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Abstract 

This thesis aims to present an integrated approach to mechatronic systems 

design using heuristic optimization techniques. This integrated approach will consider 

the kinematics of the system, the dynamics, and the control simultaneously. The 

design methodology will be applied on a four-bar mechanism driven by a DC motor. 

First, we will present the classical design approach where we optimize the geometry 

of the mechanism to generate a given path. Then, this geometry is used to solve the 

dynamic problem where the characteristics of the motor and the mechanism inertia are 

considered. Afterwards, based on the designed system, the control system will be 

optimized. This sequential approach of design is not optimal due to the fact that the 

geometry is fixed when designing the dynamics and the plant is fixed when designing 

the controller. This led us to propose a holistic design approach where the kinematics, 

dynamics, motor selection, and control are considered simultaneously. The results 

from the holistic design approach are compared with the sequential approach to show 

the effectiveness of the proposed methodology.   
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Chapter 1: Introduction 

 Developing mechatronic systems requires knowledge in mechanical, 

electronic, control, and software engineering domains. These domains are interrelated 

and design decisions in one domain often affect others. Conventional sequential 

design methodologies do not consider the interactions and interrelations among these 

domains and a holistic approach of mechatronic systems design is demanded. 

However, challenges such as multidisciplinary modeling, simultaneous consideration 

of designs from different disciplines, and persistence of a sequential design process 

stand as a liability. Despite many research contributions aimed at providing a 

theoretical framework for the design, this goal has not been achieved [1]. 

1.1 Motivation 

Mechatronic systems design is focused on recently as the research trend is 

moving towards automation [1, 2, 3]. In traditional design of mechatronic systems, the 

mechanical design is frozen before considering motor selection and the control 

design. This design approach does not consider the interaction between the 

mechanical, electronic, and control behaviors. As a result, the overall system design 

and performance is affected. This raises a need for a concurrent design approach that 

considers all different aspects of system design simultaneously. 

1.2 Problem Statement 

Using heuristic optimization techniques in design is popular in the literature. 

Several researchers optimized the kinematics of the system, such as the geometry in 

path synthesis [4, 5, 6]. Some researchers optimized the mechanical properties, such 

as the geometry and the inertia while taking into account the motor parameters [7, 8]. 

Other researchers looked into using heuristic techniques to get the optimal tuning of 

control gains [9]. But these cited works fell short from considering the mechanical, 

electronic, and the control problems, simultaneously, in design. Recently, some 

preliminary works presented methodologies to optimize all the aspects of a closed-

loop controlled system. This type of problem is of a multidisciplinary nature, with 

parameters and criteria of different physical natures. To be able to solve this holistic 

design problem, a multi-objective optimization technique needs to be formulated 

dealing with the multi-physics nature of mechatronic systems, where the mechanical 

system, the actuator, and control are to be considered simultaneously.   
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1.3 Contributions 

This work proposes a holistic design methodology for mechatronic systems 

that considers the mechanical system design, actuator selection, and control system 

design, simultaneously. This design methodology will alter the plant and the 

controller designs. 

1.4 Thesis Outline 

This thesis is organized as follows: a detailed literature review about design 

using heuristic techniques will be presented in Chapter 2. Chapter 3 will focus on 

mechanism synthesis, coupled dynamics and motor selection, and control system 

optimization. In Chapter 4, the design problem is formulated and a comparison 

between the proposed design approach and the conventional sequential design is made 

and the multi-objective optimization problem is formulated. Chapter 5 concludes the 

work outcomes and proposes future work. 
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Chapter 2: Related Work 

2.1 Literature Review 

Different heuristic optimization techniques can be used to solve problems of a 

complex nature. However, genetic algorithms have strength in design due to the fact 

that they are flexible, result in robust and stable algorithms, simple, and can be used 

with continuous and discrete variables. They can also handle the complexity of large 

problems by their ability to work with many variables, simultaneously, in a search 

domain of a complicated structure [10]. They, as well, have a powerful search 

capability [9]. However, they have to be designed carefully to ensure diversity. 

A four-bar mechanism driven by a DC motor will be considered as the design 

case in this thesis. Mechanisms form the skeleton of machines and are widely used in 

industry. Four-bar mechanisms are used in a variety of applications. In the automotive 

industry, watt’s linkage is used in car suspensions and piston cylinder slider crank 

four-bar mechanisms are used in car engines. In the oil and gas industry, a pump jack 

four-bar mechanism is used to pump up oil when the underground pressure is not 

enough for the oil to reach the surface. In aerospace, four-bar mechanisms are used in 

wing leading edge movement to increase wing camber at low speeds, flight control 

systems of fighter jets by utilizing a series of four-bar mechanisms, tail elevator 

control by using two four-bar mechanisms connected by a cable, and propeller blade 

pitch control of a helicopter [11]. 

Some researchers concentrated on the path synthesis of mechanisms and used 

different optimization techniques to solve for the geometry that will yield the desired 

path [4, 5, 10]. Others considered the coupled four-bar mechanism and aimed to 

optimize the link dimensions that minimize the path error and at the same time 

optimize the dynamic behavior, i.e., minimum torque and torque fluctuations, by 

minimizing the current and the current variation [8]. Some authors [7] minimized 

motor torque as well as the velocity fluctuation of the system by considering the 

inertia of the system and different motors to run the system adding a discrete variable 

into the optimization problem. 

Others [9] concentrated on control such as using differential evolution 

optimization to tune PID gains for given specifications. Another paper [12] used an 
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adaptive micro-genetic algorithm to tune the controller gains relying on the frequency 

response gain phase margin method. 

2.2 Genetic Algorithms 

The genetic algorithm (GA) is an optimization and search technique based on the 

principles of genetics and natural selection. A GA allows a population composed of 

many individuals to evolve under specified selection rules to a state that maximizes 

the “fitness” (i.e., minimizes the cost function) [13]. 

 The following are some of the advantages of GAs:  

• Optimization with continuous or discrete variables 

• No need for derivative information 

• Simultaneous search from a wide sampling of the cost surface 

• Possibility of dealing with a large number of variables 

• Well-suited for parallel computers 

• Optimization of extremely complex cost surfaces (they can jump out of a local 

minimum) 

• The results are a list of optimum solutions, not just a single solution 

• Optimization with numerically generated data, experimental data, or analytical 

functions 

The Genetic algorithm starts with a population of chromosomes with each 

chromosome having a sequence of data. In our design, a chromosome is a design 

vector and the data in the chromosome represents the design variables. Some of these 

chromosomes are subjected to mutation. The fraction of mutation is a choice left to 

the designer. Then crossover between chromosomes takes place, just like in nature. 

The front part of one chromosome and the back part of the other fuse together and 

new chromosomes are generated. Some chromosomes may slip without crossover. 

The fraction of crossover is a choice left to the designer. Now that a population of 

modified chromosomes through mutation and crossover is obtained, the next step is 

the genotype to phenotype transition; that is, the chromosome determines whether the 

individual is a person, a computer program, or so on. The chromosome resembles the 

genotype and the chromosome data is interpreted to a phenotype. This interpretation 
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generates individuals that have different fitness values because they have varying 

chromosomal composition. The criterion for fitness is selected by the designer based 

on the application. The fitness value is translated to a probability of survival to the 

next generation. The choice of how the individual fitness is evaluated, and how the 

fitness yields a probability is all left to the designer. The probabilities are then used 

for selection and the phenotypes produce genotypes (a new set of chromosomes). That 

completes the loop and a new generation starts [14]. 

A flow chart of the genetic algorithm (GA) and the multi-objective genetic 

algorithm (MOGA) is illustrated in Figure 1. In the case of the multi-objective GA, 

the outer loop represents one evolutionary period and the inner loop represents one 

GA generation. In a mono-objective GA, the dashed boxes and loop are not there [8]. 

The first step is the generation of the initial population (  ). For each individual in the 

population, the objective function is evaluated. Then by selection, crossover, and 

mutation, the population is modified and the individuals are evaluated based on the 

objective function. The population for the new generation denoted with     is obtained 

and the loop continues till the maximum number of generations (N) is reached. For 

the multi-objective GA, the non-dominated solutions obtained in the evolutionary 

period are added to the elitist Paretian population (    ) and then filtered to obtain a 

non-dominated population. These non-dominated individuals provide solutions that 

are not dominated in at least one of the objective functions. 
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Figure 1: GA and MOGA Flow Chart [8] 
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Chapter 3: System Analysis 

3.1 Mechanism Synthesis 

3.1.1 Introduction. 

In most engineering design practices, a combination of synthesis and analysis 

is involved. However, a machine has to be synthesized into existence before analysis 

can be done [15]. Andre Marie Ampere defined kinematics as “the study of the 

motion of mechanisms and methods of creating them.” The second part of Ampere’s 

definition may be paraphrased in two ways: 

1) The study of methods of creating a given motion by means of mechanisms 

2) The study of methods of creating mechanisms having a given motion 

In either version, the motion is given and the mechanism is to be found. Thus, 

kinematic synthesis deals with the systematic design of mechanisms for a given 

performance [16]. 

Synthesis can be classified into two categories: type and dimensional 

synthesis. Type synthesis studies what type of mechanism is suitable for the required 

performance. Dimensional synthesis is determining the significant dimensions and the 

starting position of a mechanism for a desired motion and prescribed performance 

[16]. 

The path generation of a mechanism can be solved for analytically, 

numerically, and graphically [15]. However, formulating dimensional synthesis as an 

optimization problem increases the number of precision points that can be solved for 

and reduces the tracking error [17]. 

3.1.2 Mechanism. 

A mechanism is an assembly of links which has at least one degree of 

freedom, in which the links will have relative motions. 

3.1.2.1 A four-bar mechanism. 

One of the most common and most useful of all mechanisms is the four-bar 

linkage [18]. A four-bar linkage is shown in Figure 2. It is a pin jointed mechanism 

that generates a one degree of freedom controlled motion. It is composed of four 
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links: the ground link, the crank, the coupler, and the follower. The ground link is a 

fixed link, the crank is the link that drives the mechanism as the actuator is connected 

to its pin joint, and the coupler is usually the link of interest as it generates complex 

motion. A four-bar mechanism is shown below where    represents the ground link, 

   represents the crank,    represents the coupler, and    represents the follower pin-

to-pin lengths. 

 

Figure 2: Four-Bar Mechanism 

3.1.2.2 Grashof condition. 

The Grashof condition is a relationship that predicts the rotation behavior of a 

four-bar linkage’s inversions based on the link lengths [15]. If the summation of the 

shortest and the longest links is less than or equal to the other two links, then the 

linkage is Grashof and at least one link is capable of achieving a complete revolution. 

The inequality is shown in equation (1). 

          (1) 

where   is the shortest length,   is the longest length, and   and   are the other two 

lengths of the mechanism. 

  If the linkage fails to satisfy the inequality, then the linkage is non-Grashof 

and no link can generate a full revolution. The motions yielded by a four-bar linkage 

depend on the Grashof condition and the inversion chosen. Given that the linkage is 

Grashof, the same linkage can generate three different motions depending on what 

link is made the ground link. If either of the links adjacent to the shortest link is made 
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the ground, the shortest link will fully rotate and the follower will oscillate. This 

mechanism is referred to as a crank-rocker. If the shortest link is made the ground, all 

links will fully rotate; this mechanism is referred to as a double-crank. If the link 

opposite to the shortest link is made the ground, only the coupler will fully rotate. 

This mechanism is called a double-rocker. 

3.1.2.3 Position analysis. 

One approach to position analysis is to create a vector loop by using position 

vectors to represent the links [19]. These vectors form a loop that closes in on itself 

and equates to zero.  Given certain link lengths and input angle   , it is desired to 

solve for the unknown angles   and   . Figure 3 shows a four-bar linkage in which 

the links are represented as position vectors. 

 

 

Figure 3: Vector Loop Closure 

Starting with the vector loop closure equation: 

  ⃗⃗     ⃗⃗    ⃗⃗     ⃗⃗   (2) 

Then, by substituting the complex notation for each position vector: 

    
       

       
       

    (3) 

Substituting the Euler equivalents for the exponential terms: 

          )          ))           )          ))

          )          ))           )          )) 
(4) 
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By separating the resulting vector equation into two scalar equations, the two 

unknowns   and    can be solved for: 

         )          )          )          ) (5) 

         )          )          )          ) (6) 

Squaring both sides of the equations, grouping   terms and using the identity 

      )        ) =1,   gets eliminated and the equation can be solved for   : 

   
    

     
    

              )      )        )       ))

               )              )      )

       )       )) 

(7) 

Taking       ) and       ) as common factors to obtain an explicit form of    : 

   
     

    
     

                  )  

             )             ) )      )  

             )             ) )       )    

(8) 

The equation in (8) can be rewritten as in (9). 

        )          )      (9) 

where, 

               )             ) (10) 

              )             ) (11) 

     
     

    
     

                  ) (12) 

Substituting the half angle identities for       ) and      ) , shown in (13, 14), to 

solve for   : 

 

      )   
      (

  

 )

      (
  

 )
 (13) 

 

      )   
     (

  

 )

      (
  

 )
 (14) 

After simplifying the equation becomes: 

 
    )    (

  

 
)        (

  

 
)      )    (15) 

Solving the quadratic equation (15) yields: 
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       (
   √        

   
 ) (16) 

There are two solutions for   , obtained from   before the radical for the open and 

crossed linkage, respectively. 

Substituting    back in equation (5) and simplifying   becomes: 

 
        (

        )          )          )

        )          )          )
)  (17) 

3.1.3 Coupler point. 

A coupler is the most interesting link in a linkage due to its complex motion. 

In dimensional synthesis of a mechanism a number of precision points (desired 

points) are to be traced by the coupler point.  In four-bar linkage synthesis the 

dimensions of the links (  ,   ,   ,   ) and the coupler point location (   ,    ) are to 

be designed such that the generated path by this mechanism traces the precision 

points. The smaller the error between the precision points and the designed 

mechanism generated points, the better the design. The generated points or evaluated 

points are derived in this section. 

 

Figure 4: Coupler Point Mapping 

Considering the relative position of the linkage to a global reference frame 

gives more flexibility to the generated coupler curve and reduces the tracing error as 
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the orientation of the generated points is varied to match with the precision points. 

The position of the coupler point in the global reference frame is shown in Figure 4 

and the vector equation is shown in (18). 

  ⃗⃗    ⃗⃗   ⃗⃗    ⃗      ⃗    (18) 

The vector equation can be separated into the following two scalar equations 

(19, 20) that represent the coupler point coordinates in the global reference frame: 

                )           )            ) (19) 

                )           )            ) (20) 

3.1.4 Objective function. 

The use of heuristic techniques in path synthesis increases the number of 

precision points that can be solved for and reduces the tracking error [17]. The design 

of the geometry of the mechanism to track a desired path accurately is the goal of this 

problem. The objective function is formulated here as the sum of the squared errors 

between each desired and obtained point. 

The desired location of the points is written as 

 
  

 = [
   

 

   
 ] (21) 

And the generated coupler points are shown in the previous section. 

 
  

 = [
   

 

   
 ] (22) 

The objective function to be minimized is given by (23). 

 

       (∑(   
     

 )
 
  (   

     
 )

 
 

   

)

   

 (23) 

3.1.4.1 Design vector. 

The design vector for the genetic algorithm is given by: 

                                             (24) 
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The design vector is made of 10 variables: the orientation of the ground link in 

the global frame, the link lengths, the position of the coupler point, and the crank 

angle of the first point. 

3.1.4.2 Constraints. 

The optimization is subject to some constraints that have to be satisfied by the 

individuals in each generation. The two constraints for the synthesis problem are 

presented in equations (25) and (26): 

The Grashoff condition: 

     )                 (25) 

The linkage inversion considered here is the crank-rocker Grashof mechanism 

in which the ground link is adjacent to the shortest link. 

Each design variable is bound in a range: 

     )                       (26) 

The individuals generated in each population have to satisfy these two constraints. 

3.1.5 Example problem. 

The objective is to synthesize a mechanism that will trace 18 precision points 

with prescribed timing. This problem is solved as a case study in [5]. 

The desired points and prescribed input crank angles are shown below. 

  
    (0.5,1.1)   ; (0.4,1.1); (0.3,1.1) ; (0.2,1.0) ; (0.1,0.9) ; (0.005,0.75) ; (0.02,0.6) ; 

(0.0,0.5) ; (0.0,0.4) ;  (0.03,0.3) ; (0.1,0.25) ; (0.15,0.2) ; (0.2,0.3) ; (0.3,0.4) ;(0.4,0.5) 

; (0.5,0.7) ; (0.6,0.9) ; (0.6,1.0)   

  
      

    
         {i = 1, 2, …, 17} 

3.1.5.1 Genetic algorithm.  

To start with, the genetic algorithm toolbox in Matlab is used for 

implementation. Two constraints are set that have to be satisfied by the individuals in 

each generation. Bounded ranges are chosen for the design variables. These bounds 

are shown below
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The individuals also have to satisfy the Grashof condition. The individuals 

were arranged to yield a crank-rocker mechanism.  The ground link is made the 

longest link and the crank the shortest. 

The fitness scaling function is the function used to convert the raw fitness 

scores to values suitable for the selection process. A good fitness scaling function 

considers both fitness and diversity. The scaling function used is based on the rank of 

the individual in the population. An individual with rank   has a scaled score of   √   

[20]. Rank scaling gives high expectations for highly ranked individuals and low 

expectations for individuals with low fitness, yet individuals with low fitness have a 

probability of being selected to the next generation, hence increasing the diversity of 

the population. 

The selection function specifies the choice of parents for the next generation. 

The selection function can be stochastic uniform based on stochastic universal 

sampling [21], in which the scaled scores of the individuals in the current population 

make up a line with each individual having a proportional section of the line. The 

algorithm allocates a parent from the section it lands on randomly. The remainder 

function chooses parts based on the integer part of the individuals scaled values [20]. 

There is also roulette selection, in which the parents are selected by simulating a 

roulette wheel. The individuals’ expectation is translated into an area on the roulette 

wheel. The tournament selection function creates sized tournaments between random 

individuals and the best in each tournament qualifies to be a parent for the next 

generation. 

A Monte Carlo study [22] was done to check which of these selection 

functions is more suitable to the problem. The results of GA using different selection 

functions computed over 10 iterations are shown in Figure 5, where functions 1, 2, 3, 

and 4 are the stochastic uniform, remainder, roulette, and tournament, respectively. 
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Figure 5: Choosing a GA Selection Function - Synthesis 

In Figure 5, the top portion represents a color map of the minimized objective 

function values over the 10 iterations; the darker the color the smaller the value. The 

lower portion shows the mean and standard deviations of the values obtained over the 

10 iterations.  It can be noticed that the roulette and the stochastic uniform functions 

yield the lowest mean and standard deviation and hence are more suitable to be used 

as a selection function than the other methods. 

After selecting the parents for the next generation, we must select the portion 

of the offspring due to crossover and the portion due to mutation and the used 

functions. The mutation function used is adaptive feasible; the function randomly 

generates directions adaptive with the last generation and with a step size that satisfies 

the bounds and constraints. The crossover function choice is going to be from the 

intermediate, heuristic, and arithmetic crossover functions. The intermediate function 

produces children using equation (27). 

                                          ) (27) 

It produces children that are the weighted average of their parents; the weights 

can be specified by the ratio in (27). If the ratio is less than one, then the child is in 

the hypercube defined by the parents; otherwise the children might lie outside the 

hypercube [20]. A random number (rand) from zero to one is multiplied by the 

difference between the parents. 
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The heuristic function produces children that lie on a line containing the two 

parents a small distance away from the fitter parent. If parent1 is the parent with better 

fitness, then the child is produced as in equation (28), 

                                     ) (28) 

where the ratio specifies how far the child is from the better parent. The 

arithmetic function produces a child with genes that are the arithmetic mean of the 

parents’ genes. 

A Monte Carlo study was done to select a crossover function suitable for this 

problem shown in Figure 6, where functions 1, 2, and 3 are the intermediate, heuristic, 

and arithmetic, respectively. 

 

Figure 6: Choosing a GA Crossover Function - Synthesis 

A GA is simulated for 10 iterations using each of the crossover functions, and 

from the obtained objective function values, the heuristic crossover function yields the 

lowest mean and standard deviation. Now that the heuristic crossover function is 

selected, the heuristic crossover ratio and the crossover fraction of the generated 

offspring are chosen in the same manner.  

By running some Monte Carlo studies, the options used to run the GA are selected 

and shown in Table 1. 
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Table 1: Synthesis GA Options 

Option Choice 

Population size 100 

Generations 200 

Elite count 4 

Crossover fraction 0.52 

Scaling function Rank 

Selection function Stochastic uniform 

Mutation function Adaptive feasible 

Crossover function Heuristic 

Running the GA, the best fit individual after 200 generations and the average of the 

generations are shown in Figure 7 . 

 

Figure 7: Synthesis GA Analysis 

3.1.5.2 Results. 

The resulting design vector and the objective function value representing the 

square root of the sum of square errors are shown in Table 2. 

Table 2: Four-Bar Mechanism Synthesis Using GA 

Mechanism Design Vector (X) 

    
  ) 

    
  ) 

   
    ) 

   
  ) 

    
  ) 

   
  ) 

   
  ) 

    
  ) 

    
  ) 

     
  ) 

error 

0.235 0.2735 0.2061 0.9196 0.4322 0.7565 0.617 0.3217 0.2906 1.1533 0.103 
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Computing position analysis and coupler point path generation, Figure 8 

shows the desired path and the designed mechanism-generated path. 

 

Figure 8: GA Four-Bar Simulation 

Since the GA gets a solution near the global minimum, a hybrid function can 

be considered in which a local minimization function, fmincon, runs after the GA 

terminates to reach the closest minima. Computing the hybrid function, the error value 

reduces as shown in Table 3 along with the design vector. 

Table 3: Four-Bar Mechanism Synthesis Using Hybrid GA 

Mechanism Design Vector (X) 

    
  ) 

    
  ) 

   
    ) 

   
  ) 

    
  ) 

   
  ) 

   
  ) 

    
  ) 

    
  ) 

     
  ) 

error 

0.2553 0.1868 0.3078 1.0 0.4261 0.8807 0.5764 0.3639 0.3621 1.1708 0.0998 

The solution obtained in Figure 9 is compared with the solutions presented in 

the case study in [5] for the same desired path and the results are presented in Figure 

10. 
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Figure 9: Hybrid GA Four-Bar Simulation 

Figure 10 shows the generated path of the synthesized geometric parameters 

obtained in different articles along with the desired path. It can be noticed in Table 4 

that the mean error obtained is smaller than the error obtained in the other articles. 

 

Figure 10: Coupler Curves Comparison 
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The sum of the square errors is shown in Table 4. 

Table 4: Fitness Value Comparison 

 
Synthesized results 

Solution Lin Cabrera Exact gradiant 

      1.00      1.08      [5] 3.48     [23] 1.09     [24] 

3.2 Dynamics 

3.2.1 Introduction. 

In machine design, only taking the geometry and the kinematics into 

consideration is oversimplifying the problem. After studying the geometry and motion 

of a machine comes the study of the forces required to produce the motion or the 

effect of the applied forces on motion [18].  The dynamics problem is classified into 

subclasses based on what is known and what is unknown. The forward dynamics 

subclass solves the problem in which all loads exerted on the system are known and 

the motion that would result from the application of those forces and torques is to be 

determined. The inverse dynamics subclass solves the problem in which the imposed 

accelerations, velocities, and displacements are known and the forces and the torques 

required to provide the desired motions are solved for [15]. 

Dynamic systems can be simplified into models of point masses. However, for 

a rigid body model to be equivalent to the original body, the mass, the center of 

gravity location, and the mass moment of inertia of the model must be equal that of 

the original body [15]. 

3.2.2 Rigid body model. 

The shape and the properties of the links are considered in this section. The 

links are octagonal in shape and are considered to be made of a homogeneous 

material. The geometric parameters of the links affect the dynamic behavior of the 

links tremendously. These parameters modify in a direct way the mass of the link, the 

center of mass location, and the inertia, respectively. The reason behind choosing an 

octagonal shape for the link is that by modifying the octagon dimensions, the center 

of mass angle can move in the interval from [0,±π], hence providing more diversity to 

the search domain making it richer in solutions  than the rectangular shape of links in 

which the center of mass angle can only be 0 or ±π [25]. The relationship between the 
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dimensions of the octagonal link, specified by                              ,   and the 

mass, the center of mass location, and the inertia are derived in this section [26].  

The geometric parameters of link   are shown in Figure 11. The following is to 

be considered in the derivation [26]. 

o The coordinate origin is placed at the C hole as shown above 

o The links can move in the x-y plane only 

o There is a shaft in the B hole of the crank and follower links (connection to the 

coupler). A cylindrical support is placed in the C hole of the crank and 

follower links (connection to ground) 

o Links and the cylindrical supports are made of aluminum                 

and shafts are made of steel                 

o The radius of the B hole is                , the radius of the C hole is 

     
        , the radius of the cylindrical supports is            

     , and the length of the cylindrical support is            

o Links are divided into simple geometries, A, B, C, D, E, F, G, H, and I, to 

compute  the inertia [27] 

o The mass of the link is assumed to be concentrated at the center of mass 

location of the link 

 

Figure 11: Link Schematic 

The mass, the center of mass location, and the inertia of the links are obtained 

in terms of the geometric parameters in the following subsections. 
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3.2.2.1 Mass. 

The masses of the links are composed of the masses of the divided portions of 

the link,   
, and the masses of the supports,         

      
. 

        
         

       
  (29) 

        
 (30) 

        
         

       
  (31) 

The sum of the masses of the simplified portions of a link is shown in equation (32). 

    
     

    
    

    
    

    
    

    
    

 (32) 

The masses of the portions are shown in equations (33-41). 

    
               )       ) (33) 
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            ) (41) 

The masses of the shafts and cylindrical supports are shown in equations (42-44). 

         
        

        )  (42) 

         
        

        ) (43) 

         
           

     
 )      (44) 

3.2.2.2 Center of mass. 

The center of mass location for the     link is determined by the center of mass 

length and angle shown in equations (45, 46). The x-y coordinates of the mass center 

of the link portions and supports make up the total mass center coordinates     
     

. 
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   √    

      
   (45) 

          
    

    

) (46) 

The center of mass coordinates of a link are the sum of the moments of the 

simplified portions of a link and the moment of the support around the x-y frame over 

the mass of the link as shown in equations (47-52) for the crank, coupler, and 

follower. 
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where 

    

  
   

   
    

   
    

   
    

   
    

   
    

   
    

   
    

   
    

   

  

 
(53) 

    

  
   

   
    

   
    

   
    

   
    

   
    

   
    

   
    

   
    

   

  

 
(54) 

The center of mass coordinates of the simplified portions are formulated in 

equations (55-63). 
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The center of mass coordinates of the shafts are as follows: 

         
    ,          

   (64) 

         
    ,          

   (65) 

3.2.2.3 Inertia. 

The mass moment of inertia of a body is a property that measures the body’s 

resistance to angular acceleration [27]. The moment of inertia value is different 

depending on the axis about which it is computed. However, the axis generally chosen 

for analysis passes through the body’s center of mass. Therefore, the parallel axis 

theorem is used [27]. The inertias of the links are shown in equations (66-68). 

        
         

       
  (66) 

        
 (67) 

        
         

       
  (68) 

The sum of the inertias of the simplified portions of a link is as follows: 

    
     

    
    

    
    

    
    

    
     (69) 

Equation (70) represents the change induced by the parallel axis.  

 
      √        

)          
) )  (70) 

where the   represents the portion of the link or shaft being considered. 

The inertias of the simplified portions are formulated in equations (71-79). 
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The inertias of the shafts and cylindrical supports are as follows: 
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3.2.3 Coupled system modelling. 

The dynamic model of the coupled four-bar mechanism is derived in detail in 

[7, 9]. The four-bar mechanism has one degree of freedom, which is the rotation of 

the crank. The actuator in this case is a DC motor. The schematic representation of the 

four-bar mechanism is shown in Figure 12. 

 

Figure 12: Four-Bar Mechanism 
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The kinematics of the mechanism is required for the dynamics analysis. The 

angular velocities of the links and the linear velocities of the centers of masses of the 

different moving links are given by equations (83-85). 

  ̇      ̇  (83) 

         ̇  (84) 

         ̇  (85) 

where  

                  ) (86) 
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                    ) (88) 

                ) (89) 
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            )
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Defining the Lagrangian function, 

        (95) 

where 
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The Euler-Lagrange formulation is given by equation (98). 
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  ̇ 

)   
  

   
 (98) 

The partial and total derivatives of the Euler- Lagrange equation are equated to yield 

equation (99). 
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In order to model the full dynamics of the four-bar mechanism, the dynamics 

of the actuator must be included. The DC motor schematic is shown in Figure 13. 

 

Figure 13: Schematic Diagram of a DC Motor 



40 

 

The electrical and mechanical equations of the DC motor are presented by 

equations (113-114): 

 
 

    )

  
     )        )     ̇  (113) 

      ̇           ̈  (114) 

The mechanical transmission is given by the ratio in equation (115): 

   

  
 

 ̇ 

 ̇ 

 
  
  

  
  

  
    (115) 

Substituting Ta from (114) to (115) the output torque to the mechanical system 

is given by equation (116). 

               ̇     ̈ ) (116) 

where J is the inertia of the motor and    is the constant load, due, for 

instance, to brush friction or gear friction. 

Using the transmission angle relation in (115) and assuming that     , 

equations (113, 116) can be formulated in terms of   as shown in (117, 118). 

          )       ̇       ̈  (117) 

 
 

    )

  
     )        )      ̇  (118) 

Hence, the coupled dynamics of the DC motor with the four-bar mechanism is 

given by combining the electrical and mechanical equations of the DC motor (117, 

118) with mechanism dynamics (99) by equating the torque output  from the motor to 

the torque required by the mechanism as in (119). 

 
    ) ̈   
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 ̇ 

   
  

   
        )       ̇       ̈  (119) 

The state variable vector is composed of the crank angle, the crank speed, and 

the motor current. The coupled dynamics in a state space representation of the DC 

motor with the four-bar mechanism is given by (121), where x is the state variable 

vector and u(t) is the input voltage. 

  ̇         )  ) (120) 
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3.2.4 Dynamics validation. 

Before moving to the optimization problem, the mechanism dynamics and the 

coupled system dynamics have to be validated.  The mechanism and motor 

parameters used for validation are taken from [7] and are shown in Table 5 and Table 

6. 

Table 5: Validation Mechanism Parameters [7] 

Mechanism parameters 

Link Length 
(m) 

Center of mass location Rectangular links 

   0.56 r (m) angle depth (m) height (m) 

   0.1    = 0.05   = 0 0.01 0.04 

   0.61    = 0.3    = 0 
  

   0.41    = 0.2    = 0 

 

Table 6: Validation Motor Parameters [7] 

Motor parameters 

R (Ω) L (H) km(Nm/A) kg (Vs) J (kg   ) B (Nms) 

0.4 0.05 0.678 0.678 0.056 0.226 
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3.2.4.1 Mechanism dynamics. 

Using the Lagrange formulation the mechanism dynamics are been derived in 

Section 3.2.3 . The mechanism torque, without adding a spring or a damper to the 

system, is shown in (127). 

 
          ) ̈   

 

 
 
     )

   
 ̇ 

   
  

   
  (127) 

The mechanism is simulated in cross configuration, as in Figure 14, running at 

a constant crank speed of 30 rad/s. The crank input torque obtained from the Lagrange 

formulation is compared with the results obtained from the Lagrange multipliers 

formulation [28] and Sim-mechanics shown in Figure 15. 

 

Figure 14: Mechanism Cross Configuration 

 

Figure 15: Mechanism Dynamics Validation 
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3.2.4.2 Coupled dynamics. 

After validating the mechanism dynamics, the coupled dynamics of the 

mechanism-motor system need to be validated. The state space representation of the 

system was derived in Section 3.2.3 . Having the states as the crank angular position, 

speed, and current, this system of three first-order equations has been solved using the 

Runge-Kutta fourth-order method. 

  ̇         )  ) (128) 

The mechanism is simulated in an open configuration, as in Figure 16, running 

the system at an input voltage of 30 V. The crank input torque and angular speed 

obtained from solving the ODEs is compared with the results obtained from Simscape 

at steady state, shown in Figure 17. 

 

Figure 16: Mechanism Open Configuration 

 

Figure 17: Coupled Dynamics Validation 
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3.2.5 Motors. 

Selecting the best actuator to run a system is part of the design of any 

mechatronic system. A total of 13 motors are considered in the design problem out of 

which the most suited motor is selected to drive the system. The motors are selected 

based on their average and maximum torque characteristics as well as their maximum 

speed. This provides the optimization motors with a torque range to derive different 

loads obtained from different designs. The motors are considered to be part of the 

dynamics optimization problem as well as the motors’ capability of driving the load. 

The motors in Table 7 are brushed DC motors from Pittman [29]. 

Table 7: Characteristics of the Candidate DC Motors 

Motor 
R 
(Ω) 

L         
(H) 

   
(Nm/

A) 

   
(Vs) 

J 
(kg 

  ) 

B 
(Nms) 

N 
(rev/
min) 

Average 
torque 
(Nm) 

Max 
torque 
(Nm) 

M1 4.02 2.44e-3 0.024 0.024 1.62e-6 1.01e-6 8980 0.0226 0.1426 

M2 15.8 9.77e-3 0.049 0.049 1.62e-6 1.01e-6 8980 0.0226 0.1447 

M3 4.33 2.34e-3 0.022 0.022 1.62e-6 1.34e-6 9960 0.0184 0.1172 

M4 17 9.35e-3 0.044 0.044 1.62e-6 1.34e-6 9970 0.0184 0.1193 

M5 2.74 2.57e-3 0.037 0.037 5.79e-6 3.36e-6 6003 0.0586 0.3198 

M6 8.98 10.5e-3 0.075 0.075 5.79e-6 3.36e-6 5981 0.0586 0.3947 

M7 1.85 1.97e-3 0.042 0.042 8.47e-6 3.69e-6 5230 0.0812 0.5422 

M8 11.1 12.3e-3 0.106 0.106 8.47e-6 3.69e-6 5280 0.0812 0.5712 

M9 1.01 1.6e-3 0.061 0.061 2.61e-5 1.21e-5 3630 0.1836 1.4402 

M10 6.33 10.3e-3 0.156 0.156 2.61e-5 1.21e-5 3610 0.1836 1.4755 

M11 0.24 0.31e-3 0.042 0.042 4.73e-5 1.68e-5 3330 0.353 2.6616 

M12 0.93 1.4e-3 0.09 0.09 4.73e-5 1.68e-5 3140 0.353 2.9017 

M13 3.64 5.58e-3 0.179 0.179 4.73e-5 1.68e-5 3150 0.353 2.9511 

 

3.2.5.1 Motor-task feasibility. 

Clearly, the maximum power of the motor has to be more than the peak power 

required by the task. However, this is not enough to decide the motor’s capability of 

performing the task, as power consists of speed and torque, which are both limited in 

actuators. Hence, the feasibility analysis has to check for both components [30]. 

A motor-task combination is feasible if a transmission ratio ( ) exists such 

that the motor’s maximum speed is greater than the maximum required speed, and a 

certain norm of the motor torque is less than a corresponding motor-specific limit. 

The second norm of the torque is a measure of the “RMS” (Root Mean Square) 

current in the windings, which should be limited to avoid thermal destruction of the 

windings. The infinity norm is the measure of the peak current, which should be 
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limited to avoid demagnetization of the permanent magnets. The limit of the second 

norm is the rated motor torque and the limit of the infinity norm is the maximum 

motor torque [30]. 

Hence, for a motor to be able to drive the mechanism, the three inequalities 

(129-131) must hold. The maximum required crank speed has to be smaller than the 

motor’s maximum speed, the RMS value of the required input torque should be 

smaller than the motor’s rated torque, and the required peak torque should be smaller 

than the motor’s peak torque [7, 31]. 

   ̇         (129) 

                          (130) 

                          (131) 

3.2.6 Objective functions. 

The use of optimization techniques to select the best motor and gear ratio for 

an application saves time and takes care of the motors’ feasibility in running the load. 

If the voltage is set as the cost function, the optimization will also minimize the 

voltage required to run the load. For variable loads, like the four-bar mechanism, the 

voltage required to run the load at a certain speed is variable. In the case of the four-

bar mechanism, the torque required fluctuates periodically in steady state due to the 

change of inertia over the cycle. This fluctuation can be seen as a fluctuation in the 

crank speed response as the motor is supplying the same voltage for a time-varying 

load. To run the mechanism at a constant speed, the motor has to provide a varying 

voltage to balance the effect of the varying load.  

The design of the mechanical system’s sizing and inertia parameters and 

motor and gear box selection are the goals of this problem. The objective functions 

are formulated here as to minimize the required voltage and voltage variation to run 

the mechanism at a constant speed. 

The objective functions to be optimized are given by (132-133). 

         ) (132) 

 
      (

          

    
) (133) 
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3.2.6.1 Design vector. 

The design vector for the genetic algorithm is given by equation (134). 

                                               (134) 

The design vector is made of 32 variables. The index   represents the link 

number and the variables                     represent 10 variables for the 

dimensions of each link. The motor number and gear ratio are represented by   , 

and  , respectively.  

3.2.6.2 Constraints. 

The optimization is subject to some motor feasibility constraints that are to be 

satisfied by the fittest individuals. The three constraints for the dynamics problem are 

the average torque, maximum torque, and maximum speed required from the motor. 

These constraints are shown in inequalities (129-131). 

Each design variable is bound in a range as shown in (135). 

     )                       (135) 

Using the penalty method, the objective function can be written as: 

                           ) (136) 

 
      (

          

    
) (137) 

where      , and    are constants corresponding to the speed and torque constraints 

(0 if the constraint is satisfied and 1 otherwise).    is a high value real number that 

penalizes the objective function if the constraint is not met. The value for    should 

be greater than the value of the minimized objective. 

3.2.7 Example problem. 

The objective is to find the mechanism inertia and select the adequate motor 

and gear ratio that will minimize the required voltage and voltage variation to run the 

mechanism at a constant speed of 30 rad/s. The mechanism’s link lengths are shown 

in Table 8. 

Table 8: Mechanism Link Parameters 

Mechanism parameters 

    )      )     )     ) 
0.56 0.1 0.61 0.41 



47 

 

3.2.7.1 Genetic algorithm. 

To start with, three constraints are set that are to be satisfied by the fittest 

individuals. Bounded ranges are specified for the design variables. These bounds are 

shown below. 

                

            

              

            

                  

        

       

The fitness scaling function is the function used to convert the raw fitness 

scores to values suitable for the selection process. A good fitness scaling function 

considers both fitness and diversity. The scaling function used is based on the rank of 

the individual in the population. An individual with rank r has a scaled score of   √  

[20]. Rank scaling gives high expectations for highly ranked individuals and low 

expectations for poorly ranked individuals, yet poorly ranked individuals have a 

probability of being selected to the next generation and increasing the diversity of the 

population. 

The selection function specifies the choice of parents for the next generation. 

The selection function adopted for the genetic multi-objective optimization in Matlab 

is the tournament selection function which creates sized tournaments between random 

individuals. The best in each tournament qualifies to be a parent for the next 

generation. 

The Pareto fraction specifies the fraction of the population on the Pareto front 

and the remaining fraction is used in searching the design space.  

The selected options for the MOGA are shown in Table 9. 
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Table 9: Dynamics GA Options 

Option Choice 

Population size 10000 

Generations 450 

Pareto fraction 0.76 

Crossover fraction 0.5 

Scaling function Rank 

Selection function Tournament 

Mutation function Adaptive feasible 

Crossover function Heuristic 

Running the MOGA, the obtained Pareto front is shown in Figure 18. 

 

Figure 18: Dynamics Pareto Front 

3.2.7.2 Results. 

The Pareto front in Figure 18 provides a set of solutions to be chosen from. 

The tradeoff between voltage and voltage fluctuation can be observed and the 

designer can choose what best suites the application. Out of these solutions three 

designs labeled DV1, DV2, and DV3 are computed and the resulting design vectors 

are shown in Table 10 and Table 11. 
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Table 10: Geometric Parameters of the Selected Mechanisms  

Mechanism parameters 

DV   )                                     

1 

   0.2049 0.0970 0.1191 0.0150 0.0461 0.0346 0.0580 0.0254 0.0732 0.0359 

   0.3000 0.3000 0.0150 0.0060 0.0000 0.0000 0.0664 0.0557 0.0183 0.0798 

   0.0166 0.0301 0.0150 0.0060 0.0000 0.0000 0.0690 0.0570 0.0263 0.0811 

2 

   0.1818 0.0963 0.1656 0.0132 0.0207 0.0120 0.0723 0.0340 0.0892 0.0227 

   0.3000 0.3000 0.0150 0.0060 0.0000 0.0000 0.0438 0.0566 0.0488 0.0529 

   0.0254 0.0300 0.0150 0.0060 0.0000 0.0000 0.0856 0.0041 0.0065 0.0823 

3 

   0.2106 0.0411 0.0588 0.0117 0.0445 0.0901 0.0363 0.0541 0.0387 0.0277 

   0.3000 0.0302 0.0165 0.0061 0.0005 0.0000 0.0878 0.0996 0.0339 0.0606 

   0.0566 0.0312 0.0183 0.0060 0.0012 0.0006 0.0068 0.0662 0.0453 0.0886 

 

Table 11: Motors Parameters 

Motor parameters 

DV M# R (Ω) L (H) km (Nm/A) kg (Vs) J (kg   ) B (Nms) n 

1 11 0.24 0.31e-3 0.042 0.042 4.73e-5 1.68e-5 5 

2 11 0.24 0.31e-3 0.042 0.042 4.73e-5 1.68e-5 21 

3 11 0.24 0.31e-3 0.042 0.042 4.73e-5 1.68e-5 45 

 

The voltage fluctuation required to run the mechanism at a constant speed is 

computed and the mean voltage is given as constant input voltage to the mechanism to 

see the effect on the crank angular speed response (see Figure 19, Figure 20, and 

Figure 21). It can be noticed that the smaller the voltage fluctuation compensation to 

run at a constant speed, the smaller the speed response fluctuation to the input average 

voltage. 
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Figure 19: DV1 Input Voltage and Speed Response 

 

Figure 20: DV2 Input Voltage and Speed Response 
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Figure 21: DV3 Input Voltage and Speed Response 

3.3 Control 

3.3.1 Introduction. 

After considering the plant design, the system response is analyzed to check 

whether the response specifications and performance requirements can be met by the 

system. If the specifications cannot be met, a control system is designed to obtain the 

desired performance [32]. A control system is an interconnection of components 

forming a system configuration that will provide a desired system response [33]. 

The goal of control engineering design is to obtain the configuration, 

specifications, and identification of the key parameters of a proposed system to meet 

an actual need.  The first step in the design process consists of establishing the system 

goals, for example stating the goal as to control the velocity of a motor accurately. 
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Once the system parameters are fixed, the system poles as well as its response 

are fixed. The control system alters the poles’ locations to yield the desired response. 

In the early days, the design of controllers was mainly by trial and error. From this 

emerged an almost universal controller, the proportional-integral-derivative (PID) 

controller [34].   

3.3.2 PID control. 

The PID controller has been developed through much experience and by trial 

and error. Starting with the proportional feedback gain for amplifying a signal, 

integral control action was then discovered by engineers to eliminate bias offset. 

Finally, an “anticipatory” derivative term was added to enhance the poor dynamic 

response encountered in many cases [34]. The PID controller takes in the output of 

the system, which is the variable to be controlled (in this case the motor speed, 

subtracted from the reference or desired value). This difference or error is multiplied 

by a proportional gain, integrated and multiplied by an integral gain, derived and 

multiplied by a derivative gain. These three values are then added together and fed in 

as an input to the system. This loop continues and after some time the error goes to 

zero and the steady state value is equal to the desired value.  

Tao and Sadler in [35] proposed a more robust modified PID controller 

represented by the control law in equation (138). 

 
   )       )∫  ̇ 

      ∫    )       ̇
 

 

  ) 
 

 

 (138) 

The difference between this controller and the conventional PID controller is 

the time varying integral in the proportional term of the controller. The resulting time 

varying proportional gain is also a function of the desired crank speed. As the desired 

speed or time increases, the gain increases, making the control system more robust 

[35]. 

Generally speaking, the higher the proportional gain the lower the speed 

fluctuation and the steady-state error. But, excessively high gains may lead to a large 

amount of overshoot if the derivative gain is not large enough. Increasing the 

derivative gain will decrease the overshoot, but the system response will be slower 

during the start-up period [35].  
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Formulating the design problem as an optimization problem will take care of 

the trade-off in design to meet system specifications and requirements. 

The block diagram of the closed-loop system is shown in Figure 22. 

 

Figure 22: Closed-Loop System 

3.3.3 System response. 

The state space representation of the motor-mechanism system in (121) was 

derived in Section 3.2.3 . The states of the system are the crank angular position, 

speed, and current. Giving a voltage input to the motor and solving the state space 

equations using the Runge-Kutta fourth-order method, the time response of the crank 

angular position, speed, acceleration, the motor input current and its rate are obtained 

as well as the input torque. 

Setting the input voltage to the system to be equivalent to the control law 

(138) discussed in Section 3.3.2, the closed-loop response of the system is obtained.  

3.3.4 Objective function. 

The use of optimization techniques to design a controller takes care of the 

design trade-off in the system response and will find the gain terms suitable to run the 

system at the desired specifications. The design of a constant motor speed controller is 

the goal of this problem. The optimization problem can be formulated in different 

ways. The objective function is formulated here as to minimize the derivative gain 

given that the system meets the overshoot, rise time, and steady state error 

requirements. 

The objective function to be optimized is given by (139). 

                            )  (139) 
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where      , and    are constraints on the system specifications to be met by the 

optimization problem and    is a high-value number that penalizes the objective 

function if the constraint is not met. 

3.3.4.1 Design vector. 

The design vector for the genetic algorithm is given by (140). 

               (140) 

The design vector is made of 3 variables: the proportional, integral, and derivative 

gains, respectively. 

3.3.4.2 Constraints. 

The optimization is subject to some system requirement constraints that are to 

be satisfied by the fittest individuals. The three constraints for the control problem are 

the overshoot, rise time, and steady state error requirements as discussed below. 

The first constraint is the rise time specification which is less than 0.1 s for the 

motor speed response. 

               

The second constraint is the response overshoot requirement of less than 1.7 % [35]. 

     ̇    )   ̇ 
        ̇ 

  

The steady state error is the third constraint and is less than 1 %. 

                 

Each design variable is bound in a range as shown in (141). 

     )                       (141) 

3.3.5 Case study. 

The objective is to find the minimal gains required to meet the system 

requirements and specifications. This case study compares the objective function used 

here and in [31] and formulates the control optimization problem to be later used in 

the design problem. The mechanism and motor parameters used in this problem are 

shown in Table 12 and Table 13. 
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Table 12: Mechanism Parameters [35] 

Mechanism parameters 

Link Length 
(m) 

Center of mass location Mass and inertia 

   0.5593 r (m) angle mass (kg) J (kg   ) 

   0.102    = 0   = 0 1.362 0.00071 

   0.61    = 0.305    = 0 1.362  0.0173 

   0.406    = 0.203    = 0 0.2041 0.00509 

Table 13: Motor Parameters [35] 

Motor parameters 

R (Ω) L (H) 
km 

(Nm/A) 
kg (Vs) J (kg   ) B (Nms) 

0.4 0.05 0.678 0.678 0.056 0.226 

 

The crank angular speed open-loop response is shown in Figure 23. 

 

Figure 23: Crank Speed Open-Loop Response 

3.3.5.1 Genetic algorithm. 

To start, three constraints are set to be satisfied by the fittest individuals. 

Bounded ranges are specified for the design variables; these bounds are shown below. 
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The fitness scaling function is the function used to convert the raw fitness 

scores to values suitable for the selection process. A good fitness scaling function 

considers both fitness and diversity. The scaling function used is based on the rank of 

the individual in the population. An individual with rank r has a scaled score of   √  

[20]. Rank scaling gives high expectations for highly ranked individuals and low 

expectations for poorly ranked individuals, yet poor individuals have a probability of 

being selected to the next generation and increasing the diversity of the population. 

The selection function specifies the choice of parents for the next generation. 

The selection function can be stochastic uniform in which the scaled scores of the 

individuals in the current population make up a line with each individual having a 

proportional section of the line. The algorithm allocates a parent from the section it 

lands on randomly. The remainder function chooses parts based on the integer part of 

the individual scaled values [20]. There is also roulette selection, in which the parents 

are selected by simulating a roulette wheel. The individuals’ expectation is translated 

into an area on the roulette wheel. The tournament selection function creates sized 

tournaments between random individuals and the best in each tournament qualifies to 

be a parent for the next generation. 

A Monte Carlo study is done to check which of these selection functions is 

more suitable to the problem. The results for GA with different selection functions 

computed over 5 iterations are shown in Figure 24, where functions 1, 2, 3, and 4 are 

the stochastic uniform, remainder, roulette, and tournament, respectively. 

 

Figure 24: Choosing GA Selection Function - Control 
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In Figure 24, the top portion represents a color map of the minimized objective 

function values over the 5 iterations and the darker the color the smaller the value. 

The lower portion shows the mean and standard deviations of the values obtained 

over the 5 iterations.  It can be noticed that the stochastic uniform and the tournament 

functions yield the lowest mean and standard deviation and hence are more suitable to 

be used as a selection function than the other methods. 

After selecting the parents for the next generation, we select the portion of the 

offspring due to crossover and the portion due to mutation and the used functions. The 

mutation function used is adaptive feasible; this function randomly generates 

directions adaptive with the last generation and with a step size that satisfies the 

bounds. The crossover function choice is going to be from the intermediate, heuristic, 

and arithmetic crossover functions.  

A Monte Carlo study was done to select the crossover function suitable for 

this problem shown in Figure 25, where functions 1, 2, and 3 are the intermediate, 

heuristic, and arithmetic, respectively. 

 

Figure 25: Choosing GA Crossover Function - Control 
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By running some Monte Carlo studies, the options used to run the GA are 

selected and shown in Table 14. 

Table 14: Control GA Options 

Option Choice 

Population size 100 

Generations 200 

Elite count 4 

Crossover fraction 0.76 

Scaling function Rank 

Selection function Stochastic uniform 

Mutation function Adaptive feasible 

Crossover function Heuristic 

Running the GA, the best fit individual after 200 generations and the average 

of the generations are shown in Figure 26. 

 

Figure 26: Control GA Analysis 

0 20 40 60 80 100 120 140 160 180 200
0

100

200

300

400

500

600

Generation

F
it
n
e
s
s
 v

a
lu

e

Best: 0.302794 Mean: 96.3031

 

 

Best f itness

Mean fitness



59 

 

3.3.5.2 Results. 

The resulting design vector and the objective function value, which represents 

the derivative gain, are shown below: 

                           

            

Computing the closed-loop response of the system, Figure 27 shows the crank 

angular speed response subject to the above control gains. 

 

Figure 27: Crank Speed Closed-Loop Response with OS 1.3 % 
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rise time of 0.0448 s, an overshoot of 1.325 % and a steady state error of 1 %. This 

means that depending on the application, whether or not this difference in 

specifications is significant, our solution is considered better in terms of the control 

effort. 

 

Figure 28: Crank Speed Closed-Loop Responses Comparison - OS 1.3 % 

 

Figure 29: Crank Speed Closed-Loop Transient Responses Comparison - OS 1.3 % 
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To better compare the optimization problems, the constraints on the 

specifications are reduced to match the response obtained by Tao and Sadler. That is, 

the new constraints for the optimization problem are 0.0365 s rise time, an overshoot 

of 0.2 %, and a steady state error of 0.25 %. Running the optimization problem, the 

resulting design vector and the objective function value are shown below: 

                           

            

Computing the closed-loop response of the system, Figure 30 shows the crank 

angular speed response subject to the above control gains. The crank angular speed 

response has a rise time of 0.0345 s, an overshoot of 0.2 %, and a steady state error of 

0.25 %. 

 

Figure 30: Crank Speed Closed-Loop Response with OS 0.2 % 
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Figure 31: Crank Speed Closed-Loop Responses Comparison - OS 0.2 % 

 

Figure 32: Crank Speed Closed-Loop Transient Responses Comparison - OS 0.2 % 

The specifications and gains of both responses are shown in Table 15.  
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Table 15: Control Specifications and Gains 

 

Specifications Gains 

Rise 

time 

(s) 

Overshoot 

(%) 

S.S.E 

(%) 
         

Solution 0.0345 0.200 0.25                       

Tao & Sadler 0.0365 0.1977 0.25                   

 

It can be seen that by setting the desired specifications as constraints and 

minimizing the derivative gain, we meet the response requirements as well as 

minimize the gains. 
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Chapter 4: Optimization Results 

4.1 Design Problem 

The objective of this chapter is to compare the obtained design using the 

sequential approach to the one obtained by the holistic approach. The objective 

functions to be optimized are the desired path,  the input voltage (required to run at 30 

rad/s), and the control gains to meet a desired rise time, overshoot, and steady-state 

error. It is also desired to select the motor-gearbox combination required to run the 

system. Due to the high number of objectives, there is no one solution that will 

provide the best results for all these requirements due to the complex relations and 

multidisciplinary nature of the design; tradeoffs have to be made.  

The conventional sequential design method will be considered first. In this 

case, the mechanical design is optimized and the obtained result is then optimized for 

its dynamics and its actuator. The control gains are then optimized for the obtained 

design. The holistic approach considers all the objective functions simultaneously and 

presents a set of non-dominated solutions as a Pareto front. The results from the two 

approaches will then be compared. 

The desired path is shown in Figure 33. 

 

Figure 33: Design Desired Path 



65 

 

4.2 Sequential Approach 

4.2.1 Synthesis. 

It is desired to design a four-bar mechanism to trace a path of eighteen 

precision points using a genetic algorithm (Figure 33). The desired points are given 

below: 

  
    (0.1778,0.1294)   ; (0.2004,0.1441); (0.1976,0.1607) ; (0.1786,0.1765) ; 

(0.1503, 0.187) ; (0.1176,0.1898) ; (0.0844,0.1841) ; (0.0542,0.1705) ; 

(0.0294,0.1509) ;  (0.0117,0.1279) ; (0.0019,0.1041) ; (0.0,0.0822) ; (0.0056,0.0649) 

; (0.0177,0.0545) ;( 0.0356,0.0531) ; (0.0593,0.0625) ; (0.0910,0.0829) ; 

(0.1335,0.1092)   

After optimizing the error, calculated as the square root of the sum of the 

square errors, the obtained design vector and error is given below: 

                                                                            

             

Computing a hybrid function, the minimization function value reduces to: 

              

The resulting mechanism design (Table 16) is chosen and the design is fixed. 

Table 16: Mechanism Links Design 

Mechanism Design Vector (X) 

     )      )       )     )     )     )     )      )      )         ) 

0.0434 -0.0003 0.0022 0.1899 0.0849 0.2507 0.1884 0.1251 0.0602 0.0008 

 

The design vectors obtained from the genetic algorithm and the hybrid 

minimization are computed and the resulting mechanisms are simulated. Next, the 

coupler paths are compared with the desired path as shown in Figure 34. 
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Figure 34: Four-bar Synthesis 

4.2.2 Dynamics. 

The mechanism design obtained from the previous section is used and the 

links’ shape and volume are to be designed and the motor-gearbox combination 

selected. Running the optimization so as to minimize the input voltage and the voltage 

variation by varying the inertia, motors, and gear ratio, the Pareto front is shown in 

Figure 35. 

 

Figure 35: Design Dynamics Pareto Front 
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The Pareto front provides a set of solutions to be chosen from. The tradeoff 

between voltage and voltage variation can be observed and the designer can choose 

what best suites the application. Out of these solutions three designs labeled DV1, 

DV2 and DV3 are computed and the resulting design vectors are shown in Table 17, 

Table 18, and Table 19. 

Table 17: Dynamics Mechanism Parameters 

Mechanism parameters 

DV   )                                     

1 

   0.0649 0.0710 0.0623 0.0160 0.0203 0.0604 0.0789 0.0239 0.0361 0.0492 

   0.0999 0.0301 0.0470 0.0061 0.0001 0.0000 0.0077 0.0798 0.0751 0.0981 

   0.0272 0.0302 0.0152 0.0060 0.0000 0.0001 0.0662 0.0932 0.0924 0.0534 

2 

   0.0605 0.0721 0.0841 0.0149 0.0529 0.0616 0.0793 0.0634 0.0911 0.0676 

   0.1000 0.0302 0.0151 0.0060 0.0001 0.0000 0.0391 0.0156 0.0279 0.0611 

   0.0183 0.0301 0.0153 0.0060 0.0003 0.0002 0.0697 0.0779 0.0735 0.0676 

3 

   0.0954 0.0863 0.0838 0.0154 0.0436 0.0367 0.0444 0.0910 0.0744 0.0559 

   0.0614 0.0318 0.0161 0.0061 0.0010 0.0003 0.0535 0.0738 0.0402 0.0978 

   0.0310 0.0315 0.0155 0.0060 0.0025 0.0005 0.0826 0.0946 0.0637 0.0964 

 

Table 18: Dynamics Mechanism Inertia Parameters 

Mechanism inertia parameters 

DV (m) 
Center of mass location Mass and inertia 

    (m)   angle mass (kg) J (kg   ) 

1    0.0443 -0.3978 1.2652 0.0061 

   0.0994 0.0005 0.1960 0.0026 

   0.0738 -0.0004 0.1421 0.0007 

2    0.0556 -0.0406 1.4066 0.0078 

   0.0833 0.0006 0.1778 0.0020 

   0.0770 0.0003 0.1383 0.0007 

3    0.0349 0.0733 1.6404 0.0112 

   0.1031 0.0028 0.1758 0.0016 

   0.0735 0.0069 0.1560 0.0008 

 

Table 19: Dynamics Motor Parameters 

Motor parameters 

DV M# R (Ω) L (H) km (Nm/A) kg (Vs) J (kg   ) B (Nms) n 

1 11 0.24 0.31e-3 0.042 0.042 4.73e-5 1.68e-5 4 

2 11 0.24 0.31e-3 0.042 0.042 4.73e-5 1.68e-5 19 

3 11 0.24 0.31e-3 0.042 0.042 4.73e-5 1.68e-5 45 
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The second design vector is designed on inventor and is shown in Figure 36 

for visualization. 

 

Figure 36: Designed Mechanism DV2 

The voltage fluctuation required for running the mechanism at a constant 

speed of 30 rad/s is computed and the mean voltage is given to the mechanism to see 

the effect on the crank angular speed response. This is evaluated for the three design 

vectors as shown in Figure 37 and Figure 38.  

 

Figure 37: Sequential Design Vectors Voltage Fluctuation and Input Voltage 
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Figure 38: Sequential Design Vectors Crank Angular Speed Response 

A detailed analysis is carried out for DV2 in steady state. The current, torque, 

and the loss decomposition are shown in Figure 39, Figure 40, and Figure 41, 

respectively. 

 

Figure 39: DV2 Current 

The current required to run the mechanism at 30 rad/s for design vector 2 

varies between -1 and 3, whereas the motor’s continuous torque current specification 

is 9.98 A. 
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Figure 40: DV2 Required Torque and Delivered 

The torque required for running at a constant speed of 30 rad/s is shown above 

along with the torque response of DV2. The small variations are due to fact that the 

DV2 speed response is fluctuating around 30 rad/s. 

 

 

Figure 41: DV2 Losses Decomposition 
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It can be seen that the mechanical loss is mainly inertial and the viscous 

friction loss is small. The inertial loss will be eliminated when running at a constant 

speed. 

4.2.3 Control. 

The mechanical and electronic designs are fixed and a control system is to be 

designed to meet certain system specifications. It is desired that the system’s speed 

response has a rise time of 0.01 s, an overshoot of 0.5 %, and a steady state error of 

0.1 %. The three design vectors selected in the previous section are going to be 

considered for control. A modified PID controller is implemented for the design 

vectors and the results are shown in Figure 42 and Table 20. 

 

Figure 42: PID Closed-Loop Speed Response 

Table 20: PID Control Gains and Specifications 

DV 

Specifications Gains 

Rise time (s) Overshoot (%) S.S.E (%)          

1 0.0079 0.50 0.1 53.7 0.126 0.00824 

2 0.0084 -1.03 0.1 34.1 0.504 7e-7 

3 0.0090 -1.06 0.1 55.8 0.289 1e-7 
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It can be observed that the differential gain is negligible as the open loop 

response has less fluctuations. Hence, a modified PI controller is going to be 

implemented instead. The modified PI controller was implemented in [16] and is 

represented by the control law in (142). 

 
   )       )∫  ̇ 

      ∫    )   
 

 

 
 

 

 (142) 

The controller is implemented on the three design vectors and the results are 

shown in Figure 43 and Table 21. 

 

Figure 43: PI Closed-Loop Speed Response 

Table 21: PI Control Gains and Specifications 

DV 

Specifications Gains 

Rise time (s) Overshoot (%) S.S.E (%)       

1 0.010 -0.260 0.1 23.5 1.50 

2 0.010 -1.19 0.1 17.6 17.9 

3 0.010 -1.17 0.1 43.8 9.62 

A detailed analysis is carried out for DV2 in the open and closed loop. The 

current, current rate, angular position, and acceleration are shown in Figure 44. 
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Figure 44: DV2 Open-Loop and Closed-Loop Behavior 

4.3 Holistic Approach 

The holistic design methodology is going to be represented in this section, 

where all the system variables are designed simultaneously. The design vector is 

presented in equation (143). 

                                                                               (143) 

The design vector is made of 45 variables. The first 10 variables are for 

synthesis, and then 30 variables are for the volume of the links, 1 variable is for the 

motor index, 1 variable is for the gear ratio, and the last 2 variables are for the control 

gains. 

The genetic algorithm is used to minimize the four objectives by searching the 

design space. The objectives to be minimized are the path error, voltage, voltage 

variation, and the proportional control gain. The objectives are given by (144-147). 
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      (

          

    
) (146) 

       (                    ) (147) 

where   
  represents the desired points to track,   

  represents the generated 

coupler points, V is the input voltage,                and,    are constraints to be 

met by the optimization problem, and    is a high-value number that penalizes the 

objective function if the constraint is not met. 

The optimization problem yields a set of non-dominated solutions, called the 

Pareto front, which the designer can choose from for his application. The Pareto front 

of the optimization problem is shown in Figure 45.  

 

Figure 45: Holistic Design Pareto Front 

Out of these solutions, three designs labeled DV1, DV2, and DV3 are 

computed and the resulting design vectors and inertia parameters are shown in Table 

22, Table 23, Table 24, and Table 25. 
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Table 22: Holistic Design Mechanism Parameters      

Mechanism parameters 

DV   )                                         

1 

   0.1853  

   0.0834 0.0269 0.0863 0.0533 0.0187 0.0205 0.0623 0.0987 0.0453 0.0794 0.0507 

   0.2535 0.1000 0.0339 0.0330 0.0073 0.0128 0.0009 0.0342 0.0677 0.0898 0.0908 

   0.1925 0.0187 0.0303 0.0174 0.0061 0.0157 0.0010 0.0846 0.0924 0.0752 0.0757 

2 

   0.1893  

   0.0850 0.0691 0.0721 0.0611 0.0169 0.0147 0.0603 0.0739 0.0272 0.0397 0.0498 

   0.2500 0.0989 0.0317 0.0416 0.0061 0.0004 0.0003 0.0074 0.0834 0.0607 0.0948 

   0.1886 0.0195 0.0322 0.0170 0.0063 0.0006 0.0003 0.0623 0.0888 0.0889 0.0524 

3 

   0.1835  

   0.0801 0.0592 0.0882 0.0866 0.0297 0.0631 0.0153 0.0567 0.0614 0.0491 0.0240 

   0.2615 0.0884 0.0322 0.0176 0.0062 0.0006 0.0039 0.0632 0.0509 0.0254 0.0612 

   0.1935 0.0566 0.0324 0.0184 0.0070 0.0036 0.0021 0.0782 0.0963 0.0456 0.0950 

 

Table 23: Holistic Design Mechanism Inertia Parameters 

Mechanism inertia parameters 

DV (m) 
Center of mass location Mass and inertia 

    (m)   angle mass (kg) J (kg   ) 

1 

   0.0580 -0.2445 1.1501 0.0041 

   0.0577 0.0910 0.2829 0.0023 

   0.0833 0.0488 0.1822 0.0009 

2 

   0.0426 -0.4656 1.3166 0.0064 

   0.0661 0.0012 0.1745 0.0016 

   0.0790 0.0008 0.1542 0.0008 

3 

   0.0565 0.3259 2.7105 0.0153 

   0.0559 -0.0260 0.1728 0.0012 

   0.0692 0.0056 0.2145 0.0013 
 

Table 24: Holistic Design Motor Parameters 

Motor parameters 

DV M# R (Ω) L (H) km (Nm/A) kg (Vs) J (kg   ) B (Nms) n 

1 11 0.24 0.31e-3 0.042 0.042 4.73e-5 1.68e-5 9 

2 11 0.24 0.31e-3 0.042 0.042 4.73e-5 1.68e-5 2 

3 11 0.24 0.31e-3 0.042 0.042 4.73e-5 1.68e-5 44 
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Table 25: Holistic Design Control Parameters 

Control parameters 

DV 

Specifications Gains 

Rise time 

(s) 

Overshoot 

(%) 

S.S.E 

(%) 
      

1 0.0099 -0.844 0.1 14.9 2.89 

2 0.0099 0.170 0.1 42.1 0.682 

3 0.0087 -0.796 0.1 90.8 9.98 

The generated path is evaluated for the three design vector mechanisms in 

Figure 46 and compared with the result obtained in the sequential design. 

 

Figure 46: Designed Coupler Curves Comparison 

It can be observed that the mechanism obtained in the sequential design and 

DV2 follow the desired path more accurately than DV1 and DV3. However, this 

slight offset will help obtain better results in the other objective functions which will 

be shown later. The mechanisms obtained from the three design vectors are 

superimposed in Figure 47 for visualization. 
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Figure 47: DV1, DV2, and DV3 Mechanisms 

The mechanism obtained from the first design vector is designed on inventor 

and is shown in Figure 48 for visualization. 

 

Figure 48: Designed Mechanism DV1 
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the effect on the crank angular speed response. This is evaluated for the three design 

vectors and is shown in Figure 49 and Figure 50.  

 

Figure 49: Holistic Design Vectors Voltage Fluctuation and Input Voltage 

 

Figure 50: Holistic Design Vectors Crank Angular Speed Response 
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4.4 Design Comparison 

The solution that had the highest voltage variation from the sequential design 

is compared to the solution with the highest voltage variation in the holistic design 

Pareto front and the results are shown in Figure 51. 

 

Figure 51: Highest Voltage Variation Comparison 

It can be noticed that the holistic design solution has less variation than the 

sequential design. It can be observed from the Pareto fronts that the maximum voltage 

variation decreased from 2.259 to 1.79 in the holistic design. This is due to the fact 

that the mechanism links and the dynamics are varying together. It can also be 

observed from Figure 52 that the minimum input voltage to run the mechanism 

decreased from 5.054 to 2.527 volts in the holistic design for the same reason. The 

average voltage is given to both mechanisms and the crank angular speed response is 

shown in Figure 53.  
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Figure 52: Holistic DV2 and Sequential DV1 Voltage Variation and Input Voltage Comparison 

The angular speed fluctuations are smaller for the holistic solution than for the 

sequential. 

 

Figure 53: Holistic DV2 and Sequential DV1 Speed Response Comparison 
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The solution that had the lowest voltage variation from the sequential design is 

compared to the solution with the lowest voltage variation in the holistic design 

Pareto front and the results are shown in Figure 54. 

 

Figure 54: Lowest Voltage Variation Comparison 

It can be noticed that the holistic design solution has less voltage variation 

than the sequential design. It can be observed from the Pareto fronts that the minimum 

voltage variation decreased from 0.0158 to 0.0028 in the holistic design. This is due 

to the fact that the mechanism’s geometric parameters and dynamics are considered 

simultaneously. It can also be observed from Figure 55 that the maximum input 

voltage to run the mechanism decreased from 56.83 to 55.57 volts in the holistic 

design for the same reason. 
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Figure 55: Holistic DV3 and Sequential DV3 Voltage Variation and Input Voltage Comparison 

The average voltage is given to both mechanisms and the crank angular speed 

response is shown in Figure 56.  

 

Figure 56: Holistic DV3 and Sequential DV3 Speed Response Comparison 

The closed-loop response of the three selected design vectors is shown in Figure 57. 
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Figure 57: Holistic Closed-Loop Response 

The solution that had the lowest gain from the sequential design is compared 

to the solution with the lowest gain in the holistic design Pareto front and the results 

are shown in Table 26. 

Table 26: Control Gains Comparison 

 

Specifications Gains 

Rise 

time 

(s) 

Overshoo

t 

(%) 

S.S.E 

(%) 
      

Holistic 0.0099 -0.844 0.1 14.9 2.90 

Sequential 0.0100 -1.19 0.1 17.6 17.9 

The holistic solution has smaller gains than the sequential one due to the fact 

that the open-loop system is not fixed and is changing with the controller. 

The open-loop and the closed -loop response of the two solutions are shown in 

Figure 58 and Figure 59. 
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Figure 58: Open-Loop Response Comparison 

 

Figure 59: Closed-Loop Response Comparison 
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dominated solutions of the whole system to the designer and by allowing all the 

variables to change simultaneously better solutions than the sequential approach can 

be obtained. The differences between the designs in open loop, in terms of voltage 

and voltage variation, are quite significant. In closed loop the improvement is small. 

The algorithm can do further minimization of the objective functions if the tolerance 

of error in path following, when designing the geometry of the mechanism, is 

increased. 
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Chapter 5: Conclusion and Future Work 

5.1 Conclusion 

In this research, a holistic design methodology of mechatronic systems was 

proposed. The design methodology uses heuristic optimization techniques to design 

the mechanical, electronic, and control systems simultaneously. The optimization 

problem designs the system geometry, inertia parameters, motor-gearbox combination 

selection, and control gains. It also provides a set of non-dominated design solutions 

called a “Pareto front” from which the designer can choose the design that best suites 

his application. The sequential design methodology was first presented, where the 

geometry was optimized and fixed; then the dynamic behavior of the system was 

optimized considering a set of motors and gearbox combinations along with the 

system inertia, and then a control system was optimized based on the previously-

obtained system. The holistic design methodology was then presented, where all these 

variables are designed simultaneously. The design methodologies were applied to a 

four-bar mechanism driven by a DC motor. The objective functions to be minimized 

are the tracking path error for geometry design, the input voltage and voltage 

fluctuations to run at a desired speed for the dynamics design, and the proportional 

gain for the control design. The two design methodologies were compared and it was 

shown that the holistic design approach provided some solutions that have smaller 

voltage, voltage variation, and control effort than the sequential approach. This is due 

to the fact that in the holistic approach the geometry, dynamics, and control are 

considered simultaneously. Hence, at the expense of having slightly more path 

tracking error in geometry design, a better dynamic behavior can be achieved. Also, 

by varying the coupled system parameters, a controller with less control effort can be 

achieved. 

5.2 Future Work 

A proposed scope of future work might focus on hardware implementation of 

one of the obtained design solutions or implementing the proposed holistic design 

methodology on other dynamic systems such as a quadrotor. The work on four-bar 

mechanisms can be extended to consider the choice of materials, balancing the 

shaking moment and forces, or working in the non-dimensional domain. The work 

can also be extended and implemented to other mechanisms or the problem can be 
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solved using other heuristic optimization techniques. It is also possible to design a 

system with the purpose of further understanding the interconnection between 

different disciplines of the system through holistic design. 
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