

EFFICIENT DYNAMIC COST SCHEDULING ALGORITHM

 FOR DATA BATCH PROCESSING

by

Alia Al Sadawi

A Thesis Presented to the Faculty of the

American University of Sharjah

College of Engineering

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in

Engineering Systems Management

Sharjah, United Arab Emirates

May 2016

© 2016 Alia Al Sadawi. All rights reserved.

Approval Signatures

We, the undersigned, approve the Master’s Thesis of Alia Al Sadawi.

Thesis Title: Efficient Dynamic Cost Scheduling Algorithm for Data Batch Process

Signature Date of Signature
 (dd/mm/yyyy)

___________________________ _______________

Dr. Abdulrahim Shamayleh,

Assistant Professor, Department of Industrial Engineering

Thesis Advisor

___________________________ _______________

Dr. Malick Ndiaye

Associate Professor, Department of Industrial Engineering

Thesis Co-Advisor

___________________________ _______________

Dr. Mahmoud Awad

Assistant Professor, Department of Industrial Engineering

Thesis Committee Member

_________________________ _______________

Dr. Norita Ahmad

Associate Professor, Department of Marketing and Information Systems,

School of Business Administration, Thesis Committee Member

___________________________ _______________

Dr. Moncer Hariga

Director, Engineering Systems Management Graduate Program

___________________________ _______________

Dr. Mohamed El-Tarhuni

Associate Dean, College of Engineering

___________________________ _______________

Dr. Leland Blank

Dean, College of Engineering

__________________________ _______________

Dr. Khaled Assaleh

Interim Vice Provost for Research and Graduate Studies

Acknowledgements

First and above all I am grateful to Allah for granting me the courage and

patience to finish this thesis.

I would like to thank the American University of Sharjah for providing such

high standards educational programs. Special thanks goes to the faculty members of

the College of Engineering, the Engineering Systems Management (ESM) Graduate

Program, and the Department of Industrial Engineering for their care and support.

I would like to express my appreciation to my advisors Dr. Abdulrahim

Shamayleh and Dr. Malick Ndiaye for all the time, effort and guidance they provided

me with. It is because of their motivation and inspiration I managed to get the best out

of this experience.

Many thanks to the committee members Dr. Mahmoud Awad and Dr. Norita

Ahmad for their valuable suggestions and insightful comments. Last but not least, I

would like to express my gratitude to Dr. Moncer Hariga for the special and individual

care and support he provides each student with. It was an honor to learn from all of my

remarkable professors.

Dedication

To the joy of my life, my family.

6

Abstract

Batch scheduling and processing play a critical role in many manufacturing and

service industries. They are widely used in service industries such as banking to process

data which makes them of great importance since data communication, monitoring and

execution are essential whether they are done online or offline. Batch processing is

defined as the execution of a set of required tasks within a specific time frame without

violating predecessors’ requirements and constraints set by the client. The goal is to

achieve the agreed service level contracted with clients using the minimum amount of

resources. This research investigates the scheduling problem of processing a set of tasks

of non-identical sizes and priority using a set of processors. The objective is to minimize

the data batch processing cost while taking into consideration the available resources

and the tasks predecessors and constraints. Different types of costs will be included

which are: servers and software basic leasing cost, rental cost for additional resources

needed in case of overload and extra work, penalty cost of failing to execute the batch

process as per the Service Level Agreement (SLA), and the opportunity cost

representing the cost of idling a resource for any period of time due to inefficient task

allocation. An iterative algorithm with an optimization model at each iteration was

developed to optimize the data batching process while minimizing the aforementioned

costs. A sensitivity analysis is conducted by varying the main model parameters, one at

a time to study their impact on the total cost and the problem under study. Also, different

network sizes and complexities were tested to study the effectiveness of the developed

algorithm. It was found that it is more effective to include all types of costs in one

optimization model along with priority, weight, predecessor and time factors. The

algorithm proved its effectiveness by allocating files with higher priority and weight

prior to other files while taking into consideration time and different types of costs

which led to lower batch process total cost. It is recommended that penalty cost and

extra processors different costs should be negotiated thoroughly between stakeholders

prior to signing the SLA since it was found that those costs affect the time and number

of rented extra processors which consequently affects the whole batch process.

Search Terms: Data batching, scheduling, processing cost, parallel processing,

optimization, multi-processing.

7

Table of Contents

List of Figures ... 9

List of Tables .. 10

Abbreviations .. 11

Chapter 1: Introduction ... 12

1.1 Overview .. 12

1.1.1 Data batch processing ... 13

1.1.2 Difference between 'batch process and online job' 13

1.1.3 When and where to use data batching? ... 14

1.1.4 Manual and automatic batch close .. 16

1.1.5 Batch operating system ... 16

1.1.6 Batch process benefits and difficulties ... 17

1.1.7 Batch window ... 18

1.1.8 Partitioning concurrent batch & parallel processing 19

1.1.9 Batch failure and recovery .. 19

1.1.9.1 Fatal errors. ... 20

1.1.9.2 Non-Fatal errors. ... 20

1.1.9.3 Recovery after failure. ... 20

1.1.10 Batch system components ... 20

1.1.11 Batch system industrial applications ... 23

1.2 Problem Statement ... 24

1.3 Research Objective and Significance ... 25

1.4 Research Methodology ... 26

1.5 Thesis Organization .. 26

Chapter 2: Literature Review .. 28

2.1 Batch Process Scheduling .. 31

2.2 Batch Process Optimization ... 34

2.3 Reducing Batch Process Time Using Parallel System 35

2.4 Economic Market Based Allocation and Evaluation Methods 37

2.5 Chapter Summary ... 39

Chapter 3: Data Batch Model ... 40

3.1 Bank Model .. 40

3.2 Mathematical Model Formulation .. 42

8

3.2.1 Model assumptions ... 46

3.2.2 Indices ... 47

3.2.3 Problem parameters .. 48

3.2.4 Problem decision variables ... 48

3.2.5 Algorithm steps and model formulation ... 49

3.2.6 Illustrative example ... 54

3.2.7 Benchmark .. 62

Chapter 4: Sensitivity Analysis ... 64

4.1 Single Network Analysis .. 64

4.1.1 Varying number of available extra processors.. 64

4.1.2 Changing SLA value .. 67

4.1.3 Varying Penalty cost per time unit.. 69

4.1.4 Changing the extra server costs .. 71

4.2 Multiple Networks Analysis ... 74

4.2.1 Fifteen activities networks .. 75

4.2.2 Twenty-five activities networks .. 76

4.2.3 Fifty activities networks .. 76

4.2.4 Hundred activities networks ... 76

Chapter 5: Conclusion and Future Research ... 77

5.1 Conclusion .. 77

5.2 Limitations and future research direction ... 78

References ... 79

Appendix A : Lingo Code... 83

Appendix B : Network Allocation Example ... 89

Vita ... 91

9

List of Figures

Figure 1: Data batching process [5] ... 14

Figure 2: Difference between batch job and online interactive transaction [6] 15

Figure 3: Batch operating system [13] ... 17

Figure 4: Parallel batch processing [15] .. 19

Figure 5: Data batch system components [4] ... 23

Figure 6: Banks complex processes [1] ... 40

Figure 7: Typical Data Batch Processing System for bank model 43

Figure 8: Service provider position with respect to IBM and client 44

Figure 9: Illustrative Example ... 55

Figure 10: Varying available extra processors vs. Batch time..................................... 66

Figure 11: Varying available extra processors vs. Cost ... 66

Figure 12: Varying SLA vs. Batch time ... 68

Figure 13: Varying SLA vs. Cost ... 69

Figure 14: Varying Cp vs. Batch time ... 72

Figure 15: Varying Cp vs. Cost ... 72

Figure 16: Varying extra processor cost factor vs. Batch time 75

Figure 17: Varying extra processor cost factor vs. Cost .. 75

file:///C:/Users/g00047863/Desktop/thesis%20report%20final%20copy-20.05.2016.docx%23_Toc451684425
file:///C:/Users/g00047863/Desktop/thesis%20report%20final%20copy-20.05.2016.docx%23_Toc451684426
file:///C:/Users/g00047863/Desktop/thesis%20report%20final%20copy-20.05.2016.docx%23_Toc451684428

10

List of Tables

Table 1: Summary of relevant papers in the literature ... 28

Table 2: Precedence Matrix for lij at T=0 ... 56

Table 3: Data file initial weight αi and precedence parameter Lij at T=0 57

Table 4: Files scheduling priority, multiprocessing ei and processing time ni at T=0 57

Table 5: Allocation result for Example 1. .. 58

Table 6: Data Batch Process Cost for Example 1. ... 62

Table 7: Batch process results in case of four Available extra processors 64

Table 8: Batch process results in case of three Available extra processors 65

Table 9: Batch process results in case of two Available extra processors 65

Table 10: Batch process results in case of one Available extra processors 65

Table 11: Batch process results in case of SLA = 19 time units 67

Table 12: Batch process results in case of SLA = 17 time units 67

Table 13: Batch process results in case of SLA = 16 time units 68

Table 14: Batch process results in case of SLA = 20 time units 68

Table 15: Batch process results in case of Cp = $ 0 per time unit 69

Table 16: Batch process results in case of Cp = $ 5 per time unit 70

Table 17: Batch process results in case of Cp = $ 8 per time unit 70

Table 18: Batch process results in case of Cp = $ 20 per unit time 70

Table 19: Batch process results in case of Cp = $ 100 per unit time 71

Table 20: Batch process results in case of Cp = $ 500 per unit time 71

Table 21: Batch process results in case of extra to basic servers cost ratio = 2.5........ 72

Table 22: Batch process results in case of extra to basic servers cost ratio = 5........... 73

Table 23: Batch process results in case of extra to basic servers cost ratio = 10......... 73

Table 24: Batch process results in case of extra to basic servers cost ratio = 1........... 74

Table 25: Batch process results in case of extra to basic servers cost ratio = 0.5........ 74

Table 26: Run times for fifteen activities network with different complexities 76

Table 27: Run times for twenty-five activities network with different complexities .. 76

Table 28: Run times for fifty activities network with different complexities.............. 76

Table 29: Run times for hundred activities network with different complexities 76

11

Abbreviations

SLA – Service Level Agreement

BW – Band Width

DCSDBP – Dynamic Cost Scheduling for Data Batch Processing

BDPS – Batch Data Processes Scheduling

MOM – Mother of Executing Jobs

JES – Job Entry Subsystem

JCL – Job Control Language

EOD – End of Day

GA – Genetic Algorithm

FIS – Fuzzy Inference Systems

FCFS – First Come First Served

RES – Reservation

SCDF – Smallest Cumulative Demand First

QoS – Quality of Service

MD – Modified Delay heuristic

GRASP – Greedy Randomized Adaptive Search Procedure

LTF – Longest Case First

12

Chapter 1: Introduction

Chapter 1 presents an overview of data batch processing, related definitions,

difference between online and batch process, and data batch process’s main

components. In addition, the chapter highlights the problem statement, the research

objectives and significance, and the research methodology.

1.1 Overview

Data batch processing is one of the main instruments and applications used for

data processing in business networks. In today’s world, economies and commodity

markets are swinging rapidly. Barriers to global competition are disappearing, and

customers are changing preferences and expectations faster than businesses can

respond. At the same time, personal, organizational and business networks are

becoming more interconnected, instrumented and intelligent [1]. Data batch process

can be defined as the execution of data files as input batches using available resources

and gathering the resulted files as output batches. It has many applications such as:

billing, issuing reports, sorting files and others [2, 3, 7, 9, 13]. The main feature of data

batch processing is its ability to handle huge amount of data files [7, 8] which made it

attractive and essential to many organizations in different business fields.

Batch processing is a critical topic that has been associated with mainframe

computers since the earliest days of electronic computing in the 1950s [2]. IBM

mainframe z/OS operating system or platform has the most evolved set of batch

processing facilities which makes IBM the owner of the data batch process platform

and the many patents that cover it [2].

Data batch process handles data files by allocating them as batches to the

available processors for execution and obtaining the output files as a batch while

satisfying files priorities and predecessors’ requirements set by the client within

a specified time frame. The above explanation shows that a major component of the

data batch process is missing and that is cost. It was of a surprise while searching the

literature to find that cost associated with the process was never tackled in the proper

way by defining all of its types and including them in the batch process. Also, cost was

never been included in all the attempts to schedule input batches to resources

(processors). The motivation to start this research is to consider all types of costs related

to the batch process along with the rest of batch process factors in one optimization

http://en.wikipedia.org/wiki/Mainframe_computer
http://en.wikipedia.org/wiki/Mainframe_computer
http://en.wikipedia.org/wiki/IBM_mainframe
http://en.wikipedia.org/wiki/IBM_mainframe
http://en.wikipedia.org/wiki/Z/OS
http://en.wikipedia.org/wiki/Operating_system

13

model bearing in mind the fact that not all aspects related to data batch process was

taken into consideration.

Our objective is to schedule jobs in the form of input batches to available

processors while satisfying all constraints and priorities within a specified time frame,

considering the different types of associated costs. The main contribution of this thesis

to the literature and companies which process their data in batch processing is

introducing an algorithm that solves the batch processing problem while considering

costs. The algorithm is called Dynamic Cost scheduling for Data Batch Processing

(DCSDBP). The developed algorithm is tested for different networks, complexities, by

varying different parameters.

1.1.1 Data batch processing

Data batch processing is the execution of collections of jobs (data files) on

a computer that runs at a scheduled time or on a needed basis without interaction with

users and with no or minimal interaction with a computer operator [2, 3]. A program

takes a set of data files as input, processes the data, and produces a set of output data

files. This operating environment is termed as "batch processing" because the input data

are collected into batches or sets of records and each batch is processed as a unit.

The output is another batch that can be reused for computation [2].

Batch processing contributes to the major part of the workload on mainframe

computers. A large mainframe will often run several thousand batch jobs every day [4].

This “network” of jobs represents a business workflow with complex interrelations

requiring careful scheduling and prioritizing to ensure that all batch jobs run in the

correct order and meet strict deadlines [4]. In general, Jobs are gathered in a queue and

will run when the user places a request. Job scheduler will schedule them as per pre-

determined policy and the processor will start the batch process when Mother of

Executing Jobs (MOM) gives the order [5]. Figure 1 illustrates a typical data batching

system [5].

1.1.2 Difference between 'batch process and online job'

Data communication and execution can be done either online or offline as a

batch process. The difference between the two types should be clarified to understand

the characteristics and importance of each one, especially the one under consideration

which is the offline type named “Data batch process”.

http://en.wikipedia.org/wiki/Job_stream
http://en.wikipedia.org/wiki/Computer

14

Figure 1: Data batching process [5]

Data batch process includes processing transactions in a group or batch, where

no user interaction is required once batch processing is underway. This is the main

difference between batch processing and "online" or interactive programs which

prompts the user for inputs and involves processing transactions one at a time [3, 6, 7,

8].

After loading the data into the system, batch processing does not usually require

any further interaction from the user. Therefore, the user interface is often code-based.

The user enters the parameters of the batch and then leaves them to carry on allocating

data files to available resources [6, 7, 8]. Figure 2 illustrates the difference between

batch job and online interactive transaction [6].

1.1.3 When and where to use data batching?

Data batching is used when non-continuous (non-real time) processing of data,

instructions, or materials are accepted. In data transmission, batch processing is used

for very large files or where a fast response time is not critical. The files to be

transmitted are gathered over a pre-specified period of time and are then sent together

as a batch [7, 8].

Figure (1): Data batching process

http://en.wikipedia.org/wiki/Interactive_computing
http://www.businessdictionary.com/definition/processing.html
http://www.businessdictionary.com/definition/data.html
http://www.businessdictionary.com/definition/instructions.html
http://www.businessdictionary.com/definition/material.html
http://www.businessdictionary.com/definition/batch.html
http://www.businessdictionary.com/definition/file.html
http://www.businessdictionary.com/definition/response-time.html
http://www.businessdictionary.com/definition/period.html

15

Figure 2: Difference between batch job and online interactive transaction [6]

Most mature mainframe systems rely on batch jobs to perform significant

portions of the total application logic. The types of tasks undertaken include [2, 3, 7, 9,

13]:

 Merging the day’s transactions into master files.

 Sorting data files for optimal processing the following day.

 Merging data from multiple locations.

 Providing daily, weekly, monthly and annual reports.

 Producing daily, weekly, monthly and annual bank statements to send out to

each account holder.

 Issuing daily, weekly and monthly bills or invoices to customers such as

(electricity, gas, telephone and credit card bills).

 Performing daily, weekly, biweekly and monthly payroll calculations which

results in a set of pay slips to be issued. The salaries of employees can be printed

at the end of period by the batch system.

 Consolidating multiple orders into single shipments and invoices.

 Printing checks.

 Performing special mailings.

 Applying interest to financial accounts.

 Batching orders for transmission to another company.

 Performing backups.

 Archiving data.

16

 Auditing transactions and systems.

 Fraud detection system.

 Other than business fields, scientists may have a huge amount of data on

an experiment that could be submitted to a super-computer as a batch run. Once

completed, an output data set is available for further analysis and visualization.

Some companies may be able to survive for a day or two without running batch

systems, but most will find business operations degrading rapidly if the batch

applications are not run [4].

1.1.4 Manual and automatic batch close

The point-of-sale terminal or credit card processing software can be set on

manual batch close or automatic batch close. If it is set on manual batch close, the

merchant will need to batch out at the end of each day. This sends a command to the

processor to settle all transactions that have been entered. Once a batch is settled, a

report is usually printed showing the transaction totals in the batch. Before a batch is

settled, changes can be made to existing transactions in the batch. For example, one

may want to void a transaction, or change an amount of one of the transactions.

Changing the amount is typically done for a merchant that enters tips, such as a

restaurant. In the case of tips, the amount of the transaction is adjusted to include the

tip before the batch is closed [10].

In automatic batch close, no manual intervention is needed by the merchant.

Instead the terminal or software will automatically close the batch (settle

the transactions) at a certain time each day, or in some case the processor will settle

the batch at the processor level (this type of settlement is called host batch close). It is

recommended for most businesses to setup on automatic batch close unless manual

intervention is required, in which case manual batch close would be the better option.

Usually for automatic and manual batch setup, processors will charge a small fee equal

to a single transaction fee at the time when the batch is closed [10].

1.1.5 Batch operating system

Jobs are set up so they can be run to completion without human interaction

meaning that users of batch operating system do not interact with the computer directly

[2]. In other words, each user prepares his job on an off-line device and submits it to

the computer operator. To speed up processing, jobs with similar needs are batched

17

together and are run as a group. Thus, the programmers left their programs with the

operator. The operator then sorts programs into batches with similar requirements

[11, 12].

Computer operator sets parameters at the start of a batch job and changes data

storage devices when prompted. These input parameters are predefined through scripts,

command-line arguments, control files, or job control language[2]. Many of today’s

batch systems automate these tasks so there is no interaction with humans unless

something goes wrong. Figure 3 illustrates batch operating system [12, 13].

Figure 3: Batch operating system [13]

1.1.6 Batch process benefits and difficulties

Data batch system has many advantages that makes it highly utilized by

enterprises of all sizes where it can be used in many ways such as: [2, 3, 7, 11, 13]

 It can shift the time of job processing to when the computing resources are less

busy.

 Avoids idling the computing resources with minute-by-minute manual

intervention and supervision.

 Allows the system to use different priorities for interactive and non-interactive

work.

 Rather than running one program multiple times to process one transaction each

time, batch processes will run the program only once for many transactions,

reducing system overhead.

 Repeated jobs are done fast in batch systems without user interaction.

http://en.wikipedia.org/wiki/Parameter#Computing
http://en.wikipedia.org/wiki/Script_(computer_programming)
http://en.wikipedia.org/wiki/Command-line_parameter#Arguments
http://en.wikipedia.org/wiki/Job_control_language
http://en.wikipedia.org/wiki/Scheduling_(computing)

18

 No special hardware and system support is needed to input data in batch

systems.

 Manage large volume of transactions

 Best for large organizations but small organizations can also benefit from it.

 Batch systems can work offline so it makes less stress on processor.

 Processor consumes good time while processing, which means it knows which

job to process next. In real time systems we don’t have expectation time of how

long the job is and what is estimated time to complete it. But in batch systems,

the processor knows how long the job is as it is queued.

 Sharing of batch system for multiple users.

Although data batch system has many pros which makes it useful, there are few

difficulties associated with it. Some of them are: [11, 13].

 Batch systems are tremendously costly.

 Computer operators must be trained for using batch systems.

 It is difficult to debug batch systems.

 Time delay between collecting the input data and getting an output. It can also

be frustrating to find out only later that a batch run has failed due to a data input

problem.

 If some job takes too much time i.e. if error occurs in job then other jobs will

wait for unknown time.

 Difficult to provide the desired priority.

1.1.7 Batch window

A batch window is "a period of less-intensive online activity", when

the computer system is able to run batch jobs without interference from online

systems [2].

Many early computer systems offered only batch processing, so jobs could be

run any time 24-hour/day. With the advent of transaction processing, the online

applications might only be required from 9:00 a.m. to 5:00 p.m., leaving two shifts

available for batch work [2], in this case the batch window would be sixteen hours.

The problem is not that the computer system is incapable of supporting concurrent

online and batch work, but the batch systems usually require access to data in a

consistent state, free from online updates until the batch processing is complete [2].

http://en.wikipedia.org/wiki/Transaction_processing

19

Typically, before and after each batch window critical files backup is made and

database is updated.

1.1.8 Partitioning concurrent batch & parallel processing

Parallel processing is the use of more than one processor to execute or run many

different jobs at the same time. Ideally, parallel processing makes a batch run faster

because there are more resources (processors) running it concurrently [14].

Partitioning is a processing option where execution of many instances of

the same job is performed at the same time. This is another way to speed up the batch

process [14]. Figure 4 illustrates parallel processing [15].

Figure 4: Parallel batch processing [15]

1.1.9 Batch failure and recovery

The Batch Processor uses parallel processors to progress through cases quickly

and efficiently. However, when using multiple parallel processors, it is possible for an

error to occur. Generally, errors might prevent some, but not all, of the processors from

continuing their work. It is important in this scenario that the data batch process doesn’t

stop and the batch processor handles the error gracefully where it can be restarted to

20

complete the processing for any cases that were missed [16]. There are two types of

errors that can occur when the batch processor is running: fatal and non-fatal. The Batch

Processor manages occurrences of these errors separately [16].

1.1.9.1 Fatal errors. Fatal errors are unexpected errors that apply to a processor

as a whole; for example, when the database of the processor, which is reading from or

writing to, becomes unexpectedly unavailable. Fatal errors may affect one or more of

the parallel processors, but do not necessarily affect all parallel processors [16].

When a fatal error is encountered, the error details are logged according to

the log configuration, and the affected processor is stopped. When using multiple

parallel processors, any unaffected processors will continue working to ensure that as

many cases as possible are processed and the batch process is carried on. The final

summary message provided by the Batch Processor will indicate that an error occurred

during processing, and will identify the total number of cases that were successfully

processed [16].

1.1.9.2 Non-Fatal errors. Non-Fatal errors are predictable errors that apply to

a single case only. An example of these non-fatal errors is data validation error (such

as trying to read the value 'abc' into a numeric attribute).

When a non-fatal error is encountered, the error details are logged according to

the log configuration. Thus, the affected case is ignored, the batch process is carried on

and the processor continues on to the next case. The final summary message provided

by the batch processor will identify the total number of cases that were successfully

processed and the total number of cases that were ignored due to non-fatal errors [16].

1.1.9.3 Recovery after failure. If the batch processor has encountered a fatal

error, it is likely that there will be cases that were not processed. Once the cause of the

fatal error has been identified and resolved, the batch processor can be run again to

reprocess all cases, including those missed previously due to the fatal error [16].

1.1.10 Batch system components

The main components of batch system are [4]:

1. Job entry subsystem (JES): It queues and assigns jobs to initiators based on

the job priority set by the client and the availability of initiators. It can be given

a priority order for job classes so that jobs of a higher priority are always

executed before jobs of a lower priority [1].

21

2. Initiators: are sets of machine resources that can support one job at a time. They

are responsible for running a job. Initiators are used to:

 ensure that jobs do not conflict in data set usage.

 ensure that single-user devices (tape drives) are allocated correctly.

 find executable programs requested by jobs.

 clean up after the job ends and request the next job.

System programmers spend considerable time deciding the number of initiators

that can be created for batch processing without affecting the performance of

online workloads.

3. Job: One or more executable programs. It is considered the surface layer of

batch systems. A job consists of multiple tasks. In other words, a collection of

tasks that is used to perform a computation is known as a job. A task is often

a part of a job, sometimes the only part.

4. Steps: Every job consists of a number of steps, and each step essentially does

two things:

 Indicates the program to be executed in the step and defines the files to be

used as input to and output from that program.

 Sets up the environment within which the program should run (such as job

priorities, and print file classes).

Generally the steps in a job are logically connected and make sense to run as

a batch, such as end-of-day processing or calculating monthly interest

payments.

5. Sort: Data sorting is a common function of job steps. This is because it is

usually quicker to arrange data into an appropriate order for the application

process than to have the process fetch each record from an indexed file or

database that does not have the data in the desired order.

6. Job class: It is used to group jobs by priority or function and to determine which

initiator(s) can be used to execute the job. Every job has a job class, and system

programmers specify the classes that can be executed in each initiator.

Configuring the properties, number of initiators and the classes assigned to the

initiators provides the ability to give different job classes different amounts of

processing power or priority.

7. JCL: (Job Control Language), a set of instructions executed together and

22

written in IBM JCL. It is the language used to describe the steps of a batch job

(including file name cross-references, executable commands, control flow and

programs to be run) and to provide control parameters to the JES as well as

instructions on which programs will be run in the job’s steps and which files or

databases will be accessed or created by those jobs. JCL can contain conditional

instructions or branches so that different actions can be taken based on the input

to the job and the results and failures of the job steps.

 Through JCL, you specify: who you are (important for security reasons) and

which resources (programs, files, memory) and services are needed from

the system to process your program.

8. PROCs: are prepackaged frequently used sets or features of JCL stored in

the system catalog. JCL statements “PROCs” might be used by several batch

jobs which means that blocks of JCL that are similar or identical across many

jobs can be maintained in one source file and be involved when needed by each

job.

9. Scheduler: handles the following tasks:

 Scheduling job start times, and specifying days and times that jobs run may

be determined by complex rules that account for public holidays or leap years

or for working around the schedules of other batch jobs.

 Codifying dependencies between jobs and their runtime requirements.

The execution of some jobs may be dependent on the execution of other jobs

or the arrival of data from third parties.

 Providing reporting and alerting capabilities. Other scheduling contingencies

involve postponing or continuing with a job run if a particular job fails.

 Job schedulers have thousands of stored parameters for documenting

the event sequence requirements for thousands of jobs.

10. Starting Jobs: Originally, jobs were started by operators following instructions

for when each job should be started and the order in which jobs should be run.

Today, jobs are generally started by job scheduling software.

11. Business Rules: Although the programs run are responsible for the main

business processing, the jobs and scheduling systems generally embody many

business rules that are vital to preserve.

12. Programs: A large part of migrating batch applications involves the programs

23

executed by the steps.

13. Data files and databases: The purpose of batch jobs is to manipulate and/or

report on the data held in data files and databases. IBM mainframes support

a large variety of data files and databases such as Oracle.

Figure 5 provides a simplified view of these components [4].

Figure 5: Data batch system components [4]

The processes illustrated in figure 5 can be described as follows [4]:

 The job scheduler determines when a job runs and starts the job.

 The job runs within an initiator—a set of machine resources such as memory

and processor time. The mainframe operating system is configured for a limited

number of initiators.

 Initiator assignment is determined by the JES.

 Jobs consist of one or more steps.

 The steps may be coded directly in the JCL that defines the job or in procedures

(PROCs) invoked from the job, which is also written in JCL and stored in

the libraries.

 Typically, program steps read and update files or databases and create reports.

1.1.11 Batch system industrial applications

Batch process system has wide applications in many industries ranging from

24

chemical, pharmaceutical and food industries all the way to plants and heavy industries.

Other than Data Batch systems , different plants use batch systems in their production

lines where their raw materials and assembling parts are gathered in batches and

undergo a certain manufacturing process based on predetermined priorities to end up

with an output batch that represents the next stage or end products. It is clear that our

model to utilize data batch system can be generalized to be applied in manufacturing

batch systems and other batch systems where input batches can be allocated efficiently

and effectively to available machinery while all aspects are taken into consideration

including different associated costs.

1.2 Problem Statement

Batch processing plays a critical role in daily operations carried out in most

organizations in different business fields. This process is widely used in the banking

sector due to the need for it in processing end-of-day (EOD) jobs [2] which includes

most of the highly important and frequently used bank activities such as: preparing

employees’ payroll, interest rate calculations, customer’s bank statements, credit card

companies processing bills, fraud detection data and many others. Although data batch

process is applicable in different fields, the scope of our work is mainly focused on the

banking sector since it relies heavily on data batch processing in their daily operations.

In previous work, researchers have focused their effort on addressing most of

the aspects related to data batch process, especially scheduling. Even though the needed

resources are costly and should be part of the decision process, only few papers dealt

with the cost issue which initiated the motivation of the work in this thesis.

The high cost of software and hardware resources used in batch process and

the patents rights of IBM which own this platform made it beneficial and essential for

data batch process users to minimize the cost associated with it. In today’s rapidly

changing business world, every firm is looking to cut down expenses especially

medium to high scale organizations (such as banks). It is those companies which need

to process their data using batch process on a regular and intense basis and those are

the ones which will appreciate a significant minimization in the data batch process cost

without compromising other aspects of the process; in other words, getting the data

batch process done efficiently with minimum possible cost. There are five types of costs

in the data batching process: First, the service provider has to lease the required number

25

of resources, and hardware processors from sole provider who owns the platform

“IBM” as per the job requirements. This is usually the basic cost, however, there are

other costs where in certain occasions, more tasks are assigned for processing. In that

case, more resources are needed and those will be rented in a higher rate since they

were not negotiated in the beginning stages. Third, there is the software cost, which

shall be rented from IBM as well. Fourth is the penalty cost, which represents the fees

the service provider has to pay to the client in case the required results could not be met

according to the contract between the two parties referred to as service level agreement

(SLA). Lastly, the opportunity cost represents the cost of idling a resource for any period

of time

The main problem studied in this thesis is data batch process optimization. The

problem is addressed in terms of the following aspects or sub-problems: scheduling,

time and cost while satisfying all client’s priorities, predecessors and constraints. The

objective of the work is to address the problem of minimizing the amount of resources

(processors and software), needed to process a group of tasks according to a certain set

of priorities while satisfying all the predecessors and constraints, and maintaining the

lowest possible cost.

1.3 Research Objective and Significance

This research is tackling the significantly effective and widely used data

batching process. The work focuses on scheduling a set of required jobs to be processed

in a batch using the available resources (i.e. processors) as per the predecessors, job

priorities and constraints stated in the SLA while batch job’s predecessors and priorities

are specified by the client depending on the type of tasks handled. The main constraints

taken into consideration are: time “batch window limitation” and process associated

costs. In the literature related to batch process, the focus was on scheduling methods to

fulfill customer needs using available resources while satisfying predecessors and

constraints without trying to minimize customer cost. This research targets data batch

process in all its aspects including minimizing the associated five types of cost

mentioned earlier. Consequently, this work will achieve a better schedule, and results,

and will increase the utility of data batch process. Bearing in mind how costly resources

used in batch process are, our model is considered to have a huge impact equally on

industry and literature.

26

1.4 Research Methodology

The problem illustrated in this research was studied and analyzed as per

the following steps:

Step 1: Reviewing the literature related to data batching process, especially

papers dealing with batch scheduling algorithms and effective batching

process.

Step 2: Developing an algorithm which includes an optimization model at each

iteration. The model’s assumptions, objective function, constraints,

decision variables, and problem parameters were defined. The

developed algorithm is called Dynamic Cost scheduling for Data Batch

Process (DCSDBP).

Step 3: Coding the formulated model using LINGO 15.0 x64.

The computer that the LINGO 15.0 x64 software is installed on has

the following specifications:

 Processor: Intel (R) Core (TM) i7-4510U CPU @ 2.00 GHz

 Installed Memory (RAM): 8.00 GB

 Operating System: Windows 8_OS

 System Type: 64-bit Operating System

 Hard Disk: 30 GB.

Step 4: Testing the DCSDBP scheduling algorithm and comparing it to a

benchmark.

Step 5: Performing sensitivity analysis by varying the model parameters to

study their effect on the developed model. Different network sizes and

complexities were tested as well.

1.5 Thesis Organization

Chapter 1 introduces the main definitions related to the concept of data batch

process and its basic components using the necessary illustrative figures. In addition,

chapter 1 also states the research problem, objective and significance and methodology.

Chapter 2 is dedicated to review all the relevant literature done before proceeding with

the model. Chapter 3 presents the developed mathematical model along with a

numerical example. The result of the sensitivity analysis conducted on the developed

27

model is provided in Chapter 4. Finally, conclusion and suggestions for future work

will be in discussed in Chapter 5.

28

Chapter 2: Literature Review

Modern computer network and distribution systems are known for their massive

complexity which makes traditional approaches to resource allocation impractical and

hard to optimize, nevertheless, extremely costly. Overall, relevant literature dealt with

different aspects of resource allocation such as: methods, effectiveness, optimization

and process time. However, only limited amount of work considered cost as a way of

optimizing the resource allocation issue whether it is utilized in online or batch systems.

This literature review section is divided according to the research sub-problems

structure as explained in the problem statement. It is divided into scheduling, time, and

cost. Also a fourth section reviewing batch process optimization in the chemical

engineering field was added due to its relevance to the data batch process. Table 1

summarizes the most relevant papers in the literature.

Table 1: Summary of relevant papers in the literature

A
u

th
o
r

S
ch

ed
u

lin
g

R
ed

u
cin

g

tim
e

O
p

tim
iza

tio
n

M
a
rk

et b
a
sed

a
llo

ca
tio

n

M
eth

o
d

o
lo

g
y

A
p

p
lica

tio
n

Page

 et al.
● ●

Genetic

algorithm,

combined with

eight common

heuristics

Heterogeneous

distributed system

Mendez

et al.
●

Modeling

optimization

approach

General

networks and

sequential batch

plants

Osman

et al.
●

Dynamic

optimization

algorithm

modeling

Multiprocessor

computer

network

Lim and

Cho
●

Fuzzy inference

with user

preference model

Computer

operating

systems

Xhafa and

Abraham
●

Computational

models using

heuristic and

meta-heuristic

approaches

Grid computing

systems

29

Table 1: Summary of relevant papers in the literature (continued)

A
u

th
o
r

S
ch

ed
u

lin
g

R
ed

u
cin

g

tim
e

O
p

tim
iza

tio
n

M
a
rk

et b
a
sed

a
llo

ca
tio

n

M
eth

o
d

o
lo

g
y

A
p

p
lica

tio
n

Aida ●

Scheduler

Performance

evaluation using

simulation

Parallel

computer

systems

Stoica

et al.
●

Developing

micro-economic

paradigm for

online scheduling

Multiprocessor

systems.

Stoica and

Potheny
●

Simulation and

comparing

Multiprocessor

systems.

Agarwal

and

Kumar

●
Developing

algorithm

Grid

environment

Andresen

and

McCune

● Modeling
Processors

clusters

Islam

et al.
●

Developing

scheduling

heuristic

Computer

networks

Srinivasan

et al.
 ●

Interpretation of

optimal solutions

using analytical

and numerical

methods

Chemicals

industry

Srinivasan

et al.
 ●

Analyze

measurement-

based

optimization

strategies

Chemicals

industry

(penicillin

production)

Zhou

et al.
 ●

Systematic

model design

and hybrid

optimization

strategy for

mixed –integer

nonlinear

programming

(MINLP)

Chemical

industry (water

allocation

system)

30

Table 1: Summary of relevant papers in the literature (continued)

A
u

th
o
r

S
ch

ed
u

lin
g

R
ed

u
cin

g

tim
e

O
p

tim
iza

tio
n

M
a
rk

et b
a
sed

a
llo

ca
tio

n

M
eth

o
d

o
lo

g
y

A
p

p
lica

tio
n

Damodaran

and Vélez-

Gallego

 ●

Simulation,

lower bond

computation and

approach

comparison

Parallel batching

machines

Mehta

 et al.
● ●

Analytical and

simulation model

to scheduling

algorithms

Parallel Database

Systems

Grigoriev

et al.
● ●

Two-phased LP

rounding

technique to

build scheduling

model

Production

planning

Bouganim

et al.
 ● Experimentation

Data integration

systems

Ngubiri

and Vliet
 ● Modeling

Parallel queuing

systems

Arpaci-

Dusseau

and

Culler

 ●

Extending

existing

scheduler

Parallel

distributed

environment

Ferguson

et al.
 ●

Human

economic model

Distributed

systems and

computer

networks

Kuwabara

et al.
 ●

Market model

simulation

Communication

network control

Chun and

Culler
 ●

Modeling,

simulation,

synthetic

workloads and

user-centric

performance

metrics

Cluster

computing

workstations

Sairamesh

et al.
● ● Modeling Packet networks

Yeo and

Buyya
● ● Taxonomy

Cluster

computing

systems

31

Table 1: Summary of relevant papers in the literature (continued)

A
u

th
o
r

S
ch

ed
u

lin
g

R
ed

u
cin

g

tim
e

O
p

tim
iza

tio
n

M
a
rk

et b
a
sed

a
llo

ca
tio

n

M
eth

o
d

o
lo

g
y

A
p

p
lica

tio
n

Islam

et al.
 ●

Framework

design

Computer

systems

Mutz and

Wolski
 ●

Vickrey Auction

novel

implementation

Computer

systems

Mutz

et al.
 ●

Proposing and

evaluating new

Mechanism

Computational

settings

 2.1 Batch Process Scheduling

Scheduling is a critical issue in batch process operation and is crucial for

improving its performance. Many researchers contributed to this field making

the scheduling problem one of the most studied problems in the optimization research

community.

Page et al. [18] considered eight common heuristics along with the genetic

algorithm (GA) evolutionary strategy to dynamically schedule tasks to processors in

a heterogeneous distributed system. Scheduler operates dynamically, which means it

allows tasks to arrive for processing continuously and considers variable system

resources. Also, it utilized 8 heuristics which reduces probability of idling processors

while waiting for a schedule to be generated. It was found that this approach generates

more efficient schedules since it doesn’t make prior assumptions about homogeneity or

availability of resources. Also using multiple heuristics to generate schedules provides

more efficient schedules than using each individual heuristic on its own.

Mendez et al. [19] presented different state of the art optimization methods for

short term batch scheduling. They started by classifying batch scheduling problems

such as: process layout itself (parallel or sequential, single or multiple stage.. etc.),

demand pattern (due date, production target over time horizon), resource constraint

(labor, utilities), cost associated with (equipment, utilities, changeover) and others;

followed by classification of scheduling optimization models focusing on the following

aspects: Time representation (whether schedule can take in predefined time point or at

any moment), material balance (batch number and size), event representation (fixed

32

time interval, variable global time points, etc..). Modeling aspects of optimization

methods were presented and two practical problems were solved using different

approaches to illustrate methods performance, highlight their strength and limitations

and compare effectiveness and efficiency of these models.

Osman et al. [17] proposed a model for data batch scheduling where researchers

allocated a number of tasks to capable resources to process these tasks or jobs within

cut-off time while satisfying all constraints and predecessors conditions. The presented

dynamic approach is called: Batch data Processes Scheduling (BDPS) algorithm. It is

a dynamic iterative framework used for assigning required tasks to available resources

taking into consideration the predecessors, constraints and priority of each job. The

dynamic framework is characterized by constant change in task allocation to available

resources to achieve maximum utilization and prevent idling any resource during any

period of time. This work was adopted as a starting point in this thesis.

Lim and Cho [20] illustrated a method of process scheduling which adapts to

users' preferences and aims to arrange CPU time to multiple processes for providing

users with more efficient throughput. CPU time arrangement is quite hard due to

processes having different purpose. Generally speaking, there are three purposes class:

batch processes, interactive processes and real-time processes. Fuzzy inference systems

(FIS), which are also called fuzzy rule-based systems determine process’s features in

run time, and classify their classes. Then, they model the preferences of users, and

finally decide on the priority of each process using fuzzy inference with the information

of process class and user’s preferences. Although this paper considered minimizing

batch process time, its main goal was satisfying user’s preferences for the three

processes class.

Xhafa and Abraham [21] dealt with Grid technologies which emerged in

the first place to provide more computing power needed by the demanding scientific

computing community. Scheduling in the majority of grid systems is a complicated

problem - when compared to scheduling in classical parallel and distributed systems-,

as well as an important mechanism due to: the diverse needs of grid-enabled

applications, the different parameters that intervene scheduling and the multiple

constraints and optimization criteria in a dynamic environment. They illustrated

heuristic and meta-heuristic methods and found them to be appropriate for Grid

scheduling alternating traditional scheduling techniques.

33

In Aida [22] a new aspect of the scheduling problem was tackled. Researchers

investigated the effect of job size characteristics on job scheduling performance in

a parallel computer system. In order to understand the issue, multiple job scheduling

algorithms performance such as first come first served, longest job first, shortest job

first, First-Fit and Backfilling were evaluated under various workload models each with

a certain characteristic. The results showed that some scheduling algorithms were not

affected by job size characteristics and showed best performance such as first fit

scheduling. Also, certain job size characteristics affected performance of priority

scheduling significantly.

Stoica et al. [23] described a scheduler based on the microeconomic paradigm

for online scheduling of a set of parallel jobs in a multiprocessor system. Increasing

system throughput, reducing response time, fairness in allocating system resources and

providing user with control over the relative performances of his jobs were all

considered. Every user has a savings account in which he/she receives money at a

constant rate. To run a job, the user creates an expense account for that job to which

he/she transfers money from his/her savings account. The job uses the funds in its

expense account to obtain the system resources it needs. The share of the system

resources allocated to the user is directly related to the rate at which the user receives

money; the rate at which the user transfers money into a job expense account controls

the job's performance.

Stoica and Potheny [24] considered the problem of scheduling online set of jobs

on a parallel computer with identical processors. In this paper, they used simulation to

compare three microeconomic policies with three variable partitioning policies, first

come first served with and without reservation (FCFS and RES) and smallest

cumulative demand first (SCDF). Under a systematically designed set of experiments,

they show that the other scheduling policies can be considered as limiting cases of the

microeconomic scheduling policy.

Agarwal and Kumar [25] considered bandwidth requirement as a Quality of

Service (QoS) of a network and availability requirement as a QoS of a compute

resource. An Availability aware QoS oriented Algorithm (AQuA) for task scheduling

in grids has been proposed. The algorithm is evaluated and compared with QGMM

(QoS Guided Min-Min) algorithm in the simulated grid environment.

The experimental analysis and results showed that the AQuA algorithm is able to utilize

34

the highly available resources in grid, which therefore increased the reliability to

successfully execute applications without adversely affecting the makespan.

Andresen and McCune [26] presented a model for dynamically scheduling

HTTP requests across clusters of processors, optimizing the use of client resources as

well as the scattered processor nodes. They also presented a system, H-SWEB,

implementing their techniques and showed experimental improvements which have

been achieved through utilizing a global approach to scheduling requests. A discussion

of the system architecture and implementation was provided, as well as a brief summary

of the experimental results that have been achieved.

Islam et al. [27] proposed a new scheduling heuristic called Normalized

Urgency which is based on the notion of prioritizing jobs based on their urgency and

their processing times. They proved the optimality of their approach for certain

restricted versions of the problem and experimentally compared their schemes against

the existing schemes like First Price, First Reward etc. using real super computer center

workloads. The results demonstrated that the proposed scheme leads to significantly

higher revenue as compared to existing schemes while achieving better performance

with respect to standard performance metrics such as slowdown and utilization.

2.2 Batch Process Optimization

There are several papers that addressed the application of batch process

optimization in chemical engineering field such as factories and production lines.

Srinivasan et al. [28] studied achieving batch process optimization in chemical industry

in order to face the increased competition by reducing production cost, improving

production quality, and meeting safety requirements and environmental regulations.

They assumed the existence of an accurate model and they discussed the

characterization of the optimal solution without considering uncertainty resulting from

model mismatch and disturbances.

Srinivasan et al. [29] included uncertainty in their optimality study since

accurate models of industrial processes are rarely available. Optimization strategies

under uncertainty were overviewed and a novel scheme was proposed where optimality

is achieved by tracking the necessary conditions. Instead of adopting model based

optimization framework, researchers investigated the use of measurement as a way to

optimize uncertain batch process.

35

Zhou et al. [30] developed a cost –optimal schedule scheme where an allocation

network was combined and designed simultaneously. They played an essential role in

determining the overall profit of the plant while fulfilling all requirements in batch

production and satisfied concentration and flow rate constraints imposed at various

times and locations in the water network. Batch process schedules and water –

allocation networks were incorporated into a single mathematical programming model

addressing the interaction between the two systems which results in a better overall

optimization and design.

2.3 Reducing Batch Process Time Using Parallel System

Damodaran and Vélez-Gallego [31] developed a simulated annealing algorithm

to evaluate the performance of batch systems in terms of total completion time and total

weighted completion time. Research goal was to minimize the makespan of batch

processing by allocating batches to identical parallel resources for processing. In other

words, processing time is the issue here and the research objective is to minimize it.

The Modified Delay heuristic (MD) and a Greedy Randomized Adaptive Search

Procedure (GRASP) were proposed and used as a lower bond to compare

the performance of the SA approach. Scheduling allocating resources method were not

emphasized since that was not their major concern in their research.

Metha, et al. [32] proposed parallel query scheduling algorithm by dividing

workload into batches and exploiting common operations within queries in a batch

resulting in significant savings compared to single query scheduling techniques used in

parallel database systems. Multiple parallel scheduling method is based on minimizing

total execution time for a set of queries (batch) by integrating optimization and

scheduling to come up with a plan for concurrent execution and run- time resource

allocation. It is noted that common operations exist between different queries in

multiple query workload. In case of independent scheduling, same operations are

executed multiple times. Techniques developed by researchers in this paper identify

common operations in batches of queries, schedule them in such a way that repetition

is decreased- in other words shared operations will be executed once- which will reduce

incremental load imposed by each query on the system, reduce total execution time and

decrease the amount of memory used since one data copy is saved and shared leading

36

to significantly improve performance by making additional memory available to other

queries.

Grigoriev et al. [33] generalized the classical unrelated machine scheduling

problem with the objective of minimizing the schedule makespan adding a resource –

time tradeoff. In their paper, different variants of the problem were considered.

The processing times of any job-machine pair can be reduced by utilizing a renewable

resource, such as additional workers, that can be allocated to the jobs. In other words,

a maximum number of units of a resource may be used to speed up the jobs, and

the available amount of units of that resource must not be exceeded at any time. They

used a two-phased LP rounding technique to assign resources to jobs and jobs to

machines. The motivation of this study is to contribute to the production planning field

where additional (overtime) workers can be allocated to specific tasks within production

in order to reduce the production cycle time.

Bouganim et al. [34] studied data integration systems execution plans

performance. In this paper, two important correlated problems that arise while

processing queries in data integration systems were addressed: unpredictable delays in

data delivery and memory limitation. Researchers proposed an execution strategy that

reduces the query response time by concurrently executing several query fragments in

order to overlap data delivery delays with the processing of these query fragments.

 Ngubiri and Vliet [35] proposed a new approach for parallel job schedulers

fairness evaluation. Fairness is an important aspect in queuing systems. Several fairness

measures have been proposed in queuing systems in general and parallel job scheduling

in particular. Generally, a scheduler is considered unfair if some jobs are discriminated

while others are favored. The new fairness measuring approach was based on the fact

that since jobs do not have the same resource requirements and arrive when the queue

and system have different states, they are not expected to have the same performance

in a fair set up. Every job, therefore, needs to have a time it would start at if scheduled

by an ideal fair scheduler.

Arpaci-Dusseau and Culler [36] used proportional-share scheduler as

a building-block and showed that extensions to the above scheduler for improving

response time can still fairly allocate resources to a mix of sequential, interactive, and

parallel jobs in distributed environment. Simple extensions were implemented and

37

analyzed which provided better response-times for interactive jobs by giving those jobs

their share of resources over a longer time-interval.

2.4 Economic Market Based Allocation and Evaluation Methods

Ferguson et al. [37] adopted the human economic model and implemented it on

resource allocation in computer network system in order to limit the complexity of

resource sharing algorithms by decentralizing the control of resources. Decentralization

is clearly demonstrated in the fact that economic models consist of two types of agents:

suppliers and consumers who attempt to achieve their goals independently and

selfishly. A consumer attempts to optimize his individual performance criteria by

obtaining the resources he requires and is not concerned with system wide performance.

A supplier’s main goal is to optimize his performance by increasing profit obtained

from allocating his resources to consumers. Each supplier in the economic model owns

a set of resources i.e. processors and charges for consumers for using those resources,

meanwhile each consumer is endowed with money to buy needed resources. This

clearly shows that money and pricing are the main ways to coordinate the selfish

behavior of agents. It is worth mentioning that the resource price is determined based

on supply and demand from consumers and that the pricing system ensures that a

realizable allocation of resources is achieved.

Kuwabara et al. [38] presented market-based approach, where resources are

allocated to activities through buying and selling of resources between agents and

resource allocation in a multi-agent system which is achieved through associating

agents with resources and activities. Agents associated with activities (activity agents

or buyer) request agents at resources (resource agents or seller) for the resource they

require, and resource agents decide whether requests are granted or not. Agents are

given utility functions, and each agent takes actions independently of each other to

maximize their utility. Agents may not know the global state of the system, and their

actions are determined based on limited information of the system. In their model,

buyers do not communicate with each other, and thus, a buyer does not know what

actions the other buyers take; sellers do not communicate with each other, and thus, a

seller does not know the resource prices at other sellers. The only possible

communication in market model is between sellers and buyers to send resource requests

(from buyers to sellers) indicating how much resource buyers require and resource price

38

notifications (from sellers to buyers). This is the major difference between this model

and economic model, which is considered open, which allowed for transparency of

information regarding demand and pricing.

Chun and Culler [39] presented performance analysis of market based batch

schedulers for clusters of workstations using user-centric performance metrics as

the basis for system evaluation. Model built illustrates the allocation of computational

resources through markets using auctions, where the cost of using a resource is directly

related to supply and demand. Each user had a utility function for each job which

measures value delivered as a function of execution time. With aggregated utility as the

performance metric, explicit evaluations provide systems with extra information which

is used to optimize for user value as opposed to system-centric performance metrics

where users have little or no control over how their jobs are given priority in the queue.

Pricing combined with charging creates feedback which causes users to balance the

amount of work submitted to the system with the cost of obtaining associated resources.

Sairamesh et al. [40] proposed a new methodology based on economic models

to provide Quality of Service (QoS) guarantees to competing traffic classes in packet

networks. Priced and traffic classes compete for network resources and they buy them

to satisfy their QoS needs. Researchers developed packet scheduling and admission

policies to provide QoS guarantees based on available QoS and prices in the network.

Yeo and Buyya [41] outlined a taxonomy that describes how market-based resource

management systems can support utility-driven cluster computing. Cluster systems

need to know the specific needs of different users so as to allocate resources according

to their needs. Market-based resource management systems make use of real-world

market concepts and behavior to assign resources to users. In this paper, the taxonomy

is used to survey existing market-based resource management systems to better

understand how they can be utilized.

Islam et al. [42] designed a framework that provides an admission control

mechanism that only accepts jobs whose requested deadlines can be met and, once

accepted, guarantees these deadlines. However, the framework is completely blind to

the revenue these jobs can fetch for the supercomputer center. By accepting a job,

the supercomputer center might relinquish its capability to accept some future arriving

(and potentially more expensive) jobs. In other words, while each job pays an explicit

price to the system for running it, the system may also be viewed as paying an implicit

39

opportunity cost by accepting the job. Thus, accepting a job is profitable only when

the job’s price is higher than its opportunity cost. In this paper, they analyzed the impact

that such opportunity cost can have on the overall revenue of the supercomputer center

and attempted to minimize it through predictive techniques.

Mutz and Wolski [43] presented a novel implementation of the Generalized

Vickrey Auction that uses dynamic programming to schedule jobs and compute

payments in pseudo-polynomial time. Additionally, they have built a version of the PBS

scheduler that uses this algorithm to schedule jobs, and have presented the results of

their tests using this scheduler. Mutz et al. [44] proposed and evaluated the application

of the Expected Externality Mechanism as an approach to solving the problem of

efficiently and fairly allocating resources in a number of different computational

settings based on economic principles. Their mechanism provides incentives for users

to reveal information honestly about job importance and priority in an environment

where batch-scheduler resource allocation decisions introduce “externalities” that

affect all users. Tests indicated that the mechanism meets its theoretical predictions in

practice and can be implemented in a computationally tractable manner.

2.5 Chapter Summary

After reviewing all the above literature, it was concluded that only few research

studies considered operations cost. Most research mainly dealt with scheduling methods

with the objective of minimizing the total execution time; hence that is the gap this

research is trying to fill as explained further in the research objective and significance.

40

Chapter 3: Data Batch Model

3.1 Bank Model

Banking was used as an example to present the data batch processing and to

develop and experiment our model with. It was selected due to the fact that banking

sector is one of the major players in global economy. Financial institutions find

themselves in need for rapid, efficient and effective processes in order to be able to

focus on their clients in a holistic fashion [1]. In addition to that, historically banking

processes have been bounded by the IT systems that drive them. Integration has been

implemented through batch processing and data warehousing. Figure 6 illustrates

the complex operations and working environment in financial companies

(i.e. banks) [1].

Figure 6: Banks complex processes [1]

The bank has a significant amount of data that need to be processed. Usually a

data processing takes place on daily basis but sometimes on monthly basis depending

on its type. Examples of the data that need to be handled: employee’s pay roll, interest

calculations, customer’s bank statements, credit card companies processing bills and

fraud data detection.

Banks usually outsource data processing due to the quantity and diversity of

data and lack of resources (i.e. processors). A private company takes charge of

arranging and processing the data, and aggregating the output; this process is well

41

known as “data batching”. Therefore, the proposed model will be developed from that

third party view; this third party is the data batch process service provider in a form of

a private company leasing processors and software from the only source “IBM” and

performing the batch process for the bank under a service level agreement (SLA). As

previously mentioned the (SLA) is the contract that states all rules and conditions

concerning the data batch process and governing the relationship between the client

(i.e. bank) and the service provider (i.e. private company).

Data arrives from the bank daily after closing hour (5:00 p.m.). The processing

occur after closing hour because they need to be stable (with no online intervention) so

processors will be able to handle the process. Although a lot of processors can handle

both online and data batching processes at the same time, the above mentioned reason

shows why this method is rarely adopted.

Batch processing begins with scheduling batches; this consist of gathering data

in batches and assigning each batch to the appropriate processor. Scheduling data files

shall take into consideration job priorities, predecessors and other constraints. This

means that jobs won’t be processed simultaneously but rather as per their schedule. The

size of each batch depends on the number and size of data files included in it, where

each data file may consist of multiple records. Hence, the time taken to process any

data file depends on its size and on the number of records included in it.

Scheduling is a very important step since it affects the success of the entire

process. The schedule’s size and complexity depend on the size and number of batches,

number and type of processors, kind of tasks that need to be performed on each batch

(whether there is a lot I/O read /write job or not). Also, scheduling methods vary from

First Come First Served (FCFS), Longest Case First (LTF) and other algorithm [17].

Constraints and predecessors of each task are very important issues that should be

considered.

There are five types of costs associated with the data batching process:

First: Leasing cost as per the agreement between processors host like IBM and

the service provider. This is the basic cost of leasing the necessary resources(processors

in this case) to implement the data batching process. Usually the leasing contract

specifies hardware rental charges along with the period, rules and other details. Terms

and conditions can’t be changed unless both parties agree upon it.

42

Second: Software cost, which is the cost of using the necessary software from

IBM needed to execute the batch process.

Third: Extra processors cost, which is the cost of renting additional processors

from IBM. This happens in the case of job overload from the bank side. Obviously

rental cost will be higher than leasing cost since it was not negotiated in the first place

or maybe not included in the original contract.

Fourth: Penalty cost. Clearly this is the fine that the service provider has to pay

in case of failing to execute the data batch process as per the SLA.

Fifth: The opportunity cost that represents the cost of not utilizing the resources.

The company attempts to execute the tasks using the available resources with

maximum utilization to reduce cost and increase their profit (from bank charges) while

meeting the SLA (service level agreement). Assuming multiprocessing method will be

adopted meaning that several processors will be running simultaneously.

It is assumed that the company has a set of processors. Each processes one task

at a time. Also processor reservation is not allowed. Jobs are waiting in queues. The

dispatcher release them for processing according to their priorities and precedence.

No pre-assignment to processors is allowed [17]. In addition, with multiple

processing, any task can be divided among more than one processor for execution. It

is worth mentioning here that a certain processor can execute one job at a time. [17].

After all batches are processed, the resulted output batches shall be collected

continuously (as soon as they are ready), and the batching process should be considered

to have generated the required outcome either as a software or in printed form where it

will be delivered back to the bank first thing in the next morning.

3.2 Mathematical Model Formulation

In this research we study the significant problem of effective data batching

process. The main goal is to optimize this process and increase its utility while

minimizing cost. In previous work by Osman et al. [17], a dynamic iterative scheduling

framework was presented in which they allocated tasks to resources to process within

cut-off time while satisfying all constraints and predecessors conditions. The dynamic

framework is characterized by constant change in task allocation to available resources

to achieve maximum utilization and to prevent idling any resource during any period

43

Figure 7: Typical Data Batch Processing System for bank model

44

Figure 8: Service provider position with respect to IBM and client

45

of time. The work presented in this thesis proposes an algorithm for dynamic iterative

scheduling to satisfy all data batch processing aspects while minimizing five types of

processing costs which are: processors’ basic leasing cost, software basic leasing cost,

additional resources rental cost in case of overload, penalty cost of failing to execute

the batch process as per the SLA and the opportunity cost representing the cost of idling

a resource for any period of time due to inefficient task allocation. The objective is to

minimize the aforementioned costs while satisfying a set of related predecessors,

priority and other vital constraints within cutoff time. This resulted in achieving the

research goal of maximizing batch process effectiveness and feasibility. The developed

algorithm is called Dynamic Cost scheduling for Data Batch Process (DCSDBP). The

(DCSDBP) steps are:

1. Preparatory stage

 This involves setting up the initial data. The initial data consist of information

about the basic and extra processors to state their availability, subset of data files ready

for processing, extra processor utilization parameter which is set to zero indicating that

no extra processor is used at the beginning of allocation process, data files processing

parameters which are set to zero meaning that files are not being processed yet and time

loop is initialized where time is set to zero. The end of this stage indicates the start of

the DCSDBP algorithm.

 2. Setting up data files subset

Continuing on the data files subset from stage one, the files are assigned

parameters and weights based on their precedence obtained from dependency matrix.

3. Solve an iterative network optimization model

Solve an optimization model in the algorithm to allocate data files to

the available processors taking into consideration file weight and priority while

minimizing different types of cost for each time unit. The model ensures that all

assumptions are fulfilled through its constraints.

4. Update utilized extra processors

Solve a mathematical model to estimate the completion time. At this stage, it

will be checked if an extra processor should be rented at this time unit to avoid penalty

cost.

46

The model will calculate the critical path duration for the rest of unprocessed

activities in the data files network at each time unit, and will compare it to the remaining

time till the end of the batch process time that is agreed on in the SLA. At each time

unit, a trade-off between the cost of renting new extra processor and the penalty cost is

made and according to that the model decides whether to rent a new processor or incur

a penalty cost. This trade-off is made under the condition that sufficient files are

available for processing in case of renting new processor.

 5. Update the availability of files

At this stage, each data file processing parameter is incremented by the amount

of times it was processed .When a file is fully processed, then it gets removed from the

subset for the following time unit and the rest of the process.

6. Termination condition is checked

When all files are processed, then the program shall stop and the model

accomplishes its purpose, else the model will go to step 7.

7. Update iteration clock

 Increment iteration clock by one time unit in order to allocate the rest of data

files to available processors for processing.

 Steps 2 through 7 of the (DCSDBP) will be repeated until all tasks are allocated

to available resources and there are no more jobs waiting in the queue.

 Before presenting the model, the model assumptions, parameters, and decision

variables will be introduced.

3.2.1 Model assumptions

 The optimization model in this research is developed under the following set of

assumptions:

1. A fixed number of basic processors are leased by the service providing company

2. Hardware and software costs are incurred by basic processors. The hardware

cost is a fixed amount while the software cost will have fixed and variable cost

amounts. The variable cost is charged per unit time of usage.

47

3. Extra processors can be rented in case of exceeding the SLA; however, costs

will be higher than the cost of basic processors. It is assumed to be 1.25 times

higher than the basic processor hardware and software fixed leasing cost.

4. Hardware and software costs are incurred by the additional processors.

The hardware cost is a fixed amount while the software cost will have a fixed

and variable cost amounts. The variable cost is charged per unit time of usage.

5. Files are allocated to processors until a predetermined cutoff time is reached,

after which the batch process shall continue but penalty cost is imposed on each

delay unit of time. The total penalty cost is calculated by multiplying the time

delay amount by the penalty cost per unit time.

6. Parallel processing is allowed (processors work simultaneously).

7. Processor reservation is not allowed.

8. Each basic or extra processor processes one task at a time.

9. Limited and predetermined number of data files are being processed.

10. Files can be multi-processed at the same time.

11. The iteration clock time unit is estimated by the time it takes to process

the smallest size unit of data file.

12. The batch process total time is a multiple of the iteration unit time.

13. When an extra processor is acquired, it is utilized for the rest of the batch

window.

14. Extra processors can be rented one at a time per iteration.

15. Whenever an extra processor is rented at any time unit T throughout the batch

process, the endorsed fixed hardware and software costs will be calculated from

the time of renting till the end of the batch process.

16. At the beginning of each time unit T, files are allocated and resources are

captured. However, at the end of the time period T, all resources are freed and

ready for the next time period T.

3.2.2 Indices

The following are the indices used in the mathematical model:

i,j Data file.

k Basic processor

r Extra processor

48

3.2.3 Problem parameters

The following are the parameters of the developed mathematical model:

T Clock discrete time.

I Number of all data files.

𝐼′𝑇 The subset of data file that are available for CI processing at any time T.

ni Number of processing times required for data file i.

𝑞𝑖
𝑇 Number of times data file i has been processed; it is incremented

 by one every time data file i being processed.

SLA Batch process time as agreed on in the SLA.

K Number of all basic processors.

R Maximum number extra processors that can be rented in case of exceeding

SLA.

𝑉𝑇 Number of rented extra processors files can acquire at any discrete

 time T.

αi The data file weight based on precedence/dependency matrix.

βi The data file scheduling priority.

BW Available batch process window.

Csf Basic processor software fixed leasing cost.

Csv Basic processor software variable leasing cost given per unit time.

Ch Basic processor hardware leasing cost.

Cesf Extra processor fixed software rental cost per unit time.

Cesv Extra processor variable software rental cost given per unit time.

Ceh Extra processor hardware rental cost per unit time.

Cp Penalty cost per unit time of failing to execute the batch process as per

 the SLA.

ei Number of time file i can be multi processed.

TCp Total penalty cost for the total delay time.

TH Total cost of renting one extra processor at any time unit T.

𝐷𝑇 Available files total multiprocessing ei at any time T.

𝑇𝑟 Clock discrete time at which extra processor r is rented.

END End of batch process.

TBC Total batch process cost.

3.2.4 Problem decision variables

The followings are the decision variables of the developed mathematical model:

49

𝑙𝑖𝑗
𝑇 Binary variable equal to 1 if data file j immediately precedes data file i,

and 0 otherwise (parameters of precedence/dependency matrix).

Pk Binary variable equal to1 if processor k is available to receive data file,

and 0 otherwise.

Wr Binary variable equal to1 if processor r is available to receive data file,

and 0 otherwise.

T
if Binary variable equal to 1 if data file i is available for processing at

discrete time T, and 0 otherwise.

T

iK
X Binary variable equal to 1 if data file i allocated to processor k, and

 0 otherwise.

T

ir
Y Binary variable equal to 1 if data file i allocated to extra processor r, and

0 otherwise.

𝐴𝑇 Binary variable equal to 1 if T > SLA, and 0 otherwise.

UT Critical path at time T for each file i included in the subset 𝐼′𝑇.

𝐸𝑆𝑖
𝑇 Early start of file i.

𝐿𝑆𝑖
𝑇 Late start of file i.

𝑆𝑖
𝑇 Slack (difference between early start and late start) of file i.

𝑂𝑖
𝑇 Binary variable equal to1 if ni -𝑞𝑖

𝑇
 > 0 , and 0 otherwise.

3.2.5 Algorithm steps and model formulation

The main steps of the DCSDBP algorithm are detailed as follows:

Given:

 𝑙𝑖𝑗
𝑇 , ni  i and j(i≠j)

1. Preparatory and initialization stage:

– 𝐼′𝑇 = {}
– Set 𝑞𝑖

𝑇 = 0  i I (1)

– Set Pk = 1  kK (2)
– Set Wr = 1  rR (3)
– Set 𝑉𝑇=0 (4)
– Set T = 0 (5)

2. Setup data file subset 𝐼′𝑇:

– If 


J

j

T

ijl
1

= 1  i

Then:

–
T

if = 1 (6)

50

– 𝐼′𝑇= 𝐼′𝑇 + {i } (7)

– Set
1

I
T T

i il





  i (8)

3. Using the above mentioned assumptions and notations, the objective function can be

written as follows:

Min (Z T) =


 

I

i

K

k1 1

(
𝐶𝑠𝑣+ (

𝐶𝑠𝑓+ 𝐶ℎ

𝐵𝑊
)

𝛽𝑖 i

) T

iK
X +



K

k 1

 (
𝐶𝑠𝑓 + 𝐶ℎ

𝐵𝑊
) (1 − 





I

i 1

 T

iK
X) +




 

I

i

V

v1 1

 (
𝐶𝑒𝑠𝑣 +𝐶𝑒𝑠𝑓+ 𝐶𝑒ℎ

𝛽𝑖 i
) T

ir
Y + 



V

v 1

(𝐶𝑒𝑠𝑓 + 𝐶𝑒ℎ) (1 − 




I

i 1

 T

ir
Y) +

𝐴𝑇*Cp*(T-SLA) . (9)

 The objective function (9) is to minimize data file allocation cost while taking

into consideration priority, weight and criticality of each file included in each subset at

any time T.

The first term considers cost, weight αi and priority βi at any time unit T. The

second term considers the opportunity cost of not utilizing the basic processors at any

time unit T. The third term handles the cost, weight αi and priority βi at any time unit T.

The fourth term considers the opportunity cost of not utilizing the extra processors at

any time T. the last term is concerned with the penalty cost of exceeding the SLA.

Subject to:

 Basic and extra processors allocation and availability constraint.

 T

ii

V

r

T

ir

K

k

T

ik fMYX 
 11

  i𝐼′𝑇

 where M i =min { ie ,ni-
T

iq , K+V} (10)

 Constraint (10) ensures that the total file allocation for any file i at a certain time

T doesn’t exceed neither file multiprocessing ei nor file required remaining processing

ni nor total number of available basic and extra processors (K ,V).

 Over processing constraint.

T

iq ≤ ni  i I (11)

 Constraint (11) ensures that files are not being over processed i.e. processed

more than required.

51

 Single file allocation constraints.

T

k

I

i

T

ik PX 


1

  kK (12)

T

r

I

i

T

ir WY 


1

  rR (13)

 Constraint (12) ensures that exactly one data file is allocated to a single basic

processor.

 Constraint (13) ensures that exactly one data file is allocated to a single extra

processor.

 Binary constraints.

10 orX T

ik   i I and kK (14)

10 orY T

ir   i I and rR (15)

 Constraint (14) declares that the decision variable Xik is binary, meaning that

a file i either be assigned to basic processor or not.

 Constraint (15) declares that the decision variable Yir is binary, meaning that

a file i either be assigned to extra processor or not.

4. Update utilized extra processors:

– Calculate UT = duration of the remaining critical path at time T

[Subroutine]

– 𝐸𝑆𝑖
𝑇= Max {𝐸𝑆𝑗

𝑇+(ni - qiT) }  i and j  I where (i≠j) and i <= j

– 𝐸𝑆𝑖
𝑇=0  i =0

– 𝐿𝑆𝑖
𝑇=Min {𝐿𝑆𝑗

𝑇-(ni - qiT) }  i and j  I where (i≠j) and i <= j

– 𝑆𝑖
𝑇= 𝐿𝑆𝑖

𝑇– ESi

– UT = 


I

i 1

(ni - qiT)  i  I and 𝑆𝑖
𝑇

=0 (16)

– [End of Subroutine].

– If UT ≥ SLA - T

 Then:
– TCp = Cp * (UT – (SLA - T) (17)

 Else:

– TCp =0 (18)

– If UT ≥ SLA - T

52

 Then:
– TH = (Cesf + Ceh+ Cesv)* UT (19)

 Else:

– TH =0 (20)

– 𝐷𝑇 = 




I

i 1

 ie - T

iq  i 𝐼′𝑇 and ie > 1 +

 




I

i 1

 ie  i 𝐼ꞌ𝑇 and ie = 1 (21)

– If TCp ≥ TH and 𝐷𝑇 > (K+V)

 Then:
– 𝑉𝑇=𝑉𝑇+1 (22)

– 𝑇𝑟 = 𝑇 (23)

– 𝑉𝑇≤ R (24)

5. Update
T

if Matrix:

– 𝑞𝑖
𝑇 = 𝑞𝑖

𝑇 + 


K

k

T

ik
X

1

+ 


R

r

T

ir
Y

1

  i𝐼′𝑇 (25)

– If 𝑂𝑖
𝑇=1

 Then:

– T

if =1 (26)

 Else:

– T

if =0 (27)

 And:

–
T

jil = 0  j (28)

– If 𝑞𝑖
𝑇= ni

Then:

– 



J

j

T

ijl
1

 = 0  i (29)

 And:

– 



I

i

T

jil
1

 = 0  j (30)

53

6. Check termination condition:

– If 


I

i 1

 𝑞𝑖
𝑇 = 



I

i 1

ni (31)

 Then:

– Stop.

– If T > SLA

 Then:

– 𝐴𝑇=1 (32)

Else

– 𝐴𝑇=0 (33)

 Else

7. Update clock:

– T = T+1 (34)

 Go to Step 2

Total cost (C) =Basic processor fixed hardware cost + Basic processor fixed

software cost+ Basic processor variable software cost + Basic processor opportunity cost +

Extra processor variable software cost +Extra processor fixed software cost + Extra

processor hardware cost + Extra processor opportunity cost + penalty cost.

Total cost is calculated as follows:

𝑇𝐵𝐶 = (𝐶𝑠𝑓 + 𝐶ℎ) ∗ 𝐾 + ∑ ∑ ∑ 𝐶𝑠𝑣 ∗ 𝑋𝑖𝑘
𝑇

𝐾

𝑘=1

𝐼′𝑇

𝑖=1

𝐸𝑁𝐷

𝑇=1

+ ∑ ∑ ∑
(𝐶𝑠𝑓 + 𝐶ℎ)

𝐵𝑊
∗ (1 − 𝑋𝑖𝑘

𝑇)

𝐾

𝑘=1

𝐼′𝑇

𝑖=1

𝐵𝑊

𝑇=1

+ ∑(𝐶𝑒𝑠𝑓 + 𝐶𝑒ℎ)(𝐸𝑁𝐷 − 𝑇𝑟)

𝑉

𝑟=1

+ ∑ ∑ ∑ 𝐶𝑒𝑠𝑣 ∗ 𝑌𝑖𝑟
𝑇

𝑉

𝑟=1

𝐼′𝑇

𝑖=1

𝐸𝑁𝐷

𝑇=1

+ ∑ ∑ ∑ (𝐶𝑒𝑠𝑓 + 𝐶𝑒ℎ)(1 − 𝑌𝑖𝑟
𝑇)

𝐸𝑁𝐷

𝑇=𝑇𝑟

𝐼′𝑇

𝑖=1

𝑉

𝑟=1

+ 𝐴𝐸𝑁𝐷 ∗ 𝐶𝑝 ∗ (𝑇𝐸𝑁𝐷 − 𝑆𝐿𝐴) (35)

54

3.2.6 Illustrative example

The developed algorithm was tested using an example of a network with fifteen

data files. Figure. 9 shows the used network which was generated using RanGen 2 [45].

The example was solved under the following assumptions:

 Basic resources=2 processors.

 Maximum available extra resources to be used in case of exceeding

the SLA= 5 processors.

 Service Level Agreement, SLA = 18 time units.

 Batch Window, BW=22 time unit.

 Basic Processor Fixed Software Cost, Csf = $ 10.

 Basic Processor Hardware Cost, Ch =$ 100.

 Basic Processor Variable Software Cost per time unit, Csv = $ 2.

 Extra Processor Fixed Software Cost, Cesf = $ 12.5.

 Extra Processor Hardware Cost, Ceh = $ 125.

 Extra Processor Variable Software Cost per time unit, Cesv = $ 2.5

 Penalty Cost per time unit in case of exceeding the SLA, Cp = $ 200

The client usually provides the network information in an excel file while

the service provider prepares the required input figures and sets the lingo interface in

order to run the program and determine the optimized solution. Table 2 represents the

given initial precedence matrix needed to calculate data file’s weight αi and precedence

parameter 𝑙𝑖𝑗
𝑇 which are shown in Table 3. Files priorities βi , processing time ni ,

multiprocessing ei are detailed in Table 4. These parameters depend on the type of

network and are provided by the client before starting the data batch process.

After obtaining the required allocation result the final costs were calculated. An

interface between Lingo and Excel was established to read the input information and to

provide the output from the algorithm.

The results of running the program on the example are shown in Table 5.

The files were processed in 20 time units, while 4 extra processors were rented, and the

batch process exceeded the SLA by 2 time units, which indicates that penalty cost was

imposed.

Once the batch process started, the program sets all initialization conditions.

This means that ready files subset 𝐼ꞌ𝑇is empty. At the beginning of each time unit T,

55

Data
file 11

Data
file 14

Data
file 15

Data
file 16

Data
file 12

Data
file 1

Data
file 3

Data
file 2

Data
file 4

Data
file 8

Data
file 6

Data
file 9

Data
file 13

Data
file 5

Data
file 7

Data
file 0

Data
file 10

Figure 9: Illustrative Example

56

Table 2: Precedence Matrix for lij at T=0

L j

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

7 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0

8 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

11 0 1 0 1 0 1 1 0 0 1 1 1 0 0 0 0 0

12 0 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0 0

13 0 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0

14 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0

15 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

57

 Each data file’s weight and precedence parameter is derived from Table 2.

Table 3 shows the weights αi and precedence Lij for each file while clients given parameters

are shown in Table 4.

Table 3: Data file initial weight αi and precedence parameter Lij at T=0

File αi Lij

0 1 1

1 6 1

2 5 1

3 5 1

4 4 1

5 4 3

6 4 1

7 3 3

8 3 3

9 3 1

10 3 1

11 4 7

12 4 5

13 4 5

14 2 4

15 2 4

16 1 1

Table 4: Files scheduling priority, multiprocessing ei and processing time ni at T=0

File ei ni βi

0 0 0 1

1 3 9 2

2 1 1 3

3 2 8 2

4 3 9 4

5 1 3 2

6 1 1 5

7 1 3 2

8 1 8 2

9 2 4 2

10 2 8 2

11 1 1 1

12 6 12 1

13 3 9 1

14 1 2 2

15 1 4 2

16 0 0 1

58

 Table 5: Allocation result for Example 1.

T
Files

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 k:2 k:1

1
k:1,

2

R:1

2 k:2
k:1

R:

1,2

3

k:1,

2

R:3

R:1,

2

4

R:1,

3,

4

k:1

R:2
 k:2

5

R:1,

3,

4

k:1

R:2
 k:2

6
R:1,

2
 R:4 k:2

k:1

R:3

7
R:1,

4
 R:2 R:3

k:1,

2

8 R:3 R:2 R:4
k:1

R:1
 k:2

9 R:1 R:2
R:3,

4

k:1

,2

10 R:1 R:2
R:3,

4

k:1

,2

11 R:1 R:2

k:1

,2

R:3

12 k:2 k:1

13 k:2

14

k:1,

2

R:1,

2,

3,4

15

k:1,

2

R:1,

2,

3,4

16 k:2 k:1

17 k:2 k:1

18 k:2

19 k:2

59

the precedence parameter 𝑙𝑖𝑗
𝑇 for all files is checked to determine which files

are ready to be processed at that time unit. All files having precedence parameter 𝑙𝑖𝑗
𝑇 =1

are considered ready and inserted to the ready files subset 𝐼ꞌ𝑇.

Files 1, 2, 3,4,6,9 and 10 were ready for processing at T=0 therefore they were

inserted into the ready files subset 𝐼ꞌ𝑇. At T=0 files 4 and 6 were processed by basic

processor 2 and 1 respectively because these files have the highest calculated weight αi

and predetermined priority βi while the rest of ready files were shifted for the next time

unit. Also since file 6 needed only one processing time unit ni then by the end of the

first iteration this file is considered ready.

At T=1, the values of precedence parameter 𝑙𝑖𝑗
𝑇 are updated for all files, so the

ones that haven’t been processed or not finished processing still have the value of 1 and

are consequently still included in the ready files subset 𝐼ꞌ𝑇while file 6 which has a

processing time ni of 1 has the value of 𝑙𝑖𝑗
𝑇 =0 and no longer exist in the subset 𝐼ꞌ𝑇since

it is considered ready. Also an extra processor 𝑉𝑇was utilized at that time unit because

the criteria of renting a new extra processor was satisfied. It was found that the critical

path of the remaining network activities exceeds the SLA, so the program needs to take

an action to try to avoid the delay. Since the cost of renting a new processor TH was

found to be less than the penalty cost TCp at that time unit and also since there are ready

files for the next time unit that exceeds the total number of available processor then the

decision of renting a new extra processor was taken. During T=1 file 4 was processed

by basic processors 1 and 2 as well as by extra processor 1.

At T=2 another extra processor was rented based on the above explained

mechanism. File 4 continued to be processed by basic processors 1 and extra processors

1 and 2. It is worth mentioning that file 4 has a multiprocessing of ei =3. Also file 2

was processed by basic processor 2.

At T=3 a third extra processor was rented and file 1 was processed by basic

processors 1 and 2 and extra processor 3 according to it’s multiprocessing criteria. File

4 was processed by extra processors 1 and 2 and by that it is considered ready.

At T=4 the forth extra processor was rented and used to process file 1 along with

extra processors 1 and 3 while extra processor 2 and basic processor 1 were used to

process file 3 . File 5 was processed by basic processor 2.

60

 T=5 had the same files allocations as T= 4. It is noted that the program didn’t

rent any more extra processor starting from T=5 onwards which means it utilized 4 out

of the 5 available extra processors and that is of course based on the renting mechanism.

At T=6 files 3, 5, 8 and 9 were processed by the available basic and extra

processors as demonstrated in Table 5. For the rest of time units till time unit T=19 and

files till file 15, Table 5 provides a clear allocations result.

It is worth mentioning that files 0 and 16 are start and end files with processing

time ni =0 which means they won’t be allocated to any processor. The reason of their

existence is to start and end the network for critical path calculation purposes.

The batch process cost calculation was based on applying the input figures

mentioned at the beginning of this section and the allocation results shown in Table 5

in equation (35) of the mathematical model. Table 6 demonstrates the detailed costs.

Table 6 clarifies the cost of allocating files to basic processor and that includes

hardware and software fixed costs as well as software variable cost. Similarly, extra

processors allocating cost which includes hardware and software fixed costs as well as

software variable cost is shown. Then the opportunity costs associated with each

processor type is calculated. Penalty cost is determined at the end of the batch process

and total cost is found by summing all costs for each time unit.

In Table 6 column (1) represents the time unit T, Column (2) shows the total

number of existing basic processors K. However, Column (3) identifies how many basic

processors are actually being acquired at each time unit T, column (4) calculates the

basic variable cost Csv while the fixed software Csf and hardware Ch costs are calculated

at the end because they are not related to time .Basic opportunity cost is determined in

column (5) as per equation (35). For extra processor, column (6) shows number of extra

processors 𝑉𝑇 rented at that time unit T, Column (7) represents the number of extra

processors actually being acquired at each time unit T. In column (8) and based on

model assumption 14 which states that Extra processors are paid for from the time unit

T they are rented onwards, extra processors total allocation cost is calculated using all

types of costs(extra fixed hardware cost Ceh, extra fixed software cost Cesf and extra

variable software cost Cesv). It is worth mentioning that in case of an extra processor

being rented but not utilized due to unavailability of ready files, the total allocation cost

will equal extra fixed hardware cost Ceh plus extra fixed software cost Cesf while extra

variable software cost Cesv will not exist since the processor is not being utilized. Extra

61

processor opportunity cost is found in column (9) using extra fixed hardware cost Ceh

plus extra fixed software cost Cesf . Finally column (10) sums all the above costs for

each time unit T .

At the end of Table 6 basic fixed costs are added, they represent fixed hardware cost Ch

plus fixed software cost Csf for each basic processor k . Also as mentioned above penalty

cost is calculated based on number time units the processing is delayed beyond the SLA.

Since basic fixed hardware cost Ch and fixed software cost Csf are calculated per unit

time by dividing them by BW , remaining opportunity cost for basic processor exists in

case the batch process time END is less than batch window BW . It represents the

opportunity cost of the basic processors for the time units between end of batch process

END and BW.

From Table 6 we can see that from T= 0 till T=17, the basic allocation cost was

showing the utilization of both basic processors, which explains the zero basic

processors opportunity cost during the same period. However, at T=18 and 19 one basic

processor was utilized and that ended up in variable allocation cost for one processor

and opportunity cost for the other.

It is noticed that from T=0 up to T=10, every rented extra processor was utilized

which ended in zero extra processor opportunity cost. After T=10 some rented extra

processors were not utilized due to unavailability of ready files such as at T=11 where

3 out of 4 rented extra processors were utilized. Also at T=12,13,16,17,18 and 19 non

of the rented extra processors were utilized due to unavailability of ready files.

The above illustrative example proves the effectiveness of the developed

optimization algorithm in allocating files to processors. It managed to allocate highly

prioritized and weighted files before the ones with lower priority and weight. Also, the

algorithm will advise renting the necessary number of extra processors to accomplish

the batch process goal while trying to minimize all types of costs. In the illustrated

example, the program rented 4 extra processors to achieve minimum real batch process

time which is 20 time units. Although that exceeds the SLA specified time of 18 time

units, it is the minimum possible execution time for this network due to network logic

and predecessors’ relations.

62

Table 6: Data Batch Process Cost for Example 1.

3.2.7 Benchmark

The same example was ran by the Batch data Processes Scheduling (BDPS)

algorithm presented in Osman et al. The results showed that files were processed in 41

time units, and the batch process exceeded the SLA by 23 time units, which indicates

that penalty cost was imposed. Also the total cost of the data batch process was $

5,184.00.

(1)

T

(2)

Basic

processors

(3)

No. of

Acquired

Basic

processors

(4)

Basic

Allocation

Variable

Cost $

(5)

Basic

Oppo.

Cost $

(6)

Rented

Extra

Processors

(7)

No. of

Acquired

Extra

Processors

(8)

Extra

Total

Allocation

Cost $

(9)

Extra

Oppo.

Cost $

(10)

Total

Cost per

time

period $

0 2 2 4.00 0.00 0 0 0.00 0.00 4.00

1 2 2 4.00 0.00 1 1 8.75 0.00 12.75

2 2 2 4.00 0.00 2 2 17.50 0.00 21.50

3 2 2 4.00 0.00 3 3 26.25 0.00 30.25

4 2 2 4.00 0.00 4 4 35.00 0.00 39.00

5 2 2 4.00 0.00 4 4 35.00 0.00 39.00

6 2 2 4.00 0.00 4 4 35.00 0.00 39.00

7 2 2 4.00 0.00 4 4 35.00 0.00 39.00

8 2 2 4.00 0.00 4 4 35.00 0.00 39.00

9 2 2 4.00 0.00 4 4 35.00 0.00 39.00

10 2 2 4.00 0.00 4 4 35.00 0.00 39.00

11 2 2 4.00 0.00 4
3

32.50 6.25 42.75

12 2 2 4.00 0.00 4
0

25.00 25.00 54.00

13 2
1

2.00 5.00 4
0

25.00 25.00 57.00

14 2 2 4.00 0.00 4
4

35.00 0.00 39.00

15 2 2 4.00 0.00 4
4

35.00 0.00 39.00

16 2 2 4.00 0.00 4
0

25.00 25.00 54.00

17 2 2 4.00 0.00 4
0

25.00 25.00 54.00

18 2
1

2.00 5.00 4
0

25.00 25.00 57.00

19 2
1

2.00 5.00 4
0

25.00 25.00 57.00

 795.25

Penalty cost $ 400.00

 Basic processors fixed costs $ 220.00

 Remaining opportunity cost for

basic processors $ 20.00

 Batch Process Total Cost $ 1,435.25

63

Comparing the results of running the same example by the two algorithms

indicates that the Dynamic Cost scheduling for Data Batch Process (DCSDBP)

algorithm developed in this research performed the data batch process in a shorter time

and achieved a lower total batch process cost .

64

Chapter 4: Sensitivity Analysis

The sensitivity analysis performed on the developed model will be presented in

this chapter and the results will be analyzed. Sensitivity analysis was performed in two

parts. The first part was conducted on the illustrative example network where different

parameters were changed and the result of running the program was demonstrated.

However, in part two of the sensitivity different networks with varying sizes and

complexities were analyzed to study the performance of the developed algorithm on

them.

4.1 Single Network Analysis

4.1.1 Varying number of available extra processors

Five extra processors were available to be rented in the illustrative example in

case of exceeding the SLA. Part of the proposed algorithm was deciding how many of

those processors to rent to minimize total cost and batch total processing time while

satisfying files priorities and predecessors’ relations. After running the program it was

found that four out of five extra processors were rented to finish the batch process.

In this part of the sensitivity analysis, different values of the number of available

extra processor will be tested and the results of running the program in each case will

be presented to show how many extra processors the program decides to rent.

 In case of having four extra processors available to be used in the batch process,

the results were:

Table 7: Batch process results in case of four Available extra processors

Dimension result unit

Batch time 20 time units

Program run time 3 seconds

Extra resources 4 servers

Total batch process cost 1,435.25 $

SLA deadline Exceeded by 2 time units

It is noted from the above table that the results are the same as the case of 5

available extra processors since the same number of extra servers were rented.

 The results of having three available extra processors in the batch process:

65

Table 8: Batch process results in case of three Available extra processors

Dimension result unit

Batch time 21 time units

Program run time 4 seconds

Extra resources 3 servers

Total batch process cost 1,475.00 $

SLA deadline Exceeded by 3 time units

In this case less processors were utilized which ended up in longer batch process

time and higher total cost. Also, SLA was exceeded by more time units.

 In case of having two extra processors available to be used in the batch process,

the results were:

Table 9: Batch process results in case of two Available extra processors

Dimension result unit

Batch time 24 time units

Program run time 4 seconds

Extra resources 2 servers

Total batch process cost 1,952.00 $

SLA deadline Exceeded by 6 time units

In this case, minimizing utilized processors led to more delay in batch process

time and increased total cost. SLA was also exceeded by 6 time units.

 The results of having one available extra processor are:

Table 10: Batch process results in case of one Available extra processors

Dimension result unit

Batch time 30 time units

Program run time 6 seconds

Extra resources 1 servers

Total batch process cost 3,014.75 $

SLA deadline Exceeded by 12 time units

In the last case of having only one extra processor, the batch process had the

highest delay and total cost. From the above it is concluded that the program rents extra

66

processors only when needed to perform the batch process with minimum execution

time and total cost.

Figure 10 and Figure 11 are a graphical summery of the above findings with

respect to batch processing time and total cost respectively.

Figure 10: Varying available extra processors vs. Batch time

Figure 11: Varying available extra processors vs. Cost

0.00

500.00

1,000.00

1,500.00

2,000.00

2,500.00

3,000.00

3,500.00

1 Extra P. 2 Extra P. 3 Extra P. 4 Extra P. 5 Extra P.

Variable Available Extra Processors Results Summery

Cost $

0

5

10

15

20

25

30

35

1 Extra P. 2 Extra P. 3 Extra P. 4 Extra P. 5 Extra P.

Variable Available Extra Processors Results Summery

Batch Time (time units)

67

4.1.2 Changing SLA value

 Originally it was assumed that the SLA is 18 time units but the program

couldn’t finish allocating files to available resources before the 20th time unit. This is

due to network logic and predecessors relation. That is why although an extra fifth

server was available, the program didn’t rent it because that will not minimize the total

batch process time in order to meet the specified SLA. In the following, different SLA

values were assumed while other parameters kept the same:

 Assuming the SLA value equals to 19 time units, the results were:

Table 11: Batch process results in case of SLA = 19 time units

Dimension result unit

Batch time 20 time units

Program run time 3 seconds

Extra resources 4 servers

Total batch process cost 1,235.25 $

SLA deadline Exceeded by 1 time units

Clearly when increasing the value of SLA, the result will be lower penalty cost

leading to lower total cost.

 Assuming the SLA value equals to 17 time units, the results were:

Table 12: Batch process results in case of SLA = 17 time units

Dimension result unit

Batch time 20 time units

Program run time 3 seconds

Extra resources 4 servers

Total batch process cost 1,635.25 $

SLA deadline Exceeded by 3 time units

Clearly when decreasing the value of SLA while the network can’t be processed

in a shorter time due to network precedence relations, the result will be higher penalty

cost leading to higher total cost.

 Assuming the SLA value equals to 16 time units, the results are shown in Table

13:

When SLA was further decreased, penalty cost and consequentially total cost

increased while batch process time remained the same.

68

Table 13: Batch process results in case of SLA = 16 time units

Dimension result unit

Batch time 20 time units

Program run time 3 seconds

Extra resources 4 servers

Total batch process cost 1,835.25 $

SLA deadline Exceeded by 4 time units

 Assuming the SLA value equals to 20 time units, the results were:

Table 14: Batch process results in case of SLA = 20 time units

Dimension result unit

Batch time 20 time units

Program run time 3 seconds

Extra resources 4 servers

Total batch process cost 1,035.25 $

SLA deadline met -

 The effect of the SLA is clear in this case where the deadline is met and no

penalty cost is imposed. This led to the lowest total batch process cost. It is

recommended when deciding on the SLA time between the client and the service

provider that both sides study the data batch network carefully to decide on the right

SLA terms that serve both sides and achieve the goal of the batch process.

Figure 12 and Figure 13 are a graphical summery of the above findings with

respect to batch processing time and total cost respectively.

Figure 12: Varying SLA vs. Batch time

0

5

10

15

20

25

SLA=16 SLA= 17 SLA= 18 SLA=19 SLA=20

Variable SLA Results Summery

Batch Time (time units)

69

Figure 13: Varying SLA vs. Cost

4.1.3 Varying penalty cost per time unit

Penalty cost of $200 per unit time of delay was assumed in the illustrative

example. To study the effect of penalty cost factor on the batch process results, different

penalty cost values were assumed and the algorithm was tested accordingly.

 Set penalty cost to zero, the results were:

Table 15: Batch process results in case of Cp = $ 0 per time unit

Dimension result unit

Batch time 41 time units

Program run time 8 seconds

Extra resources 0 servers

Total batch process cost 384 $

SLA deadline Exceeded by 20 time units

The lowest batch process cost is obviously obtained when there is no penalty

cost. In this case there won’t be any trade-off between renting extra processor cost and

any other cost. Since one of the goals of this algorithm is minimizing cost, then it will

choose not to rent any extra processors because in this way, the delay in processing the

data files has no price and that is clearly shown in the low total batch cost. Also the

program needed more time to run since it’s batch process time was doubled.

0.00

200.00

400.00

600.00

800.00

1,000.00

1,200.00

1,400.00

1,600.00

1,800.00

2,000.00

SLA=16 SLA= 17 SLA= 18 SLA=19 SLA=20

Variable SLA Results Summery

Cost $

70

 Set penalty cost to $ 5 per unit time, the results were:

Table 16: Batch process results in case of Cp = $ 5 per time unit

Dimension result unit

Batch time 41 time units

Program run time 8 seconds

Extra resources 0 servers

Total batch process cost 504 $

SLA deadline Exceeded by 20 time units

The program chooses not to rent any extra processors. This is exactly the same

results of the case of zero processors but with a higher total cost since the penalty cost

here is not only low but extremely low.

 Set penalty cost to $ 8 per unit time, the results were:

Table 17: Batch process results in case of Cp = $ 8 per time unit

Dimension result unit

Batch time 36 time units

Program run time 8 seconds

Extra resources 3 servers

Total batch process cost 1,210.00 $

SLA deadline Exceeded by 16 time units

In this case, the program chose to rent three extra processors instead of four and

extend the total batch process time and pay more penalty cost. However, the total cost

is less. This is due to the new penalty cost used in the trade –off decision mechanism in

renting extra processor.

 When assuming penalty cost per time unit =$ 20, the results were:

Table 18: Batch process results in case of Cp = $ 20 per unit time

Dimension result unit

Batch time 20 time units

Program run time 8 seconds

Extra resources 4 servers

Total batch process cost 1,075.25 $

SLA deadline Exceeded by 2 time units

71

In this case the same number of extra processors were rented as of the case of

Penalty cost per unit time = $ 200 but with a less total bath cost.

 Set penalty cost to $ 100 per unit time, the results were:

Table 19: Batch process results in case of Cp = $ 100 per unit time

Dimension result unit

Batch time 20 time units

Program run time 4 seconds

Extra resources 4 servers

Total batch process cost 1,235.25 $

SLA deadline Exceeded by 2 time units

In this case the same number of extra processors were rented as of the case of

Penalty cost per unit time = $ 200 but with a less total bath cost.

 Set penalty cost to $ 500 per unit time, the results were:

Table 20: Batch process results in case of Cp = $ 500 per unit time

Dimension result unit

Batch time 20 time units

Program run time 3 seconds

Extra resources 4 servers

Total batch process cost 2,035.25 $

SLA deadline Exceeded by 2 time units

Increasing the penalty cost further will not affect the way files are allocated to

servers since the program won’t be able to squeeze the batch time more even if the

trade-off between renting more extra processors and penalty cost goes in favor of

utilizing another extra server simply because of the network’s activity relations.

Figure 14 and Figure 15 are a graphical summery of the above findings with

respect to batch processing time and total cost respectively.

4.1.4 Changing the extra server costs

The extra sever has three types of costs as previously explained. It is assumed

in our model that they represent 1.25 of the basic server’s costs. In the following

analysis, the effect of various extra to basic servers’ costs will be demonstrated.

72

Figure 14: Varying Cp vs. Batch time

Figure 15: Varying Cp vs. Cost

 Set costs ratio to 2.5, the results were:

Table 21: Batch process results in case of extra to basic servers cost ratio = 2.5

Dimension result unit

Batch time 20 time units

Program run time 4 seconds

Extra resources 4 servers

Total batch process cost 2,141.50 $

SLA deadline Exceeded by 2 time units

0

5

10

15

20

25

30

35

40

45

Cp=0 Cp=5 $ Cp=8 $ Cp=20 $ Cp=100 $ Cp=500 $

Variable Cp Results Summery

Batch Time (time units)

0.00

500.00

1,000.00

1,500.00

2,000.00

2,500.00

Cp=0 Cp=5 $ Cp=8 $ Cp=20 $ Cp=100 $ Cp=500 $

Variable Cp Results Summery

Cost $

73

When increasing the renting cost of extra processor to 2.5 times the basic leasing

cost, the program rented the same number of extra servers to finish the batch process

because the penalty cost is still higher relatively. It is only ended up in increasing the

total batch cost while same number of extra servers were utilized.

 Set costs ratio to 5, the results were:

Table 22: Batch process results in case of extra to basic servers cost ratio = 5

Dimension result unit

Batch time 20 time units

Program run time 4 seconds

Extra resources 4 servers

Total batch process cost 3,554.00 $

SLA deadline Exceeded by 2 time units

Increasing the renting cost of extra processor to 5 times the basic leasing cost

didn’t stop the program from renting extra servers to finish the batch process because

the penalty cost is still higher relatively. However, the total batch cost increased while

same number of extra servers were utilized.

 Set costs ratio to 10, the results were:

Table 23: Batch process results in case of extra to basic servers cost ratio = 10

Dimension result unit

Batch time 20 time units

Program run time 5 seconds

Extra resources 4 servers

Total batch process cost 6,379.00 $

SLA deadline Exceeded by 2 time units

Same results were obtained in this case as the case of the cost factor =5, in which

it is still cheaper to rent extra servers than paying penalty cost.

 Set costs ratio to 1, the results are show in Table 24:

To prove the efficiency of the program, the case of equal costs for basic and

extra servers was tested, the program rented only what it needed from available extra

servers to finish the batch process.

74

Table 24: Batch process results in case of extra to basic servers cost ratio = 1

Dimension result unit

Batch time 20 time units

Program run time 5 seconds

Extra resources 4 servers

Total batch process cost 1,284.00 $

SLA deadline Exceeded by 2 time units

 Set costs ratio to 0.5, the results were:

Table 25: Batch process results in case of extra to basic servers cost ratio = 0.5

Dimension result unit

Batch time 20 time units

Program run time 5 seconds

Extra resources 4 servers

Total batch process cost 1,001.50 $

SLA deadline Exceeded by 2 time units

Here the total price went lower but the files to servers’ allocation stayed the

same. The above findings and analysis prove that when the program reaches the

optimum solution, it doesn’t utilize any unnecessary resources since it is part of the

objective function to minimize all types of costs while trying to meet SLA deadline and

satisfy all priorities and constraints. This proves that the purpose of developing this

model is served to a high extent and the batch process is being utilized in a more

efficient way. Figure 16 and Figure 17 are a graphical summery of the above findings

with respect to batch processing time and total cost respectively.

4.2 Multiple Networks Analysis

In this section, we tested the developed algorithm by running networks with

different sizes and complexities generated by RanGen2 [45]. Four networks’ sizes were

selected; each with three different complexities and the run time for each network in a

group was recorded.

One indicator of complexity is I2 index. It is a measure of the closeness of a

network to a serial or parallel graph based on the number of progressive levels. If I2=0

75

then the network activities are all in parallel, while if I2=1 then the network activities

are all in series. [46]

Figure 16: Varying extra processor cost factor vs. Batch time

Figure 17: Varying extra processor cost factor vs. Cost

4.2.1 Fifteen activities networks

The average program run time for each network is shown in the below Table 26

0

5

10

15

20

25

0.5 1 2.5 5 10

Variable Extra Processor Cost Factor Results Summery

Batch Time (time units)

0.00

1,000.00

2,000.00

3,000.00

4,000.00

5,000.00

6,000.00

7,000.00

0.5 1 2.5 5 10

Variable Extra Processor Cost Factor Results Summery

Cost $

76

Table 26: Run times for fifteen activities network with different complexities

Complexity index I2 Run time (seconds)

0.2 2

0.5 3

0.8 3

 4.2.2 Twenty-five activities networks

The average program run time for each network is shown in the below Table 27

Table 27: Run times for twenty-five activities network with different complexities

Complexity index I2 Run time (seconds)

0.2 5

0.5 2

 0.8 4

4.2.3 Fifty activities networks

The average program run time for each network is shown in the below Table 28

Table 28: Run times for fifty activities network with different complexities

Complexity index I2 Run time (seconds)

0.2 11

0.5 13

0.8 14

4.2.4 Hundred activities networks

The average program run time for each network is shown in the below Table 29

Table 29: Run times for hundred activities network with different complexities

Complexity index I2 Run time (seconds)

0.2 33

0.5 34

0.8 34

It is clear from the above demonstration that the program run time is relatively

low. However, it depends on the networks’ sizes and complexity.

77

Chapter 5: Conclusion and Future Research

5.1 Conclusion

This research addressed the problem of data batch process optimization.

The importance of data batch process and the wide applications of batch process,

whether in data files or in general manufacturing and industries, made it essential to

improve it’s performance to the maximum possible level. This work aimed to include

all aspects of data batch process in an iterative algorithm called DCSDBP. The

developed algorithm proved its effectiveness in allocating data files to available

resources while satisfying priority and predecessors constraints while maintaining the

minimum possible cost keeping in mind the SLA time limit.

The five types of associated batch process costs which are basic hardware and

software fixed and variable costs, extra hardware and software fixed and variable costs,

and penalty cost were taken into consideration in the objective function. While the

algorithm worked towards minimizing these costs, it aimed at the same time to allocate

files based on their weight and priority while following the network predecessors’

relations. At the same time the algorithm tried to commit to the time limit specified in

SLA.

This work represents a major contribution to the literature since it includes all

aspects of the data batch process. It was clearly demonstrated in the literature review

chapter that non of the presented papers took batch process cost into consideration. And

while most researchers dealt with one aspect of the data batch process, this research is

filling the gap and considered an important reference in data batch process total

optimization.

After coding the developed algorithm using Lingo, a number of networks were

used to test it. It was concluded from the results that it is more effective to include all

types of costs in one optimization model along with priority, weight, predecessor and

time factors which led to a more effective allocation and a lower total batch process

cost. The results showed that files with higher priority and weight get allocated before

the ones with lower priority and weight, and when performing sensitivity analysis,

the obtained allocation result had the lowest cost, bearing in mind maintaining other

process related factors. It is also concluded that renting more extra processors doesn’t

necessary mean that the batch process will be performed in a shorter time because there

78

are other factors that govern the process total time and these are the network logic

relations or ‘predecessors’ relations’. The decision of whether or not to rent a new extra

processor and when to do so is very important. It will affect the whole batch process in

terms of file to processor allocation and total batch process cost and time. These

processors are costly and if they are rented, they will be paid for till the end of the batch

process, so the service provider has to be careful in negotiating their prices with the sole

owner of these processors since these prices will affect when and how many extra

processors the algorithm will rent based on the trade-off criteria developed within the

algorithm. Another conclusion is related to the penalty cost since it is the other side of

the trade -off criterion that governs the extra processor renting mechanism. That is why

it has to be negotiated thoroughly, especially when looking at the batch process total

cost and how much it is affected by the penalty cost per unit time delay agreed on in

the SLA.

5.2 Limitations and future research direction

The model was developed under certain assumptions and while we tried to

generalize it to cover most batch process networks, there might be a place for more

research to include wider cases such as assuming different costs for basic processors or

even different costs for extra processors. Also, future researchers might work on

developing the extra processors renting mechanism to allow for more than one

processor to be rented for each time unit in case that serves the total completion time

and maintains a low cost.

One of our basic assumptions is that processors reservation is not allowed. This

is another area for research where scholars can test the need for processor reservation,

how it can be done, and what type of impact it has on the batch process different aspects

such as total process time, total cost and basic and extra processors utilization.

79

References

[1]T. Jensen (2009) Smarter Banking, Horizontal Integration, and Scalability [online]

available at: http://www.redbooks.ibm.com/redpapers/pdfs/redp4625.pdf

[Accessed 1 April 2015].

[2]IBM Knowledge Center (2013) Mainframes Working After hours: Batch processing

[online] available at:http://www.ibm.com/support/knowledgecenter/zosbasics/com.

ibm.zos.zmainframe/zconc_batchproc.htm [Accessed 1 March 2015].

[3]IBM Knowledge Center (2010) Roles in the mainframe world [online] available at:

http://www.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zmainframe/zconc_

ITroles.htm?lang=en [Accessed 1 March 2015].

[4]Mainframe Migration Alliance (2006) Batch Applications—The Hidden Asset [online]

available at:http://download.microsoft.com/download/4/1/d/41d2745f-031c-40d7-86ea-

4cb3e9a84070/Batch%20The%20Hidden%20Asset.pdf [Accessed 1 March 2015].

[5]High Performance Computing Center North (HPC2N) What is a batch system [online]

available at:https://www.hpc2n.umu.se/support/beginners_guide [Accessed 1 March 2015].

[6]IBM Knowledge Center (2010) Batch and online transaction processing [online] available

at: http://www.ibm.com/support/knowledgecenter/zosbasics/com.ibm.

zos.zmainframe/zconc_mfworklds.htm?lang=en [Accessed 3 March 2015].

[7]IBM Software Services (2009) Designing Batch Applications [online] available at:
file:///C:/Users/Lenovo/Downloads/attachment_14548593_

Designing_Batch_Applications.pdf [Accessed 20 March 2015].

[8]Business dictionary (2015) Batch processing [online] available at:

http://www.businessdictionary.com/definition/batch-processing.html

[Accessed 5 March 2015].

[9]I. Sommerville (2008) Batch data processing systems [online] available at:

 http://ifs.host.cs.st-andrews.ac.uk/Books/SE9/Web/Architecture/AppArch/BatchDP.html

 [Accessed 5 March 2015].

[10]TransFirst,LLC (2015) Batch or Batch Processing [online] available at:

 http://www.transfirst.com/resources/glossary [Accessed 5 March 2015].

[11]Tutorialspoint (2015) Batch operating system [online] available at:

 http://www.tutorialspoint.com/operating_system/os_types.htm

[Accessed 10 March 2015].

[12]"IBM 360/370/3090/390". Lars Poulsen (2015) History of Operating Systems [online]

available at:http://www.beagle-ears.com/lars/engineer/comphist/ibm360.htm
[Accessed 10 March 2015].

http://www.redbooks.ibm.com/redpapers/pdfs/redp4625.pdf
http://www.ibm.com/support/knowledgecenter/zosbasics/com
http://download.microsoft.com/download/4/1/d/41d2745f-031c-40d7-86ea-4cb3e9a84070/Batch%20The%20Hidden%20Asset.pdf
http://download.microsoft.com/download/4/1/d/41d2745f-031c-40d7-86ea-4cb3e9a84070/Batch%20The%20Hidden%20Asset.pdf
https://www.hpc2n.umu.se/node/6
http://www.ibm.com/support/knowledgecenter/zosbasics/com.ibm
file:///C:/Users/Lenovo/Downloads/attachment_14548593_
http://www.businessdictionary.com/definition/batch-processing.html
http://ifs.host.cs.st-andrews.ac.uk/Books/SE9/Web/Architecture/AppArch/BatchDP.html
http://www.transfirst.com/resources/glossary
http://www.tutorialspoint.com/operating_system/os_types.htm
http://www.beagle-ears.com/lars/engineer/comphist/ibm360.htm

80

[13]J. Rehman (2012) What are advantages and disadvantages of batch processing systems

[online] available at: http://www.itrelease.com/2012/12/what-are-advantages-and-

disadvantages-of-batch-processing-systems/ [Accessed 20 March 2015].

[14]IBM Knowledge Center (2010) Clustering technique: Parallel Sysplex [online] available

at:http://www.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zmainframe/zc

onc_clusterPlSys.htm?lang=en [Accessed 20 March 2015].

[15]G. Mca (2009) Distributed and parallel processing [online] available at:

http://www.codeproject.com/Articles/35671/Distributed-and-Parallel-Processing-

[Accessed 1 April 2015].

 [16]Oracle (2015) Batch failure and recovery [online] available at:

https://docs.oracle.com/html/E38272_01/Content/Batch%20Processor/Batch_failure_an

d_recovery.htm [Accessed 1 April 2015].

[17]M. Osman, M. Ndiaye and A. Shamayleh. “Dynamic scheduling for batch data processing

in parallel systems,” International Conference on Operations Research and Enterprise

Systems, 2014.

[18]A. Page, T. Keane and T. Naughton. “Multi-heuristic dynamic task allocation using genetic

algorithms in a heterogeneous distributed system,” Journal of Parallel and Distributed

Computing 70:758-766, 2010.

[19]C. Mendez, J. Cerda, I. Grossmann. “State-of-the-art review of optimization methods for

 short-term scheduling of batch processes,” Computers and Chemical Engineering. 30:913-

946, 2006.

[20]S. Lim and S. Cho. “Intelligent os process scheduling using fuzzy inference with user

models,” Lecture Notes in Computer Science 4570:725-734, 2007.

[21]F. Xhafa and A. Abraham. “Computational models and heuristic methods for Grid

scheduling problems,” Future Generation Computer Systems 26:608-621, 2010.

[22]K. Aida. “Effect of job size characteristics on Job scheduling performance,” Lecture Notes

in Computer Science Volume, 1911, pp 1-17, 2000.

[23]I. Stoica, H. Abdel-Wahab and A. Pothen. “A Microeconomic Scheduler for Parallel

Computers,” Institute for Computer Applications in Science and Engineering (ICASE),

1995.

[24]I. Stoica and A. Pothen. “A Robust and Flexible Microeconomic Scheduler for Parallel

Computers,” 3rd International Conference on High Performance Computing, 1996.

[25]A. Agarwal and P. Kumar. “Multidimensional QOS Oriented Task Scheduling in Grid

Environments,” International Journal of Grid Computing & Applications (IJGCA) Vol.2,

No.1, March 2011.

http://www.codeproject.com/Articles/35671/Distributed-and-Parallel-Processing-
https://docs.oracle.com/html/E38272_01/Content/Batch%20Processor/Batch_failure_and_recovery.htm
https://docs.oracle.com/html/E38272_01/Content/Batch%20Processor/Batch_failure_and_recovery.htm
http://link.springer.com/bookseries/558

81

[26]D. Andresen and T. McCune. “Towards a Hierarchical Scheduling System for Distributed

WWW Processor Clusters,” The Seventh International Symposium on High Performance

Distributed Computing, 1998.

[27]M. Islam, G. Kanna and P. Sadayappan. “Revenue Maximization in Market-Based Parallel

Job Schedulers,” Ohio State University Library, 2008.

[28]B. Srinivasan, S. Palanki and D. Bonvin. “Dynamic optimization of batch processes, I.

Characterization of the nominal solution,” Computers and Chemical Engineering,

27 1 _/26, 2002.

[29]B. Srinivasan, S. Palanki, E. visser and D. Bonvin. “Dynamic optimization of batch

processes II. Role of measurements in handling uncertainty,” Computers and Chemical

Engineering, 27_/44, 2002.

[30]R. Zhou, L. Li, W. Xiao and H. Dong. “Simultaneous Optimization of batch process

schedules and water – allocation network,” Computers and Chemical Engineering,

33 (2009) 1153–1168, 2008.

[31]P. Damodaran and M. Vélez-Gallego. “A simulated annealing algorithm to minimize

makespan of parallel batch processing machines with unequal job ready times,” Expert

Systems with Applications, 39:1451-145, 2012.

[32]M. Mehta, V. Soloviev and D. DeWitt. “Batch scheduling in parallel database systems,”

9th International Conference on Data Engineering 400-410, 1993.

[33]A. Grigoriev, M. Sviridenko and M. Uetz. “Unrelated parallel machine scheduling with

resource dependent processing times,” METEOR Research Memorandum, Vol. 033, 2005.

[34]L. Bouganim, F. Fabret, C. Mohan and P. Valduriez. “Dynamic query scheduling in data

 integration systems,” Proceedings of 16th International Conference on Data Engineering,

(Cat. No.00CB37073), 2000.

[35]J. Ngubiri and M. Vliet. “A Metric of Fairness for Parallel Job Schedulers,” Concurrency

Computat.:Pract. Exper. 2008; 05:1–7 Prepared using cpeauth.cls [Version: 2002/09/19

v2.02], 2008.

[36]A. Arpaci-Dusseau and D. Culler. “Extending Proportional-Share Scheduling to

a Network of Workstations,” Conference of Parallel and Distributed Processing

Techniques and Applications, 1997.

[37]D. Ferguson, C. Nikolaou, J. Sairamesh and Y. Yemini. “Economic Models for Allocating

Resources in Computer Systems,” Market-based control: a paradigm for distributed

resource allocation, P. 156-183, 1996.

[38]K. Kuwabara, Y. Nishibe, T. Ishida and T. Suda. “An Equilibratory Market- Based

Approach for Distributed Resource Allocation and Its Applications to Communication

Network Control,” Market-based control: a paradigm for distributed resource allocation,

P. 53-73, 1996

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5737
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6778

82

[39]Chun and Culler. “User-centric Performance Analysis of Market-based Cluster Batch

Schedulers,” CCGRID '02 Proceedings of the 2nd IEEE/ACM International Symposium

on Cluster Computing and the Grid , P. 30, 2002.

[40]J. Sairamesh, D. Ferguson and Y. Yemini . “An Approach to Pricing, Optimal Allocation

and Quality of Service Provisioning In High-Speed Packet Networks,” proceedings of

the INFOCOM, 1995.

 [41]C. Yeo and R. Buyya . “A taxonomy of market-based resource management systems for

utility-driven cluster computing,” Journal Software—Practice & Experience, Volume 36

Issue 13, P.1381-1419, 2006.

[42]M. Islam, P. Balaji, G. Sabin and P. Sadayappan. “Analyzing and Minimizing the Impact

of Opportunity Cost in QoS-aware Job Scheduling,” International Conference on Parallel

Processing, 2007.

[43]A. Mutz and R. Wolski. “Efficient Auction-Based Grid Reservations using Dynamic

Programming,” Proceedings of the 2008 ACM/IEEE conference on Supercomputing,

Article No.16, 2008.

[44]A. Mutz , R. Wolski and J. Brevik. “Eliciting Honest Value Information in a Batch-Queue

Environment,” 8th IEEE/ACM International Conference on Grid Computing, 2007.

[45]M. Vanhoucke, J. Coelho, D. Debels, B. Maenhout, and L.V. Tavares. “An evaluation of

the adequacy of project network generators with systematically sampled networks”,

European Journal of Operational Research, Volume 187, Issue 2, 2008.

[46]J. P. T. Higgins, S. G. Thompson, J. J. Deeks and D. G. Altman. “Measuring inconsistency

in meta-analyses,” BMJ : British Medical Journal, Volume 327, Issue 7414, 2003.

83

Appendix A

Lingo Code
MODEL:

SETS:

clock/z1..z40/;!time loop;

file:m,f,e,n,q,remain,alpha,beta,Lij,O,ES, LS,

SLACK,EF,LF,d;!define all file related parameters;

nestedfile(file,file):rowcol;!files readiness parameter

matrix;

processor:P;!P=1 if k is available otherwise 0;

extra:W,V;!w=1 if R is available otherwise 0;

assign1(file,processor):X;!allocating files to basic

processors;

assign2(file,extra):Y;!allocating files to extra processors;

PRED(file, file);!predecessors matrix;

ENDSETS

DATA:

file,PRED,n,e,beta,processor,extra,rowcol,maxtime,SLA,BW,csf,c

h,Csv,Cesv,Cesf,Ceh,Cp =@ OLE'(C :\ Users\Lenovo\Desktop\lingo

programs 2 \2,'

'file','PRED','n','e','beta','processor','extra','rowcol','max

time','SLA','BW','Csf','Ch','Csv','Cesv','Cesf','Ceh','Cp;)'

!establish the excel link to import input data;

ENDDATA

submodel main:

;!If AP =1 then data batch process exceeded SLA time and

penelty cost is imposed, 0 otherwise;

Min=@sum(assign1(I,K)|lij(i)#eq#1:((Csv+((Csf+Ch)/Bw))/(alpha(

i)*beta(i)))*X(I,K))+

@sum(processor(K):((Csf+Ch)/BW)*(1-@sum(file(i)|lij(i)#eq#1

:x(i,k))))+

@sum(assign2(I,R)|lij(i)#eq#1 #and# v(r)#eq#1

:((Cesv+Cesf+Ceh)/(alpha(i)*beta(i)))*Y(I,R))+

@sum(extra(R)|v(r)#eq#1 :(Cesf+Ceh)*(1-

@sum(file(I)|lij(i)#eq#1 :Y(I,R))))+AP*Cp*(time- SLA);

!obj fun. : min costs of assigning files to extra and basic

processors,opportunity costs and penalty cost

 while satisfting priority , weight and time constraints;

BASIC= @size(processor);

sub = @sum(file(i)|i #GT#1 #and# i#LT#@size(file) #and#

lij(i)#eq#1 :e(i));

fix=@if(sub #GE#Basic,BASIC,sub);

@sum(assign1(I,k) :x(i,k))= fix ;

@for(file(i)|i#eq#1:@sum(assign1(i,k):x(1,k))=0);!ensure that

start files are not being assigned;

84

@for(file(i)|i#eq#@size(file);!ensure that finish files are

not being assigned;

@for(file(i)|i#eq#1:;!ensure that start files are not being

assigned;

@for(file(i)|i#eq#@size(file);!ensure that finish files are

not being assigned;

@for(file(i):;!ensures that files are not being over

processed;

@for(file(i):;!determine how many times a files has been

processed at each time unit T;

@for(file(i):

;!total file allocation for any file i at a certain time T

doesn’t exceed neither file multiprocessing ei nor file

required processing ni nor total number of available basic and

extra processors (K ,V);

@for(file(I):

; !total file allocation for any file i at a certain time T

doesn’t exceed neither file multiprocessing ei nor file

required processing ni nor total number of available basic and

extra processors (K ,V);

@for(processor(K):

@sum(file(I):X(I,K))<=P(K));!ensures that one file is allocted

to each available basic processor;

@for(extra(R):

@sum(file(I):Y(I,R))<=W(R));!ensures that one file is

allocated to each available extra processor;

@for(file(I):@bin(f(I)));!data file availability, f(i)=1 when

file is ready,0 otherwise;

@for(assign1(I,K):@bin(X(I,K)));!binary constraint for

allocating to basic processors;

@for(assign2(I,R):@bin(Y(I,R)));!binary constraint for

allocating to extra processors;

exe=@sum(file(i):q(i));!no. of times a file been executed;

req=@sum(file(i):n(i));!no. of times a file need to be

executed;

;!If AP =1 then data batch process exceeded SLA time and

penelty cost is imposed, 0 otherwise;

endsubmodel

submodel cpm:!finding the critical path for the remaining

unprocessed files in the network;

@for(file(i):remain(i)=n(i)-q(i));

85

@FOR(file(J)| J #GT# 1:

ES(J) = @MAX(PRED(a, J): ES(a) + remain(a))

);

@FOR(file(a)| a #LT# LTASK:

LS(a) = @MIN(PRED(a, J): LS(J) - remain(a));

);

@FOR(file(a): SLACK(a) = LS(a) - ES(a));

ES(1) = 0;

LTASK = @SIZE(file);

LS(LTASK) = ES(LTASK);

@for(file(a):

EF(a)= ES(a)+remain(a));

@for(file(a):

LF(a)= LS(a)+remain(a));

MIN=path;

path=EF(LTASK) -ES(1);

@for(pred(a,J)|slack(a)#eq#0 #and# slack(j)#eq#0 :

ES(J) >=ES(a) +remain(a));

;!finding the value of the penalty cost in case the critical

path exceed the SLA time;

;!finding the value of renting one additional extra processor

in case the critical path exceed the SLA time;

endsubmodel

calc:

basic=@size(processor);

used_extra=0;!initialization, no extra processors are rented;

time=0;

@for(file(i)|i #GT#1 #and#

i#LT#@size(file):!initialization,all files are unprocessed ;

q(i)=0);

q(1)=0;

q(@size(file))=0;

@for(processor(k):

p(k)=1);!initialization,basic processors are ready;

@for(extra(R):

W(r)=1);!initialization,extra processors are ready;

@for(extra(R):

v(r)=0);!initialization,no extra processors are rented;

@SET('TERSEO', 2); ! Ask for Terse output, (0 = default);

@solve (main);!solve main program;

86

@OLE('C:\Users\Lenovo\Desktop\outputex.2-b.XLS','u0x') = x;

@OLE('C:\Users\Lenovo\Desktop\outputex.2-b.XLS','ch') = ch;

@OLE('C:\Users\Lenovo\Desktop\outputex.2-b.XLS','csf') = csf;

@OLE('C:\Users\Lenovo\Desktop\outputex.2-b.XLS','csv') = csv;

@OLE('C:\Users\Lenovo\Desktop\outputex.2-b.XLS','ceh') = ceh;

@OLE('C:\Users\Lenovo\Desktop\outputex.2-b.XLS','cesf') =

cesf;

@OLE('C:\Users\Lenovo\Desktop\outputex.2-b.XLS','cesv') =

cesv;

@OLE('C:\Users\Lenovo\Desktop\outputex.2-b.XLS','used_extra')

= used_extra;

@OLE('C:\Users\Lenovo\Desktop\outputex.2-b.XLS','BW') = BW;

@OLE('C:\Users\Lenovo\Desktop\outputex.2-b.XLS','SLA') = SLA;

@OLE('C:\Users\Lenovo\Desktop\outputex.2-b.XLS','basic') =

basic;

@OLE('C:\Users\Lenovo\Desktop\outputex.2-b.XLS','u0y') = y;

@OLE('C:\Users\Lenovo\Desktop\outputex.2-b.XLS','u0time') =

time;

@OLE('C:\Users\Lenovo\Desktop\outputex.2-b.XLS','cp') = cp;

!establish excel link to transfer output results to excel

file;

@WRITE('Batch process cost minimization.'

,@NEWLINE(1));!writing the lingo output allocation report;

 @WRITE(' ', @NEWLINE(1));

 @WRITE(' Time : ',time, @NEWLINE(1));

 @WRITE(' Ch : ',Ch, @NEWLINE(1));

 @WRITE(' Csf : ',Csf, @NEWLINE(1));

 @WRITE(' Csv : ',Csv, @NEWLINE(1));

 @WRITE(' Basic file allocation :',@NEWLINE(1), ' File

Basic Processor ', @NEWLINE(1));

 @FOR(assign1(i,k) | X(i,k) #GT# 0.5:

 @WRITE(' ',file(i),' ', processor(k),

@NEWLINE(1));

);

 @WRITE(' ', @NEWLINE(1));

 @WRITE(' ', @NEWLINE(1));

 @WRITE(' Ceh : ',Ceh, @NEWLINE(1));

 @WRITE(' Cesf : ',Cesf, @NEWLINE(1));

 @WRITE(' Cesv : ',Cesv, @NEWLINE(1));

@WRITE(' Utilized Extra Processors :',used_extra,@NEWLINE(1));

 @WRITE(' ', @NEWLINE(1));

 @WRITE(' Extra file allocation :',@NEWLINE(1), ' File

Extra Processor ', @NEWLINE(1));

 @FOR(assign2(i,R) | y(i,R) #GT# 0.5:

 @WRITE(' ',file(i),' ', extra(R),

@NEWLINE(1));

);

 @WRITE(' ', @NEWLINE(1));

87

 @WRITE(' ', @NEWLINE(1));

 @WRITE(' ', @NEWLINE(1));

 @WRITE(' ', @NEWLINE(1));

@solve (cpm);!solve the submodel to find the critical path;

@OLE('C:\Users\Lenovo\Desktop\outputex.2-

b.XLS','critical_path') = path;

@for(clock(z):

@IFC(exe #LT#req:!check termination condition;

time= z;!increment clock ;

@solve (main);

@OLE('C:\Users\Lenovo\Desktop\outputex.2-b.XLS',clock(z)+'x')

= x;

@OLE('C:\Users\Lenovo\Desktop\outputex.2-b.XLS',clock(z)+'y')

= y;

@OLE('C:\Users\Lenovo\Desktop\outputex.2-

b.XLS',clock(z)+'time') = time;

@OLE('C:\Users\Lenovo\Desktop\outputex.2-

b.XLS',clock(z)+'used_extra') = used_extra;

@WRITE('Batch process cost minimization.' ,@NEWLINE(1));

 @WRITE(' ', @NEWLINE(1));

 @WRITE(' Time : ',time, @NEWLINE(1));

 @WRITE(' Ch : ',Ch, @NEWLINE(1));

 @WRITE(' Csf : ',Csf, @NEWLINE(1));

 @WRITE(' Csv : ',Csv, @NEWLINE(1));

 @WRITE(' Basic file allocation :',@NEWLINE(1), ' File

Basic Processor ', @NEWLINE(1));

 @FOR(assign1(i,k) | X(i,k) #GT# 0.5:

 @WRITE(' ',file(i),' ', processor(k),

@NEWLINE(1));

);

 @WRITE(' ', @NEWLINE(1));

 @WRITE(' ', @NEWLINE(1));

 @WRITE(' Ceh : ',Ceh, @NEWLINE(1));

 @WRITE(' Cesf : ',Cesf, @NEWLINE(1));

 @WRITE(' Cesv : ',Cesv, @NEWLINE(1));

@WRITE(' Utilized Extra Processors :',used_extra,@NEWLINE(1));

 @WRITE(' ', @NEWLINE(1));

 @WRITE(' Extra file allocation :',@NEWLINE(1), ' File

Extra Processor ', @NEWLINE(1));

 @FOR(assign2(i,R) | y(i,R) #GT# 0.5:

88

 @WRITE(' ',file(i),' ', extra(R),

@NEWLINE(1));

);

 @WRITE(' ', @NEWLINE(1));

 @WRITE(' ', @NEWLINE(1));

 @WRITE(' ', @NEWLINE(1));

@solve (cpm);

@OLE('C:\Users\Lenovo\Desktop\outputex.2-

b.XLS',clock(z)+'critical_path') = path;

ENDCALC

DATA:

@OLE'(C :\ Users\Lenovo\Desktop\lingo programs 2 \2,'

'used_extra')=V;

@OLE'(C :\ Users\Lenovo\Desktop\lingo programs 2 \2,'

'Real_time')=time;

@OLE('C:\Users\Lenovo\Desktop\outputex.2-b.XLS',

'Real_time')=time;

@OLE('C:\Users\Lenovo\Desktop\outputex.2-b.XLS','sum_extra')

=used_extra;

@TEXT() = @TABLE(V);

ENDDATA

END

89

Appendix B

Network Allocation Example

T Basic

processors

No. of

Acquired

Basic

processors

File

processed

by basic

processors

Rented

Extra

Processors

No. of

Acquired

Extra

Processors

File

processed

by extra

processors

0 2 2 1 0 0 0

1 2 2 1 1 1 2

2 2 2 1 1 1 2

3 2 2 1 1 1 2

4 2 2 2 1 1 2

5 2 2 4,7 2 2 3

6 2 2 3 3 3 3,4

7 2 2 3 3 3 3,4

8 2 2 5 3 3 5,9

9 2 2 5 3 3 5,9

10 2 2 6 3 2 6,9

11 2 2 6 3 2 6,9

12 2 2 6 3 2 6,9

13 2 2 9,12 4 4 8,12

14 2 2 9,12 4 4 8,12

15 2 2 10,11 4 4 11,12

16 2 2 11,12 4 1 11

17 2 2 11 4 0 0

18 2 2 11 4 0 0

19 2 2 13 5 5 14

20 2 2 13 5 5 14

21 2 2 15 5 5 15

22 2 2 18 5 5 16,18

23 2 2 17,18 5 5 17,18

24 2 2 17,18 5 1 17

25 2 2 20 5 5 19,20

26 2 2 21 5 5 19,21

27 2 2 21 5 3 19,21

28 2 2 22,24 5 2 22

29 2 2 23,24 5 0 0

30 2 2 23,24 5 0 0

31 2 2 23,24 5 0 0

32 2 2 23,24 5 0 0

33 2 1 24 5 0 0

34 2 1 24 5 0 0

35 2 1 24 5 0 0

90

Network Allocation Example (Continued)

T

Basic

processors

No. of

Acquired

Basic

processors

File

processed

by basic

processors

Rented

Extra

Processors

No. of

Acquired

Extra

Processors

File

processed

by extra

processors

36 2 1 24 5 0 0

37 2 1 24 5 0 0

38 2 2 25 5 3 25

91

Vita

Alia Hasan Al Sadawi was born in 1977, in Baghdad, Iraq and moved to

the United Arab Emirates in 1980. She was educated in private schools and received

a scholarship from Al Shola Private School where she graduated with honors.

In 2000, she graduated from Ajman University of Science and Technology, her

degree was a Bachelor of Science in Electrical and Electronics Engineering. After

Graduation she worked in Honeywell Middle East limited as Electronics Engineer then

in Johnson Control International as Design and Estimation Engineer. Later she joined

Nahas Intertrade as Electronics and Sales Engineer. Her last position was

Communication Division Director in Unified Technologies. After many years in

practical field she decided to go back and study for her masters. She joined

the Engineering Systems Management Program at the American University of Sharjah

where she was a Graduate Teaching Assistant.

Mrs. Alia participated in the Sixth Industrial Engineering and Operation Management

conference IEOM in Kuala lumpur, Malaysia in 2016. Where she presented a paper

related to Batch Process Optimization.

