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Abstract    This paper proposes a novel message 
embedding solution based on modifying the split 
decisions of HEVC videos. The encoder starts by 
computing a mapping between the split decisions of 
a Coding Unit (CU) and its features variables. This 
results in model weights that can be used to predict 
the split decisions. Message embedding is then 
carried out as a function of the predicted and true 
split decisions per CU. If the message bit to embed 
is ‘1’ and the predicted and the true split decisions 
are different then the true split decision is modified 
to be identical to the predicted flag. Otherwise if the 
message bit is ‘0’ and the predicted and the true split 
decisions are identical, then the true split flag is 
modified to become different than the predicted 
flag. We apply this embedding concept at two CU 
coding levels; 32x32 and 16x16. To extract a 
message, the decoder starts by regenerating the 
model weights which are then used to predict split 
decisions and compare them against the true 
decisions received in the bit stream. Identical 
decisions indicate a message bit of ‘1’ and non-
identical split decisions indicate a message bit of ‘0’. 
In the experimental results we examine the 
prediction accuracy, the effect of the proposed 
solutions on message payload, the number of 
modified split decisions and the corresponding 
impact on video quality. Comparison with an 
existing solution reveals that the proposed solution 
is superior in terms in message payload whilst 
resulting in reduced video distortions. 
 

Keywords     Digital video coding; HEVC; Data 
hiding; Pattern recognition. 

1 Introduction 

Message embedding in coded video is used as means 
of information hiding and has a number of 
important applications such as copyright protection 
[1], access control [2], content authentication [3] 
transaction tracking [4], real-time video scene 
change detection [5] and error detection and 
concealment [6]. In all applications, message 

embedding has a number of requirements including 
minimal video quality degradation, maintaining 
compatibility with the standardized bit stream 
syntax and offering a reasonable message payload.  
Message embedding in compressed videos include 
modifying DCT coefficients, quantization scales 
and motion vectors. Message embedding can also 
be implemented using code-word substitution [7]. 
Matrix encoding can be used to modify the 
quantization scales and motion vectors in signal 
layer and scalable video coding [8]. Advanced 
transcoding techniques were applied to embed 
messages is pre-encoded video as well. The work in 
[9] embeds messages through altering the 
quantization scales using a machine learning 
approach. Data embedding using MVs has also been 
used for video watermarking [10]. Additionally, [11] 
proposed a solution that improves the security of 
motion vector-based data embedding. On the other 
hand, since embedding message by modulating MVs 
become a popular approach, detection of such 
approaches became an important research topic as 
reported in [12] and [13]. 
Message embedding is also implemented using 
coding block structure and prediction modes. For 
instance, the work in [14] proposed the alteration of 
intra prediction modes to hide a message in 4x4 
intra blocks in H264/AVC videos. Likewise, the 
authors of [15] altered the block types of 
H.264/AVC blocks to hide message bits.  
Message embedding is also implemented in HEVC 
videos in which messages are hid by forcing certain 
partitioning types for the Prediction Units (PUs) 
[16]. If the message bit to hide is ‘1’then the PU type 
is restricted to: 2Nx2N, nRx2N, Nx2N and 2NxnD. 
Whereas if a message bit is ‘0’ then the PU type is 
restricted to: NxN, nLx2N, 2NxnU and 2NxN. The 
work in [17] proposed to embed messages into 
HEVC videos by modifying the 4x4 intra prediction 
modes. The solution has low impact on video 
quality, however because it is restricted to 4x4 intra 
prediction modes, it can only embed low payload 

Shanableh, T. Multimed Tools Appl (2017). doi:10.1007/s11042-017-4787-6 
The final publication is available at Springer via http://dx.doi.org/10.1007/s11042-017-4787-6 



 

2 

messages. The authors reported a message payload 
in the range of 2.2 to 7 Kbit/s. 
In this work, we propose to embed messages in 
HEVC video by modifying the split decisions of 
either 32x32 or 16x16 CUs. Since each 64x64 CU 
contains four 32x32 CUs and sixteen 16x16 CUs, 
then 4 and 16 message bits can be hidden in the 
syntax of a CU respectively. A prediction solution is 
proposed in which the decoder can predict the split 
decisions of a CU and compare it against the true 
split decisions received in the video bit stream. If 
the two decisions are identical then the message bit 
is ‘1’ otherwise it is ‘0’.  
The challenge presented in is this work is to embed 
a message by modifying selective CU split decisions. 
The decoder should be able to identify the CU split 
decisions that curry message information and 
extract the message bits correctly. At the same time, 
it is desired to minimize the effect of message 
embedding on video quality. It is also desired to 
reduce the number of modified split decisions. All 
of these challenges are addressed in the proposed 
solutions of this paper. 
We study the effect of such solutions on the amount 
of split decisions that need to be modified. We also 
examine the effect on video quality and the amount 
of message bits that can be embedded per a second 
of video. 
The rest of this paper is organized as follows. 
Section 2 introduces the idea behind the overall 
message embedding system including the 
operations of the encoder and the decoder. Section 
3 introduces the proposed feature extraction and 
model generation solutions. Section 4 presents the 
experimental results and Section 5 concludes the 
paper. 
 
2. Proposed system 

The main idea of the proposed system is to modify 
the split decisions of a 64x64 CU according to the 
message to be embedded. It is known that a 64x64 
CU has a total of 21 split flags. These are allocated 
as follows; five split flags for each 32x32 CU and 
one split flag for the 64x64 CU. Each 32x32 CU has 
four 16x16 split flags and one 32x32 split flag. The 
proposed data embedding system hides message 
bits in the split decisions of 16x16 CUs. Hence a 
total of 16 flags can be manipulated per 64x64 CU. 
The proposed system is divided into two 
subsystems; message embedding and message 
extraction.   

The message embedding subsystem is composed of 
two stages. In the first stage, modeling takes place 
to compute a mapping between coded information 
of surrounding CUs and the split flags of the current 
CU. This results in model weights that can be used 
for predicting the split decisions. Typically, the first 
10% of a video sequence is used to generate the 
model. However the model generation can be 
repeated if needed. For instance, in [18] it was 
suggested to repeat model generation in cases of 
scene cut detection. The overall model generation 
process is illustrated in Figure 1.  

 
Figure 1. Overall model generation process 

 
In the figure, 50 feature variables are used to 
compose a feature vector for each CU. These 
feature variables are collected from surrounding 
CUs that are previously encoded. Namely, the 
following CUs are used in the feature collection 
process; the one on the left, top-left, top, top-right 
and co-located CUs. The details of feature 
collection and model generation are explained in the 
next section. It is important to note that collected 
feature variables are available for both the encoder 
and the decoder, as the latter will repeat the same 
process to compute the model weights.  
The second stage of the message embedding 
subsystem is the embedding of message bits. This 
starts once the encoder computed the model 
weights. We propose two solutions for message 
embedding. In the first solution, a message is 
embedded by modifying the 16x16 split decisions of 
a 64x64 CU. In the second solution, a message is 
embedded by modifying the 32x32 split decisions of 
a 64x64 CU. 
 
2.1 Message embedding by modifying 16x16 
split decisions. 
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In this solution, three pieces of information are 
need as follows; a message bit to embed, predicted 
split flag using the model and the true split flag 
computed by the encoder. If the message bit to 
embed is ‘1’ then the encoder uses a split flag that is 
identical to the predicted one. Else, if the message 
bit to embed is ‘0’ then the encoder uses a split flag 
that is different than the predicted one. This process 
of data embedding is illustrated in Figure 2. 

 
Figure 2. Illustration of message embedding process. 

 
As mentioned previously, the proposed system is 
divided into two subsystems; message embedding 
and message extraction.  In the message extraction 
subsystem, the decoder starts by re-computing the 
model. This is why it is important to ensure that all 
feature variables are available for both the encoder 
and the decoder. Thereafter, for the decoder to 
extract a message bit, 2 pieces of information are 
needed as follows; a true split flag decoded from the 
bit stream and a predicted split flag computed using 
the model. If the two flags are identical then the 
message bit is ‘1’ else it is ‘0’. This process of 
message extraction is illustrated in Figure 3. 

 
Figure 3. Illustration of message extraction process. 

 
2.2 Message embedding by modifying 32x32 
split decisions. 
In this solution, the split decisions of 64x64 CUs are 
predicted using the model weights. If the message 
bit to embed is ‘1’ then the encoder is forced to use 
the predicted split pattern, otherwise if the bit is ‘0’, 
the encoder selects the split pattern using the usual 
rate-distortion optimization approach. This results 
in embedding one message bit per 64x64 CU., the 
embedding concept is used at the level of 32x32 
CUs. The split decisions of 64x64 CUs are predicted 
which contain the split decisions of four 32x32 CUs. 
If a message bit is ‘1’ then the split decisions for a 
32x32 CU are replaced by the predicted pattern. 
Otherwise, the encoder selects the split pattern 
using the usual rate-distortion optimization 
approach. However, in this case, if the predicted and 
encoder-selected split decisions are the same, the 
encoder is required to modify one of the split 
decisions of the 32x32 CU. 
 As such, up to 4 bits can be embedded in each 
64x64 CU. The message embedding algorithm is 
further explained in the pseudocode of Figure 4. 
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 bits 
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If (message_bit(i)==1 && 
True16x16_split_flag(i) ≠ 
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=>change 
true16x16_split_flag(i) 
 
If (message_bit(i)==0 && 
true16x16_split_flag(i) == 
predicted16x16_split_flag(i) ) 
=> change 
true16x16_split_flag(i) 
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If (True16x16_split_flag(i) ≠ 
predicted16x16_split_flag(i) ) 
=>message_bit(i)=0 
 
If (true16x16_split_flag(i) == 
predicted16x16_split_flag(i) ) 
=> message_bit(i)=1 

Message 
extracting 

logic 

True16x16_split_flags
Predicted

16x16
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Figure 4. Pseudocode for the message embedding 

algorithm. 
 
An example that illustrates this concept in shown in 
Figure 4. In the figure, the split decisions/flags of 
each 32x32 CU are composed of four 16x16 CU 
split flags followed by the split flag of the entire 
32x32 CU. 

 

Figure 3. Example of embedding [0 0 1 1] into the split 
patterns of four 32x32 CUs 

In the example, the original split decisions selected 
by the encoder is shown in part ‘a’. The predicted 
split decisions on the other hand are shown in part 
‘b’. And the split decisions with data embedding are 
shown in part ‘c’. The message to embed in this 
example is 0011, therefore, the split decisions of the 
last two 32x32 CUs in part ‘a’ are replaced with 
predicted split values of [0 0 0 0 1] and [0 0 0 1 1] 
from part ‘b’. The final 64x64 CU split decisions 

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
ALGORITHM embedMessage is 
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 
INPUT:   videoToEncode, 
  trainFVs,  
  trainSplitFlags  
OUTPUT:  videoWithEmbeddedMsg 
 
H = computePredictionModel(trainFVs, trainSplitFlags) 
REPEAT 
   INPUT currCU; 
   skipFlag = computeSkipFlag(currCU); 
   if !skipFlag   
     currFV = computeFV(currCU); 
     predictedSplit = predictSplit(currFV, H); 
     actualSplit = computerSplit(currCU);     
     INITIALIZE modulatedSplit = zeros(1,21); 
     INITIALIZE i=0; a=1; b=5;  
     messageBits = readNext4MsgBits();     
     REPEAT 
        if actualSplit(a:b) == predSplit(a:b) 
           actualSplit(a:b) =  
                     alterOneBitInSplit(actualSplit(a:b)); 
        end 
        if messageBits(i)==1 
  modulatedSplit(a:b) = acutalSplit(a:b) 
        else 
              modulatedSplit(a:b) = predictedSplit(a:b) 
        end 
        i+=1; a+=5; b+=5; 
        UNTIL 4 message bits are embedded  
        videoWithEmbededMsg =  
                     concatinate(videoWithEmbededMsg, 

 encodeCU(currCU, modulatedSplit); 
   end //if !skipFlag 

[0 0 0 1 1]   [0 1 0 0 1]

[0 0 0 0 0]  [0 0 0 0 1] 
(a)Original split patterns 

[0 1 0 1 1] 

[0 0 0 0 1]  [0 0 0 1 1] 

 [0 0 0 0 1]

(b)Predicted split patterns 

[0 0 0 1 1]   [0 1 0 0 1]

[0 0 0 0 1]  [0 0 0 1 1] 

(c)Split pattern with message
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which contains the embedded message are therefore 
a mix between parts ‘a’ and ‘b’ as shown in part ‘c’.  
To extract the embedded message at the decoder, 
for each 64x64 CU, a feature vector is composed 
from surrounding CUs. The model is then used to 
predict the split pattern. The predicted pattern is 
then compared against the actual split decisions 
received in the bit stream for each 32x32 CU. If they 
match then the embedded message bit is ‘1’, 
otherwise it is ‘0’. The message extraction algorithm 
is further explained in the pseudocode of Figure 5. 
 

 
Figure 5. Pseudocode for the message embedding 

algorithm. 
 
The prediction model can be regenerated by the 
decoder as both the feature variables and split 
decisions are available for both the encoder and 
decoder.  Referring back to the example of Figure 
3-‘b’ above, the decoder predicts the following four 
32x32 CU split patterns: 
[01011][00001][00001][00011]. The decoder will 

also decode the following split flags from the bit 
stream (Figure 3-‘c’): [00011][01001][00001][00011]. 
Since the last two 32x32 CUs have the same 
predicted and bit stream split flags then the 
embedded message is 0011. 
In the next section, we explain the details of feature 
extraction and model generation proposed in this 
work. 
 
3. Model generation 
The model generation requires feature variables and 
corresponding split flags as illustrated in Figure 1. A 
mapping between the two is then computed. As 
mentioned in the previous section, the features are 
collected from five surrounding CUs that are 
previously encoded. The feature variables should be 
available for both the encoder and the decoder as 
both will compute the model weights. The feature 
variables are listed in Table 1. 
 

Table 1 List of feature variables used in model generation 
Feature variables Count 
Mean and variance [MVx, MVy] 
of list0 of surrounding 5 CUs 

20 

Mean and variance [MVx, MVy] 
of list1 of surrounding 5 CUs 

20 

Mean and variance of depth of 
surrounding 5 CUs 

10 

 
For each 64x64 CU, the encoder stores the feature 
variables in a feature vector and also stores the 
corresponding split decisions. For the model 
generation, the objective is to find a mapping 
between the feature vectors and the split decisions. 
In this paper we formulate this problem using 
Minimum Mean Square Error (MMSE). 
Denote by ],,,[ 21 nxxxX   the sequence of 

feature vectors where Xmxn, m is the 
dimensionality of the feature vector, and n is the 
total number of feature vectors. The corresponding 
CU split decisions are denoted by  ]s,s[sS 2 n,,1  

where Slxn, l is the dimensionality of the split 
patterns and n is the total number of CUs. Model 
weights are computed by minimizing the weighted 
mean square error between the predicted and 
desired split decisions, TS)S)(HX(HX

H
minarg . 

The closed form solution is given by [19]: 
1)(  TT XXSXH  (1) 

Where H lxm contains the model weights. 
To predict the split decisions of a feature vector xi, 
the weights obtained from (1) are used in (2) 

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
ALGORITHM extractMessage is 
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 
INPUT:   videoBitstream, 
  trainFVs,  
  trainSplitFlags  
OUTPUT: embeddedMessage 
 
H = computePredictionModel(trainFVs, trainSplitFlags) 
REPEAT 
   currCU = decodeNextCU(videoBitstream); 
   skipFlag = readSkipFlag(currCU); 
   if !skipFlag 
      currFV = computeFV(currCU, videoBitstream); 
      predictedSplit = predictSplit(currFV, H); 
      actualSplit = computerSplit(currCU); 
      INITIALIZE messageBits = zeros(1,4); 
      INITIALIZE i=0; a=1; b=5;  
      REPEAT 
         if predictedSplit(a:b) == acutalSplit(a:b) 
  messageBits(i)=1; 
         else 
  messageBits(i)=0; 
         end 
         i+=1; a+=5; b+=5; 
      UNTIL 4 message bits are extracted; 
      embeddedMessage = 
contatinate(embeddedMessage, messageBits); 
   end // if !skipFlag 
UNTIL all CUs are decoded  
 
RETURN embeddedMessage 
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 (2) 
Where  is a vector of length l which means that 
the whole split decisions are predicted at once. he 
predicted split decisions are clipped to the range of 
0,1 and rounded to either 0 or 1.  
A cleanup process follows to make sure that there is 
no contradiction between the 16x16, 32x32 and 
64x64 split flags. Namely, if any of the sub CU split 
flags is “1” then the higher level CU split flag will be 
set to “1” as well.  
Such MMSE prediction approach was successfully 
used in image processing applications such as the 
prediction of high frequency DCT coefficients in 
super image resolution as reported in [19]. 
The predicted split decisions can then be used in the 
process of message embedding as illustrated in 
Figure 2. They are also used in the process of 
message extraction as illustrated in Figure 3. 
It is worth mentioning that predicting split flags or 
decisions is also reported in the literature for the 
purpose of controlling the complexity of the 
encoding process [20], [21] and [22]. Predicting the 
split of intra-only CUs is also reported in [23] and 
[24].  
The difference between these solutions and the 
proposed technique of split prediction is due to two 
factors. First, the prediction of the split decisions in 
this work is based on feature variables extracted 
from previously encoded CUs. This is important as 
the prediction model needs to be regenerated at the 
decoder. Without regenerating the predication 
model, the decoder will not be able to identify the 
sub CUs that contain the embedded message. 
Second, the prediction solution is capable of 
predicting all split decisions without the need to 
extracted further features at 64x64, 32x32 and 
16x16 sub CU levels.  
On the other hand in existing work, feature 
variables are based on information available to the 
encoder but not to the decoder. Therefore, the 
prediction model cannot be regenerated at the 
decoder. Furthermore, the feature variables are 
selected at 3 CU levels; 64x64, 32x32 and 16x16. 
Therefore, the prediction of split decisions cannot 
be performed at the highest CU level. This also 
implies that the decoder cannot regenerate the 
model. 
 
 
 
4. Experimental results 

In the experiments to follow and for a fair 
comparison with [16], we use the same video 
sequences and same experimental setup. As 
mentioned in the introduction, the reviewed work 
embeds a message in HEVC video by forcing 
certain partitioning types for the Prediction Units 
(PUs). If a message bit is ‘0’ then the PU type is 
restricted to: NxN, nLx2N, 2NxnU and 2NxN. And 
if the message bit is ‘1’then the PU type is restricted 
to: 2Nx2N, nRx2N, Nx2N and 2NxnD. 
The video sequences used are Tennis 
1920×1080@24Hz,  FourPeople 280×720@60Hz,  
BasketballDrill 832×480@50Hz and asketballPass 
416×240@50Hz. The video sequences are coded 
with the following constant bit rate values 
100Kb/s, 500Kb/s, 1Mb/s, 5Mb/s and 10Mb/s. 
The message to be embedded is generated using a 
uniform discrete binary number generator. 
We use the HEVC reference software HM13.0 [25]. 
The main profile with a level of 3.1 is used. The 
video coding structure is IPPP… using 4 reference 
frames. The maximum CU size is 64x64 pixels. The 
asymmetric motion partitions tool and the adaptive 
loop filter tool are both enabled. The first 10% of 
frames of each sequence are used for model 
generation. 
We start by examining the prediction accuracy of 
the split decisions as proposed in Section 3. The 
total number of correctly predicted split decisions 
divided by the total number of split decisions is 
reported in Table 2. The results are the average 
prediction accuracy for the entire above-mentioned 
bit rates. 
 

Table 2 Prediction accuracy of split decisions. 
Sequence  Prediction accuracy % 

BasketballPass  82.2 

BasketballDrill  86.7 

FourPeople  90.1 

Tennis  93.4 

Average  88.1 

 
It is shown in the table that the prediction accuracy 
ranges from 82% to 93%. The average accuracy is 
88.1%. This indicates that the proposed prediction 
solution is capable of predicting split decisions with 
a very good accuracy. The next step is to use this 
prediction approach in message embedding and 
analyze the results in terms of the payload of the 
embedded message in Kbit/s and the drop in PSNR 
as a result of embedding. Clearly, a higher message 
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payload is preferred and lower drop in PSNR is also 
preferred. The drop in PSNR is computed as the 
difference between the PSNR of video coding with 
and without message embedding.   
In the first set of results reported in Table 3, we 
compare between the results of message embedding 
into 16x16 and 32x32 split decisions.  
 

Table 3 Total message payload and drop in PSNR, 
comparison between two proposed solutions. 

 

Mb/s 

Modify 
16x16 Splits 

Modify 
32x32 Splits 

PSNR 
loss 
dB 

Msg 
Kb/s 

PSNR 
loss 
dB 

Msg 
Kb/s 

Tennis 
1920×1080 
@24Hz 

0.1  1.15  58.5  0.49  14.6 

0.5  5.1  109.7  1.45  34.6 

1  2.9  150  0.76  37.3 

5  0.6  192.5  0.23  48.1 

10  0.27  200.1  0.13  48.9 

Average    2.0  142.2  0.6  36.7 

FourPeople 
1280×720 
@60Hz 

0.1  1.5  43.4  1.3  10.9 

0.5  1.3  76.5  0.5  19.1 

1  0.63  89.2  0.33  22.3 

5  0.13  140.4  0.1  35.1 

10  0.1  170.9  0.09  43 

Average    0.7  104  0.46  26.1 

Basketball‐
Drill 

832×480 
@50Hz 

0.1  2.2  32.2  1.67  8.1 

0.5  1.42  54  0.6  13.5 

1  0.9  60.1  0.48  15.4 

5  0.53  73  0.36  18.3 

10  0.29  74.3  0.2  18.6 

Average    1.1  58.7  0.66  14.8 

Basketball‐
Pass 

416×240 
@50Hz 

0.1  1.9  15.6  0.7  3.9 

0.5  0.8  17.8  0.54  4.5 

1  0.62  18.4  0.47  4.6 

Average    1.1  17.3  0.57  4.3 

Overall average  1.24  87.6  0.58  22.3 

 
Examining the overall averages in the table, it is 
shown that the average message payload as a result 
of modifying 16x16 split decisions is 87.6Kbit/s 
whereas that of modifying 32x32 split decisions is 
22.3 Kbit/s. The former solution embeds a message 
payload 4 times as much the latter solution. This is 
expected as each 32x32 CU contains four 16x16 sub 
CUs. Clearly this comes at a disadvantage of further 
reduction in the overall PSNR. In the table it is 
shown that the average drop in PSNR due to 
modifying 16x16 split decisions is1.24dB whereas 

that of modifying the 32x32 split decisions is 
2.23dB. 
The adverse effect of the message payload on the 
video quality is summarized in Figure 7. 
 

 
Figure 7. Effect of message payload on video 

quality 
 

Note that the message payload depends on the CU 
split level at which data is embedded. In this work, 
two solutions are proposed; message embedding at 
32x32 and message embedding at 16x16 CU 
depths. Therefore, for each test sequence, two data 
points are available as shown in Figure 7. 
Further investigation into the statistics of message 
embedding is reported in Table 4. We report the 
total number of modified split decisions in both of 
the proposed solutions. This is reported as the 
number of modified split decisions per second of 
video in Kbit/s, where each split decisions is 
represented as a bit. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4 Total number of modified split decisions in two 
proposed solutions. 
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Count of modified splits (Kbit/s)

   Mb/s 
Modify 
16x16 Splits 

Modify 
32x32 Splits 

Tennis 
1920×1080 
@24Hz 

  
  

0.1  29.2  14.6

0.5  54.8  27.4 

1  75  37.5

5  96.1  48.1

10  100.3  50.7 

Average 
 

71.1  35.7 

FourPeople 
1280×720 
@60Hz 

  
  

0.1  21.7  10.9 

0.5  38.2  19.1 

1  44.6  22.3 

5  70.2  35.1 

10  85.5  42.7 

Average     52.0  26.0 

Basketball‐Drill 
832×480 
@50Hz 

  
  

0.1  16.1  8.1 

0.5  27  13.5

1  30.2  15.1

5  36.5  18.3

10  37.1  18.6

Average     29.4  14.7

Basketball‐Pass 
416×240 
@50Hz 

0.1  7.8  3.9

0.5  8.9  4.5

1  9.2  4.6

Average     8.6  4.3 

Overall average  43.8  21.9 

 
For the proposed solution of modifying 16x16 split 
decisions, it is shown that the amount of modified 
split decisions is half of the corresponding message 
payload reported in Table 3. This is so because 
message bits are embedded into 16x16 split flags 
and the message is generated with a uniform 
distribution of ‘1s’ and ‘0s’ which is the worst case 
scenario in terms in message embedding. Therefore 
it is expected that, in the worst case scenario, half of 
the 16x16 split decisions are modified. 
As for the second solution of message embedding 
into 32x32 split decisions, the conclusion is 
different. In this solution, a 32x32 CU contain four 
16x16 split flags. Message embedding is done by 
leaving the 32x32 split decisions as is or by 
modifying 1 or more of its 16x16 split decisions. 
Hence in the worst case scenario, four split 
decisions might be modified for embedding one 
message bit. Therefore, when comparing the 
number of modified split decisions in this solution 
to the average message payload reported in Table 3, 
it is not necessarily half the value. In fact the average 
message payload is 22.3Kbit/s and the average 
modified split decisions is 21.9Kbit/s. 
In summary, comparing the averages of Tables 3 
and 4 it is revealed that embedding 2 message bits 

by modifying the 16x16 split decisions require 
modifying one split decisions on average. Whereas 
embedding 2 message bits by modifying the 32x32 
split decisions require modifying 2 split decisions on 
average. 
Lastly, in Table 6, we compare the proposed 
solution of message embedding into 16x16 split 
flags with existing work as reported in [16]. As 
mentioned in the introduction, the reviewed 
solution embeds a message bit in every Partition 
Unit (PU) of the 64x64 CU. The embedding is based 
on modifying the corresponding PU types. 
 

Table 5 Total message payload and drop in PSNR, 
comparison with existing solution. 

 

Mb/s 
Proposed(16x16) 

Reviewed 
[16] 

PSNR 
loss dB 

Msg 
Kb/s 

PSNR 
loss 
dB 

Msg 
Kb/s 

Tennis 
1920×1080 
@24Hz 

0.1  1.15  58.5  5.34  144.4 

0.5  5.1  109.7  8.21  146.3 

1  2.9  150  5.44  147.2 

5  0.6  192.5  0.95  188.2 

10  0.27  200.1  0.51  223.2 

Average    2.0  142.2  4.1  170 

FourPeople 
1280×720 
@60Hz 

0.1  1.5  43.4  4.66  61.8 

0.5  1.3  76.5  4.78  61.9 

1  0.63  89.2  1.26  66.6 

5  0.13  140.4  0.22  94.8 

10  0.1  170.9  0.18  116.1 

Average    0.7  104  2.2  80.2 

Basketball‐
Drill 

832×480 
@50Hz 

0.1  2.2  32.2  2.54  26 

0.5  1.42  54  1.65  30.1 

1  0.9  60.1  1.09  38.5 

5  0.53  73  0.71  59.2 

10  0.29  74.3  0.55  69.9 

Average    1.1  58.7  1.3  44.7 

Basketball‐
Pass 

416×240 
@50Hz 

0.1  1.9  15.6  2.25  7.8 

0.5  0.8  17.8  0.95  13.9 

1  0.62  18.4  0.76  17.1 

Average    1.1  17.3  1.3  12.9 

Overall average  1.24  87.6  2.23  77 

 
It is shown in the table that the distortion caused by 
the proposed solution is consistently lower than that 
of the reviewed solution. It is also shown that the 
message payload of the proposed system is on 
average 87.6 Kbit/s whereas that of the reviewed 
system is 77Kbit/s. The reviewed work has a high 
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message payload as well, however, imposing 
restrictions on PU types seem to cause an adverse 
effect on video quality. 
These results are a good indication that message 
embedding by altering the split decisions of CU 
using the proposed prediction approach results in a 
high message payload with a reduced effect on video 
quality. 
 
5. Conclusion 

A solution was proposed for embedding messages 
into HEVC coded video at a syntax-level. The split 
decisions of 32x32 and 16x16 CUs are modified 
according to three inputs; the message bits, true split 
flags and predicted split flags. The encoder starts by 
generating a set of model weights for predicting the 
split flags of all split decisions of a 64x64 CU. The 
decoder repeats the same process and re-generates 
the weights. Message extraction is then performed 
by comparing the predicted split decisions to the 
true split decisions received in the video bit stream. 
Experimental results revealed that embedding 2 
message bits by modifying the 16x16 split decisions 
require modifying one split decisions on average. 
Whereas embedding 2 message bits by modifying 
the 32x32 split decisions require modifying 2 split 
decisions on average. Experiments performed on 
various video sequences with different resolutions 
resulted in an average message payload of 87.6 
Kbit/s, achieved with a PSNR degradation of 1.24 
dB. Whereas, the two measures for the reviewed 
work are 77 Kbit/s and 2.23 dB respectively. 
 
References 

[1] L. Tian, N. Zheng, J. Xue, C. Li, X. Wang, “An 
integrated visual saliency-based watermarking approach 
for synchronous image authentication and copyright 
protection,” Signal Processing: Image Communication, 
26(8-9), pp. 427-437, October, 2011. 
[2] F.C. Chang, H.C. Huang and H.M. Hang, “Layered 
access control schemes on watermarked scalable 
media,” Journal of VLSI Signal Processing, 49(2007), pp. 
443–455, 2007. 
[3] P.C. Su, C.-S. Wu, I.-F. Chen, C.-Y. Wu, Y.-C. Wu, 
“A practical design of digital video watermarking in 
H.264/AVC for content authentication,” Signal 
Processing: Image Communication, 26(8-9), pp. 413-
426, October, 2011.  
[4] S. Emmanuel, A. Vinod, D. Rajan, C.K Heng, “An 
Authentication Watermarking Scheme with Transaction 
Tracking Enabled,” In Proc. Digital EcoSystems and 

Technologies Conference, 2007. Inaugural, 21-23 
February, 2007. 
[5] S. Kapotas, A. Skodras, “A new data hiding scheme 
for scene change detection in H.264 encoded video 
sequences,” IEEE International Conference 
on  Multimedia and Expo ICME 2008, pp.277-280, June, 
2008. 
[6] A. Yilmaz, A. Aydin, “Error detection and 
concealment for video transmission using information 
hiding,” Signal Processing: Image Communication, 
23(4), pp. 298-312, April, 2008. 
[7]D. Xu, R. Wang and Y. Q. Shi, "Data Hiding in 
Encrypted H.264/AVC Video Streams by Codeword 
Substitution," IEEE Transactions on Information 
Forensics and Security, 9(4), pp. 596-606, April, 2014. 
[8]T. Shanableh, “Matrix encoding for data hiding using 
multilayer video coding and transcoding solutions,” 
Signal Processing: Image Communication, Elsevier, 
27(9), pp. 1025-1034, October, 2012. 
[9] T. Shanableh, "Data Hiding in MPEG Video Files 
Using Multivariate Regression and Flexible Macroblock 
Ordering," IEEE Transactions on Information 
Forensics and Security, 7(2), pp.455-464, April, 2012. 
[10] T. Stütz, F. Autrusseau and A. Uhl, "Non-Blind 
Structure-Preserving Substitution Watermarking of 
H.264/CAVLC Inter-Frames," IEEE Transactions on 
Multimedia, 16(5), pp. 1337-1349, Aug. 2014. 
 [11] Y. Cao, H. Zhang, X. Zhao and H. Yu, "Covert 
Communication by Compressed Videos Exploiting the 
Uncertainty of Motion Estimation," IEEE 
Communications Letters, 19(2), pp. 203-206, February, 
2015. 
[12] K. Wang, H. Zhao and H. Wang, "Video 
Steganalysis Against Motion Vector-Based 
Steganography by Adding or Subtracting One Motion 
Vector Value," IEEE Transactions on Information 
Forensics and Security, 9(5), 741-751, May 2014. 
[13] K. Tasdemir, F. Kurugollu and S. Sezer, "Spatio-
Temporal Rich Model-Based Video Steganalysis on 
Cross Sections of Motion Vector Planes," IEEE 
Transactions on Image Processing, 25(7), pp. 3316-3328, 
July, 2016. 
[14] Y. Hu, C. Zhang and Y. Su, "Information Hiding 
Based on Intra Prediction Modes H.264/AVC," IEEE 
International Conference on  Multimedia and Expo, 
ICME 2007, pp.1231-1234, July, 2007. 
[15] G. Yang, J. Li, Y. He and Z. Kang, “An information 
hiding algorithm based on intra-prediction modes and 
matrix coding for H.264/AVC video stream,” 
International Journal of Electronics and 
Communications, (65)4, pp. 331-337, April, 2011. 
[16] Yiqi Tew, KokSheik Wong “Information hiding in 
HEVC standard using adaptive coding block size 
decision,” IEEE International Conference on Image 
Processing, ICIP 2014, Paris, France, October, 2014. 
[17] J. Wang, R. Wang  W. Li ,D.  Xu and  M. Huang, 
“An Information Hiding Algorithm for HEVC 

Shanableh, T. Multimed Tools Appl (2017). doi:10.1007/s11042-017-4787-6 
The final publication is available at Springer via http://dx.doi.org/10.1007/s11042-017-4787-6 



 

10 

Based on Intra Prediction Mode and Block Code,” 
Sensors & Transducers, 177(8), pp. 230-237, August, 
2014. 
[18] E. Peixoto, T. Shanableh and E. Izquierdo, 
“H.264/AVC to HEVC Video Transcoder based on 
Dynamic Thresholding and Content Modeling, ” IEEE 
Transactions on Circuits and Systems for Video 
Technology, 24(1), January, 2014. 
[19] K.W. Hung and W.C. Siu, "Novel DCT-Based 
Image Up-Sampling Using Learning-Based Adaptive K-
NN MMSE Estimation," IEEE Transactions 
on  Circuits and Systems for Video Technology, 24(12), 
pp.2018-2033, December, 2014. 
[20] H.-S. Kim and R.-H. Park , “Fast CU Partitioning 
Algorithm for HEVC Using an Online-Learning-Based 
Bayesian Decision Rule,” IEEE transactions on circuits 
and systems for video technology, 26(1), January, 2016. 
[21] G. Correa, P. A. Assuncao, L. V. Agostini, and L. A. 
da Silva Cruz, “Fast HEVC Encoding Decisions Using 
Data Mining,” IEEE transactions on circuits and 
systems for video technology, 25(4), April, 2015. 
[22] A. Heindel, T. Haubner and A. Kaup, “Fast CU Split 
Decisions for HEVC Inter Coding Using Support 
Vector Machines,” Processing of Picture Coding 
Symposium, Germany, December, 2016. 
[23] X. Zheng, Y. Zhao, H. Bai and C. Lin, “Fast 
Algorithm for Intra Prediction of HEVC Using 
Adaptive Decision Trees,” KSII Transactions on 
Internet and Information Systems, 10(7), pp. 3286-3300, 
2016. 
[24] S. Cho and M. Kim, “Fast CU Splitting and Pruning 
for Suboptimal CU Partitioning in HEVC Intra Coding,” 
IEEE Transactions on Circuits and Systems for Video 
Technology, 23(9), September, 2013. 
[25] I.-K. Kim, K. D. McCann, K. Sugimoto, B. Bross, 
W.-J. Han and G. J. Sullivan, "High Efficiency Video 
Coding (HEVC) Test Model 13 (HM13) Encoder 
Description," Document: JCTVC-O1002, Joint 
Collaborative Team on Video Coding (JCT-VC) of ITU-
T SG16 WP3 and ISO/IEC JTC1/SC29/WG11, 15th 
Meeting: Geneva, CH, 23 Oct. – 1 November, 2013 
 

Tamer Shanableh received his Ph.D. in 
Electronic Systems Engineering in 2002 
from the University of Essex, UK. From 
1998 to 2001, he was a senior research 
officer at the University of Essex, during 
which, he collaborated with BTexact on 
inventing video transcoders. He joined 
Motorola UK Research Labs in 2001. 

During his affiliation with Motorola, he contributed to 
establishing a new profile within the ISO/IEC MPEG-4 
known as the Error Resilient Simple Scalable Profile. He 
joined the American University of Sharjah in 2002 and is 
currently a professor of computer science. Dr. Shanableh 
spent the summers of 2003, 2004, 2006, 2007 and 2008 as a 
visiting professor at Motorola multimedia Labs. He spent the 
spring semester of 2012 as a visiting academic at the 

Multimedia and Computer Vision and Lab at the School of 
Electronic Engineering and Computer Science, Queen Mary, 
University of London, London, U.K . His research interests 
include digital video processing and pattern recognition. 

Shanableh, T. Multimed Tools Appl (2017). doi:10.1007/s11042-017-4787-6 
The final publication is available at Springer via http://dx.doi.org/10.1007/s11042-017-4787-6 




