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Abstract 

 Transformer Asset Management (TAM) is concerned with the strategic 

activities that monitor and manage the transformer asset in the power system. The 

outcomes of TAM aim at setting proper monitoring methods and maintenance plans, 

with minimal cost of time and money. Monitoring methods in the form of electrical, 

chemical and physical tests are conducted to assess the transformer operational 

condition. The main part, which is directly related to the ageing of the transformer, is 

the oil-paper insulation system. The standard practiced monitoring test methods used 

by TAM companies are considered highly effective and useful.  However, a full 

feedback of the transformer’s condition requires a number of monitoring tests to be 

conducted. Such an exercise is considered expensive and difficult to implement for 

some of the tests. Moreover, the individual conducted tests cannot provide a 

comprehensive understanding of the transformer condition based on a single factor. 

Thus, the concept of the Health Index (HI) was developed to accurately assess the 

transformer’s condition and effective remnant age. The main components involved in 

the HI computation are related to the transformers' insulation condition, service record 

and design. Finding the transformer HI is normally done through using several industry 

computational methods. The drawback of these methods is the large number of tests 

required to achieve high level of condition assessment accuracy. Thus, alternative 

Artificially Intelligent (AI) methods should be used to design the HI model. AI 

methods, such as Artificial Neural Networks (ANN), can learn the pattern of the 

response output (HI), based on a given set of input (monitoring tests). The use of feature 

selection technique such as stepwise regression, can lead to an effective reduction of 

redundant tests in the presence of more significant ones. The presented work produces 

a general cost-effective AI based HI predictor model that can be used by different utility 

companies. Such a predictor would be able to produce a HI output value with a 95% 

prediction accuracy using only a subset of the required input features. Furthermore, the 

model can produce the same prediction accuracy with a predicted costly feature as one 

of the input features. 

Search Terms: Transformer Asset Management, Health Index, Artificial 

Intelligence, Artificial Neural Network and Stepwise Regression. 
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Chapter  1. Introduction to Transformer Asset Management 

The growing demand of the electrical power grid forces the utility companies 

to take decisions that will ensure the continuous supply of power with high standards 

of network reliability. Providing such reliable power grids demands the continuous 

operation of the electrical equipment used in supplying the power. Transformers are 

one of the asset elements that may be subjected to operation failure due to internal faults 

which in turn will affect the whole power grid. Thus, transformers require special 

attention and careful supervision by utility companies to ensure the continuous 

operation.  

1.1.      Definition and Objectives 

Transformer Asset Management (TAM) defines the set of strategic activities 

that are practiced by the utility companies in order to be fully aware of the operating 

conditions of the transformers. This will lead to make decisions related to the 

transformers in question to be replaced, refurbished or relocated to insure reliable power 

supply. The prime objective of asset management is to define the transformer life-cycle 

management strategy that will define monitoring priorities and provide a planned 

maintenance strategy for all transformers [1]. This objective takes into consideration 

the importance of reducing the maintenance cost and avoids accidental transformer 

operation failure. Moreover, accomplishing this objective requires the use of multiple 

transformer diagnostic models that are developed in order to evaluate the transformers 

operational conditions. Such diagnostic methods can be used to assess the lifetime and 

reliability of the transformers, and can further draw conclusions about the causes of 

transformer ageing and future operational failure. TAM strategy cycle defines a set of 

standard procedures to be followed in order to develop a complete understanding of the 

transformers’ condition and to give an overall assessment of the required maintenance 

plan for a reliable supply of power [2]. 

1.2.      Building a Risk-Assessment Database 

Fully understanding the consequences of the transformers’ failure raises the 

awareness of the utility companies of the involved risk associated with each 

transformer. This is highly important to define a priority list of energized transformers. 

Risk-Assessment studies like the FMEA (Failure Mode and Effect Analysis) are used 

to perform this task [1]. Building a Risk-Assessment database is associated with listing 
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a set of all the possible failure causes of a transformer whether being internal or 

external. This helps identifying the most sensitive areas where time and money have to 

be invested for developing better problem-recognition models and remedy maintenance 

solutions. 

The main reasons involved in the transformer operation failure include ageing, 

deterioration, or damage of different internal or external components of the transformer 

such as the insulation system, load tap changer, windings, tank and bushings. Factors 

leading to such damage can be age-based factors, such as the reduced dielectric strength 

of the insulation system due to insulation contamination. Other factors are mainly due 

to the electrical, mechanical and thermal stresses due to external short circuits, incipient 

faults, transient switching, lightning strikes and excessive overloading. Having these 

factors identified, the utility company can predict the probability of failure and 

remaining life-time using formulated probabilistic models. 

1.3.      Setting the Condition Monitoring and Assessment Strategy 

Once the utility company builds a transformer risk-assessment database, 

condition monitoring (CM) and condition assessment (CA) are performed. Condition 

monitoring refers to the development of special methods for monitoring and acquiring 

the information of a certain parameter in the transformer [3]. An example would be 

taking oil samples of a transformer to use the information of particular substances 

composition for later analysis to determine the strength of the oil insulation system. 

Condition assessment, on the other hand, processes the acquired CM data to give an 

evaluation of the transformer’s current performance and its predicted life-time. CA can 

either be done through standard diagnostic methods or novel techniques that deal with 

artificial intelligence. 

1.4.      Adapting Effective Maintenance Plans 

Transformers that are poorly maintained have short life-time expectancy [3]. 

The maintenance plan practiced by the utility company is considered poor if some of 

the transformers are under high risk of operational failure with the utility being unaware 

of it. TAM requires utility companies to adapt one of three strategic maintenance plans 

which are namely the corrective, preventive and reliability-based maintenance plans. 

Corrective maintenance. The corrective maintenance exercise is only 

conducted when an alarm is triggered or an unplanned outage occurs. This maintenance 
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plan was the first adapted maintenance strategy in power systems. Corrective 

maintenance is considered a cost-saving maintenance approach in which regular 

inspections are not required, low manpower is needed and is only desirable when the 

transformer failure is due to easily replaceable accessories. However, if the operational 

failure was due to a severe internal damage in a main transformer component that could 

have been detected with proper monitoring, corrective maintenance would be 

considered as a failing strategy. Moreover, energizing the transformer would require a 

significant number of tests if the fault cause was un-identified.  

Preventive maintenance. Preventive maintenance plans take into 

account the use of the CM and CA methods in order to fully assess the transformer 

condition. Preventive maintenance plans can be categorized into time-based 

maintenance (TBM) and condition-based maintenance (CBM) plans. TBM sets fixed 

time span intervals for the inspection and maintenance of the transformers. This strategy 

is followed by most of the utility companies. It increases the power supply reliability 

by preventing un-planned outage through early detection of possible operational threats. 

The trade-off in this maintenance plan is between the time-span interval setting and the 

maintenance cost. The shorter the time-span, the lower is the probability failure but 

with an expensive inspections and manpower. On the other hand, the longer the time-

span, the more vulnerable the transformer is to failure due to incipient and external 

faults but with lower maintenance cost. CBM sets a maintenance plan on the basis of 

the produced outcomes and conclusions of the CA process and hence has a 

comprehensive understanding of the transformers’ operational conditions. This helps 

the utility company to make an informative decision of the required time-span for the 

next maintenance exercise and what the components that have to be repaired are. This 

approach is an excellent preventive of operation failures due to the constant monitoring, 

with a cost-saving strategy of less man-power and detection of possible incipient faults 

at an early stage. The disadvantage in this plan is the need for continuous online 

condition monitoring of the transformer, and the required sophisticated CA methods 

that can correctly identify the appropriate maintenance time and type. 

Reliability centered maintenance. With the risk-index associated with 

each transformer being well known, utility companies can take studied decisions on the 

maintenance requirements. RCM combines the knowledge of the risk-index with the 

outcomes of the CA to make a proper maintenance management plan amongst a 
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population of in service transformers. This maintenance strategy is considered as the 

optimum choice that is subjected to the constraints of maintenance cost and operation 

reliability. Designing such smart systems requires a large database of CM acquired data 

and risk-assessment data for proper CA training. 

Figure 1 illustrates the general TAM strategy and how the exercised 

maintenance plans are incorporated accordingly.  

 

 

Figure 1: TAM strategy flowchart 
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Chapter  2. Background 

2.1.      Transformer Health Condition 

The transformer is used to step the voltage level up or down depending on its 

function and location in the power system. Each transformer has a voltage and power 

rating that should not change during the entire duration of service. The factors that can 

facilitate a change in such parameters are related to the weakness and degraded health 

of the major transformer components. The main component associated with the 

transformer health is its insulation system. The performance of the transformer and its 

expected outcomes can only be maintained through the proper care and awareness of 

the strength of its insulation system. The strength of the insulation systems is measured 

through its physical, electrical and mechanical properties. Other transformer 

components and accessories, like tap changer, attribute to the overall health of the 

transformer, but are relatively of lower significance when compared to the insulation 

system. 

Oil-paper insulation system. The insulation system of the transformer 

is composed of solid and liquid forms of insulation. The liquid or oil insulation of a 

transformer system plays a vital role in providing an insulating medium that will 

prevent the passage of electrical current between conductors of different potential 

levels. Moreover, the transformer oil acts as a cooling medium for the transformer. The 

oil is pumped through the transformer windings to absorb the dissipated heat due to the 

winding copper and core losses. The solid or paper insulation is mainly used to cover 

the transformer conductors and insulate the windings. The paper insulation is relatively 

more vulnerable than the oil insulation to excessive thermal and electrical stresses. A 

weakness in the paper insulation strength can result in creating conducting paths 

between the transformer windings. Moreover, paper pressboards are used in the 

transformer system for the isolation of high voltage parts that is filled with mineral oil.   

2.1.1.1.  Oil insulation system. The chemical composition of the mineral 

transformer oil is based on three carbonic structures. The first structure is paraffin which 

is a straight organic chain of Normal-Alkanes (N-Alkanes or waxes) [4]. High 

concentrations of N-Alkanes can increase the oil viscosity and prevent the free flow 

movement. They are associated with forming solid or sludge substances that can block 

the movement of oil within the transformer. The second structure is the naphthenic 
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structure which is a cyclo-alkanes of good solvent properties. The third and most 

important structure that constitutes to the oil’s thermal and electrical property is the 

aromatic structure. These can be in the form of monoaromatics or polyaromatics (PAC). 

PAC contributes to the dissolved gas property in the transformer oil.  

The transformer oil is mineral insulating product which is produced by a set of 

refining processes on extracted crude oil. The refining processes include the fractional 

distillation, dewaxing, extraction and hydrogenation with the crude oil as a starting 

product. Fractional distillation of crude oil involves separation of the oil components 

on the basis of their different boiling points. The useful organic material produced by 

the distillation process is later subjected to a dewaxing solvent which is used to remove 

N-alkane compounds. The extraction process later will be used to remove the reactive 

polar molecules of the distillated fluid. Finally, a high temperature catalytic reaction 

occurs in the presence of hydrogen (hydrogenation) to chemically convert the aromatic 

and polar compounds in the extracted fluid to the useful organic mineral oil.  

2.1.1.2.  Paper insulating system. The solid insulation of the transformer 

system comprises of the paper and pressboard components. The paper material is made 

from Kraft un-bleached cellulose which is known for its mechanical and electrical 

strength. The cellulose fiber (extracted from softwood) is a polymer chain of D-

anhydroglucopyranose units that are tied together through β-1,4-glycosidic bonds [5]. 

Production of Kraft paper is done by processing the softwood using the Sulphate 

method, followed by a series of extensive cleaning processes to remove the undesirable 

resins and mineral substances.  

Other transformer health components. The electrical and physical 

properties of other transformer components should be taken into account during the CA 

process of the transformer [1], [2]. These include the electrical properties of the load 

tap changer (LTC), turns ratio, winding resistance, transformer impendence and 

capacitance, bushings, etc. Physical properties include the corrosive condition of the 

tank, efficiency of the cooling system, the mechanical strength of the gaskets, etc. 

Degradation of the electrical and physical properties of these components can reduce 

the expected lifetime and increase the transformer probability to fail. 
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2.2.      Condition Monitoring and Assessment Procedure for Transformers 

TAM defines a standard set of CM test procedures that should be followed in 

order to properly assess the current situation of the transformer, and get a good 

approximation of its remaining lifetime. These test procedures are used to acquire the 

transformer condition parameter data that is required by the CA methods. Related works 

of TAM indicate the initiative of developing new data-mining based methods to predict 

the condition parameters for reducing the maintenance procedure costs. This section 

will go through the traditional and data-mining based CM methods. 

Dissolved Gas Analysis (DGA). One of the fundamental methods used 

in assessing the transformers’ operating condition is the analysis of the dissolved gases 

in the insulating oil. DGA is considered a crucial tool for interpreting internal faults in 

the transformer. Dissolved gases are decomposed by-products of oil and cellulose paper 

insulation material as a result of the transformer internal electrical and thermal faults 

[6]. Incipient electrical faults such as partial discharge or intense arcing can cause the 

breakdown of the insulation material through ion bombardment (in partial discharge) 

or by the arcing thermal energy. Decomposition of oil material occurs due to the 

breaking of Carbon and Hydro-Carbon bonds. New produced molecular gaseous 

products dissolve in the oil solution. Paper decomposition, on the other hand, occurs by 

breaking the Glycosidic bonds in the cellulose polymer chain. The rate of thermal 

breakdown of the cellulose paper material depends on the temperature and volume of 

the Kraft paper material. Cellulose decomposition is accelerated due to factors like heat, 

moisture and oxygen [5]. The CM method for DGA requires having test samples of the 

transformer oil to find the composition of certain dissolved gases known as the key gas 

elements through the application of chromatographic separation. The key gases are 

namely Hydrogen (H2), Methane (CH4), Acetylene (C2H2), Ethylene (C2H4), Ethane 

(C2H6), Carbon Monoxide (CO) and Carbon Dioxide (CO2) [7]. 

Interpretation of the dissolved gases using CA methods can be done by practiced 

standard diagnostic methods. The IEEE.C57.104 guide for DGA defines two CA 

methods for interpreting the internal transformer faults [7]. One method is the 

investigation of the dominant key gases in oil samples along with the total dissolved 

combustible gas (TDCG) concentration. The other method is through the calculation of 

certain dissolved gas ratios using either the Duval triangle, Roger or Doerenburg ratio. 

Based on the DGA findings, four main incipient faults can be interpreted which are 
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mainly low level thermal (150-300°C), high level thermal (above 300°C), low intensity 

electrical discharge and high intensity arcing faults. For example, high levels of 

Hydrogen indicate the possibility of partial discharge fault inside the transformer 

winding. Calculating the ratio of Methane to Hydrogen can indicate the presence of 

high level thermal faults.  

Based on the DGA findings, it has been concluded that the breakdown of the 

insulating oil will mainly result in release of Hydrogen, Methane, Acetylene, Ethylene 

and Ethane. On the other hand, the breakdown of cellulose will result in high amounts 

of released Carbon Dioxide and Carbon Monoxide gases [6]. Table 1 shows an example 

of one of the condition-based DGA method that is recommended by the IEEE.C57.104 

standards. Based on the TDCG, a C1 condition indicates the safe operation of the 

transformer with least probability of failure threat. A C2 condition indicates an 

abnormal operating condition in which additional investigations are required if any key 

gas concentration exceeds the specified limit. C3 level indicates the immediate 

requirement for further investigation if any key gas concentration limit is exceeded. A 

C4 limit is reached when the transformer is in its worst condition and has to be 

immediately investigated [7].  

TAM in DGA plays a vital role in defining the required action strategy that 

should be done based on the outcomes of the standard or data-mining based approaches. 

The utility can make a supported decision on scheduling the next sampling interval. 

Moreover, the utility can make early failure-preventive actions that can be either to 

remove the transformer or to be more cautious with its operation. 

Table 1: Condition-based DGA [7]

Status Dissolved key gas concentration limits (µL/L (ppm) 

Hydrogen Methane Acetylene Ethylene Ethane Carbon 

Monoxide 

Carbon 

Dioxide 

TDCG 

C1 100 120 1 50 65 350 2500 720 

C2 101-700 121-400 2-9 51-100 66-100 351-570 2500-

4000 

721-

1920 

C3 701-1800 401-

1000 

10-35 101-200 101-

150 

571-1400 4001-

10,000 

1921-

4630 

C4 ≥1800 ≥1000 ≥35 ≥200 ≥150 ≥1400 ≥10000 ≥4630 
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Oil Quality Analysis (OQA). The quality of the oil is mainly 

characterized by its insulation strength against any electrical or thermal stress. 

Verifying the oil quality is done through a series of electrical, physical and chemical 

tests conducted on oil test samples. Electrical tests include the dielectric strength (or 

breakdown voltage) and dielectric dissipation factor (DDF). Physical tests are 

conducted for measuring the oil’s interfacial tension (IFT) and visual appearance 

(color). Chemical tests are conducted for measuring the acidity and water content of the 

transformer oil [8]. 

2.2.2.1.  Dielectric strength. The measure of the oil’s dielectric strength is an 

indication of the oil’s capability to withstand the electrical stress caused by an 

electrical field without the breakdown of its insulation property. Dielectric strength is 

measured by means of the breakdown voltage value (BDV). 

  The CM practiced methods for measuring the BDV is through the application 

of either ASTM D877 or the D1816 standards. For new unused oil samples, the D877 

standard subjects two front-flat cylindrical electrode disks (with 2.5mm separation gap) 

to an increasing high voltage stress inside the oil medium. Measurement of the BDV 

occurs when the oil insulation breakdowns and arcing occur. The D1816 standard 

follows the same experimental procedures except for the use of pre-used transformer 

oil, and applying the voltage stress on spherical electrodes (with 1-2mm separation gap) 

instead of flat ones. Other tests such as the breakdown impulse voltage tests are used to 

test the quality of oil insulation against transient conditions such as lightning or load 

switching [8]. Measuring the BDV is required to deduce the degree of contamination 

of the oil [9]. The presence of acidic compounds and free water significantly reduces 

the dielectric strength of the oil. Solid containments in the presence of high levels of 

dissolved water in the insulating oil can further reduce the BDV strength of the oil 

insulation. 

2.2.2.2.  Acidity. Mineral oil oxidation is accelerated in the presence of 

atmospheric oxygen and the copper element in the transformer winding. The oxidation 

process results in the production of acidic compounds that contaminate the oil. In the 

presence of water and other contaminants, acidic compounds can be very harmful to 

the oil dielectric property and may result in lowering the breakdown voltage values [9]. 

Moreover, acidic products can cause the corrosion of the metallic components such as 
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the transformer windings or tank. Increasing acidity indicates the ageing of the 

transformer oil. CM methods for measuring acidity are simple and are based on basic 

chemistry-neutralization methods. The test standard used is the ASTM D947 for using 

potassium hydroxide in neutralizing 1g of the transformer oil sample [8]. 

2.2.2.3.  Water content. The presence of water particles in the transformer oil 

can be produced as a by-product of the degraded insulation material (due to thermal or 

electrical stress) or from the atmosphere (related to weak ingress protection) [9]. Water 

is a main constituent that can reduce the dielectric strength and lower the BDV of 

transformer oil. It can be found in the form of free water particles (clouded oil) or 

dissolved in oil. Dissolved water is acceptable at very low concentrations. Increasing 

concentrations of dissolved water indicate a high water solubility value which is mainly 

caused at high oil temperature. High concentrations of water can enhance the formation 

of acidic products in the oxidation process. The followed CM test standard is the ASTM 

D1533 Karl Fischer method, which relies on basic titration procedures for detecting 

concentration of moisture in oil [8]. 

2.2.2.4.  Interfacial tension (IFT). The strength of the tension force at the 

surface boundary between oil’s organic compounds and other fluids is measured by 

means of IFT. Having high measurements of IFT is a good indication of the preserved 

chemical properties of mineral oil [9]. As the transformer ages with time, soluble polar 

molecules are formed due to factors related to oil acidity and oxidation. The organic oil 

compounds lose their non-polar property in the presence of such polar contaminants 

and result in the formation of new oxidized contaminants or sludge. Observation of 

sludge material and other solid contaminants in the transformer oil is an indication of 

low IFT values. The practiced CM test methods used in measuring IFT are ASTM D-

971 and ASTM D-2285 standards. The D971 standard measures the amount of force 

required to break the interface between oil using metallic platinum rings, while the 

D2285 measures the required volume of a water drop that the oil can withstand before 

the tension at the surface breaks [8]. Measuring the IFT using these standards requires 

the use of specifically designed testing equipment. Novel CM methods (addressed later 

in this thesis) are being developed in order to reduce the cost of IFT measurement for 

assessing the condition of the transformer [10]. 
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2.2.2.5.  Dielectric dissipation factor and insulation resistance. The 

transformer oil acts as a medium for cooling and insulating material. When considered 

as an insulating medium between two points at the transformer’s winding surface, the 

transformer oil is modeled as a capacitor. Under ideal conditions, the resistivity of the 

oil is considered infinitely high giving an exact 90° phase shift between the capacitive 

current and the voltage. In real situations, the oil resistivity value lowers with time, 

causing a heat dissipating resistive current to pass through the oil that reduces the phase 

difference to a value less than 90◦. This is identified as the loss in dielectric strength of 

the transformer oil caused by a leakage current. The DDF is the trigonometric tan of 

angle difference between the 90° angle and the new phase angle [9]. The DDF can also 

be computed as a ratio of the real to reactive leakage current. The dissipated heat will 

hasten the breakdown of the oil insulation material. Low oil resistivity indicates the 

presence of polar contaminant substances, acidic oxides and water content [10]. 

Reduction in the oil resistivity and increasing DDF measurements are indications of 

weakening the dielectric strength of the transformer oil. The CM method for measuring 

the DDF is done through the ASTM D924 standards in which a current is passed 

through the oil test sample in specifically designed cells to measure the capacitive and 

resistive components by the application of calibrated capacitive and resistive bridge 

circuits [8]. 

2.2.2.6.  Color. The transformer oil in a new condition is clear and transparent. 

Changes in the color occur with ageing due to the formation of contaminants, sludge, 

free water and other insoluble products [9]. This will cause darkening of the oil and 

increasing the intensity of color. ASTM D1500 CM test provides a variety of color 

samples that can indicate the degree of degradation in the transformer oil. Color tests are 

generally good indicatives of the precise condition of the transformer oil, but can only 

provide a general understanding of its status [8].  

Having an understanding of the standard CM testing techniques, the utility can 

conduct CA studies on the oil quality to interpret the transformer’s operational 

conditions. The IEEE Std. C57-106 code defines the CA method through a set of 

bounded limits for the condition parameters. Oil parameters, such as IFT or water 

content, should fall within the acceptable range defined by the standard. Based on the 

produced outcome of the CA method, the oil type will be classified as a class I, II or 

III. A class I oil type is considered in a satisfactory condition for further use.  
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Alternatively, oil is classified as a class II if the water content and BDV 

requirements are not met. Class II oil can be reconditioned to retain its insulation 

strength. Finally, class III oil type is characterized by low IFT measures, high DDF 

values and high acidity. Class III oil is a very poor oil that requires the utility to either 

conduct intense reconditioning or replacement [8]. The practiced CA method for oil 

quality gives a good understanding of the transformer oil insulation weakness points. 

However, it cannot give an overall assessment of the transformer insulation system. 

Table 2 shows the common recommended limits for oil quality parameters 

based on the IEEE Std. C57-106 standards. 

Table 2: Recommended oil quality limits [8]

CM Test Value for Voltage Class 

≤69kV Between 69kV and 

230kV 

≥230kV 

Minimum Dielectric 

Strength (kV) for 1mm 

and 2mm gap 

23 

40 

28 

47 

30 

50 

Maximum DDF (at 

25°C) 

0.5 0.5 0.5 

Minimum IFT (mN/m) 25 30 32 

Maximum Acidity (mg 

KOH/g) 

0.2 0.15 0.10 

Maximum Water 

Content (ppm) 

35 25 20 

 

Furan concentration and degree of polymerization. Degradation of 

the transformers paper insulation mainly occurs due to thermal, chemical and electrical 

stress. This is due to overload and short circuits that can dissipate a massive amount of 

heat through the transformer winding. The transfer of heat from the windings can cause 

winding hot spots. Hot spots due to the non-uniform distribution of heat in the 

transformer windings can rapidly increase the degradation rate of the surrounding paper 

insulation. Degraded paper is characterized by the loss of the mechanical tensile 

strength and electrical insulation property. Kraft paper is normally used in the solid 

insulation system of the transformer winding. The Kraft paper material is made up of 

cellulose. Degradation of the cellulose material is accelerated through the elements of 

heat, water and acidity. This is done through a thermo-chemical breakdown reaction 



25 
 

known as pyrolysis. Pyrolysis of the glucose units in the cellulose chain produces water 

and gaseous by-products which are namely Hydrogen, Methane, Carbon Dioxide and 

Carbon Monoxide [11], [12]. Another cellulose degraded by-product formed in the 

Pyrolysis of glucose is 2-Furfuraldehyde (2FAL) or Furan [5]. Testing the presence of 

Furan in oil is the main CM test method used to interpret the strength of the paper 

insulation. The ASTM D5837 standard indicates the detection of Furanic compounds 

through the use of High-Performance Liquid Chromatography (HLPC).  

Another method for measuring the extent of solid insulation degradation is 

through the measurement of Degree of Polymerization (DP). DP is a way of expressing 

the number of B-Glucose macro-molecular units which are still attached to the cellulose 

chain for a given volume of insulation material. High DP measurement indicates strong 

tensile strength of the paper material and its insulating capabilities. DP measurement is 

done by dividing the number-average molecular weight of the glucose polymer to the 

molecular weight of a single glucose-monomer unit. The DP of new paper material is 

around 1300 units, which drops to 200 units for aged oil. Related work has shown the 

possibility of an existence of negative correlation between the DP measurement and the 

concentration of dissolved Furanic compounds [11]. Therefore, two CA methods can 

indicate the paper insulation condition based on the outcome of the CM tests. One is 

through the use of DGA to detect the presence of high levels of Carbon Dioxide and 

Carbon Monoxide or through the use of the key gas ratio CO2 /CO. The second method 

would be through the analysis of Furan concentrations and DP units. Table 3 shows the 

extent of paper insulation degradation as a function of Furanic concentration and DP 

[2]. 

Table 3: Inference of degradation using DP and 2-FAL concentration [2]

2-FAL (ppm) DP Extent of Degradation 

0-0.1 800-1200 Insignificant 

0.1-0.5 700-550 Significant 

1.0-2.0 550-450 Cause of Concern 

<10 <300 End of Life 

 

Assessment of other transformer components. As mentioned earlier, 

the health of a transformer is mainly based on the strength of its oil-paper insulation 

system. Nevertheless, the health of other components of the transformer should also be 
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taken into consideration to have a complete diagnostic CA procedure. One of the main 

transformer components that is vulnerable to damage is the LTC. The LTC is used to 

allow the transformer to vary its output voltage level by varying the winding ratio, 

without any interruption of the current. The CM methods for assessing the LTC 

condition include obtaining the data for the LTC oil dissolved gases, oil quality and 

contact resistance of the tap changer. CA for the LTC can be done by analyzing the 

collected data through DGA or OQA [26]. Moreover, the cooling efficiency of the 

transformer can be tested with Infrared Thermography which can indicate cooling 

problems due to overheated components such as the transformer windings or bushing. 

Other measurements include the rated leakage reactance using frequency response 

analysis (FRA) CA method, which is an indication of the possible winding deformation 

[1]. In addition, Core-to-Ground insulation tests can be done to indicate any loose 

connection that can lead to core grounding. Additional tests such as those for the turn’s 

ratio can indicate the insulation failure between the windings of the same coil. A 

winding resistance test can detect loose connections or broken conductor strands. Many 

other CM tests and CA outcomes can be produced from analyzing different components 

of the transformer.   

Figure 2 summarizes the standard transformer CA methods which are mainly 

used in assessing the health of the transformer.  

 

 

Figure 2: Standard transformer CA methods 

 

2.3.      Condition Monitoring and Assessment Using Artificial Intelligence (AI) 

Proper data acquisition of the CM parameters can be done through any of the 

previously discussed standard techniques. Standards set by the IEEE or IEC codes are 
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used for proper CA of the transformer using the acquired condition parameter data. 

However, some of the standard CM methods are considered expensive and hard to 

conduct. For example, measurements of the IFT number and Furanic concentration 

levels in the transformer oil are considered costly in terms of the required equipment 

and expertise. This was a strong initiative for researches to study alternative data-

mining based techniques that can reduce the cost of CM maintenance applications.  

Dissolved Gas Analysis (DGA). The practiced CM methods for 

acquiring the dissolved key gases composition in oil are based on chromatographic 

methods which are considered cheap and easily performed methods. AI methods have 

been used to predict the dissolved key gases composition as an alternative to the 

standard diagnostic CM methods. In [13], an ANN approach was used to predict the 

dissolved key gases in the transformer’s oil using oil quality parameters which are 

acidity, BDV, water content, IFT, density and the power factor. Prior to using ANN for 

predicting any key gas, exhaustive feature selection techniques have been used to 

identify the oil quality parameters of highest statistical significance in predicting each 

key gas. For example, oil quality parameters of BDV, IFT and water content are 

considered to be the input features of highest statistical significance in predicting the 

concentration of Hydrogen. Based on 140 training and 51 testing oil samples of known 

dissolved key gas concentration, 96-100% of accuracy level is recorded for predicting 

the concentration of Hydrogen, Methane, Ethylene, Acetylene, Ethane, Carbon Dioxide 

and Carbon Monoxide in the transformers’ oil.   

The major contribution of AI-based research in the area of CA using DGA can 

be seen in developing new alternative incipient-fault interpretation methods with a 

higher level of decision accuracy. An approach has been used in [14], where a cascade 

of fuzzy logic models is used to predict the incipient transformer fault type. The input 

to the overall model is the concentration of the dissolved key gases. Each fuzzy model 

predicts the fault type based on a standard diagnostic method such as the Duval triangle 

or Doerenburg method. Based on the testing outcomes of each individual model, a 

weight is assigned to the output accordingly. The final interpretation of the incipient 

fault type is based on calculating the cumulative decision factor of all the individual 

fuzzy model outcomes. The overall model was successfully tested and verified against 

70 transformer oil samples of known gas concentrations and associated fault types. In 

related works, an ANN approach has been used in [15]- [16] for interpreting the 
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transformer incipient fault type using key gas elements as input features. In [16], the 

ANN model was used to classify the fault type for a given oil sample based on key gas 

ratios as input features (as per the IEC 60599 standards). Other works predict the fault 

type using Support Vector Machine (SVM) models based on the key gas ratio methods 

[17]. The first SVM model classified the transformer as faulty or not. Subsequent 

cascaded models classified the faulty transformers as one of the four internal 

transformer faults, i.e. low thermal, high thermal, low electrical discharge or high arcing 

fault. 

Oil Quality Analysis (OQA). OQA is a CA method which relies on the 

composition of certain substances and chemicals in the transformer oil. However, 

researchers have done extensive studies to find AI alternatives for the standard 

diagnostic methods used for determining the oil quality tests. The methodology used 

by many researches was to utilize the easily conducted condition parameters for 

predicting the more expensive tests. In [18] a multi-stage ANN approach was used to 

predict the oil’s BDV, IFT, water content and acidity using only the insulation 

resistance (IR) measurements. The idea was based on designing a series of cascaded 

feed-forward ANN stages with a back-propagation learning algorithm, in which each 

stage produced a particular oil feature output that was forwarded to the next network 

stage to predict another oil feature. The choice of the input features and corresponding 

output oil feature was based on the direct correlation of the features with each other. IR 

was used for predicting BDV and IFT values that were used along with oil color to 

predict the water content. A success rate of 84%, 95% and 75% was accomplished for 

predicting BDV, IFT and acidity respectively.  A similar approach for predicting BDV 

and water content using IR was used in [19]. The prediction of BDV and water content 

was done through a single-hidden layer feed-forward ANN, with the success accuracy 

of 95% and 83% for BDV and water content prediction respectively. The objective in 

both [18] and [19] was to create a workable platform of assessing the transformer 

condition using only IR as an input feature, and thus reducing the CM maintenance 

cost.  In [20], prediction of BDV, IFT and water content using IR data was done through 

the application of polynomial classifiers. A success rate of 84% and 93% was obtained 

for prediction of BDV and Interfacial tension respectively due to their high correlation 

with IR. Poor prediction of water content was obtained as a result of a temperature 



29 
 

variation and solubility levels in the oil samples. The drawback in [19] and [20] was 

the limited number of available oil transformer samples.  

A recent novel approach has been used for predicting IFT through the 

absorbance of light and using fuzzy logic [21]. An oil sample with degraded organic 

insulation compounds has the potential of absorbing light in the Ultra Violet-Visible 

wavelength spectrum. This property can be detected by the use of absorption 

spectroscopy which analyzes the absorption of light in any medium with respect to the 

change in wavelength. In [21], the wavelength of the incident light is changed from 

200-1,100nm and the absorption spectral response of the light in different oil samples 

was observed. The lower the IFT number (poor quality), the higher is the concentration 

of the insulation degraded organic compounds. This results in a higher wavelength 

range of light absorption and higher energy absorbance peak. In the fuzzy logic 

approach, the absorbance peak and wavelength range were used as condition 

parameters for setting the If-Then rules to predict the IFT number as an output.  All of 

the oil samples IFT numbers were previously known using standard CM methods 

(training and testing). The accuracy rate for predicting IFT for new 15 oil samples was 

87%. ANN was also used with the same spectral inputs to yield an accuracy rate of 80% 

for the same test samples. Another application of fuzzy logic in AI-based CA method 

was published in [22]. The fuzzy-based approach was used to develop a cascade of 

fuzzy models that can predict a transformer oil criticality based on the given inputs. The 

models were built based on a wide range of CM diagnostic tests of transformers with 

different operational conditions. Interpretation of the estimated lifetime and transformer 

condition was done on each transformer oil sample by utility experts. One fuzzy model 

predicts the electrical quality of the oil based on the power factor and BDV. Another 

model predicts the physical quality of the oil using IFT and UV spectral analysis. The 

physical and electrical oil qualities are forwarded to a new fuzzy model to predict the 

overall oil criticality. The success of the method was verified with correctly identifying 

the weaknesses of the transformer with the possible internal faults. 

Furanic Content in Oil Analysis (FFA). CM methods for data 

acquisition of the Furanic content in oil are considered relatively expensive and costly 

compared to the other tests. Furan data is normally acquired through outsourced 

companies that have the proper experimental facilities and equipment. Over the last 

decade, there have been multiple approaches to estimate Furan concentration through 
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the application of AI. In [23] ANN was used to predict Furan content using other 

relatively easier measured condition parameters as input features. The approach was to 

selectively use the features of highest statistical significance in Furan prediction using 

step-wise regression. Selection of Carbon Dioxide, acidity and BDV for Furan 

prediction produced a mean accuracy precision rate (MAPE) of 85%. The study 

validated the correlation between Carbon Dioxide, acidity and BDV with Furan. The 

study proceeds with adding other features such as Carbon Monoxide which resulted in 

increasing the MAPE to 90%. Similarly in [24], Furan content in oil was classified into 

five standard grades using other oil condition parameters as input features. This was 

done using the decision tree algorithm, ANN, Support Vector Machine, KNN and Naïve 

Bayes. The classification rates were poor due to the imbalance of the number of sample 

in each grade class. Synthetic Minority Over-Sampling Technique (SMOTE) was used 

to solve the imbalance problem. In addition, the number of grade classes was reduced 

to three. These measures increased the recognition rate from 73%, 68% and 58% to 

80%, 74% and 77% using decision tree, ANN and KNN respectively. In other work 

[25], Furan prediction was done through the application of fuzzy logic. Similar to what 

has been done with IFT, an approach of using the light spectral response of the oil 

samples due to Furan content was used. Furan is an organic by-product of paper 

degradation that absorbs light energy in the Ultra Violet-Visible wavelength range. A 

positive correlation was indicated between the Furan content and the maximum 

absorbance peak of light energy by the oil sample. Similarly, a positive correlation was 

also found between the Furan levels and the range of spectral wavelengths where the 

energy is absorbed.  

2.4.      Transformer Health Index as a CA Method 

Concept and objectives. TAM is concerned with defining a set of 

strategies for properly managing and maintaining a population of transformers in 

service. This is normally done through the diagnostic CM methods, which can assess 

the operational conditions and the insulation strength of the transformers based on the 

CA techniques. The standard CA insulation techniques are namely the DGA, OQA and 

FFA. The strength of the other transformer condition parameters such as the LTC, 

winding resistance, leakage reactance, bushing etc., are also assessed through defined 

CA methods which are set by the IEEE and IEC codes. Each test parameter can 

highlight certain problems with the transformer health condition. For example, the 
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DGA can provide information about the fault type and possible transformer weakness 

points. OQA and FFA methods suffer from a similar limitation and thus cannot provide 

any completely informative feedback that can be used for an effective TAM plans. 

Thus, the problem with these individual CA methods is the fact that they can’t give an 

overall understanding of the condition of the transformer unless those test parameters 

are integrated together in one index called the transformer health index (HI).   

 The transformer HI is a cumulative index value that represents a combination 

of the transformer operation condition outcomes produced by laboratory 

experimentations, code standards, site observations and expert judgments [26]. The HI 

method allows utility companies to input the outcomes of the standard CA methods into 

one model to give an index value that can be used as a reference for the condition of 

the transformer. The HI solves the problem of taking all the CA outcomes into 

consideration and allows for new inputs that are related to the transformer operation 

(loading and maintenance) to be used in the HI model. Moreover, the HI model design 

is based on a comprehensive set of international standards and expert experience that 

allows for generalized conclusions that are applicable in any region. 

 The main objective of using the HI is to enhance the understanding of the 

transformer’s probability of failure, effective age and its remaining life.  The HI 

provides a threshold based criterion which allows the utility to classify the transformer 

condition from being in a very poor to an excellent state of operation. This allows for a 

full understanding of the condition of the transformers in service, and therefore allows 

for prioritizing the transformers maintenance plans [26]. 

Computation of the Health Index in industry. Several computational 

techniques have been developed for calculating the HI of a transformer [26], [27]. These 

techniques have been developed by utility experts who work in asset management 

industry. Computation of the HI in industry is based on analyzing the condition of the 

individual transformer tests. These parameters can be either internal or external. 

Internal parameters are associated with the transformer oil-paper insulation systems, 

LTC, winding resistance and other condition parameters. Part of the external parameters 

includes the transformer’s loading history and frequency of maintenance orders. 

Precisely, the computation of the HI is based on three major parts which are namely the 

insulation strength, service record and design.  
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 The insulation strength is concerned with the mechanical and electrical strength 

of the transformer oil-paper insulation system. Analysis of the insulation strength can 

be done through the standard CA methods identified earlier. The strength of the oil 

insulation system can be evaluated through the OQA methods. The HI model requires 

the computation of the oil quality as a cumulative factor whose components are the oil’s 

BDV, IFT, acidity, water content, color and DDF. A score is given to each of these 

components that represents the condition of the transformer oil. A weight value is then 

used along with the score to indicate the significance of that specific test in calculating 

the oil quality factor. The standards used in defining the scores and weights are based 

on the IEEE and IEC codes. In a similar manner, the DGA factor is computed with its 

components being the key gas elements. The score and weights are set after going 

through the IEC, IEEE and Bureau of Reclamation standards and Dorenburg’s method. 

The strength of the paper insulation is assessed through measurement of the Furanic 

concentration and assessing its condition using the FFA factor.   

 The service record factor comprises of data related to the transformer age, fault 

history, loading and maintenance history. Such information is important to add a 

qualitative understanding of how the transformer was operated and maintained within 

its entire duration of service. Transient faults such as lightning and load switching 

reduce the life time expectancy of the transformer. For example, transformers operating 

in regions of a high likelihood of lightning (North America for example) should be dealt 

with differently than transformers in other regions. In addition, understanding the extent 

and duration of overloading can further enhance the knowledge of the life-expectancy 

of the transformer to understand the frequency of possible internal thermal faults. 

Finally, the maintenance history represents a record of the number of work orders that 

have been done for several parts of the transformers such as the connectors or bushing. 

The condition of the transformer is a function of the frequency of the work order and 

type. The service record factor allows to quantify all of these qualitative conclusions 

and observations to further support the HI model. 

 Finally, the design factor is an understanding of the manufacturer of the 

transformer and country of origin. This allows for a higher degree of freedom by 

allowing the HI model to use the manufacturer as an input. An expensive transformer 

made by well-established manufacturing companies has a higher life expectancy than 

cheaper transformers from low-profile manufacturers. Using the design of a transformer 
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in the HI model can be omitted if all the concerned transformer assets in the utility are 

of the same manufacturer and origin.  

 The computation of the HI by different TAM based companies is similar with 

the exception of minor factors. As an example, the companies mentioned in [26] and 

[27] use a similar computational strategy in which the DGA, OQA and FFA are used 

as main components of the HI model. However, [26] takes into account the health 

condition of the other parameters that are not related to the insulation strength and thus 

is considered of a higher accuracy than the method used in [27]. Moreover, the weights 

and scores of the components vary based on different interpretations by utility experts.  

 Figure 3 illustrates the general computation of the HI in industry as a function 

of the transformer’s insulation strength, service record and design.  

 

 

Figure 3: General computation of the Health Index using industry standards 

 

Computation of the Health Index using AI. The drawback of using the 

industry based HI model as a CA method lies in the fact that the accuracy of the 

produced HI is a function of the number of given inputs. This adds a cost constraint of 

time and money to acquire these tests. Moreover, Furan and IFT are considered highly 

expensive test features [21, 25] that require the proper equipment, personnel and testing 

facility. These tests are considered highly important in the computation of the HI, and 

thus add an extra cost to the utility company. 

 In [28], a fuzzy based approach has been conducted to predict the HI value using 

the oil quality, dissolved gas and Furan content parameters as inputs. Six membership 

functions are designed to represent the condition of water content, acidity, BDV, DDF, 
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dissolved combustible gas and Furan in the oil samples respectively. Each membership 

function was built based on a defined IEEE standard. The output membership function 

is the HI value of the oil sample. The fuzzy model ran on a set of rules that have been 

defined by utility experts. Each rule determines the consequence output (HI) based on 

the condition of the six membership functions. The final HI output is the result of 

defuzzification (using centroid method) of the truncated sums of the outputs of each 

rule. The set of 33 rules used, allows for a more general model that takes many scenarios 

into account. The success of the method was tested by comparing the predicted HI and 

condition of the transformer oil sample using the fuzzy model with that produced using 

a TAM-company’s own algorithm. The reported classification success rate was 97% 

based on a three class condition classification. Though this result is good for a three 

class HI classifier problem, no success rate has been provided for the actual five class 

problem and no MAPE has been presented for predicting the HI values. Related work 

in [29] used IFT and oil acidity in a fuzzy logic model to predict the remnant percentage 

lifetime of the transformer based on a 40-year lifetime span. Assessing the validity of 

the model was done by comparing the predicted life-time results with the actual life-

time expectation based on correlation measures with IFT and acidity.   

In other related work [30], an ANN approach has been made to classify the 

condition of the transformer based on the predicted HI value. The input features used 

in this model are based on water content, acidity, BDV, Hydrogen, Methane, Ethane, 

Acetylene, Ethylene, Furan, DDF and color. The model was a feed-forward ANN with 

two hidden layers (four and two neurons respectively) that was trained on 67% of the 

available data. The pre-processing method of data normalization is used for all the input 

features. Based on the testing outcomes, 97% of the testing samples were correctly 

classified based on a three-class condition problem.  

A novel method is presented in [31], where the authors apply a fuzzy-based 

SVM technique for classifying the condition of the transformer based on the HI of the 

oil samples (the five class problem). In this method, a generalized approach was 

followed in classifying the HI-condition of the training samples. This was done by 

combining a number of HI-condition model outcomes for a given oil quality, dissolved 

gas and Furan inputs. The individual HI models are based on industry standards, utility 

expert judgments, DGA interpretation and fuzzy membership functions (of each 

condition of the HI). A HI-condition for an oil sample was selected based on a majority 
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vote of each of the individual HI models. A weight factor is introduced to eliminate the 

outlier samples (considered as noise) in the training database by assigning higher 

weights to the samples closer to the feature mean. This strengthens the model in the 

sense that it eliminates the possibility of faulty training of the SVM due to un-

representative samples. Moreover, the pre-processing methods of oversampling, under 

sampling and SMOTE have been used to balance the training samples in each HI-

condition class. The Fuzzy Support Vector Machine (FSVM) model was trained with 

70% of the available samples. An average accuracy classification rate of 87.8% has 

been obtained based on a 10-trial training and testing procedure.  

2.5.      Objectives and Contributions of the Research 

The main objective of TAM is to increase the reliability of the power system 

with efficient maintenance costs. To reach this objective, the utility company has to be 

fully aware of the overall operational condition of each transformer in the power 

system. The HI amongst other CA methods is considered the best practical tool that can 

provide a comprehensive meaningful quantity of the transformer condition and its 

remnant lifetime. However, the limitation associated with the standard HI 

computational methods (by industry standards) is the need of all input features for a 

high accuracy of HI prediction. From the literature review, some features such as the 

Furanic content and oil quality IFT are difficult to acquire. The difficulty lies in the 

expensive equipment and experienced personnel required to perform the laboratory CM 

testing procedure. 

The objective of this thesis is to follow up with the AI-based approach that is 

developed by other researches in computing the HI. Precisely, this thesis presents an 

ANN Multi-Layer Perceptron approach that will predict the HI based on the oil-paper 

insulation characteristics. This objective will be accomplished with the objective of 

minimizing the input feature cost. Thus, a feature selection procedure will be followed 

based on the step-wise regression method to selectively remove the redundant features 

that have the least statistical significance on the HI outcome. This will reduce the cost 

of computing the HI and the overall TAM maintenance strategy. To complete the work 

and further reduce the TAM cost, this thesis aims at presenting a cost saving HI 

computational strategy where the utility can predict a costly input feature that can later 

be used in the main HI model.  
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  In summary, three main outcomes and research contributions are presented in 

this work.  

1.     ANN MLP approach is used to compute the transformer HI based on the standard 

computational method indicated by [26]. Using step-wise regression, the required 

input oil-paper insulation features will be reduced and thus provide a cost-effective 

AI based HI model.  

2.     The designed HI model (using the data of one utility) will be tested on a new set 

of transformer oil data (of another utility) using only the reduced features to validate 

the generalization of the cost-effective HI model based on one industry 

computational method. Moreover, the reduced features will be generalized for 

building and testing the HI model using the data of any utility. 

3.     To further reduce the cost of the proposed HI calculation method, a cascaded 

ANN network will be used for predicting a particular feature in order to use it as an 

input in the final HI model. Precisely, one network will be used to predict the IFT 

feature using easily obtained oil-paper condition parameter inputs to pass it on the 

main HI ANN model.  
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Chapter  3. Materials and Methods 

3.1.      Transformer Oil Samples 

The main required step towards building the HI predictor model lies in having 

a training database of sufficient number of transformer oil samples. A high number of 

available samples can insure a better performance of the predictor model. The desired 

input to be used in designing the model should include all the features indicated by [26]. 

However, obtaining all these features is difficult and impractical for most of the utilities. 

This is due to the fact that most of the utility companies are using the recognized 

standards of the CM and CA methods (DGA, OQA and FFA) in the TAM strategy. The 

concept of the HI has been recently developed and not common to a high percentage of 

the utility companies worldwide. In other words, the available data used in the 

transformer CA are the standard condition parameters of the oil-paper insulation 

system. This is attributed to the importance of the insulation system parameters in 

assessing the transformer condition. Nevertheless, the HI method has an advantage over 

the standard CA methods even with only having the oil-paper insulation parameters. 

This is again due to the fact that the HI method can comprehensively incorporate the 

outcomes of all the standard CA methods in one number representing the transformer 

health condition. 

Hereinafter, all the features that will be used are those related to the dissolved 

key gases concentration, oil quality parameters and Furanic content. Two sets of 

transformer oil-paper insulation features have been acquired from two different utility 

companies that are named UTILA and UTILB. UTILA transformer oil samples are 

66/11kV transformers of power ratings that range from 12.5 to 40MVA. While UTILB 

transformer oil samples are 33/11kV transformers of 15MVA power rating. The 

condition parameters (henceforth, feature inputs) acquired by one utility varies more 

than the other in terms of the conducted tests. UTILA conducted the complete CM tests 

to include: the seven key gases for the DGA, the six oil quality parameters for OQA, 

and the Furanic content for FFA. UTILB, on the other hand, have neither conducted the 

dissolved gases tests for Carbon Dioxide nor Carbon Monoxide. In addition, they have 

neither conducted the color nor the DDF tests. Since both the number of oil samples 

and input features are outnumbered by UTILA, the main HI model will be based on 

UTILA’s database. Subsets of the samples acquired by UTILA and UTILB are shown 

in Table 4 and Table 5, respectively.  
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Table 4: Subset of UTILA data set

 UTILA Transformer Oil Samples 

1 2 3 4 5 6 7 

Hydrogen (ppm) 15.6 19.9 7.9 9.6 19.2 27.1 18.7 

Methane (ppm) 14.4 15.6 0 2.8 2.4 236.8 2.5 

Ethane (ppm) 2.5 3 0.7 7.1 2.3 202.1 41.4 

Ethylene (ppm) 0.3 0.4 0.5 20.6 6.5 628.1 55 

Acetylene (ppm) 0 0 0 0 34.8 27.7 58.2 

Carbon  

Monoxide (ppm) 

1,019.6 1,240.8 132.5 126.4 237.6 230.5 165.8 

Carbon  

Dioxide (ppm) 

2619.3 3,323.2 1,770.7 2,126.5 3,654.1 4,810.7 5,123.8 

Water (ppm) 15.6 19.9 7.9 9.6 19.2 27.1 18.7 

Acid (mgKOH/g) 14.4 15.6 0 2.8 2.4 236.8 2.5 

BDV (kV) 2.5 3 0.7 7.1 2.3 202.1 41.4 

DDF (25◦C to 50Hz) 0.3 0.4 0.5 20.6 6.5 628.1 55 

Color 0 0 0 0 34.8 27.7 58.2 

IFT (mN/m) 1,019.6 1,240.8 132.5 126.4 237.6 230.5 165.8 

Furan (ppm) 2,619.3 3,323.2 1,770.7 2,126.5 3,654.1 4,810.7 5,123.8 

 

Table 5: Subset of UTILB data set

 UTILA Transformer Oil Samples 

1 2 3 4 5 6 7 

Hydrogen (ppm) 0 9 4 17 30 34 123 

Methane (ppm) 6 8 4 1 13 60 148 

Ethane (ppm) 0 1 2 0 4 66 138 

Ethylene (ppm) 0 0 2 3 10 107 16 

Acetylene (ppm) 0 0 0 0 25 1 0 

Water (ppm) 4 8 10 18 27 17 41 

BDV (kV) 64.4 55.3 39.4 78.8 26.2 36 23.5 

Acid (mgKOH/g) 0.011 0.05 0.024 0.425 0.107 0.065 0.468 

IFT (mN/m) 39.3 24.1 32.3 15.6 33.3 23.2 14.4 

Furan (ppm) 0.009 0.29 0.62 6.09 1.93 0.76 22.6 

 

The data set of Table 4 will be used as an example for the HI computation in the 

following section. Shown in Table 6 and Table 7, are the statistical parameters of the 

data sets of UTILA and UTILB respectively. 

3.2.      Computation of the HI (Industry Standards) 

The aim of this work is to present a practical AI-based tool that can be used by 

utility companies to compute the HI of a transformer. The practiced exercise of 

computing the HI for a population of transformer is done through hiring specialized 

transformer CA companies. The hired company follows its own set of procedures for 

computing the HI, with reference to the standards that are set by the technical 

professional organizations such as the IEEE and CIGRE. A professional CA company 
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would normally conduct the desired CM tests on the transformer’s insulation system, 

and request the utility for additional information such as the loading conditions and the 

maintenance history.  In this work, the HI for the available data will be computed 

through a practiced computational method which is exercised by one professional 

transformer CA company [26]. The computed HI will be based on the dissolved gas, 

oil quality and Furan content data only, which is similar to what has been done in other 

works such as in [31].  

Computation of the HI will be based on calculating a set of three cumulative 

factors that represents the transformer condition based on DGA, OQA and FFA 

respectively. The HI value will be the cumulative calculation of each of the three factors 

with respect to their weights or significance towards the transformer’s overall insulation 

health. 

Table 6: Statistical parameters of UTILA data set

 Average Median Minimum Maximum Variance 

Hydrogen (ppm) 27.24 19.7 1.9 605 1,020.63 

Methane (ppm) 18.96 10.3 0 298.1 888.55 

Ethane (ppm) 19.52 3.3 0 339.4 1,917.39 

Ethylene (ppm) 6.47 1.9 0 628.1 945.67 

Acetylene (ppm) 1.68 0 0 64.3 51.97 

Carbon  

Monoxide (ppm) 

501.83 440.6 22.2 1,621.9 92,073.6 

Carbon  

Dioxide (ppm) 

3,584.71 2,577.95 188.5 113,883 2.4e7 

Water (ppm) 5.96 5 1 32 21.54 

Acid (mgKOH/g) 0.02 0.005 0.005 0.261 1.18e-3 

BDV (kV) 74.18 77 16 99.5 229.72 

DDF (25◦C to 50Hz) 8.77e-4 0 0 0.015 2.05e-6 

Color 0.68 0 0 4 1.21 

IFT (mN/m) 30.9 32 13 43 50.83 

Furan (ppm) 0.49 0.01 0.001 11.03 1.43 

 

Table 7: Statistical parameters of UTILB data set

 Average Median Minimum Maximum Variance 

Hydrogen (ppm) 4.57 4 0 123 76.18 

Methane (ppm) 16.03 8 0 702 1,849.16 

Ethane (ppm) 25.30 1 0 1,096 7,959.04 

Ethylene (ppm) 7.77 1 0 1,384 5,884.69 

Acetylene (ppm) 0.48 0 0 25 6.54 

Water (ppm) 6.85 5 2 41 23.25 

BDV (kV) 62.55 67.8 12.5 95.3 281.97 

Acid (mgKOH/g) 0.04 0.016 0.0099 0.471 0.005 

IFT (mN/m) 34.09 35.2 9.2 75.1 72.20 

Furan (ppm) 0.46 0.09 0.01 22.6 2.81 
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Dissolved Gas Analysis Factor (DGAF). The DGAF is a representative 

factor of the oil-paper insulation condition from the dissolved gases perspective. The 

DGAF is an integer score value from zero to four, which indicates the degree of danger 

or degradation of the oil-paper system based on DGA. A score of zero indicates a poor 

DGA condition, while a score of four indicates a healthy DGA condition. In order to 

calculate the DGAF, a scoring system for each of the seven key gas elements is used to 

indicate the extent of the respective dissolved gases in the oil sample. Table 8 indicates 

the score system which is used for the key gas elements. Based on the score value, the 

DGAF is calculated using [26] 

    𝐷𝐺𝐴𝐹 =
∑ 𝑆𝑖× 𝑊𝑖
7
𝑖=1

∑ 𝑊𝑖
7
𝑖=1

      (1) 

where Si is the score outcome of each of the seven key gas elements based on Table 8, 

and Wi is the key gas associated weight or significance factor. The DGAF will be a real 

positive number that will be converted to an integer value from zero to four based on 

the DGAF scoring system shown in Table 9. As an example, the DGAF for the key gas 

elements of the samples, shown in Table 4 (from UTILA), will be computed as per the 

explained procedure. Table 10 shows the obtained DGAF values for these samples.  

Table 8: DGAF score and weight system [26]

Hydrogen Methane Ethane Ethylene Acetylene Carbon Monoxide Carbon Dioxide 

W1=2 W2=3 W3=3 W4=3 W5=5 W6=1 W7=1 

ppm S1 ppm S2 ppm S3 ppm S4 ppm S5 ppm S6 ppm S7 

<155 1 <103 1 <92.5 1 <75 1 <5 1 <500 1 <2,750 1 

<225 2 <145 2 <95.5 2 <85 2 <15 2 <850 2 <3,500 2 

<365 3 <240 3 <96.5 3 <95 3 <25 3 <1,050 3 <4,500 3 

<585 4 <400 4 <97.5 4 <105 4 <35 4 <1,250 4 <6,000 4 

<700 5 <600 5 <100 5 <130 5 <60 5 <1,400 5 <7,000 5 

>700 6 >600 6 >100 6 >130 6 >60 6 >1,400 6 >7,000 6 

 

Table 9: DGAF final scoring system [26]

DGAF Calculated DGAF Final 

< 1.2 4 

< 1.5 3 

< 2 2 

< 3 1 

≥ 3 0 
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Table 10: Computed DGAF for UTILA Data Subset

 

Oil Quality Factor (OQF). The OQF represents the health condition of 

the transformer oil. The OQF value is also an integer value which ranges from zero to 

four. An OQF of four indicates an excellent level of oil quality, while an OQF of zero 

indicates a very poor level of oil quality. Computation of the OQF is based on the scores 

and weights of the six oil quality parameters respectively. The OQF calculation is done 

using [26] 

    𝑂𝑄𝐹 =
∑ 𝑆𝑖× 𝑊𝑖
6
𝑖=1

∑ 𝑊𝑖
6
𝑖=1

      (2) 

Table 11 indicates the weights (Wi) and score values (Si) for the oil quality 

parameters. The OQF will be a real positive number that will be converted to an integer 

score from zero to four based on the OQF scoring system shown in Table 12. The 

computed OQF values for the UTILA data subset (of Table 4) is shown in Table 13. 

Table 11: OQF score and weight system [26]

Water Acidity BDV DDF Color IFT 

W1=4 W2=1 W3=3 W4=3 W5=2 W6=2 

ppm S1 mgKOH/g S2 kV S3 - S4 - S5 mN/m S6 

≤30 1 ≤0.05 1 ≥45 1 ≤0.1 1 ≤1.5 1 ≥25 1 

≤35 2 ≤0.1 2 >35 2 ≤0.5 2 ≤2 2 >20 2 

<40 3 <0.2 3 >30 3 <1 3 <2.5 3 >15 3 

≥40 4 ≥0.2 4 ≤30 4 ≥1 4 ≥2.5 4 ≤15 4 

 

Table 12: OQF final scoring system [26]

OQF Calculated OQF Final 

< 1.2 4 

< 1.5 3 

< 2 2 

< 3 1 

≥ 3 0 

ppm ppm ppm ppm ppm ppm ppm

1 15.6 1 14.4 1 2.5 1 0.3 1 0 1 1019.6 3 2619.3 1 1.11 4

2 19.9 1 15.6 1 3 1 0.4 1 0 1 1240.8 4 3323.2 2 1.22 3

3 7.9 1 0 1 0.7 1 0.5 1 0 1 132.5 1 1770.7 1 1.00 4

4 9.6 1 2.8 1 7.1 1 20.6 1 0 1 126.4 1 2126.5 1 1.00 4

5 19.2 1 2.4 1 2.3 1 6.5 1 34.8 4 237.6 1 3654.1 3 1.94 2

6 27.1 1 236.8 3 202.1 6 628.1 6 27.7 4 230.5 1 4810.7 4 4.00 0

7 18.7 1 2.5 1 41.4 1 55 1 58.2 5 165.8 1 5123.8 4 2.28 1

Carbon 

Monoxide

Carbon 

Dioxide
DGAF

Calc.

DGAF

Final
Sample

Hydrogen Methane Ethane Ethylene Acetylene 
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Table 13: Computed OQA for UTILA data subset

 

Furan Factor (FFA). One of the main numerical factors that indicates 

the extent of the paper insulation degradation is the FFA. Calculation of the FFA is 

based on the scoring system shown in Table 14. The FFA is an integer score value that 

ranges from zero to four. Similarly, a value of four indicates a healthy paper condition, 

while a value of zero indicated a very poor paper condition. The calculated FFA values 

for the UTILA data subset are shown in Table 15. 

Table 14: FFA scoring system [26]

Furan - ppm FFA 

< 0.1 4 

< 0.25 3 

< 0.5 2 

< 1 1 

≥ 1 0 

 

Table 15: FFA for UTILA data subset 

 

Final Health Index (HI) value. Based on the final insulation parameter 

scores (DGAF, OQF and FFA), a cumulative calculation for the HI is done. Each factor 

is assigned with a weight value (WDGAF, WOQF and WFFA) that indicates the significance 

of the factor in the overall health of the transformer. 

ppm mgKOH/g kV - - mN/m

1 3 1 0.005 1 99 1 0 1 0 1 42 1 1.00 4

2 2 1 0.005 1 84 1 0 1 0 1 43 1 1.00 4

3 1 1 0.133 3 76 1 0.005 2 3 4 20 3 2.00 1

4 11 1 0.046 1 75 1 0.001 1 1 1 23 2 1.13 4

5 7 1 0.042 1 55 1 0.002 2 3 4 18 3 1.87 2

6 4 1 0.029 1 82 1 0.002 2 2 2 18 3 1.60 2

7 4 1 0.057 2 74 1 0.002 2 3 4 18 3 1.93 2

IFT OQA

Calc.

OQA

Final
Sample

Water Acidity BDV DDF Color
            

Sample 
Furan FFA 

Final ppm 

1 0.01 4 

2 0.01 4 

3 0.28 2 

4 4.45 0 

5 0.54 1 

6 2.18 0 

7 2.73 0 
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The cumulative calculation for the transformer HI is done using the following 

formula [26] 

          𝐻𝐼 (%) = 100 ×
(𝐷𝐺𝐴𝐹×𝑊𝐷𝐺𝐴𝐹)+(𝑂𝑄𝐹×𝑊𝑂𝑄𝐹)+(𝐹𝐹𝐴×𝑊𝐹𝐹𝐴)

 (𝑊𝐷𝐺𝐴𝐹+𝑊𝑂𝑄𝐹+𝑊𝐹𝐹𝐴)
 %                      (3) 

The final HI values for the UTILA data subsets are shown in Table 16. The 

overall HI computation is illustrated as a block diagram shown in Figure 4. 

Table 16: Final HI for UTILA data subsets

Sample 
DGAF OQF FFA 

HI (%) 
 

 

 

1 4 4 4 100.00 

2 3 4 4 88.10 

3 4 1 2 66.67 

4 4 4 0 76.19 

5 2 2 1 44.05 

6 0 2 0 14.29 

7 1 2 0 26.19 

 

 

Figure 4: Overall HI computation using [26] 

𝑊𝐷𝐺𝐴𝐹 = 10 𝑊𝑂𝑄𝐹 = 6 𝑊𝐹𝐹𝐴 = 5 
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 If an existing data set (such as that of UTILB) is missing certain insulation 

features, then the corresponding weight for these features is zero. Thus the features have 

no contribution in the relevant insulation factor and the final HI computation. 

3.3.      Artificial Neural Networks (ANN) 

Pattern recognition methods have been used as AI techniques for identifying the 

response with respect to a given set of inputs.  One of the well-known techniques used 

in pattern recognition is ANN. ANN systems are sophisticated responsive systems that 

mimic the neural behavior in the human body. Biologically, an environmental stimulus 

(input) triggers the transmission of electrical signals via neuron cells [32], [33]. The 

inter-connection links between the neuron cells are adjusted to produce a proper 

connection path. Triggered signals through the properly adjusted paths eventually result 

in the proper human response. Similarly, ANN consists of interconnected neuron units 

of adjusted weights to predict a response based on given input features. Modeling the 

ANN is similar to the human learning process.  Based on a given input and a 

corresponding response output, the neuron units learn by continuous adjustment of the 

inter-connecting neural weights. The input to the ANN is a d-dimensional feature 

vector, in which each element represents a feature variable belonging to the input 

sample in question.  Each feature element is fed to a corresponding input neuron, which 

is fed in the forward propagating direction towards the subsequent layer (hence a Feed-

Forward mechanism).  An ANN network can use the input features to predict one or 

more response outputs. Figure 5 shows a schematic diagram of the ANN system in 

terms of the neuron and layer components, where  𝑋(𝑖) represents the i-th feature of the 

input feature vector [32]. Wij and Wki represent the link weights of the input-hidden and 

hidden-output neurons respectively. Zk is the final response output that is produced from 

each neuron in the output layer. Each neuron in the hidden layer receives a net activation 

input from the d input neurons as [32] 

      𝑛𝑒𝑡𝑗 = ∑ 𝑋𝑖𝑊𝑗𝑖 +𝑊𝑗0
𝑑
𝑖=      (4) 

where Wj0 represents the link weight from the bias unit in the input layer [32]. Each 

neuron in the hidden layer has an activation function for the given net activation input. 

The output of the hidden neuron is  

             𝑌𝑗 = 𝑓𝐻(𝑛𝑒𝑡𝑗)                          (5)  
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Figure 5: Schematic of a typical ANN network 

The output 𝑌𝑗 is fed forward to the neurons of the output layer for computing 

the response variable [32]. Each neuron in the output layer receives a net activation 

input from the L hidden neurons bias 𝑊𝑘0 as  

      𝑛𝑒𝑡𝑘 = ∑ 𝑌𝑖𝑊𝑘𝑗 +𝑊𝑘0
𝐿
𝑗=               (6) 

The response output is the computation of the activation function in the output 

neuron 

            𝑍𝑘 = 𝑓𝑜(𝑛𝑒𝑡𝑘)          (7) 

Combining equations (4) to (7) will result in 

   𝑍𝑘 = 𝑓𝑜(∑ 𝑓𝐻(∑ 𝑋𝑖𝑊𝑗𝑖 +𝑊𝑗0)
𝑑
𝑖= 𝑊𝑘𝑗 +𝑊𝑘0)

𝐿
𝑗=    (8) 

For a given input feature vector and corresponding target output, a back-

propagation learning process occurs where the weights of the neural links are 

continuously adjusted. The adjustment process occurs in order to minimize the training 

error constraint. For a given neural weights and corresponding response output 𝑍𝑘 [32], 

the training mean-square error function 𝐽 for M samples is  

       𝐽(𝑊𝑗𝑖 ,𝑊𝑘𝑗) =
 

 
∑ (𝑍�̂� − 𝑍𝑘
𝑀
𝑘= )                (9) 

 where Zk̂ is the desired response output for a given input. Thus, as it is apparent from 

equation (9), the training error in the ANN is a function of the neural weights. The 

method of gradient descent is used in order to solve the 𝐽 error function as an 

optimization problem [32]. In any gradient descent problem, the gradient or the 
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derivative of the optimized function is taken with respect to the changing variable. Since 

𝐽 is a function of the neural weights 𝑊𝑗𝑖 and 𝑊𝑘𝑗, the partial derivative of the error 

function is 

       
𝜕𝐽

𝜕𝑊𝑗𝑖
= −𝑓𝐻′(𝑛𝑒𝑡𝑗)𝑋𝑖 ∑ (𝑍�̂� − 𝑍𝑘)𝑓𝑜′(𝑛𝑒𝑡𝑘)𝑊𝑘𝑗

𝐿
𝑘=               (10)    

                     
𝜕𝐽

𝜕𝑊𝑘𝑗
= −(𝑍�̂� − 𝑍𝑘)𝑓𝑜′(𝑛𝑒𝑡𝑘)𝑌𝑖              (11)     

The partial derivatives of equations (10) and (11) are used for the neural weight 

updates in the gradient descent problem [32].  

                𝑊𝑗𝑖
𝑥+ = 𝑊𝑗𝑖

𝑥 − η
𝜕𝐽

𝜕𝑊𝑗𝑖
              (12) 

              𝑊𝑘𝑗
𝑥+ = 𝑊𝑘𝑗

𝑥 − η
𝜕𝐽

𝜕𝑊𝑘𝑗
                                    (13) 

where η is the combination coefficient that determines the step size of the gradient 

descent.  The selection of the proper activation function depends on the relationship 

between the response variable and input features. For a non-linear complex relationship 

between the response and the input, a tan sigmoid function is used in the neurons of the 

hidden layer, while a linear transfer function is used in the neurons of the output layer 

as the activation functions. 

3.4.      Stepwise Regression 

Stepwise regression is a feature selection tool that is commonly used to 

eliminate the redundant input features [34]. This is done by measuring the statistical 

significance of the input term in predicting the response variable. Assuming that the 

regression model is: 

        𝑍 = 𝛽0 + 𝛽 𝑋 + 𝛽 𝑋 +⋯+ 𝛽𝑘𝑋𝑘 + 𝜖                            (14) 

where 𝛽𝑘 is the regression coefficient of the 𝑋𝑘 input feature, 𝛽0is the bias value and 𝜖 

is a random error term.  Measuring the statistical significance of an input feature is done 

by calculating the partial F-statistics [34].  

The partial F-statistics of the jth term is given as: 

       𝐹𝑗 =
𝑆𝑆𝑅(𝛽𝑗|𝛽0,𝛽1,….,𝛽𝑗−1,𝛽𝑗+1,…,𝛽𝑘)

𝑀𝑆𝐸
                                        (15) 
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where   𝑅(𝛽𝑗|𝛽0, 𝛽 , … . , 𝛽𝑗− , 𝛽𝑗+ , … , 𝛽𝑘) is the regression sum of squares due to the 

added term j, given that 𝛽0, 𝛽 , … . , 𝛽𝑗− , 𝛽𝑗+ , … , 𝛽𝑘 are in the model. 𝑀 𝐸 indicates 

the mean square error of having 𝛽0, 𝛽 , … . , 𝛽𝑗− , 𝛽𝑗 , 𝛽𝑗+ , … , 𝛽𝑘 in the regression model 

[34]. The computed p-value of the partial F-statistics is used in a comparative matter 

with respect to a threshold entrance and exit tolerance. The p-value represents the 

probability of observing a sample statistic as an extreme than the one observed 

underneath the assumption that the null hypothesis is true. A p-value below the entrance 

tolerance rejects the null hypothesis. On the other hand, a p-value above the exit 

tolerance confirms the null hypothesis.  

Stepwise regression can be applied in a forward manner or the backward 

elimination manner. In the forward manner, the method starts with initiating a model 

with an initial single input feature. One can choose to start the procedure with a chosen 

initial term, or an initial term with the smallest p-value (largest partial F-statistics) 

added. Then, the subsequent input features are added or removed depending on the 

comparative study with the tolerance values. If the p-value of added term in question is 

less than the entrance tolerance, the null hypothesis is rejected and the term is added to 

the regression model. Else, if the p-value of the added term in question is greater than 

the exit tolerance then the null hypothesis is accepted and the term is removed. Stepwise 

regression stops when no term can be added or removed. Figure 6 illustrates the 

stepwise regression procedure in the forward manner [35].  

 

Figure 6: Stepwise regression procedure in the forward manner 
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 The backward elimination procedure for stepwise regression works in a similar 

way as the forward manner procedure except that the initial model includes all the 

feature terms. With all the features being in the initial model, the effect of removing the 

feature in question is tested. If the p-value of model is reduced to the removal of the 

feature in question, the term is removed and the procedure proceeds with the following 

feature. The procedure stops when no further terms can be removed. Figure 7 illustrates 

the procedure followed in stepwise regression using in the backward elimination 

manner [35].  

 

Figure 7: Stepwise regression procedure in the backward elimination manner 

Selection of different initial terms can result in regression models of different 

selected features. Performance of the selected terms in the final regression model is 

done by means of the F-statistic and Adjusted-R2 statistic [35]. The Adjusted-R2 

statistic (�̅� ) is given as:  

       �̅� = 1 −
( −𝑅2)(𝑛− )

𝑛−𝑝− 
                (16) 

where p is the number of final selected terms, n is the number of output samples and R2 

is the statistic error parameter that indicates the extent of variation between the 

predicted and desired response term [35]. R2 is given as: 

 𝑅 = 1 −
∑ (𝑍�̂�−𝑍𝑘)
𝑁
𝑘=1

∑ (𝑍�̂�−𝑍𝑘̅̅ ̅̅ )
𝑁
𝑘=1

               (17) 

where 𝑍𝑘 and 𝑍�̂� are the predicted and desired outputs respectively. 𝑍𝑘̅̅ ̅ is the mean 

value of the desired response outputs.  
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3.5.      Research Methodology 

The main objective of the research is to reduce the cost of using the HI 

parameter in TAM. Using the transformer HI value as a CA tool can only be useful if 

it accurately represents the transformer’s operational condition. Based on the industry 

computational method used, the computed HI value can be only accurate if all the 

required inputs of that method are available. This, however, adds a maintenance cost 

burden to the utility for each existing transformer unit in the power system. Moreover, 

using a cost-effective feature reduction strategy would be considered very difficult 

using the existing industry computational method. 

Thus, the aim is to develop an alternative model that can predict the HI value 

based on a given industry computational method. The literature review strongly 

supports the use of AI as an alternative to the standard transformer CA methods. AI 

was mainly used to either predict a CM test parameter [19]- [21] or the overall HI value 

[28], [30] and [31]. Therefore, the initial step is to develop the HI predictor model with 

the same input features using AI. The validity of the proposed model is tested by 

measuring the accuracy of re-producing the HI values. Once the validity of the proposed 

model is proved, a feature selection method is considered to reduce the required CM 

test features (thus the overall cost). 

HI prediction. Accomplishing the main objective of this work requires 

the development of an AI based HI model. Based on the literature review, the use of 

multi-layer perceptron (MLP) ANN is highly recommended in predicting a desired 

response variable, which is theoretically correlated to the input features. This has been 

shown and proven in the works of [13], [16], [18], [19] and [30].  Thus, the first task is 

to design a HI predictor model using MLP ANN. The HI predictor model will produce 

the HI value of an oil sample based on the corresponding insulation CM parameter 

inputs. Selection of the insulation CM tests as the input features is due to the existing 

theoretical correlation between the transformer’s HI, and the strength of the insulation 

system.  Still, a non-linear and complex numerical relationship exists between the HI 

and the complete set of CM tests. Therefore, the use of multiple hidden layers (instead 

of one hidden layer) is required in order to improve the non-linear mapping of the 

predictor model.  
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Designing the HI predictor requires the availability of a large database, 

consisting of transformer oil samples and corresponding HI values. The aim of the HI 

predictor is to ideally reproduce the industry computed HI using the CM input features. 

The 730 transformer oil samples of UTILA will be used mainly in designing the HI AI 

predictor. Using the industry computational method of [26], the HI of the 730 

transformer oil samples of UTILA will be computed. The HI values will be used as the 

target output values of the developed AI predictor model. 

Once the HI is computed for all the transformer oil samples, training and testing 

data sets will be created to design the ANN. The training set will be mainly used for 

setting the non-linear HI mapping function of the input features. This will be done by 

setting the proper weights of the neural links. On the other hand, the testing set is used 

to evaluate the performance of the AI model in predicting the HI for untrained set of 

transformer oil samples. Figure 8 shows the feed-forward (FF) MLP ANN architecture 

which will be implemented in the HI predictor model. 

 

Figure 8: HI predictor with 14 CM input features 

Feature selection of the HI predictor. Once the main HI predictor 

model is tested and verified, the following task is to reduce the required number input 

features (i.e. reduce the CM tests).  Reduction of the input features is done through the 

use of feature-based exhaustive techniques and stepwise regression. In the exhaustive 

feature-based search technique, different sets of ANN HI models will be trained and 

tested based on single input features. Then, the ANN HI model will be designed with 

multiple input features of the highest feature-based performance in predicting the HI. 
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The performance of predicting the HI of these developed models will be compared 

against the stepwise regression based model.  

 Stepwise regression is used (forward and backward manner) to eliminate the 

redundant input features that have low statistical significance on the output response 

variable. The selected features with highest statistical significance on calculating the 

HI, will be only used in the main HI predictor model. The validity of the new feature-

reduced model will be indicated through the HI prediction of the testing data set.  

Generalizing the HI predictor model. One of the objectives of the 

presented work is to create an HI platform that can be generalized and used by different 

utilities. Based on one industry method, the HI computation should produce an accurate 

level of transformer CA regardless of the transformers' region of operation and utility 

owner. The same level of accuracy should be expected from the developed ANN-based 

HI predictor model. To support the claim of having a generalized HI predictor model, 

the original model should be tested with an unseen data from a different utility 

company. Thus, the developed HI predictor model (using the dataset of UTILA) will 

be tested against the new unseen dataset of UTILB. The testing will include the 

previously developed ANN models of the stepwise-based features. In addition, a 

generalized feature approach will be validated and tested in the presented work. The 

generalized feature approach indicates the general use of the selected features in the 

stepwise regression model, by different utility companies. Thus, the utility company 

can have a HI predictor model which is trained on its own data, with the preliminary 

knowledge of the required general features. Figure 9 is a schematic diagram of the HI 

generalizing procedure. 

 

Figure 9: Generalizing the HI model 

Predicting HI using predicted feature. Significant research in the 

literature review focused on predicting CM test features. This is attributed to the cost 

of acquiring these CM tests in terms of the availability of required equipment, proper 
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testing environment and experienced personnel. Using AI techniques, researchers were 

able to predict some of the costly CM features like Furan or IFT. The aim of this work 

is to reduce the cost of the HI assessment through reducing the required features, and 

predicting the costly reduced features. That is, the cost objective will help the utility 

company in computing the HI with less CM test requirements, and improved CM test 

predictions. An FF-MLP ANN network will be designed to predict the IFT feature using 

other CM features, since IFT is considered as a costly test. Similar to predicting the HI, 

stepwise regression will be used to eliminate the redundant CM test features in 

predicting the IFT.  

The main objective of the presented work is to predict the HI, with less selected 

features and predicted costly features. This is the main contribution of the presented 

work in terms of a much improved cost-efficiency in computing the HI for TAM.  The 

developed stepwise regression based ANN model (of UTILA dataset) will use a 

predicted costly feature (along with the other reduced features) as an input to predict 

the HI. The performance of the final model will be assessed through predicting the HI 

of the testing dataset of UTILA. Figure 10 is a schematic diagram of the cost-effective 

HI model.  Figure 11 briefly illustrates the methodology followed in the presented work 

 

Figure 10: Schematic of a cost-effective HI model 

 

 

Figure 11: Research methodology procedure 
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3.6.      Model Setting and Validation 

 Setting the ANN model for the HI predictor will be done through MATLAB 

[36]. In order to generalize the ANN used in the presented work, a wide range of neural 

combinations are applied to predict the HI. For a two hidden layer ANN, each layer can 

have 1 to 10 neurons. This allows for a 100 combination of neurons to be used in the 

ANN model. This was done in order to indicate the validity of a general neuron tuning 

scheme in predicting the HI. Table 17 shows a sample of the neuron table which will 

be used in this research for evaluating the performance of ANN models.  

Table 17: Neural matrix combination for a two-hidden layer problem

  

Number of Neurons in Second Hidden Layer 

1 2 3 4 5 6 7 8 9 10 

N
u

m
b

er
 o

f 
N

eu
ro

n
s 

in
  

F
ir

st
 H

id
d

en
 L

a
ye

r 

1 [1,1] [1,2] [1,3] [1,4] [1,5] [1,6] [1,7] [1,8] [1,9] [1,10] 

2 [2,1] [2,2] [2,3] [2,4] [2,5] [2,6] [2,7] [2,8] [2,9] [2,10] 

3 [3,1] [3,2] [3,3] [3,4] [3,5] [3,6] [3,7] [3,8] [3,9] [3,10] 

4 [4,1] [4,2] [4,3] [4,4] [4,5] [4,6] [4,7] [4,8] [4,9] [4,10] 

5 [5,1] [5,2] [5,3] [5,4] [5,5] [5,6] [5,7] [5,8] [5,9] [5,10] 

6 [6,1] [6,2] [6,3] [6,4] [6,5] [6,6] [6,7] [6,8] [6,9] [6,10] 

7 [7,1] [7,2] [7,3] [7,4] [7,5] [7,6] [7,7] [7,8] [7,9] [7,10] 

8 [8,1] [8,2] [8,3] [8,4] [8,5] [8,6] [8,7] [8,8] [8,9] [8,10] 

9 [9,1] [9,2] [9,3] [9,4] [9,5] [9,6] [9,7] [9,8] [9,9] [9,10] 

10 [10,1] [10,2] [10,3] [10,4] [10,5] [10,6] [10,7] [10,8] [10,9] [10,10] 

 

Ideally, the ANN model for a given two-hidden layer neural network 

combination should predict the same value as the desired HI. In order to validate the 

performance of the ANN, a mean accuracy precision error (MAPE) index for N samples 

is given by 

𝑀𝐴𝑃𝐸 =
∑ (

|𝑌𝑖.𝑡𝑎𝑟𝑔𝑒𝑡−𝑌𝑖.𝑝𝑟𝑒𝑑𝑖𝑐𝑡|

𝑌𝑖.𝑡𝑎𝑟𝑔𝑒𝑡
)𝑁

𝑖=1

𝑁
 ×  100 %                                (18) 

where 𝑌𝑖.𝑡𝑎𝑟𝑔𝑒𝑡 is the desired ith HI value, and 𝑌𝑖.𝑝𝑟𝑒𝑑𝑖𝑐𝑡 is the predicted HI value. The 

followed procedure herein after is the following: For a given [n,n] neuron combination, 

the following will be computed: 

 The prediction accuracy value for 10 trials where the prediction accuracy is 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 100 −𝑀𝐴𝑃𝐸  %                                (19) 

 The average prediction accuracy value for the 10 trials. 

 The variance of the prediction accuracy values for the 10 trials. 
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Chapter  4. Results and Discussion 

The main outcomes of the proposed research are reducing the cost of calculating 

the HI, and generalizing the HI model. To achieve these outcomes, a step by step 

modeling approach of the HI prediction is followed. Such an approach ensures a proper 

transition for obtaining the HI using the industry computational method, to a cost-

effective ANN based approach. This chapter starts with presenting the HI distribution 

of UTILA and UTILB using the industry computational method. Then, an ANN 

approach is followed using UTILA training samples to predict the HI using all oil-paper 

insulation features. Once the performance outcomes of the full-feature model are 

satisfied, feature selection methods are used to eliminate the relatively redundant test 

features. The exercised methods in this work include exhaustive single-feature 

modelling and stepwise regression. In single-feature modelling, ANN models will be 

trained and tested based on a single feature. Individual features of high modelling 

performance will be collectively used in a multi-feature model, whose HI prediction 

performance will be tested. Stepwise regression will be used to further explore the 

possibility of having higher prediction performance using a reduced-feature model. The 

selected features from both techniques will be assessed based on the HI predictor 

performance. Later, a generalized model is developed, in which the UTILA stepwise-

based model is tested in predicting the HI of UTILB. Same selected features are used 

to develop and test a HI-ANN predictor model using only UTILB sample database. 

Then, stepwise regression is applied for predicting a costly feature (IFT) using other 

relatively low cost features. Hence, a cost-effective HI predictor model is developed 

using the feature-reduced HI model with the predicted costly feature as an input.  

4.1.      Predicting the HI Using all Test Features 

The transformer HI value can be computed using several methods. The industry 

computational method used in [26] is used to compute the transformer HI of UTILA 

and UTILB. Table 18 and Table 19 show the transformer HI distribution of UTILA and 

UTILB respectively.  

Table 18: HI distribution for 730 transformer samples of UTILA

Very Poor Poor Fair Good Excellent 

HI≤30 30HI≤50 50HI≤70 70HI≤85 85HI≤100 

11 66 111 60 482 
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Table 19: HI distribution for 327 transformer samples of UTILB

Poor Fair Good Excellent 

30HI≤50 50HI≤70 70HI≤85 85HI≤100 

5 35 49 238 

 

The database of UTILA will be mainly used in the developed model. The HI 

distribution is unbalanced due to the relatively higher number of samples in the 

excellent category of HI. In order to assure proper training of the developed models and 

avoid overtraining the model on the excellent samples, only a subset of 25-27% (130-

140 samples) of the excellent HI samples will be used in training the ANN models. 

Along with the excellent samples, a set of 60%, 80%, 80% and 80% of training samples 

were used from the very poor, poor, fair and good HI categories respectively. 

Furthermore, 15% of the entire training sample group was used for model validation to 

avoid over fitting. After developing the HI ANN predictor model using all the input 

features, the remaining number of unused samples is used for testing. For 100 neural 

combinations in a two-hidden layer ANN model, the average and variance of prediction 

accuracy for 10 trials is produced in the full feature model. Table 20 and Table 21 

indicate the average and variance results. Figure 12 shows one [4,5] model trial for the 

HI actual versus the predicted results for a given oil sample in the testing group. 

Table 20: Average prediction accuracy result in full-feature HI predictor

 Average Prediction Accuracy of 10 Trials for a N1×N2 Neural Combination 

  

N2 Neurons in Second Hidden Layer 

1 2 3 4 5 6 7 8 9 10 

N
1
 N

eu
ro

n
s 

in
 F

ir
st

 H
id

d
en

 L
a

ye
r 

1 95.42 94.08 95.92 95.90 93.38 93.52 95.81 95.85 93.82 92.11 

2 76.57 93.27 95.44 95.63 95.99 94.28 88.14 95.80 95.04 95.30 

3 75.32 95.47 95.64 95.77 94.64 92.92 95.61 95.39 95.21 94.95 

4 88.16 95.17 95.69 90.95 95.63 95.21 96.14 95.44 95.68 95.43 

5 84.36 93.24 95.92 94.36 94.48 95.87 95.26 95.58 95.12 95.14 

6 96.25 88.29 94.81 90.90 95.05 92.04 94.91 95.30 93.00 95.40 

7 95.69 85.60 95.52 96.13 95.90 95.50 95.52 95.32 95.40 95.74 

8 94.71 92.05 92.37 95.87 95.27 85.49 93.15 93.68 95.36 93.34 

9 89.35 89.11 95.11 94.92 93.95 95.99 95.10 95.73 95.56 91.22 

10 81.72 88.55 91.81 91.30 95.71 95.48 94.80 95.88 94.59 95.38 
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Table 21: Variance of prediction accuracy result in full-feature HI predictor

 Variance of Prediction accuracy of 10 Trials for a N1×N2 Neural Combination 

  

N2 Neurons in Second Hidden Layer 

1 2 3 4 5 6 7 8 9 10 
N

1
 N

eu
ro

n
s 

in
 F

ir
st

 H
id

d
en

 L
a

ye
r 

1 0.04 32.61 0.10 0.30 49.29 56.69 0.13 1.88 15.83 28.13 

2 81.22 43.91 0.60 0.51 0.18 1.46 112.78 0.30 1.70 0.85 

3 21.74 0.28 0.56 0.75 4.45 38.71 0.47 1.81 4.39 1.67 

4 71.28 2.30 0.24 63.91 0.28 0.65 0.27 0.52 0.04 0.46 

5 59.28 17.86 0.09 3.21 3.73 0.24 0.43 0.49 1.75 0.76 

6 0.16 70.14 3.19 46.58 3.40 54.11 1.07 0.58 22.91 0.82 

7 1.07 34.01 0.10 0.04 0.12 0.58 0.35 0.56 0.32 0.12 

8 2.67 57.00 50.16 0.22 0.25 67.59 12.02 12.64 0.29 7.67 

9 113.08 32.78 1.54 3.84 10.02 0.16 2.79 0.10 0.45 53.19 

10 61.88 23.09 34.31 23.35 0.31 0.38 3.13 0.29 3.58 0.21 

 

 

Figure 12: Actual vs. predicted HI for full-feature HI Predictor for selected transformers 

The results indicate an excellent regression performance, with the average 

prediction accuracy being around 95% with a low variance value. This is due to the 

existing correlation between the HI value and the individual features of the insulation 

CM tests.  

4.2.      Exhaustive Single-Feature and Stepwise Regression 

To explore the HI cost reduction using feature selection, ANN models were 

trained and tested based on single features. Table 22 indicates the obtained results using 

single feature ANN models. The indicated results are the 10-trial average prediction 

accuracy and its variance for the 100 two-hidden layer neural combination models. 
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Table 22: Single feature ANN model results 
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The produced results are relatively poor compared to the full-feature HI 

prediction results as depicted in Table 20. Generally, IFT and Furan produced the 

highest average prediction accuracy followed by color, acidity and the DDF. Moreover, 

acidity and DDF are excellent indicators of the oil-paper insulation condition.  Based 

on the individual feature modeling results, a multi-feature model is built based on 

Furan, IFT, color, acidity and DDF test features. Table 23 and Table 24 show the 

obtained results for the 100 neuron combinations for the two-hidden layer multi-feature 

ANN problem.  The average prediction accuracy is around 80% with a low variance 

value. 

Table 23: Average prediction accuracy for multi-feature HI predictor

 Average Prediction Accuracy of 10 Trials for a N1×N2 Neural Combination 

  

N2 Neurons in Second Hidden Layer 

1 2 3 4 5 6 7 8 9 10 

N
1
 N

eu
ro

n
s 

in
 F

ir
st

 H
id

d
en

 L
a

ye
r 

1 78.38 74.63 79.04 75.91 78.41 72.57 74.93 78.56 74.45 78.12 

2 77.97 80.32 79.16 77.10 81.00 80.93 70.97 79.48 80.00 75.37 

3 73.86 80.42 80.38 79.93 80.04 79.96 79.35 79.10 80.31 78.62 

4 68.79 79.44 80.55 80.18 75.33 79.98 79.25 79.53 78.65 80.00 

5 75.34 74.73 80.95 78.75 80.02 79.54 78.83 79.87 79.38 80.08 

6 80.86 80.01 80.48 80.17 80.17 80.03 79.90 80.59 80.45 78.71 

7 72.82 80.49 79.17 79.37 77.32 78.31 80.19 79.30 79.29 79.46 

8 76.18 77.14 79.39 80.24 79.89 80.35 79.51 79.95 81.03 80.98 

9 72.23 79.15 72.73 81.01 79.33 79.61 78.87 79.73 79.25 78.27 

10 69.65 80.32 77.14 80.00 78.69 80.63 79.24 80.90 79.50 79.47 

 

Table 24: Variance of average prediction accuracy for multi-feature HI predictor model

 Variance of Prediction Accuracy of 10 Trials for a N1×N2 Neural Combination 

  

N2 Neurons in Second Hidden Layer 

1 2 3 4 5 6 7 8 9 10 

N
1
 N

eu
ro

n
s 

in
 F

ir
st

 H
id

d
en

 L
a

ye
r 

1 0.10 29.76 0.91 36.02 0.58 67.19 7.62 0.22 20.03 9.47 

2 2.80 8.61 1.19 17.59 0.17 1.49 94.09 2.17 2.15 65.28 

3 57.46 1.63 3.19 1.54 0.51 1.12 1.89 1.51 1.62 5.67 

4 96.36 1.48 0.95 0.82 71.23 1.45 4.44 3.55 66.76 1.93 

5 59.21 55.69 0.99 0.63 3.95 2.42 2.90 2.48 1.23 2.29 

6 0.47 3.35 1.70 2.17 1.64 2.83 5.91 0.79 1.60 3.62 

7 74.25 0.81 2.00 4.09 11.40 3.58 1.40 0.63 3.39 0.40 

8 70.35 36.73 4.31 1.34 0.92 3.00 2.84 0.57 2.22 0.71 

9 51.06 3.89 50.17 1.59 2.17 2.15 1.77 2.63 2.79 5.98 

10 64.69 0.34 12.16 3.70 1.29 1.09 1.48 0.92 1.50 3.40 
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 Stepwise regression is used to reduce the required oil-paper insulation CM 

parameters needed to predict the HI of a given oil sample. Forward stepwise regression 

is applied on the same training set used in the full-feature HI predictor model. The p-

enter tolerance value was 1x10-5, while the p-exit tolerance was selected to be 0.05. The 

procedure was applied 14 times, with each feature chosen as the initial term in the 

model. Each term has a computed individual p-value which represents the regression 

effect of the term given that all other features are in the regression model. After the 

initial term is set in the model, the term with the lowest individual p-value is added to 

the model. In each step the overall p-value of the current model due to the added term 

is computed against the entrance and exit tolerance. Based on the final models of 

highest Adjusted-R2 value and F-statistic, the reduced features of the corresponding 

models are chosen in the HI predictor. Table 25 shows an example of the stepwise 

process of the features in predicting the HI using Ethylene as the initial feature in the 

model. With Ethylene being the initial term, IFT is added since it has lowest individual 

p-value. The overall p-value of IFT as a part of the model containing Ethylene is tested 

against the tolerance values. The calculated overall p-value is less than the entrance 

tolerance and thus Ethane is accepted as a part of the model.  The process continues 

until all the low individual p-value terms are added and tested. Then, the effect of 

removing the initial term from the final model is tested. If the overall p-value of having 

the term in the model is greater than the exit tolerance, the initial term is removed from 

the final model. The stepwise procedure stops until no term can be added or removed. 

Table 26 indicates the final selected features in the stepwise regression procedure. 

Table 25: Example of forward stepwise regression for UTILA

 Action p-value of the current model 

Step 1 Added IFT 1.79x10-74 

Step 2 Added Ethane 1.79x10-74 

Step 3 Added Acetylene 5.97x10-14 

Step 4 Added Furan 4.25x10-19 

Step 5 Added Color 5.87 x10-8 

Step 6 Removed Ethylene 0.414 
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Table 26: Selected features for UTILA in forward stepwise regression 
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The Adjusted-R2 slightly varies over the 14 final models, thus the highest F-

statistic was used to select the final features. According to Table 26 the highest F-

statistic value is 281.85 with an Adjusted-R2 value 0.824. The selected features 

accordingly are Furan, IFT, Color, Acetylene and Ethane. This is due to the high 

correlation that exists between the selected features and the HI. Particularly, Furan and 

IFT are directly related to the degradation of the paper insulation system and hence the 

overall value of the HI. Moreover, the color of the oil is a good visual CM parameter 

that can give a good estimate of the oil condition. Furthermore, Acetylene and Ethane 

are key dissolved gases that indicate the existence of thermal and electrical stresses 

experienced by the transformer. Using the selected features, the HI predictor is re-built 

and tested. Table 27 and Table 28 indicate the average prediction accuracy and variance 

results for the 100 neural combinations problem.  An average prediction accuracy of 

95% was obtained for the 100 neural combinations.  

Applying stepwise regression in the backward elimination manner requires the 

use of all the 14 CM test features in the initial model. The exit tolerance is set to                     

5x10-5 while the entrance tolerance remains 1x10-5 to increase the feature selectivity of 

stepwise regression. Table 29 indicates the backward elimination procedure followed 

for UTILA CM test features in predicting the HI. The final selected features are 

Methane, Ethane, Acetylene, Carbon Monoxide, Color, IFT and Furan. Table 30 and 

Table 31 indicate the prediction accuracy results obtained using the backward 

elimination selected features. 

Table 27: Average prediction accuracy for reduced-feature predictor (using forward stepwise regression) 

  Average Prediction Accuracy of 10 Trials for a N1×N2 Neural Combination 

  
N2 Neurons in Second Hidden Layer 

1 2 3 4 5 6 7 8 9 10 

N
1
 N

eu
ro

n
s 

in
 F

ir
st

 H
id

d
en

 L
a

ye
r 1 93.72 93.52 92.02 94.14 93.48 82.48 91.14 94.11 90.8 93.7 

2 94.99 90.32 94.47 93.68 94.97 95.01 88.78 94.64 94.11 93.22 

3 89.32 92.48 94.92 94.5 94.03 95.57 93.45 94.51 94.67 93.05 

4 88.46 95.5 95.53 94.8 94.53 94.6 94.21 94.65 94.8 94.72 

5 82.3 92.46 95.19 95.1 95.23 94.8 95.29 95.29 95.08 95.08 

6 95.2 94.96 95.46 94.52 95.26 94.99 95.33 94.88 94.83 94.51 

7 83.45 95.19 94.59 94.51 93.36 95.46 95.07 94.12 94.69 94.43 

8 75.98 93.85 93.95 95.18 94.48 95.73 93.69 94.89 94.93 94.94 

9 92.33 87.67 85.59 94.98 95.12 94.6 95.21 95.42 94.94 94.7 

10 91.47 94.09 94.96 95.23 94.72 94.97 94.25 95.33 94.68 95.22 
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Table 28: Variance of prediction accuracy result in reduced-feature HI predictor (using forward stepwise 

regression)

  Variance of Prediction Accuracy of 10 Trials for a N1×N2 Neural Combination 

  

N2 Neurons in Second Hidden Layer 

1 2 3 4 5 6 7 8 9 10 

N
1
 N

eu
ro

n
s 

in
 F

ir
st

 H
id

d
en

 L
a

ye
r 

1 0.11 0.83 40.31 0.30 1.35 97.65 29.71 0.26 7.23 2.56 

2 0.29 62.08 0.47 4.11 0.04 0.16 41.58 0.61 1.86 10.32 

3 35.49 34.87 0.79 0.77 2.01 0.07 3.13 1.64 0.42 7.36 

4 73.50 0.16 0.42 0.25 1.21 0.56 0.42 0.77 0.27 0.69 

5 45.04 17.14 0.42 0.22 0.26 0.54 0.18 0.42 0.32 0.30 

6 0.31 0.23 0.24 5.89 0.22 0.27 0.10 1.31 0.73 0.64 

7 93.15 2.00 0.82 1.17 10.04 0.22 0.31 0.19 0.69 2.06 

8 20.66 9.86 2.22 0.36 0.12 0.03 4.65 1.44 0.30 0.39 

9 7.93 91.13 85.87 1.15 0.59 1.61 0.22 0.13 0.40 0.67 

10 47.97 3.49 0.18 0.48 0.67 0.40 1.14 0.76 0.22 0.32 

 

Table 29: Backward elemination stepwise regression on UTILA 

  Action 
p-value of the current 

model 

Step 1 Remove Carbon Dioxide 0.34 

Step 2 Remove Ethylene 0.21 

Step 3 Remove BDV 0.11 

Step 4 Remove Acid 0.02 

Step 5 Remove Water 5x10-4 

Step 6 Remove Hydrogen 1x10-4 

Step 7 Remove DDF 5.8x10-4 

Final Features Methane, Ethane, Acetylene, Carbon Monoxide, Color, IFT & Furan 

F-Statistic 274.42 

Adjusted-R2 0.85 

 

Table 30:  Average prediction accuracy for reduced-feature predictor (using backward elimination)

 Average Prediction Accuracy of 10 Trials for a N1×N2 Neural Combination 

  

N2 Neurons in Second Hidden Layer 

1 2 3 4 5 6 7 8 9 10 

N
1
 N

eu
ro

n
s 

in
 F

ir
st

 H
id

d
en

 L
a

ye
r 

1 94.32 91.05 82.23 95.59 95.77 95.57 95.27 95.49 95.69 95.54 

2 93.77 96.23 95.84 96.20 95.98 95.95 92.67 94.98 95.58 90.24 

3 95.82 95.83 95.46 95.09 96.20 96.64 96.06 95.61 96.47 96.17 

4 90.67 96.03 96.13 95.82 96.51 95.74 96.17 96.42 96.24 96.10 

5 92.58 96.13 94.70 96.31 96.60 96.31 96.40 95.91 96.37 96.14 

6 96.02 87.04 96.54 95.23 91.64 95.81 95.95 96.45 95.98 95.71 

7 75.00 88.93 96.05 96.51 96.04 96.31 96.12 95.96 96.50 96.28 

8 88.03 90.53 96.05 92.32 94.62 95.36 96.31 96.29 95.95 96.03 

9 84.51 96.01 96.36 96.49 93.53 96.21 96.13 96.08 96.02 92.87 

10 94.78 96.52 95.70 93.81 96.27 96.48 95.65 96.27 96.15 96.22 
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Table 31: Variance of prediction accuracy result in reduced-feature HI predictor (using backward elimination) 

 Variance of Prediction Accuracy of 10 Trials for a N1×N2 Neural Combination 

  

N2 Neurons in Second Hidden Layer 

1 2 3 4 5 6 7 8 9 10 
N

1
 N

eu
ro

n
s 

in
 F

ir
st

 H
id

d
en

 L
a

ye
r 

1 8.44 73.66 105.06 0.72 0.24 0.20 3.47 0.14 0.56 0.51 

2 25.78 0.29 0.86 0.22 0.37 0.34 59.91 2.36 0.18 115.65 

3 0.64 0.49 1.12 9.46 0.37 0.04 0.50 0.76 0.03 0.40 

4 68.29 0.18 0.15 0.61 0.13 0.45 0.17 0.34 0.30 0.23 

5 44.99 0.22 4.50 0.49 0.20 0.05 0.19 0.21 0.05 0.28 

6 0.62 76.77 0.11 4.79 15.41 0.44 0.49 0.15 0.40 0.54 

7 551.84 42.06 0.28 0.08 0.30 0.30 0.53 3.40 0.40 0.42 

8 110.28 49.97 0.52 18.38 4.27 4.27 0.15 0.18 0.24 0.29 

9 107.98 0.35 0.07 0.16 19.32 1.10 0.35 0.18 0.40 14.81 

10 9.38 0.10 0.86 19.34 0.26 0.13 0.84 0.05 0.15 0.25 

 

The average prediction accuracy results obtained using the backward 

elimination selected features were around 96% which is slightly more than what was 

obtained by the forward selection procedure. However, two additional test features of 

Methane and Carbon Monoxide are required. Since the prediction accuracy did not 

improve much and the number of required features are more using backward 

elimination, the forward stepwise features will be selected as the main reduced features 

in the presented work.  

It is evident that the performance of the ANN model is enhanced using the 

forward stepwise features as compared to the exhaustive based multi-features. The 

average prediction accuracy was around 95%, which is close to the one obtained using 

the full-feature model. It is noticed that Acidity and DDF were not considered in the 

final stepwise model. This is due to the relative redundancy of these oil quality features 

in the presence of the more HI influential features like Furan and IFT. Figure 13 shows 

one [4,5] reduced model trial for the HI actual versus the predicted results for some 

transformer oil samples. 

4.3.      Generalizing the HI Model 

 A generalized HI model (for a given industry computational method) should be 

capable of producing high level of transformer HI accuracy for different utilities. 

UTILB transformer oil samples are used to assess the performance of the previously 

developed HI model (based on UTILA) as a generalized model.  As mentioned earlier, 

the CM test features of UTILB are relatively less than those of UTILA. Particularly, 
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UTILB database does not contain dissolved gas CM test data for neither Carbon 

Monoxide nor Carbon Dioxide. Moreover, oil quality test results for both DDF and 

color are not available. In the reduced-feature HI model of UTILA, color was 

considered as one of the five selected features. With color and other features being not 

available, a new stepwise regression procedure is developed for UTILA. The stepwise 

regression is only performed for the features that are available in UTILB.  

Based on the same stepwise approach discussed earlier, Table 32 indicates the 

new forward stepwise regression results. The results indicate that Furan, IFT, Acetylene 

and Ethane are the features of highest statistical significance in predicting the HI value 

with the highest F-statistic with a value of 359. The same number of training samples 

are used for training the feature-reduced HI predictor model. The entire 327 data 

samples of UTILB are used for testing. 

 
Figure 13: Actual vs. predicted HI for reduced-feature HI predictor 

 

Table 32: Final selected features for reduced features of UTILA (using forward stepwise selection)

 

Hydrogen Methane Ethane Ethylene Acetylene Water BDV Acid IFT Furan

Hydrogen Hydrogen Hydrogen Hydrogen Hydrogen Hydrogen Hydrogen Hydrogen Hydrogen Hydrogen

Methane Methane Methane Methane Methane Methane Methane Methane Methane Methane

Ethane Ethane Ethane Ethane Ethane Ethane Ethane Ethane Ethane Ethane

Ethylene Ethylene Ethylene Ethylene Ethylene Ethylene Ethylene Ethylene Ethylene Ethylene

Acetylene Acetylene Acetylene Acetylene Acetylene Acetylene Acetylene Acetylene Acetylene Acetylene

Water Water Water Water Water Water Water Water Water Water

BDV BDV BDV BDV BDV BDV BDV BDV BDV BDV

Acid Acid Acid Acid Acid Acid Acid Acid Acid Acid

IFT IFT IFT IFT IFT IFT IFT IFT IFT IFT

Furan Furan Furan Furan Furan Furan Furan Furan Furan Furan

358 359 359 359 359 358 358 359 359 359

0.85 0.84 0.84 0.84 0.84 0.84 0.85 0.84 0.84 0.84

Initial 

Adjusted R²

S
el

ec
te

d
 F

ea
tu

re
s
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n
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h

e 
F
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a
l 
M

o
d
el

F Statistic
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Table 33 and Table 34 show the obtained results for the 100 neuron 

combinations for the two-hidden layer ANN problem. The average prediction accuracy 

is around 91% with a low variance value. The results indicate the high performance of 

the reduced-feature HI predictor (of UTILA) in predicting the HI value for UTILB data 

samples.  

Table 33: Average prediction accuracy for reduced-feature HI generalized model

 Average Prediction Accuracy of 10 Trials for a N1×N2 Neural Combination 

  

N2 Neurons in Second Hidden Layer 

1 2 3 4 5 6 7 8 9 10 

N
1
 N

eu
ro

n
s 

in
 F

ir
st

 H
id

d
en

 L
a

ye
r 

1 81.29 86.16 86.63 87.32 90.58 91.14 90.32 90.62 90.58 92.52 

2 84.63 91.89 88.20 91.35 92.13 88.03 92.50 92.32 91.33 91.55 

3 88.47 74.51 92.44 93.26 92.29 92.61 92.87 93.16 91.81 92.77 

4 91.45 91.89 92.68 93.64 93.82 92.21 93.88 92.87 91.38 92.29 

5 89.61 92.81 92.32 92.06 91.17 90.37 93.03 92.49 93.16 93.41 

6 86.27 92.30 43.63 88.41 93.00 92.68 92.17 92.43 93.57 94.05 

7 91.60 91.77 92.63 93.36 93.68 91.95 92.73 92.67 91.88 92.66 

8 83.08 91.11 88.98 91.70 93.61 92.82 93.09 93.34 91.38 91.60 

9 84.28 82.07 91.67 92.96 92.40 92.15 92.79 93.20 92.46 92.26 

10 92.84 90.61 93.02 91.01 92.19 92.56 92.67 91.79 90.12 91.59 

 

Table 34: Variance of prediction accuracy for reduced-feature HI generalized model

 Variance of Prediction Accuracy of 10 Trials for a N1×N2 Neural Combination 

  

N2 Neurons in Second Hidden Layer 

1 2 3 4 5 6 7 8 9 10 

N
1
 N

eu
ro

n
s 

in
 F

ir
st

 H
id

d
en

 L
a

ye
r 1 21.43 44.48 33.22 65.66 2.31 0.67 8.49 3.67 0.94 0.43 

2 34.51 2.54 112.28 1.21 0.56 52.99 2.23 0.44 1.23 3.44 

3 13.78 119.30 0.68 0.69 1.76 0.31 1.81 0.22 2.85 0.60 

4 42.94 1.16 0.42 1.14 0.69 1.78 1.15 1.20 5.72 0.68 

5 40.08 2.11 7.36 19.13 22.39 28.87 1.56 2.62 0.97 0.71 

6 94.88 7.25 21845.65 15.66 0.77 0.67 0.39 2.89 0.32 0.25 

7 19.41 55.33 3.01 0.33 0.44 8.45 1.79 0.78 3.64 1.61 

8 30.63 7.34 17.73 0.83 0.23 0.79 2.62 0.91 1.66 1.09 

9 135.65 32.50 0.58 1.87 0.70 1.41 0.93 0.30 2.51 2.84 

10 3.77 54.11 0.47 22.70 1.60 1.28 2.47 10.11 8.24 0.89 

 

Figure 14 shows one [4,5] reduced general model trial for the HI actual versus 

the predicted results, for a given oil sample in the testing group. 
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Figure 14: Actual vs. predicted HI for reduced-feature generalized HI predictor 

Another scenario of generalization is that the HI prediction would be able to 

generalize the selected features instead of the model. That is, to use the selected features 

of Furan, IFT, Acetylene and Ethane to build the ANN model using the data of any 

utility company. In this part of the presented work, the selected features are used to 

build the ANN model using the training set of UTILB data only. The model will be 

tested against the HI prediction of the testing set of UTILB. 50%, 60%, 60% and 60% 

of UTILB data in the poor, fair, good and excellent categories respectively, which will 

be used as a training set. The remaining samples will be used for testing. Table 35 to 

Table 38 present the 100 neural combination results for the ANN UTILB models based 

on the full-features and selected general features. 

Table 35: Average prediction accuracy for full-feature UTILB predictor model

 Average Prediction Accuracy of 10 Trials for a N1×N2 Neural Combination 

  

N2 Neurons in Second Hidden Layer 

1 2 3 4 5 6 7 8 9 10 

N
1
 N

eu
ro

n
s 

in
 F

ir
st

 H
id

d
en

 L
a

ye
r 1 84.25 89.07 76.14 85.18 91.66 79.83 89.02 91.11 88.60 80.74 

2 92.37 82.73 91.79 92.69 83.48 92.97 91.71 92.77 90.80 91.01 

3 89.02 91.79 91.50 94.00 93.11 91.39 90.72 93.03 91.95 92.03 

4 86.15 81.66 89.77 93.39 92.02 91.87 92.26 92.26 91.95 94.23 

5 94.00 85.38 93.57 93.01 93.36 93.77 88.69 91.08 91.94 90.50 

6 83.04 92.87 93.34 92.27 92.40 90.12 93.10 93.31 91.28 92.56 

7 93.58 88.84 93.65 92.32 91.74 90.95 93.08 92.37 92.19 92.15 

8 86.51 92.44 87.52 91.86 90.64 90.25 91.32 92.20 91.49 93.02 

9 93.64 89.76 86.01 92.69 92.24 91.04 91.58 91.01 91.18 90.83 

10 90.76 92.71 93.92 91.28 92.50 92.44 91.22 92.69 91.52 93.01 
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Table 36: Variance of prediction accuracy for full-feature UTILB predictor model

  Variance of Prediction Accuracy of 10 Trials for a N1×N2 Neural Combination 

  
N2 Neurons in Second Hidden Layer 

1 2 3 4 5 6 7 8 9 10 
N

1
 N

eu
ro

n
s 

in
 F

ir
st

 H
id

d
en

 L
a

ye
r 1 50.83 23.99 349.15 30.21 2.52 1349.26 45.23 4.66 3.3 83.24 

2 0.79 112.62 1.72 0.4 31.27 0.97 4.36 1.75 2.89 20.78 

3 42.48 9.77 5.94 0.94 3.9 7.84 3.5 1.29 4.13 1.33 

4 30.41 6 13.02 5.33 8.03 4.85 2.69 2.71 2.52 1.87 

5 0.58 60.12 3.54 2.35 1.96 2.11 12.31 9.81 6.14 13.33 

6 49.97 0.73 1.19 7.3 8.53 7.87 3.57 4.29 4.16 3.63 

7 1.02 11.59 1.03 3.04 3.93 12.35 0.62 6.25 4.95 2 

8 30.04 8.42 4.37 3.1 12.09 10.21 13.06 2.57 3.74 0.35 

9 0.92 11.58 21.62 0.82 3.77 5.47 10.87 1.13 5.4 4.9 

10 2.37 3.56 0.43 6.12 3.91 2.94 12.2 3.06 4.43 1.75 

 
Table 37: Average prediction accuracy for the generalized-feature UTILB predictor model

  Average Prediction Accuracy of 10 Trials for a N1×N2 Neural Combination 

  
N2 Neurons in Second Hidden Layer 

1 2 3 4 5 6 7 8 9 10 

N
1
 N

eu
ro

n
s 

in
 F

ir
st

 H
id

d
en

 L
a

ye
r 1 89.42 91.44 91.64 84.37 89.16 92.38 91.16 90.51 87.09 87.61 

2 89.12 91.79 86.66 88.71 89.92 89.82 90.98 88.38 88.87 91.15 

3 81.25 83.91 91.25 88.21 89.09 90.88 90.32 91.74 86 91.08 

4 88.04 92.39 91.85 93.34 91.42 90.86 89.98 89.8 89.84 89.76 

5 90.91 91.37 89.76 87.53 89.21 89.12 91.8 92.57 90.62 90.62 

6 85.86 84.19 89.27 88.65 91.07 92.87 91.56 91.71 93.82 91.29 

7 89.58 91.44 90.4 91.73 91.59 91.93 90.97 91.09 90.2 91.37 

8 83.86 70.77 89.41 89.02 92.69 91.16 90.67 87.87 90.71 90.41 

9 84.64 80.25 87.84 93.05 91.31 93 89.68 90.73 89.97 90.06 

10 88.78 90.91 90.94 90.42 91.34 91.63 90.78 89.57 90.05 90.58 

 

Table 38: Variance of prediction accuracy for generalized-feature UTILB predictor model 

  Variance of Prediction Accuracy of 10 Trials for a N1×N2 Neural Combination 

  
N2 Neurons in Second Hidden Layer 

1 2 3 4 5 6 7 8 9 10 

N
1
 N

eu
ro

n
s 

in
 F

ir
st

 H
id

d
en

 L
a

ye
r 1 9.57 1.29 0.5 328.58 6.45 3.96 0.65 0.58 25.54 23.67 

2 25.27 0.11 91.2 8.1 13.92 20.3 0.44 57 0.91 21.34 

3 233.66 45.98 48.31 21.73 7.31 2.89 3.54 3.66 5.09 0.5 

4 9.19 0.66 0.53 1 0.48 3.32 2.35 4.13 2.78 16.78 

5 1.75 1.11 21.46 13.12 19.76 10.57 3.54 0.6 5.97 2.95 

6 23.06 182.99 5.81 13.96 2.91 1.44 2.61 1.34 0.46 1.53 

7 6.55 0.08 11.28 1.12 0.41 2.22 2.9 1.18 6.86 0.9 

8 32.41 655.64 13.52 47.03 1.94 3.16 12.47 20.22 4.1 4.23 

9 14.19 166.49 1.53 0.48 0.78 0.32 5.18 4.98 8.75 5.44 

10 14.32 0.2 1.12 12.72 1.99 0.33 5.47 11.29 9.01 0.73 
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 The average prediction accuracy is around 91% with a low variance value for 

the full-feature and general-feature model. A high performance of HI prediction is 

indicated in both the UTILB full-feature and general-feature model. The produced 

results clearly indicate the efficiency of using the generalized features in terms of the 

lower CM tests required. Figure 15 shows one [4,5] reduced general model trial for the 

HI actual versus the predicted results, for a given oil sample in the testing group. 

 

Figure 15: Actual vs. predicted HI for reduced-feature generalized feature HI predictor 

 

4.4.      HI Prediction Using Predicted IFT 

 Predicting Furan in an AI-based approach using other oil insulation parameters 

has been attempted in many works such as in the works of [23], [24] and [25]. Fewer 

attempts have been used in predicting the IFT value despite being a costly feature. The 

aim behind predicting IFT is to further reduce the cost of the transformer HI prediction. 

The utility will no longer require to conduct IFT CM tests. Instead, IFT is predicted 

using relatively cheaper oil parameter tests. Using the 13 insulation CM test features as 

the input features with the IFT being the target feature, stepwise regression is performed 

to obtain the optimum features required in IFT prediction. Table 39 indicates the 

stepwise regression results. The results indicate the selection of Ethane, acidity and 

color for predicting IFT for an F-statistic of 425.18. All of these factors are direct 

indicators of the paper degradation in the paper insulation system. Table 40 and Table 

41 indicate the 100 neural combination results for predicting IFT. 
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Table 39: Selected features for IFT predictor 
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Table 40: Average prediction accuracy for reduced-feature IFT predictor model

 Average Prediction Accuracy of 10 Trials for a N1×N2 Neural Combination 

  

N2 Neurons in Second Hidden Layer 

1 2 3 4 5 6 7 8 9 10 
N

1
 N

eu
ro

n
s 

in
 F

ir
st

 H
id

d
en

 L
a

ye
r 

1 85.18 90.12 90.10 88.80 88.86 89.88 89.59 89.79 90.17 89.31 

2 90.00 90.19 90.31 88.98 89.84 89.83 90.24 89.94 89.25 90.20 

3 90.06 90.06 89.51 90.03 89.58 90.16 90.09 89.71 89.47 90.28 

4 90.13 90.15 88.87 90.15 90.12 90.16 89.97 88.02 90.05 89.35 

5 89.96 90.12 89.30 90.00 89.62 90.07 90.11 90.19 90.05 88.99 

6 89.09 89.69 89.56 89.55 90.34 90.30 90.31 89.81 90.31 89.67 

7 90.09 89.81 90.10 90.17 90.25 89.89 90.10 89.88 89.61 89.89 

8 89.82 88.23 88.05 90.15 89.96 90.16 90.06 89.71 90.09 89.70 

9 88.70 86.54 90.33 90.17 89.65 90.36 90.17 90.12 89.88 89.68 

10 89.71 89.87 89.79 89.79 89.85 90.05 89.82 90.02 89.81 90.18 

 

Table 41: Variance of prediction accuracy for feature-reduced IFT predictor model

 Variance of Prediction Accuracy of 10 Trials for a N1×N2 Neural Combination 

  

N2 Neurons in Second Hidden Layer 

1 2 3 4 5 6 7 8 9 10 

N
1
 N

eu
ro

n
s 

in
 F

ir
st

 H
id

d
en

 L
a

ye
r 

1 66.25 0.26 1.20 0.19 0.27 49.33 0.25 6.61 4.34 0.21 

2 4.02 3.78 1.85 4.72 0.13 0.07 1.27 0.51 0.54 0.27 

3 26.01 0.28 0.19 0.31 0.27 0.83 0.81 3.08 0.15 0.26 

4 52.08 2.32 34.80 6.78 0.11 0.78 2.22 0.23 0.55 0.29 

5 0.08 9.94 0.04 0.19 0.24 0.37 1.14 0.14 0.31 0.63 

6 1.04 0.25 10.12 0.19 0.23 0.07 1.75 0.12 0.54 0.13 

7 30.22 8.68 17.41 0.26 0.28 0.27 0.13 0.21 0.32 0.87 

8 0.10 20.93 0.33 0.29 1.04 0.16 7.19 1.30 0.11 0.37 

9 46.42 0.22 0.07 15.32 0.22 0.12 0.03 0.35 0.35 0.23 

10 22.84 5.85 0.12 0.39 0.49 0.54 2.23 6.00 0.58 0.23 

 

 From the results, the stepwise-based features can be used to predict the IFT, 

with a relative lower average prediction accuracy of 89% (as compared to 95% HI 

prediction). The selected features are relatively cheap features that can be acquired 

through a proper experimental procedure. Figure 16 shows one [4,5] reduced model 

trial for the actual IFT versus the predicted results, for a given oil sample in the testing 

group. 

Having a validated feature-reduced HI and IFT predictor models, the objective 

now is to design the overall cost-effective HI predictor. Using UTILA data samples, the 

same training and testing groups are created (as was done in HI prediction). The training 
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group will be used in training the HI predictor and the IFT predictor. For IFT prediction, 

the IFT stepwise-based features are used to train the predictor model. On the other hand, 

the HI stepwise based features (Furan, actual IFT, color, Ethane and Acetylene) will be 

used to train the HI predictor model.  The testing procedure is used to validate the 

performance of the overall model. For a given testing oil sample, the IFT predictor 

model is used to predict IFT using the stepwise-based features of the sample. The 

predicted IFT along with the other HI selected features (of the oil sample) are fed to the 

HI model, for the final HI value. Figure 17 shows a schematic block diagram of the 

testing and training procedure used to obtain the results. 

 

Figure 16: Actual vs. predicted IFT for transformer oil samples 

  

 

Figure 17: Training and testing procedure for the cost-effective HI predictor 

Table 42 and Table 43 show the 100 neural combination results of predicting 

the HI value. With an average prediction accuracy of 95%, the final results clearly 

indicate the high performance of the overall cost effective HI predictor model. Figure 

18 shows one [4,5] reduced model trial for the actual HI versus the predicted results, 

for a given oil sample in the testing group. 
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Table 42: Average prediction accuracy results for overall cost-effective HI predictor

  Average Prediction Accuracy of 10 Trials for a N1×N2 Neural Combination 

  
N2 Neurons in Second Hidden Layer 

1 2 3 4 5 6 7 8 9 10 
N

1
 N

eu
ro

n
s 

in
 F

ir
st

 H
id

d
en

 L
a

ye
r 1 94.48 83.36 90.21 94.56 94.55 92.77 93.63 93.38 92.53 92.49 

2 94.61 93.29 95.13 92.55 95.11 95.12 94.96 94.96 95.08 94.06 

3 90.23 93.25 95.33 95.46 94.56 94.99 95.42 95.23 95.15 95.24 

4 80.11 95.51 95.65 94.85 95.48 95.33 94.92 95.32 94.88 94.92 

5 88.66 88.94 95.62 95.19 95.22 95.66 94.65 95.21 95.45 95.19 

6 95.58 95.54 94.61 95.08 95.72 95.78 95.65 95.54 95.55 94.93 

7 78.73 95.38 95.44 95.77 94.73 95.76 95.42 95.27 95.52 95.44 

8 80.15 93.65 95.52 95.61 95.46 95.75 94.95 95.2 95.77 95.62 

9 95.62 94.39 90.98 95.68 95.76 94.29 95.54 95.31 94.82 95.04 

10 81.11 95.23 93.25 95.43 95.27 95.33 95.4 95.48 95.29 95.08 

 

Table 43: Variance of prediction accuracy results for overall cost-effective HI predictor

  Variance of Prediction Accuracy of 10 Trials for a N1×N2 Neural Combination 

  
N2 Neurons in Second Hidden Layer 

1 2 3 4 5 6 7 8 9 10 

N
1
 N

eu
ro

n
s 

in
 F

ir
st

 H
id

d
en

 L
a

ye
r 1 0.02 86.22 83.82 0.27 0.06 3.44 3.89 3.47 2.73 2.18 

2 0.38 14.25 1.6 35.97 0.12 0.23 0.16 3.69 0.2 3.58 

3 49.54 40.4 0.32 0.11 4.24 1.47 0.37 0.19 0.2 0.62 

4 102.66 0.07 0.23 0.69 0.15 0.24 1.76 0.73 0.68 0.47 

5 72.19 80.02 0.04 0.25 0.26 0.08 1.99 0.2 0.22 0.41 

6 0.04 0.15 0.72 0.85 0.15 0.03 0.07 0.16 0.19 0.53 

7 70.52 1.32 0.32 0.15 1.12 0.07 0.26 0.29 0.18 0.19 

8 62.33 2.43 0.14 0.23 0.14 0.09 0.2 0.65 0.26 0.24 

9 0.07 3.12 39.63 0.12 0.1 4 0.18 0.36 1.03 1.13 

10 26.21 0.45 21.61 0.48 0.77 0.09 0.67 0.66 0.29 0.56 

 

 

Figure 18: Actual vs. predicted HI for overall predictor model 
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 Figure 17 indicates that Ethane and color are used in both the IFT and HI 

predictor model. Acidity however, is the additional feature which is only used in 

predicting the IFT value and not the HI. The forward stepwise procedure used earlier 

in this chapter indicated the elimination of acidity due to its relative redundancy in the 

presence of IFT. Thus an alternative cost-effective method would suggest to explore 

the use of acidity as an input to HI model rather than IFT. Accordingly the cost-effective 

model is modified as shown in Figure 19.  

 

Figure 19: Alternative cost-effective HI predictor using acidity 

Table 44 and Table 45 indicate the prediction accuracy results obtained for the 

alternative cost-effective model. The average prediction accuracy obtained is around 

93% which is slightly less than the 95% accuracy obtained using the original cost-

effective model with IFT as one of the reduced inputs. The obtained results validate the 

used of acidity as an alternative reduced feature to IFT in the cost-effective HI predictor 

model. 

Table 44: Average prediction accuracy results for the modified cost-effective HI predictor

 Average Prediction Accuracy of 10 Trials for a N1×N2 Neural Combination 

  

N2 Neurons in Second Hidden Layer 

1 2 3 4 5 6 7 8 9 10 

N
1
 N

eu
ro

n
s 

in
 F

ir
st

 H
id

d
en

 L
a

ye
r 

1 92.46 90.80 92.62 92.90 89.24 91.28 93.40 92.42 89.13 92.08 

2 92.80 93.04 92.84 90.44 93.14 92.69 83.11 93.09 94.12 92.71 

3 81.65 92.08 91.13 92.87 92.22 93.02 93.35 93.67 93.43 92.79 

4 89.37 93.04 93.69 93.77 93.06 93.78 93.51 93.60 93.95 93.57 

5 88.76 91.34 93.59 93.48 93.49 93.49 93.46 93.83 93.70 93.62 

6 92.16 93.74 93.66 93.76 93.50 93.46 93.71 93.47 92.73 93.33 

7 87.54 94.11 93.75 92.89 93.24 93.46 93.02 93.49 93.78 93.15 

8 93.31 91.28 93.27 91.93 93.83 93.80 93.12 93.54 94.29 93.59 

9 90.13 82.80 85.71 94.20 93.85 93.27 93.96 93.51 92.81 91.31 

10 91.96 93.67 93.82 93.90 93.84 93.34 93.66 93.80 93.40 93.29 
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Table 45: Variance of prediction accuracy results for the modified cost-effective HI predictor

 Variance of Prediction Accuracy of 10 Trials for a N1×N2 Neural Combination 

  

N2 Neurons in Second Hidden Layer 

1 2 3 4 5 6 7 8 9 10 
N

1
 N

eu
ro

n
s 

in
 F

ir
st

 H
id

d
en

 L
a

ye
r 

1 0.18 38.70 3.34 0.94 72.44 26.55 0.22 1.17 8.16 5.82 

2 0.29 0.46 0.22 7.49 0.93 0.72 99.13 0.43 0.12 1.42 

3 72.43 3.46 38.44 0.61 8.42 1.18 0.39 0.26 0.15 0.43 

4 65.31 0.52 0.13 0.24 1.65 0.18 0.18 0.47 0.51 0.49 

5 46.14 37.92 0.22 0.79 0.30 0.48 3.81 0.23 0.46 0.14 

6 25.69 0.08 0.38 0.45 0.27 0.10 0.46 0.27 1.99 1.34 

7 80.62 0.27 0.35 3.61 1.43 0.59 0.88 0.12 0.31 0.97 

8 0.73 13.48 0.58 8.14 0.35 0.37 0.49 0.85 0.28 0.30 

9 16.08 257.03 54.09 0.07 0.20 0.73 0.39 0.36 0.58 7.19 

10 40.85 0.15 0.54 0.17 0.13 0.17 1.14 0.31 1.05 0.54 
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Chapter  5. Conclusion and Recommendation 

 Transformer Asset Management (TAM) is a planning method which involves 

monitoring and maintaining the energized transformer assets in the power system. The 

standard Condition Monitoring (CM) methods are used to acquire the condition 

parameters of the transformers in question. The Condition Assessment (CA) methods 

on the other hand, are used to process and analyze the CM outcomes to give a proper 

estimate of the transformers' expected lifetime. However, the individual CA outcomes 

are not correlated in the sense that they cannot collectively represent the transformer's 

overall operational conditions.  Thus, the Health Index (HI) is used to provide a 

comprehensive understanding of the transformer condition based on a complete 

diagnostics of the individual components of the transformer. The computation of the HI 

is done through industry computational methods that are conducted by specialized 

TAM companies. However, the drawback of these methods lies in the need for all the 

CM test features for a high accuracy of HI value outcome.  

5.1.      Outcomes of the Thesis Work 

 The presented work provides a CM test-reduced HI predictor alternative that 

can effectively reduce the cost of TAM. The data used was for a number of transformer 

oil samples acquired from a utility company. The presented work started with applying 

Artificial Neural Networks (ANN) for predicting the HI (based on one industry 

computational method), using the CM test input features. Feature selection techniques 

that involve feature-based search and stepwise regression, were later used to eliminate 

the CM test features of least statistical significance in predicting the HI. The selected 

features of stepwise regression proved a validated success in predicting the HI. Another 

outcome of the presented work was the validation of the use of the built model (from 

one utility) for unseen data samples of a different utility company. Moreover, the 

selected features of stepwise regression can be considered as generalized features that 

can be used for modeling the HI predictor using the data of any utility company. The 

major outcome presented in this work is the idea of having a cost-effective HI predictor 

model, which uses a predicted costly feature. Such an outcome allows the utility 

companies to reduce the TAM cost of conducted tests, and to predict costly tests 

features using relatively cheaper ones. 
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5.2.      Recommendations for Future Work 

 The presented work provides a cost-effective HI predictor model that can be 

used in the area of TAM.  The model is based on one industry computational method 

that is practiced by the company mentioned in [26]. A continuation of the presented 

work in this thesis would be to follow all the conducted simulations for other industry 

computational methods. This should allow for a more generalized HI outcome, in which 

any utility company can choose the industry method that best fits its standards and 

requirements. Applying this work for further methods is considered as a major 

contribution in the area of TAM. 
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