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Abstract

Group Autonomous Demand-Side Management (ADSM) programs provide practical

mechanisms to coordinate energy consumption to achieve smart grid-wide objectives,

such as reducing the energy cost, reducing the Peak-to-Average Ratio (PAR), and in-

creasing the penetration of Renewable Energy Sources (RESs). In this work, a group

ADSM program, where the customers cooperate to reduce their energy cost payment

through scheduling the future energy consumption profiles, is investigated. First, an ag-

gregative game is formulated to model the strategic behavior of the customers. Subse-

quently, in order to consider the computational complexity and limitations of the group

ADSM programs, an efficient energy consumption scheduling algorithm based on Tabu

Search (TS) is proposed. In addition to the ability of achieving the near-optimal energy

schedules, the computational time is reduced to a large extent as compared to the energy

scheduling algorithm based on Parallel Monte Carlo Tree Search (P-MCTS) and the

benchmark energy scheduling algorithm based on Branch and Bound (BB). Moreover,

a billing mechanism that charges customers fairly based on their energy consumption

and commitment to abide by the assigned schedules and program rules is developed.

Two systems are considered; Single-Source Multiple-Customers (SSMC) system and

Multiple-Sources Multiple-Customers (MSMC) system. In the SSMC system, a central

energy source is shared among customers, while the MSMC system consists of a central

energy source, distributed RESs, and Distributed Storage Elements (DSEs). Simulation

results confirm that the proposed billing mechanism enhances the fairness level of the

system and the proposed algorithm ensures a considerable reduction in the computa-

tional complexity. In addition, due to the utilization of distributed RESs and DSEs in

the MSMC system, both the level of greenhouse emissions and the total system cost are

guaranteed to be reduced compared to the SSMC system.

Search Terms: smart grid, autonomous demand-side management, renewable en-

ergy sources, microgrid, computational complexity, fairness, game theory, Tabu search.
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Chapter 1: Introduction

Electricity is the lifeline of civilization and the most fundamental infrastructure

of modern society and economy. Most of the world relies on the traditional electric-

ity grid operations that have not changed much since the 1930s and their supporting

data communications which resemble the means introduced in 1970s. As a result, the

growth in transmission capacity lags far behind the growth in generation and load which

increasingly stresses the grid. This raises an imminent and urgent need to shift towards a

more efficient, reliable and greener energy system to respond to today’s ever-changing

demand and emerging global challenges. The smart grid will be a necessary enabler

of this transition which is an interconnected power network of transmission, distribu-

tion, communications, controls, and advanced technologies working together to match

customers’ needs [1].

The evolution of smart grid technologies will allow customers to make more in-

formed decisions about their energy consumption, adjusting both the timing and quan-

tity of their electricity use. This ability to control usage is called Demand-Side Manage-

ment (DSM). The DSM offers the promise of cutting costs for commercial customers,

saving money for households, and helping utilities operate more efficiently and reliably,

in turn lowering the need to build new expensive generation plants and reducing emis-

sions of greenhouse gases. The DSM is a set of interconnected and flexible programs

which allows customers a greater role in shifting their own load for electricity dur-

ing peak periods, reducing their energy consumption cost and Peak-to-Average Ratio

(PAR), and increasing the penetration of Renewable Energy Sources (RESs) [1].

Issues such as: large control overhead on utilities, difficultly of manually re-

sponding to hourly changing prices by customers, and load synchronization are the

main challenges when implementing DSM programs. As an alternative, Autonomous

DSM (ADSM) programs have been recently proposed. The key idea is in equipping

each customer’s smart meter with an Energy Consumption Scheduling (ECS) capabil-

ity to automatically manage the load consumption based on smart pricing paradigm [2].

ADSM programs can be divided into two categories: individual ADSM and group

ADSM. In the individual ADSM programs, each customer interacts directly with the
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utility to individually reduce the electricity payment or reduce the load profile PAR. On

the other hand, in the group ADSM programs, a group of customers coordinate their

energy consumption such that the total system cost and the system PAR are reduced.

Group ADSM is the main focus of this work.

An important and nontrivial engineering issue is the integration of RESs, such as

wind, water, and the sun, into the smart grid. These sources of power are typically sub-

ject to the vagaries of environmental conditions, which introduce significant variability

and instability in supply. Group ADSM programs can significantly mitigate the impact

of RESs variability through encouraging customers to adapt certain consumption pat-

terns which increase the penetration of such sources. In addition, these programs can

efficiently utilize the two-way information and power exchange networks, supported by

the grid, which enable consumers to not only draw power but supply surplus power to

the grid as well.

In most of the literature works, the group ADSM programs are successful in

achieving the grid-wide objectives, such as reducing the total energy cost, reducing the

PAR, etc. However, most of these works ignore that in reality, the success of group

ADSM programs relies on the active participation and satisfaction of customers. A va-

riety of incentives can be offered by the grid to motivate customers to participate in such

programs. The monetary incentives are among the most common ones by which cus-

tomers are encouraged to follow a certain electricity load pattern in order to achieve the

lowest possible bill payment. However, it is shown in [3,4] that the financial incentives

cannot fully capture the interest of customers to these programs.

In this work, a fair and efficient group ADSM program for the scheduling of a

day-ahead energy consumption in the residential sector, is proposed. Two systems are

considered; Single-Source Multiple-Customers (SSMC) system and Multiple-Sources

Multiple-Customers (MSMC) system. In the SSMC system, only a central energy

source (e.g., a generator or a step-down substation transformer) is shared among cus-

tomers, while the MSMC system consists of a central energy source, distributed RESs

(rooftop Photovoltaic (PV) panels), and DSEs (e.g., batteries). The main incentives

that motivate customers to participate in the proposed program are reducing electricity

payment, assuring fairness, increasing the computational efficiency, and increasing the
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penetration of RESs while maintaining the balance between demand and supply. Nu-

merical and simulation results for several case studies are provided to demonstrate the

effectiveness of the proposed work.

1.1. Problem Statement

Recently, group ADSM has emerged as one of the key mechanisms that make

the smart grid more efficient, reliable, and cost-effective. Dynamic pricing has been

regarded as a promising mechanism towards a successful implementation of group

ADSM due to its ability in motivating customers to reduce their peak load and re-

shape the pattern of their energy use. However, the financial incentives are not enough

and the success of group ADSM programs considerably depends on customers’ level of

involvement and contribution. Several incentives could be provided to encourage cus-

tomers to participate in group ADSM programs. In this thesis, incentive-based group

ADSM programs for the smart grid in the residential sector are proposed. Devising a

fair billing mechanism which penalizes customers who do not abide by the assigned en-

ergy consumption schedules, implementing an efficient energy consumption scheduling

based on Tabu Search (TS) algorithm, reducing the total system cost, and increasing the

penetration of RESs are the incentives applied in this work.

1.2. Thesis Objectives

The main objectives of this work are as follows.

1. Develop a group ADSM program based on a game-theoretic approach for a day-

ahead energy consumption scheduling for residential customers in the SSMC sys-

tem to reduce the total system cost.

2. Develop a group ADSM program based on a game-theoretic and a Determinis-

tic Energy Management (DEM) approaches for a day-ahead energy consumption

scheduling for residential customers in the MSMC system to reduce the total sys-

tem cost, and increase the penetration of RESs.

3. Develop an efficient energy consumption scheduling algorithm based on TS in

the SSMC and MSMC systems.
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4. Develop a fair billing mechanism that penalizes customers who violate the as-

signed, and near-optimal energy schedules in the SSMC and MSMC systems.

1.3. Thesis Contributions

The major contributions of this thesis are explained as follows.

• A new energy consumption billing mechanism that takes into account the impact

of customers’ violations on the SSMC and MSMC systems performance and how

to deal with it to ensure a higher level of fairness, is proposed.

• A new energy consumption scheduling strategy for the MSMC system to tackle

the intermittency nature of solar energy generation through the implementation

of DEM strategy combined with an aggregative game, is proposed.

• A day-ahead energy consumption scheduling algorithm based on TS for an effi-

cient implementation of group ADSM programs in the SSMC and MSMC sys-

tems, is applied. The proposed algorithm is compared in terms of results accuracy

and computational time with the benchmark Branch and Bound (BB) search and

the Parallel-Monte Carlo Tree Search (P-MCTS) methods.

1.4. Thesis Outline

This thesis is organized as follows. Chapter 1 presents an introduction to the

research field, the objectives, and the main contributions of this thesis. The background

to this research topic as well as the latest advances and the progress achieved so far, are

presented in Chapter 2. In Chapter 3, the group ADSM progam in the SSMC system is

explained. The group ADSM program in the MSMC system is presented in Chapter 4.

Finally, Chapter 5 outlines the conclusion and the future work.
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Chapter 2: Demand-Side Management (DSM)

The concept of DSM can be traced back to the 1970’s in response to the energy

crisis in the United States [5]. The power of DSM lies in eliminating resource bottle-

necks, integrating RESs, reducing peaky demand profiles, and engaging customers in

supply-demand issues. One of the widely accepted and descriptive definitions for DSM

is provided by Gellings as: "Demand-Side Management is the planning and implemen-

tation of those utility activities designed to influence customer use of electricity in ways

that will produce desired changes in the utility’s load shape, i.e., in the time pattern and

the magnitude of a utility’s load" [6].

DSM covers all the management aspects associated with demand-side activities

such as planning, evaluation, implementation, and monitoring. Moreover, DSM can be

applied to residential, commercial, and industrial sectors.

2.1. Demand-Side Management (DSM) Types

DSM types generally fall into three main categories: Load management (LM),

Demand response (DR), and Energy efficiency (EE).

2.1.1. Load management (LM). LM is a power utility strategy that is devel-

oped for matching demand with supply by influencing the timing and magnitude of a

customer’s electricity consumption [6]. The traditional LM falls into fours schemes:

peak clipping, valley filling, load shifting, and strategic conservation. Peak clipping is

a classic scheme that aims at reducing the peak load at specific time slots by means

of direct control. Valley filling scheme aims at building up off-peak loads when the

long-term average price is lower than the cost of load building in the off-peak hours.

Furthermore, load shifting technique simply shifts the electricity load from peak hours

to off-peak hours. Finally, strategic conservation is the change in the load profile that

occurs from utility-driven conservation activities such as turning up the air conditioner

thermostat at a few degrees in summer [7]. The concepts of the four schemes are illus-

trated in Fig. 1.
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(a) (b)

(c) (d)
Figure 1: (a) Peak clipping (b) Valley filling (c) Load shifting (d) Strategic conver-
sion [1].

2.1.2. Demand response (DR). In principle, DR is defined as time-dependent

programs that motivate customers to change their daily electricity consumption profiles

in response to changes in the price of electricity. In addition, DR is featured by the

incentive payments provided to customers to induce lower electricity consumption at

times when system reliability and stability are jeopardized. DR includes all dynamic

and event-driven electricity consumption pattern strategies performed by customers.

These strategies are intended to respond to the wholesale market changes by altering

the timing, level of instantaneous load, or total electricity consumption. DR programs

are divided into Incentive-Based Program (IBP) and Time-Based Program (TBP) [8].

The IBP category is classified into classical programs and market based pro-

grams. The classical programs are further divided into Direct Load Control (DLC)

and Interruptible/Curtailable Service (I/C). In DLC programs, utility operators have the

ability to remotely shut down customers’ appliances on short notice in exchange for an

incentive payment. On the other hand, customers on I/C service receive rate discount

or bill credit in exchange for voluntarily reducing their load to predefined values by the
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utility. The market based programs are divided into several subgroups: load bidding,

emergency DR, capacity market, and ancillary service market.

To start with, load bidding programs encourage customers to bid on load reduc-

tions with a price at which they are intended to be curtailed. A bid is approved by the

utility if it is cheaper than the market price of alternative supply bids. Generally, load

bidding is attractive to customers as they enable them to keep a fixed rate and receive

higher payments for the load reduction bids when the market prices are high. Emer-

gency DR program is another type of the market based categories where customers are

paid incentives for reducing their load during reliability-triggered events or emergency

conditions, but curtailment is optional [8]. In capacity market programs, customers

commit to providing prespecified load reductions when system contingencies arise, and

they face penalties if they do not respond to calls for load curtailment [9]. Finally,

ancillary service market programs provide customers with the choice to bid on load

curtailments as in the operating reserve markets. If the bids are accepted, customers are

paid the market price for committing to be on standby, and if load reduction is required

they are paid the spot market electricity price [8, 10].

The second type of DR programs is the TBP which relies on dynamic pricing

rates that reflect the true market price for electricity generation and distribution. At first,

these programs are intended to flatten the load profile through offering high prices at

peak hours and lower prices at off-peak hours. There are different pricing mechanisms

under the umbrella of TBP: Time of Use (ToU), Critical Peak Pricing (CPP), Extreme

Day CPP (ED-CPP), Extreme Day Pricing (EDP), and Real-Time Pricing (RTP).

ToU is a static pricing technique which reflects long-term electricity system

cost. In order to reduce the complexity of this technique, the day is divided into two

pricing periods, namely peak and off-peak hours, and the pricing rate is defined as the

electricity price per unit consumption that varies in each block [11,12]. Regarding CPP,

in essence, it is a form of ToU programs that rewards customers for reducing or shifting

their electricity usage voluntarily. However, unlike ToU, CPP limits the peak times

to a few times during the year when load is expected to be highest [11]. In ED-CPP

programs, responsive customers are rewarded for reducing or shifting their loads during

extreme days [12]. On the other hand, EDP has the same concept of CPP in having
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higher pricing rates of electricity at peak times; however, the rates are in effect for the

whole 24 hours of the extreme day [13]. The widely common used TBP program is the

RTP which is an hourly fluctuating price of electricity during the day based on real-time

information such as wholesale market prices, utility’s load electricity, etc. Customers

can buy their power for the best available price and savings can be substantial.

2.1.2.1. Energy efficiency (EE). Finally, the EE activity reduces load consump-

tion while offering the same level of electricity service to customers. Actually, EE pro-

grams provide incentives to customers who use appliances that consume energy more

efficiently. By adopting EE programs, peak load can be permanently lowered, hence

reduce the overall load. However, such programs are not as widely used as other DSM

programs due to the inconvenience caused to customers as their total energy consump-

tion is reduced. As most of the DR techniques, new technologies and infrastructure are

required such as energy efficient appliances and enhanced communications topologies

between the customers and utilities [10].

2.2. Demand-Side Management (DSM) Challenges

There are several challenges and issues associated with DSM implementation

and development. The main challenges are as follows [14].

• Lack of information, communication, and technology infrastructure.

• Lack of educational and awareness programs about DSM, its functionality and

benefits.

• DSM solutions generally add more complexity to the system operations compared

with the traditional network solutions.

• Lack of incentives provided to customers in DSM programs.

• Constructing appropriate infrastructure and distribution systems are very expen-

sive.

• The monopoly in the current electricity market.
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2.3. Demand-Side Management (DSM) in the Smart Grid

The smart grid introduces a two-way dialogue where electricity and informa-

tion can be exchanged between the utility and its customers. It is a developing network

of communications, controls, automation, and new technologies and tools working to-

gether to make the grid more efficient, more reliable, more secure, and greener. The

smart grid enables newer technologies to be integrated, such as wind and solar energy

production, and plug-in electric vehicles. The grid is expected to replace the aging in-

frastructure of today’s grid to enable customers and operators to better communicate

their needs.

As stated by [6], the smart grid vision includes the following aspects:

1. Providing two-way flow of power and information technologies to create an au-

tomated energy distribution network.

2. Constructing Information and Communication Technology (ICT) infrastructure

to deliver real-time information and achieve the balance between demand and

supply.

3. Providing customers with a common pricing model. This model is required for

all forms of dynamic pricing and DSM programs.

The smart grid vision brings new challenges and opportunities for DSM. The construc-

tion of a new ICT infrastructure in the smart grid is a valuable opportunity to improve

the performance and feasibility of DSM programs. In addition, the intelligent appli-

ances, dynamic pricing, and other smart grid technologies facilitate the automation of

the DSM process.

The smart grid supports the integration of RESs and storage elements that may

raise some challenges to the implementation of DSM. The intermittency of RESs will

jeopardize the efficiency of DSM programs, unless, advanced dynamic, interactive pric-

ing mechanisms, accurate prediction methods, efficient computational techniques, etc,

are utilized.

The implementation of the smart grid and the DSM programs require advanced

communication and power infrastructures to optimize the energy consumption. How-
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ever, such advancements may take a long time, require huge budgets, and need extensive

efforts by economists and researchers to be realized.

2.4. Demand-Side Management (DSM) and Game Theory in the Smart Grid

Game theory can be defined as an analytical framework which enables the

study of complex interactions among independent rational players using a set of math-

ematical tools. Game theory was pioneered in the 1950s by the mathematician John

Nash. Game theory has incredibly been adopted in several disciplines such as eco-

nomics, politics, biology, psychology, and military [15].

Game theory framework can be divided into two main branches: noncooperative

game theory and cooperative game theory. Noncooperative game theory can be used

to analyze the strategic decision-making processes of a group of independent players,

who have conflicting interests over the outcome of a decision process. Mainly, non-

cooperative games can be seen as capturing a distributed decision-making process that

allows the players to optimize, without any coordination or communication, objective

functions. On the other side, cooperative game can be used to analyze the strategic

decision-making processes of a number of independent players, that have agreed to

work together toward a common goal [16].

Game theory is expected to constitute as an essential analytical tool in the design

of the future smart grid. The proposed advanced technologies and services in the smart

grid systems imply that tools such as game theory will naturally become a prominent

tool in the design and analysis of smart grids. In particular, there is a need to deploy

models that can capture the need for distributed operation of the smart grid nodes for

communication and control purposes and the heterogeneous nature of the smart grid

which is typically composed of a variety of nodes such as microgrids, smart meters,

appliances, and others [1].

One of the key challenges of the future smart grid is designing DSM models

that enable efficient management of the power supply and demand. DSM schemes

will always face technical challenges such as pricing, regulations, adaptive decision-

making, users’ interactions, and dynamic operation. All of these issues are cornerstones
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to game theory, and, hence, this area is ripe for game theoretic techniques. In fact,

DSM is perhaps the most natural setting for applying game theory due to the need of

combining economical aspects such as pricing with strategic decision-making by the

various involved entities such as the suppliers and the consumers [15].

2.5. Tabu Search (TS)

In this work, TS is utilized as a computationally efficient algorithm to imple-

ment the proposed group ADSM programs in the future smart grid. TS was created by

Fred Glover in 1986 and formulated in 1989 [17]. TS is a meta-heuristic algorithm that

can be used for solving combinatorial optimization problems. Current applications of

TS span over the areas of resources planning, telecommunications, VLSI design, finan-

cial analysis, energy distribution, molecular engineering, waste management, mineral

exploration, biomechanical analysis, environmental conservation and many others. TS

is often benchmarked against other meta-heuristic methods such as simulated annealing,

genetic algorithms, and colony optimization algorithms [18].

TS employs the concept of local search methods, which are used for mathemat-

ical optimization. Generally, the local search methods have a tendency to get stuck in

suboptimal regions or on plateaus where many solutions are equally fit. TS enhances the

performance of local searches by relaxing their basic rule. First, at each step, worsening

moves can be accepted if no improving move is available. In addition, prohibitions are

introduced to discourage the search from coming back to previously visited solutions.

The implementation of TS uses memory structures that describe the visited solutions or

use provided sets of rules. If a potential solution has been previously visited within a

certain short-term period or if it has violated a rule, then it is considered as a "Tabu". As

a result, the algorithm does not consider that possibility repeatedly. The word "Tabu"

comes from the Tongan language of Polynesia used to indicate things that cannot be

touched. By the utilization of these memory structures, the search progresses by it-

eratively moving from the current solution to an improved solution. These memory

structures form what is known as the Tabu list, which is a set of rules and band solu-

tions used to filter which solutions will be admitted to the neighborhood to be explored
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by the search. In its simplest form, a Tabu list is a short-term set of solutions that have

been visited in the recent past. The memory structures used in research can be roughly

divided into three categories. First, short-term memory is recently considered if a po-

tential solution appears on the Tabu list. The solution cannot be revisited until it reaches

an expiration point. Second, intermediate-term memory, which is a set of intensification

rules intended to bias the search towards promising areas of the search space. Third,

long-term memory, which is a set of diversification rules that drive the search into new

regions. Actually, the three structures can overlap in practice [17].

2.6. Literature Review

A wide range of DSM programs has been investigated in the literature. Tra-

ditionally, DSM programs were mostly utility-driven such as the LM programs. DLC

type is the most commonly addressed in LM programs [19–21]. In DLC programs,

utility operators have the ability to remotely shut down customers’ appliances on short

notice in exchange for an incentive payment. Privacy and comfort of customers are be-

hind the inefficiency and failure of such programs. An alternative for the DLC program

is the TBP that is investigated extensively in the literature. TBPs use smart pricing to

enable customers to rationally decide their electricity consumption aiming at reducing

their electricity bills [22–27]. It has been argued that TBP is the most direct and effi-

cient DSM technique and thus it should be investigated and used by policymakers [27].

Other studies have been conducted on DSM and its techniques in [8, 9, 13, 14, 28, 29].

Moreover, several DSM projects and pilots have been developed in countries such as

Canada, Germany, Australia, Japan, China, and Vietnam [30–36].

In order to overcome the challenges of implementing DSM such as large control

overhead on utilities, difficultly of manually responding to hourly changing prices by

customers, and load synchronization, ADSM has been recently proposed.

An extensive literature has been performed on ADSM based smart pricing in

SSMC and MSMC systems. One thread of research, namely individual ADSM, aims at

managing every customer’s load in order to minimize the consumption expenditures or

the load profile PAR, and\or increase the penetration of RESs [37–46]. In this configu-
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Figure 2: An individual ADSM System.

ration, utilities encourage customers to voluntarily and individually follow certain rules

based on a smart pricing strategy, e.g., reducing the consumption at high price hours.

Each customer’s smart meter receives the electricity prices and shares the load with the

grid through a two-way communication infrastructure, as shown in Fig. 2. Several op-

timization approaches are used to achieve the objectives of this configuration such as

integer programming, dynamic programming, sequential quadratic programming, par-

ticle swarm optimization, etc [47–52]. The major downside of this mechanism is that it

requires high computational capabilities at grid side, which is neither efficient nor scal-

able. In addition, the impact of each customer’s consumption behavior on the system

overall performance and on other customers’ bill payments is not taken into considera-

tion.

Another thread of research has been investigated recently, namely group ADSM,

focuses on managing the aggregate energy consumption of a group of customers con-

nected to a shared energy source and/or to DESs/DSEs through the utilization of ad-

vanced communication networks as shown in Fig. 3. The main objectives of imple-

menting group ADSM programs are minimizing the total system cost or minimizing

the PAR of the system load profile and/or increasing the penetration of RESs [53–62].

In contrast to individual ADSM, the impact of a customer’s consumption behavior on

all other customers’ energy expenditures and the system, in general, is considered. A

common and effective analytical tool used in this method is game theory [63]. Both

cooperative and non-cooperative game-theoretic techniques are utilized to achieve the

system-wide objectives. For example, the authors in [53] devised a congestion energy

scheduling game to minimize the total system cost. In [64], a Stackelberg consumption

game is used to model the complicated interactions between the utility and its customers
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Figure 3: A group ADSM System.

to maximize the utility profit and customers’ payoffs. The work in [65] addresses a

group ADSM system in competitive and oligopolistic markets. In both markets, the

proposed game achieves the optimal equilibrium gradually.

A few works have been performed using the group ADSM mechanism in MSMC

systems in microgrids. In [59], a group ADSM program is investigated using dynamic

potential game in order to minimize the total system cost and increase the penetration

of wind energy. An isolated microgrid with a centralized wind farm is considered and

conventional resources are used only if the predicted wind power does not meet the

load. It is worth to mention that the use of DSEs are not considered. In [66], customers’

interactions are modeled as a repeated energy consumption game where customer’s be-

havior is characterized by Bayesian NE. The authors in [67] apply an auction game to

find the optimal operating strategy of different types of generators to minimize the total

operating cost and greenhouse emissions in a microgrid. A dynamic game is proposed

in [68] to determine the optimal energy trading amounts among the different parties of

the system including RESs. In [69], a Stackelberg game is formulated to minimize the

system cost and secure the power supply of the microgrid. By this game, the percent-

ages of available power and storage are decided such that the stresses on the loads are
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reduced. Both non-cooperative and cooperative game-theoretic models are built for the

planning of a hybrid power system in a microgrid in [70]. Some other works under the

umbrella of group ADSM are addressed in [2, 3, 71–83].

In most of the prior works in the literature, the group ADSM programs are suc-

cessful in achieving the grid objectives. However, most of these works ignore that in

reality the success of group ADSM programs relies on the active participation and sat-

isfaction of customers. These works fall-short addressing fairness as a powerful tool

to increase the level of customers’ participation and achieve system objectives. Up to

our knowledge, only the works in [2, 3, 72–76, 82, 83] have addressed fairness in de-

signing their group ADSM programs but with different perspectives. In [72], fairness

is defined as assigning the same long-term average delay to every customer, which may

not be practical in many cases. The authors in [73] present a group ADSM model

that charges customers based on their income level and types of appliances. Gener-

ally, this criterion is not appealing to customers as it raises privacy concerns. In [2], a

billing model that charges customers in proportion to their total daily electricity con-

sumption in a group ADSM system, is proposed. A major drawback of the proposed

model is not considering the customers’ exact load profiles, i.e., if two customers have

equal total daily load, they will pay equally regardless of their load profiles. To address

this problem, [3, 74–76, 82, 83] suggested a billing mechanism, where each customer

is charged based on flexibility share in achieving the system optimality, which can ef-

fectively improve the fairness level of the system. One of the main drawbacks of the

models in [2, 3, 72, 74–76, 82, 83] lies in not considering the impact of customers’ vi-

olations after assigning the consumption schedules on the system fairness level. This

drawback is mainly due to the type of billing model adopted which penalizes all cus-

tomers in the system if a customer does not abide by the assigned system schedules.

This makes the system unfair in the sense that the contribution to the system optimality

is not considered in the case of violations.

In addition, the existing body of work on group ADSM in SSMC and MSMC

systems tends to make restrictive assumptions and employ simplified mathematical sys-

tem models which do not reflect real life consumption scenarios. Moreover, most of

literature works assume that smart meters can handle a huge number of complex oper-
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ations to compute the optimal consumption schedules, which is not a practical assump-

tion as the computational capability of smart meters is limited. Mainly, such issues

are tackled in individual ADSM systems using several heuristic and evolutionary tech-

niques [84–86]. Up to our knowledge, none of the works in the literature has consid-

ered the computational limitations of group ADSM in MSMC systems in microgrids.

As for SSMC systems, only the work [87] has investigated this issue by using P-MCTS

method in order to solve the energy consumption game. However, the system model

and appliances descriptions are very simplified and there is no indication of system

complexity and computational time. In this work, the TS method is utilized, which is a

meta-heuristic method proposed by Glover in 1989 [17]. The TS method has superior

performance in terms of computational complexity and time and accuracy of results

in the field of resources scheduling compared to other heuristic techniques as shown

in [88–91]. So TS is proposed to be applied on the energy consumption scheduling

game problem with the hope of obtaining optimal results and less computationally de-

manding operations. Furthermore, one of the major advantages of TS is the ability to

escape the trap of local optimality by the utilization of variable memory structures [18].

In addition, it has remarkable achievements for various combinatorial problems in the

fields of computer games, artificial intelligence, optimization problems, planning and

learning [92–97].

In this work, an energy consumption scheduling algorithm based on TS is pro-

posed to efficiently compute the energy consumption schedules of all customers in the

SSMC and MSMC systems such that the total systems cost is reduced. In addition, as

an alternative to the billing mechanisms in [2, 3, 72–76, 82, 83], an energy consump-

tion billing mechanism that takes into account the impact of violations on the SSMC

and MSMC systems performance and how to deal with them to ensure a higher level

of fairness, is proposed. Furthermore, a novel energy consumption scheduling strat-

egy is proposed to tackle the intermittent nature of solar energy generation through

the implementation of a DEM mechanism combined with an aggregative game in an

isolated microgrid. According to [98], distributed rooftop PVs and DSEs owned by

households make the penetration of energy 30% more efficient than by using central-

ized units. Thus, in this study, each household is equipped with a rooftop PV panel
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and a storage device unlike other works where centralized RESs and DSEs are utilized.

Practically speaking, the amount of harvested solar energy during a time interval mostly

does not exceed the total consumption required by a customer and hence using DEM is

more computationally efficient than considering the aggregative game alone as always

considered in the literature.
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Chapter 3: Energy Consumption Scheduling for a Single-Source
Multiple-Customers (SSMC) System

3.1. Introduction

In this chapter, an efficient and fair group ADSM program in the SSMC sys-

tem, is proposed. The program aims at reducing the total system generation cost. First,

the SSMC system model and residential load control, are illustrated. Then, a fair en-

ergy consumption billing mechanism, is proposed. Each customer is charged based on

the contribution to the program success and the total energy consumption. An energy

consumption scheduling algorithm based on TS, is developed. Finally, numerical and

simulation results for case studies are provided to demonstrate the effectiveness of the

proposed program.

3.2. The SSMC System Model

In this section, the analytical description of the SSMC system model is pre-

sented. Fig. 4 depicts the system which consists of an energy source (e.g., a generator

or a step-down substation transformer) shared by multiple customers. It is assumed

that each customer’s household is equipped with a smart meter, which is considered as

the external interface with the utility, and all other customers. The meter is capable of

collecting a customer’s power consumption requirements, communicating with system

parties, and computing energy consumption schedules using the ECS capability. Fur-

thermore, all smart meters are assumed to be connected to two-way flow of power and

communication networks. Denote the set of customers by N = {1, ..,n, ...,N},n ∈ N,

where N is the total number of customers. The set of household appliances is defined as

An = {1, ..,an, ...,An}, an ∈ An and each time-slot during the period of analysis is de-

noted as h ∈H, H= {1, ..,h, ...,H} where H is the total number of time-slots. Without

loss of generality, it is assumed that each smart meter schedules the energy consumption

for a period of one day, H = 24, in advance, and time granularity of one hour.
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Figure 4: The SSMC system model.

For each customer n, the energy load profile matrix of all appliances an in H

time-slots is denoted by

XXXn = [xn,1, ....,xn,An ] ∈ R(H×An) (1)

where the energy load profile for each appliance an is

xxxn,an = [x1
n,an

, ..,xh
n,an

, ..,xH
n,an

]T . (2)

It should be noted that the unit of xh
n,an

is kWh.
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In this work, two types of appliances are considered: shiftable and non-shiftable

appliances. The non-shiftable appliances, such as lighting and refrigerators, have fixed

routine of operations that cannot be controlled by the smart meter and its ECS function-

ality. The meter will ensure continuous supply of power under all circumstances [99].

In contrast, the shiftable appliances can be controlled by the smart meter and are di-

vided into time-shiftable and adjustable appliances. For time-shiftable appliances, such

as washing machines and dryers, the operational time-slot can be shifted but without

varying the amount of power consumption during the slot. As for adjustable appli-

ances, such as electric vehicles, both the operational time-slot and the power can be

varied.

For each customer n ∈N, the set of non-shiftable appliances is denoted as

Ans = {1, ....,ans, ....,Ans},ans ∈Ans ⊂Ans, (3)

the set of time-shiftable appliances is denoted as

Ant = {1, ....,ant , ....,Ant},ant ∈Ant ⊂Ant , (4)

and the set of adjustable appliances is denoted as

And = {1, ....,and , ....,And},and ∈And ⊂And . (5)

It can be noted that An =Ans ∪Ant ∪And and an is a generalized notation which repre-

sents any of the appliances types.

At each hour h ∈H, the electricity generation cost is determined by the follow-

ing thermal generators cost function [100],

C(Lh) = ζ
hLh2

+ ε
hLh +υ

h, (6)

where Lh ≥ 0 is the total system load, i.e, Lh =
N
∑

n=1

An
∑

an=1
xh

n,an
. Also, ζ h(cents/kW)> 0,

εh(cents/kW), and υh(cents/kW) ≥ 0 are the fuel cost coefficients of the generator, at

each hour h ∈H.
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It should be noted that the cost function in (42) is an increasing and convex

function which ensures that the cost can grow rapidly as the aggregated load increases.

This can effectively convince customers to shift their load from peak hours to non-peak

hours, thereby flattening the overall load curve and reducing the total generation cost.

3.3. Residential Load Control

The main task of each customer’s smart meter is to determine the optimal energy

consumption scheduleXXXn. In this section, the constraints and the feasible choices of the

energy consumption schedules based on customers’ preferences, are identified.

Each customer is required to specify the beginning αan and the end βan of the

set of preferred intervals over which an appliance can be scheduled, where

αan = {αan,1, .....,αan,Wan
}, wan ∈Wan = [1,2, ....,Wan], (7)

and

βan = {βan,1, .....,βan,Wan
}, wan ∈Wan = [1,2, ....,Wan], (8)

where Wan is the set of preferred intervals for an appliance an. It should be noted that

these intervals are chosen based on the customer’s preferences. Clearly,

βan,wan
≥αan,wan

, an ∈An, wan ∈Wan. (9)

For each customer n, the predetermined daily energy consumption for appliance

an is denoted as En,an . The scheduled daily energy consumption for appliance an is

equal to its predetermined daily consumption, that is

Wan

∑
wan=1

βan,wan

∑
h=αan,wan

xh
n,an

= En,an, xh
n,an

= 0, ∀h ∈H\Han,∀an ∈An,∀n ∈N, (10)

where Han ≡ [αan,βan ], i.e., all time-slots that are within the set of preferred intervals

kan ∈Kan . The mathematical operator "\" means "except".
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It should be noted that the total electricity consumption during a day does not

change as the aim of the work is to shift the load not to reduce it.

For each appliance an, the preferred interval provided by each customer needs

to be larger than or equal to the interval needed to finish the operation. Let ∆an be the

time needed for an appliance an to finish its operation. Then,

∆an ≤ βan−αan,∀an ∈An. (11)

The minimum standby power level for each appliance an is denoted as λ min
an

,

and its maximum power level as λ max
an

. Standby power refers to the power consumed by

each appliance while it is switched off or it is in a standby mode. Then,

λ
min
an
≤ xh

n,an
≤ λ

max
an

, ∀h ∈Han,∀an ∈An, ,∀n ∈N. (12)

As previously mentioned, the operation of the non-shiftable appliances has strict

energy consumption scheduling constraints. For example, a freezer may have to be on

all the time. In that case, αans ,wans
= 1 and βans ,wans

= 24. Furthermore, the hourly power

requirement is fixed at δ h
ans ,wans

during its working period such that

xh
n,ans

= δ
h
ans ,wans

,∀h ∈Hans
. (13)

As for adjustable appliances, the power consumption may vary within the range

in,

λ
min
and
≤ xh

n,and
≤ λ

max
and

, ∀h ∈Hand
, (14)

depending on the type of the appliance and customers’ preferences.

For any time-shiftable appliance ant that consumes En,ant
, if only the constraints (9),

(10), (11), and (12) are imposed, then the energy consumption schedule will ensure

supply of En,ant
over the preferred set of intervals [αant

,βant
]. For example, if an ap-

pliance requires 2 kWh to finish its operation, the resultant schedule should ensure 2

kWh energy supply at the end of the interval, however, this power can be distributed

in any possible way. For example, the consumption vector can have 0.5 kW for two

hours, 0.25 kW for another 4 hours and zeros for the rest. Mostly, time-shiftable ap-
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pliances cannot operate in such manner as they have fixed power consumption pat-

terns. For example, it may require fixed 1.5 kW for the first hour and another 0.5 kW

for the second hour of operation. Hence, the constraints in (9), (10), (11), and (12)

alone are not sufficient to ensure feasible energy scheduling for time-shiftable appli-

ances. The fixed power consumption pattern constraint of time-shiftable appliances

can be modeled as follows. First, it is important to notice that all the previous con-

straints are formulated using linear programming, which cannot formulate the last dis-

cussed constraint. In order to deal with this constraint, a non-linear mixed-integer

programming framework is applied. For each time-shiftable appliance ant , define a

fixed consumption pattern as πant
= [π1

ant
,π2

ant
, ....,πH

ant
]T and a binary integer vector as

yant
= [y1

ant
,y2

ant
, ....,yH

ant
]T ,yh

ant
∈ {0,1}, where 0 and 1 indicate that the appliance is off

and on, respectively. The vector yant
is used as the control switch for the time-shiftable

appliance. Moreover, let

Πant
=


π1

1 π2
1 π3

1 . . . πH
1

π1
2 π2

2 π3
2 . . . πH

2

. . . . . . . . . . . . . . . . . . . . . . . . .

π1
Ant

π2
Ant

π3
Ant

. . . πH
Ant


be the cyclic shifts of the pattern πant

. The schedule xxxn,an has to be one of the cyclic

shits in Πant
. Therefore, the consumption schedule for a time-shiftable appliance can

be written as

xn,ant
=Πant

yant
. (15)

3.4. Energy Consumption Billing Mechanism

In this work, the billing mechanism proposed in [2] is utilized and improved.

This billing mechanism satisfies the two assumptions below.

• Let bn denote the daily energy bill for each customer n ∈N. bn should represent

the customers’ total energy bill and relate it to the total system generation cost,

that is.
N

∑
n=1

bn ≥
H

∑
h=1

C(Lh), (16)
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where the left-hand side is the total daily bill for all customers and the right-

hand side is the total system daily generation cost. Without loss of generality,

throughout the work, the billing mechanism is assumed to be budget balance, i.e.,

∑
N
n=1 bn = ∑

H
h=1C(Lh).

• It is further assumed that every customer’s bill is affected by the total load of all

other customers in the system. That is, a customer is charged in proportional to

his daily load and all others’ daily load. Mathematically speaking,

N

∑
m=1

bm = bn

H
∑

h=1
Lh

An
∑

an=1
En,an

,∀n ∈N. (17)

The energy billing mechanism that satisfies both assumptions in (16) and (17) is as

follows,

bn = ψn

H

∑
h=1

C
(

Lh−
An

∑
an=1

xh
n,an

)
,∀n ∈N, (18)

where ψn =

An
∑

an=1
En,an

H
∑

h=1
Lh

.

3.4.1. Fair billing mechanism. Each smart meter provides each customer with

the near-optimal energy consumption schedules based on the minimization of the billing

mechanism in (18). A common assumption in the literature is that all customers who

decide to participate in ADSM programs would fully commit to the assigned schedules

by the smart meters. The usual argument that supports this assumption is that since

customers benefit financially from abiding by the assigned schedules, there would be

no reason to violate them. However, this assumption is not always true, and violations

could happen any time after announcing the assigned schedules. This requires the in-

crease of energy generation that increases the cost of energy during the violation time.

Up to our knowledge, all the works in the literature have considered that the extra cost

caused by customers’ violations is divided among all customers. This would have a

negative impact on the fairness level of the ADSM program as customers who abide by

their schedules and those who do not are both equally penalized. In this work, this vi-

35



olation penalty fairness aspect is considered. The violation cost is divided only among

customers who do not abide by their schedules. In addition to achieving fairness be-

tween violators and non-violators, it is important to guarantee fairness among violators

themselves.

3.4.2. Alternative billing mechanism. In this work, a fair billing mechanism

to address how system violations should be dealt with is proposed and investigated. In

order to distribute the increase in the cost of energy among the customers who violate

the assigned schedules, the penalty factor for customer n at h ∈H is calculated by,

Ph
v =

lh
n− lh∗

n
V
∑

i=1
(lh

i − lh∗
i )

, v ∈ V, (19)

where lh
n is the actual hourly load after assigning the schedules of customer n, lh∗

n is the

near-optimal hourly scheduled load of customer n, and V = [1, ....v, ....V ] is the set of

violators at h ∈H. The penalty factor for non-violators at h ∈H,

Ph
v = 0. (20)

The bill for any customer n at h ∈H,

bh
n = bh∗

n +Ph
v (C(Lh)−C(Lh∗)), (21)

where bh∗
n is the hourly bill if customer n abides by the assigned consumption schedule.

C(Lh) is the actual total system generation cost and C(Lh∗) is the total near-optimal

system generation cost at h ∈H.

The end of day bill for customer n is

bn =
H

∑
h=1

bh
n. (22)

In the aftermath, all customers who abide by their schedules do not get penalized or

affected by violations of others. Furthermore, fairness among violators themselves is

maintained as the penalty factor is proportional to the amount and time of the violation.
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3.5. Energy Consumption Aggregative Game Formulation

In this section, an aggregative energy consumption game to model the strategic

behavior of the customers in the SSMC, is investigated. All customers are assumed to

be selfish as they need to minimize their individual energy bills through the scheduling

of a day-ahead energy consumption. In particular, each customer n aims to minimize

the total energy bill through the minimization of the total system cost in (18). As illus-

trated in (18), each customer’s bill depends on how he and all other customers schedule

their consumption which naturally leads to the formulation of the following aggregative

energy consumption game.

• Players: customers in set N.

• Strategies: each customer n selects the consumption profile XXXn that maximizes

the payoffs and satisfies all the constraints.

• Payoffs: for each customer n, the payoff function is −b∗n, where b∗n is the total

daily electricity bill.

where

b∗n = ψn min
XnXnXn

H

∑
h=1

C
(

Lh−
An

∑
an=1

xh
n,an

)
, (23)

subject to

βan,wan
≥αan,wan

, an ∈An, wan ∈Wan,

Wan

∑
wan=1

βan,wan

∑
h=αan,wan

xh
n,an

= En,an, xh
n,an

= 0, ∀h ∈H\Han,wan ∈Wan,

∆an ≤ βan−αan,

λ
min
an
≤ xh

n,an
≤ λ

max
an

, ∀h ∈Han,

xh
n,ans

= δ
h
ans ,wan

,∀h ∈Hans
,

λ
min
and
≤ xh

n,and
≤ λ

max
and

, ∀h ∈Hand
,

xn,ant
=Πant

yant
.

It is worth pointing out that the (23) function is a nonlinear mixed-integer optimiza-

tion model, where the non-linearity in the model is attributed to the quadratic term in
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the function. As a result, the aggregative game should be treated as a non-continuous

game. The existence and uniqueness of the Nash Equilibrium (NE) points cannot be

guaranteed as in some of the continuous games. There may be one, none or multiple

NE points in the game. However, in this work, the effectiveness of the aggregative game

is demonstrated through numerical and simulation results.

3.6. Energy Consumption Scheduling Algorithm Based on Tabu Search (TS)

As a result of the different domains of the variables of each individual cus-

tomer’s schedule (i.e., integer and continuous variables), the energy consumption prob-

lem in (23) is a nonlinear mixed-integer optimization problem, which is known as NP-

hard. A variety of exhaustive search techniques could be used to solve NP-hard prob-

lems such as the BB [101]. However, these exhaustive techniques are neither efficient

nor practical as their computational time and complexity increase exponentially with

the increase in the problem size. This section develops an efficient heuristic energy

consumption scheduling algorithm based on TS. In addition to the ability of achieving

the near-optimal energy schedules, the computational time is reduced by hundred mul-

tiples compared to the benchmark energy consumption scheduling algorithm based on

BB. In this work, the term "near-optimal" is defined based on the result of the algorithm

based on BB, as it is an exhaustive search technique that can reach the optimal point of

the algorithm but on the expense of computational time. Also. the convergence of the

proposed algorithm is decided upon the convergence of the algorithm based on BB.

At each TS iteration of the optimization of each customer’s schedule, a variety of

solutions that are neighbors’ of the current solution are generated and evaluated in terms

of the cost. By employing a variable memory structure of recent candidate solutions,

TS is able to escape from a local optimum and explore other regions of the search space.

The energy consumption algorithm based on TS that is run in each customer’s

smart meter is shown in Algorithm 1. The Algorithm starts with a random initial energy

schedule for all customers in the system except for customer n (∀m ∈ N\{n}). Each

customer’s smart meter solves the optimization problem in (23) using the TS method in

Algorithm 2. The resultant total load at each hour is broadcasted to all other customers
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and the loop is executed until no updated schedules are announced. At the end of H

time-slots, customers are charged based on the billing mechanism in (22) to assure that

system violations are treated in a fair manner.

For each customer n, the output of the heuristic method in Algorithm 2 is an

energy consumption schedule described by the two lists denoted as TTT and QQQ. The list TTT

contains the operational time-slots for the set of appliances An and the list QQQ contains

the power consumption for the set of appliances An for all operational times.

The first step of the heuristic method is to generate an initial schedule (ini-

tial guess) by relaxing the integer constraints and variables of the nonlinear mixed-

integer problem in (23) to continuous variables, which converts the problem to a con-

vex problem that can be solved using Interior Point Method (IPM) technique [102].

The relaxed problem formulation contains only continuous variables and applies the

constraints of the original problem in (23) except (15). Clearly, the output consumption

schedule guarantees feasible energy consumption for the non-shiftable and adjustable

appliances. However, the time-shiftable appliances consumption is not guaranteed to be

feasible as (15) is not always satisfied. Now, the output schedule of the time-shiftable

appliances (TTT,QQQ)ant
of the resultant relaxed problem is tested to check whether the con-

straints in (9), (10), (11), (12), (13), (14) are satisfied or not, using Algorithm 3. If

the output (TTT,QQQ)ant
is feasible, then (TTT,QQQ), i.e., the output schedule of all appliances, is

considered as the global optimal schedule of the system and the process is terminated.

If not, which is usually the case, the scheduled consumption of non-shiftable and ad-

justable appliances are considered as fixed quantities. The schedules of time-shiftable

appliances are randomly generated as such all constraints are satisfied. Once a feasible

schedule (TTT,QQQ) is generated, the process of the TS begins. This initialization method

is used to unify the initial guesses of the TS, BB and P-MCTS methods for fair com-

parison. It should be highlighted that this method of initialization is shown to result

in nearer to optimal solutions than the fully randomized method, as per our numerical

simulations.

Now, TTT and QQQ are added to the Tabu lists T LT LT LTTT and T LT LT LQQQ, respectively, that are

named as such as the schedules they contain are not used as performance benchmarks.

Now, the generation of the neighboring solutions of the current solution (TTT,QQQ) starts as
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follows. A total of G neighbors, not all of which are necessarily feasible, are generated.

Depending on the type of the appliance, each of these neighbors is formed through one

of the following possible operations:

• For time-shiftable appliances

1. Randomly swap two rows in TTTant
.

2. Randomly swap two elements in a column in QQQant
.

• For adjustable appliances

1. Randomly swap two rows in TTTand
.

2. Randomly swap two elements in a column in QQQand
.

3. Randomly shift an element in a column in QQQand
.

4. Randomly shift an element in two columns in QQQant
.

5. Randomly vary the amount of consumption of elements in a column in QQQant
.

As previously mentioned, the smart meter does not have any control over the operation

of non-shiftable appliances so their energy consumption are considered as fixed quanti-

ties during the formulation of the schedules, i.e., no need to schedule them. A summary

of the neighbors generation operations is shown in Algorithm 4.

After generating the neighboring schedules, they are checked if they satisfy the

constraints in (9-15); infeasible solutions are simply discarded. Then, the feasible so-

lutions are tested according to the objective function in (23) that measures the total bill

of a customer. The best neighbor schedule is selected as the one which yields the sys-

tem minimum total cost. This schedule is added to the Tabu lists and set as the current

solution and the above sequence of operations are repeated until there is no decrease

in the total cost or the number of iterations exceeds Z. Once the energy schedule with

the minimum cost is chosen, it is broadcasted to all other customers and Algorithm 1

continues until the system near-optimal cost objective is satisfied.

It is worth mentioning that as all other heuristic optimization techniques, the op-

timality of the TS method cannot be proven nor guaranteed [18]. Thus the convergence
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Algorithm 1 Energy Consumption Game: Executed by each customer n ∈N.

Randomly initialize lh
m,∀m ∈N\{n},∀h ∈H

repeat
At random time instancesDo

Run Algorithm 2 to solve (23)
if XXXn changes compared to current schedule

Update XXXn according to the new solution
Broadcast a control message to announce XXXn to the other smart meters

across the system
end

end
if a control message is received then

Update Lh,∀m ∈N\{n},∀h ∈H accordingly
end if

until No smart meter announces any new schedule
At h = H
for h = 1 : 1 : H do

if lh
n− lh∗

n = 0 then
bh

n = bh∗
n +Ph

v (C(Lh)−C(Lh∗)), Ph
v = 0

else
bh

n = bh∗
n +Ph

v (C(Lh)−C(Lh∗)), Ph
v 6= 0

end if
end for

of the proposed algorithm cannot be proven. However, in this work, the effectiveness

of the algorithm based on TS is demonstrated through numerical and simulation re-

sults. In addition, the accuracy of the algorithm results is shown to be very close to the

benchmark algorithm based on BB as will be illustrated later on.

Table 1 presents the definition of the parameters introduced in Algorithms 1, 2,

3, and 4 which are not included in the text.

3.7. Simulation Results

3.7.1. Scenario setup. In this section, simulation results are presented in order

to assess the performance of the proposed group ADSM program in the SSMC system.

The simulations are performed on PCs with the configurations shown in Table 2. In

the considered system, we have 30 customers (N = 30) scheduling their energy con-

sumption for the next 24 hours. All customers have the same set of shiftable and non-
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Algorithm 2 Heuristic Scheduling Overview.

Set z = 0, MOLD = 0, MNEW = 1, Feasibility_Flag = 0,TTT ∈ RH×An , and QQQ ∈ RH×An

Relax integer constraints and variables in (23)
(TTT,QQQ)⇐ apply IPM to solve the relaxed problem
Feasibility_Flag = CHECK_FEASIBILITY (TTT,QQQ)ant
if Feasibility_Flag = 0 then

while Feasibility_Flag = 0 do
TTTat ⇐ κant

Randomly generated list of time-slots from [1, ....,Hant
]

Sort the elements of TTTant
in increasing order

Feasibility_Flag = CHECK_FEASIBILITY(TTT,QQQ)ant
end while

else
TTTopt ⇐ TTT

QQQopt ⇐ QQQ

end if
T LT LT LTTT ⇐ TTT

T LT LT LQQQ⇐ QQQ

while z≤ Z and |MNEW −MOLD| ≤ η do
{TTT1,TTT2, ...,TTTG,QQQ1,QQQ2, ...QQQG}=

GENERATE_NEIGHBORS (TTT,QQQ)

gopt ⇐ ming
H
∑

h=1
Ch
(
TTTg,QQQg

)h

MNEW ⇐
H
∑

h=1
Ch
(
TTTgopt ,QQQgopt

)h

if MNEW < MOLD then
z⇐ 0

else
z = z+1

end if
MOLD⇐ MNEW
T LT LT LTTT ⇐ {T LT LT LTTT,TTTopt}
T LT LT LCCC ⇐ {T LT LT LQQQ,QQQopt}
TTT⇐ TTTopt
QQQ⇐ QQQopt

end while

shiftable appliances. The set of appliances and their consumption specifications are

listed in Table 3 [103]. As previously mentioned, the smart meters have only control

over the time-shiftable and adjustable appliances. As for the non-shiftable appliances,

they have strict consumption requirements that must be fulfilled all the time. The in-

dividual consumption patterns are formulated according to the constraints in (23). For

example, for the fridge and freezer, a fixed amount of consumption has to be allocated
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Algorithm 3 Function for Candidate Solution Feasibility Check.

Feasibility_Flag = CHECK_FEASIBILITY(TTT,QQQ)
Set Feasibility_Flag = 0
while y 6= 0 do

for an = 1 : 1 : An\{AAAns} do
for wan = 1 : 1 : Wan do

if
βan,wan

∑
h=αan,wan

QQQ(h,an) = Ean,wan

&& βan,wan
≥ αan,wan

then
y = 1

else
y = 0

end if
for h = αan,wan

: 1 : βan,wan
do

if λ min
an
≤QQQ(h,an)≤ λ max

an
then

y = 1
else

y = 0
end if
if an\{AnAnAnan} then

if λ min
an
≤QQQ(h,an)≤ λ max

an
then

y = 1
else

y = 0
end if

end if
end for
if an ∈Ant then

if QQQ(:,ans) = yyyant
�πant

then
y = 1

else
y = 0

end if
end if

end for
end for

end while

all the time, i.e., xh
n,an

= 0.2 kW,∀h ∈ Han . As for the electric vehicle (adjustable ap-

pliance), the allowed battery charger power consumption range is formulated as 0.2 kW

≤ xh
n,in ≤ 1kW∀h ∈ Haa . For the time-shiftable appliance, washing machine, the fixed

power pattern is defined as πat = [1,0.5,0, ....0]T ,∀h ∈ Hat . The energy cost func-
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Algorithm 4 Function for Generation of Neighboring Solutions.

FUNCTION {TTT1,TTT2, ...,TTTG,QQQ1,QQQ2, ...QQQG}= GENERATE_NEIGHBORS
for g = 0 : 1 : G do
TTT0 = TTT

QQQ0 =QQQ

III⇐sample (H, 2)*
III1⇐ sample (Ans , 2)
TTT(III(1),III1(1))g+1⇐TTT(III(2),III1(2))
TTT(III(2),III1(2))g+1⇐TTT(III(1),III1(1))
III3⇐ sample (H, 2)
III4⇐ sample (An, 1)
QQQant ,and

(III3(1),III4(1))g+2⇐QQQant ,and
(III3(2),III4(1))

QQQant ,and
(III3(2),III4(1))g+2⇐QQQant ,and

(III3(1),III4(1))
III5⇐ sample (H, 2)
III6⇐ sample (Ans , 1)
QQQand

(III5(1),III6(1))g+3⇐QQQand
(III5(2),III6(1))+QQQaa(III5(1),III6(1))

III7⇐ sample (H, 2)
III8⇐ sample (An,2)
QQQand

(III7(1),III8(1))g+4⇐QQQand
(III7(1),III8(1))+QQQand

(III7(2),III8(2))
III9⇐ sample (H, 2)
III10⇐ sample (An,1)
PEPEPE ⇐ sample ({1/100, ..,100/100},1)
QQQand

(III9(1),III10(1))g+5⇐(PEPEPE)×QQQand
(III9(1),III10(1))

QQQand
(III9(2),III10(1))g+5⇐(1−PEPEPE)×QQQand

(III9(1),III10(1))+QQQand
(III9(2),III10(1))

end for
for g = 1 : 1 : G do

Feasibility_Flag = CHECK_FEASIBILITY (TTTg,QQQg)
if Feasibility_Flag = 0 then
TTTg⇐φ

QQQg⇐φ

end if
end for
* The function III = {sample(Y,X)} implies that the subset III contains X elements from the set
Y , drawn randomly without replacement.

tion is assumed to be as in (42). The parameters values are ζ h = 0.3,εh = 0.2 and

υh = 0.08 cents during daytime hours (8:00 am to midnight) and ζ h = 0.2, εh = 0.1

and υh = 0.05 cents during night hours (midnight to 8:00 am). Moreover, the billing

system is assumed to be budget balanced, i.e, the total system cost is equal to the total

bills of all customers.
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Table 1: Algorithm 1, 2 ,3, and 4 parameters definition

Parameter Definition
Do Random time instance
z Iteration number
Z Total number of iterations

MOLD Total system cost at (z−1)th iteration
MNEW Total system cost at (z)th iteration

κant
Generated list of time-slots

η Very small constant ≤ 0.0001
TTTopt Optimal operational time-slots list
QQQopt Optimal power consumption list

y Logic parameter, y ∈ {0,1}
QQQ(h,an) An element in QQQ

QQQ(:,an) A column in QQQ

TTTg gth generated time-slots list
QQQg gth generated power consumption list

III1 - III10 Randomly generated lists/elements from (TTT,QQQ)
PEPEPE Constant ∈ [0.01,1]

In order to make the customers’ load profiles as close as possible to practical

profiles, the following procedure is followed. Fig. 5 provides a typical load profile for a

residential customer [104]. First, for each customer n ∈N, the "Low limit" and "Upper

limit" at each hour h ∈H are formed by, respectively, adding a random real number to

the corresponding value in Fig. 5. After that, the load profile of the customer at each

hour h, is randomly chosen between the corresponding "Low limit" and "Upper limit".

Our numerical results show that the total energy load of a customer ranges between 20

kWh to 45 kWh, which represents a typical residential customer load [104].

The timing in Algorithm 1 is based on a round-robin scenario. In this scenario,

at each customer’s turn, the local scheduling computation is performed and then the

energy consumption schedule is updated. After that, the energy source gets informed

about the customer’s updated schedule, then randomly another customer is allocated for

the next turn. This procedure continues until the convergence of Algorithm 1. By this

mechanism, the energy source ensures that every customer takes a turn once in a while.

After incorporating all the constraints together, the energy consumption schedul-

ing in Algorithm 1 is run based on the TS, BB, and P-MCTS methods. As for the
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Figure 5: Typical energy consumption for customer n

Table 2: PC configurations

Processor Intel (R) Core (TM) i7-3770S CPU@ 3.10 GHz 3.1 GHz
Installed Memory (RAM) 8.00 GB (7.89 GB usable)

System Type 64-bit operating system

P-MCTS method, the algorithm in [87] is run as proposed. In order to make a fair

comparison between the three methods, the initial guess is unified. As previously men-

tioned, the initial guess is formalized through the relaxation of the integer constraints

and variables in (23) such that the problem can be solved using IPM. The three methods

are compared in terms of their computational time and results quality.

3.7.2. Results and discussion. Figures 6 and 7 show the total system energy

consumption and the associated costs, respectively, for the cases when customer’s n

smart meter does not deploy an energy consumption scheduling algorithm, runs the

algorithm based on TS, runs the algorithm based on BB, and runs the algorithm based

on P-MCTS. All system constraints are fulfilled for the cases when the three algorithms

are run in the smart meters. Clearly, both algorithms based BB and TS have almost
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Table 3: The set of appliances and their power requirements.

Name Type Power Requirement
Microwave oven Non-shiftable 1.5 kW

Refrigerator-freezer Non-Shiftable 1.32 kW
LCD Television Non-shiftable 0.23 kW

Energy kettle Non-shiftable 2 kW
Lighting (10 standard bulbs) Time-shiftable 1 kW

Clothes dryer Time-shiftable 3.4 kW
Clothes iron Time-shiftable 2.4 kW
Dishwasher Time-shiftable 1.5 kW

Vacuum cleaner Time-shiftable 1.6 kW
Washing machine Time-shiftable 1.5 kW

Electric vehicle Adjustable
0.34 kW per mile

(λ min
1 = 0.2 kW,λ max

1 = 3 kW)

Water boiler Adjustable
1.5 kW

(λ min
2 = 0.1 kW,λ max

2 1.5 kW)

have converged to the same results, hence the convergence of the algorithm based on

TS is achieved. As for the algorithm based on P-MCTS, the result is not as accurate as

the algorithm based on TS, hence its convergence is not achieved.

As shown in Fig. 7 when the smart meter does not deploy an energy consump-

tion scheduling algorithm, the PAR is 1.6303 and the total electricity consumption cost

is $227.9914. Moreover, when the algorithm based on TS is deployed in the smart

meter, the total electricity consumption cost is $194.9635 and the PAR is 1.2578. For

the case when the smart meter deploys the algorithm based on BB, the total electricity

consumption cost is $194.9261 and the PAR is 1.2578. In addition, when the smart

meter deploys the algorithm based on P-MCTS, the total electricity consumption cost is

$199.3983 and the PAR is 1.4326. The PAR values are calculated using the following

formula,

PAR =
H maxh lh

n
N
∑

n=1

An
∑

an=1
En,an

. (24)

Evidently, the differences between the algorithm based on BB and TS resultant costs

and consumption schedules are negligible. Hence, for the proposed algorithm based

on TS, we can claim that the optimal hourly scheduling with a minimum possible peak

is achieved. In addition, the electricity consumption curve is more flattened and more
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evenly distributed over the day. In contrast, the algorithm based on P-MCTS does not

result in the same minimal cost as the case of the algorithm based on TS, the PAR value

is higher and the demand curve is not flatten. It can be said that the main objective of the

proposed program is not fully achieved when using the algorithm based on P-MCTS.

The effectiveness of the algorithm based on TS method lies on the computational

time savings compared to the algorithm based on BB and the algorithm based on P-

MCTS. The computational time difference between the three algorithms does not vary

much for small number of customers. However, the differences become in hundred

multiples compared to the other two algorithms as the number of customers increases.

Fig. 8 shows the computational time difference for different scenarios and for different

number of customers.

In addition, as shown in Figures 9 and 10, the solution quality of the algorithm

based on TS is very close to the algorithm based on BB as the total system cost and PAR

values for different number of customers and scenarios are very similar. In contrast,

the algorithm based on P-MCTS does not perform well as the number of customers

increases. It can be stated that, with a lot of experiments and scenarios, the algorithm

based on TS outperforms the algorithms based BB and P-MCTS in terms of efficiency.

In order to assess the system performance in case of violations, arbitrary 9 out of

the 30 customers violate the assigned schedules with different loads at different times.

Fig. 11 shows the impact of the violations on the assigned schedule provided to them.

Obviously, all customers’ bills payment are increased due to the increase in the total sys-

tem load and hence the total system cost. Non-violators’ bills are increased although

they are committed to their assigned schedules, which in fact could have a negative

impact on the level of contribution and involvement of customers on achieving the pro-

gram objectives. The proposed fair billing mechanism ensures that all customers who

abide to their assigned schedules do not get penalized or affected by others’ violations

as shown in Fig. 12. Furthermore, fairness among violators themselves is maintained as

the penalty factor is proportional to the amount and time of the violation. For example,

the penalty factor of customer 30 is the least among the violators as he/she violates the

assigned schedules mainly during off-peak hours and in less total amount of electric-

ity than all other customers. It can be stated that, with a lot of other experiments and
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scenarios, the proposed billing mechanism outperforms the billing mechanisms in the

literature in terms of fairness in the case of customers’ violations.
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Figure 6: Energy consumption when (a) algorithm is not deployed in smart meter (b)
algorithm based on TS is deployed in smart meter (c) algorithm based on BB is deployed
in smart meter (d) algorithm based on P-MCTS is deployed in smart meter.
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Figure 7: Energy consumption cost when (a) algorithm is not deployed (b) algorithm
based on TS is deployed in smart meter (c) algorithm based on BB is deployed in smart
meter(d) algorithm based on P-MCTS is deployed in smart meter.
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Figure 8: Computational time of the algorithm based on TS, algorithm based on BB
and the algorithm based on P-MCTS.

Figure 9: Total system cost comparison for different number of customers and scenar-
ios.
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Figure 10: PAR for different number of customers and scenarios.
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Figure 11: Customers’ bills without applying violation penalty.
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Figure 12: Customers’ bills with applying violation penalty.
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Chapter 4: Energy Consumption Scheduling for a Multi-Sources
Multi-Customers (MSMC) System

4.1. Introduction

RESs, particularly wind and solar, are becoming significant power generation

sources in the world. However, their intermittency and inherent stochastic nature re-

sult in huge fluctuations in the power generation, which jeopardize the balance be-

tween supply and demand. Besides the development of two-way communication and

power infrastructures, and applying the concept of group ADSM, a microgrid is one

of the very promising solutions proposed by the smart grid to support the integration

of RESs and mitigate their intermittency nature. The concept of microgrid represents

the envolvement from the current hierarchical distribution system toward a fully decen-

tralized network [1]. The controlling, resource allocation, and monitoring of the grid

elements can be better handled by the microgrid compared to the current grid due to the

decentralization of geographical areas. Mainly, each microgrid consists of Distributed

Energy Sources (DESs), DSEs, advanced communication infrastructure, Central En-

ergy Management (CEM) unit, and a central energy source. DESs refer to small-scale

power generators such as diesel generators, fuel cells, and RESs. Moreover, DESs can

be either owned by individual customers (e.g., rooftop PV) or by the microgrid (e.g.,

PV farms). A major advantage of DESs is that it brings generated power closer to the

point it is consumed, which may result in fewer thermal losses and a less stressed trans-

mission network. DSEs charging and discharging capability is a practically appealing

solution to smooth out the power fluctuations in DESs, thus improving both the reli-

ability and efficiency of the microgrid. Batteries, flywheels, and pumped storage are

examples of DSEs. The microgrid can operate in two modes: the grid-connected mode

and the isolated mode [1]. Fig. 13 shows a typical topology of a microgrid.

In this chapter, an efficient and fair group ADSM program in the MSMC sys-

tem, is proposed. The program aims at reducing the total system generation cost and

increasing the penetration of RESs. First, the MSMC system model and residential

load control, are illustrated. Then, the proposed energy consumption strategy which
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Figure 13: A typical microgrid topology

combines DEM and game-theoretic approaches, is presented. An energy consumption

scheduling algorithm based on TS, is developed. Finally, numerical and simulation

results for case studies are provided to demonstrate the effectiveness of the proposed

program.

4.2. System Model

In this section, the analytical description of the MSMC system model is pre-

sented. Consider a MSMC system composed of a single fast-responding conventional

generator shared by multiple customers in a microgrid, as shown in Fig. 14. The mi-

crogrid runs in the isolated operating mode, i.e., runs fully independently from the

central grid. In order to be capable of trading energy among the different parties in

the system and reliably implement the proposed group ADSM program, two-way flow

of power and information networks are utilized. Each customer’s household consists

of a PV-based active generator, a smart meter and a set of shiftable and non-shiftable

appliances, as shown in Fig. 15.
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Figure 14: Block diagram of the MSMC system model.

The active generator is a combination of a rooftop PV panel and a storage de-

vice. As for the storage device, Lithium-ion batteries are chosen because of their low

cost, high charge and discharge efficiencies, and their wide availability. They are used

as energy storage units in the case of PV overproduction and as energy producers, other-

wise. In this study, the harvested solar power via PV panels is assumed to be predicted

24-hours ahead according to the weather forecasting and the historic database of power

generation. It should be noted that all customers have identical active generators speci-

fications.

The smart meters and the sets of shiftable and non-shiftable appliances are pre-

viously detailed in Section 3.2.

Without loss of generality, it is assumed that each smart meter schedules the

energy consumption for a period of a full day and night, H = 24, in advance, and

time granularity of one hour. For each customer n ∈ N, the energy load profile of all

appliances an ∈An in H time-slots is defined as

XXXn = [xn,1, ....,xn,An] ∈ R(H×An) (25)

where the energy load profile by each appliance an is

xn,an = [x1
n,1, ....,x

H
n,an

]T . (26)

In this chapter, please note that the definition of a "day" means the periods from

sunrise to sunset.
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Figure 15: The MSMC system model.

The solar energy consumption by customer n for all appliances an ∈ An in H

time-slots is

ZZZn = [zn,1, ....,zn,An] ∈ R(H×An) (27)

where the solar energy consumption by each appliance a is

zn,an = [z1
n,an

, ....,zH
n,an

]T . (28)

The energy consumption from the conventional source for all appliances an ∈An

in H time-slots is defined as

OOOn = [on,1, ....,on,An] ∈ R(H×An) (29)

where the energy consumption from the conventional source by each appliance an is

on,an = [o1
n,an

, ....,oH
n,an

]T . (30)
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The energy consumption from the battery stored energy for all appliances an ∈

An in H time-slots is as follows

BBBn = [bn,1, ....,bn,An ] ∈ R(H×An) (31)

where the energy consumption from the battery stored energy by each appliance a is

bn,an = [b1
n,an

, ....,bH
n,an

]T . (32)

The energy load profile in (25) can be rewritten as follows,

XXXn = [xn,1, ....,xn,An ] =ZZZn +OOOn +BBBn, (33)

where

xn,an = zn,an +on,an + zn,an. (34)

Please refer to Section 3.2 for the modeling of shiftable and non-shiftable appliances.

4.2.1. Fast-responding conventional generator. A fast-responding conven-

tional generator shared by N customers is considered. The generator is only used to

compensate for the mismatch between the load and solar energy supply. The generator

is assumed to be a micro gas turbine.

In order to minimize the energy losses and air pollution at each start of the

micro gas turbine, the gas turbine always works. Therefore, in the case of sufficient

solar energy production, the turbine is forced to work with the lowest energy level

EG,min =
1
2 EG,max,where EG,max is the generator rated energy [105].

4.2.2. Rooftop photovoltaic (PV) panel model. The PV power profile is fore-

tasted 24-hours ahead using weather forecasting and historical database of PV power

generation. The forecaster obtains power data each an hour, rh
p. PV panels provide

electrical power only during the day with a power peak around the midday. Moreover,

it is assumed that the PV panels work with a Maximum Power Point Tracking (MPPT)

algorithm [106].
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For the solar energy generation estimation, let us define the initial time point

as h0 (start of the day) and the duration of the day as ∆D. It should be noted that

both parameters depend on the season and the weather conditions. The estimated solar

energy production of the PV during each h ∈H can be calculated from the PV power

forecasting data, that is

rh
e =

∫ h0−(γe−1)te

h0+γete
rh

p dh = te rh0+γete
p , (35)

where γe ∈ {0,1, ....,23}.

4.2.3. Storage model. In this work, it is assumed that all customers’ storage

batteries have identical practical constraints such as charging and discharging efficiency,

leakage rate, capacity, and maximum charging rate [107]. In order to increase the life-

time of the battery and avoid deep charging, undercharging, and overcharging, a single

charging and discharging cycle per day and night is considered.

For each customer n, the net storage vector for all time-slots h ∈H is computed

as

sn = sn+− sn−, sn−,sn+ ≥ 0,∀h ∈H, (36)

where sn = [s1
n, ..,s

h
n, ..,s

H
n ]

T , sn+ = [s1
n+, ..,s

h
n+, ..,s

H
n+]

T is the energy charging profile,

and sn− = [s1
−n, ..,s

h
n−, ..,s

H
n−]

T is the energy discharging profile.

Let 0 < µ+ ≤ 1 and µ− ≥ 1 be, respectively, the charging and discharging effi-

ciencies. The effective amount of stored energy depends on the battery efficiency, that

is

• If sh
n+ is drawn from the PV panel to the battery, then only sh

n+ µ+ is effectively

charged.

• If sh
n− is required to be discharged from the battery, then sh

n− µ− should be dis-

charged.

Moreover, the charge level of the battery at h ∈H can be given as

qh
n = σqh−1

n +µT Sh
n, 0 < σ ≤ 1, (37)
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where µ= [µ+,µ−]
T , Sh

n = [sh
n+,s

h
n−]

T , and σ is the battery leakage rate which is used

to represent the decrease in the energy level over time. qh−1
n is the charge level at the

previous hour which is reduced by a factor of σ .

Furthermore, it is assumed that the final charge level qH
n must be approximately

the same as the initial charge level qh0
n , thus

|qH
n −qh0

n | ≤Θ, Θ≥ 0, (38)

where Θ is sufficiently small constant.

In addition, the stored energy level must be within an acceptable range, that is

−σqh−1
n ≤ µT Sh

n ≤ cn−σqh−1
n ,h ∈H, (39)

where cn is the capacity of the battery.

Additionally, the maximum charging rate cannot be surpassed such that,

µT Sn(h)≤ smax. (40)

In practice, there are other costs associated with batteries energy storage such

as installment cost, operational cost, and aging cost that should be taken into account

for the long-term battery management. For the purpose of simplicity, these factors are

ignored in this study.

4.2.4. Energy generation cost model. At each time-slot h ∈ H, the system

total conventional energy that is required to be generated by the micro gas turbine is,

Lh
G =

N

∑
n=1

An

∑
an=1

oh
n,an

,∀h ∈H (41)

The generation cost at each time-slot h can be approximated by a quadratic function,

that is,

C(Lh) = ζ
h(Lh

G)
2 + ε

hLh
G +υ

h, (42)
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where ζ h(cents/kW)> 0, εh(cents/kW), and υh(cents/kW) ≥ 0 are the fuel cost coef-

ficients of the generator, at each hour h ∈H.

For each customer n, the solar power production cost is assumed to be negligi-

ble.

The energy selling price function by each customer n to the microgrid is defined

as follows,

Ph
Ωn

= Φ
h(Ωh

n)
2, Φ

h > 0,h ∈H, (43)

where Ωh
n ≥ 0 is the sold energy by customer n to the microgrid at h ∈H.

4.3. Residential Load Control

The main task of the smart meter in each customer’s household is to determine

the near-optimal energy consumption scheduling vector XXXn. Let us identify the con-

straints and the feasible choices of the energy consumption scheduling vectors based on

customers’ preferences. Similar to the SSMC system, the constraints of the shiftable

and non-shiftable appliances in (9), (10), (11), (12), (13), and (15) must be satisfied.

It should be noted that the variables zh
n,an

,oh
n,an

and bh
n,an

combined have to satisfy the

aforementioned constraints.

In addition to the previously mentioned constraints, (36-40) must be fulfilled

to increase the battery lifetime and guarantee proper charging and discharging process.

Also, the micro gas turbine has a minimum generation amount that must be used during

all time-slots and is divided equally among the system customers, that is

EGn,min =
EG,max

2N
, n ∈N. (44)

Without loss of generality, it is assumed that any amount of power can be traded be-

tween the microgrid and the customers. In other words, any amount of power can be

sold/bought by/to customers and the microgrid.

For each customer n, two power generation sources are considered: an active

generator, and a micro gas turbine. As no solar power is available during the night, the
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energy consumption strategy is performed separately for the night and for the day.

Each customer is required to specify the most preferable consumption schedule

XXXnp , which is not necessarily the optimal schedule,

XXXnp = [xnp,1, ....,xnp,An] ∈ R(H×An), (45)

where the energy consumption profile for each appliance a is

xnp,an = [x1
np,an

, .....,xH
np,an

]. (46)

This schedule is fulfilled only by the predicted solar energy, stored battery energy, and

minimum micro gas turbine energy. Any remaining energy is fulfilled by the turbine

through the implementation of the game-theoretic approach, which is going to be ex-

plained later on. The benefit of allowing the customers to specify the most preferable

schedule is to increase the comfortability level and motivate them to participate in the

proposed group ADSM program.

4.4. Energy Consumption Scheduling Strategy

In this section, the proposed energy consumption scheduling strategy for the

considered MSMC system, is explained. Each customer n schedules the energy con-

sumption 24-hours ahead.

4.4.1. Energy consumption scheduling using deterministic energy manage-

ment (DEM).

4.4.1.1. Energy consumption scheduling during the day. Due to the environ-

mental and economical benefits of the utilization of RESs, the PV-based active generator

is considered as the prior generation source, and the micro gas turbine is considered as

the backup for the mismatch between the solar production and the load. For the day

time (h0 < h < ∆D +h0), all the available solar energy and minimum micro gas turbine

energy are used to satisfy XXXnp . Any missing energy is satisfied using the turbine based
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on the proposed aggregative game, which will be explained later on. It should be noted

that during the day period only one charging cycle is considered, i.e., no stored energy

is used.

During (h0 < h < ∆D +h0), two cases are considered,

• Case 1: If the available solar energy added to the minimum micro gas turbine

energy is less than the customer’s load, i.e.,

rh
e +EGn,min <

An

∑
an=1

xh
np,an

,n ∈N,h ∈H, (47)

then besides the use of the micro gas turbine minimum energy and available solar

energy, the turbine has to generate the missing energy Eh
Gn

, i.e.,

rh
e +EGn,min +Eh

Gn
=

An

∑
a=1

xh
np,an

,∀n ∈N,∀h ∈H, (48)

where the conventional energy, Eh
Gn

, is scheduled using the proposed aggregative

game, which is going to be explained later on.

• Case 2: If the available solar energy added to the minimum micro gas turbine is

more than the demand, i.e.,

rh
e +EGn,min >

An

∑
an=1

xh
np,an

,∀n ∈N,∀h ∈H, (49)

then the solar energy and the minimum micro gas turbine energy are completely

used. The excess solar energy will be stored in the battery if the charge level,

charging rate, and all other constraints in (36-40) are satisfied. If any of the

constraints is violated, then the excess energy will be traded with the microgrid

at the price of Ph
Ωn

.

Clearly, it is not practical to account only for the total energy per time-slot

without considering the different types of the appliances. Algorithm 5 represents the

proposed methodology of how to deal with the shiftable and non-shiftable appliances

during the day period. The priority is always given to supply the non-shiftable appli-

ances using the available solar and minimum micro gas turbine energy. The number
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of completely or partially supplied non-shiftable appliances is denoted as Âns . Then, if

excess energy is still available, the adjustable appliances are supplied. The number of

completely or partially supplied appliances is denoted as ˆAnd . If extra amount of energy

is still available, then it is used for the time-shiftable appliances. Due to the continuous

operating constraint of time-shiftable appliances, each time-shiftable appliance has to

be fully supplied. If the extra energy is not enough for fully supplying a time-shiftable

appliance, ant , then the energy is either stored or sold to the microgrid based on the

system constraints and energy price. The number of completely supplied appliances is

denoted as Ânt .

4.4.1.2. Energy consumption scheduling during the night. During the night

time, for each h ∈H, two sources of energy are considered: the storage device in the

active generator, and the micro gas turbine. The prior source of energy is considered to

be the storage device. There are two cases that could happen during the night. For both

cases, the storage device has to be discharged and reach the minimum charge level in

order to be ready for the charging in the next day.

• Case 1: If the available stored energy and the minimum micro gas turbine energy

are more than the customers’ load, i.e.,

qh
n +EGn,min >

An

∑
an=1

xh
np,an

,∀n ∈N,∀h ∈H, (50)

then, the priority is given to the stored energy and minimum turbine energy to be

used. The remaining amount of energy is sold to the microgrid at the price of Ph
Ωn

.

This case can be represented as,

qh
n +EGn,min−Eh

Gn
=

An

∑
an=1

xh
np,an

,∀n ∈N,∀h ∈H. (51)

• Case 2: If the available stored energy and the minimum gas turbine energy are

less than the customers’ demand, i.e.,

qh
n +EGn,min <

An

∑
an=1

xh
np,an

,∀n ∈N,∀h ∈H, (52)
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Algorithm 5 Energy Consumption Scheduling During Day Time: Executed by each
customer n ∈N.

for h = h0 : 1 : ∆D +h0 do
if rh

e +EGn,min > 0 then

∑
ˆAns

ans=1 xh
np,ans

← rh
e +EGn,min

else
Break.

end if
if rh

e +EGn,min−∑
ˆAns

ans=1 xh
np,ans

> 0 then

∑

ˆAand
and=1 xh

np,and
← rh

e +EGn,min−∑
ˆAns

ans=1 xh
np,ans

else
Break.

end if
Let ant = 0
for ant = 1 : 1 : Ant do

if rh
e +EGn,min−∑

ˆAns
ans=1 xh

np,Ans
−∑

ˆAnd
and=1 xh

np,and
−ant ≥ xh

np,ant
then

xh
np,ant

← rh
e +EGn,min−∑

ˆAns
ans=1 xh

np,ans
−∑

ˆAnd
and=1 xh

np,and
−ant ,

ant = ant + xh
np,ant

else
Break.

end if
end for
if rh

e +EGn,min−∑
ˆans

ans=1 xh
np,ans

−∑
ˆAns

ans=1 xh
np,and

−∑
Ânt
ant=1 xh

np,ant
> 0 then

if (36 - 40) are satisfied then
qh

n← rh
e +EGn,min−∑

ˆAns
ans=1 xh

np,ans
−∑

ˆAnd
and=1 xh

np,and
−∑

Ânt
ant=1 xh

np,ant

else
Sell to microgrid at price of Ph

Ωn
.

end if
Break.

end if
if rh

e +EGn,min < ∑
An
an=1 xh

np,an
then

rh
e +EGn,min−∑

An
an=1 xh

np,an
= Eh

Gn
& Apply Mechanism in 4.4.2.

else
Break.

end if
end for

then, all the available stored energy and minimum gas turbine energy are used.

The turbine must substitute for the missing energy, that is,

qh
n +EGn,min +Eh

Gn
=

An

∑
an=1

xh
np,an

,∀n ∈N,∀h ∈H. (53)
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Algorithm 6 Energy Consumption Scheduling During Night Time: Executed by each
customer n ∈N.

for h = h0 +∆D : 1 : h0 do
if qh

n +EGn,min > 0 then

∑
ˆAns

an=1 xh
np,ans

← qh
n +EGn,min

else
Break.

end if
if qh

n +EGn,min−∑
ˆAns

ans=1 xh
np,ans

> 0 then

∑
ˆAns

and=1 xh
np,and

← qh
n +EGn,min−∑

ˆAns
ans=1 xh

np,ans

else
Break.

end if
Let ant = 0
for ant = 1 : 1 : Ant do

if qh
n +EGn,min−∑

ˆAns
ans=1 xh

np,ans
−∑

ˆAnd
and=1 xh

np,and
−ant ≥ xh

np,ant
then

xh
np,ant

← qh
n +EGn,min−∑

ˆAns
ans=1 xh

np,ans
−∑

ˆAnd
and=1 xh

np,and
−ant ,

ant = ant + xh
np,ant

else
Break.

end if
end for
if qh

n +EGn,min−∑
ˆAns

ans=1 xh
np,ans

−∑
ˆAnd

and=1 xh
np,and

−∑
Ânt
ant=1 xh

np,ant
> 0 then

Sell to microgrid at price of Ph
Ωn

.
else

Break.
end if
if qh

n +EGn,min < ∑
A
a=1 xh

np,an
then

qh
n +EGn,min +Eh

Gn
= ∑

An
an=1 xh

np,an
& Apply Mechanism in 4.4.2.

else
Break.

end if
end for

The conventional energy, Eh
Gn

, is scheduled using the proposed aggregative game, which

is going to be explained later on. Similar to the methodology used during the day for

the scheduling of the different types of appliances, Algorithm 6 shows the proposed

mechanism during the night.

66



4.4.2. Energy consumption aggregative game formulation. As previously

mentioned, the conventional energy generated, Eh
Gn

, by the micro gas turbine due to

shortage in solar energy supply is scheduled such that the total system cost is reduced.

In this subsection, an aggregative energy consumption game to model the strategic be-

havior of the customers in the MSMC, is investigated. All customers are assumed to be

selfish as they need to minimize their individual energy bills through the scheduling of

a day-ahead energy consumption.

First, once the hourly available solar energy and minimum micro gas turbine

are used, the schedule XXXnp is discarded. The remaining amount of energy needed by

customer n, Eh
Gn

, is scheduled using the following aggregative game mechanism.

As discussed in Section 3.5, the game is formulated naturally based on the fact

that each customer’s bill is affected not only by the customer’s consumption alone but

rather by the aggregated consumption of all other customers as well. In other words,

the total conventional energy generation cost is shared among customers based on their

portions of the load. The aggregative game is identified as follows:

• Players: customers in set N.

• Strategies: each customer n selects the consumption profile OOOn that maximizes

the payoffs and satisfies all the constraints.

• Payoffs: for each customer n, the payoff function is −b∗n,o, where b∗n,o is the near-

optimal total electricity bill.

The billing mechanism is as follows,

b∗n,o = ψn,o min
OOOn

H

∑
h

C
(Ano

∑
ao

oh
n,ao

+Om
h
)
, (54)

where Ao = An\{Âns, Ânt , ˆAnd},ψn,o =

H
∑

h=1
Eh

Gn

H
∑

h=1

N
∑

m=1,m6=n
Eh

Gm

, and Om
h is the total load of all

system customers except the nth customer at h ∈H.
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4.5. Energy Consumption Scheduling Algorithm Based on Tabu Search (TS)

For a more efficient implementation of the energy consumption scheduling strat-

egy, the energy consumption scheduling algorithm based on TS in Section 3.6 is im-

plemented. Please refer to Section 3.6 for the explanation of the proposed TS based

algorithm.

4.6. Total Energy Consumption Bill

For each customer n, the total energy consumption bill is defined as the con-

ventional energy (from the micro gas turbine) price minus the sold energy price, that

is,

bn,o =
H

∑
h=1

(
bh

n,o−Ph
Ωn

)
,n ∈N,bn ≥ 0, (55)

where bh
n,o = bh∗

n,o +Ph
v (C(Lh

G)−C(Lh∗
G )), bh∗

n,o is the hourly near-optimal bill, C(Lh
G) is

the actual total system energy cost and C(Lh∗
G ) is the total near-optimal system energy

cost at h ∈H.

It should be noted that the bill in (55) is calculated based on the true measured

amount of solar power generated not the predicted.

4.7. Simulation Results

4.7.1. Scenario setup. In this section, simulation results are presented in or-

der to evaluate the performance of the proposed group ADSM program in the MSMC

system. In the considered system, we have 30 customers (N = 30) scheduling their

energy consumption for the next 24 hours. For the purpose of comparison between

the proposed mechanisms in SSMC and MSMC systems, the same scenario setup is

used as presented in Section 3.7.1. The random generated schedules in Section 3.7.1

(when smart meters do not deploy an energy consumption scheduling algorithm) are

considered as the preferable schedules XXXnp, n ∈ N. As for the micro gas turbine, the

rated energy is EG,max = 33 kWh. In consequence, by using (44), 0.55 kWh is allo-

cated for each customer at all time-slots h ∈ H. All customers have identical smart
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meters capabilities and active generator specifications. In order to increase the life-

time of the battery and avoid deep charging, undercharging, and overcharging, a single

charging and discharging cycle per day and night is considered. Each customer’s bat-

tery capacity is cn = 4kWh. The charging and discharging efficiencies are assumed to

be µ+ = 0.9, µ− = 1.1, respectively. The maximum charging rate, smax = 0.125cn\h.

Moreover, the initial charge level is assumed to be qh0
n = 0.25 cn and Θ= 0. The leakage

rate is σ = 24
√

0.9 [107]. Moreover, 3kW rooftop PV panels are utilized. The hourly

predicted solar energy generation over one day period is taken from [105]. Fig. 16

shows the hourly predicted solar energy and the minimum allocated micro gas turbine

energy for each customer n. The micro gas turbine energy generation cost function is

assumed to be as in (42). The parameters values are ζ h0.3, εh = 0.2 and υh = 0.08 cents

during daytime hours (8:00 am to midnight) and ζ h = 0.2, εh = 0.1 and υh = 0.05 cents

during night hours (midnight to 8:00 am). Moreover, the billing system is assumed to

be budget balanced, i.e, the total system cost is equal to the total bills of all customers.

The energy selling price function by each customer n to the microgrid is as in (43),

where Φh = 0.5 cents during daytime hours (8:00 am to midnight), and Φh = 0.4 cents

during during night hours (midnight to 8:00 am).

4.7.2. Results and discussion. Now, the proposed energy consumption strat-

egy in Section 4.4 is implemented as follows. First, the proposed DEM mechanism is

applied on the preferable schedules XXXnp (discussed in Section 3.7.1). The amount of

the total allocated energy from the PV panel and the minimum micro gas turbine en-

ergy to each customer n, which must be fully used, is shown in Fig. 17. Figures. 18

and 19 show, respectively, the total hourly preferable energy consumption Xnp and the

associated cost, for the 30 customers during a day. By following the procedure in al-

gorithms 5 and 6, the total system charged/discharged energy to/from the batteries, and

the total system sold energy to the microgrid, are as presented in Figures 20,and 21,

respectively.

Now, in order to reduce the micro gas turbine energy generation cost of the re-

maining energy that is not satisfied by the solar energy and minimum turbine energy,

the proposed algorithm based on TS is deployed in the smart meters. For the purpose of
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Figure 16: The hourly predicted solar energy and the minimum micro gas turbine energy
for each customer n during a day.
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Figure 17: The total hourly allocated energy from the PV panel and the minimum micro
gas turbine energy for each customer n during a day.

comparison with the algorithms based BB and P-MCTS, they are also deployed in the

smart meters. As for the P-MCTS method, the algorithm is run as proposed in [87]. In

order to make a fair comparison between the three algorithms, the initial guess is uni-
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Figure 18: The total system hourly preferable energy consumption XXXnp during a day.
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Figure 19: The total system hourly preferable energy consumption cost during a day.

fied. As mentioned in Section 3.6, the initial guess is formalized through the relaxation

of the integer constraints and variables in (54) such it can be solved using IPM. The

three methods are compared in terms of their computational time and results quality. In
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Figure 20: The total system hourly charged/discharged energy from/to batteries during
a day.
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Figure 21: The total system hourly sold energy to the microgrid during a day.

addition, the performance of both the SSMC and MSMC systems is compared in terms

of the total systems cost.
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Figures 22 and 23 show the total amount of energy that is not satisfied by the so-

lar energy and minimum micro gas turbine energy after implementing the DEM mecha-

nism, and the associated cost, respectively, for the cases when customer’s n smart meter

does not deploy an energy consumption scheduling algorithm, runs the algorithm based

on TS, runs the algorithm based on BB, and runs the algorithm based on P-MCTS. All

system constraints are fulfilled for the cases when the three algorithms are run in the

smart meters. Clearly, both algorithms based BB and TS have almost have converged to

the same results, hence the convergence of the algorithm based on TS is achieved. As

for the algorithm based on P-MCTS, the result is not as accurate as the algorithm based

on TS, hence its convergence is not achieved.

As shown in Fig. 23 when the smart meter does not deploy an energy consump-

tion scheduling algorithm, the PAR is 2.1136 and the total electricity consumption cost

is $130.2404. Moreover, when the algorithm based on TS is deployed in the smart

meter, the total electricity consumption cost is $102.3543 and the PAR is 1.3657. For

the case when the smart meter deploys the algorithm based on BB, the total electricity

consumption cost is $102.3004 and the PAR is 1.3657. In addition, when the smart

meter deploys the algorithm based on P-MCTS, the total electricity consumption cost

is $106.1097 and the PAR is 1.6275.

Evidently, the differences between the algorithm based on BB and TS resultant

costs and consumption schedules are negligible. In addition, the electricity consump-

tion curve is more flattened and more evenly distributed over the day. Hence, for the

proposed algorithm based on TS, we can claim that the optimal hourly scheduling with

a minimum possible peak is achieved. In contrast, the algorithm based on P-MCTS

does not result in the same minimal cost as the case of the algorithm based on TS, the

PAR value is higher and the demand curve is not flatten. It can be said that the main

objective of the proposed program is not fully achieved when using the algorithm based

on P-MCTS.

The effectiveness of the algorithm based on TS method lies on the computational

time savings compared to the algorithm based on BB and the algorithm based on P-

MCTS. The computational time difference between the three algorithms does not vary

much for small number of customers. However, the differences become in hundred
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multiples compared to the other two algorithms as the number of customers increases.

Fig. 24 shows the computational time difference for different scenarios and for different

number of customers.

In addition, as shown in Fig. 25, the solution quality of the algorithm based on

TS is very close to the algorithm based on BB as the total system cost for different

number of customers and scenarios are very similar. In contrast, the algorithm based on

P-MCTS does not perform well as the number of customers increases. It can be stated

that, with a lot of experiments and scenarios, the algorithm based on TS outperforms

the algorithms based BB and P-MCTS in terms of efficiency.

Fig. 26 shows the total SSMC and MSMC systems cost percentage difference

for identical scenarios. The scenarios are as discussed in this Section and Section 3.7.1.

Clearly, always the total MSMC system cost for a scenario is higher than the cost of the

SSMC system. This is a result of fully using the solar energy and selling excess energy

based on the proposed program to the microgrid by the MSMC system customers.

In order to assess the system performance in case of violations, arbitrary 9 out of

the 30 customers violate the assigned schedules with different loads at different times.

It should be noted that the total bill amount for a customer n is as presented (55). Fig. 27

shows the impact of the violations on the assigned schedule provided to them. Obvi-

ously, all customers’ bills payment are increased due to the increase in the total system

load and hence the total system cost. Non-violators’ bills are increased although they

are committed to their assigned schedules, which in fact could have a negative impact

on the level of contribution and involvement of customers on achieving the program

objective, i.e., minimizing the total system cost. The proposed fair billing mechanism

ensures that all customers who abide to their assigned schedules do not get penalized

or affected by others’ violations as shown in Fig. 28. Furthermore, fairness among vio-

lators themselves is maintained as the penalty factor is proportional to the amount and

time of the violation. For example, the penalty factor of customer 5 is the least among

the violators as he/she violates the optimal schedules mainly during off-peak hours and

in less total amount of electricity than all other customers. It can be stated that, with

a lot of other experiments and scenarios, the proposed billing mechanism outperforms
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the billing mechanisms in the literature in terms of fairness in the case of customers’

violations.
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(d)
Figure 22: Energy consumption when (a) algorithm is not deployed in smart meter
(b) algorithm based on TS is deployed in smart meter (c) algorithm based on BB is
deployed in smart meter (d) algorithm based on P-MCTS is deployed in smart meter.
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Figure 23: Energy consumption cost when (a) algorithm is not deployed (b) algorithm
based on TS is deployed in smart meter (c) algorithm based on BB is deployed in smart
meter(d) algorithm based on P-MCTS is deployed in smart meter.
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Figure 24: Computational time of the algorithm based on TS, algorithm based on BB
and the algorithm based on P-MCTS.
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Figure 25: Total system cost comparison for different number of customers and scenar-
ios.
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Figure 26: Total system cost comparison between the SSMC and MSMC systems.
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Figure 27: Customers’ bills without applying violation penalty.
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Figure 28: Customers’ bills with applying violation penalty.
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Chapter 5: Conclusion

Group Autonomous Demand-Side Management (ADSM) programs provide prac-

tical mechanisms to coordinate energy consumption for the purpose of achieving smart

grid-wide objectives, such as reducing the energy cost, reducing the Peak-to-Average

Ratio (PAR), and increasing the penetration of Renewable Energy Sources (RESs). In

this work, a group ADSM program, where the customers cooperate to reduce their

energy cost payment through scheduling the future energy consumption profiles, is in-

vestigated. Two systems are considered; Single-Source Multiple-Customers (SSMC)

system and Multiple-Sources Multiple-Customers (MSMC) system. The SSMC system

consists only of a central energy source shared among the customers. On the other hand,

in addition to a central energy source, the MSMC system consists of distributed Renew-

able Energy Sources (RESs) and Distributed Storage Elements (DSEs). An aggregative

game-theoretic approach is considered for the energy consumption scheduling in the

SSMC system, while for practicality aspects a combination of a Deterministic Energy

Management (DEM) approach and an aggregative game-theoretic approach is investi-

gated in the MSMC. A novel energy consumption billing mechanism is developed to

account for the impact of customers’ violations on the performance of both systems

and how to deal with such violations to ensure a higher level of fairness. This mech-

anism increases the systems’ fairness level, and hence, it encourages the customers’

participation level for achieving the systems objectives. In order to consider the com-

putational complexity and limitations of the group ADSM programs, a sophisticated

yet efficient energy consumption scheduling algorithm based on Tabu Search (TS) is

proposed. In addition to the ability of achieving the near-optimal energy schedules, the

computational time is reduced to a large extent compared to the energy scheduling algo-

rithm based on Parallel Monte Carlo Tree Search (P-MCTS) and the benchmark energy

scheduling algorithm based on Branch and Bound (BB).

The simulation results confirm the advantages of the proposed billing mech-

anism to the fairness level of the systems. It is shown that the performance of the

algorithm based on TS is comparable to the benchmark algorithm based on BB results.

However, the computational time needed is considerably less. Moreover, it is shown that
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the proposed algorithm performs better in terms of solution quality and computational

time compared to the algorithm based on P-MCTS. The computational time difference

between the three algorithms does not vary much for small number of customers, but

the differences become apparent in hundred multiples as the number of customers in-

creases. Furthermore, due to the utilization of RESs and DSEs in the MSMC system,

the total system cost is reduced by 60% and the level of greenhouse emissions is guar-

anteed to be lessened, compared to the SSMC system. In addition, the resultant energy

consumption profiles of the proposed algorithm are shown to be flattened and evenly

distributed.

The results in this paper can be extended in several directions. First, the group

ADSM programs presented here, being directly applicable to customers like house-

holds, can also be extended to larger contexts, such as commercial and industrial sec-

tors. Second, the programs can be extended to address both shifting and reducing en-

ergy consumption. This can be done by utilizing energy cost functions which depend

on both the energy consumption at each hour and the total daily energy consumption.

Third, more factors and parameters can be incorporated into the power systems, such as

specifying a threshold on the amount of energy that can flow over power lines. Fourth,

the stochastic nature of the RESs and DSEs can be considered.
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