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Abstract 

 

Due to its potential accuracy and speed, the use of profiling and detection 

sensing systems has been gaining rapid popularity in the industry.  Whether they are 

implemented in coordinate measurement machines or encoded in custom-designed 

measurement systems, real-time accuracy and precision in determining the sensor 

position and orientation are crucial elements to the performance of inspection sensor 

measurement techniques.  Uncertainty in tracking these sensors within a measurement 

system can adversely affect the quality of 3-dimensional surface profiling 

techniques.  Recent advancements in micro-electro-mechanical systems and their 

applications in multiple-axis inertia measurement units (IMUs) have been offering 

relatively high accuracy and precision in determining linear accelerations and angular 

velocities within the operating range of inspection measurement systems.  This effort 

targets taking a step forward towards integrating IMUs to offer robust and portable 

inspection measurement systems.  Utilizing the gyroscope as a feedback, different 

forward models will be analyzed to accurately extract gravitational acceleration from 

IMU’s accelerometer measurements at random real-time orientations simulating 

realistic measurement environments.  Accuracy in the forward model lends itself for 

real-time assessment of a sensor’s position and orientation as part of the inverse model, 

which will be investigated with different physics-based data processing 

techniques.  Forward and inverse models and their real-time transformational matrixes 

allow taking a point from the sensor coordinate system to the world coordinate 

system.  The developed models are tested for dimensional accuracy against known 

input profiles to show the potential capabilities and limitations of the proposed 

effort. Using the proposed algorithm, the drift bias error was minimized drastically 

demonstrating potential in usage as an alternative to bulky profiling machines used 

conventionally. 

Search Terms: Laser vision sensor; Surface profiling; coordinate systems; Euler angles 
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Chapter 1: Portable Position Tracking 

 

1.1 Profiling System Limitations 

Portability of a measurement system is a very important characteristic that has 

been developed to be attractive in the twenty first century. Phones are mobile, 

computers are mobile and so are cameras. Recently, the industry has been demanding 

for portable three dimensional (3D) surface profiling systems. The problem in mobility 

is that it is not only dependent on the size of the system but also its speed. Most profiling 

systems available are extremely slow when compared to microprocessor speeds or even 

mobile phone speeds. 

1.2 Problem Formulation 

Given the limitations in profiling systems present, an extremely fast, cheap and 

relatively small in size system is needed in order to fulfill the mobility role needed and 

compensate for the speed limitations of the hardware motors imposed in the 

conventional bulky systems. Another important criterion is the programmability of the 

system to allow for the vastest type of measurements required. As thus, any solution to 

the proposed problem is required to be flexible in terms of measurement setups and 

profiling surfaces. 

1.3 Proposed Solution 

Inertial Navigation Systems (INS) are systems that estimate position based on 

the present location in relevance to a previous location. The distinctive characteristics 

of INS allow it to assist navigation processes, making it a favorable solution in a wide 

range of fields. It was adopted by a diversity of applications to include the fields of 

automobiles, mechatronics, biomedical, and biometric analysis [1-12]. Capturing 

position for a set of readings requires an accurate representation. One of the eminent 

proposed solutions is the accelerometer. Accelerometers have been the main focus of 

many researches due to their portability and affordability [1-12]. The appeal of 

accelerometers comes from its use of low power integrated circuits along with its small 

size, low weight and relatively acceptable measurements. This ultimately facilitates the 

use of single and multiple arrays on readings [1, 2]. Accelerometers have been 

contrasted against other amiable tools such as Global Positioning Systems (GPS) and 
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odometers. When compared to GPS, accelerometers are superior in terms of signal 

coverage, however, unlike the GPS, they encounter high drift errors. Signal blockage 

is a critical drawback in absolute position sensors, such as GPS, radar and active 

beacon. In contrast to odometers, which deliver 1D data along the path of motion, 

accelerometers can measure in all three dimensions using tri-axial sensor design, and 

can result in higher data rates. Moreover, accelerometers are self-contained devices 

which makes them more attainable than odometers. Therefore, for an application that 

requires mobility on a relatively short period of time, accelerometers are found to be 

far more adequate [3, 4]. Much of the present technology focuses on the incorporation 

of an amalgam of sensors as opposed to the accelerometer. The benefit of using an 

accelerometer instead is that it replaces the more complex algorithms involved, with 

simpler ones. Other studied solutions were derived from the use of high power devices. 

Nevertheless, such a technique qualifies the monitoring proficiencies and offline 

analysis. Besides, the use of these high power sensors such as gyroscopes is limited due 

to the fact that they are cost ineffective [2]. Another benefit to the use of accelerometers, 

is the ease of calibration due to the gravity bias, replacing many other sensors that 

required high calibration criteria [5]. 

Numerous studies evaluated position calculations using accelerometers in an 

attempt to estimate position. Accelerometers have been the main focus in terms of 

velocity and position estimation to support vehicle and robotic navigation. 

Technological leaps in the gaming fields enabled the accelerometers embedded in smart 

phones to act as remote controllers. Accelerometers make use of motion recognition, 

sensing techniques that evaluate both position and speed during movements of the 

console, i.e. smart phone [6]. Research efforts have rather expanded the potential use 

of the accelerometer embedded in smart phones to encompass gait recognition. Despite 

the computational limitations of smart phones, the use of accelerometers fixated within 

smart phones was proven to be a feasible approach [7]. Accelerometers have also been 

used to classify Parkinson tremor from the position readings. The readings were able to 

clearly characterize the distinguishing factors that can aid in proper classification [8], 

whereas, in the field of biometric analysis, accelerometers are used in estimating the 

distance covered by runners to classify fatigue breakdown in runners’ performance [9]. 

Mathematical models were developed in order to estimate the distance covered 

typically by a person's stride, with the aid of Euler angle measurement to identify the 

existence of gravity in the readings. Along with the acceleration measurements 
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provided by the accelerometers, the change of the center of gravity of the body helps to 

maintain accurate readings. The presence of gravity in one or more of the axis enables 

the mathematical model to realize more viable readings. Those mathematical models 

were developed by using a pedometer and a tri-axial accelerometer. In a smart phone, 

the accelerometer data is usually manipulated to estimate the pedometer data [10, 11]. 

Similarly, the different human activities can also be both monitored and classified using 

a tri-axial accelerometer. The accelerometer can distinguish between the activities of 

walking, sitting and lying accurately by using raw acceleration values without 

displacement calculations [1]. The diverse applications of this technology allowed for 

its use in sports coaching. An integration between accelerometers and GPS allowed for 

a quantitative analysis of velocity and stroke measurement of swimmers. The 

implementation of the technology was proven to be beneficial for sports professionals 

and scientists, with the potential of replacing classical quantifying methods such as 

video analysis [12]. Another sensor that is usually integrated with the accelerometer in 

order to utilize a higher accuracy location analysis is the gyroscope. Gyroscopes are 

used for inertial rotation sensing, by measuring angular velocities which can then be 

integrated. Gyroscope measurements are coupled with bias, and so high-pass filtering 

is required for the angular velocities. Similar to acceleration values, angular velocities 

require a rotation algorithm that can associate the values with the body's coordinate 

system. Gyroscopes allow for an accurate representation of orientation over a short 

period of time. The convenience of using a gyroscope is derived from its ability to adapt 

to instantaneous changes in a dynamic system [13]. The more commonly used Micro-

Electro-Mechanical System (MEMS) gyroscope is popular for its low cost, portability 

and lightweight nature. Compensation for the shortfalls of a MEMS gyroscope is done 

through the use of the proper processing tool [14]. Moreover, power consumption of 

MEMS gyroscopes is relatively minimal, and so gyroscopes are considered to be a 

viable option for energy conservation. For instance, the power dissipation for a simple 

axis MEMS gyroscope can be as low as below 30mW [15]. 

The use of gyroscopes for orientation determination has infiltrated, in the 

versatility of its application, many fields. In regards to automobile- satellite 

communication, gyroscopes were found beneficial in securing moving vehicle 

connectivity. In dealing with moving vehicles, the most prominent task lies in 

establishing an unerring link to the satellite. A study on establishing a method to 

ascertain vehicle altitude proposes the use of GPS antennas along with a triad 
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accelerometer and gyroscope. The merging of these sensors, combined with the 

appropriate filtering techniques provides an efficacious, yet cost effective solution [16]. 

Moreover, researchers have also studied the incorporation of gyroscopes to mobile 

phones for vision applications. A research on the assessment of camera motion unites 

the concepts of visual and inertial sensors. Challenges in visual stabilization and camera 

tracking, are a result of the camera's way of capturing a row in a frame. Cameras within 

cell phones capture rows consecutively as opposed to simultaneously, which in the case 

of fast motion causes a distortion in the frame. Despite the existence of many texts that 

assume an offline synchronization or calibration of these two integrated systems, this 

study proposes providing means to allow for online calibration in the fusion of camera 

and gyroscopes [17]. In addition, applications of gyroscopes extend to implications in 

robotics. Challenges of orientation are imperative in the field of robotics for obvious 

importance associated with establishment of impact free paths for a moving robot and 

machine stabilization [18]. Furthermore, beyond the scope of automobiles and robotics, 

gyroscopes can be used in aviation for autopilot projects. A study on a navigation 

system for such a project involved the use of cameras, gyroscopes and accelerometers 

[19]. 

The coupling of gyroscopes with accelerometers, allows for the combination of 

the benefits acquired from angular velocity and acceleration measurements. The biases 

accompanying gyroscope measurements make it a suitable method only over short 

periods, while the delays and vibrations accompanying accelerometer readings make it 

an appropriate method for long-term measurements. [13, 16]. The inertial systems for 

orientation measurement can evaluate velocity, position and altitude. Their fusion can 

therefore be an asset in so many applications. These systems, however, require proper 

calibration; which is generally facilitated by Kalman filters [20]. The incorporation of 

Kalman filters within the amalgamated system allows each orientation measurement 

method to compensate for the shortfalls of the other method. The fusion can therefore, 

ideally result in an overall enhancement in the sensitivity and stability of the system 

that is durable over both short and long periods of time [13, 16].  

1.3 Sensor Types 

In the literature, for position tracking applications, two main accelerometer 

types are used. Those accelerometers are classified based on the architecture and 

material used to sense the vibrations in order to translate it into acceleration 
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measurements. Capacitive accelerometers take the advantage of the capacitor model 

which measures the change of voltage which directly corresponds to acceleration 

values. There is a third plate suspended between the two fixed plates of the capacitor 

making the capacitor split into three different capacitors. When the suspended middle 

plate moves, the capacitance which is a function of distance is also affected. This relates 

to the voltage of the overall system which in turn once calibrated versus acceleration, 

produces different values of acceleration [21]. The main capacitive accelerometers are 

made using MEMS technology due to its relatively small sizes and easy integration to 

chips. Piezoelectric accelerometers are also another type of accelerometers depending 

on a piezoelectric material that is stressed with motion and produces charge variations. 

Since charge is a function of current and voltage of the overall sensor, acceleration is 

calibrated versus voltage, and for every voltage value, different acceleration values can 

be outputted [22].  

1.4 Errors in IMUs and Compensation Models 

In light of the challenging convolutions accompanying the operational aspects 

of accelerometers and other relative positioning sensors, it is reasonably prevised that 

certain errors will inexorably accompany position calculations. These errors can induce 

substantial deviations from the exact real measurements; a small acceleration error can 

cause a large amplification resulting in misleading position assessments. The reason for 

this amplification is the accumulation of error from the process of double integrating 

measured acceleration values. Fortunately, most of the errors that ensue from 

accelerometer measurements despite the accumulation are still considered negligible. 

However, some errors must still be nullified in order to obtain viable data. Bias drift 

error generated by the accelerometer's acceleration readings is the most significant type 

of error [1-4, 8]. Another common error that affects accelerometers' readings is bias 

instability. The acceleration values change their bias or offset even at static position 

due to environmental changes such as temperature, external stress, and pressure on the 

system; this is usually referred to as the Thermal Bias Error [4]. To reduce the effects 

of bias drift, thermal bias and random noise in accelerometer readings, various 

techniques were studied. Kalman filtering techniques were imposed as a solution to 

reduce these effects. Since the orientation estimation produces a nonlinear system, 

Kalman filters are typically appropriate for these systems. Two generally investigated 

classes of Kalman filters are the extended and unscented Kalman filters. When 
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subjected to trigonometric functions, the unscented Kalman filter shows eminence in 

comparison to the extended Kalman filter. The superiority of the unscented Kalman 

filter comes from the simplicity of its algorithm. Hence, the viability of its 

implementation in a digital signal processor is adequate. The algorithm for an unscented 

Kalman filter is regarded simpler because it does not require the evaluation of the 

Jacobian matrix [16]. A newly proposed method of Kalman filtering is the Naive 

Kalman filtering. The Naive Kalman filter makes use of different distinct Kalman filters 

based on each of the three compartments within the angular velocity vector. The 

proposed use of Naive Kalman filters is a consequence of its ability to disentangle a 

complex problem by subdividing the angular velocity vector, dealing with each 

independent compartment separately [18]. Besides, some research utilizes the use of 

adaptive Kalman filtering, which is essentially an enhanced conventional Kalman filter. 

The improvement is based upon a processing technique that continuously updates the 

time changing variables [14]. To simplify, a Kalman filter is a statistical algorithm that 

uses two phases; a predictor and a corrector. The predictor as a concept foresees the 

values of acceleration that are yet to be read by the sensor. The corrector evaluates a 

value in relation to the predicted value and the actual value read by the accelerometer 

[4, 23]. Another proposed error reduction method is the usage of an error model along 

with the Kalman filter. This technique makes use of other sensor such as gyroscopes in 

order to reduce the bias drift [3]. Bias errors can also be compensated by a model made 

of a linear neural network model that calculates the coefficients in order to 

mathematically manipulate the values and efficiently reduce the error. However, a 

calibration criterion is needed beforehand with known inputs and outputs in order to 

'teach' the neural network system of the error behavior. When properly formulated, 

results show better representation of the acceleration and velocity profiles leading to 

lower bias errors [24]. 

Random noise is another factor that can impair acceleration values. This error 

occurs when the signal-to-noise ratio (SNR) of the accelerometer is low allowing for 

overlapping and mixing between the acceleration signal and the noise. However, even 

with high SNR accelerometers, some random noise blends with the signal. This type of 

error is usually qualified by using filters [1-3]. Wavelet Transform (WT) is a technique 

that helped make an accelerometer's output values more accurate by reducing the 

random noise effects. The characteristics of the wavelet transform allow it to break 

down the signal generated by an accelerometer. In comparison to the famous Fourier 
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Transform (FT), the WT is far more efficient than the FT in dealing with the transient 

response of acceleration coming from robotic arm, hand movement, or any mechanical 

dynamic system [2]. WT can allow for further filtering of the signal coming from an 

accelerometer with the use of a suitable mother signal and signal decomposition factors, 

hence, ending up with signals with less fluctuations and smoother in response. Another 

proposed method to limit random noise is the dynamic mean method. This method is a 

form of down sampling. Down sampling allows for a running average that can be taken 

every few samples in order to reduce the noise error coming from the accelerometer. 

This method takes care of any signal that fluctuates around a certain set value. The logic 

behind this mechanism is effective since the higher values are taken care of by 

averaging them with the lower values keeping a consistent and more reasonable set of 

data [8]. The problem with WT or FT is that a constant model of the noise is needed as 

an input to the system. However, noise profiles usually change based on many factors 

such as temperature, medium characteristics, or even the signals passing through. 

Consequently, the constant model tends to fail to depict the noise in an online manner. 

Adaptive filtering techniques can change that. The filter adapts to the surrounding, and 

deploys a noise model based on a real time noise identification system. A highly used 

adaptive filter is the Least Mean Square (LMS) and Block Least Mean Square (BLMS) 

adaptive filters. By comparing the input acceleration data with the noise from the 

surrounding, the adaptive filter calculates a set of coefficients that acts as a filter in 

order to remove the noise in an iterative manner until a certain accuracy is acquired [25, 

26]. Table 1.1 summarizes the different compensation methods and the corresponding 

reduced type of error. 

Table 1.1: Error Compensation Methods 

Error Type Compensation Methods 

Bias Drift Error Kalman Filter 

Complementary Filter 

Least Mean Square 

Random Noise Error Discrete Wavelet Transform 

Least Mean Square 

Dynamic Mean 

Orientation Error More Accelerometers 

Rotation using Euler Angles 
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Orientation error is an error that follows from the difference between the 

accelerometer axis and the body frame axis. This error usually arises from the 

misalignment of the accelerometer and the body frame on which it is mounted. The 

gravity force affects one of the axis. However, the problem occurs when the 

accelerometer is tilted and the gravity force is divided unequally to the other axis. When 

this occurs, it is usually hard to identify the location of the accelerometer accurately 

and algorithms needed to reduce the acceleration values of gravity force are necessary 

[27, 28]. Many methods were developed in an attempt to eradicate this type of error, 

nonetheless, most need the knowledge of either the exact value of the bias voltage of 

the accelerometer or the maximum and minimum acceleration values i.e. gravity for 

each axis [27]. Considering that noise is never nullified completely, it is nearly 

impossible to determine the absolute maximum and minimum acceleration values. In 

order to reduce this error, mathematical derivations and filtering techniques were 

developed. These methods are established to identify and reallocate the orientation of 

the accelerometer [27]. By using the angular acceleration, the accelerometer values can 

be adjusted. Another way of minimizing this error is the installation of many closely 

packed accelerometers on the same body frame. Nevertheless, the large number of 

sensors makes it a costly method, and one that relies on intricate computations [29]. 

Unlike calibration techniques which are usually performed in the waking up sequence 

of the accelerometer i.e. before it is even used, other procedures using Euler angles and 

rotational matrices were generated. This method takes every set of accelerometer data 

and orients it to a reference position set beforehand. Roll, Pitch and Yaw are calculated 

based on the acceleration values. Studies combine magnetometers and accelerometers 

in order to calculate Euler angles using six different methodologies. Those six 

methodologies are unique in terms of the values used to calculate the angles.  However, 

not all six methods produce accurate data, hence, depending on the rotation axis, a 

method is chosen over another. Those six methods depend on the accelerating axis, for 

example, if a high acceleration were to act on the x-axis the accelerometer values in 

both y-axis and z-axis along with magnetic force along y or z are used in order to 

calculate Roll, Pitch and Yaw [30]. An alternative method to calculating Roll and Pitch, 

is using trigonometric relations that use discrete values that are measured solely from 

the accelerometer [31].  Once these angles are accurately acquired, a rotation matrix is 

imposed on the acceleration values in order to realign them back to the reference set 

point. If rotation was to occur along the y-axis, the angles corresponding to this change 
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will be multiplied with the acceleration values in order to realign it. This also nullifies 

any tendency for tilt errors [31-33]. Once the reference point is fixed to set gravity in a 

certain axis, then after multiplying the acceleration values by the rotation matrix, the 

acceleration values will be corrected and the gravity component will only show in that 

certain fixed axis. 

1.5 Surface Profiling System 

In order to capture rich and accurate three dimensional information from the 

surface of the body being examined, a vision sensing technique is required. Many 

profiling systems were established in order to meet the requirements imposed by the 

industry. In order to detect information on a surface of a rigid body, the profiling 

systems required a tremendous amount of time to only capture a small area of the body 

[24-35].  

1.5.1 Laser vision sensor 

Laser vision sensor (LVS) is a surface profiling mechanism that excels at 

capturing such information due to its lack of noise sensitivity and high recognition 

sensitivity when compared to other profiling systems [34]. Overall, LVS profiling 

systems are inexpensive, and a camera that has a high frame rate can accomplish the 

job [35]. Moreover, laser beams have strong orientation and high energy density leading 

to a high SNR offering higher profiling precision [36]. Moreover, LVS systems have 

been used for profiling in many applications due to their dominance in information 

capturing. Weld deficiency detection has been the main focus of many industries such 

as oil and gas industries. LVS was implemented to test pipe deficiencies leading into a 

noncontact profiling technique [37-39]. Another step forward was to fully automate the 

procedure of welding and making a feedback loop by using the LVS system to detect 

the deficits allowing the welding to correct itself automatically [40-42]. In order to 

detect those deficiencies, a profiling system is required. Robotic welding underwater is 

another domain where LVS was implemented and returned high precision feedback 

[43-45]. LVS profiling system requires a charge-coupled device (CCD) camera in order 

to capture the projection of the laser beam on the body of the surface in order to 

implement the profiling mechanism [40]. By using both LVS and a camera, calibration 

techniques are needed in order to maintain a high alignment with the profiling 

mechanism. 
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LVS systems require high precision calibration techniques in order to maintain 

a high ratio of precision in the profiling process. A black box approach calibration 

technique was devised at previously allocated stand-off locations. This technique 

disregards the need to measure the camera’s intrinsic and extrinsic parameters [35]. The 

extrinsic parameters are the parameters of the focal lens of the camera in order to bring 

the image into the camera coordinate system whereas the intrinsic parameters are the 

internal parameters of the camera, both of which need calibration. Another technique 

was developed similarly to the black box approach but with the aid of using WT 

analysis in order to identify surface flaws [46]. The black box approach requires a huge 

amount of previously allocated information due to the stand-off distances. Also, this 

approach has not been tested for dimensional accuracy with previously prescribed 

inputs. Another method uses a calibration technique that captures both the camera and 

laser plane parameters in a single image [47, 48]. On a further note, simulations showed 

that both approaches; black box and simple approaches capabilities in measuring and 

evaluating calibration of the LVS [49]. Moreover, the camera resolution plays a major 

part in the laser peak detection. Any inaccuracy in the two dimensional image 

coordinates magnifies based on a scaling factor in the world coordinates [50, 51]. 

1.5.2 Microwave non-destructive testing 

Due to its strong potential in surface profiling, Microwave Non-Destructive 

Testing (NDT) has been the focus of various research topics. Microwaves, depending 

on the distance between the source and receiving source, can act differently. The region 

in which the NDT can be performed is the near field. The waves that are reflected back 

from any surface in the near field are rich waves and contain a huge amount of 

information about the surface properties. Though most researchers have discussed the 

possibility of using this topology in everyday use, direct implementation of the 

microwave technology is still young for commercial purposes. Most of the research 

done discusses the possibility of microwave imaging in detecting micro-cracks that fall 

within the equivalent wave-length range of the microwave [52]. 

The voltage and phase coming from the reflected wave need to be decoded using 

non-linear methodologies, such as neural networks, and can give information about the 

surface properties such as type of material, cracks and or rigidity. Since the system is 

non-linear, the system must be trained to understand the raw voltage data coming from 

the signal and transfer it into surface measurements based on many criteria such as 
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distance between source and surface, permittivity and permeability of the surface [53-

55].    
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Chapter 2: System Overview 

 

The portable surface profiling system consists of two main units: The position 

tracking unit, and the detection unit as shown in Figure 2.1. The position tracking unit 

is made of an IMU sensor that integrates a tri-axial accelerometer along with a tri-axial 

gyroscope. The detection unit, however, is made of any profiling system. The 

methodology introduced will target the algorithm needed to calculate the position of 

the detection unit by using the position tracking unit. 

 

Figure 2.1: System Block Diagram 
 

Knowing the location of the detection unit data in space removes the necessity 

for using large and bulky systems leading to reduction in cost. Two main detection units 

are investigated in this research; Laser Vision Sensor profiling system and Microwave 

NDT profiling system. The main criterion needed for portability is to establish a system 

that can travel in all axis and rotate freely around the sample profiled. To acquire this 

freedom in movement, coordinate system transformation must be accounted for. 

2.1 Coordinate System Transformation 

Transformation (𝐇) occurs between different coordinate systems as the system 

is travelling in space. This movement can be subdivided into two main types of 

transformation; Rotation (𝐑) (3×3) and Translation (𝐓) (3×1). 

 𝐇 = [
𝐑 𝐓
𝟎𝐓 1

] (2.1) 
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To keep the mathematical model homogeneous, a transposed vector of zeroes 

and a 1 is needed in order to keep the Transformation a homogenous matrix (4×4). 

2.1.1 Orientation adjustment theory 

General body motion is usually accompanied with changes in orientation. Any 

vector rotated along two or more axis introduces components. Figure 2.2 shows a very 

basic and simple orientation change along both y and z axes. 

 

Figure 2.2: Rotation along two axis 
 

If analyzed in three dimensions, the theta corresponding to this change can be 

expressed as one of the Euler angles of the body. Rotation has to be maintained before 

translation in order to ensure that the vector being translated is in the same coordinate 

system of interest. This is done using Euler angles which are obtained in all three axes. 

Figure 2.3 demonstrates the three Euler angles corresponding to their respective axis. 

 

Figure 2.3: Euler Angles 
 

Once those angles are known, a 3×3 rotation matrix is developed for each angle, 

thus allowing the axis to be rotated from the coordinate system they exhibit into a new 

coordinate system. 
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[
𝑥′
𝑦′

𝑧′

] = 𝐑(𝜃𝑥) [
𝑥
𝑦
𝑧
] (2.2) 

 
[
𝑥′

𝑦′

𝑧′

] = 𝐑(𝜃𝑦) [
𝑥
𝑦
𝑧
] (2.3) 

 
[
𝑥′

𝑦′

𝑧′

] = 𝐑(𝜃𝑧) [
𝑥
𝑦
𝑧
] (2.4) 

Each of those matrices corresponds to a compounding of components that can 

occur depending on the angle. Any change in the angle corresponding to the x-axis 

(Roll) causes the vector to have a change in its y and z components with the x component 

constant. However, any change in the angle corresponding to the y-axis (Pitch) causes 

a change in the x and z components of the vector with the y component constant. Along 

the same lines, any change to the angle corresponding to the z-axis (Yaw) causes a 

change in the x and y components of the vector and the z component constant. In detail, 

each rotation matrix is shown in Eq. (2.5-2.7). 

 

𝐑𝐱 = 𝐑(𝜃𝑥) = [

1 0 0
0 𝑐𝑜𝑠(𝜃𝑥) 𝑠𝑖𝑛(𝜃𝑥)
0 −𝑠𝑖𝑛(𝜃𝑥) 𝑐𝑜𝑠(𝜃𝑥)

] (2.5) 

 

𝐑𝐲 = 𝐑(𝜃𝑦) = [

𝑐𝑜𝑠(𝜃𝑦) 0 −𝑠𝑖𝑛(𝜃𝑦)

0 1 0
𝑠𝑖𝑛(𝜃𝑦) 0 𝑐𝑜𝑠(𝜃𝑦)

] (2.6) 

 
𝐑𝐳 = 𝐑(𝜃𝑧) = [

𝑐𝑜𝑠(𝜃𝑧) 𝑠𝑖𝑛(𝜃𝑧) 0
−𝑠𝑖𝑛(𝜃𝑧) 𝑐𝑜𝑠(𝜃𝑧) 0

0 0 1

] (2.7) 

Since matrix multiplication is not commutative, each sequence of multiplication 

of those matrices results in a new 3×3 rotation matrix. The selection of the sequence is 

restricted in the transformation needed and depends on the angle reference. Using the 

complement of the angle allows the rotation to take place in the opposite direction. 

Since the data is discrete and is subject to change as a function of time, each vector in 

the three axis is rotated in order to ensure that all the data is transformed into the 

coordinate system of interest. 

Two sequences are of interest, rotating from the coordinate system x y z to 

coordinate system x’ y’ z’ and vise-versa. Eq. (2.8) demonstrates the sequences needed 

respectively:  

 𝐑𝐱𝐲𝐳
𝐱′𝐲′𝐳′

(𝜃𝑥, 𝜃𝑦, 𝜃𝑧) = 𝐑(𝜃𝑥)𝐑(𝜃𝑦)𝐑(𝜃𝑧) (2.8) 
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 𝐑𝐱′𝐲′𝐳′
𝐱𝐲𝐳

(𝜃𝑥′, 𝜃𝑦′, 𝜃𝑧′) = 𝐑(−𝜃𝑧)𝐑(−𝜃𝑦)𝐑(−𝜃𝑥) (2.9) 

The matrix resulting in Eq. (2.9) is mathematically the inverse of the matrix in 

Eq. (2.8) since the determinant of the matrices is equal to 1. Once the rotation 

transformation is imposed, the data can then be translated to the point of interest. 

2.1.2 Translation theory 

Since the system is moving, along with rotation, translation takes place as 

shown in Figure 2.4. The airplane shown travels in one axis in a simple translation. 

 

Figure 2.4: Translation 
 

Therefore, another mathematical model is derived in order to compensate for 

the translation taking place. This is either the movement of the body or a known spacing 

between the body and another in terms of distance denoted as 𝑟. 

 
𝐓 = [

𝑟𝑥
𝑟𝑦
𝑟𝑧

] (2.10) 

Each component in 𝐓 stands for the change in position or transformation in the 

same coordinate system. 

 

Figure 2.5: Transformation including Translation and Rotation 
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2.2 Position Tracking Sensor Characteristics 

Accelerometers and gyroscopes, like any other sensors, have characteristics that 

determine the accuracy and viability of the data based on a certain application. In this 

application, low range due to the small position tracking needed along with high 

sensitivity with very low noise floor are required.  

2.2.1 Dynamic range 

Range in any sensor plays a very big role. The range of the data to be acquired 

for any set of electronics factor out the type of signals is required to be inputted to the 

sensor. If the range suits the application, the SNR of the device allows the signal to be 

acquired by the accelerometer and gyroscope. Otherwise, if the signal is too faint, the 

signal will be seen as noise. Relatively, if the signal is too high, the sensor output will 

be nonlinear and will eventually output high amplitude data with no meaning. For 

acquiring distance in centimeter range, a low range sensor is required in order to read 

the faint signal coming from the hand movement. An accelerometer range is defined by 

the multiples of gravity it can read. 

2.2.2 Sensitivity 

Accelerometers measure acceleration as a form of vibration in piezoelectric 

devices or as a measure of capacitance in capacitive devices which is later calibrated 

across voltage in the device. Therefore, the sensitivity of the device is a very important 

aspect to notice when selecting the accelerometer is needed. Sensitivity is a measure of 

the change in acceleration in terms of vibration or capacitance in ratio with the change 

of voltage corresponding to it. The higher the sensitivity of the device, the better the 

device is at monitoring small changes in acceleration. Moreover, to capture higher 

resolution data relative to small acceleration changes, a higher sensitivity accelerometer 

is required. Also, the sensitivity and SNR in the gyroscope is required to be extremely 

high, mainly due to the small changes in the angles per second in the measurement. 

2.3 Integration of the System 

The coordinate systems play the main role in orienting the data from the detector 

sensor to the reference point in the world frame coordinate system. The detection data 

is relative to the detection sensor body frame. The transformation technique discussed 

previously is required to bring this data from the detection coordinate system into the 

IMU sensor coordinate system. Once this is maintained, another transformation 
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technique is implemented to bring the IMU sensor coordinate system into the world 

coordinate system relative to the user. The overall transition between the coordinate 

system is summarized in Eq. (2.11). 

 

[

𝑥𝑑

𝑦𝑑

𝑧𝑑

1

] = Ф(𝐈|𝟎) 𝐇𝐬
𝐝 𝐇𝐰

𝐬 [

𝑥𝑤

𝑦𝑤

𝑧𝑤

1

] (2.11) 

Those transformations will be analyzed in depth. The 𝐇𝐰
𝐬  is a 4×4 matrix in Eq. 

(2.11) which represents the transformation needed on the data coming from the IMU 

sensor and the transformation needed to bring the data from the IMU sensor coordinate 

system into the world coordinate system representing the reference point. On the other 

hand, 𝐇𝐬
𝐝 represents a 4×4 matrix which is used to maintain the transformation needed 

to bring the IMU sensor coordination system to the detection coordinate system, 

depending on the geometry of the system and the spacing between both units. This 

transformation, unlike the first transformation, is a fixed transformation with time 

because the units are not changing orientation or distance in reference to each other. 

Another factor is the correction factor Ф which is a 3×3 matrix involving the 

characteristics of the detection sensor. It varies from one detection sensor to another. 

Chapter 3 will discuss the world to IMU sensor conversions which are time varying and 

chapter 4 will discuss the transformation from IMU sensor to detection sensor 

coordinate systems which are fixed along with the correction factors involved based on 

the system of detection being used. 

2.4 The Kalman Filter 

The Kalman Filter is an extremely strong tool that compares the calculated data 

across the measured data and outputs the optimal values based on the Kalman Gain. 

The Kalman Gain in turn changes accordingly based on what to trust from the predicted 

or measured data. The predicted data is the integration of the gyroscope angular rate 

whereas the measured data is the accelerometer angle calculations. As the gain changes, 

the Kalman Filter decides on what data to trust and output the results with the minimal 

data bias available. This is done by estimating the error and trying to reduce it from the 

system as a Gaussian white noise. This will allow the angular position estimation to 

take advantage of both the gyroscope and accelerometer measurements with less noise 

contribution [18, 56-68]. 
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The Kalman Filter is a mathematical model that allows the system to reduce the 

noise on the assumption that the noise is Gaussian. Given that k is the time step of the 

scan, the Kalman Filter’s main equations depend on 𝐰(𝑘) which is the noise in the 

process variable and 𝐯(𝑘) which is the noise in the measurement variable, both of which 

are white.  

 𝐱̂(𝑘) =  𝐀𝐱 (𝑘 − 1) +  𝐁 𝐮(𝑘) + 𝐰(𝑘) (2.12) 

 𝐳(𝑘) = 𝐇 𝐱̂(𝑘) + 𝐯(𝑘) (2.13) 

The Kalman Filter’s main focus is to reduce those noises and estimate the best 

fitting state of the system. The Kalman Filter operates based on two layers; the time 

update layer and the measurement update layer. The time update layer works as a 

predictor in which the calculations take place while the measurement update layer 

works as a corrector and a comparator that compares between the predicted value and 

the measurement value coming directly from the measurements. 

2.4.1 Time update layer 

The time update layer tries to estimate the state of the system based on the 

physical behavior of the system. The state 𝐱̂ is estimated based on the control variable 

𝐮 and the previous state value 𝐱 (𝑘 − 1) by using the system physical matrices 𝐀 and 

𝐁 for the system and control respectively. 

 𝐱̂(𝑘) =  𝐀𝐱 (𝑘 − 1) +  𝐁 𝐮(𝑘)  (2.14) 

Therefore, an initial value for the state 𝐱 (0) must be known beforehand to guide 

the process in later stages. Based on the known initial value and its certainty, the initial 

value for the error 𝐏(0) must also be set. This value depends highly on how accurate 

the initial value is. For example, if the initial value is not a good guess, then the error 

vector 𝐏(0) should be high and vise-versa. As a result, the new error vector is estimated 

based on how far the estimation is from the previous state. This depends highly on the 

expected value of the Gaussian noise w(k) and its expected value [13, 62]. 

 𝐄[𝐰(𝑘)𝐰𝐓(𝑘)] = (0, 𝐐) (2.15) 

 𝐏̂(𝑘) = 𝐀 𝐏(𝑘 − 1) 𝐀𝐓 + 𝐐 (2.16) 

Once the estimated state and error vectors are calculated for the new time step, 

the update layer takes control of the process. In turn, 𝐐 is the covariance in the process 

noise. 
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2.4.2 Measurement update layer 

Based on how good the estimation was in the previous layer, the update layer 

or correction part of the filter takes action into trying to compare and correct the 

estimations. This mainly rotates around the Kalman Gain which is a function of the 

error vector and the expected value of the noise in the measurement data 𝐯(𝑘). 

 𝐄[𝐯(𝑘)𝐯𝐓(𝑘)] = (0, 𝑅) (2.17) 

This in turn leads to the calculation of the Kalman Gain. 

 𝐊(𝑘) = 𝐏̂(𝑘) 𝐇 (𝐇 𝐏̂(𝑘) 𝐇−𝟏 + 𝑅) (2.18) 

The Kalman Gain in turn directs the system into choosing which values to trust. 

In other words, the system has to choose whether to trust the estimation or the 

measurement based on the noise available in both the process and measurement noise 

variables. Before referring to the Kalman Gain’s influence, the measurement comes 

from two places; either from the estimation values or another source of measurement. 

If there is no measurement source, the measurement values corresponding to 𝐳(𝑘) are 

calculated using the estimated state at the current time step. 

 𝐳(𝑘) = 𝐇 𝐱̂(𝑘) (2.19) 

The measurement values can come from two sources; either an external 

measurement taken by another technique or a computed measurement. This in turn 

proves to be more accurate because the filter deals with an external source to validate 

its estimations. 

 𝐳(𝑘) = 𝑒(𝑘) (2.20) 

Once the measurement update is calculated, the Kalman Gain acts as a guidance 

to the difference between the estimation and the measurement, and it superimposes it 

on the estimation. 

 𝐱(𝑘) = 𝐱̂(𝑘) +  𝐊(𝐳(𝑘) − 𝐇 𝐱̂(𝑘)) (2.21) 

Moreover, the Kalman Filter prepares itself to the next time step by calculating 

the new error vector which replaces the previous error vector. The new error vector 

depends on the old one along with the Kalman Gain. 

 𝐏(𝑘) = ( I − 𝐊 𝐇 ) 𝐏̂(𝑘) (2.22) 

Figure 2.6 shows the algorithm that the Kalman Filter uses for a better 

estimation of the system state. 
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Figure 2.6: Kalman Filtering Algorithm 
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Chapter 3: Position Tracking 

 

Position Tracking Unit is made up of the IMU sensor which is an integrated 

sensor made up of a tri-axial accelerometer along with a tri-axial gyroscope. The tri-

axial accelerometer inputs data as raw accelerations in all three axes, whereas the 

gyroscope measures the angular rate of the system. 

The position tracking algorithm consists of many subsections based on 

extraction of data from both sensors, allocating the orientation which pours into the 

rotation matrices associated with the algorithm to calculate the position and estimate 

the location of the sensor at any given time (k). Therefore, this chapter will tackle the 

algorithm associated in order to estimate: 

1. Orientation 

2. Gravity Calculation 

3. Gravity Removal 

4. Acceleration Rotation and Position Estimation 

The tracking algorithm can be summarized in the flow chart presented in Figure 

3.1. 

 

Figure 3.1: Position Tracking 
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3.1 IMU Sensor Input Data 

Given the fact that gravity acts as an acceleration that is fixed in magnitude but 

can subdivide into components, the accelerometer will measure it along with the 

movement acceleration of the system. Therefore, an algorithm is required to remove 

the gravity components in order to end up with the acceleration due to dynamic 

movement of the sensor. 

 𝐚𝐬 = 𝐚𝐬𝐦 + 𝐚𝐬𝐠 (3.1) 

 
𝛚𝐬 = [

𝜔𝑠𝑥

𝜔𝑠𝑦

𝜔𝑠𝑧

] 
(3.2) 

The vector 𝐚𝐬 corresponds to the total acceleration coming from the 

accelerometer in the IMU sensor coordinate system with subscript s. The vector 𝐚𝐬𝐦 

corresponds to the acceleration due to the body movement in the IMU sensor coordinate 

system. The vector 𝐚𝐬𝐠 refers to the acceleration due to the gravity components in the 

IMU sensor coordinate system. The vector 𝛚𝐬 corresponds to the total angular rate 

relative to the angular position change of the sensor in the IMU sensor coordinate 

system. 

 
𝐚𝐬𝐦 = [

𝑎𝑠𝑚𝑥

𝑎𝑠𝑚𝑦

𝑎𝑠𝑚𝑧

] (3.3) 

 
𝐚𝐬𝐠 = [

𝑎𝑠𝑔𝑥

𝑎𝑠𝑔𝑦

𝑎𝑠𝑔𝑧

] 
(3.4) 

To locate the position of the sensor, 𝐚𝐬𝐦 needs to be extracted in an algorithm 

that depends on sensor fusion between the accelerometer and gyroscope. Also, some 

filtering techniques will be discussed to enhance the algorithm proposed along with 

other mathematical derivations to reduce the noise associated with the measurements 

coming from both sensors due to their high bias drift. 

3.2 Orientation 

The orientation of the system can be measured using both the accelerometer and 

gyroscope data, and also by using a technique called sensor fusion to calculate a more 

accurate result. In this section, a simple measurement was done to demonstrate the 

different techniques and compare them versus each other. The measurement was taken 

as the IMU sensor was rotated 80 degrees around the y-axis, i.e. Pitch. 
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3.2.1 Accelerometer orientation algorithm 

Since gravity components exist in the acceleration with a resultant equal to 

Earth’s gravity which equals 9.81 m/s2, the system orientation can be calculated using 

the accelerometer acceleration values that correspond to the gravity components. The 

gravity components in turn determine the orientation of the system in space and 

therefore the corresponding angles at which the sensor is oriented with. However, these 

angles are only limited to the angles along the x and y axes (Roll and Pitch) whereas 

the angle along the z-axis (Yaw) can have infinitely many solutions keeping in mind 

that gravity components will not change based on the rotation along the z-axis. This is 

in line with the fact that gravity exists only in the z axis in the world coordinate system. 

 
𝐚𝐰𝐠 = [

0
0

−𝑔
] (3.5) 

The vector 𝐚𝐰𝐠 is a vector corresponding to the gravity acceleration in the world 

coordinate system. The rotation across any axis as a result is as shown in Eq. (3.6). 

 

𝐚𝐬𝐠 = 𝐑𝐰
𝐬 (𝜃𝑥, 𝜃𝑦, 𝜃𝑧)𝐚𝐰𝐠 = − 𝑔 [

−𝑠𝑖𝑛(𝜃𝑦)

𝑠𝑖𝑛(𝜃𝑥)𝑐𝑜𝑠(𝜃𝑦)

𝑐𝑜𝑠(𝜃𝑥)𝑐𝑜𝑠(𝜃𝑦)

] (3.6) 

Given that the accelerometer supplies the data as a linear combination between 

the movement acceleration and gravity acceleration, it is extremely hard to decompose 

the values of gravity components from the acceleration input. Luckily, since gravity 

exists, nevertheless, a digital low pass filter can decompose the signal into gravity and 

movement but more on that will be touched in later sections of this chapter. The 

following equations can derive the Roll and Pitch angles directly from the 

accelerometer readings using the nonlinear functions 𝑆𝑥 and 𝑆𝑦. The angles will be 

represented with a subscript 𝐚 in order to distinguish them from the angles to be 

calculated from the gyroscope. 

 𝜃𝑥𝑎 = 𝑆𝑥(𝑎𝑠𝑥, 𝑎𝑠𝑦, 𝑎𝑠𝑧) =  𝑡𝑎𝑛−1 (
𝑎𝑠𝑦

𝑎𝑠𝑧
) (3.7) 

 
𝜃𝑦𝑎 = 𝑆𝑦(𝑎𝑠𝑥, 𝑎𝑠𝑦, 𝑎𝑠𝑧) = 𝑡𝑎𝑛−1 (

𝑎𝑠𝑥

√𝑎𝑠𝑦
2 + 𝑎𝑠𝑧

2
)  

 

(3.8) 

Once Roll and Pitch are calcualted using Eq. (3.7-3.8), a digital low pass filter 

is introduced to the angles calculated in order to remove the noise and the movement 

acceleration. Figure 3.2 summarizes the algorithm required in order to calculate the 

orientation based on the accelerometer acceleration data. 
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Figure 3.2: Accelerometer Orientation Algorithm 
 

The accelerometer maintains a good accuracy in orientation calculation. 

However, the angles are extremely noisy on the short run. However, the longer the run 

of the accelerometer, the better the estimation fo the orientation calculation of the 

acceleroemter  [3, 16-18, 20, 59, 62, 65, 67, 69]. 

3.2.2 Gyroscope orientation algorithm 

The gyroscope as mentioned previously measures the revolution speed of the 

system in all three axes, therefore integrating the angular speed results in the angular 

position which is translated to the Euler angles across all three angles; Roll, Pitch and 

Yaw. 

 
𝜃 = ∫𝜔 𝑑𝑡 (3.9) 

This statement is correct if the system is rotating along one axis only. However 

if the system is rotating along different axes at the same instant, a rotation technique 

𝐃 is required in order to change the angular speed from the IMU sensor coordinate 

system into the world coordinate system. This rotation is summarized in Eq. (3.10) [13]. 

 
𝛚𝐬 = [

𝜔𝑤𝑥

0
0

] + 𝐑(𝜃𝑥) [
0

𝜔𝑤𝑦

0

] + 𝐑(𝜃𝑥)𝐑(𝜃𝑦) [
0
0

𝜔𝑤𝑧

] (3.10) 

As Eq. (3.10) suggests, the x-axis rotational speed is aligned with the world 

coordinate system, however for y-axis and z-axis, that does not hold and is subject to 

the rotations that are occurring in the other axis, such as y depends on rotation made in 

x and z depends on rotations made in x and y as well. The inverse of Eq. (3.10) is present 

in Eq. (3.11). 
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𝛚𝐰 = 𝐃(𝜃𝑥 , 𝜃𝑦)𝛚𝐬 =

[
 
 
 
 
1 𝑠𝑖𝑛(𝜃𝑥)𝑡𝑎𝑛(𝜃𝑦) 𝑐𝑜𝑠(𝜃𝑥)𝑡𝑎𝑛(𝜃𝑦)

0 𝑐𝑜𝑠(𝜃𝑥) −𝑠𝑖𝑛(𝜃𝑦)

0
𝑠𝑖𝑛(𝜃𝑥)

𝑐𝑜𝑠(𝜃𝑦)

𝑐𝑜𝑠(𝜃𝑥)

𝑐𝑜𝑠(𝜃𝑦) ]
 
 
 
 

[

𝜔𝑠𝑥

𝜔𝑠𝑦

𝜔𝑠𝑧

] (3.11) 

Once this is achieved, the rotational speeds are now ready to be integrated in 

order to calculate the world coordinate Euler angles in all three axes. Since the rotation 

matrix 𝐃(𝜃𝑥, 𝜃𝑦) is dependent on Roll and Pitch, the angles calculated from the 

previous iteration are substituted into the rotation in order to calculate the new angles. 

This method has some error due to using the previous angles. However, based on the 

high sampling frequency, the previous angles are most likely extremely close to the 

new angles being calculated. Once the angular speed in the world coordinate system is 

calculated, integrating the data is done using the First Order Forward Finite Difference 

Method as in Eq. (3.12). 

 𝜃(𝑘 + 1) = 𝜃(𝑘) + ∆𝑡 × 𝛚(𝑘) (3.12) 

 ∆𝑡 = 𝑇𝑠 = 1 𝑓𝑠
⁄  (3.13) 

Figure 3.3 summarizes the algorithm required to calculate the orientation based 

on the gyroscope data. Due to the integration associated with the algorithm, a huge bias 

drift error results as the system is running and angles calculated with the gyroscope 

alone are extremely inaccurate. Therefore, on the long run, a gyroscope alone fails to 

sustain reasonable measurements of the angles of orientation [70]. 

 

Figure 3.3: Gyroscope Orientation Algorithm 
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The subscript 𝑔 refers to the angles calculated from the gyroscope data. Given 

the problems available in both the gyroscope and accelerometer orientation 

calculations, sensor fusion has been viable with high success and accuracy. 

 

Figure 3.4: Gyroscope vs. Accelerometer Orientation in Pitch 
 

Figure 3.4 compares the Roll values coming from the accelerometer versus 

those from the gyroscope integration. As shown, the accelerometer data are less stable 

when compared to the gyroscope data. However, the accelerometer Roll is precise 

whereas the gyroscope data is drifting with time and deviating from the true values as 

shown at the end of the measurement. 

3.2.3 Sensor fusion: orientation accuracy 

Sensor Fusion can be achieved by introducing a type of filtering that can compare both 

sources of angles i.e. accelerometer and gyroscope calculated angles. Unfortunately, 

since Yaw cannot be calculated using the accelerometer data, the error in Yaw is 

reduced poorly when compared to both Roll and Pitch. Sensor fusion can be maintained 

in two main methodologies; Kalman and Complementary Filtering. 

3.2.3.1 Orientation Kalman Filter 

The state matrix simplifies, as shown in Eq. (3.14) to unity whereas the control 

state matrix is the time step of the system. The measured variable is the angular velocity 

coming from the orientation matrix 𝐃(𝜃𝑥, 𝜃𝑦) as per Eq. (3.15).  
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 𝐀 =  1 (3.14) 

 𝐁 =  ∆𝑡 (3.15) 

The estimated values 𝐱𝐤 correspond to the angles being calculated using the 

state equations. Since the Kalman Filter can input and output one axis, three Kalman 

Filters are imposed on the system in order to estimate and predict the changes in all 

three angles. However, the three filters have to be integrated together in order to allow 

for 𝐃(𝜃𝑥, 𝜃𝑦) to rotate the angular velocities from the IMU sensor coordinate system to 

the world coordinate system. The control variable 𝐮𝐤 corresponds to the angular 

velocities coming from gyroscope data after the rotation process. 

 𝑥̂𝑥(𝑘) =  𝑥𝑥(𝑘 − 1) + ∆𝑡 𝜔𝑤𝑥(𝑘) (3.16) 

 𝑥̂𝑦(𝑘) =  𝑥𝑦(𝑘 − 1) + ∆𝑡 𝜔𝑤𝑦(𝑘) (3.17) 

 𝑥̂𝑧(𝑘) =  𝑥𝑧(𝑘 − 1) + ∆𝑡 𝜔𝑤𝑧(𝑘) (3.18) 

The measured data is the angle as per the accelerometer data. However, for the 

Yaw calculations since the accelerometer data cannot be transformed into Yaw domain, 

the measured data is correspondent to the gyroscope Yaw calculations. The state matrix 

for the measured variable 𝐇 is equal to unity as well. 

 𝐇 =  1 (3.19) 

The measured variable, on the other hand, is the angles calculated from the 

accelerometer readings as shown in section 3.2.1.  

 𝑧𝑥(𝑘)  =  𝜃𝑎𝑥(𝑘) (3.20) 

 𝑧𝑦(𝑘)  =  𝜃𝑎𝑦(𝑘) (3.21) 

 𝑧𝑧(𝑘)  =  𝜃𝑔𝑧(𝑘) (3.22) 

To start the iterations across the filter, other parameters are needed to take care 

of the Gaussian noise assumed. Two noise parameters, which correspond to the process 

noise and measurement noise covariance, are involved. The measurement noise 

covariance corresponds to the signal coming from the accelerometer. 

 𝑅 = 𝜎𝑎
2 (3.23) 

Based on the standard deviation of the angular rate, the process noise 

distribution on the angle calculation Q is dependent upon the standard deviation of the 

angular rate, however since the angular position of the Euler angles is integral of 

angular rate. The following relationship is applied. 

 𝐐 = 𝜎𝜔
2∆𝑡 (3.24) 
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Figure 3.5 shows the algorithm used for the Kalman Filter by combining both 

the accelerometer and the gyroscope inputs. This flow chart is per step unit of time and 

the cycle repeats for newer inputs. 

 

Figure 3.5: Sensor Fusion: Kalman Filter 

 

 

Figure 3.6: Accelerometer & Gyroscope vs. Kalman 
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As Figure 3.6 shows, the Kalman Filter managed to take the best out of both 

readings. The Kalman output signal (in black) did not drift with time and is less noisy 

than that of the accelerometer Roll values. 

3.2.3.2 Orientation Complementary Filter 

The Complementary Filter is another filter that can be imposed on the 

orientation algorithm to allow for a less noise response and a more accurate output with 

the minimal drift bias error. Unlike the Kalman Filter, this filter is simpler both 

computationally and analytically, however, with less accurate results when compared 

to the Kalman Filter. Based on the fact that accelerometer’s data being accurate on the 

long run and the gyroscope data being accurate on the short run. The Complementary 

Filter allocates the weights according to the time that the system has been running for 

[69, 71, 72]. Figure 3.7 demonstrates the algorithm associated.  

 

Figure 3.7: CF Block Diagram 
 

However, the complementary filter cannot be imposed on the Yaw readings 

mainly due to a lack of another source other than the gyroscope. The Complementary 

Filter’s weight α is defined in Eq. (3.26). 

 𝐿 (𝑘) = 𝐿 (𝑘 − 1) + ∆𝑡 (3.25) 

 
𝛼 =  

𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒

𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒 + 𝐿 (𝑘)
 

(3.26) 
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The total output of the Complementary Filter is a combination between both 

angle calculations. 

 𝜃𝐶𝐹𝑥 =  𝛼 𝜃𝑔𝑥 + (1 − 𝛼)𝜃𝑎𝑥 (3.27) 

 𝜃𝐶𝐹𝑦 =  𝛼 𝜃𝑔𝑦 + (1 − 𝛼)𝜃𝑎𝑦 (3.28) 

Similar to the Kalman Filter, each filter can calculate only one angle at a time, 

therefore two Complementary Filters are imposed on the system in order to calculate 

Roll and Pitch. In the case for Yaw, since the accelerometer cannot supply a Yaw 

orientation due to the gravity components not being dependent on it, the gyroscope 

calculation is taken as the only measurement. Also, the Complementary Filter depends 

on iterations in time domain, however does not depend on the values of error from the 

previous step but rather combines the gyroscope and accelerometer data rather simply 

with reasonable estimations that are of extreme accuracy. The advantage that the 

Complementary Filter presents is the simplicity in the algorithm reducing the 

computational expense and lag of the system. Figure 3.8 shows how the weight shifts 

the accelerometer angle calculations and gyroscope angle calculations into the output. 

The weights being dependent on the time gives priority to the gyroscope data and 

reducing it to half by the end of the measurement. 

 

Figure 3.8: Dependency on Values from Gyroscope and Accelerometer CF 
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noisy signal from the gyroscope and a close to zero bias drifting capabilities of the 

accelerometer data to a more accurate and less noisy output as shown in Figure 3.9. 

 

 

Figure 3.9: CF vs. Accelerometer and Gyroscope 
 

3.2.3.3 Orientation filtering comparison 

When compared to the Kalman filter, the Complementary Filter depends only 

on the time elapsed on the sensor and changes the weights exponentially, whereas the 

Kalman filter chooses automatically the best fitting data. Therefore, for a very lengthy 

run of the sensor, the Kalman filter is a better approach than the complementary filter. 

Table 3.1: Comparison: Orientation Assisting Filtering Techniques 

 Complementary Filter Kalman Filter 

Error High in Yaw Low in Yaw 

Roll Very accurate Very accurate 

Pitch Very accurate Very accurate 

Yaw High Bias Bias exists but reduced noise 

Computational Cost Low due to Simplicity High 

 

Also, the Kalman filter estimates yaw more accurately than the complementary 

filter because it removes the assumed Gaussian noise whereas the complementary filter 
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has the gyroscope data as its only input. A comparison drawn between both methods is 

shown in Table 3.1 in terms of error, corresponding angles, and computational costs. 

3.2.4 Reference orientation calculations 

The reference point is the point that the sensor starts from (k = 0). Given that 

the sensor could be at any random orientation, this orientation needs to be corrected for 

in order to accurately transform the data from the sensor coordinate system into the 

world coordinate system. Though the reference point holds accelerations equal to zero, 

gravity components will still be present in different weighted coefficients in the three 

axis unlike in the world coordinate system where gravity is only present in one axis. 

Initially at the reference point, the accelerometer will record acceleration data 

purely due to the gravity components present due to the orientation of the sensor when 

the scan starts. 

 
𝐚𝐬(0) =  0 + 𝐚𝐬𝐠(0) = 0 + [

𝑔𝑥

𝑔𝑦

𝑔𝑧

] (3.29) 

Since the gyroscope measures the change of the orientation, it assumes that the 

starting point is always at zero and therefore shows only the deviation. However, the 

accelerometer can be used to calculate the orientation at the starting point due to the 

gravity components presence. One problem faced though, is that the Yaw cannot be 

calculated from the accelerometer. Another sensor is required in order to calculate the 

initial Yaw angle. The magnetometer is used to calculate Yaw in the literature by using 

the polarity of the sensor in reference to the Earth's North Pole. However, in the 

presence of any magnetic material such as motors or generators, the magnetometer fails 

tremendously. Also, another problem that the magnetometer imposes to the application 

intended in this research is the fact that the Earth's North Pole should be known prior 

to running the profiling sequence. In most cases, knowing the direction of the North 

Pole is not only inaccessible but is also meaningless. Therefore, the referencing point 

to the system in Yaw will be set to zero and the change in the orientation is calculated 

on forth. 

 
𝜃𝑥(0) = 𝑡𝑎𝑛−1 (

𝑎𝑠𝑦(0)

𝑎𝑠𝑧(0)
) (3.30) 

 
𝜃𝑦(0) = 𝑡𝑎𝑛−1 (

𝑎𝑠𝑦(0)

√𝑎𝑠𝑦(0)2 + 𝑎𝑠𝑧(0)2
) (3.31) 

 θz(0) = Based on the Starting Yaw Inputted by the User (3.32) 
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Once all the angles at the reference point are calculated, the orientation that the 

sensor started from is formulated and each new orientation that the sensor takes 

throughout the measurement can be corrected by the reference angles. 

3.3 Gravity Estimation 

The Euler angles at every point in time are known to the system which allows 

the system to extract the gravity components from the acceleration values coming from 

the accelerometer. Moreover, having the Euler angles at every time step locates the 

orientation of the sensor. This however requires a good estimate of the Euler angles 

along with a mechanism in order to reduce the noise present in the accelerometer's 

readings. Two main ways to estimate gravity present in the acceleration data come from 

the IMU sensor.  

3.3.1 Gravity estimation using rotation calculations 

Once the Euler angles are calculated from the gyroscope, the acceleration data 

is cleaned from the gravity components. To do so, the gravity components in the IMU 

sensor coordinate system needs to be estimated at every time step. Hence, the world 

gravity vector 𝐚𝐰𝐠 consisting of only one gravity component only present in the z-axis 

is rotated into the sensor coordinate system at every time step and subtracted from the 

accelerometer data as shown in Eq. (3.33). 

 𝐚𝐬𝐠 = 𝐑𝐰
𝐬 (𝜃𝑥, 𝜃𝑦, 𝜃𝑧)𝐚𝐰𝐠 (3.33) 

The result of this is 𝐚𝐬𝐠 representing a matrix that represents all the gravity 

components coming from the accelerometer in all axis. 

3.3.2 Gravity estimation using LPF 

Going back to Eq. (3.1), in order to extract 𝐚𝐬𝐠, a closer look is required on the 

Fourier of the signal coming from the accelerometer. 

 𝐀𝐬𝐠(𝑓) = 𝐻𝐿𝑃𝐹(𝑓) 𝐀𝐬(𝑓) (3.34) 

Since gravity exists in every coordinate system, the frequency that its magnitude 

appears at is at a very low value. Therefore, a LPF is required in order to extract the 

gravity components present in the sensor coordinate system as shown in Figure 3.10. 

In contrary, the movement of the sensor signal is present at higher frequencies and thus 

a HPF is required. 
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In the following spectrum analysis, Fourier Transform was calculated for the 

data coming from the accelerometer. The measurement was divided into three main 

stages. The data was sampled at a frequency of 100 Hz by using the mobile phone 

accelerometer sensor. The range of the mobile accelerometer is +/−  5𝑔  present in 

iPhone 5S. The average of the frequency response of all 10 trials was taken and plotted 

in Figure 3.11 and are summarized in Table 3.2. 

Table 3.2: Trial Based Validation 

 Gravity in X Gravity in Y Gravity in Z Random 

Trials 10 10 10 10 

Orientation Constant Constant Constant Variable 

Movement Automated Automated Automated Manual 

 

 

Figure 3.10: Frequency Spectrum for Gravity Components 
 

The test has shown that gravity is dominant at low frequencies whereas any 

motion acceleration that is introduced on the system exhibits higher frequencies which 

in turn attributes that gravity always exhibits low frequencies in the spectrum of the 

acceleration data. 

The gravity component showed dominance at 0 Hz are summarized in Table 

3.3. The sensor was moved in the x direction where Table. 3.3 shows that it had the 
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lowest peak value at low frequencies. This in turn allows the reduction of error bias that 

also exists at low frequencies.   

 

Figure 3.11: Positive Frequency Spectrum for Gravity Component 

in (top left) x-axis (top right) y-axis (bottom left) z-axis (bottom right) random 

 

Table 3.3: Peak Values for DC Components 

@ 𝒇 = 𝟎 𝑯𝒛  Peak Values (𝒎/𝒔𝟐)  

Gravity in x-axis |𝑎𝑠𝑥(𝑓)| 9.78 

|𝑎𝑠𝑦(𝑓)| 0.41 

|𝑎𝑠𝑧(𝑓)| 0.19 

Gravity in y-axis |𝑎𝑠𝑥(𝑓)| 0.22 

|𝑎𝑠𝑦(𝑓)| 9.75 

|𝑎𝑠𝑧(𝑓)| 0.16 

Gravity in z-axis |𝑎𝑠𝑥(𝑓)| 0.21 

|𝑎𝑠𝑦(𝑓)| 0.19 

|𝑎𝑠𝑧(𝑓)| 9.78 

Random |𝑎𝑠𝑥(𝑓)| 2.49 

|𝑎𝑠𝑦(𝑓)| 2.30 

|𝑎𝑠𝑧(𝑓)| 6.49 
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While the calculation method estimates gravity relatively accurately, it does not 

in turn account for bias drift. As a result, a combined mechanism is introduced to take 

the advantages of both methodologies. 

3.3.3 Combining both methods 

The previous methods that estimate the gravity components in the IMU sensor 

coordinate system are both combined to produce the best possible outcome in terms of 

better accuracy and less both bias and noise errors. Using an averaging method between 

the two produces the best fit data. 

 

Figure 3.12: Gravity Extraction: Signal vs. LPF 
 

Figure. 3.12 shows the output from using both methods to estimate the gravity 

components in the IMU sensor coordinate system. As shown, the results are extremely 

close with the LPF output being a little higher in amplitude. This is because some of 

the error is extracted, and as can be seen, most of the error accumulates as time is 

increasing mainly due to the motion that has occurred. 

3.4 Gravity Removal 

Once gravity components in the sensor coordinate system are estimated, they 

are removed from the original signal since the only acceleration needed to calculate the 

distance covered is resembled within the motion acceleration. The acceleration data 

coming from the accelerometer is a linear superposition as shown in Eq. (3.1). Thus, a 
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linear subtraction is needed to remove the gravity components. However, since the 

gravity components are a good estimate, what is left is the motion acceleration along 

with noise and bias drift. 

3.4.1 Motion acceleration using rotation calculations 

Neglecting the noise and bias drift data, the subtraction performed to remove 

the gravity components is as follows. 

 𝐚𝐬𝐦 = 𝐚𝐬 − 𝐚𝐬𝐠 (3.35) 

Once this is performed, what is left is a good estimate of the motion in all three 

axes in the IMU sensor coordinate system. In later sections, the coordinate system is 

rotated to estimate position relative to the use, i.e. the world coordinate system. 

3.4.2 Motion acceleration using HPF 

A complement methodology to the one used to extract gravity components from 

the original signal 𝐚𝐬 is by using a HPF. A HPF can extract the motion acceleration 

from the input data coming from the accelerometer at high frequencies as shown in 

Figure 3.13. Similar to the extraction of the gravity components, the motion 

acceleration exhibits the IMU sensor coordinate system.  

 𝐀𝐬𝐦(𝑓) = 𝐻𝐻𝑃𝐹(𝑓) 𝐀𝐬(𝑓) (3.36) 

 

Figure 3.13: Frequency Spectrum for motion acceleration 
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made by a hand or a motor movement. Since acceleration of the proposed system can 

never achieve values higher than that of gravity. 

 
Figure 3.14: Positive Frequency Spectrum for Gravity Component 

in (top left) x-axis (top right) y-axis (bottom left) z-axis (bottom right) random after 

motion calculations and removal of gravity 
 

Table 3.4: Peak Values for DC Components 

@ 𝒇 = 𝟎 𝑯𝒛  Peak Values (𝒎/𝒔𝟐)  

Gravity in x-axis |𝑎𝑠𝑥(𝑓)| 1.73 e -18 

|𝑎𝑠𝑦(𝑓)| 1.58 e -17 

|𝑎𝑠𝑧(𝑓)| 3.75 e -17 

Gravity in y-axis |𝑎𝑠𝑥(𝑓)| 3.78 e -20 

|𝑎𝑠𝑦(𝑓)| 2.33 e -20 

|𝑎𝑠𝑧(𝑓)| 5.63 e -16 

Gravity in z-axis |𝑎𝑠𝑥(𝑓)| 5.23 e -17 

|𝑎𝑠𝑦(𝑓)| 1.21 e -17 

|𝑎𝑠𝑧(𝑓)| 1.66 e -18 

Random |𝑎𝑠𝑥(𝑓)| 2.14 e -17 

|𝑎𝑠𝑦(𝑓)| 1.02 e -16 

|𝑎𝑠𝑧(𝑓)| 7.69 e -17 
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The same test was applied to the accelerometer’s readings, but with a hand 

movement on it. After calculating the rotation and removal of the gravity components, 

the magnitudes of the DC values are recorded in Table 3.4 and shown in Figure 3.14. 

As shown, the DC values were removed completely from the signal and the small 

magnitudes that are at higher frequencies which were negligible due to high magnitudes 

from gravity in the frequency domain are now visible and contain he motion of the 

sensor. 

3.4.3 Combining both methods 

The dominating high magnitudes coming from the gravity components are 

removed from the signal as shown in Figure 3.15. Estimating the motion acceleration 

by using a HPF reduces the noise in the signal but also allows for reduced magnitudes 

and loss of some of the signal whereas the calculation method gives out a more accurate 

signal, with high bias error. Therefore, combining both results in a better output in both 

accuracy and noise ratios. 

 

 

Figure 3.15: Motion Extraction: Calculated vs. HPF x-axis 
 

3.5 Velocity and Position Estimation 

Since the gravity is removed, the acceleration values represented in 𝐚𝐬𝐦 are then 

transformed into the world coordinate system in order to calculate the displacement 

0 5 10 15 20

-8

-6

-4

-2

0

2

4

6

8

10

Time (s)

A
cc

el
er

at
io

n
 (

m
/s

2
)

 

 

a
xs

a
xsBPF



52 

over the time that the sensor has travelled. This is performed by using the inverse of the 

rotation matrix used to calculate the gravity components as shown in Eq. (3.37). 

 𝐚𝐰𝐦 = 𝐑𝐬
𝐰(𝜃𝑥 , 𝜃𝑦 , 𝜃𝑧)𝐚𝐬𝐦 (3.37) 

The acceleration of the movement is rotated into the world coordinate system. 

The acceleration data represented in 𝐚𝐰𝐦 which is a matrix consisting of 3 rows 

corresponds to the axis accelerations and columns equal to the time steps of the scan. 

The acceleration values in the world frame coordinate system go into displacement 

calculations similarly to how the angles were calculated, however with the use of 

double integration in this case since the displacement is the second derivative of 

acceleration. 

 
𝑟 = ∫∫𝑎 𝑑𝑡2 (3.38) 

Likewise, the integration used in order to calculate the displacement is a finite 

difference time domain. 

 𝐯(𝑘) = 𝐯(𝑘 − 1) + ∆𝑡 × 𝐚(k) (3.39) 

 𝐫(𝑘) = 𝐫(𝑘 − 1) + ∆𝑡 × 𝐯(k) (3.40) 

 ∆𝑡 = 𝑇𝑠 = 1 𝑓𝑠
⁄  (3.41) 

Since the reference point is the point the sensor started from, the initial 

displacement in all three axes is equal to zero and thus the displacement is a function 

of the acceleration made in all three axes in the world coordinate frame system. 

 𝐯(0) = 0 (3.42) 

 𝐫(k) = 0 (3.43) 

3.5.1 Position Kalman Filter 

The state matrix simplifies as shown in Eq. (3.44) whereas the control state 

matrix is equal to zero. The measured variable is the motion acceleration in the world 

coordinate system.  

 
𝐀 =  [

1 ∆𝑡 ∆𝑡2

0 1 ∆𝑡
0 0 1

] (3.44) 

The estimated values 𝐱𝐤 correspond to the state being calculated using the state 

equations. Since the Kalman Filter can input and output one axis, three Kalman Filters 

are imposed on the system in order to estimate and predict the changes in all three 

position. 
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𝐱𝐤 = [

𝑟(𝑘)
𝑣(𝑘)
𝑎𝑤(𝑘)

] 

(3.45) 

The control variable 𝐮𝐤 is zero in this system. 

 𝑥̂𝑥(𝑘) =  𝐀𝑥𝑥(𝑘 − 1) (3.46) 

 𝑥̂𝑦(𝑘) =  𝐀𝑥𝑦(𝑘 − 1) (3.47) 

 𝑥̂𝑧(𝑘) =  𝐀𝑥𝑧(𝑘 − 1) (3.48) 

The measured data is the estimated acceleration  

 𝐇 = [0 0 1] (3.49) 

The measured variable, on the other hand, is the acceleration coming from the 

accelerometer in the world coordinate system.  

 𝑧𝑥(𝑘)  =  𝑎𝑤𝑥(𝑘) (3.50) 

 𝑧𝑦(𝑘)  =  𝑎𝑤𝑦(𝑘) (3.51) 

 𝑧𝑧(𝑘)  =  𝑎𝑤𝑧(𝑘) (3.52) 

To start the iterations across the filter, other parameters are needed to take care 

of the Gaussian noise assumed. Two noise parameters which correspond to the process 

noise and measurement noise covariance are involved. The measurement noise 

covariance corresponds to the signal coming from the accelerometer. 

 R = 𝜎𝑎
2 (3.53) 

Based on the standard deviation of the acceleration, the process noise 

distribution on the state calculation Q is dependent on the standard deviation of position 

which in turn is dependent on the acceleration standard deviation. The following 

relationship is applied. 

 

𝐐 = 𝜎𝑎
2
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(3.54) 

3.6 Position Tracking Overall Algorithm 

Figure 3.16 summarizes the whole algorithm in the block diagram it presents 

starting from the input data coming from both the accelerometer and the gyroscope 

ending up with position estimation of the sensor. 
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Figure 3.16: Position Tracking System Block Diagram 
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Chapter 4: Detection Unit Sensor 

 

Microwaves are electromagnetic waves that are restricted by a bandwidth in the 

frequency spectrum. Microwaves like any waves are subject to both space and time 

domains. Also, the interaction between two mediums leave its print on the waves 

propagating. After analyzing mediums and their effects on microwaves, it has come to 

light that due to medium interactions with the wave, certain mediums can be 

characterized thoroughly. In this research, surfaces with conductive characteristics are 

chosen solely due to the fact that they act as short circuits to the microwave trying to 

propagate in them. This eases the assumption of simple or not simple media and 

simplifies the matter drastically. The mathematical model of this profiling technique 

depends on the location of the detection unit. Due to reasons that will be covered later, 

the microwave detection unit needs not only to be in the near field but also exactly 

perpendicular to the surface of profile. This simplifies the mathematical model 

associated to a unity matrix since the calibration is done independently from the system 

mechanism, however a transformation from the 4D to 3D is required since the detection 

unit must be perpendicular to the area of interest which is available as it is from the 

(𝐈|𝟎). 

 
Ф = [

1 0 0
0 1 0
0 0 1

] (4.15) 

4.1 Theory 

Microwaves can be used in certain circuits which allow them to propagate with 

minimum power loss, i.e. waveguides and co-axials. In this research, the circuit that the 

microwave is propagating in will act as an antenna in the near field to ensure the 

minimal loss when the signal is reflected due to the conductive surface. Each medium 

can be characterized by its intrinsic impedance; a value assigned based on the electric 

and magnetic characteristics of the material. The reflection coefficient is a measurement 

of how much of the magnitude of the signal has been reflected back. The reflection 

coefficient depends completely on the characteristics of the two media and in turn their 

intrinsic impedances η. 

 Г =  
𝜂2 − 𝜂1

𝜂2 + 𝜂1
 (4.16) 
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In the case of a conductor, the intrinsic impedance of the conductor is equal to 

zero, i.e. referred to as short circuit and therefore Г = −1. When the reflected signal is 

very close in magnitude to the transmitted signal, a DC offset will emerge as the 

superposition between both signals. Microwaves are known to have extremely high 

frequencies i.e. gigahertz and the result is a DC value. As illogical as it may seem, the 

reflected wave coming back meets the transmitted wave and therefore a constructive or 

destructive phenomena occurs. Given the fact that the conductive surface reflects all 

the signal back in theory, the reflected signal meets the transmitted signal and a 

phenomena called the Standing Wave emerges. The ratio of reflection depends on many 

factors but those of interest are the distance to the surface, angle at which the profiling 

occurs, and the shape of the surface. 

4.2 Technique 

The proposed circuit for microwave profiling mechanism is summarized in 

Figure 4.1 where the microwave signal is generated by the Gunn-Diode passing through 

a circulator to maintain the direction of propagation in the circuit which does not allow 

the reflected signal to go to the source. The signal later passes through the Transmission 

Line (TL) being a waveguide or a co-axial into the surface. 

 

Figure 4.1: Microwave NDT Block Diagram 
 

Depending on the surface that the signal first hits being a conductor or not, some 

or most of the signal might be reflected back due to the change in characteristics 

between free space (waveguide or co-axial) and the other media being a conductor or 
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any surface. The advantage present with having a conductor is that close to all the signal 

is reflected back into the Waveguide/Co-axial. Once the signal enters the circuit again 

this time as an input, it goes back through the circulator which guides it into the diode 

detector. The diode detector acts as a demodulator or LPF which extracts low 

frequencies and then feeds them into the DSP section. 

4.3 Characteristics of the Technique 

The sensor must be perpendicular to the surface profiled or else the reflected 

signal will not be measured. Therefore, an oblique angle is not recommended at the 

interface for the signal will not be captured by the Waveguide/Co-axial. Another main 

configuration required is the distance to the surface; for the sensor must be in the near 

field. The near field of the detection unit is calculated based on the frequency used 

which is in turn relative to the wavelength of the antenna i.e. Waveguide/Co-axial. 

 
𝑑 <  

2 𝐷2

𝜆
 (4.17) 

Where 𝐷 is the largest dimension of the antenna and 𝜆 is the wavelength of the 

antenna corresponding to the frequency of operation. Therefore, d must be less in order 

for the antenna to operate in the near field. Another criterion required is the 

transformation between the Microwave detection unit and the IMU sensor unit 𝐇𝐬
𝐝. The 

whole algorithm is summarized in Eq. (4.18). 

 

[
𝑥𝑢

𝑦𝑢

1
] = Ф(𝐈|𝟎)𝐇𝐬

𝐝 [

𝑥𝑠

𝑦𝑠

0
1

] (4.18) 

Where the transformation matrix also depends on rotation and translation. 

 
𝐇𝐬

𝐝 =  𝐇𝐬
𝐦 = [

𝐑𝐬
𝐦 𝐓𝐬

𝐦

𝟎𝐓 1
] (4.19) 

This matrix will vary significantly if the detection is based on a Waveguide 

detection methodology or a Co-axial detection methodology. That is mainly due to the 

physical differences between the two detection methodologies. 

4.4 Detection Data and Analysis 

The data detection was done using a K-band waveguide which was 

automatically moved across a metal bar with three smooth horizontal cracks. The data 

was taken in one axis across the bar vertically. As shown in Figure 4.2, the data can 
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locate the crack or change of surface heights and the difference is quite visible. When 

the crack is first noticed by the waveguide, an overshoot in the magnitude of the voltage 

difference between the transmitted and reflected waves. This is due to the sudden 

change in depth that the wave is seeing at the beginning of the crack. As the waveguide 

moves along the crack, this high magnitude then reduces to a lower magnitude 

indicating that the waveguide is sensing the bottom of the crack. This in turn will induce 

close to full reflection and a DC output. However, this DC magnitude is still larger than 

the values appearing when the crack is not visible. This is due to the depth of the crack 

being farther away from the waveguide when compared to the metal surface with no 

crack. 

 

Figure 4.2: Microwave NDT Signal Output for Crack Detection 
 

Microwave NDT was tested for crack detection in this experiment, however, as 

the plot shows, it is capable of showing a change in surface height along with width and 

also ultimately change of surface material along the scan. This can also be used in the 

process of profiling.  
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Chapter 5: Application of Position Tracking 

 

Using the mathematical models presented in chapter 3, the sensor predicts the 

initial orientation angles present in the system and rotates the measured accelerations 

accordingly into the world coordinate system to extract the position measurements. In 

this chapter, the IMU sensor was operated on the basis of three main approaches 

summarized in Table 5.1. Each approach is divided into different initial orientations to 

ensure consistency in the results. The three approaches are done by moving the IMU 

sensor by using a scanner motor, and using a servo setup. 

Table 5.1: Experimental Program 

Setup Approach Motion Objective 

Scanner Motorized Motorized Translation 

Angular Position Manual Rotation and Translation  

 

The IMU sensor used for the testing is the ADIS16362BMLZ with sampling 

frequency equal to 819 Hz. Another feature is its low range allowing the slow 

movement coming from the scanning methodology to be captured. 

5.1 Scanner Motorized Movement 

To test the translation capabilities of the algorithm, a motorized methodology is 

required to be carried. The motorized motion is needed to compare the overall 

displacement of the sensor to the overall displacement of the setup in all three axes. 

5.1.1 Equipment and program 

The scanner is made up of three identical motors - National Instruments Model 

AKM21C-ANBNC-00 - and three controllers to control it – National Instruments 

Model UMI-7774. The scanner is programmed using LabVIEW allowing the three 

motors to operate in all three axes independently of each other. Program specifications 

are altered allowing the controllers to guide the scanner in a specific motion pattern. 

The coordinate system of the scanner is aligned with the world coordinate system but 

mismatched with the polarity in both x and z axes. 

 
(

𝑥𝑠𝑐

𝑦𝑠𝑐

𝑧𝑠𝑐

) = (

−𝑥𝑤

𝑦𝑤

−𝑧𝑤

) (5.1) 
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5.1.2 Scanning motion pattern 

The overall pathway for the scan is a 2 × 6 × 4 cm grid, with 2 cm indexes in 

all axes. The motion starts with consecutive increments in the x-axis followed by 

increments in the y-axis. Once the overall distance covered in the y-axis is 6 cm, the 

scanner goes back to the starting point and increments in the z-axis to repeat the process. 

Upon covering an overall distance of 4 cm in the z-axis, the scanning ends as shown in 

Figure 5.1. 

 

Figure 5.1: Expected Scanning Pattern 
 

A top view of the motion pattern, as shown in Figure 5.2, offers an insight into 

the pattern in the x-y plane. Illustration is expected to show an identical overlap with 

regards to the z-axis, demonstrating that motion in both x-y planes is identical. The 

scanning pattern has 8 increments in the x-axis with half being positive and the other 

half being negative. Similarly, it had 8 increments in the y-axis, yet 2 only were negative 

with triple the increment size and 6 were standard 2 cm increments. Finally, 2 

increments in the negative z-axis were included in the scan. 
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Figure 5.2: Ideal x-y Plane Scanning Pattern 
 

It is important to note that there is no orientation change while the scanning is 

performed, i.e. the gyroscope readings will be close to zero. This, however does not 

mean that the initial rotational angles are also zeroes but depend on the orientation of 

the IMU sensor in space in reference to the gravity with the axes of the sensor. Table 

5.2 summarizes the measurements taken. 

Table 5.2: Experimental Program for Scanner 

 Trials 

Gravity in x-axis 10 

Gravity in y-axis 10 

Gravity in z-axis 10 

Anonymous Orientation 10 

 

The reason behind this setup is to test the accuracy of translation in all three 

axes. The scanner motors are maintained at 2000 rpm each and the initial position for 

all scans is identical to maintain consistency in the measurements. The overall error of 

the results is calculated based on the final destination that the sensor reaches in 

reference to the expected final destination of the scan. 
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5.1.2.1 Scanning with sensor mounted with gravity in x-axis 

Position tracking is tested by orienting the IMU sensor such that gravity is solely 

present in the x-axis of the sensor. The sensor orientation can be seen in Figure 5.3. 

 

Figure 5.3: Initial Orientation of gravity in x-axis 
 

In theory, gravity only exists in the z-axis of the world coordinate system, 

therefore, its existence in any other axis in regards to the sensor coordinate system 

entails the need for rotation. Despite the axes alignment in both coordinate systems, the 

axes direction is mismatched. 

 
(

𝑥𝑠

𝑦𝑠

𝑧𝑠

) = (

𝑧𝑠𝑐

−𝑥𝑠𝑐

−𝑦𝑠𝑐

) = (

−𝑧𝑤

𝑥𝑤

−𝑦𝑤

) (5.2) 

In turn, this induces a shift in the Euler angles of the system, which needs to be 

determined in order to achieve the rotation needed to match the axes. For the above 

setup, the Euler angles are calculated to be: 

 

(

𝜃𝑥

𝜃𝑦

𝜃𝑧

) = (
0

−90
−90

) (5.3) 

Upon commencing the scanning process, the IMU sensor captures the 

acceleration of the scanner motors in all three axes. In Figure 5.4, the captured 

acceleration data from the IMU sensor are presented. As expected, the sensor x-axis 

captured most of the gravity components with some existing in the other axes due to 

physical misalignment. This however is corrected for by the system using the acquired 

magnitudes of the acceleration using the equations governing the angle calculations. 
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Figure 5.4: IMU raw data for gravity in x-axis scan 
 

After correcting for the mismatch using rotation, the gravity components are 

cleaned and the acceleration is rotated to the world coordinate system shown in Figure 

5.5. The acceleration magnitudes present in the y-axis, x-axis, and z-axis in Figure 5.4 

are now residing in the x-axis, z-axis, and x-axis respectively in Figure 5.5. This is 

followed by removal of gravity components. 

 

Figure 5.5: Rotated Accelerations for gravity x-axis scan 
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In an identical approach, all different trials are corrected and integrated to 

acquire position measurements. The average of all trials as a function of distance is 

shown in Figure 5.6. 

 

Figure 5.6: x-axis scans Position Output Average  
 

 

Figure 5.7: x-axis Position Average x-y Plane 
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The attained distance pattern in 3D in Figure 5.6 and the x-y plane in Figure 5.7 

is similar to the expected pattern. Increments in all axes were fully captured by the 

system with uncertainty in the millimeter range. The overall displacement of the 

scanning pattern was recovered from the sensor data. The position measurements 

demonstrated precise locations of the sensor in the scanning process, i.e. not only at the 

starting and ending points of the scan. This methodology is capable of extracting 

position calculations with extremely low drifts providing an accurate representation of 

the displacement pattern of the sensor with overall errors calculated in the millimeter 

range as provided in Table 5.3.  

Table 5.3: x-axis Error calculations for measurements 

 x (mm) y (mm) z (mm) 

Theoretical 0 0 -40 

Measured Accuracy 2.56 1.50 -40.33 

Precision 4.13 5.30 1.47 

Overall Distance 160 240 40 

Absolute Error 1.60 % 0.63 % 0.83 % 

 

The accuracy of the position data is quantified in terms of the overall error 

average of all the runs along with the standard deviation present. It is noticeable that 

the error involved in the system is very small compared to the overall displacement. 

The absolute error is the difference between the measured and the accurate in ratio with 

the full displacement. 

Table 5.4: x-axis Error calculations for each increment in every axis 

 x (mm) y (mm) z (mm) 

Direction Positive Negative Positive Negative Negative 

Theoretical 20 -20 20 -60 -20 

Meas. Accuracy 20.07 -20.71 19.46 -57.62 -20.17 

Precision 1.40 1.44 1.36 3.90 1.34 

 

Table 5.4 summarizes the average measurements average accuracy and 

precision in all 10 runs for their increments in the positive and negative directions.  
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5.1.2.2 Scanning with sensor mounted with gravity in y-axis 

The same type of measurement is also taken however with the IMU sensor’s y-

axis parallel to the gravitational force. The sensor orientation can be seen in Figure 5.8. 

 

Figure 5.8: Initial Orientation of gravity in y-axis 
 

Likewise, gravity can only exist in the z-axis and therefore rotation needs to take 

place in order for the position estimation to be accurate in reference to the user. Similar 

to the previous set of measurements, the axes of the sensor are aligned with the axes of 

the scanner and in turn aligned with the world coordinate system howver with a 

mismatach. The sensor coordinate system are thererfore: 

 
(

𝑥𝑠

𝑦𝑠

𝑧𝑠

) = (

−𝑥𝑠𝑐

𝑧𝑠𝑐

−𝑦𝑠𝑐

) = (

𝑥𝑤

−𝑧𝑤

𝑦𝑤

) (5.4) 

Likewise, this induces a a shift in the Euler angle system in reference to the 

world coordiante system. Though the angles do not change as a function fo time nor 

space, the initial angles are not equal to zero either due to the mismatch. 

 

(

𝜃𝑥

𝜃𝑦

𝜃𝑧

) = (
−90
0
0

) (5.5) 

The acceleration data collected from the IMU sensor as predicted were mostly 

captured in the y-axis. Since the y-axis of the IMU sensor is directed in the same 

direction as gravity, the polarity of the gravity acceleration is positive as shown in 

Figure. 5.9. 
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Figure 5.9: IMU Raw Data for gravity in the y-axis 
 

After rotation, the acceleration magnitudes were converted to the world 

coordiante system with no mismatch between axes. In comparison to Figure 5.9, Figure 

5.10 shows that the accelerations in the x-axis, y-axis, and z-axis in the sensor 

coordiante system are now residing in the x-axis, z-axis, and y-axis respectively in the 

world coordiante system. Also, gravity was removed from the z-axis. 

 

Figure 5.10: Rotated Accelerations for gravity in the y-axis scans 
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Similarly to the previous measurements, after the accelerations are rotated and 

cleaned from gravity, the data is integrated to calcualte position. More runs were taken 

for the same measurement system. The average of all runs as functions of position are 

shown in Figure 5.11 in all three axes. 

 

Figure 5.11: y-axis scans Position Output Average 
 

 

Figure 5.12: y-axis Position Average x-y Plane 
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The position pattern was fully captured as shown in Figure 5.11 for the 3D 

pattern and Figure 5.12 for the 2D x-y plane pattern. The overall displacement was also 

visible by the readings and the algorithm recovered the position precisely. All 

increments in the x, y and z-axis were all captured. 

Table 5.5: y-axis Error calculations for measurements 

 x (mm) y (mm) z (mm) 

Theoretical 0 0 -40 

Measured Accuracy 0.27 5.09 -40.81 

Precision 3.97 5.64 1.40 

Overall Distance 160 240 40 

Absolute Error 0.17 % 2.01  % 2.03 % 

 

The bias drift was extremely low in comparison to the overall displacement 

summarized in Table 5.5 in the absolute error calculations. Considering the overall 

pattern of the sensor, the overall errors are considerably small leading to inaccuracy in 

the range of a few millimeters in the y-axis and less than 1 millimeter in the x and z 

axes. These results show that the system is capable of recovering the location of the 

sensor all around the path and recover the pathway with minimal errors in reference to 

Table 5.5. 

Table 5.6: y-axis Error calculations for each increment in every axis 

 x (mm) y (mm) z (mm) 

Direction Positive Negative Positive Negative Negative 

Theoretical 20 -20 20 -60 -20 

Meas. Accuracy 20.04 -20.06 19.76 -56.89 -19.59 

Precision 1.77 1.90 1.77 3.58 1.23 

 

Table 5.6 summarizes the increment measured values for positive and negative 

increments in every axis. All increments in the 10 runs were averaged based on their 

axis and direction. 
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5.1.2.3 Scanning with sensor mounted with gravity in z-axis 

The most orthodox methodology to the scan is to place the sensor not only in an 

alignment with the world coordinate system but also to match the axes as shown in 

Figure 5.13. 

 

Figure 5.13: Initial Orientation of gravity in z-axis 
 

In this setup, gravity will appear in the z-axis of the sensor which also matches 

the world coordinate system assumption. The sensor coordinate system in reference to 

the scanner coordinate system and world coordinate system is thus as follows: 

 
(

𝑥𝑠

𝑦𝑠

𝑧𝑠

) = (

−𝑥𝑠𝑐

𝑦𝑠𝑐

−𝑧𝑠𝑐

) = (

𝑥𝑤

𝑦𝑤

𝑧𝑤

) (5.6) 

The fact that all three axes are matched suggests in theory that no rotation is 

needed and all Euler angles are zeros. In this setup, though no change in orientation is 

occurring but also the initial angles of the system are also zero. This suggests that the 

data the sensor captures are in the matched axis. 

 

(

𝜃𝑥

𝜃𝑦

𝜃𝑧

) = (
0
0
0
) (5.7) 

All rotation matrices are identity matrices and no rotation is induced on the 

system. The data collected from the sensor in one run of measurements is shown in 

Figure 5.14. 
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Figure 5.14: IMU Raw Data for gravity in the z-axis 
 

Gravity is only residing in the z-axis of the sensor raw data in Figure 5.14, thus 

the world coordinate system accelerations are supposed to have an identical 

measurement. Gravity is then removed from the system’s z-axis and the result is shown 

in Figure 5.15. All axes maintained their magnitudes and the pattern of the increments 

is identical in all axes in both Figures 5.14 and 5.15. 

 

Figure 5.15: Rotated Accelerations for gravity in the z-axis scans 
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Integrations is imposed, and position radings are outputted. Figure 5.16 shows 

the position pattern of the sensor over the average of all 10 runs. 

 

Figure 5.16: z-axis scans Position Output Average 
 

 

Figure 5.17: z-axis Position Average x-y Plane 
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psotion calcualtions. As shown, the pathway of the sensor in space was recovered 

completely. The increments in all axes were captured and outputted. The final location 

of the sensor was comapred to the expected final location to calcualte the uncertainity 

in all axes as shown in Table 5.7. 

Table 5.7: z-axis Error calculations for measurements 

 x (mm) y (mm) z (mm) 

Theoretical 0 0 -40 

Measured Accuracy 0.17 3.61 -39.91 

Precision 6.20 5.96 1.93 

Overall Distance 160 240 40 

Absolute Error 0.11 % 1.50 % 0.18 % 

 

The absolute error for all runs for this type of measurements are considerably 

lower than the errors present in the previous measurements, this is partially due to the 

initial angle calculations not altering any rotation on the system. The measured error 

present in the system is also in the millimeter range. This proves the strength of this 

algorithm in the Translation movement of the system along all three axes. Similar to 

the previous measurements, the algorithm recovered the pathway of the sensor in the 

scanning process with marginally low uncertainties. 

Table 5.8: z-axis Error calculations for each increment in every axis 

 x (mm) y (mm) z (mm) 

Direction Positive Negative Positive Negative Negative 

Theoretical 20 -20 20 -60 -20 

Meas. Accuracy 21.30 -21.35 19.25 -55.94 -19.97 

Precision 1.49 3.38 1.42 2.88 1.41 

 

Similarly, all increments positive and negative in every axis were analyzed. The 

analysis present in Table 5.8 summarizes the average measurements and standard 

deviation. 

5.1.2.4 Scanning with sensor mounted with gravity in a random orientation 

To prove the compatibility of this algorithm to translation even further and 

deepen its strengths in translation, the sensor is mounted on the scanner in a random 



74 

initial orientation as opposed to the known orientations in the previous measurements. 

The axes of the sensor are neither aligned nor matched with the axes of the scanner 

coordiante system which in turn leading to a misalignment and mismatch with the world 

coordiante system. This in turn does mean that the euler angles are also random. In 

these measurements, the algorithm capabilities are tested in predicting the euler angles 

and correcting the mismatch introduced to the system. The overall goal is to achieve 

the same pattern regardless of the orientation of the sensor. Figure 5.18 shows the 

acceleration raw data captured by the sensor. Though the orientation was random, the 

acceleration in the z-axis in the sensor coordiante system was close to zero meaning 

that no gravity components were present in the z-axis. 

 

Figure 5.18: IMU Raw Data for random initial orientation 
 

Figure 5.19 demonstrates the accelerations after rotation and cleaning of the 

gravity components. It is noticeable that the pattern present in the world coordiante 

system accelerations is similar to all the previous runs on the scanner. This shows clear 

potential in the rotation mechanism that the algorithm is providing to the data. 
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Figure 5.19: Rotated Accelerations for random initial orientation scans 
 

The data is integrated twice to calcualte for the position. The overall position 

pattern for all 10 runs in 3D is shwon in Figure 5.20. 

 

Figure 5.20: Random Initial Orientation Position Output Average 
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Figure 5.21: Random Initial Orientation Position Average x-y Plane 
 

The position pathway was recovered as shown in both Figure 5.20 in 3D and 

Figure 5.21 in the x-y plane by the algorithm. The increments in all axes were also 

captured by the algorithm as well. The overall displacement and the errors involved are 

shown in Table 5.9. 

Table 5.9: Random Orientation Error calculations for measurements 

 x (mm) y (mm) z (mm) 

Theoretical 0 0 -40 

Measured Accuracy -0.54 3.32 -40.12 

Precision 4.11 8.90 3.27 

Overall Distance 160 240 40 

Absolute Error 0.34 % 1.36 % 0.29 % 

 

Although the orientation was completely random, the algorithm captured 

position with very accuracy as well. The acceleration magnitudes were rotated and 

restored to the world coordinate system regardless of the orientation of the sensor. The 

algorithm demonstrated strengths in a considerably low drift bias error, i.e. a few 

millimeters in the x-axis along with smaller than 0.5 millimeters in the y and z axes. 

-1 0 1 2 3
-1

0

1

2

3

4

5

6

7

 x (cm) 

 y
 (

cm
) 



77 

Table 5.10: Random Orientation Error calculations for each increment 

 x (mm) y (mm) z (mm) 

Direction Positive Negative Positive Negative Negative 

Theoretical 20 -20 20 -60 -20 

Meas. Accuracy 19.92 -19.78 18.11 -52.67 -20.06 

Precision 2.05 1.77 2.55 7.23 1.82 

 

Table 5.10 summarizes the data analysis for every type of increment. The 

increments were clustered based on their axis and direction. Averages and standard 

deviations were calculated based on the measurements. 

5.1.2.5 Discussion and analysis for scanner measurements 

All measurements were compared in terms of drift bias error due to its huge 

contribution in reducing the accuracy of the signal. If drift bias error is not treated, the 

position pattern is lost and so is the displacement of the sensor leading to corrupted 

estimation. This however was treated using the proposed algorithm and the final 

displacement values were precise and accurate with errors less than 5% not exceeding 

half a centimeter overall. 

Whether the measurement is taken using known gravity components or being 

random in space, the proposed algorithm recovered the movement pattern with all 

increments in the three axes. This proves the translation transformation appearing in the 

scans. This however would not have been possible if the algorithm was not capable of 

estimating the initial orientation of the sensor in space and therefore proving its 

capabilities in rotation of the axes along a fixed orientation for the scan pattern overall. 

In the transformation theory, translation does not cover the complete 

phenomena lacking a varying orientation throughout the scan. The next setup presented 

in Section 5.2 demonstrates the capabilities of the algorithm to adjust to a varying 

orientation. 

5.2 Angular 

In order to test for the rotational strengths of the system, the sensor along with 

the algorithm are tested versus a servo motor setup. However, due to physical 

limitations, the motor is removed and hand movement is introduced. In order to 
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maintain accuracy, an angular encoder is used to measure the rotational position of the 

sensor. 

5.2.1 Equipment and program 

The setup is composed of a circular metal piece that rotates freely around its 

axis which is connected to a Honeywell 600-128-CBL angular encoder. The encoder is 

a 128 pulse per revolution and is connected to a DAQ which in turn is operated using 

LabView as well to measure and store the data. The sensor is attached on the metal 

piece and rotated using hand movement. The setup is shown in Figure 5.22. 

  

Figure 5.22: Angular Tests Setup: Circular Metal Piece and Encoder 
 

5.2.2 Motion pattern 

The tests will take place in two different setups summarized in Table 5.11. The 

two setups differ in the orientation of the sensor. Unlike the scanner methodology, the 

orientation of the sensor changes along the path, therefore, identifying the angle varying 

with motion is crucial to prove that the algorithm can provide the most accurate estimate 

regardless of which angle varying. This is due to the fact that the sensor orientation 

dictates completely different angles in the rotation. 

Also, since gimbal lock is of an issue, the rotation is limited to an arc around 

the circular path. Therefore, limitations in the full pathway are imposed specifically in 

the pitch measurements. Gimbal lock will destroy the angle calculations done on the 

gyroscope data and impact the results of the rotation matrices leading to a 

miscalculation in motion and position along the measurements. 

Thus, any pathway leading to pitch closing up to 90 degrees will be avoided in 

the following measurement sets. 
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Table 5.11: Experimental Program for Angular Position Tests 

IMU sensor orientation Trials 

 

Rotation Methodology 1 (Known  

Orientation) 

10 

Rotation Methodology 1 (Random 

Orientation) 

10 

Rotation Methodology 2: Short Path 10 

 

Rotation Methodology 2: Long Path 10 

 

 

5.2.2.1 Rotation methodology 1: known initial orientation 

The first measurement has the sensor attached to the circular metal piece as 

shown in Figure 5.23. The overall movement of the system is covering a third of the 

circumference only to ensure no gravity is occurring in the x-axis. This is done to 

maintain the pitch values between -45 and 45 degrees to ensure that the gyroscope data 

process does not fail due to the Gimbal lock effect. 

 

Figure 5.23: Rotation Methodology 1: Known Orientation 
 

The rotation of the metal will inflict a rotation around the y-axis, i.e. pitch will 

be varying. The encoder stores the values of the rotation which are considered as pitch 

values in this setup as well. After taking the measurements coming from the sensor and 

calculating pitch using the Kalman Filter, the values were compared versus the encoder 
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pitch angle measurements. Figure 5.25 shows a comparison between both the 

measurements and the calculations. 

 

Figure 5.24: Pitch Angle Comparison between Kalman Filter and Encoder 
 

At the end of the measurement, both values coming from Kalman Filter 

calculations and the Encoder are compared in Table 5.12 to show the error over the 

whole run. The error is extremely small being less than 2 degrees of error. 

Table 5.12: Angular Position Comparison for Rotation Methodology 1 

 Pitch (Degrees) 

Sensor -1.55 

Encoder -1.24 

Total Angular Position 139.38 

Absolute Error 0.22% 

 

Based on the algorithm, once the Euler angles are estimated by the system, the 

acceleration data is then rotated to the world coordinate system, cleaned from any 

gravity components, then double integrated to calculate position. 

Figure 5.25 demonstrates the average position path that the sensor undergoes in 

all trials. 
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Figure 5.25: IMU sensor Position Output Average 

for 10 runs for circular pathway (Methodology 1: Known Initial Orientation) 
 

A better representation of the pathway is residing in the x-z plane since no 

motion was along the y-axis shown in Figure 5.26. As seen the estimated position 

calculations maintained the circular path anticipated from the rotation. 

 

Figure 5.26: x-z plane of the position pathway of the sensor 

(Methodology 1: Known Initial Orientation) 
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Moreover, the bias error did not drift but was kept at minimal as the sensor 

travelled back to a relatively close point to the initial point. The error in terms of 

translation was also calculated using the final destination of the sensor in reference to 

the initial point that the sensor started from. The overall uncertainty is less than 1 

millimeter in all axes which shows extremely strong potential. The overall 

displacement, however was short mainly due to the physical limitation of the radius of 

the circular metal. The circular path was recovered with very low absolute errors in all 

axes. Table 5.13 summarizes the error calculations in all three axes. 

Table 5.13: Error calculations for measurements using rotation methodology 1 

 x (mm) y (mm) z (mm) 

Theoretical 0 0 0 

Measured Accuracy -3.62 0 -0.29 

Precision 5.53 0 3.57 

 

 

Figure 5.27: Measured Vs. theoretical Methodology 1 Known Orientation 
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millimeter in all axes and 0.3 degrees in the angular position. Figure 5.27 shows the 

theoretical versus the measured values for position. 

5.2.2.2 Rotation methodology 1: random initial orientation 

In this set of measurements, the sensor is placed at a random orientation which 

is not matched with any of the three axes. The sensor however is placed at an opposite 

orientation in the x-axis to compare with the previous set of measurements as the 

position pathway is supposed to be equivalent in both sets. Figure 5.28 shows the sensor 

mounted on the circular metal. 

 

Figure 5.28: Random Orientation Methodology 1 
 

 

Figure 5.29: Pitch Angle Comparison between Kalman Filter 

and Encoder Methodology 1 Random 
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Similarly, pitch is the angle subject to variation in this setup. However, the axes 

of the gyroscope will all capture variation in the sensor coordinate system. The idea 

behind this set is to measure the accuracy of the rotation inflicted on the gyroscope data 

into the world coordinate system and compare it with the encoder values. Figure 5.29 

shows the difference between them. Similar to the previous analysis, the angles are 

measured at the end of the scan to analyze the bias error available in the angles. Table 

5.14 summarizes the errors and their average in all runs. 

Table 5.14: Angular Position Comparison for Rotation Methodology 1 Random 

 Pitch (Degrees) 

Sensor -5.14 

Encoder -5.49 

Total Angular Position 241.86 

Absolute Error 0.14% 

 

Once the acceleration data is rotated to the world coordinate system, the data is 

double integrated to calculate for the position of the sensor in the world coordinate 

system in reference to the user. 

 

Figure 5.30: IMU sensor Position Output Average 

for 10 runs for circular pathway (Methodology 1: Random Initial Orientation) 
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As Figure 5.30 shows, the position pathway is relatively close to that of the 

previous set, however the pattern does not look identical because there are some errors 

in the y-axis. The x-z plane shown in Figure 5.31 shows the pathway around the 

circumference of the metal circle. 

 

Figure 5.31: x-z plane of the position pathway of the sensor 

(Methodology 1: Random Initial Orientation) 
 

The circular path was captured by the sensor in the x-z plane. As expected the 

pathway took the opposite side of the circle as the sensor was in the opposite direction 

to the previous set. Unlike the previous set, there were some errors in the y-axis position 

calculations. Table 5.15 summarizes the errors involved for these sets. 

Table 5.15: Error calculations for measurements using rotation methodology 1 

 x (mm) y (mm) z (mm) 

Theoretical 0 0 0 

Measured Accuracy 14.59 0 -2.18 

Precision 11.82 0 5.17 

 

The x-axis was the most inaccurate in the readings with close to 2 cm error 

which is considerably high. However, the pathway was close to the theoretical pathway 

showing a huge potential in capturing the position pathway for such methodologies. 
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Figure 5.32 shows the measured x-z plane versus the theoretical values based on the 

encoder angles and the radius of the circular metal piece. 

 

Figure 5.32: Theoretical Vs. Measured Methodology 1 Random 
 

5.2.2.3 Rotation methodology 2: short path 

This third set of measurements are based on the IMU sensor being oriented with 

its x-axis as normal and y-axis tangential to the center of metal circle, i.e. origin of 

rotational motion as shown in Figure 5.33.  In this set however, the motion profile itself 

is changed to moving the sensor in a certain path and coming back only. 

 

Figure 5.33: Rotation Methodology 2 
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The overall displacement of the test was a rotation of the metal piece to around 

one third of its circumference and a return to the initial point. Similar to the previous 

measurement set, the encoder stores the pitch values. Figure 5.34 shows a comparison 

between the pitch angle calculation from the algorithm versus the measurement of the 

encoder. 

 

Figure 5.34: Pitch Angle Comparison between Kalman Filter and Encoder 
 

At the end of the scan, the difference between the calculated angle coming from 

the Kalman Filter and the encoder measurement is close to 3 degrees. Tanle 5.16 

demonstrates both angles and the difference between them for 10 runs. The overall bias 

drift error due to integration of the gyroscope readings along with the Kalman Filter 

successfully recovered the angular position pathway in regards to the encoder 

measurements for the trials. 

Table 5.16: Angular Position Comparison for Rotation Methodology 2 

 Pitch (Degrees) 

Sensor 48.81 

Encoder 49.21 

Total Angular Position 157.50 

Absolute Error 0.25% 
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Upon recovering the angular position of the measurements, the sensor 

coordinate system accelerations are rotated into the world coordinate system. Hence, 

the world coordinate system accelerations are double integrated to calculate position. 

The 3D position pattern shown in Figure 5.35. 

 

Figure 5.35: IMU sensor Position Output Average 

for 10 runs for circular pathway (Methodology 2) 
 

 

Figure 5.36: x-z plane of the position pathway of the sensor (Methodology 2) 
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Also, since the displacement is occurring in the x and z axes, Figure 5.35 shows 

the position profile in the x-z plane. The scan was rotated around the y-axis and returned 

to its initial position directly unlike methodology 1 which involved an extra distance 

travelled. As shown in Figure 5.36, the rotation movement was fully captured by the 

algorithm results and the final displacement is extremely close to the initial position. 

Since the rotation was returned to the initial position, the uncertainty similarly to the 

previous uncertainty calculations is the final point position in reference to the initial 

point. Table 5.17 summarizes the absolute error calculations. The uncertainty was in 

the millimeter range in all axes. 

Table 5.17: Error calculations for measurements using rotation methodology 2 

 x (mm) y (mm) z (mm) 

Theoretical 0 0 0 

Measured Accuracy -11.02 0 9.59 

Precision 3.31 0 5.53 

 

 

Figure 5.37: Theoretical Vs. Measured Methodology 2 
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both effective and accurate pattern. The theoretical pathway versus the measured one 

is plotted in Figure 5.37. 

5.2.2.4 Rotation methodology 2: long path 

To understand the behavior of the algorithm without gravity present, the whole 

setup was placed vertically upwards, shown in Figure 5.38. 

 

Figure 5.38: Sensor Orientation for Rotation Methodology 2: Long Path 

 

Under this condition, regardless of the location of the sensor, gravity will only 

be present in the z-axis and the rotation will occur in yaw rather than pitch. The overall 

pathway taken by the sensor is a rotation along three quarters of the circle. Since the 

rotation is along yaw, the gimbal lock does not appear. 

 

Figure 5.39: Yaw Angle Comparison between Kalman Filter and Encoder 
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Table 5.18: Angular Position Comparison for Rotation Methodology 2 

 Pitch (Degrees) 

Sensor -183.70 

Encoder -185.60 

Total Angular Position 472.60 

Absolute Error 0.40% 

 

A rotation of around 240 degrees was achieved, simulating close to two third a 

circle pathway. Figure 5.39 compares the yaw measurements between the IMU sensor 

Kalman filter and the encoder. Considering the unavailability of another method to 

calculate for yaw except from the gyroscope, the proposed algorithm was consistent in 

its measurements of yaw in comparison to the encoder. Table 5.18 summarizes the 

absolute error and the overall drift bias over the course of measurement. 

 

Figure 5.40: IMU sensor Position Output Average 

for 10 runs for circular pathway (Methodology 2: Long Path) 
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Figure 5.41: x-y plane of the position pathway of the sensor 

(Methodology 2: Long Path) 

 

Similar to the previous approaches, the rotation is performed to transform the 

coordinate system of the data coming from the IMU sensor. After double integration is 

performed, the position is outputted by the algorithm as shown in Figure 5.40 in 3D in 

space. Figure 5.41 shows the x-y plane view of the position profile. The algorithm 

successfully extracted the pathway of the motion. To overrule the accuracy of the 

measurement, a reference point is needed for the comparison. Since the methodology 

dictates the sensor to move along the circular pathway and return to the initial point, 

the reference used is the initial point itself. This in turn allows for the calculation of the 

drift bias in the system. Table 5.19 summarizes the measurements and calculation. 

Table 5.19: Error calculations for measurements using rotation methodology 2 

 x (mm) y (mm) z (mm) 

Theoretical 0 0 0 

Measured Accuracy 3.70 -25.05 0 

Precision 4.38 13.00 0 
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The position pathway was extracted using the proposed algorithm. To compare 

for the shape of the circular motion, the theoretical solution for the system is plotted 

versus the calculations coming from the algorithm as shown in Figure 5.42. 

 

Figure 5.42: Theoretical Vs. Measured Methodology 2: Long Path 
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This section holds a comparison done between the measurement accuracy 
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Translation measurements were only compared between the proposed algorithm 

and the literature measurements. More inspection is required with the same 

experimental setup that the literature is offering to demonstrate the algorithm potential 

in comparison to the other methodologies. 

The absolute error maintained by the proposed algorithm shows potential in 

terms of its small percentage in comparison with the other methods in three dimensional 

motion and consistence along all axes. 
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Table 5.20: Drift Bias Error Comparison 

 Axes Total 

Distance 

Drift Bias 

Error 

Absolute Error 

[4] 1 D 2.40 m 0.18  m 7.50 % 

[73] 1 D 120.00 m 2.28 m 1.90 % 

[74] 
2 D 10.00 m 2.00 m 4.00 % 

5.00 m 2.00 m 4.00 % 

 

[75] 

 

3 D 

35.00 cm 0.20 cm 0.57 % 

4.00 cm 2.30 cm 57.5 % 

16.50 cm -1.00 cm 6.06% 

Proposed 

Algorithm 

 

3 D 

160.00 cm 2.56 cm 1.60 % 

240.00 cm 5.09 cm 2.01 % 

40.00 cm 0.81 cm 2.03 % 

 

5.4 Profiling System Integration with Microwaves 

The IMU sensor was attached to the waveguide and the distance covered was 

calculated using the algorithm. Figure 5.43 shows the juxtaposing of the voltage as a 

function of distance.  

 

Figure 5.43: Integration of Microwave with Position Tracking 

-2 -1.5 -1 -0.5 0 0.5

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

Displacement (cm)

V
o

lt
ag

e 
(V

)



95 

The scan route is along one axis and performed across a metal piece with an 

induced crack with known width and depth. Based on the microwave theory, the crack 

is detected by the waveguide. Usually, characterization is needed to capture the width 

and depth of the crack which is both time consuming and not always accessible. 

The width of the jump in the signal should represent the crack width as per the 

motion, the overall increment in the axis was 2 cm and the crack width as per the IMU 

algorithm measured to be 1.74 mm whereas the accurate width for the crack is 1.70 

mm. 
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Chapter 6: Conclusions and Future Work 

 

6.1 Conclusions 

A replacement for all measurement machines implemented in aid to the 

detection units whether being microwaves, laser vision systems or any other profiling 

methodology. The proposed technique can replace the bulky machines in charge of the 

scanning technique. Bulky scanners not only occupy a big grid of space but also are 

specifically tailored for specific scanning routes and criteria. The proposed technique 

does not need specific tailoring or algorithm, but can move freely in any scanning 

pattern. Moreover, the proposed technique requires a small budget in comparison to the 

scanning machines. 

The proposed technique was tested along a scanning machine with a certain 

scanning route with small error and uncertainties. The results were analyzed on each 

index in any axis in 3D and the overall drift bias involved. Due to the usage of the 

proposed algorithm, the drift bias error usually in meters, was reduced to a few 

millimeters. The proposed algorithm not only critically reduces the drift bias error but 

also smoothens the data due to potential vibrations coming from the user as the scanning 

process is conducted. 

Also, the orientation pathway was also tested using a servo motor setup, and not 

only did the proposed technique capture orientation but also captured the circular 

pathway along a defined radius. The measurements were extremely close to the 

theoretical solutions with minor uncertainties corresponding to the bias drift error and 

noise in the signal. 

Given the high precision shown for the proposed algorithm, inspection units can 

be aided increasing the precision of the overall system and acquiring both realistic and 

accurate data in the profiling overall. The proposed technique managed to preserve its 

precision with the theoretical approaches and is on a challenging level with the 

uncertainty of the conventional bulky scanning measurement machines. 

The overall performance of the system can also be further improved by 

introducing other filters that can further smoothen the input signal to reduce the overall 

noise that the system is capturing. 
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6.2 Future Work 

 The proposed technique was tested along translation in all three axes with 

various initial orientations. Moreover, the orientation tests were conducted along 2D 

planes only due to physical and time limitations. Orientation tests must include 3D 

planes along all axes in a different setup. 3D plane tests are critical due to user 

movement in free space. 

 Gimbal lock is a phenomenon that occurs mathematically when gravity is purely 

in the x-axis and the pitch angle values are close to 90 degrees. This however is treated 

by using a mathematical complex number representation of the angular revolution data 

called the quaternions. Quaternions are to be introduced to take care of the limitations 

of the gimbal lock. However, it was not dealt with because the scanning mechanisms 

do not require the sensor to be at 90 degrees with the surface it profiles in the pitch 

angle. 

 The integration of the detection unit with the sensor are yet to be complete as 

this study did not acquire data in this regards but focused on the position tracking unit 

only. More integration tests are required to show the compatibility of the system with 

any detection units. 
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