Hydrogen Fueled Home Generators

Asma Shubair (CHE) Abdul Majid Hussan (MCE) Karim Afifi (MCE) Meera Al Shamali (ELE) Abdul Rahman Barakat (CVE)

SITUATION

Burning fossil fuel, such as coal, oil and natural gases contribute to pollution and global warming due to the emission of carbon dioxide. 33% of green house emissions are due to electricity generation, which is the highest percentage amongst other factors [1]. Also, fossil fuels are finite resources that will eventually deplete. The suggested hydrogen fuel cell does not burn oxygen rather it simply combines itself with oxygen from air to form water [2]. Hydrogen fuel was already integrated to cars such as the BMW 740i Sedan but this concept has not yet been integrated to home generators [3].

PROBLEMS

What is Hydrogen fuel?

Hydrogen fuel is a substituent fuel to gasoline. It is much cleaner and has water as the main emission rather than CO2.

Limitations:

• Hydrogen in its pure gaseous form is expensive to obtain. [4]
• Hydrogen fueled machines tend to have a high fuel consumption . [5]
• Large scale hydrogen generators do not exist currently. [5]
• Hydrogen in its gaseous form is hard to store as it has a low volumetric energy density. [4]

SOLUTION

• Solar power is integrated in our design to create a self-filling cycle to eliminate the need of constantly refilling the motor
• The solar power system utilizes water into its basic component and that way hydrogen is created.
• The system is a perfect replacement to the traditional gasoline cycle as it has double the efficiency.
• Hydrogen fuel cells are used to convert the chemical energy into electric energy.
• One fuel cell generates 236.7 kg/kmol, which is not sufficient energy to power a home, therefore a stacking fuel cells is the solution. [6]
• The amount of electricity generated by the fuel stack is proportional to the number of cells [1]

EVALUATION

Cost:

*"Comparing the delivered cost of hydrogen transportation fuel on an energy cost basis (dollars per gigajoule), we find that hydrogen is 50%–100% more costly than gasoline." [7]

Although the initial costs are high, in the long run the costs decrease. (see figure 2)

Efficiency:

The efficiency of these motors reaches 60-70 percent which is better than the efficiency of motors that work with gasoline which have 30% efficiency. [7]

REFERENCES