laws 

for autonomous takeoff and landing for Vertical takeoff and landing vehicles (VTOL). 

Search Terms: Autonomous landing, auto-takeoff, rotary wing UAV, helicopter, 

optical flow sensor, state estimation, and sensor fusion. 
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Chapter 1: Introduction 

1.1 Background  

In the last decade, unmanned aerial vehicles (UAV) have proved to be ideal 

platforms for various practical purposes such as surveillance, aerial photography, and 

other military and civil applications. Unmanned vertical takeoff and landing (VTOL) 

vehicles are finding important applications in civil as well as for homeland security in 

addition to their ever-growing military applications. Therefore, auto takeoff and 

precision landing is important to these vehicle’s successful use for civil applications. 

Autonomous takeoff and landing has been recognized as the main focus of attention 

during recent years. In this thesis, an autonomous takeoff and precision landing system 

is developed using optical flow sensor information.  

1.2 Literature Review  

Research in the literature primarily concentrates on the landing issue, which has 

been extensively studied because it is the most difficult phase of achieving an 

autonomous flight. The landing technique has been done on moving platforms [1] [2] 

[3] and on a fixed target [4] [5] [6]. Recently, the vision sensors have been brought to 

the field of performing autonomous landing missions. The present visual landing 

systems can be classified into two groups: the first group uses a vision in order to detect 

a suitable place for the landing [4] while the second group is for landing on a predefined 

target [5] [6] [7]. 

 A vision-based landing algorithm for an autonomous helicopter was made in [5], 

in which the location and orientation of the landing target are determined by using 

image moment descriptors. An accurate target detection is obtained by the vision and 

an associated GPS for the helicopter navigation. In GPS-denied areas or once the GPS 

is lost, this approach will not be accurate anymore. Therefore, vision information is 

combined with inertial sensing to perform the landing in GPS-denied areas [6]. In [8], 

the vision system comprises of a camera fixed on a pan/tilt unit (PTU), in addition a 

special helipad with five different sizes of circles which was designed to achieve fast 

recognition. The position and the attitude are estimated using the images captured by 

the camera. An auto takeoff, hovering, and landing were achieved using low cost 
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inboard hardware, where a Wii remote infrared camera and a T-shaped pattern made of 

four infrared LED indicators placed at the landing place. The camera was mounted at 

the center of the quadcopter frame looking down to ensure that the quadcopter was 

above the landing place.  

Landing for an unmanned aerial vehicle based on a multiple view algorithm in 

which state estimates were estimated using vision based algorithm the proposed 

algorithm [7]. The vision-based controller sends the commands to the helicopter to 

hover over the landing target. Once the camera detects the target, the estimated 

(x, y) position of the landing target will be the desired hover point. [9] investigates a 

full 6 DOF pose estimation of an MAV using on-board monocular vision solutions. A 

special landing pad was designed to be recognized by the object recognition algorithm. 

The landing pad contains a letter (H) bordered by a circle. From the projection of the 

known circle, the 3D position, and roll and pitch angles are estimated, and the yaw 

angle is estimated from the projection of the letter “H”. In [10], a 3D vision based over-

ground height estimation approach for landing control of an unmanned helicopter was 

presented. The height was estimated by a plane fitting method, which is an insensitive 

to change in attitude of the helicopter. A two-stage landing controller was designed, 

where the first stage is the descending phase and the second is the landing phase which 

starts at a certain height around 2 meters. 

The problem of landing a helicopter in unknown areas was resolved in [11] using 

vision based terrain recovery. The combined concepts of computer vision were used to 

find a safe landing area avoiding trees and other obstacles, and navigate the vehicle to 

the landing site. The landing structure comprises of a low-level vision to recover a 

ground elevation map and a high-level navigation system for requiring way-points to 

the desired landing target. In [12], a vision system was based on off-the-shelf hardware 

and provides real time estimates at 30 Hz of the position and orientation of the UAV 

relative to the landing pad. An image processing segmentation, feature point extraction, 

and camera control algorithm were used to estimate the helicopter states and land the 

helicopter correctly. 

 A landing and navigation algorithm using natural landmarks was proposed in [4], 

where the UAV was able to navigate from an initial to a final position in a partially 



18 

 

known environment. The remote user defines the target areas from aerial or satellite 

images to decide either the waypoints of the navigation trajectory or the landing area. 

The natural landmarks are founded by a feature-based image-matching algorithm, 

which sends feedback to an onboard control system for autonomous navigation and 

landing. In [13], the design and the implementation of control algorithm for the takeoff 

and landing for a prototype coaxial unmanned helicopter was investigated. Ground 

forces feedback was used to stabilize the longitudinal forces, while the attitude and 

drifting feedbacks were used to balance for the helicopter’s longitudinal and lateral 

movements during takeoff and landing.  

The design of an autopilot for a tethered helicopter for autonomous landing on a 

moving ship platform was presented in [1]. The tether was used for the safety and ease 

of landing. Two control approaches were designed to achieve the task: the first 

approach is the position control and the second is the attitude–altitude control. The outer 

loop is the position control, which is slower than the inner attitude-altitude loop. To 

predict the position of the target and track the trajectory of the helicopter, a Kalman 

filter was used in [2]. The landing distance is given, and discrete updates of the 

trajectory are performed to track the path and land on the target using an object 

recognition algorithm. 

The design of an autopilot for autonomous landing of a helicopter on a rocking ship 

was investigated in [3]. The deck was modeled to behave in a sinusoidal motion, and a 

tether was used to support the target tracking mission. A time-scale controller was 

designed to ensure landing of the helicopter on the ship, in which the angle between the 

cable and the helicopter is used to achieve the landing on the moving ship platform. 

Due to the inaccuracy of the GPS readings, the optical flow approaches were used to 

stabilize the position of the quadrotor just before reaching the ground. To control the 

height of the quadrotor, two types of height controller were designed and tested in [14]. 

An automatic landing was achieved and an altitude controller was designed using the 

information coming from the ultrasonic sensor [15]. 

 In [16], optical flow Sensors are deemed as efficient and robust navigational 

sensors to suite for MAVs. These were used to avoid collisions and to measure the 

altitude during the landing stage. In [17], an optical flow mouse sensor was used for 
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height approximation and terrain navigation. In [18], a nonlinear controller for hovering 

flight and landing control on a moving platform for a (VTOL) Unmanned Aerial 

Vehicle (UAV) was designed and implemented using optical flow hardware. The 

divergent optical flow was used as feedback information to regulate the automatic 

vertical landing on a moving platform. In [19], the optical mouse sensor was proposed 

to be considered as an incremental rotary encoder. The major sensitivity issues of using 

an optical flow are the sensitivity to the changes in height and accumulative error in the 

measured motion in random paths. Those issues were solved by maintaining the height 

and pointing to the same surface. 

 In [20], [21] and [22], the problem of the ground effect on the main rotor of the 

helicopter is addressed. In [22], the ground effect on the main rotor while the helicopter 

is in forward flight was estimated approximately. A theoretical analysis was done to 

show how the ground effect becomes significant while the helicopter approaches the 

ground in different wind speeds. In [20], the tip vortex geometry and performance of 

the main rotor of the helicopter were examined in both zones, while the helicopter went 

in and out of the ground effect. It was observed that the tip vortices were decreased very 

close to the ground plane. In [23], a comparison was done between the out ground effect 

and in the ground effect wake of a hovering rotor. The changing in the airflow structure 

beneath the rotor while the helicopter was hovering at (Out Ground Effect) OGE and at 

IGE (In Ground Effect) was noticed and plotted. An empirical formula was used in [21] 

to compensate for the ground effect thrust of the main rotor of a coaxial small RC 

helicopter.   

The autonomous flight of unmanned aerial vehicles has been getting much more 

attention in the last few years. The three basic phases of any autonomous flight of a 

rotorcraft are the takeoff, hovering and the final phase is the landing phase. 

Autonomous landing on a predefined target has been considered a challenge, in terms 

of finding a good enough place to perform the landing [4], and the landing technique 

itself [16] [6], and [24].  

Optical flow sensors have been employed in unmanned systems. Low cost optical 

flow sensors have gained acceptance for their applications in ground mobile robots [25] 

flying robots UAV.  Optical flow sensor have been used in unmanned quadrotor [26-
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30], and in the fixed wing [18]. Most of the existing research on using optical flow 

sensors in unmanned aerial vehicle has been done with quadrotors and fixed wing [17]. 

Not much research on exploiting the optical flow sensors by a single rotor helicopter. 

In [24], optical flow regulation algorithms are applied to perform autonomous aircraft 

missions such as taking off, landing, hovering, and cruising. An elementary motion 

detector (EMD) is fixed beneath a rotorcraft optical flow of the ground image. In [13], 

the optical flow and ultrasonic sensors are used to stabilize the small scale helicopter 

while performing perch and stare maneuvers. 

   Much research attention has been concentrated on developing high-accuracy 

sensor fusion algorithms for use in autonomous systems [31] [32] [33]. These fusion 

algorithms have to take into account practical systems’ specifications and limitations. 

These include small computational complexity and robustness to common sensor 

problems such as accounting for measurement delays, missed measurement epochs, and 

uncertain observations [31] [32]. In addition to vehicle navigation, sensor fusion 

algorithms are also essential for target tracking applications [33]. Small-scale 

helicopters are considered a viable candidate for many different applications such as 

surveillance missions, power line inspection, wildlife monitoring, and several military 

applications. Recently, researchers have focused on the design of autonomous control 

systems to control helicopters in different missions [34][4]. In order for any control law 

to work, an accurate knowledge of the different states of the vehicle is needed. In this 

study, the model of a Maxi Joker 3 helicopter is utilized.  

  Precise state estimation is essential for controlling the helicopter autonomously. 

Nevertheless, it is hard to obtain accurate values for different helicopter states because 

of the large drifts, possible measurement bias, and immense noise of the onboard sensors 

[35] [36] Sensors with such errors are commonly used in vertical take-off and landing 

(VTOL) of unmanned aerial vehicles (UAV) because of their low weight, small size, 

and low power consumption. By fusing the measurements of different sensors, an 

accurate estimate can be obtained [37-41]. 

 In [42], a data fusion between the kinematic optical flow sensing and the GPS/INS 

was used to estimate the position and the velocity of an object revolving in three 

dimensional space. In [43] [44], state estimation using a Kalman filter was done using 



21 

 

the dynamic model of the helicopter platform, and in [43]. We were able to estimate the 

attitude and flapping angles of the helicopter with high accuracy and minimal errors not 

exceeding 0.3° in longitudinal flapping angles and 0.1° in lateral flapping the 

experimental validation was introduced.  

In [45], an IMU/GPS system was designed and implemented using a low-cost 

COTS components. And to maximize the accuracy of the proposed IMU/GPS system, 

the IMU data is fused with GPS measurements using a loosely-coupled kalman filter. 

In [46], the formation flight instrumentation system (FFIS) was designed to increase 

the precision of the relative position and velocity between two moving aircraft. Each 

aircraft was equipped with (GPS) receiver, and an inertial navigation sensor (INS) unit 

combined with a wireless system to share measurements between aircrafts. And an 

extended Kalman filter was used to obtain an accurate relative state estimates. In [47] 

[48], an intelligent fusion between the GPS and IMU was developed. An adaptive 

Neuro-Fuzzy Inference System (ANFIS) was proposed for fusing the data coming from 

the GPS and IMU and estimating the velocity, and the position states. 

Table 1 below summarizes the most relevant previous work. It includes the main 

sensors and platforms used to perform the auto takeoff and landing, and results of these 

investigations. 
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Table 1: The summarized literature review  

Reference  Platform VTOL Sensors Results Remarks 

[5] AVATAR 

Helicopter 

 Novatel RT -20 

DGPS. 

 CCD camera. 

 Ultrasonic. 

 

Landing with 47 

cm average position 

error. 

 Very expensive 

solution.  

 Computationally 

heavy. 

[6] 

 

 

Yamaha 

RMAX 

helicopter  

 CCD camera 

mounted on an off the 

shelf 

 Gyros & 

accelerometers. 

Landing with 43 

cm average position 

error (54 cm 

maximum position 

error). 

 Computationally heavy 

(two PC104 stacks with 

700 MHz processors). 

  

 Works with a high 

payload helicopters. 

    [15] Small scale 

helicopter  

 IMU 

 Range sensor 

Auto takeoff and 

landing with 0.5 m 

altitude error.   

 Ultra sonic sensor is not 

that accurate at high 

altitudes. 

[8] ASCTec 

Hummingbird 

Quadrotor  

 IMU  

 Infrared Camera. 

 IR LEDs placed in T-

shape. 

50 indoor VTOL 

flight tests were 

conducted, the 

standard deviation is 

less than 3 cm in 

each position axis. 

 The solution will not 

work properly in 

outdoor environments. 

 The camera should be 

close enough to the 

pattern to detect the IR 

spots. 

[9] MAV 

Quadrotor 

 On-board Monocular 

vision solution. 

 IMU. 

 

Pose estimation 

based on a single 

image of the landing 

pad. 

 

 Special landing pad 

need to be design to get 

an accurate estimate the 

yaw angle. 

 Very light weight 

sensor should be used 

due to the small 

payload.  

[14] Mini 

Quadrotor 

 Optical flow sensor.  

 GPS. 

 IMU. 

 Sonar sensor. 

Position stabilization 

for the Quadrotor at 

the final meter before 

touching ground. 

 

 No estimator was 

designed. 

[29] Cheetah 

Quadrotor 

 PX4FLOW Sensor. 

 IMU. 

Hovering and 

outdoor flight 

trajectory.  

 It shows a better results 

comparing to the 

previously designed 

optical flow sensors. 

 The output flow are 

auto-compensated for 

the 3D rotations. 
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1.3 Problem Statement 

In this research, we are addressing autonomous takeoff and precision landing using 

sensor fusion between a GPS/INS navigation solution and optical flow sensor readings 

in the terminal phase of the landing process.  Precision landing using GPS/INS COTS 

is not possible due to the position error estimates. Therefore, enhanced position 

estimates are needed for the terminal phase of landing the helicopter on a prescribed 

area. Two major causes describe the challenges in achieving precision landing which 

are addressed in the present work. The first is the ground effect which is described next. 

This problem is solved by using a ground effect model to obtain accurate thrust 

compensation while the helicopter is in the ground zone. The second cause is the GPS 

position inaccuracies. The precision of the GPS in stabilizing the position of the 

rotorcraft is low, and the problem becomes significant when the rotorcraft is close to 

the ground because the GPS quality at low altitudes is usually worse compared with the 

GPS quality while flying. Those reasons tell us to use a better position estimation 

technique especially for the last few meters in landing, in which the GPS readings 

become unreliable. This technique is to measure the movements of the helicopter by a 

more precise sensor. The use of the optical flow sensor will solve the problem and avoid 

the inaccuracies coming from the GPS sensor. This investigation develops a precise 

landing algorithm for landing a helicopter on a predefined marked target with a known 

GPS location. Figure 1 illustrates the proposed precision landing technique based on 

the GPS/INS and the optical flow sensor fusion algorithm used at in the final stages of 

the landing phase of the flight. 

To achieve an autonomous landing within a certain radius R2, a GPS/INS based 

landing is sufficient. While a precise landing within a smaller radius R1 is not possible 

using GPS/INS. Therefore, there is a need to use other more precise sensors such as 

optical flow mouse sensors.  Hence, this investigation addresses the problem of 

precision landing using an optical flow algorithm. 
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Optical Flow
coverage

GPS coverage

 R1

                                       R2

Figure 1: Precision landing position error by using different sensors 

1.4 Thesis Contribution  

The main contributions of this research work can be summarized as follows: 

 Obtain a robust dynamic models for the optical flow sensor. These models are 

based on a set of real time experiments conducted under simulated landing 

conditions. Also, validate these obtained models by comparing the output of 

these models with the actual reading of the optical flow sensor. 

 Develop a sensor fusion algorithm between the GPS/INS sensor and the optical 

flow sensor to land the vehicle at the desired landing touch down location.  

 Apply the proposed algorithm on the Maxi Joker 3 helicopter and perform an 

accurate auto takeoff and precise landing. 
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1.5 Thesis Outline  

This thesis is organized as follows: 

In Chapter 1, we start with an introduction to the use of unmanned aerial vehicle, 

and we cite the literature that relevant to the subject. It also includes the problem 

statement and the major contributions of this study.  

Chapter 2 presents the background of unmanned aerial helicopters. It describes the 

helicopter and its controls. It introduces the optical flow state of art, algorithms and an 

introduction about the smart optical flow sensor used.  

In Chapter 3, the mathematical approaches for computing the optical flow were 

introduced. The motion field equations were addressed. Also, the basic concepts are of 

the optical flow sensing are thoroughly explained.    

In Chapter 4, the top-down modeling style was used to represent the mathematical 

model of the Maxi Joker 3 helicopter.   

In Chapter 5, we present the experimental design of modeling the optical flow 

sensor, and the performed validation tests. The obtained optical flow sensor models are 

listed and the validation results are meticulously described.   

Chapter 6 illustrates the sensor fusion algorithm to estimate the position and the 

velocity of the helicopter. Then, the algorithm is integrated into autopilot, and auto 

takeoff and landing tests were performed to prove the use of the proposed algorithm for 

performing the auto landing. 

In Chapter 7, the achieved work is concluded and the planned work is summarized. 
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Chapter 2: Background 

This chapter presents the background for the research presented in this thesis. 

Section 2.1 shows the advantages of using aerial helicopters and their applications. In 

Section 2.2, the main components of RC helicopters are illustrated and the helicopter 

control inputs are explained as well. Section 2.3 introduces the state of art optical flow 

sensor. The most used optical flow algorithms are described in Section 2.4. In Section 

2.5, an introduction to the PX4FLOW smart sensor used in the present investigation is 

introduced.  

2.1 Unmanned aerial helicopters  

Lately, research on unmanned aerial helicopters has increased drastically because 

of the unique features that the helicopter has. Rotary wing UAVs are more 

advantageous than fixed wing UAVs in the sense of performing vertical takeoff and 

landing, hovering performance, low speed cruising, and they have the ability to operate 

close to the ground. However, they have a complicated mechanical system, and unstable 

dynamics. This creates a need to design a precise dynamic model, and a robust 

controller to ensure stable and safe operation of the helicopter. 

2.2 Unmanned aerial RC helicopters 

This section is about illustrating the basic model of the RC helicopter, the electrical 

and mechanical subsystems, and the helicopter controls. The rotor hub (1), main rotor 

(2), swash plate (3), tail servo (4), tail boom (5), tail rotor (6), and landing skid (7) are 

the main parts of the helicopter and its control as demonstrated in Figure 2. The 

movements of the helicopter can be controlled by four inputs: collective, longitudinal 

cyclic and lateral cyclic, and the rudder. Figure 2 depicts the main RC helicopter parts 

and its controls. 
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Figure 2: RC Helicopter Main Components [26] 

The lift force that is needed to keep the helicopter airborne is produced by the main 

rotor. By tilting the main rotor, movements in the longitudinal and the lateral directions 

are generated. This can be done through the swash plate assembly, which is linked to 

the 120 CCPM servos configuration. And, the heading direction can be controlled by 

spinning the tail rotor and encountering the torque reaction created by the main rotor.  

In this thesis, we consider the auto takeoff and landing of the Maxi Joker 3 RC 

helicopter shown in Figure 3.  

 

Figure 3: Maxi joker 3 helicopter 

Maxi Joker is a 3-axis gyro as an electronic stabilizer. Using the 3-axis gyro 

adds to the stability of the helicopter and makes it easy to control. Figure 4 shows the 

response of the helicopter where there is no 3-axis gyro used. Figure 5 depicts the 

advantage behind the use of the 3-axis gyro. Obviously, when utilizing the 3-axis gyro 

there is no tilting of the rotor, as the rotor part stays horizontal and the helicopter’s body 

swings,which gives more stability to the flight and the system becomes easier to control.  
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Figure 4: RC flybarless helicopter response without using (3-axis gyro) [49] 

 

 

Figure 5: Flybarless helicopter response with using 3-axis gyro stabilizer [49] 

 

Figure 6 : Flybarless Helicopter Rotor Head [49] 
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Figure 7: Flybar Helicopter Rotor Head [49] 

2.3 State-of-the-Art Optical Flow 

An ADNS-3080 optical flow sensor [50] is used in controlling the hovering of a 

micro quadrotor. The same optical flow sensor is utilized in [51] to obtain information 

on the velocity and the position of the quadrotor, especially in places where there are 

no GPS signals. An ADNS-2620 mouse optical flow sensor is used with an IMU to 

estimate quadrotor’s velocity [27] using an extended Kalman filter. In [42], the position 

and the velocity of an object evolving in three dimensional space are estimated using a 

Kalman filter. A sensor fusion algorithm is designed between the GPS/INS sensor and 

the optical flow sensor. The optical flow sensor is used to provide the object’s velocity 

while the position is measured by the GPS sensor. The heading of a small fixed pitch 

quadrotor is estimated as well in [28] by applying optical flow algorithms on the images 

captured by a camera looking downward. An optical flow sensor is used to control the 

motion of the quadrotor in [30], a vision based PID controller is designed based on the 

readings obtained from the optical flow sensor. Optical flow sensor is used in [18] to 

control the landing of the quadrotor on a moving platform. The quadrotor is equipped 

with a camera and an IMU to stabilize the corresponding motion of the vehicle with the 

moving platform and to control the auto vertical takeoff and landing of the quadrotor.  

Optical flow sensors are sensitive to light and require a special light conditions to 

perform well, in many indoor applications or low-light conditions. To solve this, a 

special type of cameras which based on a visioning CMOS image is introduced in [29].. 

CMOS cameras can perform properly in outdoor, indoor and low-light conditions. 
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Honegger and Meier presented an open source and open hardware of an optical flow 

sensor design. In [29], a hover control experiment of a quadrotor is conducted indoors 

using the PX4FLOW smart camera which has an optical flow sensor and an ultrasonic 

sensor placed on the same PX4FLOW kit. The optical flow sensor is a 2D sensor, which 

means that the sensor’s reading gets affected by the 3D movements such as the roll, and 

pitch of the vehicle rotations. Therefore, the ultrasonic sensor is used to measure the 

vertical distance to the ground and by knowing the vertical distance, the optical flow 

measured could be compensated for the 3D rotations and the OF readings will be 

corrected as well. The PX4FLOW smart camera performs well in both indoor and 

outdoor environments.  

Since that the PX4FLOW sensor is more advantageous than the other mentioned 

optical flow sensors, and its measurements are compensated for the 3D rotations, there 

is no need to do further computations. In this study the PX4FLOW smart sensor is used 

to perform the auto takeoff and landing process for the helicopter on a distinguished 

pattern.  

2.4 Optical flow algorithms 

Various ways of calculating the optical flow of a scene are introduced in [52] and 

[53]. The optical flow can be computed via basic methods: 

2.4.1 Feature-based algorithms  

In this algorithm, at least two consecutive image frames have to be captured.  This 

algorithm computes the optical flow by picking certain features in the first image and 

locating the same features in the consecutive image. Once the features are matched in 

the two images, the discrepancy between the two images can be calculated and the flow 

in the image can be computed too. 

2.4.2 Gradient-based algorithms  

This algorithm computes the gradient intensities which are higher at the location of 

the edges where the pixel intensity value changes the most (i.e., from light to dark). The 

gradient is computed by solving for the derivative in the, and 𝑦 directions of the image. 
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Gradient based methods of computing optical flow are discussed in Horn and Schunk 

[54], Lucas and Kanade [55], Srinvasan [56].  

2.4.3 Block matching algorithms 

Block matching algorithms (BMA) are considered rigorous algorithms which can 

be utilized to detect moving objects, and for motion estimation purposes. In block 

matching, the image frame is subdivided into non-overlapping blocks, and the blocks 

in the current frame are matched to the blocks in the reference frame. To figure out the 

block which has the best matching among the candidate blocks in the reference frame, 

specific matching criteria are used. From which one can tell whether the block has 

moved or not. If the matched block has a different location compared with its location 

in the reference frame, this means that the block has moved [57] . 

Feature-based optical flow computing algorithms are known as complex algorithms 

[53]. The process of matching between two specific consecutive images is hard, and it 

requires many computations to figure out the differences between the two image 

frames. Also, these algorithms are not accurate enough.   

In this study, we are more interested in the block matching algorithms to compute 

the optical flow. In Chapter 3, the (BMA) algorithm will be illustrated.    

2.5 PX4FLOW Optical Flow Sensor 

Recently, the use of computer mouse optical sensors has increased considerably. 

Optical flow sensors are used in many engineering applications. They can be used in 

applications containing vision feedback control system. The smart PX4FLOW kit as 

shown in figure 8 uses an embedded high performance processor ARM Cortex M4 is 

to process the frames captured by the CMOS vision sensor. The processor performs 

optical flow processing at 250 frames per second and the resolution of the captured 

image frames is 64x64 pixels. The sensor focal length is 16 mm, and M12 lenses are 

used with a 21° FOV containing an IR-block covered with an Aptina MT9V034 imager. 

An ultrasonic sensor is used to measure the distance toward the scene. Knowing the 

distance to the scene helps with converting the optical flow sensor velocity readings 

into the metric scale.  
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Figure 8: PX4FLOW smart optical sensor [29] 
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Chapter 3: Motion Field and Optical Flow Sensing 

This chapter presents the theoretical side of optical flow. The geometrical approach 

is illustrated in Section 3.1. Section 3.2 presents the basic equations of the motion field, 

and the optical flow main concepts are also explained in Section 3.3.  

3.1 Geometrical Approach 

This approach illustrates how the actual displacement (𝑑𝑥, 𝑑𝑦) of an object can be 

computed through the displacement readings of an optical flow sensor. In [58], the 

pinhole model is used to generate the actual displacements of objects. In this model, the 

point of an object in Cartesian coordinates (𝑥, 𝑦, 𝑧)  is projected on the focal plane. This 

plane, as shown below in Figure 9, which is located between the object scene and the 

center of projection.  

 

Figure 9: Illustration of the OF Geometry 

Since the point gets projected on a focal plane, its coordinates will be changed to 

be in (𝑢, 𝑣) which are the focal plane coordinates. In addition, a lens is used to focus 

the image of the scene on the sensor’s image plane. Because the optical flow sensor has 
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a lens used to focus the image displacement on the image plane of the sensor, the lens 

law is applied: 

 
1

𝑓
=

1

𝑔
+

1

𝑏
 (1) 

 ℎ = 𝑏 + 𝑔 (2) 

where 𝑔 denotes the distance between an object point and the lens plane, 𝑏 is the 

distance between the image plane and the lens plane and 𝑓 is the focal length of the 

lens. The summation of  𝑏 and  𝑔 yields the total distance ℎ between the object plane 

and the image plane.  

 

Figure 10: Object displacement projection on the image plane with lens focusing 

Solving equation (1) for 𝑏 shows that at low heights the image distance is very 

sensitive to small changes in 𝑔, while at high heights the image distance almost 

converges to 𝑓. 

The actual displacements are computed as follows: 

 𝑑𝑋 = 𝑟𝑒𝑠 .  𝑔.  
𝑑𝑥

𝑏
 (3) 

 
𝑑𝑌 = 𝑟𝑒𝑠 .  𝑔.  

𝑑𝑦

𝑏
 

(4) 
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where 𝑟𝑒𝑠 is the sensor resolution in (𝑐𝑚/𝑐𝑜𝑢𝑛𝑡). Ideally, the focal distance of the lens 

used is known. 𝑔 and 𝑏 are determined by solving equations (1) and (2). Then, the 

actual displacement can be computed. 

3.2 Motion field equations 

The motion field is created by projecting the 3D velocity field on the image plane. 

Assume 𝐏 = [𝐗, 𝐘, 𝐙]𝐓 is a moving point in a 3D camera reference frame as shown in 

Figure 11.  

 

Figure 11: The projection of point moving in the reference frame on the image plane 

Assume that the optical axis is the Z-axis of the reference camera frame, and f 

denotes the focal length and that the center of the projection is located exactly at the 

origin. Then, the projected coordinates in pixel of P on the image plane are obtained 

via 

 𝑝 = 𝑓
𝐏

Z
 (5) 

The distance of the image plane to the origin is equal to the focal length f so the third 

coordinate of p is the focal length 𝑝 = [x, y, f]T. The relative motion between the camera 

and a point in the image plane can be computed as follows: 
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 𝐕 = −𝐓 − ω × 𝐏 (6) 

where T denotes the translational velocity and ω is the angular velocity. The image 

velocity v can be obtained by deriving (5) with respect to time.  

 𝐯 = f
(Z𝐕 − VZ𝐏)

Z2 
 (7) 

By substituting in (6) the motion field equations components in x and y are computed 

through (8) and (9) as follows: 

 vx =
(Tzx − Txf)

𝑍
− ωyf + ωzy +

(ωxxy − ωyx
2 )

f
 (8) 

 vy =
(Tzy − Tyf)

𝑍
− ωxf + ωzx +

(ωxy
2 − ωyxy)

f
 (9) 

where Tx , Ty , and Tz denote the translational velocity components in each axis. And 

ωx , ωy , and ωz are the angular velocity components in around each axis. 

Obviously, the motion field equations consist of a translational component and 

rotational component of motion. The translational velocity components in (8) and (9) 

are dependent on the depth of the scene Z while the rotational velocities are not. This 

means that the rotational components of the motion fields have no information 

concerning the depth of the scene [29]. 

3.3 Optical Flow Sensing  

Optical flow sensing is a purely bio-inspired technique. Insects make big use of 

vision, and in particular they use optic flow to navigate, take off and land. Srinivasan 

[59] noticed that honeybees perform their landing by keeping the optic flow on the 

landing spot constant. By mimicking the honeybees’ performance, Green [16] [60] 

designed a prototype called CQAR Closed Quarter Aerial Robot that was capable of 

performing autonomous missions like, takeoff, landing and collision avoidance using 

an optical flow microsensor for providing the depth information. Applying the optic 

flow sensing technique to a flybarless single rotor helicopter simulates how an insect 
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flies and lands on a specific landing point. Using a single camera as a sensor to measure 

the optical flow of the scene has been introduced in many published work [10] [51] 

[11]. By capturing a two consecutive image frames, and studying the pixel movements 

we can tell that the camera went through either a translation or a rotation movement. 

 Optic flow is basically the apparent visual motion seen by a sensor which travels 

over a certain scene. This motion is created either by the motion of the scene (SCMO) 

or the motion of the sensor throughout the scene (MCSO). And there are two other 

cases. The first includes a moving camera and a moving object (MCMO), and the 

second is the (SCSO) when the camera and the scene are stationary. In this thesis, we 

are interested in performing the landing and takeoff over a stationary object (MCSO). 

In this research, we assume that the optical flow sensor is placed beneath the helicopter, 

facing the ground and moving exactly with the helicopter. And the object is stationary. 

 Since the optical flow is the apparent visual motion of the object, objects that are 

close to the camera seem to move faster than objects which are relatively far (as shown 

in Figure 12).  In Figure 12 (a) the pixel movements is faster than its movement in 12 

(b).  

a b

 

Figure 12: Optical flow values at different altitudes 

Figure 13 illustrates how the helicopter reacts to the 3D movements. Figure 13 (a) 

describes the helicopter when no rotation is applied, while in 13 (b) the helicopter is 

rolled by a small degrees. Clearly, in (a) the pattern fills the view and the measured 
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optical flow of the image will be accurate. While the pattern is partially seen in 13 (b), 

due to this rotation the calculated flow value will be inaccurate.  

(a) (b)

 

Figure 13: The effect of the 3D rotations on the optical flow values 
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Chapter 4: Helicopter Mathematical Modeling 

4.1 Background  

The non-linear model of the helicopter is presented in this chapter. A flybarless 

nonlinear model for the Maxi Joker 3 is introduced. A top-down modelling approach is 

used to model the Maxi Joker 3 helicopter. As shown in figure 14, the flybareless 

helicopter model consists of four main blocks. The commanded signals 

(𝑢𝑙𝑎𝑡 , 𝑢𝑙𝑜𝑛, 𝑢𝑐𝑜𝑙and 𝑢𝑝𝑒𝑑) to the flapping and thrust equations are generated from 

the first block which represents the actuator dynamics. In the second block, the thrust 

equations the thrust for both rotors is computed and the flapping angles of the main 

rotor are computed. The force and the torque equations are derived in the third block. 

The forces and the torques are used to generate the rigid body equations of the 

helicopter. The position and the velocities of the helicopter are related to the earth 

frame. Figure 14 represents the overall dynamic model of the mentioned helicopter. A 

Matlab Simulink environment is used to simulate the helicopter model.  
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Figure 14: Top-down modelling approach of a flybarless helicopter 

There are many reference frames, and we discuss how we can go from a specific 

frame to another frame freely using transformation matrices. This is discussed in the 

following sections. 
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4.2 Reference Frames  

To describe the position and orientation of the helicopter, two coordinate frames are 

used: the body frame and the inertial frame. The body frame (BF) has its origin in the 

center of gravity (CG) of the helicopter. This right-handed frame is shown in Figure 18. 

As seen from the figure, the BF axes are denoted as 𝑥𝑏 , 𝑦𝑏 , and 𝑧𝑏. On the other hand, 

the earth frame (EF) is an inertial frame with axes denoted as 𝑥𝑒 , 𝑦𝑒 , and 𝑧𝑒. The 

position and velocity of the helicopter are described using the EF. The EF is positioned 

at a fixed point on the Earth’s surface, usually at the location of the monitoring ground 

station (see Figure 15) [43].  

 

Figure 15: Reference frames 

4.3 Matrix Transformation  

The forces and moments in the BF are transferred to the EF using a rotation matrix. 

The orthonormal rotation matrix 𝑅𝑏
𝑒 is used to change the representation of a vector 

from the BF to the EF and vice versa. The matrix is obtained by successive rotations 

about the x, y, and z-axes by the roll, pitch, and yaw Euler angles 𝜙, 𝜃, and 𝜓, 

respectively [49]. 

  𝑅𝑏
𝑒 = [

𝑐(𝜃) 𝑠(𝜓) 𝑐(𝜓) 𝑠(𝜃) 𝑠(𝜙) − 𝑠(𝜓) 𝑐(𝜙) 𝑐(𝜓) 𝑠(𝜃) 𝑐(𝜙) + 𝑠(𝜓) 𝑠(𝜙)

𝑐(𝜃) 𝑠(𝜓) 𝑠(𝜓) 𝑠(𝜃) 𝑠(𝜙) + 𝑐(𝜓) 𝑐(𝜙) 𝑠(𝜓) 𝑠(𝜃) 𝑐(𝜙) − 𝑐(𝜓) 𝑠(𝜙)

− 𝑠(𝜃) 𝑐(𝜃) 𝑠(𝜙) 𝑐(𝜃) 𝑐(𝜙)
] (10) 
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The main function of the rotation matrix is that it can be used to convert the position 

vector (𝑋𝑏) in BF to its corresponding vector (𝑋𝑒) in EF (see Eq. (11)). 

 𝐗e =  𝑅𝑏
𝑒 .  𝐗b (11) 

The body angular rates are expressed about the BF, and they are denoted as 𝛚𝐛 =

[𝑝  𝑞   𝑟]T. The angular velocities of the BF with respect to the EF are called the Euler 

rates,  �̇� = [�̇�   �̇�   �̇�]
T
 vector represents the Euler rates. 

 

[

𝑝

𝑞

𝑟

] = 

[

�̇�

0

0

] + [

1 0 0

0 cos(𝜙) − sin(𝜙)

0 sin(𝜙) cos(𝜙)

] [

0

�̇�

0

] 

+[

1 0 0

0 cos(𝜙) −sin (𝜙)

0 sin (𝜙) cos(𝜙)

] [

cos(𝜃) 0 sin (𝜃)

0 1 0

−sin (𝜃) 0 cos(𝜃)

] [

0

0

�̇�

] 

(12) 

By reversing the transformation, the Euler rates can be obtained as follows 

 [

�̇�

�̇�

�̇�

] = [

1 tan(𝜃) sin(𝜙) tan(𝜃) cos(𝜙)

0 cos(𝜙) − sin(𝜙)

0 sec(𝜃) sin(𝜙) sec(𝜃) cos(𝜙)

] [

𝑝

𝑞

𝑟

] (13) 

4.4  Rigid Body Equations  

The rigid body equations of motion are listed as follows [49]: 

 �̇� =
𝐹

𝑚
− 𝜔 × 𝑉 (14) 

 �̇� = 𝐼−1(𝑀 − 𝜔 × 𝐼𝜔) (15) 
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where 𝐹 denotes the net force acting on the helicopter (N), 𝜔 represents the body 

angular velocity (rad/sec), 𝑉 is the velocity in the BF (m/sec), 𝑀 is the moment about 

the CG (N.m), and 𝐼 is the moment of inertia matrix (kg. m2). 

 

𝑉 = [
𝑢
𝑣
𝑤

] , 

 𝐹 = [

𝑓𝑥
𝑓𝑦
𝑓𝑧

] , 

  𝜔 = [
𝑝
𝑞
𝑟
] , 

 𝑀 = [
𝐿
𝑀
𝑁

] , 

 And  𝐼 = [

𝐼𝑥𝑥 𝐼𝑥𝑦 𝐼𝑥𝑧
𝐼𝑦𝑥 𝐼𝑦𝑦 𝐼𝑦𝑧
𝐼𝑧𝑥 𝐼𝑧𝑦 𝐼𝑧𝑧

] 

(16) 

4.5 Forces and Moments 

With respect to the helicopter CG, the forces and moments are derived and 

expressed in the BF as illustrated in Figure 16. The thrust direction is presumed to be 

perpendicular to the tip path plane (TPP).  The small effect of the vertical fin and the 

horizontal stabilizer on the dynamics of the helicopter at hover is neglected. 

 

Figure 16: Moments and forces acting on the helicopter [61] 
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4.5.1 Forces 

The force F acting on the helicopter in the BF has three components along the three 

axes 𝑓𝑥, 𝑓𝑦 and 𝑓𝑧.  These forces are made up of the following components: 

 𝐹𝑀𝑅  : The force generated by the main rotor thrust, and it is acting in the 

center of the main rotor disc. 

 𝐹𝑇𝑅  : The resulting force generated by the tail rotor thrust, and it is acting 

on the center of the tail rotor disc.  

 𝐹 𝑔   : The resulting force generated by the gravitational acceleration, and it 

is acting in the CG.  

 𝐹𝑓𝑢𝑠 : The resulting drag force generated by the fuselage, and it is acting in 

the CG. 

 The main rotor thrust can be defined as a function of the flapping angles which 

are  𝛽1𝑠 and 𝛽1𝑐 in the lateral and longitudinal ordinations, respectively. 

The main rotor forces are listed as follows: 

 𝑓𝑥,𝑀𝑅 = − 𝑇𝑀𝑅 . sin(𝛽1𝑐) cos(𝛽1𝑐) 
(17

) 

 𝑓𝑦,𝑀𝑅 =    𝑇𝑀𝑅 . sin(𝛽1𝑠)cos(𝛽1𝑠) 
(18

) 

 𝑓𝑧,𝑀𝑅 = − 𝑇𝑀𝑅 . cos(𝛽1𝑠). cos(𝛽1𝑐) 
(19

) 

The force of the tail rotor has a component along the y-axis: 

 𝑓𝑦,𝑇𝑅 = −𝑇𝑇𝑅 (20) 

The force due to the gravitational acceleration has three components along the three 

axes. The force can be written as follows: 
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 𝑓𝑥,𝑔 = − sin(𝜃) .𝑚. 𝑔 (21) 

 𝑓𝑦,𝑔 = sin(𝜙) . cos (𝜃).𝑚. 𝑔 (22) 

 𝑓𝑧,𝑔 = cos(𝜙) . cos (𝜃).𝑚. 𝑔 (23) 

The induced velocity for the main rotor thrust while performing a hover flight is 

introduced assuming that the inflow is steady and uniform. The inflow while the 

helicopter is hovering is shown below in Figure 17.  

 

Figure 17: Inflow of the helicopter in hover mode  

 By applying the momentum theory, the induced velocity at a hover conditions can 

be found using the equation below [61]. For the Maxi Joker 3 helicopter the induced 

velocity at hover is 3.41 m/sec: 

 𝑣𝑖ℎ𝑜𝑣𝑒𝑟 = √
𝑚𝑔

2𝜋𝜌𝑅𝑚𝑟
2 = 3.41 𝑚/𝑠𝑒𝑐 (24) 

The drag forces which are generated by induced flow oppose the direction of the 

helicopter movement. Then, the drag forces of the fuselage in the X, Y and Z axes are 

computed by: 

 𝑓𝑥,𝑓𝑢𝑠 = − 𝑆𝑥
𝑓𝑢𝑠 1

2
 𝜌 𝑣𝑖ℎ𝑜𝑣𝑒𝑟 𝑢 (25) 
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𝑓𝑦,𝑓𝑢𝑠 = − 𝑆𝑦

𝑓𝑢𝑠 1

2
 𝜌 𝑣𝑖ℎ𝑜𝑣𝑒𝑟 𝑣 

(26) 

 
𝑓𝑧,𝑓𝑢𝑠 = − 𝑆𝑧

𝑓𝑢𝑠 1

2
 𝜌( 𝑤𝑎 + 𝑣𝑖ℎ𝑜𝑣𝑒𝑟)𝑉∞ 

(27) 

where the vehicle cross sectional areas are computed to be as follows 𝑆𝑥
𝑓𝑢𝑠

=

0.0662, 𝑆𝑦
𝑓𝑢𝑠

= 0.0872, and 𝑆𝑧
𝑓𝑢𝑠

= 0.0993 𝑚2 [49]. 

4.5.2 Moments 

The main sources of the moments acting on the helicopter are as follows  

𝜏𝑀𝑅 : The moment generated by the main rootor.  

𝜏𝑇𝑅 : The moment produced by the tail rotor.  

𝜏𝐷 : The drag moment on the main rotor.  

The drag moment of the tail rotor is ignored because of its small effect compared to 

other moments. The helicopter moments are expressed in the BF along the 3-axes which 

are 𝐿,𝑀 and 𝑁 respectively. The moments in the positive clockwise direction are 

considered positive. The dominant moments of the main rotor are the moments 

produced by the rotor flapping. In Figure 18, the moments resulting from the lateral 

flapping. The restraint in the blade attachment is expressed as a linear torsional spring 

with a constant stiffness coefficient  𝐾𝛽 [61]. 

 

Figure 18: Dominant main rotor moments acting on the fuselage [61] . 
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The main rotor moments consist of three components: 

 𝐿𝑀𝑅 = 𝑓𝑦,𝑀𝑅 . ℎ𝑚𝑟 − 𝑓𝑧,𝑀𝑅 . 𝑦𝑚𝑟 + 𝐾𝛽 . 𝛽1𝑠 − 𝐿𝑏𝜏𝑓𝑠𝑝 (28) 

 𝑀𝑀𝑅 = 𝑓𝑥,𝑀𝑅 . ℎ𝑚𝑟 + 𝑓𝑧,𝑀𝑅 . 𝑙𝑚𝑟 + 𝐾𝛽 . 𝛽1𝑐 − 𝑀𝑎𝜏𝑓𝑐𝑞 (29) 

 
𝑁𝑀𝑅 = −𝜌(𝛺𝑅)2

𝑏𝑐𝑅2

𝑠
𝐶𝑄

𝑀𝑅 
(30) 

where the distance from CG to the main rotor is  ℎ𝑚𝑟, ℎ𝑡𝑟  is the distance from the CG 

to the tail rotor as shown in Figure 19, 𝑙𝑚𝑟 the distance from CG to the main rotor, 𝑙𝑡𝑟 is 

the distance from CG to the tail rotor and 𝑦𝑚 is the distance from CG to the main rotor 

(see figure 20). 

Since we are using the flybarless helicopter, the terms which represent the flybar 

dynamics ( 𝐿𝑏 , 𝑀𝑎)  will be equal to zero. Then, the total torque coefficient is 

represented as: 

 𝐶𝑄
𝑀𝑅 = 𝐶𝑇√

𝐶𝑇

2
+

𝑐𝑑𝑠

8
 (31) 

 𝑠 =
𝑁𝑐

𝜋𝑅
 (32) 

where s is the rotor solidity which is the total blade area to the area of the disk and the 

drag coefficient  𝑐𝑑= 0.024. 

 

Figure 19:  helicopter from side view [49] 
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Figure 20: helicopter from top view [49] 

The tail rotor contributes in creating moment along 2 axes: 

 𝐿𝑇𝑅 = 𝑓𝑦,𝑇𝑅. ℎ𝑡𝑟 (33) 

 𝑁𝑇𝑅 = −𝑓𝑦,𝑇𝑅. 𝑙𝑡𝑟  (34) 

4.6 Flapping and Thrust Equations  

The flapping and the thrust equations are presented in this section  

4.6.1 Main Rotor Thrust and inflow Equations 

It is shown in Eq. (35) that the thrust of the main rotor is directly related to the 

commanded collective and indirectly related to the induced velocity vi and translatory 

velocities (u, v, w). The main rotor thrust is given in [62] as follows: 

 𝑇𝑀𝑅 = [𝜃𝑜 (
1

3
+

𝜇2

2
) − (

𝜇𝑧 + 𝜆𝑖

2
)]

𝑎. 𝑠

2
𝜌(𝛺𝑅)2𝐴𝑑 (35) 

The rotor inflow, 𝜆𝑖, has a direct influence on the thrust which adds the complexity 

of calculating the thrust. The ratio between the helicopter’s translational velocity and 

the main rotor tip speed which is called the advance ratio () can be found as in Eq. 

(36). i   is the inflow ratio for the main rotor, and 𝑎 is the main rotor lift curve slope. z 

is the ratio of vertical velocity to main rotor tip speed. 
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Padfield reveals that the rotor thrust is related proportionally to the rotor inflow. 

Also, the thrust increases whenever the collective is commanded, which is expressed 

by 𝜃𝑜. The main rotor thrust equation is solved iteratively until  𝑇𝑀𝑅 and 𝑣𝑖 are 

converged using the Newton-Raphson iteration technique explained in [63]. 

 𝜇 =
√𝑢𝑎

2 + 𝑣𝑎
2

𝛺𝑅
 (36) 

  𝜇𝑧 =
𝑤𝑎

𝛺𝑅
 (37) 

According to the momentum theory, the hover inflow 𝜆ℎ𝑜𝑣𝑒𝑟 can be obtained as 

follows:  

While hovering the helicopter thrust is equal to the helicopter weight. The weight 

of the Maxi Joker 3 helicopter platform is 71.613 N. The area of the main rotor disk is 

computed to be 𝐴𝑑 = 2.4885 𝑚2. By substituting the the thrust and the area of the rotor 

disk in Eq. (38) the hover inflow is 𝑣𝑖ℎ𝑜𝑣𝑒𝑟 = 3.41 𝑚/𝑠 ,  and normalizing the rotor tip 

speed (𝛺𝑅) yields to   𝜆𝑖ℎ𝑜𝑣𝑒𝑟 = 2.533 × 10−4. The thrust coefficient at hover can be 

found as: 

To find the hover trim of the main rotor collective, we solve Eq. (35) for 𝜃𝑜 and this 

leads to  

The main rotor collective varies with a range from -3° to +10 with no collective 

input is applied and that generates the trim main rotor collective of 4.086°. 

 𝑣𝑖ℎ𝑜𝑣𝑒𝑟 = √
𝑇

2𝜌𝐴𝑑
 (38) 

 𝐶𝑇 =
𝑇𝑀𝑅

𝜌(𝛺𝑅)2𝐴𝑑
 (39) 

 𝜃0
ℎ𝑜𝑣 = 3 [

2𝐶𝑇
ℎ𝑜𝑣

𝑎. 𝑠
+

𝜆𝑖
ℎ𝑜𝑣

2
] = 0.0713 rad (4.086°) (40) 
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4.6.2 Tail Rotor Thrust and Inflow Equations  

The full tail rotor thrust is given by: 

As increasing the rotor collective command 𝛿𝑝𝑒𝑑 the tail rotor inflow velocity 

increases and this yield to an increment in the tail rotor thrust. The tail rotor thrust 

equation is solved iteratively until the tail rotor inflow is converged 𝑇𝑇𝑅 using the same 

iteration technique. In [61], the rotor inflow is normalized and given by the equation 

below 

The tail rotor hub speed in the y direction is mentioned in [61] as follows: 

where 𝑣𝑎  is the resultant airspeed of the vehicle in the y direction subtracted for wind 

air speed.  

The tail rotor hub airspeed in the z direction is given as: 

The advance ratio of the tail rotor is given in [43] as: 

From Eq. (30) the torque generated by the main rotor is  𝑁𝑀𝑅 = 7.9331𝑁.𝑚 . Now, 

to find the tail rotor force needed to cancel the main rotor torque effect, we divide  𝑁𝑀𝑅 

by the tail arm 𝑙𝑡𝑟 = 1.068 𝑚. This gives:  

 𝑇𝑇𝑅 = [𝛿𝑝𝑒𝑑 (
1

3
+

𝜇𝑡𝑟
2

2
) − (

𝜇𝑧𝑡𝑟 + 𝜆𝑖

2
)]

𝑎. 𝑠

2
𝜌(𝛺𝑡𝑟𝑅𝑡𝑟)

2𝐴𝑑𝑡𝑟 (41) 

 𝜇𝑧𝑡𝑟 =
𝑣𝑡𝑟

𝛺𝑡𝑟𝑅𝑡𝑟
 (42) 

 𝑣𝑡𝑟 = 𝑣𝑎 − 𝑙𝑡𝑟𝑟 − ℎ𝑡𝑟|𝑝| (43) 

 𝑤𝑡𝑟 = 𝑤𝑎 − 𝑙𝑡𝑟𝑞 − 𝐾𝜆𝑉𝑖𝑚𝑟 (44) 

 𝜇𝑡𝑟 =
√𝑢𝑡𝑟

2 + 𝑤𝑡𝑟
2

𝛺𝑡𝑟𝑅𝑡𝑟
 (45) 
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This force needs to be positive all the time to encounter the positive yaw produced 

by the main rotor.  

where the coefficient of the tail rotor thrust is: 

where 𝑓𝑇 is the blockage factor which is ignored for the tractor type of tail rotors, so 

the equation will be as follows: 

Solving for the for the thrust coefficient at hover gives: 

The tail rotor thrust at hover can be expressed by the relation [61] :𝑇𝑇𝑅 =

2𝜌𝐴𝑑𝑡𝑟𝑣𝑖𝑡𝑟
2 . and solving for the induced velocity at hover yields to: 

And, by solving Eq. (47) the trim for the tail rotor can be found as: 

 𝑓𝑦,𝑇𝑅(ℎ𝑜𝑣𝑒𝑟) =  7.4279 𝑁   

 𝑓𝑦,𝑇𝑅 = 𝜌(𝛺𝑡𝑟𝑅𝑡𝑟)
2(𝜋𝑅𝑡𝑟

2 )𝐶𝑇(𝑡𝑟)𝑓𝑇 (46) 

 𝐶𝑇(𝑡𝑟) =
𝑇𝑇𝑅

𝜌(𝛺𝑡𝑟𝑅𝑡𝑟)2(𝜋𝑅𝑡𝑟
2 )

 (47) 

 𝑓𝑦,𝑇𝑅 = 𝑇𝑇𝑅𝑓𝑇 (48) 

 𝑓𝑦,𝑇𝑅 = 𝑇𝑇𝑅 (49) 

  𝐶𝑇(𝑡𝑟)
ℎ𝑜𝑣 = 6.356 × 10−3  

 𝑣𝑖(𝑡𝑟)
ℎ𝑜𝑣 = 6.1382 𝑚/𝑠  

 𝜆𝑖
ℎ𝑜𝑣 =

𝑣𝑖(𝑡𝑟)
ℎ𝑜𝑣

𝛺𝑡𝑟𝑅𝑡𝑟
= 56.361 × 10−3  
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The tail rotor collective varies with a range of -3° to +10° with no collective input 

is applied that generates the trim tail rotor collective of 8.2°. 

4.6.3 Main rotor Flapping Dynamics  

In [64], Mettler derived the main rotor flapping dynamics. The main rotor flapping 

dynamics were modeled as a second order overdamped response. The same model is 

used in this study. The longitudinal and lateral flap angle commands, 𝛽1𝑐
𝑐  and  𝛽1𝑠

𝑐  , are 

proportional to the inputs 𝑢𝑙𝑜𝑛𝑔 and 𝑢𝑙𝑎𝑡. The linear flapping dynamics are obtained as: 

The main rotor time constants 𝜏𝑓𝑐 and  𝜏𝑓𝑠  are, which can be determined in the 

system identification. At hovering conditions, the value of 𝜏𝑓𝑐 = 0.113 sec,  𝜏𝑓𝑠 =

0.101 sec, 𝐴𝛿𝑙𝑜𝑛
= 4.2, and 𝐵𝛿𝑙𝑎𝑡

= 4.2  [49]. 

4.7 Actuator Models 

In [61][43], the servo was modelled to be: 

where 𝜔𝑛 = 36 rad/sec, and 𝜁 = 0.5, 𝑇𝑧 = 104 sec, 𝑇𝑝 = 33sec. The tail servo was 

estimated by a second order system with the undamped natural frequency of 7 Hz and 

the 0.6 damping ratio. The rotational movement of the servo is transferred through a 

special mechanical linkage, which controls the helicopter surfaces.  

 𝛿𝑝𝑒𝑑
ℎ𝑜𝑣 = 3 [

2𝐶𝑇(𝑡𝑟)
ℎ𝑜𝑣

𝑎. 𝑠
+

𝜆𝑖
ℎ𝑜𝑣

2
] (50) 

 𝛿𝑝𝑒𝑑
ℎ𝑜𝑣 = 0.143 (8.2°)  

 [
�̇�1𝑐

�̇�1𝑠

] =

[
 
 
 
 −

1

𝜏𝑓𝑐
 0

 0 −
1

𝜏𝑓𝑠]
 
 
 
 

[
𝛽1𝑐

𝛽1𝑠
] +

[
 
 
 
 0 −1

𝐴𝛿𝑙𝑜𝑛

𝜏𝑓𝑐
0

−1 0 0
𝐵𝛿𝑙𝑎𝑡

𝜏𝑓𝑠 ]
 
 
 
 

[

𝑝
𝑞

𝛽1𝑐
𝑐

𝛽1𝑠
𝑐

] (51) 

 𝐻𝑠𝑒𝑟𝑣𝑜(𝑠) =
𝑠 𝑇𝑧 + 1⁄

𝑠 𝑇𝑝 + 1⁄

𝜔𝑛
2

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2
 (52) 
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The swash plate is controlled by three servos which are connected together using a 

special configuration called 120° cyclic collective pitch mixing (CCPM) servo 

configuration. The Maxi Joker 3 has three servos controlling the swash plate where they 

are linked together using a 120° cyclic collective pitch mixing (CCPM) servo 

configuration (see Figure 21).  

 

Figure 21: Servos mixing configuration 

The servo mixing is represented by using a set of liner equations to calculate the 

servo positions with respect to the control signal (𝑢𝑐𝑜𝑙, 𝑢𝑙𝑎𝑡, 𝑢𝑙𝑜𝑛𝑔) as follows [49] : 

 

4.8 Ground effect (GE) model  

At altitudes that are comparable with the main rotor diameter, the ground has an 

effect on the airflow under the helicopter. The ground prevents the airflow from being 

established uniformly, so the velocity of the induced flow will be reduced. This leads 

to a reduction in the induced drag and an increment in the vertical lift vector as a result. 

 [

𝑠𝑒𝑟𝑣𝑜𝑓𝑟𝑜𝑛𝑡

𝑠𝑒𝑟𝑣𝑜𝑟𝑖𝑔ℎ𝑡

𝑠𝑒𝑟𝑣𝑜𝑙𝑒𝑓𝑡

] = [

1 cos (120°) sin(0°)
1 cos (−120°) sin(−120°)
1 cos (120°) sin(120°)

] [

𝑢𝑐𝑜𝑙

𝑢𝑙𝑎𝑡

𝑢𝑙𝑜𝑛𝑔

] (53) 
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𝑇𝐼𝐺𝐸

𝑇𝑂𝐺𝐸
=

1

(

 
 

1 − (
1
16) (

𝑅
𝑧)

2

(
1

1 + (
𝑉𝑖
𝑣𝑖)

2)

)

 
 

 

(54) 

Thrust in the ground effect is given by equation Eq. 54, this equation illustrates the 

ratio between the thrust in both scenarios in ground and out ground effect zones. Where 

𝑅 is the rotor radius, 𝑍 is the height that the helicopter is hovering at,   𝑉𝑖 represents the 

rotor speed, and 𝑣𝑖 is the induced velocity.  

At heights of one half the rotor diameter the thrust is increased by 7%. At rotor 

heights above one rotor diameter, the thrust increase is small and decreases to zero at 

heights are above 1.25 of the rotor diameter. 
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Chapter 5: Optical flow sensor modelling 

In this chapter, the problem of modeling the optical flow sensor will be addressed. 

Chapter 5 is divided into five sections. In section 5.1, the theoretical approach is 

described. The experimental setup for modeling the PX4FLOW optical sensor is 

illustrated in section 5.2. The optical flow sensor model is described in section 5.3. 

Section 5.4 describes the sensor model validation process. In section 5.5, we discuss 

the results of the validated model of the optical flow sensor. 

5.1 Theoretical Approach  

In this study we assume that the helicopter hovers for a while over a predefined 

landing spot before it starts its landing process. Our objective is to perform an 

autonomous precise landing, which guarantees a minimal positional error in the landing 

process. The proposed landing algorithm utilizes optical flow sensing to provide the 

translatory velocities of the helicopter in both axes 𝑥 and 𝑦 while the helicopter 

approaches the landing spot.  

The helicopter at hover performs a pendulous motion with small velocity, and to 

simulate this motion, we thought of using a pendulum with a finite length and an optical 

flow sensor attached to the lower end of the pendulum.  As the pendulum moves, there 

is an accurate encoder attached to the upper end of the pendulum measuring the angular 

position of the pendulum. On the other hand, the optical flow sensor measures the 

translatory velocities of the pendulum.  

Figure 22 illustrates the geometrical design of the experiment. A special pad is 

designed and placed on the ground in the field of the PX4FLOW view. A pendulum 

with 𝑙 length was manufactured. The optical flow sensor is attached to the lower end of 

the pendulum and the encoder is attached to the upper end of the pendulum.  

 



55 

 

 

Figure 22: Geometrical design of the modeling experiment 

The equations below (55-58) show the mathematical analysis of the pendulum 

displacements and velocities in both direction. 

Equation (55) represents the displacement in the x-axis: 

 𝑥 = 𝑙. 𝑠𝑖𝑛𝜃 (55) 

where 𝑙 is the length of the pendulum, and 𝜃 is the angle from vertical. 

The velocity in the x-axis is: 

 𝑣𝑥 = 𝑙. 𝑐𝑜𝑠𝜃. �̇� (56) 

Meanwhile, the displacement in the y-direction is: 
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 𝑦 = 𝑑 + 𝑙 − 𝑙. 𝑐𝑜𝑠𝜃 (57) 

where 𝑑 is the distance from the lower end of the pendulum (the position of the 

optical flow sensor) to the ground. The velocity in y-direction is given by: 

 𝑣𝑦 = 𝑙. 𝑠𝑖𝑛𝜃. �̇� (58) 

 Since an accurate encoder with high resolution is used, the measurements coming 

from the encoder are considered as the truth velocities of the pendulum. Comparing the 

measurements of the optical flow sensor to the truth velocities coming from the encoder 

we are able to tell how accurate the optical flow sensor is during the pendulum motion. 

5.2 The Experimental Design   

The pendulum test stand is designed to perform the experiment of modeling the 

optical flow sensor as shown in Figure 23. Clearly, the PX4FLOW sensor is attached 

at the lower end of the pendulum pointing downwards. An incremental encoder with 

10000 ppr maximum resolution is attached to the upper end of the pendulum to measure 

the precise velocity of the pendulum while moving.  

 A pad of black horizontal lines as shown in Figure 24 is placed underneath the 

optical flow sensor allowing the sensor to measure the small velocities precisely. 
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Figure 23: Pendulum test stand. 

      

Figure 24: Landing pad 

In our experiment, the optical flow sensor was interfaced serially to the 

microcontroller, and the data were read using a special protocol called the MAVlink 
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protocol at a 115200 baud rate. The optical flow measurements were sent through 

another serial port to the dspace system. A Baumer encoder [65] was also read serially 

through the dspace (DS1104 R&D Controller Board) (See Figure 25). 

As mentioned earlier, the encoder measures the pendulum’s position 𝜃 and the 

velocity �̇�. By knowing the the position and the angular velocity of the encoder, we 

were able to compute the translatory velocity based on equations (56) and (58). The 

compensated optical flows in (m/sec) in both directions 𝑥 and 𝑦 are measured and sent 

to the Dspace unit with the Real-Time Interface (RTI). We ran our function models on 

the DS1104 R&D Controller Board and monitored the sensors readings in a real time 

environment. 

PX4 optical flow 
sensor

10000 pulses/revolution 
encoder

Dspace

serial0

Serial1

Serial

Microcontroller

Figure 25: Real time optical flow sensor modeling experiment 

In Figure 26 the raw measurements of both sensors are plotted before adding an 

average filters to smooth the data and reduce the amount of undesired spikes. We know 

that the optical flow sensor measures the apparent motion of the image, and the apparent 

motion is affected by varying the light conditions which makes the optical flow sensor 

readings quite sensitive. Figures 27 and 28 show the light influence on the optical flow 

sensor measurement. We applied an extra intense light source to test the PX4FLOW 

sensor at high light conditions. Figure 27 shows how the optical flow sensor becomes 

unreliable when an extra light source is applied. Contrarily, we turned off a number of 
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the light sources to run the expeiment under low light conditions. As seen in Figure 28,  

the PX4FLOW performs well under low light. 

Figure 26: Raw data from both PX4FLOW and the encoder 

 

Figure 27: The influence of intense light applied on the pattern 
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Figure 28: PX4FLOW readings under low light conditions 

5.3 Optical Flow Sensor Modeling  

In this section, a model for the optical flow sensor is derived. A system 

identification process was done to obtain the most representative models for the 

PX4FLOW sensor. The encoder readings of angular velocities were converted to get 

the translational velocities. The system identification MATLAB toolbox (ident) was 

used, as shown in Figure 29. We assigned the encoder measurements as the input to the 

optical flow model we wanted to identify and the optical flow sensor data is the output 

of the model.  

System ID Tool

Encoder 

PX4FLOW

Optical flow sensor’s 
Model
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Figure 29: System ID process for modelling the optical flow sensor 

In order to obtain an accurate optical flow sensor model and robust while the 

helicopter approaches the ground, the optical flow sensor is tested at different heights. 
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The length of the pendulum is adjustable to allow the optical flow sensor to be tested at 

different altitudes. We tested the optical flow sensor at four different altitudes near the 

ground to figure out at which altitude the optical flow measurement matches the 

encoder measurement perfectly. In all conducted tests the procedure was the same. First 

we made sure that the pattern was being seen clearly by adjusting the optical flow 

thread, and monitoring the (QGroundControl) software to watch the image being seen 

by the optical flow sensor. Second, we applied a small manual horizontal force on the 

rested pendulum which forced the pendulum to move for a certain time before going 

back to rest. Third, the motion profile of the pendulum was recorded as shown in 

Figures 30-33. The optical flow sensor was tested at four several heights, at 60, 80, 100 

and 150 cm. The system identification algorithms were applied on the obtained data to 

generate the possible optical flow sensor models. The four different altitudes tests are 

as follows: 

 At 𝒉 = 𝟔𝟎 𝒄𝒎. 

Many tests have been performed on the PX4FLOW sensor at this height, Figure 30 

shows significant matching between the PX4FLOW sensor and the encoder. Table 2 

shows the transfer functions which can be considered the most representative models 

at this specific height.  According to the System ID tool we can conclude that the 

obtained models match the optical flow sensor’s characteristics for the same inputs at 

the mentioned height perfectly. As shown in the table above, the obtained models match 

the optical flow with high percentage of fitting accuracy.  
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Figure 30: Optical flow vs encoder at 60 cm height  

 At 𝒉 = 𝟖𝟎 𝒄𝒎 

After performing numerous tests at this height, Figure 31 depicts the performance 

of the PX4FLOW. Obviously, the PX4FLOW measures the translatory velocity 

correctly at this height.  Due to its sensitivity, the optical flow sensor reads a small 

velocity while the pendulum is at rest. This is because of the apparent motion of the 

image which could never be equal zero.  

Table 3 contains the identified transfer functions and their corresponding 

percentage of matching. The characteristics of the identified second order models match 

the optical flow sensor characteristics with about 80% accuracy. 
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Figure 31: Optical flow vs encoder at 80 cm 

 At 𝒉 = 𝟏𝟎𝟎 𝒄𝒎 

Figure 32: Optical flow vs encoder at 1m height 

Since we are getting further from the ground, the optical flow sensor still performs 

well at 1 m height. Figure 32 describes the translational velocity measured by both 

sensors. Table 4 lists the acquired models. It is clear that the percentage of fitting is 

getting decreased as we reduce the pendulum length to increase the height. 

 At 𝒉 = 𝟏𝟓𝟎 𝒄𝒎 

As shown in Figure 33, the performance of the PX4FLOW sensor degrades as we 

move up. The optical flow sensor has failed in recognizing the small velocities of the 

pendulum which are below 0.4 𝑚/𝑠𝑒𝑐 this height. 
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A new set of transfer functions has been obtained, and because of the degradation 

in the performance of the optical flow sensor at high positions, these transfer functions 

slightly match the optical flow sensors’s output. Table 5 depicts the models and the 

corresponding matching accuracy.   

Figure 33: Optical flow vs encoder at 1.5 m height 

Table 2: Obtained transfer functions at 60 cm 

Obtained 

Models 

      Best fit Function representation 

(1) 87.70% 𝟐𝟔𝟎. 𝟑𝟎

𝐬𝟐 + 𝟏𝟕. 𝟕𝟑𝐬 + 𝟐𝟓𝟎
 

(2) 86.63% 𝟏𝟗𝟔. 𝟗𝟎

𝐬𝟐 + 𝟏𝟒. 𝟖𝟑𝐬 + 𝟏𝟗𝟏. 𝟗𝟎
 

(3) 84.22% 𝟑𝟓𝟓. 𝟕𝟎

𝐬𝟐 + 𝟑𝟔. 𝟐𝟖 𝐬 + 𝟑𝟑𝟑. 𝟑𝟎
 

(4) 83.00% 𝟐𝟗𝟖. 𝟔𝟎

𝐬𝟐 + 𝟑𝟑. 𝟐𝟒 𝐬 + 𝟐𝟕𝟕. 𝟏𝟎
 

0 5 10 15 20 25 30 35 40 45 50
-3

-2

-1

0

1

2

3

Time (Sec)

V
e
lo

c
it
y
 i
n
 X

 (
m

/S
e
c
)

 

 

encoder

PX4FLOW



65 

 

(5) 84.22% 𝟑𝟏𝟐. 𝟓𝟎

𝐬𝟐 + 𝟑𝟏. 𝟖𝟒𝐬 + 𝟐𝟖𝟗. 𝟗𝟎
 

(6) 83.26% 𝟔𝟗𝟗. 𝟑𝟓

𝐬𝟐 + 𝟓𝟔. 𝟖𝟒𝐬 + 𝟔𝟒𝟒. 𝟒𝟎
 

(7) 84.60% 𝟏𝟏𝟐𝟕

𝐬𝟐 + 𝟗𝟕. 𝟖𝟕𝟑𝐬 + 𝟏𝟐𝟎𝟔
 

(8) 84.00% 𝟕𝟐𝟏. 𝟑𝟓

𝐬𝟐 + 𝟓𝟕. 𝟏𝟎𝐬 + 𝟔𝟒𝟓
 

Table 3: Transfer functions at 80 cm 

Obtained Model Best fit Function representation 

(1) 79.58% 𝟓𝟒𝟗. 𝟕𝟎

𝐬𝟐 + 𝟒𝟓. 𝟏𝟗𝐬 + 𝟓𝟐𝟏. 𝟗𝟕
 

(2) 78% 𝟑𝟎𝟗

𝐬𝟐 + 𝟐𝟓. 𝟔𝟖𝐬 + 𝟐𝟗𝟕. 𝟐𝟔
 

(3) 75% 𝟑𝟓𝟓. 𝟕𝟎

𝐬𝟐 + 𝟒𝟑. 𝟓𝟗 𝐬 + 𝟒𝟕𝟓. 𝟎𝟔
 

(4) 78% 𝟑𝟎𝟐

𝐬𝟐 + 𝟑𝟑. 𝟐𝟒 𝐬 + 𝟐𝟕𝟕. 𝟏
 

(5)         73.14% 𝟏𝟗𝟒

𝐬𝟐 + 𝟐𝟕. 𝟏𝟗𝐬 + 𝟏𝟖𝟒. 𝟗
 

(6) 73.60% 𝟔𝟗𝟒. 𝟑𝟓

𝐬𝟐 + 𝟓𝟔. 𝟖𝟒𝐬 + 𝟔𝟒𝟒. 𝟒
 

(7) 77.56% 𝟑𝟕𝟑. 𝟒𝟕

𝐬𝟐 + 𝟑𝟔𝐬 + 𝟑𝟐𝟓. 𝟖𝟎
 

(8) 78.10% 𝟓𝟓𝟗. 𝟔𝟗

𝐬𝟐 + 𝟒𝟔𝐬 + 𝟓𝟐𝟖. 𝟗
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Table 4: Identified transfer functions at 1m 

Obtained Model  Best fit Function representation 

(1) 64% 𝟑𝟗𝟓. 𝟐𝟐

𝐬𝟐 + 𝟒𝟏. 𝟗𝐬 + 𝟒𝟒𝟎
 

(2) 72% 𝟐𝟐𝟒. 𝟓𝟎

𝐬𝟐 + 𝟑𝟎. 𝟖𝟗𝐬 + 𝟐𝟑𝟕. 𝟖𝟎
 

(3) 65.80% 𝟕𝟎𝟐. 𝟑𝟎

𝐬𝟐 + 𝟓𝟗 𝐬 + 𝟕𝟓𝟔. 𝟐𝟖
 

(4) 68.58% 𝟒𝟔𝟓

𝐬𝟐 + 𝟒𝟓. 𝟕 𝐬 + 𝟓𝟐𝟐. 𝟒
 

(5) 67.37% 𝟐𝟔𝟖. 𝟕

𝐬𝟐 + 𝟑𝟓𝐬 + 𝟑𝟎𝟕
 

(6) 61.59% 𝟏𝟐𝟔𝟗

𝐬𝟐 + 𝟏𝟗𝟓. 𝟖𝟎𝐬 + 𝟏𝟑𝟓𝟗
 

(7) 62.51% 𝟕𝟓𝟏

𝐬𝟐 + 𝟖𝟏𝐬 + 𝟖𝟗𝟖. 𝟗
 

Table 5: Identified transfer functions at 1.5m 

Obtained 

Model 

Best fit Obtained transfer functions 

(1) 57.67% 𝟏𝟐𝟗𝟗. 𝟒𝟎

𝐬𝟐 + 𝟖𝟕. 𝟑𝟒𝐬 + 𝟏𝟏𝟏𝟗. 𝟐𝟖
 

(2) 57.20% 𝟐𝟐𝟔

𝐬𝟐 + 𝟐𝟔. 𝟔𝟑𝐬 + 𝟏𝟕𝟕. 𝟑𝟎
 

(3) 51% 𝟑𝟏𝟒. 𝟏𝟓

𝐬𝟐 + 𝟑𝟐. 𝟑𝟓 𝐬 + 𝟐𝟔𝟏. 𝟔𝟔
 

(4) 53% 𝟖𝟎𝟕. 𝟏𝟔

𝐬𝟐 + 𝟔𝟔. 𝟓𝟎 𝐬 + 𝟔𝟏𝟗
 

(5)           53% 𝟐𝟓𝟓. 𝟓𝟎

𝐬𝟐 + 𝟒𝟐. 𝟗𝟎𝐬 + 𝟏𝟗𝟗. 𝟖𝟎
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(6) 51.44% 𝟐𝟎𝟗. 𝟓𝟖

𝐬𝟐 + 𝟑𝟖. 𝟕𝟎𝐬 + 𝟏𝟔𝟗. 𝟕𝟓
 

(7) 57% 𝟐𝟎𝟓. 𝟔𝟒

𝐬𝟐 + 𝟐𝟔. 𝟒𝟎𝐬 + 𝟏𝟕𝟒. 𝟖𝟎
 

As shown above that all the identified models are second order models. The reason 

of having a second order models is that the optical flow equation itself is a second order 

in the special coordinates and the pixel position equations are second order. Moreover, 

the experimental setup change in the position dynamics of the pixels is a second order. 

5.4 Model Validation 

After acquiring the models that have the best matching with the data coming from 

the optical flow sensor, the obtained models are validated at different heights. As 

observed in section 5.3, the performance of the optical flow sensor differs from one 

height to another, so the OF models have to be validated at different heights. Several 

validation tests have been done and the validation results are shown. The validation was 

done by performing a set of real time experiments at each height, as shown in Figure 

34. Three velocities are plotted: the first one comes from the optical flow sensor which 

is read serially, the second velocity is the translational velocity which is computed from 

getting the angular position of the encoder, and the third velocity is the OF model 

velocity. The input to the OF transfer function is the encoder velocity and the output is 

the OF model velocity. 

OF model 

Scope

Conversion

θ 

θ 
. Vx

Transfer function

VOF
Incremental 

encoder (Baumer-

1000ppr)

          Vencoder

          VPX4FLOW

 

Figure 34: Block diagram of optical flow sensor model validation 
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A validation experiment was performed to test each model at various heights. Eight 

transfer functions were engaged in the validation experiment and these functions were 

validated at four different heights. The model validation results show that the obtained 

optical flow models are accurate and they can be utilized as OF sensor models. Figures 

35- 42 illustrate the validation results for the selected models at 60 cm height.  

Figure 35: Validation of transfer function 1at 60 cm height 

Figure 35 shows the significant matching between the OF sensor reading and the 

first OF model (TF1) reading. The mean error between the OF reading and transfer 

function reading is 0.0048 𝑚/𝑠𝑒𝑐 and the difference between both standard deviations 

is 0.007.     

The second model (TF2) performs well as depicted in Figure 36. The mean error 

between the OF reading and transfer function reading is 0.0054 and the difference 

between both standard deviation is 0.0055. 
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Figure 36: Validation of transfer function 2 at 60 cm height 

Figure 37 describes the accuracy of the third model how accurate is the third model 

(TF3). An excellent matching between the OF sensor measurement and the sensor 

model reading is shown. The mean error between the OF reading and transfer function 

reading is 0.0046 𝑚/𝑠𝑒𝑐 and the standard deviation is 0.0100.  

Figure 37: Validation of transfer function 3 at 60 cm height 

Figure 38 illustrates significant matching between the OF sensor reading and the 

fourth OF model (TF4) reading. The mean error between the OF reading and transfer 

function reading is 0.0048 𝑚/𝑠𝑒𝑐 and the difference between both standard deviations 

is 0.007 𝑚/𝑠𝑒𝑐. 
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Figure 38: Validation of transfer function 4 at 60 cm height 

The performance of the fifth model matches the performance of the real optical flow 

sensor. Figure 39 describes the response of the fifth model to the encoder input and 

shows significant matching between the real and the modelled OF sensor measurement. 

The mean error between the OF reading and the transfer function reading is 0.00042 

and the standard deviation is 0.0027. 

Figure 39: Validation of transfer function 5 at 60 cm height 
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 Figure 40 clarifies the experiment done to validate the sixth model. The mean error 

between the OF reading and transfer function reading is 0.0029 𝑚/𝑠𝑒𝑐 and the 

difference between both standard deviations is 0.0214 𝑚/𝑠𝑒𝑐.   

The seventh model matches the real sensor reading perfectly as shown in Figure 41. 

The mean error between the OF reading and the transfer function reading is 

0.0018 𝑚/𝑠𝑒𝑐 and the standard deviation is 0.0011 𝑚/𝑠𝑒𝑐.         

Figure 40: Validation of transfer function 6 at 60 cm height 

Figure 41: Validation of transfer function 7 at 60 cm height 

In Figure 42, the mean error between the OF reading and transfer function reading 

is 0.0012 and the standard deviation is 0.0057. Hence, as per the previous validation 
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tests, we can conclude that all models showed high accuracy in matching the real signal 

of the optical flow sensor at 60 cm. 

Figure 42: Validation of transfer function 8 at 60 cm height 

After all models were validated at 60 cm, we moved to validate the optical flow 

sensor at higher heights. We adjusted the pendulum length to keep the distance between 

the pattern and the PX4FLOW equal to 80 cm. Figures 43-50 display the validation 

tests for all models at 80 cm height. 

 

Figure 43: Validation of transfer function 1 at 80 cm height 
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Figure 44: Validation of transfer function 2 at 80 cm height 

Figure 45: Validation of transfer function 3 at 80cm height 

The first three models shown in Figures 43-45 show the great matching between 

the OF sensor measurement and the measurement of the modelled sensor. The mean 

errors between the OF reading and transfer function reading are 0.0048 cm, 0.0054 cm, 

and 0.0046 cm, respectively. And the standard deviations are 0.0070 cm, 0.0055 cm, 

and 0.0100 cm, respectively.     
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Figures 46-48 depict very good matching between the models and the real 

measurements of the OF sensor. The mean errors between the OF reading and transfer 

function reading are 0.00071 cm, 0.00042 cm, and 0.0029 cm. The standard deviation 

is 0.0182 cm, 0.0027 cm and 0.0214 cm, respectively.     

Figure 46: Validation of transfer function 4 at 80cm height 

Figure 47: Validation of transfer function 5 at 80cm height 
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Figure 48: Validation of transfer function 6 at 80 cm height 

The performance of the seventh model matches the real OF in Figure 49 where the 

mean error is about 0.0018 and the difference in both standard deviation is too small 

0.0011. In Figure 50, the eighth transfer function performs well compared to the real 

sensor. The mean error is 0.0012 𝑚/𝑠𝑒𝑐 and the difference in both standard deviations 

is quite small 0.0057𝑚/𝑠𝑒𝑐. Figures from 51-58 display are the validation tests results 

for all identified models at 1m height.   

Figure 49: Validation of transfer function 7 at 80 cm height 
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Figure 50: Validation of transfer function 8 at 80cm height 

 

Figure 51: Validation of transfer function 1 at 1m height 
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Figure 52: Validation of transfer function 2 at 1m height 

Figure 53: Validation of transfer function 3 at 1m height 

The first three models show good performance compared to the real OF sensor. The 
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deviations is 0.0474. TF5 as described in 58 matches the PX4FLOW reading with mean 

error equal 0.0047 and the difference in standard deviation being 0.0563 𝑚/𝑠𝑒𝑐. 

Figure 54: Validation of transfer function 4 at 1m height 

Figure 55: Validation of transfer function 5 at 1m height 

TF6 as depicted in Figure 56, has a mean error between the OF reading and transfer 

function reading of 0.0176. The difference between both standard deviations is 0.0498. 
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Figure 56: Validation of transfer function 6 at 1m height 

TF7 as depicted in Figure 57, has a mean error between the OF reading and transfer 

function reading of 0.0063. The difference between both standard deviations is 

0.0082 𝑚/𝑠𝑒𝑐. 

Figure 57: Validation of transfer function 7at 1m height 

TF8 as depicted in Figure 58, has a mean error between the OF reading and transfer 

function reading of 0.0071. The difference between both standard deviations is 0.0499. 

0 10 20 30 40 50 60
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Time (Sec)

V
e
lo

c
it
y
 i
n
 X

 (
m

/s
e
c
)

 

 

encoder

PX4FLOW

TF6

0 5 10 15 20 25 30 35 40
-1

-0.5

0

0.5

1

Time (Sec)

V
e
lo

c
it
y
 i
n
 X

 (
m

/s
e
c
)

 

 

encoder

PX4FLOW

TF7



80 

 

Figure 58: Validation of transfer function 8 at 1m height 

At 1.5m the performance of the optical flow sensor degrades. Figure 59 shows the 

validation for the first model, where the mean error between the OF reading and transfer 

function reading is 0.0183 𝑚/𝑠𝑒𝑐 and the standard deviation is 0.1478 𝑚/𝑠𝑒𝑐. Figure 

60 illustrates the validation for the second model, where the mean error is between the 

OF reading and transfer function reading 0.0396 𝑚/𝑠𝑒𝑐 and the standard deviation is 

0.1000 𝑚/𝑠𝑒𝑐. In Figure 61, the third model is validated, and the mean error between 

the OF reading and transfer function reading is 0.0243 and the standard deviation is 

0.1644. 

Figure 59: Validation of transfer function 1 at 1.5m height 
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Figure 60: Validation of transfer function 2 at 1.5m height 

Figure 61: Validation of transfer function 3 at 1.5m height 
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Figure 62: Validation of transfer function 4 at 1.5m height 

Figure 63: Validation of transfer function 5 at 1.5m height 
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the OF reading and transfer function reading is 0.0197 𝑚/𝑠𝑒𝑐 and the standard 

deviation is 0.1059. 

Figure 64: Validation of transfer function 6 at 1.5m height 

Figure 65: Validation of transfer function 7 at 1.5m height 
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Figure 66: Validation of transfer function 8 at 1.5m height 

5.5 Discussion  

As explained in the previous sections, the optical flow model has been studied 

extensively.  A robust model for the optical flow sensor has been identified and a precise 

validation process was performed to validate the optical flow sensor models. The 

identified models match the real data of the optical flow sensor accurately at heights 

below 2m, and  the validation results match the real signal of the optical flow sensor 
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The average mean error is 0.0088 m/Sec.   
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Table 6: Mean errors and standard deviations error of optical flow models at 60 cm. 

OF Model  Mean error 

(ME) (m/Sec) 

Difference in Standard 

Deviation (SDE) (m/Sec) 

(1) 0.0048 0.0070 

(2) 0.0054 0.0055 

(3) 0.0046 0.0100 

(4) 0.00071 0.0182 

(5) 0.00042 0.0027 

(6) 0.0029 0.0214 

(7) 0.0018 0.0011 

(8) 0.0012 0.0057 

Table 7: Mean errors and standard deviation error of optical flow models at 80 cm 

OF Model Mean error 

(ME) (m/Sec) 

Difference in Standard 

Deviation (SDE)(m/Sec) 

(1) 0.0061 0.0218 

(2) 0.0038 0.0178 

(3) 0.0039 0.0246 

(4) 0.0054 0.0087 

(5) 0.0041 0.0076 

(6) 0.0046 0.0186 

(7) 0.0061 0.0427 
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(8) 0.0071 0.0136 

Table 8: Mean errors and standard deviations error of optical flow models at 1m 

OF Model Mean error 

(ME) (m/Sec) 

Difference in Standard 

Deviation (SDE)(m/Sec) 

(1) 0.0105 0.0822 

(2) 0.0055 0.0165 

(3) 0.0080 0.0167 

(4) 0.0107 0.0474 

(5) 0.0047 0.0563 

(6) 0.0176 0.0498 

(7) 0.0063 0.0082 

(8) 0.0071 0.0499 

Table 9 shows the mean error and the transfer function for each transfer function at 

1.5 m. The average mean error is the largest among all average mean errors. The 

modelled OF sensor reading differs by 0.0189 m/Sec from the real OF sensor reading.    

Table 9: Mean errors and standard deviation errors of optical flow models at 1.5 m 

OF Model Mean error 

(ME) (m/Sec) 

Difference in Standard 

Deviation (SDE)(m/Sec) 

(1) 0.0183 0.1478 

(2) 0.0396                            0.1000 

(3) 0.0243 0.1644 
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(4) 0.0212 0.1405 

(5) 0.0139 0.1289 

(6) 0.0046 0.1255 

(7) 0.0099 0.1456 

(8) 0.0197 0.1059 

To conclude, all the obtained models prove their accuracy and worth using as 

trusted OF models for any applications utilizing optical flow sensing.  At low altitudes 

the OF sensor performs very well and the optical flow sensor is reliable at low altitudes. 

According to the aforementioned statistics, it is unambiguous that the quality of the OF 

sensing decreases as the height increases.    
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Chapter6: Sensor Fusion Algorithm  

Chapter 6 illustrates the sensor fusion algorithm and the state estimation needed to 

perform a precise auto takeoff and landing. In Section 6.1, a shortened background on 

the data fusion is mentioned. Section 6.2 presents the data fusion algorithm between 

the already available GPS/INS unit and the optical flow sensor. In Section 6.3 the 

results of the sensor fusion algorithm are presented. The conclusion is introduced in 

Section 6.4.  

6.1 Background 

The already available COTS GPS/INS units provide an estimate of the position with 

few meters error, via the internal estimator (most likely Kalman estimator). The major 

source for this estimation error is that the GPS/INS signal is affected by the surrounding 

environment; like the quality of the GPS receiver, the existence of any object interferes 

with the satellite signals and the number of the satellites that are involved.  This error 

of estimation would not be sufficient for achieving high accurate missions like auto 

takeoff and landing for small scale helicopters. Hence, there is a need for extra accurate 

sensors to provide more accurate position estimation. In this study, a sensor fusion 

between the optical flow sensor and the GPS/INS is clarified. Since the Kalman 

estimator showed very accurate estimates [43] the Kalman fusion is utilized in this 

thesis.  

6.2 Fusion Algorithm Design  

In this section, a sensor fusion between the optical flow sensor and the GPS/INS 

solution is explained. The sensor fusion was done to estimate the position and the 

velocity of the helicopter, in order to obtain more accurate estimates for the position 

and the velocity. Figure 67 illustrates the fusion process in which two different sensors 

are involved. The OF sensor measures the velocity, and the position measurements are 

obtained from the GPS/INS unit. A linear estimator is used to estimate the position and 

the velocity states of the helicopter.  
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Figure 67: The sensor fusion block diagram 

To design a linear estimator, a linear system model is needed. Therefore, a 

linearization process was performed. The linearization was calculated at a near 

hovering point where the attitude angles are constant and the attitude rates and body 

velocities are equal to zero. The linearized model is given in equation (59) as: 

 

�̇� = 𝐴𝑋 + 𝐵𝑈 + 𝑤 

𝑌 = 𝐶𝑋 + 𝐷𝑈 + 𝑣 

(59) 

where 𝑋 is the state vector, 𝑈 is the input vector, 𝐴, 𝐵, 𝐶, 𝐷 are the state-space 

matrices, 𝑌 is the output vector, 𝑤 is the dynamic noise, and 𝑣 is the measurement noise. 

The latter two are assumed as Gaussian white noise processes.  

The state vector is reduced to have only the position and the velocity states as shown 

in the equation below: 

 

𝑋𝑟𝑒𝑑𝑢𝑐𝑒𝑑 =

[
 
 
 
 
 
𝑥

𝑦

𝑧

𝑢

𝑣

𝑤]
 
 
 
 
 

 

(60) 
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And the input is given as: 

 

𝑈 = [

𝑢𝑙𝑜𝑛

𝑢𝑙𝑎𝑡
𝑢𝑐𝑜𝑙

𝑢𝑝𝑒𝑑

]             

(61) 

where 𝑢𝑐𝑜𝑙 , 𝑢𝑝𝑒𝑑 are the commanding angles from the throttle and the tail servo 

motors, respectively. The dynamics matrix, 𝐴, is computed to be: 

 

𝐴𝑟𝑒𝑑 =
|

|

0 0 0 1.0000 −0.0008 −0.0016

0 0 0 0.0007 0.9948 −0.1018

0 0 0  0.0017 0.1018 0.9948

0 0 0  −0.0190  0.1250 0.0699

0 0 0 −0.1256 −0.0268 0.5550

0 0 0 −0.0687 −0.5378 −3.2826

|

|
 

(62) 

The input matrix 𝐵 is similarly calculated as: 

 

𝐵𝑟𝑒𝑑 =
|

|

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0.0374 0

0 0 1.5680 −17.3314

0 0 −294.6074 0

|

|
 

(63) 

The C matrix is a 6×6 unity diagonal matrix, and the D matrix is a 6×4 zero matrix. 

The Kalman filter is a linear state estimator that uses the linear dynamic model 

described (see equations (59-63)). The Kalman filter uses the system’s control inputs 

and the data from the measurements to estimate the helicopter’s states [66]. 

The first step in designing a state estimator is to discretize the continuous time 

helicopter dynamics. The discretization was performed at the system’s sampling time, 

which is 0.001 seconds.  

The measurement noise covariance matrix Rk is a diagonal matrix given as: 
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 𝑅𝑘 =

[
 
 
 
 
 
0.2236 0 0 0 0 0

0 0.2236 0 0 0 0
0 0 0.2236 0 0 0
0 0 0  𝑟44  0 0
0 0 0 0 𝑟55 0
0 0 0 0 0 𝑟66]

 
 
 
 
 

 (64) 

The process noise covariance matrix Qk is also a diagonal matrix, represented as: 

 𝑄𝑘 =

[
 
 
 
 
 
0.0022 0 0 0 0 0

0 0.0022 0 0 0 0
0 0 0.0022 0 0 0
0 0 0  𝑞44  0 0
0 0 0 0 𝑞55 0
0 0 0 0 0 𝑞66]

 
 
 
 
 

 (65) 

 Choosing the proper covariance matrices is a very difficult process, because it is a 

trial and error based process. The variances for both matrices were chosen meticulously 

to give the most accurate estimate. We know that the optical flow sensor is more 

accurate compared to the GPS/INS, therefore, the variances for the velocity states 

measured by the OF sensor are less than the position states measured by the GPS/INS. 

Four major stages comprise the Kalman estimator design. The first stage includes 

fetching the model parameters like the system matrices and the covariance matrices and 

the sampling time. While the second stage concerns assigning an initial values to the 

estimates and the covariance. The third stage is the prediction stage in which the priori 

state estimates and priori covariance estimates are computed. The last stage is to update 

the estimates.  

The implemented Kalman filter is illustrated in Figure 68. 
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Figure 68: Flowchart for Kalman filter design [66] 

6.3 Results 

To test the performance of the proposed sensor fusion method, a simulation 

environment was used. Simulated data were acquired based on a linear dynamic model 

for the Maxi Joker 3 helicopter platform. The position is measured by the GPS/INS unit 

and the velocity states are measured by the OF sensor. The Kalman filter uses the 

modeled measurements to obtain an estimate of the position and velocity states. 
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Two tests were made to visualize the estimator performance during the takeoff and 

landing. The control commands were sent in the body frame expression. The first test 

is the takeoff test in which we command the helicopter to start climbing until it reaches 

-3m in the Z-body frame with -1 m/s slope. In the second test, we test the estimator 

behavior during the landing. In the landing test, we command the helicopter to start 

descending until it reaches the ground with slope slower than the takeoff a slope which 

is about 0.3 m/s. The helicopter took almost 10 seconds to reach the ground which is 

reasonable and safe. 

6.3.1 Takeoff Test 

The position and the velocity states are estimated during the takeoff test in this 

section, and the states are estimated accurately with a small amount of error. The 

position and the velocity are controlled and estimated in the helicopter body frame (see 

Figure 18), and the Z-axis is assumed to be positive down. The mean error between the 

Kalman signal and the truth signal is computed for each state. 

 Position estimation results  

Figures 69-71 show the estimation performance for the position states measured by 

the GPS/INS unit. Although, the GPS/INS signal is noisy and has a lot of distortion, the 

Kalman estimator succeeds in estimating the position states perfectly. The 𝑋 position 

estimation is shown in the Figure 69 below, It can be seen below that the estimator 

rejects the undesired noise and estimate the 𝑋 position with small mean error about 

0.0133 m between the estimated signal and the truth signal.  
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Figure 69: X position estimation 

The estimation of the 𝑌 position is described in the Figure 70. As shown below, the 

undesired noise is reduced and the 𝑌 position is estimated with a small mean error 

around 0.0161 m.  

As we perform an auto takeoff test, the estimation of the 𝑍 position is very important 

too. As illustrated in Figure 71, we can comprehend that the estimator behaves well 

while the helicopter is taking off. The helicopter is commanded to climb to -3 m in the 

body Z-axis with a slope equals to -1 m/sec velocity in the body frame. After 10 

seconds, a PID controller is used to control the helicopter’s position. The 𝑍 position is 

estimated with a small mean of error about 0.0235 m.   
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Figure 70: Y position estimation 

Figure 71: Z position estimation 

The estimation of the translational velocities in the body frame is shown in the 

Figures 72-77 below. In this algorithm the velocities are measured by the optical flow 

sensor, as a result the estimates of the velocities are more accurate. 

 Velocity estimation    

Figures 72-77 show the estimation performance for the velocity states measured by 

the OF sensor. The OF measurements are more precise compared to the GPS/INS 

measurements. As a result of this, the performance of the estimator is better in 

estimating the velocity states than its performance in estimating the position states. 
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 The 𝑋 velocity estimation is shown in the Figures 72-73 below. It is clear that the 

estimator rejects the additive noise and estimates the 𝑋 velocity with a small error about 

0.0016 m/sec between the estimated signal and the truth signal. Figure 76 is a zoomed 

portion of the 𝑋 velocity estimation.  

The estimation of the y velocity is illustrated in Figures 74-75. The y velocity is 

estimated with a small mean error of about 0.0068 m/sec. Figure 75 shows the zoomed 

y velocity estimation. 

Figure 72: X velocity estimation 

Figure 73: X velocity estimation (zoomed) 

 

0 5 10 15 20 25 30 35 40 45 50
-0.3

-0.2

-0.1

0

0.1

0.2

Time (Sec)

X
 v

e
lo

c
it
y
 (

m
/s

)

 

 

PX4FLOW

Kalman

Truth

10 11 12 13 14 15 16 17 18 19 20
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Time (Sec)

X
 v

e
lo

c
it
y
 (

m
/s

)

 

 

PX4FLOW

Kalman

Truth



97 

 

Figure 74: Y velocity estimation 

The Z velocity is precisely estimated also, as shown in Figures 76-77. The Z 

velocity is about -1 m/Sec during takeoff and goes back to zero when the helicopter 

reaches the desired Z which is - 3m in our case. The Z velocity is estimated with small 

mean error of about 0.0112 m/sec. Figure 77 is a zoomed figure showing the z velocity 

estimation. 

Figure 75: Y velocity estimation (zoomed) 
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Figure 76: Z velocity estimation 

Figure 77: Z velocity estimation (zoomed) 

6.3.2 Landing test  

The position and velocity states are estimated accurately with a small amount of 

error. The mean error between the estimated signal and the truth signal is computed for 

each state during the landing. The 𝑋 position estimation is described in Figure 79. The 

𝑋 position is estimated with a small mean error of about 0.0133 m between the 

estimated signal and the truth signal.   
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Figure 78: X position estimation 

The estimation algorithm behaves well in estimating the 𝑌 position as shown in 

Figure 79. The 𝑌 position is estimated with a small mean error of about 0.0165 m 

between the estimated signal and the real signal.   

Figure 79: Y position estimation 

The 𝑍 position estimation is depicted in Figure 80. The 𝑍 position is estimated 

with a small mean error of about 0.0401 m between the estimated signal and the truth 

signal. 
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Figure 80: Z position estimation 

Figures 81-82 show the 𝑋 velocity estimation. It is obvious that the estimator rejects 

the additive noise and estimates the 𝑋 velocity with a small error of about 0.0016 m/sec 

between the estimated signal and the actual signal. Figure 82 is a zoomed portion of the 

velocity estimation.  

Figure 81: X velocity estimation 
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Figure 82: X velocity estimation (zoomed) 

The 𝑌 velocity estimation is shown in the Figures 83-84. It is clear that the estimator 

rejects the additive noise and estimates the 𝑌 velocity with a small error of about 0.0069 

m/sec between the estimated signal and the truth signal. Figure 84 is a zoomed portion 

of the 𝑌 velocity estimation.  

Figure 83: Y velocity estimation 
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Figure 84: Y velocity estimation (zoomed) 

The 𝑍 velocity estimation is shown in the Figures 85-86 below. It is clear that the 

estimator rejects the additive noise and estimates the 𝑍 velocity with a small error about 

0.0117 m/sec between the estimated signal and the truth signal.  Figure 86 is a zoomed 

portion of the 𝑍 velocity estimation.  

Figure 85: Z velocity estimation 

As shown in Figure 86, the 𝑍 velocity is about 0.3 m/Sec as commanded during the 

landing and goes back to zero when the helicopter reaches the ground. 
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Figure 86: Z velocity estimation (zoomed) 

6.4 Discussion 

A sensor fusion algorithm was designed and tested to perform an auto takeoff and 

landing in a small scale helicopter. As shown in section 6.3, the helicopter took off and 

landed with small positional errors. The designed sensor fusion algorithm proved that 

the OF sensor measurements can be fused with GPS/INS to obtain much more precise 

estimates of the position and velocity of an unmanned aerial helicopter.  

Tables 10-11 show the statistics of the designed estimation algorithm during the 

takeoff test. The position states are estimated precisely during the takeoff test. The mean 

error and the difference in the standard deviation are computed between the estimated 

and the actual data for the mentioned helicopter states. Obviously, the velocity states 

have a smaller mean errors compared to the mean errors of the position states. And, the 

most convincing interpretation of this is that the OF sensor is more precise than the 

GPS/INS. 
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Table 10: Position states estimates during takeoff 

Helicopter 

positon states 

Mean error 

(ME) (m) 

Difference in Standard Deviation 

(SDE)(m) 

𝒙 0.0133 0.0653 

𝒚 0.0161 0.1044 

𝒛 0.0235 0.0834 

𝒎𝒂𝒙𝒊𝒎𝒖𝒎 𝒅𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒄𝒆 𝒕𝒂𝒌𝒆 𝒐𝒇𝒇 = 𝟎. 𝟐𝟓𝟖𝟑 m 

Table 11: Velocity states estimates during takeoff 

Helicopter 

velocity state 

Mean error 

(ME) (m/Sec) 

Difference in Standard Deviation 

(SDE)(m/Sec) 

𝒖 0.0016 0.0224 

𝒗 0.0068 0.0279 

𝒘 0.0112 0.0346 

As shown in Table 10, the maximum difference between the estimator signal and 

the actual is about 25.83 cm, which means that the helicopter performs an auto take off  

with accurate position estimation using the OF sensor information.  

Tables 12-13 present the statistics of the designed estimation algorithm during the 

landing test. Clearly, the mean errors of the position states in both tests are similar 

except for the Z state. In the landing test the estimator performed better because of the 

helicopter landing is slower than its takeoff.  
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Table 12: Position states estimates during landing 

Helicopter 

positon states 

Mean error 

(ME) (m) 

Difference in Standard Deviation 

(SDE)(m) 

𝒙 0.0133    0.0750 

𝒚 0.0165 0.1380 

𝒛 0.0401 0.1994 

𝒎𝒂𝒙𝒊𝒎𝒖𝒎 𝒅𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒄𝒆𝒍𝒂𝒏𝒅𝒊𝒏𝒈 = 𝟎. 𝟐𝟕𝟐𝟑 𝒎 

As shown in Table 12, the maximum difference between the estimator signal and 

the actual is about 13 cm, which means that the helicopter performs an auto landing 

with position stabilization using the OF sensor information.  

Table 13 illustrates the mean errors of the velocity states while the helicopter 

performs the landing. The mean errors of the velocity in both tests are similar except 

for the Z velocity state.  

Table 13: Velocity states estimation during landing 

Helicopter 

velocity state 

Mean error 

(ME) (m/Sec) 

Difference in Standard Deviation 

(SDE)(m/Sec) 

𝒖 0.0016   0.0457 

𝒗 0.0069 0.0446 

𝒘 0.0117 0.2939 

Based on the previous statistics, the sensor fusion algorithm has obtained accurate 

estimates during the auto takeoff and landing tests. The estimator has estimated the 

position and the velocity components in the Z-axis during the takeoff test better than 

while the helicopter is approaching the ground. This could be due to the fact that the 

helicopter’s ascending velocity is faster than its descending velocity, which prevents 
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the measurement noise from being accumulated while takeoff. And because of the slow 

rate of descending, the noise was accumulating more and as a result the measurements 

are noisier in the landing test.  

It is known that GPS/INS based landings are not very accurate, and the internal 

estimator has a few meters position inaccuracies (Radius of Uncertainty ROU). So by 

applying the proposed estimation algorithm, we can conclude that the ROU error would 

be ten times less. Figure 87 illustrates the ROU reduction. The GPS ROU is about few 

meters while the sensor fusion ROU is a few centimeters.   

GPS/INS/Optical Flow 

fusion ROU

Figure 87: Position error reduction 
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Chapter 7: Conclusion and Future Work 

In this research, we have addressed the problem of auto takeoff and landing of a 

small scale flybarless helicopter using optical flow sensor information. Two major 

challenging problems have been solved. The first problem is that the optical flow (OF) 

sensor model. And the second problem is how to apply the sensor fusion algorithm 

between the optical flow sensor and the GPS/INS sensor to perform an autonomous 

takeoff and landing. The first problem was solved by identifying a robust set of OF 

models, and validating the identified models at different heights. The second problem 

was solved by designing a sensor fusion algorithm between the OF sensor and the 

GPS/INS unit. The optical flow sensor was modelled with 87% accuracy of fitting 

between the identified model and the real OF measurements. The introduced models 

are tested at different altitudes to ensure their correctness to the altitude variations. The 

models confirm their usefulness and robustness to different speed conditions. 

A sensor fusion algorithm between the GPS/INS sensor and the optical flow sensor 

was designed to estimate the velocity and the position of the Maxi Joker 3 helicopter. 

A linear Kalman estimator was used to obtain accurate states estimates. The algorithm 

was verified by performing a couple of tests. The first test was to ensure the estimator 

accuracy while the helicopter is taking off and the second test is while landing. The 

presented results have proven the importance of using the OF sensor and demonstrated 

the effectiveness of the proposed fusion algorithm. The helicopter has performed a 

precise take off with maximum error in position not exceeding 0.26𝑚 and 0.27𝑚 

maximum position error for the landing.  

According to the simulation results, the results are promising and the fusion worth 

implementing on a hardware. It would be interesting to apply the proposed algorithm 

using the real helicopter platform and conduct a real auto takeoff and landing on a 

predefined target. Our future work would be in applying different fusion algorithms 

such as an intelligent fusion algorithm and performing a real auto takeoff and landing 

flight on a distinguished pattern from various altitudes.    
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