
Altering Split Decisions of Coding Units for Message
Embedding in HEVC
Tamer Shanableh

Abstract This paper proposes a novel message
embedding solution based on modifying the split
decisions of HEVC videos. The encoder starts by
computing a mapping between the split decisions of
a Coding Unit (CU) and its features variables. This
results in model weights that can be used to predict
the split decisions. Message embedding is then
carried out as a function of the predicted and true
split decisions per CU. If the message bit to embed
is ‘1’ and the predicted and the true split decisions
are different then the true split decision is modified
to be identical to the predicted flag. Otherwise if the
message bit is ‘0’ and the predicted and the true split
decisions are identical, then the true split flag is
modified to become different than the predicted
flag. We apply this embedding concept at two CU
coding levels; 32x32 and 16x16. To extract a
message, the decoder starts by regenerating the
model weights which are then used to predict split
decisions and compare them against the true
decisions received in the bit stream. Identical
decisions indicate a message bit of ‘1’ and non-
identical split decisions indicate a message bit of ‘0’.
In the experimental results we examine the
prediction accuracy, the effect of the proposed
solutions on message payload, the number of
modified split decisions and the corresponding
impact on video quality. Comparison with an
existing solution reveals that the proposed solution
is superior in terms in message payload whilst
resulting in reduced video distortions.

Keywords Digital video coding; HEVC; Data
hiding; Pattern recognition.

1 Introduction

Message embedding in coded video is used as means
of information hiding and has a number of
important applications such as copyright protection
[1], access control [2], content authentication [3]
transaction tracking [4], real-time video scene
change detection [5] and error detection and
concealment [6]. In all applications, message

embedding has a number of requirements including
minimal video quality degradation, maintaining
compatibility with the standardized bit stream
syntax and offering a reasonable message payload.
Message embedding in compressed videos include
modifying DCT coefficients, quantization scales
and motion vectors. Message embedding can also
be implemented using code-word substitution [7].
Matrix encoding can be used to modify the
quantization scales and motion vectors in signal
layer and scalable video coding [8]. Advanced
transcoding techniques were applied to embed
messages is pre-encoded video as well. The work in
[9] embeds messages through altering the
quantization scales using a machine learning
approach. Data embedding using MVs has also been
used for video watermarking [10]. Additionally, [11]
proposed a solution that improves the security of
motion vector-based data embedding. On the other
hand, since embedding message by modulating MVs
become a popular approach, detection of such
approaches became an important research topic as
reported in [12] and [13].
Message embedding is also implemented using
coding block structure and prediction modes. For
instance, the work in [14] proposed the alteration of
intra prediction modes to hide a message in 4x4
intra blocks in H264/AVC videos. Likewise, the
authors of [15] altered the block types of
H.264/AVC blocks to hide message bits.
Message embedding is also implemented in HEVC
videos in which messages are hid by forcing certain
partitioning types for the Prediction Units (PUs)
[16]. If the message bit to hide is ‘1’then the PU type
is restricted to: 2Nx2N, nRx2N, Nx2N and 2NxnD.
Whereas if a message bit is ‘0’ then the PU type is
restricted to: NxN, nLx2N, 2NxnU and 2NxN. The
work in [17] proposed to embed messages into
HEVC videos by modifying the 4x4 intra prediction
modes. The solution has low impact on video
quality, however because it is restricted to 4x4 intra
prediction modes, it can only embed low payload

Shanableh, T. Multimed Tools Appl (2017). doi:10.1007/s11042-017-4787-6
The final publication is available at Springer via http://dx.doi.org/10.1007/s11042-017-4787-6

2

messages. The authors reported a message payload
in the range of 2.2 to 7 Kbit/s.
In this work, we propose to embed messages in
HEVC video by modifying the split decisions of
either 32x32 or 16x16 CUs. Since each 64x64 CU
contains four 32x32 CUs and sixteen 16x16 CUs,
then 4 and 16 message bits can be hidden in the
syntax of a CU respectively. A prediction solution is
proposed in which the decoder can predict the split
decisions of a CU and compare it against the true
split decisions received in the video bit stream. If
the two decisions are identical then the message bit
is ‘1’ otherwise it is ‘0’.
The challenge presented in is this work is to embed
a message by modifying selective CU split decisions.
The decoder should be able to identify the CU split
decisions that curry message information and
extract the message bits correctly. At the same time,
it is desired to minimize the effect of message
embedding on video quality. It is also desired to
reduce the number of modified split decisions. All
of these challenges are addressed in the proposed
solutions of this paper.
We study the effect of such solutions on the amount
of split decisions that need to be modified. We also
examine the effect on video quality and the amount
of message bits that can be embedded per a second
of video.
The rest of this paper is organized as follows.
Section 2 introduces the idea behind the overall
message embedding system including the
operations of the encoder and the decoder. Section
3 introduces the proposed feature extraction and
model generation solutions. Section 4 presents the
experimental results and Section 5 concludes the
paper.

2. Proposed system

The main idea of the proposed system is to modify
the split decisions of a 64x64 CU according to the
message to be embedded. It is known that a 64x64
CU has a total of 21 split flags. These are allocated
as follows; five split flags for each 32x32 CU and
one split flag for the 64x64 CU. Each 32x32 CU has
four 16x16 split flags and one 32x32 split flag. The
proposed data embedding system hides message
bits in the split decisions of 16x16 CUs. Hence a
total of 16 flags can be manipulated per 64x64 CU.
The proposed system is divided into two
subsystems; message embedding and message
extraction.

The message embedding subsystem is composed of
two stages. In the first stage, modeling takes place
to compute a mapping between coded information
of surrounding CUs and the split flags of the current
CU. This results in model weights that can be used
for predicting the split decisions. Typically, the first
10% of a video sequence is used to generate the
model. However the model generation can be
repeated if needed. For instance, in [18] it was
suggested to repeat model generation in cases of
scene cut detection. The overall model generation
process is illustrated in Figure 1.

Figure 1. Overall model generation process

In the figure, 50 feature variables are used to
compose a feature vector for each CU. These
feature variables are collected from surrounding
CUs that are previously encoded. Namely, the
following CUs are used in the feature collection
process; the one on the left, top-left, top, top-right
and co-located CUs. The details of feature
collection and model generation are explained in the
next section. It is important to note that collected
feature variables are available for both the encoder
and the decoder, as the latter will repeat the same
process to compute the model weights.
The second stage of the message embedding
subsystem is the embedding of message bits. This
starts once the encoder computed the model
weights. We propose two solutions for message
embedding. In the first solution, a message is
embedded by modifying the 16x16 split decisions of
a 64x64 CU. In the second solution, a message is
embedded by modifying the 32x32 split decisions of
a 64x64 CU.

2.1 Message embedding by modifying 16x16
split decisions.

Shanableh, T. Multimed Tools Appl (2017). doi:10.1007/s11042-017-4787-6
The final publication is available at Springer via http://dx.doi.org/10.1007/s11042-017-4787-6

3

In this solution, three pieces of information are
need as follows; a message bit to embed, predicted
split flag using the model and the true split flag
computed by the encoder. If the message bit to
embed is ‘1’ then the encoder uses a split flag that is
identical to the predicted one. Else, if the message
bit to embed is ‘0’ then the encoder uses a split flag
that is different than the predicted one. This process
of data embedding is illustrated in Figure 2.

Figure 2. Illustration of message embedding process.

As mentioned previously, the proposed system is
divided into two subsystems; message embedding
and message extraction. In the message extraction
subsystem, the decoder starts by re-computing the
model. This is why it is important to ensure that all
feature variables are available for both the encoder
and the decoder. Thereafter, for the decoder to
extract a message bit, 2 pieces of information are
needed as follows; a true split flag decoded from the
bit stream and a predicted split flag computed using
the model. If the two flags are identical then the
message bit is ‘1’ else it is ‘0’. This process of
message extraction is illustrated in Figure 3.

Figure 3. Illustration of message extraction process.

2.2 Message embedding by modifying 32x32
split decisions.
In this solution, the split decisions of 64x64 CUs are
predicted using the model weights. If the message
bit to embed is ‘1’ then the encoder is forced to use
the predicted split pattern, otherwise if the bit is ‘0’,
the encoder selects the split pattern using the usual
rate-distortion optimization approach. This results
in embedding one message bit per 64x64 CU., the
embedding concept is used at the level of 32x32
CUs. The split decisions of 64x64 CUs are predicted
which contain the split decisions of four 32x32 CUs.
If a message bit is ‘1’ then the split decisions for a
32x32 CU are replaced by the predicted pattern.
Otherwise, the encoder selects the split pattern
using the usual rate-distortion optimization
approach. However, in this case, if the predicted and
encoder-selected split decisions are the same, the
encoder is required to modify one of the split
decisions of the 32x32 CU.
 As such, up to 4 bits can be embedded in each
64x64 CU. The message embedding algorithm is
further explained in the pseudocode of Figure 4.

16 Message
 bits

Compute
Split flags

Model
weights

Predict
Split flags

CU feature
vector

If (message_bit(i)==1 &&
True16x16_split_flag(i) ≠
predicted16x16_split_flag(i))
=>change
true16x16_split_flag(i)

If (message_bit(i)==0 &&
true16x16_split_flag(i) ==
predicted16x16_split_flag(i))
=> change
true16x16_split_flag(i)

Message
hiding logic

True16x16_split_flagsPredicted
16x16

_split_flags

Compress CU
with modified
split flags

Modulated CU

CU

Received
Split flags

16 Message
 bits

Model
weights

Predict
Split flags

CU feature
vector

If (True16x16_split_flag(i) ≠
predicted16x16_split_flag(i))
=>message_bit(i)=0

If (true16x16_split_flag(i) ==
predicted16x16_split_flag(i))
=> message_bit(i)=1

Message
extracting

logic

True16x16_split_flags
Predicted

16x16
_split_flags

CU bit
stream

Shanableh, T. Multimed Tools Appl (2017). doi:10.1007/s11042-017-4787-6
The final publication is available at Springer via http://dx.doi.org/10.1007/s11042-017-4787-6

4

Figure 4. Pseudocode for the message embedding

algorithm.

An example that illustrates this concept in shown in
Figure 4. In the figure, the split decisions/flags of
each 32x32 CU are composed of four 16x16 CU
split flags followed by the split flag of the entire
32x32 CU.

Figure 3. Example of embedding [0 0 1 1] into the split
patterns of four 32x32 CUs

In the example, the original split decisions selected
by the encoder is shown in part ‘a’. The predicted
split decisions on the other hand are shown in part
‘b’. And the split decisions with data embedding are
shown in part ‘c’. The message to embed in this
example is 0011, therefore, the split decisions of the
last two 32x32 CUs in part ‘a’ are replaced with
predicted split values of [0 0 0 0 1] and [0 0 0 1 1]
from part ‘b’. The final 64x64 CU split decisions

‐‐
ALGORITHM embedMessage is
‐‐
INPUT: videoToEncode,
 trainFVs,
 trainSplitFlags
OUTPUT: videoWithEmbeddedMsg

H = computePredictionModel(trainFVs, trainSplitFlags)
REPEAT
 INPUT currCU;
 skipFlag = computeSkipFlag(currCU);
 if !skipFlag
 currFV = computeFV(currCU);
 predictedSplit = predictSplit(currFV, H);
 actualSplit = computerSplit(currCU);
 INITIALIZE modulatedSplit = zeros(1,21);
 INITIALIZE i=0; a=1; b=5;
 messageBits = readNext4MsgBits();
 REPEAT
 if actualSplit(a:b) == predSplit(a:b)
 actualSplit(a:b) =
 alterOneBitInSplit(actualSplit(a:b));
 end
 if messageBits(i)==1
 modulatedSplit(a:b) = acutalSplit(a:b)
 else
 modulatedSplit(a:b) = predictedSplit(a:b)
 end
 i+=1; a+=5; b+=5;
 UNTIL 4 message bits are embedded
 videoWithEmbededMsg =
 concatinate(videoWithEmbededMsg,

 encodeCU(currCU, modulatedSplit);
 end //if !skipFlag

[0 0 0 1 1] [0 1 0 0 1]

[0 0 0 0 0] [0 0 0 0 1]
(a)Original split patterns

[0 1 0 1 1]

[0 0 0 0 1] [0 0 0 1 1]

 [0 0 0 0 1]

(b)Predicted split patterns

[0 0 0 1 1] [0 1 0 0 1]

[0 0 0 0 1] [0 0 0 1 1]

(c)Split pattern with message

Shanableh, T. Multimed Tools Appl (2017). doi:10.1007/s11042-017-4787-6
The final publication is available at Springer via http://dx.doi.org/10.1007/s11042-017-4787-6

5

which contains the embedded message are therefore
a mix between parts ‘a’ and ‘b’ as shown in part ‘c’.
To extract the embedded message at the decoder,
for each 64x64 CU, a feature vector is composed
from surrounding CUs. The model is then used to
predict the split pattern. The predicted pattern is
then compared against the actual split decisions
received in the bit stream for each 32x32 CU. If they
match then the embedded message bit is ‘1’,
otherwise it is ‘0’. The message extraction algorithm
is further explained in the pseudocode of Figure 5.

Figure 5. Pseudocode for the message embedding

algorithm.

The prediction model can be regenerated by the
decoder as both the feature variables and split
decisions are available for both the encoder and
decoder. Referring back to the example of Figure
3-‘b’ above, the decoder predicts the following four
32x32 CU split patterns:
[01011][00001][00001][00011]. The decoder will

also decode the following split flags from the bit
stream (Figure 3-‘c’): [00011][01001][00001][00011].
Since the last two 32x32 CUs have the same
predicted and bit stream split flags then the
embedded message is 0011.
In the next section, we explain the details of feature
extraction and model generation proposed in this
work.

3. Model generation
The model generation requires feature variables and
corresponding split flags as illustrated in Figure 1. A
mapping between the two is then computed. As
mentioned in the previous section, the features are
collected from five surrounding CUs that are
previously encoded. The feature variables should be
available for both the encoder and the decoder as
both will compute the model weights. The feature
variables are listed in Table 1.

Table 1 List of feature variables used in model generation
Feature variables Count
Mean and variance [MVx, MVy]
of list0 of surrounding 5 CUs

20

Mean and variance [MVx, MVy]
of list1 of surrounding 5 CUs

20

Mean and variance of depth of
surrounding 5 CUs

10

For each 64x64 CU, the encoder stores the feature
variables in a feature vector and also stores the
corresponding split decisions. For the model
generation, the objective is to find a mapping
between the feature vectors and the split decisions.
In this paper we formulate this problem using
Minimum Mean Square Error (MMSE).
Denote by],,,[21 nxxxX  the sequence of

feature vectors where Xmxn, m is the
dimensionality of the feature vector, and n is the
total number of feature vectors. The corresponding
CU split decisions are denoted by]s,s[sS 2 n,,1

where Slxn, l is the dimensionality of the split
patterns and n is the total number of CUs. Model
weights are computed by minimizing the weighted
mean square error between the predicted and
desired split decisions, TS)S)(HX(HX

H
minarg .

The closed form solution is given by [19]:
1)( TT XXSXH (1)

Where H lxm contains the model weights.
To predict the split decisions of a feature vector xi,
the weights obtained from (1) are used in (2)

‐‐
ALGORITHM extractMessage is
‐‐
INPUT: videoBitstream,
 trainFVs,
 trainSplitFlags
OUTPUT: embeddedMessage

H = computePredictionModel(trainFVs, trainSplitFlags)
REPEAT
 currCU = decodeNextCU(videoBitstream);
 skipFlag = readSkipFlag(currCU);
 if !skipFlag
 currFV = computeFV(currCU, videoBitstream);
 predictedSplit = predictSplit(currFV, H);
 actualSplit = computerSplit(currCU);
 INITIALIZE messageBits = zeros(1,4);
 INITIALIZE i=0; a=1; b=5;
 REPEAT
 if predictedSplit(a:b) == acutalSplit(a:b)
 messageBits(i)=1;
 else
 messageBits(i)=0;
 end
 i+=1; a+=5; b+=5;
 UNTIL 4 message bits are extracted;
 embeddedMessage =
contatinate(embeddedMessage, messageBits);
 end // if !skipFlag
UNTIL all CUs are decoded

RETURN embeddedMessage

Shanableh, T. Multimed Tools Appl (2017). doi:10.1007/s11042-017-4787-6
The final publication is available at Springer via http://dx.doi.org/10.1007/s11042-017-4787-6

6

 (2)
Where is a vector of length l which means that
the whole split decisions are predicted at once. he
predicted split decisions are clipped to the range of
0,1 and rounded to either 0 or 1.
A cleanup process follows to make sure that there is
no contradiction between the 16x16, 32x32 and
64x64 split flags. Namely, if any of the sub CU split
flags is “1” then the higher level CU split flag will be
set to “1” as well.
Such MMSE prediction approach was successfully
used in image processing applications such as the
prediction of high frequency DCT coefficients in
super image resolution as reported in [19].
The predicted split decisions can then be used in the
process of message embedding as illustrated in
Figure 2. They are also used in the process of
message extraction as illustrated in Figure 3.
It is worth mentioning that predicting split flags or
decisions is also reported in the literature for the
purpose of controlling the complexity of the
encoding process [20], [21] and [22]. Predicting the
split of intra-only CUs is also reported in [23] and
[24].
The difference between these solutions and the
proposed technique of split prediction is due to two
factors. First, the prediction of the split decisions in
this work is based on feature variables extracted
from previously encoded CUs. This is important as
the prediction model needs to be regenerated at the
decoder. Without regenerating the predication
model, the decoder will not be able to identify the
sub CUs that contain the embedded message.
Second, the prediction solution is capable of
predicting all split decisions without the need to
extracted further features at 64x64, 32x32 and
16x16 sub CU levels.
On the other hand in existing work, feature
variables are based on information available to the
encoder but not to the decoder. Therefore, the
prediction model cannot be regenerated at the
decoder. Furthermore, the feature variables are
selected at 3 CU levels; 64x64, 32x32 and 16x16.
Therefore, the prediction of split decisions cannot
be performed at the highest CU level. This also
implies that the decoder cannot regenerate the
model.

4. Experimental results

In the experiments to follow and for a fair
comparison with [16], we use the same video
sequences and same experimental setup. As
mentioned in the introduction, the reviewed work
embeds a message in HEVC video by forcing
certain partitioning types for the Prediction Units
(PUs). If a message bit is ‘0’ then the PU type is
restricted to: NxN, nLx2N, 2NxnU and 2NxN. And
if the message bit is ‘1’then the PU type is restricted
to: 2Nx2N, nRx2N, Nx2N and 2NxnD.
The video sequences used are Tennis
1920×1080@24Hz, FourPeople 280×720@60Hz,
BasketballDrill 832×480@50Hz and asketballPass
416×240@50Hz. The video sequences are coded
with the following constant bit rate values
100Kb/s, 500Kb/s, 1Mb/s, 5Mb/s and 10Mb/s.
The message to be embedded is generated using a
uniform discrete binary number generator.
We use the HEVC reference software HM13.0 [25].
The main profile with a level of 3.1 is used. The
video coding structure is IPPP… using 4 reference
frames. The maximum CU size is 64x64 pixels. The
asymmetric motion partitions tool and the adaptive
loop filter tool are both enabled. The first 10% of
frames of each sequence are used for model
generation.
We start by examining the prediction accuracy of
the split decisions as proposed in Section 3. The
total number of correctly predicted split decisions
divided by the total number of split decisions is
reported in Table 2. The results are the average
prediction accuracy for the entire above-mentioned
bit rates.

Table 2 Prediction accuracy of split decisions.
Sequence Prediction accuracy %

BasketballPass 82.2

BasketballDrill 86.7

FourPeople 90.1

Tennis 93.4

Average 88.1

It is shown in the table that the prediction accuracy
ranges from 82% to 93%. The average accuracy is
88.1%. This indicates that the proposed prediction
solution is capable of predicting split decisions with
a very good accuracy. The next step is to use this
prediction approach in message embedding and
analyze the results in terms of the payload of the
embedded message in Kbit/s and the drop in PSNR
as a result of embedding. Clearly, a higher message

Shanableh, T. Multimed Tools Appl (2017). doi:10.1007/s11042-017-4787-6
The final publication is available at Springer via http://dx.doi.org/10.1007/s11042-017-4787-6

7

payload is preferred and lower drop in PSNR is also
preferred. The drop in PSNR is computed as the
difference between the PSNR of video coding with
and without message embedding.
In the first set of results reported in Table 3, we
compare between the results of message embedding
into 16x16 and 32x32 split decisions.

Table 3 Total message payload and drop in PSNR,
comparison between two proposed solutions.

Mb/s

Modify
16x16 Splits

Modify
32x32 Splits

PSNR
loss
dB

Msg
Kb/s

PSNR
loss
dB

Msg
Kb/s

Tennis
1920×1080
@24Hz

0.1 1.15 58.5 0.49 14.6

0.5 5.1 109.7 1.45 34.6

1 2.9 150 0.76 37.3

5 0.6 192.5 0.23 48.1

10 0.27 200.1 0.13 48.9

Average 2.0 142.2 0.6 36.7

FourPeople
1280×720
@60Hz

0.1 1.5 43.4 1.3 10.9

0.5 1.3 76.5 0.5 19.1

1 0.63 89.2 0.33 22.3

5 0.13 140.4 0.1 35.1

10 0.1 170.9 0.09 43

Average 0.7 104 0.46 26.1

Basketball‐
Drill

832×480
@50Hz

0.1 2.2 32.2 1.67 8.1

0.5 1.42 54 0.6 13.5

1 0.9 60.1 0.48 15.4

5 0.53 73 0.36 18.3

10 0.29 74.3 0.2 18.6

Average 1.1 58.7 0.66 14.8

Basketball‐
Pass

416×240
@50Hz

0.1 1.9 15.6 0.7 3.9

0.5 0.8 17.8 0.54 4.5

1 0.62 18.4 0.47 4.6

Average 1.1 17.3 0.57 4.3

Overall average 1.24 87.6 0.58 22.3

Examining the overall averages in the table, it is
shown that the average message payload as a result
of modifying 16x16 split decisions is 87.6Kbit/s
whereas that of modifying 32x32 split decisions is
22.3 Kbit/s. The former solution embeds a message
payload 4 times as much the latter solution. This is
expected as each 32x32 CU contains four 16x16 sub
CUs. Clearly this comes at a disadvantage of further
reduction in the overall PSNR. In the table it is
shown that the average drop in PSNR due to
modifying 16x16 split decisions is1.24dB whereas

that of modifying the 32x32 split decisions is
2.23dB.
The adverse effect of the message payload on the
video quality is summarized in Figure 7.

Figure 7. Effect of message payload on video

quality

Note that the message payload depends on the CU
split level at which data is embedded. In this work,
two solutions are proposed; message embedding at
32x32 and message embedding at 16x16 CU
depths. Therefore, for each test sequence, two data
points are available as shown in Figure 7.
Further investigation into the statistics of message
embedding is reported in Table 4. We report the
total number of modified split decisions in both of
the proposed solutions. This is reported as the
number of modified split decisions per second of
video in Kbit/s, where each split decisions is
represented as a bit.

Table 4 Total number of modified split decisions in two
proposed solutions.

0

1

2

3

0 50 100 150

D
ro
p
 in

 P
SN

R
 (
d
B
)

Message payload (Kbit/s)

Tennis FourPeople

BasketBallPass BasketBallDrill

Shanableh, T. Multimed Tools Appl (2017). doi:10.1007/s11042-017-4787-6
The final publication is available at Springer via http://dx.doi.org/10.1007/s11042-017-4787-6

8

Count of modified splits (Kbit/s)

 Mb/s
Modify
16x16 Splits

Modify
32x32 Splits

Tennis
1920×1080
@24Hz

0.1 29.2 14.6

0.5 54.8 27.4

1 75 37.5

5 96.1 48.1

10 100.3 50.7

Average

71.1 35.7

FourPeople
1280×720
@60Hz

0.1 21.7 10.9

0.5 38.2 19.1

1 44.6 22.3

5 70.2 35.1

10 85.5 42.7

Average 52.0 26.0

Basketball‐Drill
832×480
@50Hz

0.1 16.1 8.1

0.5 27 13.5

1 30.2 15.1

5 36.5 18.3

10 37.1 18.6

Average 29.4 14.7

Basketball‐Pass
416×240
@50Hz

0.1 7.8 3.9

0.5 8.9 4.5

1 9.2 4.6

Average 8.6 4.3

Overall average 43.8 21.9

For the proposed solution of modifying 16x16 split
decisions, it is shown that the amount of modified
split decisions is half of the corresponding message
payload reported in Table 3. This is so because
message bits are embedded into 16x16 split flags
and the message is generated with a uniform
distribution of ‘1s’ and ‘0s’ which is the worst case
scenario in terms in message embedding. Therefore
it is expected that, in the worst case scenario, half of
the 16x16 split decisions are modified.
As for the second solution of message embedding
into 32x32 split decisions, the conclusion is
different. In this solution, a 32x32 CU contain four
16x16 split flags. Message embedding is done by
leaving the 32x32 split decisions as is or by
modifying 1 or more of its 16x16 split decisions.
Hence in the worst case scenario, four split
decisions might be modified for embedding one
message bit. Therefore, when comparing the
number of modified split decisions in this solution
to the average message payload reported in Table 3,
it is not necessarily half the value. In fact the average
message payload is 22.3Kbit/s and the average
modified split decisions is 21.9Kbit/s.
In summary, comparing the averages of Tables 3
and 4 it is revealed that embedding 2 message bits

by modifying the 16x16 split decisions require
modifying one split decisions on average. Whereas
embedding 2 message bits by modifying the 32x32
split decisions require modifying 2 split decisions on
average.
Lastly, in Table 6, we compare the proposed
solution of message embedding into 16x16 split
flags with existing work as reported in [16]. As
mentioned in the introduction, the reviewed
solution embeds a message bit in every Partition
Unit (PU) of the 64x64 CU. The embedding is based
on modifying the corresponding PU types.

Table 5 Total message payload and drop in PSNR,
comparison with existing solution.

Mb/s
Proposed(16x16)

Reviewed
[16]

PSNR
loss dB

Msg
Kb/s

PSNR
loss
dB

Msg
Kb/s

Tennis
1920×1080
@24Hz

0.1 1.15 58.5 5.34 144.4

0.5 5.1 109.7 8.21 146.3

1 2.9 150 5.44 147.2

5 0.6 192.5 0.95 188.2

10 0.27 200.1 0.51 223.2

Average 2.0 142.2 4.1 170

FourPeople
1280×720
@60Hz

0.1 1.5 43.4 4.66 61.8

0.5 1.3 76.5 4.78 61.9

1 0.63 89.2 1.26 66.6

5 0.13 140.4 0.22 94.8

10 0.1 170.9 0.18 116.1

Average 0.7 104 2.2 80.2

Basketball‐
Drill

832×480
@50Hz

0.1 2.2 32.2 2.54 26

0.5 1.42 54 1.65 30.1

1 0.9 60.1 1.09 38.5

5 0.53 73 0.71 59.2

10 0.29 74.3 0.55 69.9

Average 1.1 58.7 1.3 44.7

Basketball‐
Pass

416×240
@50Hz

0.1 1.9 15.6 2.25 7.8

0.5 0.8 17.8 0.95 13.9

1 0.62 18.4 0.76 17.1

Average 1.1 17.3 1.3 12.9

Overall average 1.24 87.6 2.23 77

It is shown in the table that the distortion caused by
the proposed solution is consistently lower than that
of the reviewed solution. It is also shown that the
message payload of the proposed system is on
average 87.6 Kbit/s whereas that of the reviewed
system is 77Kbit/s. The reviewed work has a high

Shanableh, T. Multimed Tools Appl (2017). doi:10.1007/s11042-017-4787-6
The final publication is available at Springer via http://dx.doi.org/10.1007/s11042-017-4787-6

9

message payload as well, however, imposing
restrictions on PU types seem to cause an adverse
effect on video quality.
These results are a good indication that message
embedding by altering the split decisions of CU
using the proposed prediction approach results in a
high message payload with a reduced effect on video
quality.

5. Conclusion

A solution was proposed for embedding messages
into HEVC coded video at a syntax-level. The split
decisions of 32x32 and 16x16 CUs are modified
according to three inputs; the message bits, true split
flags and predicted split flags. The encoder starts by
generating a set of model weights for predicting the
split flags of all split decisions of a 64x64 CU. The
decoder repeats the same process and re-generates
the weights. Message extraction is then performed
by comparing the predicted split decisions to the
true split decisions received in the video bit stream.
Experimental results revealed that embedding 2
message bits by modifying the 16x16 split decisions
require modifying one split decisions on average.
Whereas embedding 2 message bits by modifying
the 32x32 split decisions require modifying 2 split
decisions on average. Experiments performed on
various video sequences with different resolutions
resulted in an average message payload of 87.6
Kbit/s, achieved with a PSNR degradation of 1.24
dB. Whereas, the two measures for the reviewed
work are 77 Kbit/s and 2.23 dB respectively.

References

[1] L. Tian, N. Zheng, J. Xue, C. Li, X. Wang, “An
integrated visual saliency-based watermarking approach
for synchronous image authentication and copyright
protection,” Signal Processing: Image Communication,
26(8-9), pp. 427-437, October, 2011.
[2] F.C. Chang, H.C. Huang and H.M. Hang, “Layered
access control schemes on watermarked scalable
media,” Journal of VLSI Signal Processing, 49(2007), pp.
443–455, 2007.
[3] P.C. Su, C.-S. Wu, I.-F. Chen, C.-Y. Wu, Y.-C. Wu,
“A practical design of digital video watermarking in
H.264/AVC for content authentication,” Signal
Processing: Image Communication, 26(8-9), pp. 413-
426, October, 2011.
[4] S. Emmanuel, A. Vinod, D. Rajan, C.K Heng, “An
Authentication Watermarking Scheme with Transaction
Tracking Enabled,” In Proc. Digital EcoSystems and

Technologies Conference, 2007. Inaugural, 21-23
February, 2007.
[5] S. Kapotas, A. Skodras, “A new data hiding scheme
for scene change detection in H.264 encoded video
sequences,” IEEE International Conference
on Multimedia and Expo ICME 2008, pp.277-280, June,
2008.
[6] A. Yilmaz, A. Aydin, “Error detection and
concealment for video transmission using information
hiding,” Signal Processing: Image Communication,
23(4), pp. 298-312, April, 2008.
[7]D. Xu, R. Wang and Y. Q. Shi, "Data Hiding in
Encrypted H.264/AVC Video Streams by Codeword
Substitution," IEEE Transactions on Information
Forensics and Security, 9(4), pp. 596-606, April, 2014.
[8]T. Shanableh, “Matrix encoding for data hiding using
multilayer video coding and transcoding solutions,”
Signal Processing: Image Communication, Elsevier,
27(9), pp. 1025-1034, October, 2012.
[9] T. Shanableh, "Data Hiding in MPEG Video Files
Using Multivariate Regression and Flexible Macroblock
Ordering," IEEE Transactions on Information
Forensics and Security, 7(2), pp.455-464, April, 2012.
[10] T. Stütz, F. Autrusseau and A. Uhl, "Non-Blind
Structure-Preserving Substitution Watermarking of
H.264/CAVLC Inter-Frames," IEEE Transactions on
Multimedia, 16(5), pp. 1337-1349, Aug. 2014.
 [11] Y. Cao, H. Zhang, X. Zhao and H. Yu, "Covert
Communication by Compressed Videos Exploiting the
Uncertainty of Motion Estimation," IEEE
Communications Letters, 19(2), pp. 203-206, February,
2015.
[12] K. Wang, H. Zhao and H. Wang, "Video
Steganalysis Against Motion Vector-Based
Steganography by Adding or Subtracting One Motion
Vector Value," IEEE Transactions on Information
Forensics and Security, 9(5), 741-751, May 2014.
[13] K. Tasdemir, F. Kurugollu and S. Sezer, "Spatio-
Temporal Rich Model-Based Video Steganalysis on
Cross Sections of Motion Vector Planes," IEEE
Transactions on Image Processing, 25(7), pp. 3316-3328,
July, 2016.
[14] Y. Hu, C. Zhang and Y. Su, "Information Hiding
Based on Intra Prediction Modes H.264/AVC," IEEE
International Conference on Multimedia and Expo,
ICME 2007, pp.1231-1234, July, 2007.
[15] G. Yang, J. Li, Y. He and Z. Kang, “An information
hiding algorithm based on intra-prediction modes and
matrix coding for H.264/AVC video stream,”
International Journal of Electronics and
Communications, (65)4, pp. 331-337, April, 2011.
[16] Yiqi Tew, KokSheik Wong “Information hiding in
HEVC standard using adaptive coding block size
decision,” IEEE International Conference on Image
Processing, ICIP 2014, Paris, France, October, 2014.
[17] J. Wang, R. Wang W. Li ,D. Xu and M. Huang,
“An Information Hiding Algorithm for HEVC

Shanableh, T. Multimed Tools Appl (2017). doi:10.1007/s11042-017-4787-6
The final publication is available at Springer via http://dx.doi.org/10.1007/s11042-017-4787-6

10

Based on Intra Prediction Mode and Block Code,”
Sensors & Transducers, 177(8), pp. 230-237, August,
2014.
[18] E. Peixoto, T. Shanableh and E. Izquierdo,
“H.264/AVC to HEVC Video Transcoder based on
Dynamic Thresholding and Content Modeling, ” IEEE
Transactions on Circuits and Systems for Video
Technology, 24(1), January, 2014.
[19] K.W. Hung and W.C. Siu, "Novel DCT-Based
Image Up-Sampling Using Learning-Based Adaptive K-
NN MMSE Estimation," IEEE Transactions
on Circuits and Systems for Video Technology, 24(12),
pp.2018-2033, December, 2014.
[20] H.-S. Kim and R.-H. Park , “Fast CU Partitioning
Algorithm for HEVC Using an Online-Learning-Based
Bayesian Decision Rule,” IEEE transactions on circuits
and systems for video technology, 26(1), January, 2016.
[21] G. Correa, P. A. Assuncao, L. V. Agostini, and L. A.
da Silva Cruz, “Fast HEVC Encoding Decisions Using
Data Mining,” IEEE transactions on circuits and
systems for video technology, 25(4), April, 2015.
[22] A. Heindel, T. Haubner and A. Kaup, “Fast CU Split
Decisions for HEVC Inter Coding Using Support
Vector Machines,” Processing of Picture Coding
Symposium, Germany, December, 2016.
[23] X. Zheng, Y. Zhao, H. Bai and C. Lin, “Fast
Algorithm for Intra Prediction of HEVC Using
Adaptive Decision Trees,” KSII Transactions on
Internet and Information Systems, 10(7), pp. 3286-3300,
2016.
[24] S. Cho and M. Kim, “Fast CU Splitting and Pruning
for Suboptimal CU Partitioning in HEVC Intra Coding,”
IEEE Transactions on Circuits and Systems for Video
Technology, 23(9), September, 2013.
[25] I.-K. Kim, K. D. McCann, K. Sugimoto, B. Bross,
W.-J. Han and G. J. Sullivan, "High Efficiency Video
Coding (HEVC) Test Model 13 (HM13) Encoder
Description," Document: JCTVC-O1002, Joint
Collaborative Team on Video Coding (JCT-VC) of ITU-
T SG16 WP3 and ISO/IEC JTC1/SC29/WG11, 15th
Meeting: Geneva, CH, 23 Oct. – 1 November, 2013

Tamer Shanableh received his Ph.D. in
Electronic Systems Engineering in 2002
from the University of Essex, UK. From
1998 to 2001, he was a senior research
officer at the University of Essex, during
which, he collaborated with BTexact on
inventing video transcoders. He joined
Motorola UK Research Labs in 2001.

During his affiliation with Motorola, he contributed to
establishing a new profile within the ISO/IEC MPEG-4
known as the Error Resilient Simple Scalable Profile. He
joined the American University of Sharjah in 2002 and is
currently a professor of computer science. Dr. Shanableh
spent the summers of 2003, 2004, 2006, 2007 and 2008 as a
visiting professor at Motorola multimedia Labs. He spent the
spring semester of 2012 as a visiting academic at the

Multimedia and Computer Vision and Lab at the School of
Electronic Engineering and Computer Science, Queen Mary,
University of London, London, U.K . His research interests
include digital video processing and pattern recognition.

Shanableh, T. Multimed Tools Appl (2017). doi:10.1007/s11042-017-4787-6
The final publication is available at Springer via http://dx.doi.org/10.1007/s11042-017-4787-6

