Safety Enhancement of Vehicles

Mohamed Sajwani (MCE) 50544 Tariq Damati (CS) 44779 Ali Ali (ELE) 60439 Amin Abu-Shanab (CVE) 51036

SITUATION

Road traffic injuries
- Were the Ninth leading cause of death in 2015.[1]
- By 2030, expected to be the Seventh leading cause of death

Safety Systems Categories
- Active Safety Systems: Collision Prevention
- Passive Safety Systems: Passenger Injury Minimization

PROBLEMS

Limitation to Current Systems
The current systems work well but they can only react to one vehicle ahead.

For the active safety systems to prevent crashes, they gather useful information from their surroundings using (see figure 2): 1) LIDARS 2) RADARS 3) CAMERAS

All the information gathered goes to Electronic Control Units (ECU) that control parts of the car.

The systems’ limitations are:
- 1) Distance in which they can react to a possible threat (150m).
- 2) Information gathering for decision making under imperfect driving conditions.

Figure 1: Stages of Safety Systems[2]

Figure 2: Sensory-based Information Gathering[3]

Figure 3: Location of ECUs in a Vehicle[4]

Figure 4: How Vansets work[5]

Event-driven messages are sent when a hazardous situation is detected.

Periodic Traffic messages proactively inform neighbouring vehicles about status:[8]
- Position of the sending vehicle
- Braking distance
- Speed
- Steering wheel position
- Potential traffic jams
- Pedals Position

Licensed spectrum should be established in the 5.8/5.9-GHz band.[7]

Establishing vehicle communication minimizes reaction time.

Figure 5: Strength Comparison[11]

Figure 6: Price Comparison

SOLUTIONS

Vehicular Ad Hoc Networks (VANETs)
- VANET turns every participating car into a wireless router or node, allowing cars approximately 100 to 250 meters of each other to connect, creating a network with a wide range.[6]
- As cars fall out of the signal range and drop out of the network, other cars can join in, connecting vehicles to one another so that a mobile Internet is created.
- These networks have no fixed infrastructure and instead rely on the vehicles themselves to provide network functionality.

Weight of Vehicles
With the addition of these safety features, the weight of vehicles has increased.

Being hit by a vehicle that is 454 kg heavier increases the probability of death in an accident by 47%.[5]

Structure of Vehicle
About 360 Kg of Advanced High Strength Steel (AHSS) is used on average in a vehicle.[9]

We propose the usage of Super Steel instead. Super-Steel is:
- As strong as Titanium (see figure 5)
- 13% lighter than AHSS[10]
- 10 times cheaper than Titanium.

EVALUATION

- Vehicle-to-vehicle communication provides safer transportation.
- Installation of Ad-hoc units in cars will take a lot of time.
- With a high vehicular traffic density, frequency channels could suffer from channel congestion.
- Making use of more than one channel leads to multichannel synchronization problems.
- Changing the car components from AHSS to Super-Steel is costly (See figure 6)
- Super-Steel characteristics provide higher safety structures.

REFERENCES