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Abstract 

This paper proposes a video saliency detection model for MPEG and HEVC coded videos. The model 

extracts features from MPEG macro blocks and HEVC coding units. The feature variables are based on 

syntax elements and statistics of prediction error. The suitability of the selected features is verified 

through the use of stepwise regression. Three saliency maps are generated based on intra-frame 

distances, inter-frame distances and global distances. The proposed model is tested using the eye-1 

dataset compiled by Laurent Itti lab in the University of Southern California. The accuracy of the model is 

quantified by comparing saliency values at human saccade locations against saliency values at random 

locations. The comparison is performed in terms of Kullback–Leibler distances and receiver-operator 

curves. The proposed solution is compared against existing work using similar experimental setup. 

Experimental results revealed that a Kullback–Leibler distance of 2.14 and area under the receiver-

operator curve of 0.936 are achieved.  
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1. Introduction 

Video objects or regions that stand out relative to their neighbors attract the attention of the viewer. 

Such objects or regions can be automatically detected through a process known as video saliency 

detection. Various solutions are proposed in the literature for video saliency detection which are mainly 

based on the concept of center-surround differences in both the spatial and temporal domains. 

Video saliency detection has a number of important video processing applications including; object 

segmentation and extraction, object identification, Region of Interest (ROI) detection, video surveillance, 

compression, quality assessment  and error concealment. 

Spatio-temporal video information is used for saliency detection. The work in [1] proposed to model 

temporal saliency using motion trajectories and video reconstruction error. Spatial saliency on the other 

hand can be captured by detecting regions with high center-surround contrast. The temporal saliency 

and spatial saliency can be fused to emphasize salient regions with high confidence. 

Regions with high local contrast, global rare spatial or temporal features can be used for saliency 

detection as well [2]. The high contrast is not restricted to the spatial domain, it can also be extended to 

the temporal domain [3]. Estimating the orientation contrast using spatio-temporal directional 

coherence is also applicable to saliency detection as reported in [4]. Additionally, spatial and temporal 

features are not restricted to the pixel domain, for instance, the phase spectrum of Fourier transform is 

used to detect spatial saliency. Similarly, phase spectrum of Fourier transform can be used to obtain the 

temporal saliency map of each video frame using motion vector information [5]. Likewise, local center-

surround differences and global contrast can also be computed using wavelet-domain features [6]. 

Machine learning and prediction are also used in saliency detection where features of video regions that 

are of visual interest are leant by a classifier and the resulting model can be used for classification [7]. It 

was also shown that a saliency map can be predicted taking into account the maps of previous video 

frames [8]. 

Once saliency is detected in video frames, it can be used in a number of applications. For instance, a 

higher subjective quality can be achieved by spending more bits on salient regions in the application of 

video compression [9]. More specifically, a saliency value can be mapped to a HEVC quantization 

parameter to be used by a video encoder [10]. 

Additionally, it was found that the human visual system is more sensitive to distortions in salient video 

regions [11]. This led to the use of saliency detection in no-reference quality assessment of compressed 

video [12]. It also led to applying more error protection to salient regions in video error resiliency 
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applications [13]. Other applications of saliency detection include assessing blurring artifact in video 

frames [14], predicting eye positions [15] and obtaining superpixels in images [16]. 

Another rather obvious application of saliency detection is object extraction and detection. For example, 

foreground objects of interest can be automatically extracted using saliency information extracted from 

the input video [17]. Location of targets of interest can also be detected [18]. Lastly, the authors in [19] 

proposed a video saliency detection model based on the concept of center-surround feature differences 

in the compressed domain. Block-based features are extracted from motion information, luminance, 

color and texture. Two saliency maps are calculated based on the underlying frame type; static maps for 

I-frames and motion maps for predicted frames. A novel method of parameterized normalization, sum 

and product fusion of the static and motion saliency maps was proposed. Experimental results showed 

superior accuracy of video saliency detection. 

In this work we propose a video saliency detection model based on spatio-temporal center-surround 

differences using intra and inter frame distances. We extract representative feature vectors using syntax 

elements and texture information of prediction error extracted from coded video. We use stepwise 

regression to validate the suitability of the selected features for saliency detection. Three saliency maps 

are generated based on intra-frame distances, inter-frame distances and global distances. The proposed 

solutions are applied to both MPEG1 macro blocks and HEVC Coding Units (CUs).  

The main differences between the proposed work and that reported in [19] is as follows. In this work, 

we apply the concept of center-surround differences to compute feature vectors based on spatial, 

temporal and global differences. We also use stepwise regression to verify the suitability of the feature 

variables which are extracted from MPEG1 MBs and HEVC CUs. Consequently, the computed saliency 

maps are fused using a novel minimum entropy function. 

The paper is organized as follows. The overview of the proposed system is presented in Section 2. The 

proposed feature extraction solution is presented in Section 3. The computation of saliency maps is 

presented in Section 4 and the experimental results are discussed in Section 5.  

 

2. System overview 

We start by presenting the overall system architecture for computing the saliency maps. The first step is 

to extract features for each and every block in the coded video. In MPEG video, we extract features from 

Macro Blocks (MB), whereas in HEVC video, features are extracted from Coding Units (CUs). The details 

of feature extraction are presented in the next section. We propose to extract features from syntax 
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elements of the video stream, prediction error and DCT coefficients for inter and intra coded blocks. 

Once the feature vectors are extracted, the computation of the saliency maps commences. 

This work uses the concept of center-surround differences in the computation of saliency maps [19]. The 

basic idea is to compute the distances between a feature vector representing a MB/CU and its 

surrounding feature vectors. We refer to this as an intra-frame distance. We also compute the distances 

between a feature vector representing a MB/CU with co-located feature vectors from previous frames. 

We refer to this as an inter-frame distance. Lastly, to capture global features, the distance between each 

feature vector and the mean feature vector in a given video frame is computed, this is referred to as 

global distance. Each of the mentioned distances results in one saliency map as illustrated in Figure 1.  

 

Figure 1. Overall system overview for computing saliency maps from coded videos. 

The three saliency maps can then be used individually or fused into one as explained in the Section 3. 

3. Feature extraction and stepwise regression 

The feature variables representing MPEG MBs are based on syntax elements and statistics from DCT 

coefficients and prediction error. The variables are listed in Table 1. 

Table 1. Description of feature variables extracted from MPEG MBs. 

Coded Video 

Syntax parser 

Feature Extraction 

Intra-frame 
distance 

FVs 

Inter-frame 
distance 

Intra-frame 
Saliency  

map 

Inter-frame 
Saliency  

map 
 

Global FV 
distance 

Global 
Saliency  

map 
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 ID Feature Description 

 S
yn

ta
x 

le
ve

l 

1 The number of bits needed to code a MB. 

2 The coding type of the MB. 

3 The magnitude of the MB’s MVs.  

4 The phase of the MB’s MVs. 

5 
The average difference between the 
magnitude of the current MV and the 
surrounding ones.  

6 
The average difference between the 
phase of the current MV and the 
surrounding ones.  

7 
MB coded block pattern showing skipped 
and coded blocks. 

P
re

d
ic

ti
o

n
 e

rr
o

r 
le

ve
l 8 

The absolute sum of high DCT frequencies 
of a MB. 

9 Texture’s mean. 

10 Texture’s standard deviation. 

11 Texture’s smoothness. 

12 
Texture’s 3rd moment as an indication of 
histogram skewness. 

13 Texture’s uniformity. 

14 Texture’s entropy.  

 

Such feature extraction level does not require full video decoding as motion compensation is not 

required. In the table, feature ID 2 indicates the MB type. If the type is intra then all MV information is 

represented by zeros. If the type indicates forward prediction then all backward MV information is 

represented by zeros and vice a versa. And if the type is bidirectional then the information is available 

for both forward and backward motion vectors. 

The texture’s smoothness for feature ID 11 is defined as: 

𝑠𝑖 = 1 − 1 (1 + 𝜎𝑖
2)⁄              (1) 

Where si is the smoothness of MB index i and i is its texture standard deviation. 

The texture’s 3rd moment for feature ID 12 is defined as: 

𝑚𝑖 = ∑ (𝑝𝑛 − 𝑝̅)3𝑓(𝑝𝑛)𝑁−1
𝑛=0       (2) 

Where mi is the third moment of MB index i, N is the total number of pixels in a MB, 𝑝𝑛 is a pixel value at 

index n. 𝑝̅ is the mean pixel value and f(.) is the relative frequency of a given pixel value. 

The texture’s uniformity for feature ID 13 is defined as: 

𝑢𝑖 = ∑ 𝑓2(𝑝𝑛)𝑁−1
𝑛=0               (3) 
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Where ui is the uniformity of MB index i. The rest of the variables and the function are defined in 

Equation (2).  Lastly, the texture’s entropy for feature index 14 is defined as: 

𝑒𝑖 = − ∑ 𝑓(𝑝𝑛)𝑙𝑜𝑔2𝑓(𝑝𝑛)𝑁−1
𝑛=0    (4) 

Where ei is the entropy of MB index i. The rest of the variables and functions are defined in Equation (2). 

Once the MB features are extracted, the feature vectors are normalized to the same range. The 

normalization is applied to each feature separately using z-scores which is defined as: 

𝑧𝑖 = (𝑥𝑖 − 𝐸(𝐱)) 𝜎𝐱⁄             (5) 

Where the scalars ziand xi are the normalized and non-normalized feature values of feature index i 

respectively. E(x) is the expected value of the feature variable and σx is its standard deviation. Both are 

computed based on the feature vector population. 

The feature variables for HEVC coding units are similar, however since the HEVC syntax is more 

sophisticated than MPEG, we start with a brief review of the coding units concept. A video frame is 

divided into square blocks known as coding units (CUs). The maximum allowed size is 64 × 64 for the 

luma component and the minimum size is 8x8. The syntax of each CU indicates the type of prediction, 

the Transform Unit (TU) sizes and the types of the Prediction Units (PU) used. The syntax also defines if a 

CU is coded in split mode. The largest CU has a depth of 0 and if it is further split then the four resultant 

CUs have a depth of 1, and so forth. The partitioning used for motion estimation and compensation is 

carried out according to the size of the PUs. In this work, we are interested in extracting features from 

CUs and their PUs by setting the size of CUs to 16x16 pixels. Further details about HEVC can be found in 

[20]. 

The feature variables representing HEVC CUs are based on syntax elements and statistics from DCT 

coefficients and prediction error. The variables are listed in Table 2. Since each CU can be partitioned 

into many PUs, then the corresponding feature variables are averaged for all PUs in a given CU. Clearly, 

if the CU has a depth of zero then an averaging is not required. 

Table 2. Description of feature variables extracted from HEVC CUs. 
ID  Feature description 

1 

C
U

 f
ea

tu
re

s Total number of bits in a CU 

2 X coordinate of a CU in pixels 

3 Y coordinate of a CU in pixels 

4 Total number of partitions in a CU 

5 

P
U

 f
ea

tu
re

s Coding depth 

6 Partition type (2Nx2N, 2NxN,…) 

7 Partition width 

8 Partition height 

9 Coding mode 
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10 Transformation index 

11 Merge Flag 

12 Merge Index 

13 Inter prediction direction 

14 Coded block flag 

15 Magnitude of MV  

16 Phase of MV 

17 Magnitude of difference MV 

18 Phase of difference MV  

19 Variance of prediction error  

20 Mean of prediction error 

21 Skewness of prediction error 

 

To verify the suitability of the feature variables to the task of saliency detection, we use the stepwise 

regression procedure. To use this procedure we treat the feature vectors as predictors. The response 

variable in this case is the existence or lack of a saccade at a given MB location.  The feature vectors are 

extracted from the videos of the “eye-1” dataset by Itti et. al. as elaborated upon in the experimental 

results section. The saccade locations are available from the same dataset as well. The process of 

identifying the important feature variables is illustrated in Figure 2. 

 

Figure 2. Use of stepwise regression for feature selection. 

Stepwise regression is an objective procedure used for selecting important feature variables. Again, we 

treat the feature variables 𝑥1, 𝑥2, … , 𝑥𝑘  as predictors where k is the number of features in each feature 

Coded Video 

Partial decoding 

Feature Extraction 

Stepwise 
regression 

FVs 

Construct 
binary labels 

<x,y> coordinates 

of saccades 

FV 
labels 

Indices of 

retained variables 
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vector. The response variable, 𝑦 represents the existence or lack of a saccade at a given MB/CU location. 

In [21], the stepwise regression procedure is described using the following steps. In the first step, the 

procedure tests all possible one-predictor regression models in an attempt to find the predictor that has 

the highest correlation with the response variable. The model is of the form: 

𝑦̂ = 𝛽0 + 𝛽1𝑥𝑖   (6) 

A hypothesis test is conducted for each model where 𝐻0: 𝛽1 = 0 and 𝐻1: 𝛽1 ≠ 0.  The test is conducted 

using the well-known T test at a specific level of significance, say  = 0.1.  The predictor that generates 

the largest absolute T value is selected. Refer to this predictor as 𝑥1. 

In the second step, the remaining k-1 predictors are scanned for the best two-predictor regression 

model of the form:  

𝑦̂ = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥𝑖  (7) 

This is achieved by testing all two-predictor models containing 𝑥1 which was selected from the first step. 

The T value of the k-1 models are computed for 𝐻0: 𝛽2 = 0.  The predictor that generates the highest 

absolute T value is retained, Refer to this predictor as 𝑥2. 

Now that  𝛽2𝑥2 is added to the model, the procedure goes back and reexamines the suitability of 

including 𝛽1 in the model. If the corresponding T value becomes insignificant (i.e. the alternative 

hypothesis 𝐻1  is rejected.), 𝑥1 is removed and the predictors are searched for a variable that generates 

the highest T value in the presence of 𝛽2𝑥2. In the third step, remaining k-2 predictors are scanned for 

the best three-predictor regression model of the form: 

𝑦̂ = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2+𝛽3𝑥𝑖  (8) 

The procedure repeats until no further predictors are added/removed from the model. Stepwise 

regression was successfully used for selecting feature variables for detecting the existence of delated 

frames in video forensics as reported in [22]. 

Having applied the stepwise regression procedure to the MPEG features of Table 1, it was found that 

feature ID 6 does not correlate with the response variable; “The average difference between the phase 

of the current MV and the surrounding ones”. Note that the phase of the MV is already present in 

feature ID 4. The exclusion of variable 6 can be attributed to the fact that the magnitude of the motion 

might attract the human attention more than its phase. Likewise, feature ID 6 does not correlate with 

the response variable as well. Lastly, when applying the procedure to the HEVC features of Table 2, it 

was found that the partition type and height are not required (Feature IDs 6 and 8). This can be justified 

by the use of other feature variables that might give similar information such as feature ID 5,7 and 9. 



9 
 

Interestingly, the phase of the MVs was not selected just like the case for MPEG MB features. The rest of 

the variables are selected which indicates the suitability of the selected variables for saliency detection. 

4. Computation of saliency maps 

The basic idea is to compute the distances between a feature vector of a MB and its surrounding feature 

vectors. We refer to this as an intra-frame distance approach. In this work we extend this approach to 

compute the difference between a feature vector of a MB with its co-located feature vectors from 

previous frames. We refer to this as an inter-frame distances approach.  Global features are captured by 

computing the distance between each feature vector and the mean feature vector in a given video 

frame, this is referred to as global distance. Each distance results in a separate saliency map which can 

be used individually or fused to generate one saliency map. 

The intra-frame distances are illustrated in Figure 3 part ‘a’. The idea is to compute the Euclidean 

distance between the feature vector of the center MB and its surroundings at level 1 (L=1). The 

summation of distances is then multiplied by a given weight. The process is repeated for level 2 (L=2) up 

to level l. The assigned weight is inversely proportional to the distance from the center MB. 

 

 

Figure 3. Illustration of spatio-temporal center-surround differences. (a) Top figure, illustrates 
intra-frame difference and (b) Bottom figure, illustrates inter-frame differences. 

   

L=1 

  

L=2 

L=3 

L=1 L=2   

 

L=3   

  

      Video frame n-3  n-2  n-1  n 
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Hence the saliency map of intra-frame distances for a given MB can be computed as follows: 

𝑆𝐼𝑛𝑡𝑟𝑎
𝑖 = ∑ 𝒘𝐿 ∗ ∑ ‖𝐹𝑉𝑖 − 𝐹𝑉𝐿,𝑗‖

2𝑗𝐿   (9) 

Where 𝑆𝐼𝑛𝑡𝑟𝑎
𝑖  denotes the saliency value for MB i using intra-frame distance. The summation variable L 

denotes the level of surrounding MBs as illustrated in Figure 3-a. In this work, 4 levels are used for intra-

frame distances and 15 for inter-frame distances. The latter corresponds to only half a second of video 

as the temporal resolution is around 30 frames per second. 𝐹𝑉𝐿 is the set of FVs belonging to the 

surrounding MBs at Level L. Each surrounding level has a weight associated with it which decays as the 

level increases. In this work, the following set of weights is used w = {1, 1/2, 1/3,…,1/maxLevel}. 

Likewise, the inter-frame distances are illustrated in Figure 3-b. The idea is to compute the Euclidean 

distance between the feature vector of the current MB and its co-located feature vector at level 1 in the 

previous video frame. The distance is then multiplied by a given weight. The process is repeated using 

the previous frame at level 2 up to level l. Again, the assigned weight is inversely proportional to the 

distance from the current MB. The saliency map of inter-frame distances for a given MB can be 

computed as follows: 

𝑆𝐼𝑛𝑡𝑒𝑟
𝑖 = ∑ 𝒘𝐿 ∗ ‖𝐹𝑉𝑖 − 𝐹𝑉𝐿‖2𝐿   (10) 

Where 𝑆𝐼𝑛𝑡𝑒𝑟
𝑖  denotes the saliency value for MB i using inter-frame distance. Note here that in each 

temporal level there is only one feature vector belonging to level L as illustrated in Figure 3-b. This is 

denoted as 𝐹𝑉𝐿 in Equation 10. 

Once the saliency maps are computed, they can be individually used for saliency detection or fused into 

one map prior to detection. This work uses a number of techniques for fusion, such techniques are 

similar to the fusion techniques summarized in [23]. We start by computing a binary mask by 

thresholding each saliency map using its mean value, this results in three masks, 

𝐵𝑗 , 𝑗 ∈ {𝑖𝑛𝑡𝑒𝑟, 𝑖𝑛𝑡𝑟𝑎, 𝑔𝑙𝑜𝑏𝑎𝑙}. The saliency maps are thresholded using the corresponding masks prior 

to using them for saliency detection. If used without fusion then the saliency map is represented by 

𝑁(𝑆𝑗 ∩ 𝐵𝑗), where N is a normalization operator and 𝑆𝑗 is a saliency map. On the other hand, if fusion is 

used then a number of methods are employed including normalize and sum (NSum), represented by, 

∑ 𝑁(𝑆𝑗 ∩ 𝐵𝑗)𝑗 , normalize and multiply (NProd), represented by, ∏ 𝑁(𝑆𝑗 ∩ 𝐵𝑗)𝑗  and normalize and 

maximum (NMax), represented by max𝑗 𝑁(𝑆𝑗 ∩ 𝐵𝑗).  Additionally, we experiment with a minimum 

entropy function which is defined as: 

𝑆 = ∑ 𝛼𝑗𝑁(𝑆𝑗 ∩ 𝐵𝑗)𝑗 + (𝛼1 + 𝛼2 + 𝛼3)/3 ∗ ∏ 𝑁(𝑆𝑗 ∩ 𝐵𝑗)𝑗    (11) 

Where 𝛼𝑗is the reciprocal of the entropy of a thresholded saliency map. 
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5. Experimental results 

In the following experimental results we used of the “eye-1” dataset which is an eye-tracking dataset 

collected from eight distinct subjects watching complex video stimuli. The dataset is contributed by the 

University of Southern California, Laurent Itti lab. The dataset is freely available through the 

Collaborative Research in Computational Neuroscience (CRCNS), data sharing website [24]. In addition 

to the videos and eye-tracking dataset, the download contains useful Perl and Matlab scripts that can be 

used for parsing, computing statistics and displaying results.  

The dataset contains eye movement recordings from eight subjects watching 50 video clips. The 50 

videos are consisted of around 46,000 video frames each with a spatial resolution of 480x640 pixels. The 

video are compressed using MPEG1 with variable bitrate coding using a quantization step size triplet of 

{8, 10, 25} for I,P and B frames respectively. The GoP structure is N=15, M=3, that is; IBBPBBPBBPBBPBB. 

The frame rate is 30.13 Hz. The saccade data is collected from eight subjects. The capture rate of the 

infrared video-based eye tracker used in the experiment is 240 samples/s. 

In the experimental process, we coded the video using both MPEG1 and HEVC with a GoP size of 15 

using one I-frame and 14 P-frames. In the latter codec, we sat the CU size to 16x16 as mentioned 

previously.  

Our experimental setup is based on the work proposed by [25] and [26] and later adopted by [19]. We 

compared the saliency values at saccade locations to 100 random locations in the saliency maps. The 

saliency value at a saccade location is calculated as the maximum within a 64 bit radius. The higher the 

corresponding saliency value, the more accurate is the saliency detection model. For the 100 random 

locations, a search is performed around the randomly selected coordinates using the immediate 

surrounding MBs/CUs to find the maximum saliency value.  

A saliency detection model is considered effective if it generates high saliency values at saccade 

locations. At the same time, the model is expected to generate low saliency values at random locations. 

In [8],[19] and [27], the saliency distributions at saccade locations and random locations are summarized 

using a histogram of ten bins where the saliency values on the x-axis are normalized to the range [0-1]. 

The distance between these two distributions is computed using Kullback–Leibler (KL) distance [26], 

[30].  The KL is a distance function from a true probability distribution to a target probability 

distribution. We presented the average KL distance between the histogram of saliency values 

corresponding to saccade locations(s) and the histogram of saliency values corresponding to random 

locations. Since we use 100 random locations in each saccade frame, we refer to each histogram as (Rn) 

where ∈ {1,2, . .100} . The average KL distance is represented as follows: 
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𝐾𝐿̅̅ ̅̅ =  ∑ 𝐾𝐿𝑛(𝒔, 𝑅𝑛)100
𝑛=1   (12) 

Where the KL distance between 2 distributions is calculated as follows: 

𝐾𝐿(𝒔, 𝑅𝑛) = 0.5 ∗ (∑ 𝑠𝑖ln 
𝑠𝑖

𝑅𝑛,𝑖
+  ∑ 𝑅𝑛,𝑖𝑙𝑛

𝑅𝑛,𝑖

𝑠𝑖
 10

𝑖=1
10
𝑖=1 )  (13) 

Where 𝑠𝑖 and 𝑅𝑛,𝑖 are the relative frequency values corresponding to histogram bin i. In this work 10 

histogram bins are used. The higher the KL distance, the higher is the accuracy of the saliency detection 

model. 

To further assess the accuracy of the proposed saliency detection solutions, the Area Under the ROC 

Curve (AUC) is reported. We use an interval of 0.1 to compute the ROC curves. At each threshold, the 

true positive rate is calculated as the number of saccade locations with saliency values larger than the 

threshold divided by the total number of saccade locations. The false positive rate is calculated as the 

number of random locations with saliency values larger than the threshold divided by the total number 

of random locations. The AUC value is calculated 100 times pertaining to 100 random saliency locations. 

We report the average AUC value.  

In Table 3, the KL and AUC are reported for all of the proposed solutions. It is shown that both video 

coders results in similar saliency detection accuracy in terms of KL and AUC. This gives an indication that 

the video coder type did not influence the accuracy of the model. 

Table 3. KL and AUC of the proposed saliency detection 
 solutions using a search radius of 64 bits 

 

HEVC MPEG 

KL AUC KL AUC 

Intra-
frame. 

2.121 0.938 2.146 0.936 

Inter-
frame. 

1.771 0.912 1.656 0.905 

Global 1.819 0.926 1.91 0.915 

NProd 1.827 0.918 1.923 0.924 

NSum 2.025 0.932 2.028 0.926 

Entropy 2.013 0.931 2.003 0.926 

NMax 1.812 0.926 1.817 0.919 

 

The results in the table show that the intra-frame distances results in the best accuracy followed by the 

normalize and sum fusion approach. The inter-frame and global distances are both inferior to the intra-

frame solution. These conclusions are valid for both types of video coders in use. 

The same set of results are repeated but using a search radius of 32 bits around saccade locations. The 

results are reported in Table 4. 
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Table 4. KL and AUC of the proposed saliency detection 
 solutions using a search radius of 32 bits. 

 

HEVC MPEG 

KL AUC KL AUC 

Intra 
diff. 

1.12 0.848 1.046 0.844 

Inter 
diff. 

0.805 0.81 0.699 0.79 

Global 0.886 0.827 0.827 0.815 

NProd 0.771 0.802 0.783 0.813 

NSum 0.99 0.837 0.951 0.829 

Entropy 0.994 0.836 0.951 0.829 

NMax 0.85 0.823 0.754 0.809 

 

It is shown that the accuracy of the detection is clearly affected by this reduction is search radius. This is 

expected as data collected from different subjects participating in eye gaze experiment contain different 

saccade coordinates for the same saccade video frames. Hence, a larger search around a saccade 

location is needed and justified. 

In Figure 5, we show the distribution of saliency values resulting from both saliency at saccade locations 

and saliency at 100 random locations. The x-axis represents the normalized saliency values and the y-

axis represents the tally of these values. In a good prediction model, the histogram of saliency values 

corresponding to saccade locations should be more populated in the high value bins. And the histogram 

of saliency values corresponding to random locations should be more populated in the low value bins.  

Apart from the intra-frame distance solution, in Table 3 it was shown that the best fusion approach was 

the normalize and sum. We show the histograms of the best fusion solution alongside the histograms of 

intra/inter-frame and global distances without fusion. Hence, we generate 3 sets of histograms for each 

of the proposed feature extraction solutions. 
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Figure 5. Normalized saliency distributions at saccade locations (represented using narrow bars) and 
random locations (represented using wide bars). 

 

The histograms are as expected for a saliency detection solution. The counts of low saliency values are 

high for random solutions. And the counts of high saliency values are high for saccade locations. It is also 

shown that this statement is also evident when applying the normalize and sum to fuse the three 

saliency maps.  
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The proposed solutions are compared against existing work in Table 5. The work in [19] uses spatial 

center-surround block distances and takes into account both static and motion saliency maps. In [28], 

the saliency detection model is mainly based on global frame contrast, this model is referred to as MRS. 

In [25], the saliency detection model is based on the fact that human gaze is attracted towards surprise, 

this model is referred to as surprise. A new data observation is considered a surprise if the posterior 

distribution of the data is significantly different from the prior distribution. Lastly, [29] employs static 

saliency detection salient taking into account that local and global surroundings of saliency regions are 

distinctive, this model is referred to as CA. The results of existing work are based on what is reported in 

[19]. 

It is shown that the proposed solutions result in higher saliency detection accuracy compared to existing 

work.  This indicates that the proposed feature extraction and saliency map computation result in rather 

accurate saliency detection.  

Table 5. Comparison of saliency detection accuracy against existing work. 

 
MRS 
[28] 

Surprise 
 [25] 

CA  
[29] 

Compressed  
domain 

[19] 
MPEG MBs HEVC CUs 

KL 0.529 0.593 0.76 1.828 2.146 2.121 

AUC 0.771 0.782 0.802 0.93 0.936 0.938 

 

Despite its innovative solution, one drawback of the work proposed in [19] is that it computes the static 

saliency map based on the previous I-frame. Therefore, the same saliency values are used for the whole 

GoP. Although, the authors showed that such an approach works for a GoP size of up to 24 frames, 

nonetheless, it will fail if a scene change occurred in a GoP. In the proposed solution however, spatio-

temporal center-surround differences are used for each MB to calculate the saliency maps regardless of 

the GoP’s I-frame. 

 

6. Conclusion 

The paper proposed a video saliency detection model for MPEG and HEVC coded videos. The model 

extracted block-based features from MPEG MBs and HEVC CUs. The feature variables are based on 

syntax elements and statistics of prediction error. The suitability of the selected features was verified 

through the use of stepwise regression. It was shown that most of the selected features correlate with 

the existence of a human saccade. Three saliency maps were generated based on intra-frame distances, 

inter-frame distances and global distances. The proposed model was tested using the eye-1 dataset. The 
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accuracy of the model was quantified by comparing saliency values at human saccade locations against 

saliency values at random locations. Experimental results revealed that the intra-frame distance results 

in the highest saliency detection accuracy. It was also shown that the detection accuracy is very similar 

for the two video codecs used.  
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