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Abstract

The deaf community relies on sign language as the primary means of communication.

For the millions of people around the world who suffer from hearing loss, interaction

with hearing people is quite difficult. The main objective of Sign language recogni-

tion (SLR) is the development of automatic SLR systems to facilitate communication

with the deaf community. SLR as a whole is considered a relatively new area. Arabic

SLR (ArSLR) specifically did not receive much attention until recent years. This work

presents a comprehensive comparison between two different recognition techniques for

continuous ArSLR, namely a Modified k-Nearest Neighbor (MKNN) which is suitable

for sequential data and Hidden Markov Models (HMMs) techniques based on two dif-

ferent toolkits. Additionally, in this thesis, two new ArSL datasets composed of 40

Arabic sentences are collected using Polhemus G4 motion tracker and a camera. An

existing glove-based dataset is employed in this work as well. The three datasets are

made publicly available to the research community. The advantages and disadvantages

of each data acquisition approach and classification technique are discussed in this the-

sis. In the experimental results chapter, it has been shown that data acquisition using

only the motion tracker results in accurate sentence recognition similar to that gener-

ated by the glove-based acquisition system. The modified KNN solution is inferior to

HMMs in terms of the computational time required for classification. Moreover, the

performance of Polhemus G4 and RASR on multiple users is examined and promising

results have been achieved.

Search Terms: Arabic Sign Language Recognition, pattern classification, feature

extraction, Motion detectors.
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Chapter 1: Introduction

Sign language recognition (SLR) is closely related to speech recognition (SR).

Therefore, most of the analysis and classification techniques used in SLR have been

borrowed from the speech recognition literature which has been established decades

ago and has reached an adequate level of maturity. SLR, on the other hand, is still

a new but active area of research. Since sign language is primarily a set of gestures,

it is similarly affected by the advances in gesture recognition. Nonetheless, not all

techniques of gesture and speech recognition are adequate for SLR. Over the years

SLR has developed its own literature.

SL has its own set of grammar rules, which is different from the spoken language

grammar. It is worth noting that SL is not universal. American Sign Language (ASL)

is different from Arabic Sign Language (ArSL) which is different from Chinese Sign

Language (CSL) [1]. Some SLs have more in common with spoken languages than

others; Sign Exact English (SEE) is a good example, but it is not popular [2].

Compared to other gestures, SL is the most structured one. It has a large set

of signs where each sign has a specific meaning. The majority of signs are associated

with words while some are for finger spelling. For instance, American Sign Languages

(ASL) has approximately 6000 signs [2].

Data availability is one of the main struggles facing researchers in SLR. The

number of publicly available datasets is quite limited both in terms of quantity and

quality. Manually annotated datasets are severely scarce. Moreover, since sign language

is not universal, some sign languages (e.g., English and Chinese) have more datasets

available than others (e.g., Arabic). Some publicly available datasets are in [3–5].

Another issue in SL is co-articulation or epenthesis which is also encountered in

speech recognition. It means that a sign is affected by the signs before and after it. It is

a well-known problem in speech recognition, but in SL it happens over a longer period

and affects different aspect of the sign at the same time. This poses a lot of troubles

in continuous recognition. Yang and Sarkar used conditional random fields (CRF) to

detect co-articulation in SL [6]. Other approaches for handling co-articulation can be
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found in [7,8]. The way in which each person performs signs might be different; this is

another problem known as signer dependency.

Signs of SL consist of two components: manual and non-manual features. Man-

ual features are hand position, orientation, shape and trajectory. Non-manual features

are body movement and facial expressions. Most of the information is conveyed through

manual features [9], thus most of the researches focused only on them [10]. Non-

manual features can form a sign by themselves, but mostly they can modify the mean-

ing of the manual features; raising eyebrow indicates a question. Lip shape and head

pose are popular non-manual features as well.

The two main approaches for SLR are: vision-based and sensor-based approaches.

Vision-based SLR uses cameras only to capture gestures (signs). It has the advantage of

user friendliness since the user is not required to wear any devices such as data gloves

or motion trackers. However, the computational cost is normally high for this approach.

Moreover, it can be quite sensitive to variations in the background or changing illumi-

nation conditions.

Sensor-based approaches, however, make use of wearable devices to capture the

signs in a more accurate manner than vision-based systems. Although it might not be as

convenient as the vision-based systems, it comes with a huge improvement in recogni-

tion accuracy. Additionally, its data acquisition and processing requirements are mod-

est. Gloves and motion trackers are the most commonly used sensors for sensor-based

SLR. Usually the measurements of those sensors are accurate enough; thus no feature

extraction techniques are needed. They allow researchers to focus on the recognition

problem. The drawback of using sensors is that the signer is required to wear those

sensors, which can be annoying. Another issue is the cost; accurate gloves and motion

trackers are still expensive. Before selecting a glove, the reader is encouraged to look

at [11], where a comparison between the different gloves available in the market and

the technologies behind them is presented. An older survey was done by Sturman and

Zeltzer in [12] where they discussed some of the common applications of gloves in dif-

ferent fields. A summary of the comparison between the vision-based and sensor-based

approaches is shown in Table 1.
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Table 1: A Comparison between the vision-based and sensor-based approaches.

In general, any glove contains a number of sensors to measure the bending at

each finger. Different technologies are used to develop those sensors: piezoresistive,

Hall Effect, and fiber optics are examples. The accuracy of those sensors and their

distribution over the hand is what specifies the overall accuracy. Some gloves need

calibration for each user; this factor must be in mind before buying a glove.

Some gloves come with an embedded accelerometer, gyroscope, and magne-

tometer. Hence it can capture both the hand shape using the bend sensors as well as

hand position and orientation. DG5-VHand is an example of such gloves [13]. Other

gloves contain only bend sensors thus additional sensors are required to capture hand

motion and orientation; an example of such is CyberGlove [14]. In such cases motion

trackers could be used alongside the gloves to record hand trajectory. The reader is

referred to [15] for an overview of the available motion trackers, their technologies and

applications.

The rest of this thesis is organized as follows. Section 1.1 presents a short

survey of the current state-of-the-art in SLR. A description of the datasets used and their

collection procedures is in Chapter 2, followed in Chapter 3 by a detailed explanation of

the feature extraction techniques used and the adopted classification algorithms. Results

of the experiments are presented in Chapter 4. Concluding remarks and future works

are discussed in Chapter 5.
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1.1. Literature Review

SLR can be at the level of alphabets, isolated words, or continuous words. The

data collection can be a vision-based approach or a sensor-based one. This section tries

to provide an overview of the state-of-the-art techniques in SLR on the three aforemen-

tioned levels using both vision-based and sensor-based approaches.

A recent and thorough survey of SLR was done by Cooper et al. [9]. They

covered the key components of SLR, and discussed the pros and cons of the different

types of data available. The manual and non-manual components of signs were also

explored, as well as the recent researches in the area. The survey discussed some of

the current research frontiers such as: continuous recognition, signer independency, the

work towards combining different modalities of sign, and the development of uncon-

strained real-life SLR systems. In [16], a more recent survey with a focus on Indian

sign language (ISL) is introduced.

Recognition of alphabets is in general easier than recognizing words. Usually

alphabets are static gestures, this allows the use of conventional classification and clus-

tering techniques. Color gloves were used to collect data of ArSL alphabets from multi-

ple users, where adaptive Neuro-Fuzzy Inference System (ANFIS) was the recognition

approach [17] . The same data and feature extraction techniques were used by Assaleh

et al. [18], but they used polynomial classier and reported better results than the previ-

ous ANFIS approach. In [19], depth camera was used as the input device for real time

recognition of ASL alphabets.

The problem of co-articulation is not present in recognition of isolated gestures,

which makes it simpler than continuous sign recognition but tougher than alphabets

recognition due to its dynamic nature. Oz et al. [20] collected a dataset of 50 isolated

right handed words of ASL. After extracting some global features, artificial neural net-

works were used for classification. The system was tested on multiple users as well as

on new words, and they reported accuracy of 90%. Different spatio-temporal feature-

extraction techniques were used in [21] for recognizing isolated ArSL words. Accuracy

of 97% was reported upon using K nearest neighbor (KNN) classifier. Their proposed

feature extraction and classification yielded results comparable to conventional HMM.
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HMMs are the most commonly used classification technique in SLR. For in-

stance, Gaussian Hidden Markov Model (GHMM) was used on the SIGNUM database

[22]. Multilayer perceptron (MLP) features in addition to appearance-based features ex-

tracted directly from the videos were used achieving word error rate (WER) of 11.9%.

Then Principal Component Analysis (PCA) was used for dimensionality reduction. The

same group investigated combining different sign modalities for the same database [23].

They studied different combinations of five modalities, and were able to decrease WER

to 10.7%. A promising approach of end-to-end embedding of a Convolutional Neu-

ral Network (CNN) into an HMM was recently proposed in [24]. In [25], HMMs were

used to model the hand trajectory for large isolated Chinese SLR. They claim to achieve

better performance compared to normal coordinate features with HMM.

In [26], Kong and Ranganath presented promising results in terms of signer in-

dependency. Their system was tested on new signs as well as new users. Accuracies

of 95.7% and 86.6% respectively were reported. They used a segmentation algorithm

proposed in their previous work [27]. A major contribution in signer independency

was done by Koller and colleagues [28], where they worked on two publicly avail-

able large vocabulary databases representing lab-data (SIGNUM database:25 signers,

455 sign vocabulary, 19k sentences) and unconstrained real-life sign language (RWTH-

PHOENIX-Weather database: 9 signers, 1081 sign vocabulary, 7k sentences). The

earlier works of Gao et al. [29] and Fang et al. [30] are also examples of research on

signer independency and large vocabulary. Fang et al. tried to tackle co-articulation by

modeling the transition between signs using transition-movement models (TMMs).

In vision-based SLR, hand tracking is still a challenge especially in uncon-

strained environment where the background is cluttered and illumination conditions

vary. Several researches have tried to tackle this issue with the use of Kinect [31–34].

Kinect simplifies hand tracking by providing depth and color data simultaneously. In

[35], a survey of the state-of-the-art of gesture recognition as it was in 2007 was pre-

sented. Object tracking methods and techniques were surveyed by Yilmaz et al. [36].

A detailed survey of vision-based systems for capturing the human motion was done by

Moeslund and Granum [37]. Non-manual features like facial expressions received a lot

of attention in recent years in computer vision as well. In [38], a survey of algorithms
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for face detection in images was presented. A comprehensive study of face recognition

was presented in [39, 40]. Analysis of facial expression recognition is in [41]. Head

pose estimation was studied in [42]. Recently gaze estimation was studied in [43].

Many depth cameras are now available in the market with a variety of prices and ac-

curacies. ZED and Kinect are the most commonly used ones. A team from Microsoft

research Asia has developed Kinect-based SLR system and has reported very promising

results [32]. Zafrulla et al. compared their old copycat system which used a colored

glove and embedded accelerometer to a system based in Kinect in [33].

Gloves and motion trackers were used as input devices in many researches. Cy-

berGloves and Flock of Birds 3-D motion tracker were used to collect data of 50 isolated

right handed words of ASL in [20]. Gao et al. [29] used two CybeGloves and 3 Pohel-

mus trackers. A similar approach using CyberGlove and Polhemus FASTRACK system

was used in [26].

Until recently Arabic Sign Language Recognition (ArSLR) has not received

much attention. A survey of the contributions in ArSLR up to 2014 using both sensor-

based and vision-based approaches can be found in [44]. The majority of the literature

is concerned with isolated sign recognition. For instance, a system based on adap-

tive neuro fuzzy inference system (ANFIS) networks was proposed by Al-Jarrah and

Halawani to recognize 30 Arabic alphabets. They managed to achieve an accuracy

of 93.55% [45]. A vision-based posture recognition called AndroSpell was proposed

in [46] where the authors made use of a camera phone to recognize 10 postures with

97% accuracy.

In [47], Shanableh and Assaleh proposed a vision-based user-independent sys-

tem capable of recognizing 23 Arabic sign language words with average classification

rate of 87.0%. Their dataset was collected by 3 signers, where each one was asked to

repeat each sign 50 times over 3 different sessions. They end up with 150 repetitions for

all gestures. The signers wore colored gloves during the data collection process. Mo-

handes et al. [48] used Power Glove to collect a dataset of 120 words; they used some

statistical features and Support Vector Machine (SVM) as a classifier. CyberGloves and

two hand-tracking devices were used in [49] to build a similar system, so the accuracy

jumped to 99.6%.
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It was not until 2010 that the first continuous ArSLR system was proposed by

Assaleh et al. [50]. They used their novel spatio-temporal feature-extraction technique

[21] and reported 6.0% WER on a dataset of 40 sentences. A modified version of K-

Nearest Neighbor (MKNN) was proposed by Tubaiz et al. in [51] and tested on the

same dataset but collected using DG5-VHand data gloves instead of the camera. Their

system achieved 2.0% WER. The data collected in [51] was used by Tuffaha et al. [52]

where modified polynomial classifier was proposed. Similar feature extraction phase

was implemented. In addition to mean and standard deviation, covariance, entropy and

uniformity were appended to raw data. The paper reported 85.0% sentence recognition

rate.

Multichannel Electromyography (EMG) sensors have been also used for SLR.

A recent study fused accelerometer data with EMG sensors measurements, and used

the intensity of EMG signal to automatically detect signs boundaries [53], see similar

work in [54–58]. Vlasic et al. introduced a wearable motion capture device based on ul-

trasonic and inertial measurement and they reported good performance in the everyday

environment [59].

Leap motion controller (LMC) has also gained some publicity lately. It depends

on IR cameras and LEDs to capture the motion. It observes a distance of a meter in a

hemispherical shape. The controller is connected to PC through USB. Data is analyzed

by a software provided by the company. Potter et al. tested LMC on Australian Sign

Language (Auslan) recognition [60]. In [61] features extracted from Kinect and LMC

were combined for better recognition. Mohandes used LMC for recognizing Arabic

Signs alphabets using Multilayer Perceptron (MLP) neural networks with the Naive

Bayes classifier [62].

1.2. CyberGlove

As defined in [11], a glove-based system is a system worn on the hand, equipped

with an array of sensors and the necessary electronics for data acquisition and process-

ing. The goal of using a glove is to capture hand shape and configuration. Gloves avail-

able in the market differ in terms of the technology used, number of sensors, sensors
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distribution, sensors precision and communication medium. Figure 1 shows the differ-

ent joints in a human hand. Gloves try to capture the amount of pending in as many as

possible of these joints. In 1992, Virtual Technologies Inc started selling CyberGlove

Figure 1: Joints in a human hand [11].

which was designed originally by James Kramer from Stanford. CyberGlove is consid-

ered one of most accurate gloves available today [11]. It comes in two versions; one

with 18 sensors and another with 22 sensors. Both versions use piezoresistive sensors.

In the 18 sensors version, there are two bend sensors on each finger plus four abduction

sensors, in addition to sensors measuring the thumb crossover, palm arch, wrist flexion,

and wrist abduction/adduction. Additional four sensors to measure DIP joints flexion

are added in the 22 sensor version. There are also wired and wireless gloves. Wireless

gloves provide more freedom to the user and they can work within a range of 100 feet.

The gloves come with user-friendly Device Configuration utility (DCU) shown in Fig-

ure 2 through which hand shape can be constantly monitored. It also shows the readings

of each sensor as shown in Figure 3. These gloves also come with a set of APIs and

well-documented programmer guide.

Calibration is required for each user of the glove. Calibration compensates the

variations in hand formation, thickness and fingers lengths. It also provides joint an-

gles by converting the sensors’ voltages. DCU is used for calibration where the user

is asked to perform specific hand configurations and then the program automatically
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Figure 2: CyberGlove Device Configuration Utility

adjusts gains and offsets for each sensor. Better results can be achieved by manually

adjusting the gains and offsets. A motion tracker can be added to the system by mount-

ing the tracker sensors on top of the gloves. The DCU can be used to monitor the tracker

data as well.

1.3. Polhemus G4

Polhemus G4 is 6 DOF wireless tracking system. The system contains the fol-

lowing components:

• Sensors which detect the electromagnetic field generated by the source. The po-

sition and orientation are measured from the center of the sensors.

• Source, which is a 4-inch cube, generates the necessary electromagnetic (EM)

field for tracking the sensors. The closer the sensors are to the source, the more

accurate the measurements are. Maximum motion tracking area is around 15 feet,

but it can be extended by using more than one source with each one working in a

different frequency.

• Hub, the sensors are connected to lightweight hub worn by the user which in turn

sends the data to the PC via RF module. Wired operation is possible as well.

• RF communication is provided using RF/USB module connected to PC. The

frame rate is 120 samples per second.
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Figure 3: Glove measurements

The origin with respect to which the position and orientation will be measured can be

the center of one of the sources or any actual location. Components are shown in Figure

4 and Figure 5.

For a better performance, it is recommended to operate within a range 2 to 6

feet (0.6 to 1.83m) from the source. Special attention should be paid to placing the

source, as it should not be placed on a metal or close to magnetic distorter. The system

comes with a handy software for monitoring and recording the sensors. More details

are available in [63].
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Figure 4: G4 Sensor and source

Figure 5: G4 RF USB and Hub

1.4. DG5-VHand

DG5-VHand has five embedded bend sensors - one on each finger- and one 3-

axes accelerometer as shown in Figure 6. Bend sensors, which are also known as flex

sensors, measure the amount of bend on the sensor and express it as electrical resistance.

As the amount of bending increases, the resistance increases. DG5-VHand also has the

advantage of the Bluetooth interface which makes the movement less restricted. A

summary of its specifications is in Table 2.

Table 2: Specifications of the DG5-VHand Glove 2.0.

Number of Sensors
5 proprietary flex sensors
3 degrees of integrated tracking

Resolution 10 bits

Output Interface Bluetooth Interface

Software Bundle C++ SDK

Price (per hand) $750.0
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Figure 6: DG5-VHand Glove 2.0 [64].

Table 3: A Comparison between the CyberGlove and the DG5-VHand.

The five flexion measurements for thumb, index, middle, ring, and little fingers

are expressed as bend percentages in the range (0.0% - 100.0%) where 0.0% represents

no bend and 100.0% represents maximum bend. The 3-axes accelerometer measure-

ments represent the hands instantaneous accelerations in x,y, and z direction. Those

measurements are between −2g and +2g.

Figure 7 shows the DG5-VHand software used to establish communication with

the glove. The data can be visually examined through the software and it can be saved

in Microsoft Excel Worksheet (.xls) for further processing. Each row of the file starts

with a time stamp in milliseconds, followed by five bend measurements, then three

acceleration measurements. A Summary of the comparison between the CyberGlove

and the DG5-VHand is shown in Table 3.
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Figure 7: DG5-VHand software.
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Chapter 2: Data Collection

Two datasets are collected in this work; both of which are composed of 40

Arabic sign language sentences created from 80 words lexicon. Each sentence was

repeated 10 times by each user. The list of sentences is shown in Table4. An existing

dataset which was collected using DG5-VHand data gloves [51] was also used, and

is referred to henceforth as dataset 1. The DG5-VHand data glove comes with five

bend sensors; one for each finger. It also has an embedded accelerometer. Figure 8

shows a female signer wearing the DG5-VHand data gloves during the collection of

Dataset 1. Dataset 2 is collected in this work using two Polhemus G4 motion trackers

which provide 6 measurements; the Cartesian position coordinates (x,y,z) and the Euler

angles: Azimuth, elevation and roll(a, e, r). Two male users contributed in collecting

this dataset where each one was asked to perform each sentence 10 times. Figure 9 and

Figure 10 show photos of the two male signers wearing the CyberGloves and Polhemus

G4 motion trackers during the collection of Dataset 2. Dataset 3 is also collected in

this work using a camera only; no wearable sensors is used during the collection of

this dataset. Table 5 summarizes the specification of the three datasets. The first two

datasets are expected to result in higher recognition accuracy due to the use of accurate

sensors, the third dataset has the advantage of being more user-friendly since the user

is not required to wear any device.

Both of our classification approaches; namely HMMs and MKNN are super-

vised classification algorithms, thus labeling is required. We need to assign a label to

each feature vector; this label will specify to which class (sign) this feature vector be-

longs. Normally a sentence contains multiple signs; hence it is necessary to define the

boundaries between successive signs prior to labeling. This is a difficult task, because

it is not clear where each sign starts and ends. It is also difficult to specify which parts

of the temporal data are not parts of a sign. It is easier to define boundaries in Auto-

matic Speech Recognition (ASR) by a decline in speech volume. However, it is more

involved in SLR. Consider, for example, the case of sign ’X’ which ends with the right

hand raised to the chin level followed by sign ’Y’ which starts with the right hand at the

waist level. The movement from the end of sign ’X’ to the beginning of sign ’Y’ is not
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Table 4: List of sentences.

Table 5: Datasets and equipment used.

Datasets Equipment No. of Users No. of Sen-
tences

No. of Repe-
titions

Total No. of
Sentences

Dataset 1 DG5-VHand
data gloves

1 40 10 400

Dataset 2 Polhemus
G4 motion
trackers

2 40 10 800

Dataset 3 Camera 1 40 10 400
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Figure 8: Collection setup of Dataset 1 [51].

Figure 9: Collection setup of Dataset 2.

a part of either sign. This transitional movement is known as movement epenthesis. In

general, if it spans few feature vectors, it can be compensated for by HMMs, otherwise

it should be labeled separately and should not be part of the learned model of any sign.

Several works chose to model movement epenthesis explicitly [65]. For in-

stance, Gao et al. [66] used data gloves to find the end and start points of each sign

in their database. By clustering them into three general clusters using the temporal
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Figure 10: Collection setup of Dataset 2.

clustering algorithm Dynamic Time Warping (DTW), they managed to achieve 90.8%

recognition accuracy on 750 test sentences. A different approach was proposed by Yang

et al. in [67]. They proposed an adaptive threshold model to differentiate between signs

and movement epenthesis.

In the labeling phase, all the sensor readings belonging to each word in a sen-

tence are labeled accordingly. For manual labeling in vision-based SLR, a human can

decide the boundaries by examining the videos visually. However, for sensor-based

SLR, the word boundaries cannot be determined visually. Therefore, a camera was

used in the data collection phase and it was synchronized with the gloves and tracker

recordings in order to detect word boundaries.
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Chapter 3: Theory

3.1. Feature Extraction

Minimal feature extraction is required for sensor-based data because it contains

direct measurements of hand trajectory and configuration. On the other hand, vision-

based data requires extensive feature extraction to get such features. Below is a discus-

sion of the feature extraction techniques used for the sensor-based datasets (dataset 1

and dataset 2) and the vision-based dataset (dataset 3).

3.1.1. Feature extraction for sensor-based datasets. As mentioned before,

dataset 1 was collected using DG5-VHand Glove. The DG5-VHand provides five flex-

ion measurements in the range (0.0% - 100.0%) followed by 3- axes accelerometer

measurements in the range of −2g and +2g. Prior to applying any classification tech-

niques, it is recommended to normalize all features. Normalization allows different

features to contribute equally to the classification decision. Normalization is required

for dataset 2 as well, since the CyberGlove measurements and the Polhemus G4 mea-

surements have different ranges. There are different types of normalization techniques

available in the literature, Z-score normalization is probably the most common one. The

Z-score could be formulated as in (1).

z =
x−u

σ
(1)

where:

• x is the raw feature.

• z is the normalized feature.

• σ is the standard deviation of x.

• u is the mean of x.

It could be easily shown that the normalized feature z has a mean u = 0 and a

standard deviation σ = 1. An example of applying the Z-score on two different features

is shown in Figure 11. We can see how close the two features have become after the

normalization.
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Figure 11: Z-score Normalization.

After normalization, some meaningful features are extracted out of the data.

Our approach is to extract window-based statistical features because they provide infor-

mation about the context, which in turn helps in classifying our temporal data. Those

features are then appended to the raw feature vectors to form the final augmented fea-

ture vectors. The size of the window is varied via trial and error to achieve the highest

performance. The classification systems were tested on raw data as well as on raw data

augmented with the extracted statistical features.

Statistical features used included mean, standard deviation, covariance, entropy

and uniformity. All features are extracted using the sliding window approach. The

purpose of using a sliding window is to capture contextual information. In Chapter 4

we show that this greatly enhanced the classification accuracy. Equation (2) shows the

calculation of the window-based mean for a window size of w.

x̃i =
1
w

i+w−1
2

∑
k=i−w−1

2

xk (2)
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where:

• w is an odd number denoting the window size.

• i is the current feature vector.

Standard deviation measures the dispersion from the average sample. Equation

(3) shows the calculation of the window-based standard deviation. In fact, Equation

(3) calculates what is better known as sample standard deviation since only part of the

population is considered.

si =

 1
w−1

i+w−1
2

∑
k=i−w−1

2

(xk− x̃i)
2

 1
2

(3)

To further enrich the feature vector, we add the covariance. Covariance is a

measure of the strength of the correlation between two random variables. For two real-

valued random variables x and y, the covariance is defined as the expectation of the

product of their deviations from their mean values as shown in (4).

cov(x,y) = E((x−E(x))(y−E(y))) (4)

The covariance matrix of two random vectors X ∈ Rn Y ∈ Rm is defined by (5).

cov(X ,Y ) = E((X−E(X))(Y −E(Y ))T ) (5)

Our window-based covariance can be then formulated as in (6)

covi(X ,Y ) =
1

w−1

i+w−1
2

∑
k=i−w−1

2

(xi−E(X))(yi−E(Y )) (6)

Entropy (H) is a measure of the amount of information. It was introduced first

by the father of information theory, Claude Shannon. He defined it by (7).

H = −
n

∑
i=1

P(xi)log2(P(xi)) (7)

32



Equation (8) shows the window-based entropy.

Hi = −
i+w−1

2

∑
k=i−w−1

2

P(xk)log2(P(xk)) (8)

Uniformity is another feature that has been extracted and it describes how uni-

form the data is, as shown in (9). Window-based uniformity is shown in (10).

Uni f ormity =
n

∑
i=1

P(xi)log2(P(xi)) (9)

Uni f ormityi =
i+w−1

2

∑
k=i−w−1

2

log2(P(xk)) (10)

Appending all those features to the raw sensor data greatly increased the di-

mensionality of the feature vector. For example, the DG5-VHand raw feature vector

consists of 16 features, the augmented feature vector consists of 200 features:

• 16 original sensor readings.

• 16 means of a window of FVs.

• 16 sample standard deviations of a window of FVs.

• 120 covariance of a window of FVs.

• 16 entropy of a window of FVs.

• 16 uniformity of a window of FVs.

3.1.2. Feature extraction for vision-based dataset. Vision-based datasets re-

quire extensive feature extraction to get meaningful features. Numerous techniques

have been used in the literature and it can be a challenge to select the appropriate fea-

tures. The proposed feature extraction approach is explained by the block diagram in

Figure 12.

The first stage of the pipeline is computing pixel-based difference for succes-

sive images (frames). Assuming typical frame rate, the two images will have almost

identical background, thus the difference will be an image that only depicts the motion

between the two images. The image differences are then converted into binary images
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Figure 12: Feature extraction block diagram for vision-based dataset.

by applying an appropriate threshold. The threshold is given by (11).

TH = µ + xσ (11)

where:

• µ is the mean pixel intensity of the image difference.

• σ is the corresponding standard deviation.

• x is a weighting parameter

x is to be empirically determined based on subjective evaluation whose criterion

is to retain enough motion information and discard noisy data. Figure 13 shows an

illustration of performing image difference followed by thresholding.

Next, a 2D Discrete Cosine Transform (DCT) is applied to the binary image

differences. The 2-D DCT is given by (12).

F(u,v) =
2√
MN

C(u)C(v)
M−1

∑
i=0

N−1

∑
j=0

f (i, j)cos
(

πu
2M

.(2i+1)
)

cos
(

πv
2N

.(2 j+1)
)

(12)

where:

• F(u,v) is DCT coefficient at row u and column v of the DCT matrix.

• N,M are the dimensions of the input image f.

• C(u) is a normalization factor equal to 1√
2

for u = 0 and 1 otherwise.

Figure 14 shows a 2D DCT of a thresholded image difference. DCT is quite

popular in signal and image processing due to its energy compaction property. In Figure

14, most of the information is represented by the top left coefficients. Thus a zig-zag

scanning is used to select the most important coefficients only. Figure 15 explains the

zig-zag scanning fashion.

The top left DCT coefficients are zigzag scanned to form a 1D feature vector.

The number of DCT coefficients in the vector is known as the DCT cutoff value.
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Figure 13: Thresholded image differences [50].

Figure 14: 2D Discrete Cosine Transform (DCT).

3.2. Classification

Three different classification approaches are used in this work; a modified KNN

suitable for classifying sequential data, and two different HMM toolkits. A review of

each is presented next.
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Figure 15: zig-zag scanning [68].

3.2.1. K-nearest-neighbors (KNN). K-nearest-neighbors (kNN) is one of the

simplest classification techniques that should always be one of the first choices to con-

sider especially when little or nothing is known about the data. KNN is a non-parametric

classification technique since it makes no assumption about the distribution. Non-

parametric methods have the ability to fit different types of distribution and they are

easier to implement. But they normally require a lot more training data than parametric

methods.

KNN depends on the Euclidean distance between a test sample and the training

samples. For instance, consider xi to be a test sample with p features (xi
1,x

i
2,x

i
3, ...,x

i
p)

and we have a training set of N samples (x1,x2,x3, ...,xN). Y is the set of labels for all

training examples (y1,y2,y3, ...,yN). The Euclidean distance between the test sample xi

and a random training sample x j is given by (13).

d(xi,x j) =
√

(xi
1− x j

1)
2 +(xi

2− x j
2)

2 + ...+(xi
p− x j

p)2 (13)

Consider the case of two classes problem (y j = 0) or (y j = 1) ∀ j. and two-

dimensional data p= 2. KNN partition the space into Voroni cells with each cell labeled

based on the training point it contains as shown in Figure 16.
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Figure 16: KNN Voronoi diagram, from [69].

The diagram shows multiple training samples from the two classes (red or black

circles) and a Voroni cell R around each sample. The cell encapsulates all points that are

closer to this training sample than they are to any other training sample in the training

set. R is defined by (14).

Ri = {x ∈ Rp : d(x,xi)≤ d(x,xm), ∀ i 6= m} (14)

There is no actual training in KNN; it is only required to store the p features

of each training sample (x j
1,x

j
2,x

j
3, ...,x

j
p) and its label and y j. For classification, an un-

labeled test sample xi is classified by assigning it with the most frequent label among the

nearest k training samples, where k is a constant defined by the user. An illustration of

the KNN is in Figure 17. The example is again of a two classes problem; the labels are

either a green square or a blue rectangle. The data is of a dimension of two p = 2 and

the user-defined constant k is 3. In classification, the unlabeled circle will be labeled as

a green square because there are two green squares and only one blue rectangle within

the nearest 3 neighbors.

3.2.1.1. Modified K-nearest-neighbors (MKNN). In previous work, a modifica-

tion on the K-Nearest Neighbors (KNN) classifier was proposed to make it suitable for

classifying sequential data [51]. The modified algorithm was called the Modified KNN

or MKNN for short. The core modification is to consider the context prior to predicting

the label of each feature vector. The approach used in this thesis was to replace the
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Figure 17: KNN Example.

predicted label by the most common label in a surrounding window of labels. After

predicting all labels of a given sentence, each label was replaced with the statistical

mode of its surrounding labels. For example, if the statistical mode window is of size

5 and k (number of nearest neighbors) is 3 then 5*3 labels are considered in predicting

the label of a feature vector. The window size is referred to in this case as ModeW. An

illustration of the KNN for ModeW of 3 and k of 3 is shown in Figure 18.

For each class of label L, g(L) is the number of neighbors of the k nearest neigh-

bors that belong to class L. g(L) can be formulated as in (15).

g(L) =
k

∑
i=1

δ (L, labeli(FVt)) (15)

where:

δ (L, labeli(FVt)) =

 1, if labeli(FVt) = L

0, otherwise.
(16)

The class label of the ith neighbor of the feature vector acquired at time t FVt is given

by (17).

labeli(FVt) = argmin
∀FVi∈T

{FVt−FVi} (17)
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Figure 18: Modified KNN with the statistical mode approach.

In our MKNN the class label L∗ is found as in (18).

L∗ = argmin
L

w
2

∑
j=−w

2

∑
i

δ
(
L, labeli(FVt+ j)

)
(18)

After predicting a label for each feature vector, similar labels are grouped to form a sign

language word.

The algorithm is implemented in MATLAB. First the dataset was divided into

70% for training and 30% for testing. The MATLAB function knnsearch was used to

implement the standard KNN algorithm. Given a test sentence with T observations

FV1,FV2,FV3, ...,FVT , where each observation FVt is the feature vector at time t. The

knnsearch function is used to find the distance from each observation FVt to all training

instances. The calculated distances are then sorted in an ascending order to specify

the k nearest samples. For the MKNN implementation, the k nearest neighbors of the

previous and future observations are found similarly. Finally the current observation

label is the most common label in a surrounding window of previous, current and future

labels as shown previously in Figure 18.
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3.2.2. Hidden Markov Models (HMMs). In probabilities, a system can be

described by random variables which can change over time. The collection of those

variables is called a random process, or simply a process. The values of those random

variables at any point of time describe the system at that point. Markov assumption is

the assumption that the future state of the process depends only on the current state. A

process that satisfies the Markov assumption is called a Markov process.

As defined by Rabiner and Juang [70] ”An HMM is a doubly stochastic process

with an underlying stochastic process that is not observable (it is hidden), but can only

be observed through another set of stochastic processes that produce the sequence of

observed symbols”. HMM is popular in many areas; speech processing, natural lan-

guage processing and gesture recognition are some examples. It was named after the

Russian mathematician Andrei Markov in the early twentieth century [71], but the the-

ory of HMMs was developed by Baum and his colleagues in the 1960s [72]. A brief

introduction to HMM is presented in this section. For more details, the reader is referred

to [70] and [73–76].

3.2.2.1. Discrete HMMs. HMM is defined by the tuble:

λ = (A,B,π) (19)

Let S be the set of states labels, and V is the set of observation labels:

S = (s1,s2, ...,sN) (20)

V = (v1,v2, ...,vM) (21)

Let Q be a state sequence of length T , and the corresponding observations is O:

Q = q1,q2, ...,qT (22)

O = o1,o2, ...,oT (23)
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Transition matrix A contains the probability of the system moving from state i to state

j:

A = [ai j],ai j = P(qt = s j|qt−1 = si) (24)

Observation matrix B stores the probability of observation k produced by state i:

B = [bi(k)],bi(k) = P(ot = vk|qt = si) (25)

The initial probability of system being in specific state initially is defined by π:

π = [πi],πi = P(q1 = si) (26)

Markov assumption can be written as in (27):

P(qt |qt−1
1 ) = P(qt |qt−1) (27)

Another assumption is that the observation at time t depends only on the current hidden

state. It does not depend on the previous states or observation:

P(ot |ot−1
1 ,qt

1) = P(ot |qt) (28)

Given HMM, three different problems can be of interest; namely evaluation, decoding

and learning.

3.2.2.1.1. Evaluation. The evaluation problem is to estimate the likelihood

(probability) of a sequence of observation to be emitted by a giving HMM. The problem

is to compute p(o|λ ).

Probability of observations O given a hidden state sequence Q is:

P(O|Q,λ ) =
T

∏
t=1

P(ot |qt ,λ ) = bq1(o1)bq2(o2)...bqT (oT ) (29)
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P(Q|λ ) = πq1aq1q2aq2q3...aqT−1qT (30)

P(O|λ ) = ∑
Q

P(O|Q,λ )P(Q|λ ) = ∑
q1...qT

πq1bq1(o1)aq1q2bq2(o2)... (31)

Calculating the above equation is exponential in T . The forward algorithm is used to

reduce the complexity of calculation.

3.2.2.1.2. Decoding. The decoding which is the most common problem is to

find the most likely sequence of hidden states given a sequence of observations. The

Viterbi algorithm can be used to solve this problem.

The algorithm starts by defining δt(i) which is the probability of the best path to state i

in time t.

δt(i) = max
q1,q2,...,qt−1

P(q1q2...qt = si,o1,o2, ...,ot |λ ) (32)

The algorithm then evolves as follows:

• Initialization:

δ1(i) = πibi(o1),1≤ i≤ N,ψ1(i) = 0 (33)

• Recursion:

δt( j) = max
1≤i≤N

[δt−1(i)ai j]b j(ot),2≤ t ≤ T,1≤ j ≤ N (34)

ψt(i) = arg max
1≤i≤N

[δt−1(i)ai j],2≤ t ≤ T,1≤ j ≤ N (35)

• Termination:

P∗ = max
1≤i≤N

[δT (i)] (36)

P∗T = arg max
1≤i≤N

[δT (i)] (37)
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• The optimal sequence can be found though backtracking using the equation be-

low:

q∗t = ψt+1(q∗t+1), t = T −1,T −2, ...,1 (38)

3.2.2.1.3. Learning. Learning is finding HMM given a set of observations and

the corresponding hidden states. Maximum likelihood estimation (MLE) is used to find

the parameters as explained in Equations 39-41:

ai j = P(ti|t j) =
Count(ti, t j)

Count(ti)
(39)

b j(k) = P(ok|t j) =
Count(ok, t j)

Count(t j)
(40)

πi = P(q1|ti) =
Count(q1 = ti)

Count(q1)
(41)

3.2.2.2. Continuous HMMs. In discrete HMM, observations are confined to a

set of discrete symbols. b j(k) is the probability of emitting symbol k at state j, but

in continuous HMM the observations are continuous symbols. Here we define b j(x)

where x is a continuous variable.

The observation distribution on the continuous range can take different forms. Gaussian

mixtures are probably the most common distribution. It can be defined as in (42):

b j(x) =
M

∑
k=1

c jkN [x,µ jk,σ
2
jk] (42)

where:

c jk: mixture weight.

N : Gaussian(normal) density.

µ jk,σ
2
jk: mean and covariance of the Gaussian distribution.

3.2.2.3. Implementation. Hidden Markov Models (HMMs) are widely used for

sequential data classification in general, and for speech recognition in particular. They

are also adopted for SLR and gesture recognition. The majority of SLR toolkits are
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developed originally for speech recognition then adopted for SLR. CMU Sphinx [77],

HTK toolkit [78], Julius [79], Kaldi [80] and RASR [81] are all examples of open

source speech recognition toolkits.

Some researchers created toolkits specifically for gesture recognition, while oth-

ers modified versions of previously released speech recognition toolkits. For instance,

the Georgia tech gesture toolkit GT2K [82] was created based on a popular speech

recognition toolkit known as HTK to provide tools that support gesture recognition

research. Additionally, although RASR toolkit was originally developed for speech

recognition, it has proved to be flexible and could be easily adapted for different appli-

cations such as SLR [83] [28] and optical character recognition [84]. An example of

a toolkit created specifically for gesture recognition is the gesture recognition toolkit

GRT [85] created by Gillian and Paradiso in 2014 with an emphasis on real-time recog-

nition.

The GT2K and RASR are selected for our work because they are adequate for

SLR and have been used before in similar applications.

The GT2K toolkit was created based on the HTK to provide tools that support

gesture recognition research. It can be used for training models in both real-time mode

and off-line mode. To use the toolkit, the user must build the gesture models, specify

appropriate grammar, and provide labeled examples for training. The tool will then

train models for each gesture. The trained models are used for recognition of new data.

More details and examples are available in [82].

The RWTH Aachen University Open Source Speech Recognition Toolkit (RASR),

on the other hand, is an open source version of a speech recognition toolkit developed

by a group from RWTH Aachen University. Modular design is used for flexibility. It

allows most components to be decoupled and replaced at runtime. It comes with com-

prehensive documentation, examples and tutorials. RASR proved to be applicable for

real-life applications; recently it has been used for numerous large vocabulary speech

recognition systems by research groups all over the world [86] [87] [88] [89]. The

toolkit proved to be adequate for SLR as reported in [28] and [83].

The backbone of the toolkit is a generic data processing framework called the

flow network module. The flow network consists of a number of basic data processing
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units called nodes connected together by links. Each node is responsible of data manip-

ulation task, such as loading, storing, and caching of data. Flow networks are defined

in XML files and then created at runtime based on that definition. They are primarily

used for feature extraction and alignment processing, i.e assigning each feature vector

to HMM state.

The toolkit supports strict left-to-right HMM topologies. All HMMs have the

same number of states, except silence which is modeled by a single state. The Gaussian

mixture model is used to model the emission probability. It uses the standard maximum

likelihood estimation as well as discriminative training using the minimum phone error

(MPE) [90] for Gaussian mixtures estimation. The toolkit itself does not have a mod-

ule for the estimation of language models; nonetheless the decoder supports N-gram

language models in the ARPA format generated by other toolkits.

The toolkit is available for download on [91]. It is published under an open

source license, called RWTH ASR License which grants free usage including re-distribution

and modification for non-commercial use. In [92], step by step examples, several tuto-

rials and training recipes are available.
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Chapter 4: Experimental Results

In this section, we discuss the classification results achieved on the sensor-based

datasets and the vision-based dataset. Throughout this section, the results of the three

classification tools described in Section 3.2 will be discussed. Namely MKNN, GT2K

and RASR. Results are reported in terms of word recognition rate and sentence recog-

nition rate. Word recognition rate is given by (43).

Word Recognition Rate = 1− D+S+ I
N

. (43)

Where D is the number of deletions, S is the number of substitutions, I is the number

of insertions, and N is the total number of words. Sentence recognition rate is the

ratio of correctly recognized sentences to the total number of sentences. A sentence is

considered to be correctly recognized if and only if all words in this sentence have been

correctly recognized without any word being inserted, substituted, or deleted.

4.1. Sensor-based Datasets

There are several parameters that govern the accuracy of recognition using

HMM. The most important parameters are the number of states used to represent each

gesture and the number of Gaussian mixtures per each state. The effect of these two

parameters on the recognition rates of raw data as well as augmented data is shown in

Figures 19-22.

Figure 19 and Figure 20 show that increasing the number of states to a certain

point enhances the recognition rates. Any increment beyond that point decreases the

accuracy or at the best cases, the accuracy saturates. The number of sub-words used to

model each sign language word is increased by increasing the number of states.

Emission distribution for each state is modeled by a mixture of Gaussians. Hav-

ing more mixtures -to a certain extent- allows to fit the actual distribution better, which

is apparent by the general trend of the increased accuracy when increasing the number

of mixtures as shown in Figure 21 and Figure 22. However, the more mixtures used,
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Figure 19: Effect of the number of states on word recognition rate for DG5-VHand
dataset.

Figure 20: Effect of the number of states on sentence recognition rate for DG5-VHand
dataset.
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Figure 21: Effect of the number of mixtures on word recognition rate for DG5-VHand
dataset.

Figure 22: Effect of the number of mixtures on sentence recognition rate for DG5-
VHand dataset.
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Table 6: Best HMM recognition rates for dataset 1.

Data No. States No. mixtures Word Sentence

DG5-VHand Raw 5 3 93.0 69.0

DG5-VHand + mu + std 5 3 97.0 86.0

DG5-VHand + multiple features 4 2 86.0 49.0

the more data needed to fit those mixtures. This is apparent by the deterioration in

recognition rates for higher number of mixtures.

Best recognition results have been achieved by augmenting the raw sensor data

with window-based means and standard deviations. Those statistical features capture

contextual information; hence enhance the recognition rates. Adding more statistical

features also adds more information but it makes the feature vector much longer which

decreases the accuracy once again.

A summary of the best recognition rates for the DG5-VHand is shown in Table

6. The table lists the sentence and word recognition rates for the raw DG5-VHand

dataset as well as the augmented datasets. The best number of states and best number

of mixture of Gaussians are also stated for each dataset.

As mentioned in Section 3, the Polhemus G4 provides 6 measurements; the

Cartesian position coordinates (x,y,z) and the Euler angles: Azimuth, elevation and roll

(a, e, r). Figure 23 and Figure 24 shows HMM results for raw sensor data as well as the

augmented data. Again, a window-based approach is used to extract the mean and stan-

dard deviations. A similar pattern of increased classification accuracy while increasing

the number of HMM states can be noticed. The deterioration for a number of states

higher than 6 is obvious as well. Highest word and sentence recognition rates achieved

for raw Polhemus G4 tracker dataset are 93.0% and 67.0% respectively. Substantial

improvement has been achieved by augmenting raw data with statistical features; word

and sentence recognition rates jumped to 97.0% and 85.0% respectively.

The MKNN algorithm has been tested previously on the DG5-VHand dataset

[51]. Here we show the results of testing it on the tracker data; both raw and augmented.

In MKNN, a sliding window is used as a post-process to replace each predicted label

with the statistical mode of its surroundings. The effect of varying this mode window
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Figure 23: Effect of the number of states on word recognition rate for Polhemus G4
tracker dataset.

Figure 24: Effect of the number of states on sentence recognition rate for Polhemus G4
tracker dataset.
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Figure 25: Effect of the window size on word recognition rate for Polhemus G4 tracker
dataset.

(ModW) size on classification accuracy is shown in Figure 25 and Figure 26 . In gen-

eral, the increment in window size enhances the recognition rate as it captures more

contextual information. Classification rates will saturate after any further window size

increment, and it will decrease rapidly for very wide window size. It happens because

large windows will include FVs belonging to other sign language words and will there-

fore reduce the accuracy of the classifier.

Table 7 summarizes the best word recognition rates achieved for all sensor-based

datasets using MKNN and HMM. Table 8 lists the correspondent sentence recognition

rates. The most important conclusion is that while Polhemus G4 tracker measures only

the position and orientation of the hand, it achieves comparable recognition rates to

those of the DG5-VHand dataset. It is also apparent that augmenting raw sensor data

with statistical features greatly enhanced the classification accuracy. By examining Ta-

ble 8, the superiority of MKNN to HMM in terms of sentence classification accuracy

can be deduced. It is almost the opposite for word recognition rate where HMM out-

performed MKNN in 3 out of 4 datasets.

We move on comparing the performance of two HMM toolkits (RASR and

GT2K) on manually labeled datasets. By manually labeled we mean that word bound-
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Figure 26: Effect of the window size on sentence recognition rate for Polhemus G4
tracker dataset.

Table 7: Word Recognition rates.

Data HMM MKNN

DG5-VHand Raw 93 85

DG5-VHand + mu + std 97 98

Tracker Raw 93 84

Tracker + mu + std 97 97

aries are manually annotated by a human. Both datasets (tracker-based and DG5-

VHand-based) are augmented with the statistical features as explained in Section3.1,

namely window-based means and standard deviations. These features are used to cap-

Table 8: Sentence Recognition rates.

Data HMM MKNN

DG5-VHand Raw 69 82

DG5-VHand + mu + std 86 97

Tracker Raw 67 82

Tracker + mu + std 85 97
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Figure 27: Word recognition rates of manually labeled sensor-based datasets.

ture contextual information. The other features are not used since it was found that they

greatly increase the feature vector length which in turn decreases the accuracy.

Figure 27 and Figure 28 plot the classification accuracies for the sensor-based

data using the two HMMs toolkits. The classification results are presented for both

raw data and raw data augmented with statistical features. It is apparent from the clas-

sification results that RASR performance is better than that of the GT2K. This holds

for all tests shown with no exception. For instance RASR sentence recognition rate

for the augmented DG5-VHand dataset was 96.7% while it was only 86.0% when

GT2K was used. We also note that the motion tracker proved to be more accurate

than the DG5-VHand glove, however, the augmented DG5-VHand data surpasses the

augmented tracker data. A summary of all recognition rates is presented in Table 9.

Note that the average of word and sentence recognition rates shown in the table also

confirms the superiority of RASR over GT2K.

The performance of RASR on automatically generated labels has been investi-

gated in this work as well. Auto labeling refers to the use of a tool to automatically
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Figure 28: Sentence recognition rates of manually labeled sensor-based datasets.

Table 9: RASR and GT2K comparison on manually labeled datasets

Dataset
RASR GT2K

Word Sentence Word Sentence
Tracker, raw data 96.88 86.67 93.00 67.00

Tracker, augmented raw data 98.64 95.00 97.00 85.00
DG5-VHand, raw data 94.00 75.80 93.00 69.00

DG5-VHand, augmented raw data 99.20 96.70 97.00 86.00
Average 97.18 88.54 95.00 76.75

estimate word boundaries. This could be done using RASR alignment module which

automatically assigns each feature vector to an HMM state. This is advantageous be-

cause it allows the recognition of sentence-level labeled datasets where only sentence

boundaries are annotated. This feature is of high practical gain since manual labeling is

a daunting task. Naturally this gain comes at the expense of less accuracy as it could be

seen in the results plotted in Figure 29 and Figure 30 where manually labeled datasets

always result in higher recognition rates. The accuracy of the auto labeling depends on

the accuracy of the raw sensor readings. Since tracker data is highly precise, recognition
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Figure 29: Word recognition rates of auto and manually labeled sensor-based datasets.

rates of its manual and auto labeled dataset were almost the same which were around

96% for both. We have seen previously that augmenting the manually labeled datasets

with the statistical features enhanced the accuracy, but this is not the case for auto la-

beled datasets. This is due to the sliding window approach used for statistical features

extraction; it blurs word boundaries making its automatic detection less accurate.

In the following experiments the results of RASR against MKNN classification

solution are compared. RASR turned out better in terms of word recognition rate as

shown in Figure 31. On the other hand, In comparison to existing work, Figure 32 shows

that the MKNN surpasses RASR in 3 out of 4 tests in terms of sentence recognition rates

which goes up to 97% for both augmented datasets.

The computational time for each classification approach is listed in Table 10.

Results were recorded from 64-bit PC, 4.00 GB RAM, Intel Core i5, running Ubuntu

14.04. Again RASR was superior achieving the least classification time of 2.03 seconds,

it was closely followed by the GT2K. However considering both train and test time, our

MKNN is advantageous since it does not require training.
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Figure 30: Sentence recognition rates of auto and manually labeled sensor based
datasets.

Figure 31: Word recognition rates of MKNN and RASR.
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Figure 32: Sentence recognition rates of MKNN and RASR.

Table 10: Computational Time Comparison

Approach Train Time (sec) Classification Time (sec)
RASR 55.72 2.03
GT2K 60.4 2.42

MKNN - 18.87

4.2. Vision-based Datasets

This section is devoted for a discussion of recognition results of the third dataset

which was collected using a camera only.

The feature extraction phase, as explained in Section 3.1, depends on two em-

pirical parameters which must be determined prior to classification. The first one is the

DCT cutoff, which is the number of DCT coefficients to retain in a feature vector. Fig-

ure 33 shows sentence recognition rates achieved using RASR for various DCT cutoffs.

As expected, the recognition rate increases as the number of coefficients increases. This

is due to the fact that DCT coefficients are not correlated. Thus, increasing the number
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Figure 33: DCT cutoff vs sentence recognition rate.

of DCT coefficients increases the entropy. Nevertheless, recognition rates in general

decrease as the dimensionality of the feature vector increases, thus there is normally a

point after which any increment in the DCT cutoff will cause the recognition rates to

decrease. In our case, the best classification rate is achieved with 100 DCT coefficients

as shown in Figure 33.

The second parameter to be determined empirically is the weighting parameter

x of (11). Figure 34 shows its effect on word recognition rate using MKNN. The highest

rate achieved at x = 1.

Firstly, we form feature vectors using DCT coefficients of raw images instead

of image differences. We apply 2D DCT transformation to raw images and retain the

top left DCT coefficients using zig-zag scanning. The feature vectors are then fed to

the three classification approaches; MKNN, RASR and GT2K. The word and sentence

classification results are shown in Table 11. It is shown that the highest classification

results are achieved by RASR.

Next, the effect of computing 2D DCT of thresholded image differences is ex-

amined. When comparing Tables 11 and 12, it is noticed that the improvement as a

result of using the thresholded image differences. Recognition rates of all approaches

used had increased with no exception. For instance RASR sentence recognition rate
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Figure 34: Values of weighting parameter vs recognition rate.

Table 11: Recognition rates of raw vision data.

MKNN RASR GT2K
Word Sentence Word Sentence Word Sentence
82.50 77.20 94.18 80.80 93.10 73.00

increased from 80.8% to 85.0%. This is due to the motion between successive frames

being emphasized by the thresholded image difference approach. The results in the ta-

bles also show that the proposed classification solutions using RASR and MKNN are

superior to existing work [50].

To summarize, the best recognition rates of sensor and vision based datasets are

listed in Tables 13 and 14. It is shown that MKNN always achieves the best sentence

recognition rate. On the other hand, in terms of word recognition rates, RASR generates

the best rates. Additionally, the summarized results reveal that data acquisition through

Table 12: Recognition rates of thresholded image difference.

MKNN RASR GT2K
Word Sentence Word Sentence Word Sentence
91.60 89.17 95.60 85.00 94.00 80.00
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Table 13: Best Word recognition rates.

Dataset Approach Rate
[Tracker µ σ ] RASR 98.64

[DG5-VHand µ σ ] RASR 99.20
Vision RASR 95.60

Table 14: Best Sentence recognition rates.

Dataset Approach Rate
[Tracker µ σ ] MKNN 97.00

[DG5-VHand µ σ ] MKNN 97.78
Vision MKNN 89.17

motion trackers on their own suffice for sign language recognition. This is an interesting

finding taking into account that no data gloves are needed. Lastly, the results in both

tables confirm that sensor-based data acquisition results in higher recognition rates in

comparison to the camera-based approach.

4.3. Multiple Users

An open problem of SLR is applying the system to a user (signer) on whom

the system has not been trained. The way in which each person performs signs might

be different. These interpersonal variations in the signs make the recognition even

harder. In this section, the performance of Polhemus G4 and RASR on multiple users

is examined. Another user was asked to perform the dataset of the 40 Arabic sign

language sentences using Polhemus G4. Same as the previous user, each sentence was

repeated 10 times. RASR results of both users are depicted in Figure 35. It is apparent

that the performance of the Polhemus G4 and RASR on both users is fairly close. For

the first user, word and sentence recognition rates are 96.88% and 86.67% respectively,

compared to 95.00% 84.00% word and sentence recognition rates for the second user.

Another test was performed on the datasets of both users combined. The com-

bined dataset consists of 40 Arabic sign language sentences. Each sentence was re-

peated 20 times; 10 times by user 1 and 10 times by user 2 as shown in Table 15. 70.0%

of the combined dataset was used for training and the rest of the 30.0% for testing.

94.5% word recognition rate and 81.2% sentence recognition rate were achieved on the
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Figure 35: RASR recognition rates of multiple users.

Table 15: Datasets of multiple users collected using Polhemus G4.

User Number of Sentences Number of Repetitions Total Number of Sentences

User 1 40 10 400

User 2 40 10 400

combined 40 20 800

combined dataset as shown in Table 16. Although the recognition rates have decreased,

it is still considered very high.

For the final set of our experiments, RASR was trained on one user and tested on

another one. Table 17 shows the confusion matrix of the results of this test. The main

diagonal elements are the results of training and testing on the same user, they were

reported before in Table 16 and repeated again to aid comparison. The anti-diagonal

Table 16: RASR performance on multiple users’ datasets collected using Polhemus G4.

User 1 User 2 Combined
Word Sentence Word Sentence Word Sentence
96.88 86.67 95.00 84.00 94.5 81.2
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Table 17: Confusion matrix of word recognition rates of multiple users’ datasets.

Testing dataset
User 1 User 2

Training dataset
User 1 96.88 47.60
User 2 50.30 95.00

elements show the results of training on one user and testing on the other one. It is quite

clear that the performance deteriorates considerably when the algorithm was tested on

a different user than the one it has been trained on. For instance, only 50% word recog-

nition rate was achieved when RASR was trained on User 1 and tested on User 2. This

could be attributed to many factors; first, many users might be necessary to train a user-

independent system. Another factor could be the features themselves; as mentioned

previously, the Polhemus G4 measures only the position of the hand and this might not

be descriptive enough to build a user-independent system.
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Chapter 5: Conclusion

This thesis examined various data acquisition approaches and various classifi-

cation techniques for Arabic Sign language recognition. Two datasets were introduced

using motion detectors and a camera. A third data set was acquired using data-gloves

which was reused from a previous work. Three classification tools were used; MKNN,

RASR and GT2K. The thesis also used various feature extraction approaches includ-

ing window-based statistical features and 2D DCT transformation. The experimen-

tal results revealed that the adopted feature extraction techniques used, enhanced the

recognition rates for both sensor-based and vision-based datasets. The results also re-

vealed that RASR is superior to GT2K in terms of word and sentence classification

rates. RASR also required less computational time for the classification. The modified

KNN achieved the best sentence recognition rates for all datasets exceeding both HMM

toolkits. Additionally, sensor-based data turned out to be more precise than vision-based

data. Although the Polhemus G4 motion tracker only measures hand position and orien-

tation, it achieved higher recognition rates compared to DG5-VHand data gloves, which

measure both hand position and configuration. What can be concluded is that motion

trackers could be very useful for SLR. The performance of Polhemus G4 and RASR on

multiple users is examined and achieved promising results, but the system still needs to

be trained on many users. Moreover, other glove input devices should be used along-

side the Polhemus G4 to provide more descriptive features for user-independent Sign

language recognition.

In future work, our classification approaches and feature extraction techniques

could be tested on large vocabulary. Moreover, our system could be expanded by train-

ing it on many users.
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