

PREDICTING COMPRESSION MODES AND SPLIT DECISIONS FOR HEVC

VIDEO CODING USING MACHINE LEARNING TECHNIQUES

by

Mahitab Alaaeldin Hassan

A Thesis presented to the Faculty of the

American University of Sharjah

College of Engineering

In Partial Fulfillment

 of the Requirements

for the Degree of

Master of Science in

Computer Engineering

Sharjah, United Arab Emirates

May 2017

© 2017 Mahitab Alaaeldin Hassan. All rights reserved.

Approval Signatures

We, the undersigned, approve the Master’s Thesis of Mahitab Alaaeldin Hassan

Thesis Title: Predicting Compression Modes and Split Decisions for HEVC Video

Coding Using Machine Learning Techniques.

Signature Date of Signature
 (dd/mm/yyyy)

___________________________ _______________

Dr. Tamer Shanableh

Professor, Department of Computer Science and Engineering

Thesis Advisor

___________________________ _______________

Dr. Gerassimos Barlas

Professor, Department of Computer Science and Engineering

Thesis Committee Member

___________________________ _______________

Dr. Usman Tariq

Associate Professor, Department of Electrical Engineering

Thesis Committee Member

___________________________ _______________

Dr. Fadi Aloul

Head, Department of Department of Computer Science and

Engineering

___________________________ _______________

Dr. Mohamed El-Tarhuni

Associate Dean for Graduate Affairs and Research, College of

Engineering

___________________________ _______________

Dr. Richard Schoephoerster

Dean, College of Engineering

___________________________ _______________

Dr. Khaled Assaleh

Interim Vice Provost for Research and Graduate Studies

Acknowledgement

I would like to express my deepest gratitude to my advisor, Dr. Tamer

Shanableh, for providing knowledge, guidance, support, and motivation throughout my

research stages. I’m deeply beholden for his great assistance and suggestions.

Moreover, I am grateful to the American University of Sharjah for offering me

a graduate assistantship opportunity that allowed me to join the Computer Engineering

Master’s program.

My appreciation also extends to the professors of the Computer Engineering

department, who taught me numerous courses and shared their expertise over the years,

and my thesis examining committee. I am grateful for their advice, guidance, and

support.

I would like to express my eternal appreciation towards my family, who always

displayed unconditional patience and support. I thank them for their continuous

understanding and for being a source of motivation.

Finally, I would like to thank my friends and colleagues for their encouragement

and kindness.

Dedication

To my beloved parents,

Mrs. Mona and Mr. Alaaeldin,

My brother,

Abdulrahman,

And my dear friends,

Who were always a source of inspiration and support.

6

Abstract

The High Efficiency Video Coding (HEVC) standard presents a substantial video

compression efficiency improvement at the expense of increasing the computational

complexity. This enhancement is primarily due to the introduction of flexible quad-

based-tree partitioning structures for motion estimation (ME) and image

transformation. However, finding the optimum coding structure, which is done by an

exhaustive rate-distortion optimization (RDO) process, is what contributes to

increasing the computational complexity. In this thesis, we propose a set of early

termination algorithms to reduce the HEVC video encoding complexity by predicting

both the split decisions of Coding Units (CUs) and the coding modes of Prediction Units

(PUs). A video sequence-dependent approach is used in which frames belonging to the

video being encoded are utilized for generating a classification model. At each CU

depth level, features representing the given CU are extracted from both the current and

previously encoded CUs. The feature vectors (FVs) are then utilized for generating

dimensionality reduction and classification models. These models are in turn used at

each coding depth to predict the split and mode decisions of subsequence CUs. In this

work, we use stepwise regression, random forest feature importance, and Principal

Component Analysis (PCA) for dimensionality reduction. Moreover, polynomial

networks, random forests, and J48 decision trees are used for classification. Using

seventeen video sequences with four different spatial resolution classes, the proposed

solution is assessed in terms of the classification accuracy, Bjontegaard Delta bitrate

(BD-rate), BD Peak Signal-to-Noise Ratio (BD-PSNR) and computational complexity

reduction (CCR). On average, the CU early termination scheme achieved a CCR of

38.5% with an average classification accuracy of 78.1% at a negligible cost of 0.539%

and -0.021 dB in terms of BD-rate and BD-PSNR, respectively. The PU early

termination scheme attained an overall CCR of 20.9% with an average classification

accuracy of 86.5% at the cost of a BD-rate of 0.248% and a BD-PSNR of -0.01 dB.

When jointly implemented, an overall CCR of 50.1% was achieved with a BD-rate

increase of 2% and a BD-PSNR decrease of 0.079 dB.

Keywords: Video coding; HEVC (High Efficiency Video Coding); Machine learning.

7

Table of Contents

Abstract ... 6

List of Figures .. 9

List of Tables ... 10

List of Abbreviations ... 14

Chapter 1. Introduction .. 17

1.1. Overview ... 17

1.2. Thesis Objectives .. 18

1.3. Research Contribution... 18

1.4. Thesis Organization .. 19

Chapter 2. Background and Literature Review.. 20

2.1. Encoding ... 20

2.1.2. HEVC ... 23

2.2. Machine Learning ... 26

2.2.1. Classification models ..29

2.2.2. Dimensionality reduction ..35

2.2.3. Normalization ... 38

2.2.4. PSNR, BD-rate, and BD-PSNR ..38

2.3. Related Work .. 38

Chapter 3. Methodology .. 44

3.1. Problem Formulation .. 44

3.2. System Overview .. 44

3.3. Early CU Termination Scheme ... 46

3.3.1. Training phase ...46

3.3.2. Prediction phase ..49

3.3.3. Dimensionality reduction and classification algorithms49

3.4. Early PU Termination Scheme ... 52

3.4.1. Training phase ...53

3.4.2. Prediction phase ..54

3.4.3. Dimensionality reduction and classification algorithms55

3.5. Early Joint Termination Scheme ... 57

Chapter 4. Experimental Setup .. 58

4.1. Testing Configurations .. 58

Chapter 5. Results and Analysis .. 60

5.1. Performance Metrics ... 60

8

5.2. Experimental Results .. 61

5.2.1. CU early termination algorithms ...61

5.2.2. PU early termination algorithms ...79

5.2.3. CU and PU early termination algorithms ..85

5.3. Performance Evaluation .. 90

5.3.1. Analysis of the proposed algorithms ...90

5.3.2. Comparison with existing work ..93

Chapter 6. Conclusion and Future Work ... 96

References..97

Vita...101

9

List of Figures

Figure 2.1: High-level overview of video coding as illustrated in [5]. 20

Figure 2.2: Block diagram showing how a block of pixels gets encoded [6]. 21

Figure 2.3: Structural composition of a MB structure [7]. .. 22

Figure 2.4: Detailed block diagram of a MPEG-2 encoder as illustrated [7]. 22

Figure 2.5: Detailed block diagram of a HEVC [8]. .. 24

Figure 2.6: Block and tree representations of the CTU quad-tree structure. 24

Figure 2.7: PU modes for (a) inter-coded CUs and (b) intra-coded CUs. 25

Figure 2.8: An overview of some machine learning algorithms and their learning

scenarios. .. 28

Figure 2.9: An illustration of different decision boundaries, where the less complex

one (left) is likely to generalize better than the more complex one (right). 28

Figure 2.10: A simple example of a growing a decision tree. 31

Figure 2.11: A simplified visual illustration of how to generate a random forest. 33

Figure 3.1: Block diagram representing the sequence-dependent approach................ 45

Figure 3.2: Flowchart representing the training phase for early CU termination

scheme including (a) Data collection phase and (b) Model training phase. 46

Figure 3.3: An example of a CTU structure. ... 47

Figure 3.4: Flowchart representing the prediction phase for early CU termination

scheme.. 48

Figure 3.5: Flowchart representing the training phase for early PU termination scheme

including (a) Data collection phase and (b) Model training phase. 54

Figure 3.6: Flowchart representing the prediction phase for early PU termination

scheme.. 55

Figure 5.1: A comparison between all the proposed solutions. 91

Figure 5.2: RD efficiency for RaceHorses (384×192) video sequence encoded with

the unmodified HM 13.0 software and three early termination schemes. 93

Figure 5.3: RD efficiency for Traffic (2560×1600) video sequence encoded with the

unmodified HM 13.0 software and three early termination schemes. 93

10

List of Tables

Table 3.1: Arrangement of classification solutions for CU early termination. 49

Table 3.2: Attributes for CU early termination. ... 50

Table 3.3: Arrangement of classification solutions for PU early termination. 56

Table 3.4: Attributes for PU early termination. ... 56

Table 3.5: Arrangement of classification solutions for CU & PU early termination. . 57

Table 4.1: Video sequences used for the early termination approaches. 58

Table 5.1: Time savings results per each QP using PCA with PoV of 90% and second

order polynomial classifier for early CU termination. ... 62

Table 5.2: Excessive bitrate results per each QP using PCA with PoV of 90% and

second order polynomial classifier for early CU termination. 62

Table 5.3: BD-rate, BD-PSNR, avg. excessive bitrate, and time savings results using

PCA with PoV of 90% and second order polynomial classifier for early CU

termination. .. 63

Table 5.4: Model generation time to encoding time using modified encoder ratios

using PCA with PoV of 90% and second order polynomial classifier for early CU

termination. .. 64

Table 5.5: Retained principal components per CU size using PCA with PoV of 90%

and second order polynomial classifier for early CU termination. 64

Table 5.6: Classification rates per each CU size using PCA with PoV of 90% and

second order polynomial classifier for early CU termination. 65

Table 5.7: Time savings results per each QP using stepwise regression and second

order polynomial classifier for early CU termination. ... 66

Table 5.8: Excessive bitrate results per each QP using stepwise regression and second

order polynomial classifier for early CU termination. ... 66

Table 5.9: BD-rate, BD-PSNR, avg. excessive bitrate, and time savings results using

stepwise regression and second order polynomial classifier for early CU termination.

.. 67

Table 5.10: Model generation time to encoding time using modified encoder ratios

using stepwise regression and second order polynomial classifier for early CU

termination. .. 67

Table 5.11: Selected features per CU size using stepwise regression and second order

polynomial classifier for early CU termination. .. 68

Table 5.12: Classification rates per each CU size using stepwise regression and

second order polynomial classifier for early CU termination. 68

Table 5.13: Time savings results per each QP using J48 decision trees classifier for

early CU termination.. 69

Table 5.14: Excessive bitrate results per each QP using J48 decision trees classifier

for early CU termination. ... 70

11

Table 5.15: BD-rate, BD-PSNR, avg. excessive bitrate, and time savings results using

J48 decision trees classifier for early CU termination. .. 70

Table 5.16: Model generation time to encoding time using modified encoder ratios

using J48 decision trees classifier for early CU termination. 71

Table 5.17: Classification rates per each CU size using J48 decision trees classifier for

early CU termination.. 71

Table 5.18: Time savings results per each QP using random forest feature importance

and random forest classifier for early CU termination. ... 72

Table 5.19: Excessive bitrate results per each QP using random forest feature

importance and random forest classifier for early CU termination. 72

Table 5.20: BD-rate, BD-PSNR, avg. excessive bitrate, and time savings results using

random forest feature importance and random forest classifier for early CU

termination. .. 73

Table 5.21: Model generation time to encoding time using modified encoder ratios

using random forest feature importance and random forest classifier for early CU

termination. .. 73

Table 5.22: Selected features per CU size using random forest feature importance and

random forest classifier for early CU termination. .. 74

Table 5.23: Classification rates per each CU size using random forest feature

importance and random forest classifier for early CU termination. 74

Table 5.24: Time savings results per each QP using random forest classifier for early

CU termination... 75

Table 5.25: Excessive bitrate results per each QP using random forest classifier for

early CU termination.. 76

Table 5.26: BD-rate, BD-PSNR, avg. excessive bitrate, and time savings results using

random forest classifier for early CU termination. .. 76

Table 5.27: Model generation time to encoding time using modified encoder ratios

using random forest classifier for early CU termination. .. 77

Table 5.28: Classification rates per each CU size using random forest classifier for

early CU termination.. 77

Table 5.29: BD-rate, BD-PSNR, avg. excessive bitrate, and time savings results for

the proposed early CU termination algorithms. ... 78

Table 5.30: Model generation time to encoding time using modified encoder ratios for

all proposed early CU termination algorithms. .. 78

Table 5.31: Selected features per CU size for proposed early CU termination

algorithms that utilize feature selection. .. 78

Table 5.32: Classification rates per each CU size for all proposed early CU

termination algorithms. .. 78

Table 5.33: Time savings results per each QP using random forest classifier for early

PU termination. .. 79

12

Table 5.34: Excessive bitrate results per each QP using random forest classifier for

early PU termination. ... 80

Table 5.35: BD-rate, BD-PSNR, avg. excessive bitrate, and time savings results using

random forest classifier for early PU termination. ... 80

Table 5.36: Model generation time to encoding time using modified encoder ratios

using random forest classifier for early PU termination. ... 81

Table 5.37: Classification rates per each CU size using random forest classifier for

early PU termination. ... 81

Table 5.38: Time savings results per each QP using J48 decision trees classifier for

early PU termination. ... 82

Table 5.39: Excessive bitrate results per each QP using J48 decision trees classifier

for early PU termination. ... 82

Table 5.40: BD-rate, BD-PSNR, avg. excessive bitrate, and time savings results using

J48 decision trees classifier for early PU termination. .. 83

Table 5.41: Model generation time to encoding time using modified encoder ratios

using J48 decision trees classifier for early PU termination. 83

Table 5.42: Classification rates per each CU size using J48 decision trees classifier for

early PU termination. ... 84

Table 5.43: BD-rate, BD-PSNR, avg. excessive bitrate, and time savings results for

the proposed early PU termination algorithms. ... 84

Table 5.44: Model generation time to encoding time using modified encoder ratios for

all proposed early PU termination algorithms. .. 84

Table 5.45: Classification rates per each CU size for all proposed early PU

termination algorithms. .. 84

Table 5.46: Time savings results per each QP using random forest classifier for CU

and PU predictions. .. 85

Table 5.47: Excessive bitrate results per each QP using random forest classifier for

CU and PU predictions. ... 86

Table 5.48: BD-rate, BD-PSNR, avg. excessive bitrate, and time savings results using

random forest classifier for CU and PU predictions. ... 86

Table 5.49: Time savings results per each QP using J48 decision trees classifier for

CU and PU predictions. ... 87

Table 5.50 Excessive bitrate results per each QP using J48 decision trees classifier for

CU and PU predictions. ... 87

Table 5.51: BD-rate, BD-PSNR, avg. excessive bitrate, and time savings results using

J48 decision trees classifier for CU and PU predictions. ... 88

Table 5.52: Time savings results per each QP using random forest classifier for CU

predictions and J48 decision trees classifier PU predictions. 89

Table 5.53: Excessive bitrate results per each QP using random forest classifier for

CU predictions and J48 decision trees classifier PU predictions. 89

13

Table 5.54: BD-rate, BD-PSNR, avg. excessive bitrate, and time savings results using

random forest classifier for CU predictions and J48 decision trees classifier PU

predictions. ... 90

Table 5.55: A comparison between all the proposed solutions in terms of the CCR and

compression efficiency degradation. ... 91

Table 5.56: Comparison with related work that use (25) to compute complexity

reduction. ... 94

Table 5.57: Comparison with related work that use (26) to compute complexity

reduction. ... 95

14

List of Abbreviations

AI All-Intra

AMP Asymmetric Motion Partition

AMVP Advanced Motion Vector Prediction

AVC Advanced Video Coding

BD-PSNR Bjontegaard Delta Peak Signal-To-Noise Ratio

BD-rate Bjontegaard Delta Bitrate

B-frame Bi-Directional-Frame

CCR Computational Complexity Reduction

CTB Coding Tree Block

CTC Common Test Condition

CTU Coding Tree Unit

CU Coding Unit

DCT Discrete Cosine Transform

FCD Fast Discrete Cross Difference

f-random Forward Random

FV Feature Vector

GOP Group of Pictures

HD High Definition

HEVC High Efficiency Video Coding

I-frame Intra-Frame

IGAE Information Gain Attribute

JCT-CV Joint Collaborative Team on Video Coding

15

k-NN k-Nearest Neighbours

LBP Local Binary Pattern

LCU Largest Coding Unit

LD Low Delay

MB Macroblock

MC Motion Compensation

ME Motion Estimation

MPEG Moving Picture Experts Group

MSE Mean Square Error

MSM Merge/Skip Mode

MV Motion Vector

MVP Motion Vector Prediction

OOB Out-of-Bag

PCA Principal Component Analysis

P-frame Predicted-Frame

POC Picture Order Count

PoV Proportion of Variance

PSNR Peak Signal-To-Noise Ratio

PU Prediction Unit

QP Quantization Parameter

Qs Quantization Scale

RA Random Access

RD Rate-Distortion

RDO Rate-Distortion Optimization

16

RM Reduced Multivariate Polynomial Model

RMD Rough Mode Decision

RPS Reference Picture Sets

RQT Residual Quad-Trees

SAD Sum of Absolute Differences

SAO Sample-Adaptive-Offset

SCC Subjective-Driven Complexity Control

SCU Smallest Coding Unit

SMD Skip Mode Decision

TC Texture Complexity

TU Transform Unit

VCEG Video Coding Experts Group

VLC Variable Length Coding

WEKA Waikato Environment for Knowledge Analysis

17

Chapter 1. Introduction

In this chapter, an introduction to HEVC is presented along with the

enhancements it introduces and the encountered drawbacks. Then, a brief summary of

the proposed solutions and their performance evaluation methodologies is reported

followed by the thesis contribution. Finally, a general organization of this thesis is

outlined.

1.1. Overview

The HEVC standard, also known as H.265 or MPEG-H Part 2, is one of the

successors of the well-known standard MPEG-4 AVC (H.264 or MPEG-4 Part 10). It

is designed to target high quality digital video, Ultra High Definition (HD) content and

low bitrate applications. The HEVC project was formally launched in January 2010,

when a joint Call for Proposals was issued by the ITU-T Video Coding Experts Group

(VCEG) and the ISO/IEC Moving Picture Experts Group (MPEG) [1]. When it was

completed in January 2013, the HEVC standard was found to offer a significant

improvement to the compression performance relative to that presented by existing

standards. In fact, HEVC currently provides twice the compression capabilities as that

offered by its predecessor, the Advanced Video Coding (AVC). With minimal video

quality level losses, enhanced compression or coding efficiency is achieved by HEVC,

where around 50% bit-rate reduction is possible given that the appropriate encoder

settings are used [2]. Nonetheless, this improvement comes at the cost of increasing the

encoding computational complexity, which can reach up to 40% in comparison to that

of H.264/AVC when only essential coding tools are enabled [3].

The aforementioned enhancement can be contributed to a number of factors,

which mostly involves the introduction of flexible partitioning structures. HEVC uses

quad-tree Coding Tree Units (CTUs), Prediction Units (PUs), and residual quad-trees

(RQTs) rather than macroblocks (MBs), which were utilized in MPEG-2 and MPEG-

4. A video frame or image is divided into CUs with a typical size of 64×64 pixels. In

order to achieve the best configurations in terms of structure partitioning, an exhaustive

Rate Distortion Optimization (RDO) process takes place, which greatly intensifies the

computational complexity. Most of the encoding time involves recursively repeating

the RDO process at each coding depth level for each structure (i.e. 64×64, 32×32,

18

16×16 and 8×8 pixels), testing every possible encoding structure combination and

selecting the one that minimizes the rate-distortion (RD) cost [4]. Further details about

these structures will be presented in Chapter 2.

1.2. Thesis Objectives

As mentioned earlier, HEVC presents a significant coding efficiency

improvement when compared to that of its predecessors at the cost of increasing the

computational complexity. Thus, the prime challenge of this work involves limiting this

computational complexity without hurting the compression efficiency.

For this purpose, a fast partitioning decision algorithm is introduced for CUs

and PUs. Here, the aim is to optimize the RDO process as to prevent full search from

taking place at each CU depth level for all CTUs. The proposed system employs

different video sequence-dependent approaches using machine learning techniques. In

the first scheme, features are recorded for all CUs, which are used to implement an

early termination algorithm for coding trees. In the second scheme, an early termination

algorithm for PUs is applied using recorded attributes, which is sequentially utilized as

the data sample. The final scheme combines both approaches to provide early

termination for both CUs and PUs. The proposed system looks at different machine

learning algorithms to allow for the early termination process to take place. The features

may undergo feature selection or extraction before being fed into the selected classifier.

The performance of the proposed solutions is evaluated using BD-rate, BD-PSNR,

excessive bitrate, CCR, model generation time, and classification rates.

1.3. Research Contribution

The contributions of this research work can be summarized as follows:

 Propose a machine learning approach to predicting the split decisions of CUs.

 Use a video sequence-dependent approach to generate training models.

 Extract novel feature variables for CUs from both the underlying CU and

previously encoded ones.

 Reduce the dimensionality of feature variables prior model training using a

variety of dimensionality reduction techniques.

 Propose a novel early termination algorithm for PUs using dimensionality

reduction and classification algorithms.

19

 Combine both CU split prediction and PU mode prediction to reduce the

HEVC’s computational complexity without significantly harming the video

quality.

1.4. Thesis Organization

The rest of the thesis is organized as follows: Chapter 2 provides background

information on video encoding and different machine learning algorithms. Moreover,

related work done in this field of research is discussed. The architecture of the proposed

system is described in Chapter 3, while the experimental setup is given in Chapter 4.

Chapter 5 focuses on the experimental results and analyses the performance of each of

the proposed solutions. Lastly, Chapter 6 concludes this thesis and outlines possible

future work.

20

Chapter 2. Background and Literature Review

The prime focus of this thesis involves attempting to minimize the

computational complexity introduced during HEVC encoding without sacrificing the

compression efficiency. In this chapter, video compression or coding is first explored,

where the architecture and components present in MPEG-2 and HEVC, two video

coding standards, are presented. Then, different machine learning algorithms are

discussed alongside the motivation of using them to reduce the HEVC’s computational

complexity during the encoding phase. Additionally, the performance evaluation

metrics are explored in this chapter. Finally, existing related work in this field of

research is discussed.

2.1. Encoding

Data compression and decompression are frequently used concepts, especially

when large amounts of data require storage and/or transmission. In a similar fashion,

such a process takes place for audio-visual content. In multimedia systems, a number

of stages exist during the coding process of a video, which is illustrated by the

simplified block diagram shown in Figure 2.1.

Figure 2.1: High-level overview of video coding as illustrated in [5].

In general terms, the raw uncompressed digital video sequence, to which pre-

processing techniques such as trimming may apply, is fed into the encoder. The encoder

converts the digital input into a coded bitstream, which usually involves a combination

of lossless and lossy compression in order to meet the target transmission bitrate

constraints. The bitstream is then either stored or transmitted over a channel to the

receiver. At the receiver, decoding takes place, where the bitstream is transformed into

a reconstructed video sequence. As lossy compression is involved in the process, a

reconstruction error is introduced as some bits may be omitted in the encoding process,

affecting the compression efficiency. Transmission error can also play a role in the

21

quality of the reconstructed video, which varies based on the channel over which the

bitstream was transmitted. Finally, post-processing schemes may be applied as

necessary to help in improving the video’s quality.

Figure 2.2: Block diagram showing how a block of pixels gets encoded [6].

The process of encoding, summarized in Figure 2.2, mainly involves generating

frequency-based representations of pixel blocks of each frame in the video. Here, some

high frequencies are usually discarded as they do not provide significant information in

comparison to the low frequency ones. This is where lossy compression takes place and

the bit omission mentioned earlier occurs. Regardless of which coding standard is used,

some type of transformation algorithm such as the Discrete Cosine Transform (DCT)

is performed on each pixel segment for all frames of the video, where pixels are

transformed into their frequency representations. The exact partitioning manner will be

discussed shortly once MPEG-2 and HEVC are explained. It should be noted that the

frames are coded in what is called a coding order. After a block of pixels undergoes

DCT, it is quantized, where lower frequency components of the transformations tend

to be emphasized. A quantization scale is involved, where the higher its value is, the

more information is lost. The top-left corner of the transformed block, which the zero-

frequency coefficient (DC), is delta encoded by storing the difference between its value

and the corresponding value from the previous block. The remainder of the block,

which is scanned in a zigzag fashion, typically contains several long runs of zeros as a

result of quantization. Therefore, these coefficients (ACs) are compressed using run-

length encoding. The resultant of delta or differential coding and run-length coding

22

undergo Huffman coding, a variable length coding (VLC) algorithm, which is a lossless

compression scheme to further increase the compression rate. This process is repeated,

leading to a bitstream that is later stored or transmitted.

2.1.1. MPEG-2. Taking the encoding process described earlier in the context

of MPEG-2 will help in understanding the procedure in more depth. In MPEG-2, each

frame is organized in slices, where each slice is independently coded and consists of a

set of adjacent blocks called macroblocks (MBs). Each MB constitutes a 16×16 block

of luminance or grayscale samples, which are divided into four 8×8 blocks, and two

8×8 blocks of the matching chrominance (𝐶𝑏 and 𝐶𝑟), as seen in Figure 2.3.

Figure 2.3: Structural composition of a MB structure [7].

During the coding process in MPEG-2, a raster scan is followed. Here, MB acts

as the partitioning structure previously mentioned. A block diagram illustrating an

overview of encoding in MPEG-2 can be seen in Figure 2.4.

Figure 2.4: Detailed block diagram of a MPEG-2 encoder as illustrated [7].

23

At the encoder, the first frame, which is an intra-frame (I-frame), goes through

DCT, quantization, and VLC. The local decoder is then used to generate the

reconstructed I-frame. This is crucial as to avoid picture drift since the reconstructed

frame will be used at the decoder. The reconstructed I-frame is stored into the frame

store. When the next frame enters the encoder, motion estimation and motion

compensation (MC) take place and the motion compensated reconstructed I-frame is

subtracted from the current frame. In more details, motion estimation in the previous I-

frame using a search window occurs, where motion vectors (MVs) are extracted. After

that, motion compensation occurs, where a motion compensated picture of the previous

frame is generated by taking best match location for each MB and inverting the MV

corresponding to it. Thus, the MBs will coincide and the motion compensated picture

can be subtracted from the current picture. Then, DCT, quantization, and VLC happen,

and the process is repeated. It is important to note that the first frame in a video is an I-

frame, which is intra-coded. This means that it is compressed by doing DCT,

quantization, and DC and AC coding, as previously discussed.

The quantization scale (Qs) varies between 1 and 31 in MPEG-2, which is stored

as the difference between the current and previous block for all blocks excluding the

first one as the initial quantization scale factor is stored in the slice header. The

following frames can be an I-frame, a Predicted-frame (P-frame), or a Bi-directional-

frame (B-frame). A P-frame can be predicted from a previous reference frame within a

group of pictures (GOP), while a B-frame can be predicted using previous and future

reference frames. Here, each MB has a choice of either using motion estimation and

compensation, which allows inter-coding, or immediately utilizing DCT and

quantization, which allows intra-coding. This mainly depends on the MB type. On the

other hand, prediction, which takes place when motion estimation and compensation

are involved, can be of the types forward, backward or interpolated/bi-directional. A

MB can also be skipped based on some requirements.

2.1.2. HEVC. HEVC operates in a fashion very similar to that of MPEG-2

with a number of additions that introduces significant improvements in the encoding

efficiency. Figure 2.5 illustrates a block diagram representing a HEVC encoder.

One of the prime contributors to such an enhancement is the block partitioning

structures, namely CUs, PUs, and Transform (TUs). In HEVC, each frame is also

24

divided into a set of slices, each of which is composed of equal-sized CTUs. Each CTU

consists of one luminance coding tree block (CTB) and two chrominance CTBs. A CTU

can be recursively further partitioned into smaller blocks called CUs, which can be of

the sizes 64×64, which is the largest CU (LCU), 32×32, 16×16, and 8×8, which

represents the smallest CU (SCU). This partitioning process generates a quad-tree

structure with multiple coding depth levels, as observed in Figure 2.6.

Figure 2.5: Detailed block diagram of a HEVC [8].

Figure 2.6: Block and tree representations of the CTU quad-tree structure.

25

During the splitting process, all partitioning possibilities 𝒜 are evaluated in a

RDO scheme based on the Lagrangian bit-allocation [8] represented in (1).

𝑝∗ = arg min 𝐷(𝑝) + 𝜆. 𝑅(𝑝),

∀ 𝑝 ∈ 𝒜
 (1)

where 𝑝∗ represents the coding parameter that is determined by minimizing a weighted

sum of the resultant distortion 𝐷(𝑝) and the associated number of bits 𝑅(𝑝). In other

words, RDO denotes a measure of the amount of distortion affecting the quality of a

video against the amount of data needed to encode that video. The Lagrange parameter

𝜆, whose value is assigned based on the quantization scale, is a constant that determines

the trade-off between 𝐷(𝑝) and 𝑅(𝑝).

Figure 2.7: PU modes for (a) inter-coded CUs and (b) intra-coded CUs.

Each CU can also be divided into a number of PUs, which are predicted with

either intra-frame or inter-frame prediction. Again, the optimal PU splitting mode is

chosen through the RDO process, where all possible partitioning modes are evaluated.

Figure 2.7 shows all possible PU partitioning modes excluding the Merge/Skip mode

(MSM), which differ based on the current CU depth level. They can be of a symmetric

or asymmetric type. In 8×8 CUs, asymmetric motion partitions (AMPs) are not tested

to prevent the PUs smaller than 4×8 or 8×4. MSM is offered for all inter-predicted CU

sizes and 2N×2N PUs, which is very similar to the skip mode in MPEG-2. MSM allows

26

the current PU to inherit the motion information from spatially and temporally

neighboring PUs, resulting in a larger region.

The next structure to be evaluated is related to the transformation coding

process, which was explained in Section 2.1, where transformation and quantization are

involved. The quantization parameter (QP) acts in an identical manner to that of the

quantization scale in MPEG-2. Here, each CU can be seen as the root of a quad-tree

structure called residual quad-tree (RQT), which can be recursively partitioned into

TUs. TU sizes can be of 32×32, 16×16, or 8×8 dimensionalities and does not depend

on the underlying PU size. Once again, RDO determines that size for a given TU.

As previously explained in MPEG-2, prediction refers to the process of MV

extraction. In HEVC, there is also a concept called Reference Picture Sets (RPS), which

is divided into List0 and List1. List0 contains a list of picture order count (POC) used

for forward prediction, while List1 contains a list of POC used for backward prediction.

POC refers to the fame number in output/display order. It is worth noting that the same

reference picture can be used for bi-directional prediction. When it comes to

representing a MV, it is in the form of {𝑑𝑥, 𝑑𝑦, POC index in List0} and {𝑑𝑥, 𝑑𝑦, POC

index in List1}, where 𝑑𝑥 and 𝑑𝑦 are directions in the x-axis and y-axis, respectively.

In place of ME, Advanced Motion Vector Prediction (AMVP) is used to find Motion

Vector Predictions (MVPs). Up to two spatial candidate MVPs are derived from five

spatial neighboring blocks and one temporal candidate MVPs is derived from two

temporal co-located blocks in case the two spatial candidate MVPs were not available.

2.2. Machine Learning

Machine learning involves giving a computer or a machine the ability to learn

and adapt without the need to explicitly program them to perform a particular task. It

uses a set of previously collected data instances to detect patterns in this data, learn a

predictive model, and adjust the program actions accordingly. This is done with the aim

of optimizing a performance criterion using the data sample. Several applications where

machine learning is found to be useful include pattern recognition, search customer

relationship management, spam filtering, medical diagnoses, etc. Each of these

applications poses a machine learning scenario that depends on the nature of the training

data available, the method used in collecting the training sample, and the test data used

27

for evaluation. Two of the commonly seen learning scenarios [9] include supervised

learning and unsupervised learning.

Before moving any further, it is important to understand some of the key

terminologies used in machine learning [10]. An example is simply a data item or

instance that can be used in a machine learning algorithm. This example can be part of

the training sample, validation sample, or testing sample. A training sample is used to

train a learning algorithm to generate a predictive model, while a testing sample is

needed to evaluate the performance of a learning algorithm after a model has been

constructed. Each example in any of the samples constitutes of features or variables,

which are basically a set of attributes that represents the various features of that

instance. These features are also called predictors in machine learning. In classification

problems, which falls under supervised learning as will be seen later in this section, a

label is used to identify a category to which an instance belongs to. During the

evaluation of a learning algorithm, given a testing example whose label is known, a loss

function is produced to measure the prediction error using the example’s predicted label

and its true label. In most cases, a model is to be built using the machine learning

algorithm, which allows the generation of discriminant functions that are part of a

hypothesis. The discriminant functions split the sample space into different regions

representing different categories. In other words, decision boundaries imposed by

discriminant functions are created based on which a given test example with certain

features can successfully be mapped to the correct label with minimal error occurrence.

After the brief explanation given on various terminologies used in machine

learning, it will be easy to understand the previously mentioned learning scenarios. An

overview of the machine learning algorithms explained in this section and used in this

work can be seen in Figure 2.8. In supervised learning, a set of labeled examples are

used for both the training and testing phases of the machine learning algorithm. This is

usually used in classification problems, as opposed to dimensionality reduction, which

applies unsupervised learning. This type of learning considers unlabeled examples.

More details about classification and dimensionality reduction will be seen in the

following subsections.

It is crucial to understand that model generation can be a tricky process as the

model is required to generalize well [9]. In other words, the decision boundaries

28

achieved during the training process should not be very complex to the point that over

fits the training data, leading it to not perform well on the testing sample. Figure 2.9

gives a simple example that illustrates the generalization issue.

Figure 2.8: An overview of some machine learning algorithms and their learning

scenarios.

Figure 2.9: An illustration of different decision boundaries, where the less complex

one (left) is likely to generalize better than the more complex one (right).

29

2.2.1. Classification models. During classification, labeled examples are

considered, where a category is allocated to each instance. As mentioned earlier, each

instance consists of values corresponding to the various selected features and its

assigned label. A classification algorithm is then selected based on the nature of the

problem to be tackled to build a predictive model. The goal is to optimize the

discrimination between the data points from different classes represented by different

labels, minimizing the error objective criterion. The following are the different

classification algorithms utilized in this work.

2.2.1.1. Decision trees. A decision tree utilizes a “divide-and-conquer”

approach to learn from a set of independent training instances and generate a tree-like

model consisting of rules and possible outcomes or classes. It allows the classification

process of a new instance to take place in a systematic manner. This tree can be

constructed in a top-down recursive fashion [11] using algorithms such as ID3 [12] by

Quinlan (1986), C4.5 [13] by Quinlan (1993), and CART [14] by Breiman et al. (1984).

C4.5, which is one of the classification algorithms used in this work, is an

evolution of the ID3 algorithm. The way this decision tree inducer works is by

following a series of simple steps. However, before exploring these steps, it is important

to look at the attribute selection measure that it uses as the splitting criterion. Unlike

ID3, which uses information gain as its attribute selection measure, C4.5 uses an

extension to information gain known as the gain ratio. The issue with the information

gain measure is that it is biased toward selecting attributes that have a bigger range of

values. To overcome this issue, gain ratio applies some sort of normalization to the

result of the information gain measure.

Let 𝑆 be the set of training samples of length 𝑠 with 𝑚 distinct classes and 𝑇 be

the set of testing instances. To compute the gain ratio [15], based on information theory,

the entropy or expected information needed to classify a given sample is first calculated

and is given by

 𝐼(𝑆) = − ∑ 𝑝𝑖 log2(𝑝𝑖)

𝑚

𝑖=1

, (2)

where 𝑝𝑖 is the probability of a sample belonging to a particular class 𝐶𝑖. In the case of

discrete attributes, let an attribute 𝐴 have 𝑣 distinct values, which can be represented as

30

[𝑎1, 𝑎2, … , 𝑎𝑣]. On the other hand, in the case of continuous attributes [16], whose

values are numeric, 𝐴 ≤ 𝑡 is considered, where t represents a threshold value. This

results in each value of 𝐴 to have two outcomes: True and False. The vector 𝐴 can be

used to split 𝑆 into 𝑣 different subsets, denoted as 𝑆𝑗 that is split on an 𝑎𝑗 value. For

continuous attributes, the threshold 𝑡, which is a possible split-point can be found by

sorting the values corresponding to particular 𝐴 in the training sample and taking the

average of adjacent values. The entropy achieved by partitioning 𝑆 into 𝑣 subsets is

defined as

 𝐼𝐴(𝑆) = ∑ 𝐼(𝑆𝑗)
|𝑆𝑗|

|𝑆|

𝑣

𝑗=1

. (3)

The gained encoding information by branching on 𝐴 is

 𝐺𝑎𝑖𝑛(𝐴) = 𝐼(𝑆) − 𝐼𝐴(𝑆). (4)

As previously mentioned, gain ratio applies normalization to the information gain using

a value that is given by

 𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜𝐴(𝑆) = − ∑(|𝑆𝑗| |𝑆|⁄) log2(|𝑆𝑗| |𝑆|⁄)

𝑣

𝑗=1

. (5)

This value represents the information generated by splitting 𝑆 by A. The gain ratio can

now be defined as

 𝐺𝑎𝑖𝑛𝑅𝑎𝑡𝑖𝑜(𝐴) =
𝐺𝑎𝑖𝑛(𝐴)

𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜𝐴(𝑆)
. (6)

The attribute with the highest gain ratio is selected as the splitting attribute to partition

the current tree.

Moving back to discussing the way C4.5 works [17], at the beginning, the entire

𝑆 set is placed at the root of the tree. Gain ratio is then used as the splitting criteria to

determine the attribute that best differentiates the instances in 𝑆. The selected attribute

is used as the value of the current tree node, which is the tree root in this case. Next,

edges from this node are created, which represent a unique value for the chosen

attribute. This process is repeated to further split the subsets of 𝑆 until either the number

of instances to be split is below a certain threshold or there are no remaining attributes

to perform further partitioning. The leaf node is denoted based on the majority class,

31

where the aim is to reduce the impurity or uncertainty in data in order to decrease the

misclassification error.

In order to classify a new unknown instance from the testing set 𝑇, it is routed

down the grown tree based on attribute values. Once a leaf is reached, the instance is

labeled according to the class assigned to that leaf. An example of a simple decision

tree is illustrated in Figure 2.10, where only 2 attributes are considered, Feature 1 and

Feature 2. Figure 2.10(a) demonstrates the splitting process in a 2D space with the order

of partitioning shown. While Figure 2.10(b) shows the corresponding grown tree, which

was done based on the splitting criterion previously discussed. In this work, J48 is used

to build decision trees, which is an implementation of C4.5 in Waikato Environment

for Knowledge Analysis (WEKA).

Figure 2.10: A simple example of a growing a decision tree.

2.2.1.2. Random forest. One of the issue of decision trees such as CART and

C4.5 is that they tend to have empirically high variance [18]. In other words, these

decision tree inducers are quite sensitive to the data used during the training phase. If

the training set changes, the grown tree is likely to in turn change, resulting in producing

different predictions. It is also important to note that these decision tree inducers

employ a greedy approach that minimizes error by selecting the optimal attribute that

splits the dataset at each node based on a certain data partitioning criterion.

In an effort to overcome the above, random forests [19] were introduced, where

a random forest is an ensemble method that utilizes both bagging and decision trees.

An ensemble method is a simple method that uses multiple machine learning algorithms

32

to enhance the classifiers’ predictive performance. Bagging or bootstrap

aggregation [20] is a procedure that is used to minimize the high variance seen in

decision trees. It allows the resampling of a given training dataset, where large numbers

of same-sized smaller samples called bootstrap samples are selected with replacement

from the original dataset. This results in growing trees that are more independent. To

tackle the drawback imposed by applying a greedy approach such as decision trees, a

random forest [19] does not consider all the attributes and their values at the root of

each tree to apply the splitting criterion. Instead, each tree is assigned a set of randomly

selected features on which the splitting measure is applied.

Before looking at how a random forest operates, it is crucial to understand the

splitting criterion it uses, which is the Gini index. As was the case for decision trees, let

𝑆 be the set of training samples of length 𝑠 with 𝑚 distinct classes and 𝑇 be the set of

testing instances. The Gini index [15], which is another impurity measure similar to the

gain ratio, is given by

 𝐺𝑖𝑛𝑖(𝑆) = 1 − ∑ 𝑝𝑖
2

𝑚

𝑖=1

, (7)

where 𝑝𝑖 is the probability of a sample belonging to a particular class 𝐶𝑖. For each

attribute 𝐴, the Gini index considers a binary split. The values of 𝐴, 𝑎𝑗, differs

depending on its nature, which can be discrete or continuous as explained in the case

of decision trees. Given that attribute 𝐴 has 𝑣 distinct values, the weighted sum of each

of the partitions on 𝐴 is computed as

 𝐺𝑖𝑛𝑖𝐴(𝑆) = ∑
|𝑆𝑗|

|𝑆|
𝐺𝑖𝑛𝑖(𝑆𝑗)

𝑣

𝑗=1

. (8)

The subset 𝑆𝑗 that generates the minimum Gini index for 𝐴 is selected as the splitting

attribute to partition the current tree.

Figure 2.11 provides a visual explanation of the procedure followed to grow a

random forest. For each tree, a random bootstrap sample of size 𝑁 with replacement

from the training set 𝑆 is first taken [19]. Moreover, given 𝑀 predictors or attributes, a

random sample of constant 𝑚 ≪ 𝑀 predictors is selected for each tree. Based on the

Gini index explained earlier, the attribute that best splits the sample space 𝑆 is selected.

33

This process is repeated until the tree is as large as possible, without applying any

pruning. It is worth noting that about one-third of the training dataset selected for a

particular tree is left out of the sample and is called out-of-bag (OOB) data. This data

is used to estimate the classification error as more trees are added to the forest and the

variable importance.

Figure 2.11: A simplified visual illustration of how to generate a random forest.

To classify an instance from the testing set 𝑇, the instance is routed down each

of the grown trees in the forest based on attribute values. The instance is then labeled

with the class that was assigned by most of the trees in the forest.

2.2.1.3. Reduced model. A multivariate polynomial model is capable of

describing complex nonlinear relationships; however, for an 𝑟th order model with a 𝑙

dimensional input or FV, the number of independent adjustable parameters can

exponentially grow to up to 𝑙𝑟 [21]. For that reason, Reduced Multivariate Polynomial

Model (RM) is used instead, which provides approximately the same classification

capabilities.

In order to generate the Reduced Model, a multinomial, a special case of

multivariate polynomials, is first considered and can be expressed as

https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm#ooberr

34

 𝑓𝑀𝑁(𝛼, 𝑥) = 𝛼0 + ∑ 𝛼𝑗(𝑥1 + 𝑥2 + ⋯ + 𝑥𝑙)𝑗

𝑟

𝑗=1

, (9)

where all inputs are lumped within each power term. Here, 𝑟 is the degree of

approximation, 𝛼𝑗 is the weight parameter to be estimated, and 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑙]𝑇 is

the regressor or FV containing 𝑙 inputs. The above results in a non-linear estimation

model with the weight parameters needing to be estimated in an unconventional

manner. Therefore, a linearized model is considered.

On the multinomial function that is differentiable, two point 𝛼 and 𝛼1 are

considered [22]. Taking only the FVs into account to simplify the expression, by the

Mean Value Theorem, the multinomial function 𝑓(𝛼) = (𝛼𝑗1𝑥1 + 𝛼𝑗2𝑥1 + ⋯ +

𝛼𝑗𝑙𝑥𝑙)
𝑗
 about reference point 𝛼1, given that 𝑗 = 2, … , 𝑟, can be re-written as

 𝑓(𝛼) = 𝑓(𝛼1) + (𝛼 − 𝛼1)𝑇∇𝑓(𝛼̅), (10)

where 𝛼̅ = (1 − 𝛽)𝛼1 + 𝛽𝛼 for 0 ≤ 𝛽 ≤ 1. Including the summation of the weighted

input terms back after removing the reference point 𝛼1, the coefficients within 𝑓(𝛼)

and the gradient ∇𝑓(𝛼̅) leads to the following multivariate model

𝑓𝑅𝑀′(𝛼, 𝑥) = 𝛼0 + ∑ 𝛼𝑗𝑥𝑗

𝑙

𝑗=1

+ ∑ 𝛼𝑙+𝑗(𝑥1 + 𝑥2 + ⋯ + 𝑥𝑙)𝑗

𝑟

𝑗=1

+ ∑(𝛼𝑗
𝑇 . 𝑥)(𝑥1 + 𝑥2 + ⋯ + 𝑥𝑙)𝑗−1

𝑟

𝑗=2

, 𝑙, 𝑟 ≥ 2.

(11)

The above formulation can be expanded to include more individual high-order terms,

modifying the Reduced Model to become

𝑓𝑅𝑀(𝛼, 𝑥) = 𝛼0 + ∑ ∑ 𝛼𝑘𝑗𝑥𝑗
𝑘

𝑙

𝑗=1

𝑟

𝑘=1

+ ∑ 𝛼𝑟𝑙+𝑗(𝑥1 + 𝑥2 + ⋯ + 𝑥𝑙)𝑗

𝑟

𝑗=1

+ ∑(𝛼𝑗
𝑇 . 𝑥)(𝑥1 + 𝑥2 + ⋯ + 𝑥𝑙)𝑗−1

𝑟

𝑗=2

, 𝑙, 𝑟 ≥ 2,

(12)

where the total number of terms 𝐾 is given by 𝐾 = 1 + 𝑟 + 𝑙(2𝑟 − 1).

(12) is used to perform the classification presented in this work. It is worth

mentioning that the weights denoted by 𝛼 will be omitted during the expansion process.

35

Thus, the weights are recalculated using (13), which is a resultant of minimizing the

objective function given by (14).

 𝛼 = (𝑃𝑇𝑃 + 𝑏𝐼)−1𝑃𝑇𝑦 (13)

𝑠(𝛼, 𝑥) = ∑[𝑦𝑖 − 𝑓𝑅𝑀(𝛼, 𝑥𝑖)]

2
+ 𝑏‖𝛼‖2

2

𝑚

𝑖=1

 = [𝑦 − 𝑃𝛼]𝑇[𝑦 − 𝑃𝛼] + 𝑏𝛼𝑇𝛼

(14)

Here, for 𝑚 data points, 𝑃 ∈ ℛ𝑚𝑥𝐾 is the Jacobian matrix related to the expanded FVs,

𝑦 ∈ ℛ𝑚𝑥1 is the known inference vector from the training data, 𝑏 is a regularization

constant and 𝐼 represents a 𝐾 × 𝐾 identity matrix. The ‖. ‖𝑝 operator is the second

norm, where 𝑝 = 2.

2.2.2. Dimensionality reduction. Dimensionality reduction is considered an

important step, especially when the FV is relatively large since it can affect the

classification process. In order to classify an observation correctly, it is preferable that

the data points belonging to a particular class are clustered such that a certain density

is reached, allowing the discrimination of those points from points belonging to a

different class. However, maintaining the same density with more features is no easy

task as more data points will be needed as a result, which is usually not possible.

Consequently, feature selection and extraction algorithms are utilized during training,

whose operation are explained in the following subsections.

2.2.2.1. Random forest feature importance. One of the features presented in a

random forest classifiers is called the random forest variable importance. It analyzes

the importance of a particular attribute in predicting the correct classification of a given

test instance. First, for all grown trees, the number of correct classifications achieved

using the OOB data is computed. The OOB data is the set of instances that were left

out during the training process of a given tree in the random forest. Let A be an attribute

having v distinct values. From the OOB data, each of the v distinct values are randomly

permuted and tested for correct classification. The raw importance score is then given

by

 𝑟𝑎𝑤_𝑖𝑚𝑝𝐴 =
𝑐𝑜𝑟𝑟𝑒𝑐𝑡_𝑐𝑙𝑎𝑠𝑠 − 𝑐𝑜𝑟𝑟𝑒𝑐𝑡_𝑐𝑙𝑎𝑠𝑠𝐴

𝑡𝑟𝑒𝑒𝑠_𝑐𝑜𝑢𝑛𝑡
, (15)

36

where 𝑐𝑜𝑟𝑟𝑒𝑐𝑡_𝑐𝑙𝑎𝑠𝑠 is the number of correct classifications attained before applying

the permutation and 𝑐𝑜𝑟𝑟𝑒𝑐𝑡_𝑐𝑙𝑎𝑠𝑠𝐴 represents the number of correct classifications

accomplished after applying the permutation. 𝑡𝑟𝑒𝑒𝑠_𝑐𝑜𝑢𝑛𝑡 is total number of trees

grown in the random forest. A given attribute is said to be important if it has a high raw

importance score.

2.2.2.2. Principal component analysis (PCA). PCA [9] is an unsupervised

projection method that allows projecting the training set 𝑆 on a lower dimensional

space. Given that the original feature space 𝑑, PCA employs a feature extraction

approach that projects 𝑆 on 𝑘 dimensions, where 𝑘 < 𝑑, with the objective of

minimizing any information losses. This is achieved by maximizing the feature

variance.

Let the projection of 𝑆 in the direction of 𝜔1 be given by 𝑧1 = 𝜔1
𝑇𝑆.

Additionally, let the variance of the projected training sample to be 𝑉𝑎𝑟(𝑧1) =

𝜔1
𝑇∑𝜔1, where ∑ denotes the covariance of 𝑆. To maximize (𝑧1) , it is important to

subject it to ‖𝜔1‖ = 1, which is the L2-norm. This leads to a Lagrange problem that is

expressed as

 max
𝜔1

 𝜔1
𝑇∑𝜔1 − 𝛼(𝜔1

𝑇𝜔1 − 1) = 0. (16)

The resultant of simplifying the above expression is ∑𝜔1 = 𝛼𝜔1, where 𝜔1 is the

eigenvector of ∑. The eigenvector 𝜔1 with the largest eigenvalue 𝛼 maximizes 𝑉𝑎𝑟(𝑧1)

and is selected as the first principal component. To find the second principal

component, 𝑉𝑎𝑟(𝑧2) is maximized by subjected it to ‖𝜔2‖ = 1 and ensuring that it is

orthogonal to 𝜔1. The expression then becomes

 max
𝜔2

 𝜔2
𝑇∑𝜔2 − 𝛼(𝜔2

𝑇𝜔2 − 1)−𝛽(𝜔2
𝑇𝜔1 − 0) = 0. (17)

The resultant of simplifying the above expression is ∑𝜔2 = 𝛼𝜔2, where 𝜔2 is another

eigenvector of ∑. The eigenvector 𝜔1 with the largest eigenvalue 𝛼 that maximizes

𝑉𝑎𝑟(𝑧2) is chosen as the second principal component. This process is usually repeated

until the desired Proportion of Variance (PoV) explained is reached. Given that 𝛼𝑖 are

sorted in descending order, PoV is expressed as

 PoV =
𝛼1 + 𝛼2 + ⋯ + 𝛼𝑘

𝛼1 + 𝛼2 + ⋯ + 𝛼𝑘 + ⋯ + 𝛼𝑑
. (18)

37

Typically, PoV is taken to be greater than 90% since it results in minimum information

loss.

2.2.2.3. Stepwise regression. Stepwise regression is a subset/feature selection

algorithm, where 𝑘 of the 𝑑 FVs are chosen with the aim of increasing discrimination

or the classification rate given that 𝑘 < 𝑑. In general, feature selection can either be

forward, where the best feature is added at each step starting from the empty set until

the best model is generated, or backward, where the starting point is a model with all

features that are eliminated one-by-one, if possible, until the optimal model is reached.

Stepwise regression is a combination of both schemes [23].

Given a set of variables [𝑥1, 𝑥2, … , 𝑥𝑙]𝑇that belong to a class 𝑟, 𝑓𝑖𝑛 is the forward

random (f-random) variable for adding a variable to the model and 𝑓𝑜𝑢𝑡 is the f-random

variable for removing a variable from the model. A f-random variable is a variable with

the largest Pearson product moment correlation with 𝑟. At first, all variables are scanned

and the variable with the highest statistics 𝑓 is added to generate a one-variable model

given by

 ℎ(𝑥) = 𝛼0 + 𝛼1𝑥1, (19)

where ℎ(𝑥) is the hypothesis and 𝑥1 is one of the 𝑘 features with the highest 𝑓 value.

For the remaining 𝑘 − 1 variables, the variables are examined to choose the second best

feature 𝑥2, such that a two-variable model is generated in the form of

 ℎ(𝑥) = 𝛼0 + 𝛼1𝑥1 + 𝛼2𝑥2. (20)

𝑥2 is added such that 𝑓2 > 𝑓𝑖𝑛, where 𝑓2 is the statistics of 𝑥2. 𝑓2 is computed as

 𝑓2 =
𝑆𝑆𝑅(𝛼1|𝛼2𝛼0)

𝑀𝑆𝐸(𝑥1, 𝑥2)
, (21)

where 𝑆𝑆𝑅 represents the regression sum squares error and 𝑀𝑆𝐸 represents the mean

square error. Next, 𝑓1 is compared to 𝑓𝑜𝑢𝑡 to check as to whether 𝑥1 should be removed,

where 𝑓1 is calculated in a manner similar to that of 𝑓2 as follows

 𝑓1 =
𝑆𝑆𝑅(𝛼2|𝛼1𝛼0)

𝑀𝑆𝐸(𝑥2, 𝑥1)
. (22)

38

The same steps are repeated for the remaining 𝑘 − 2 variables until no more variables

can be added to or removed from the model. The resultant of stepwise regression is the

indices of the retained FVs.

2.2.3. Normalization. In order to normalize the FVs, z-score or zero-mean

normalization is used, which acts as a measure of the distance between a data point (𝑥𝑖)

and the mean (𝜇) in terms of standard deviations (𝜎). It is given by

 z =
(𝑥𝑖 − μ)

σ
. (23)

Normalization is needed to standardize the range of independent features.

Distinctive features can have different scales, which may affect the classification

process.

2.2.4. PSNR, BD-rate, and BD-PSNR. When it comes to images, PSNR,

given by (24), acts as a quality metric between the original and reconstructed image.

The higher the value of this ration, the higher is the quality of the reconstructed image.

It uses the Mean Square Error (MSE), which presents the cumulative squared error

between the original and reconstructed image.

 𝑃𝑆𝑁𝑅 = 10. 𝑙𝑜𝑔10 (
𝑀𝐴𝑋𝐼

2

𝑀𝑆𝐸
) (24)

Likewise, when it comes to video sequences, similar performance metrics exist

to evaluate the quality of the reconstructed video in comparison to the original one.

Bjontegaard's metrics BD-rate and BD-PSNR allow the computation of the average

percentage saving in bitrate and the average gain in PSNR between two RD curves,

correspondingly [24]. However, they do not take the encoder’s complexity into account.

Ideally, as BD-rate increases, BD-PSNR should decrease. In this work, we compare our

coding solution to the regular HEVC coding approach. We aim to reduce the BD-rate

and increase the BD-PSNR as must as possible. These performance metrics are among

others that are used in the evaluation of the proposed solution in this thesis.

2.3. Related Work

Several state-of-art early termination algorithms for optimizing the encoding

process in HEVC can be found in the literature, where the prime aim involves reducing

the computational complexity while minimizing any performance degradation. Among

39

many, some approaches utilize the textural or structural characteristics of a given

CU [25]-[35], while others use machine learning techniques [36]-[45], where they

provide a method to view the issue at hand as a classification problem. The

optimizations were not limited to HEVC inter-coding as some also considered

enhancing intra-coding [31], [32], [34], [36]. It is important to understand that some

approaches attempted to implement complexity control schemes, while others tried to

apply complexity reduction algorithms to enhance the encoding process.

As previously mentioned, many papers focused on investigating the textural or

structural characteristics of CUs at a given CU depth to optimize the HEVC encoding

procedure. The work in [25] proposes an inter-prediction optimization scheme, where

the CTU structure is analysed in a reverse order. Exploring CUs at higher depths first

allowed the limiting of the PU modes to be tested and the speeding up of the motion

estimation process. The encoding time was, as a result, enhanced by around 16.3% to

36.6% with BD-rate losses of around 0.3% to 2.2%. Alternatively, a subjective-driven

complexity control (SCC) approach is proposed by [26] to control the HEVC encoding

complexity. The authors investigated how the maximum depth of all largest CUs

(LCUs) affects the encoding complexity and visual distortion. Based on that, an

optimization formulation was computed in order to control the encoding complexity of

HEVC with minimal visual distortion. It was observed that the encoding complexity

greatly varied, where it could reach as low as 20% with the smallest complexity bias

being 0.2%. However, the approach excelled in terms of control accuracy and visual

quality. Another complexity control algorithm is proposed in [27], where an early

termination condition is defined at each CU depth. The different parameters of the

algorithm that determines the early termination condition dynamically changes on the

fly based on the content of the video sequence being encoded, the configuration files

and the target complexity, which can vary over time. A target complexity reduction of

up to 60% was attainable while maintaining good results in terms of accuracy and

coding efficiency.

In [28], the authors present a hierarchical structure-based fast mode decision

scheme. The paper utilizes the depth information of co-located CUs to predict the

current LCU’s splitting. After that, the inter-prediction residual was analysed to

optimize the PU mode decision process. Finally, fast discrete cross difference (FCD)

40

was used to predict the dominant direction of the current CU. The results accomplished

from the algorithm reduced the encoding time by around 54.0%-68.4% with minimal

degradation in the videos’ quality. A fast CU decision algorithm is presented in [29],

where the coded block flag and RD cost are checked to determine if intra- and inter-

PUs are to be skipped. Experimental results demonstrate that the proposed algorithm

saves around 35.39% of the encoding time with negligible losses. In [30], a two-layered

motion estimation based fast CU decision process is proposed, which uses the latent

Sum of Absolute Differences (SAD) estimation to extract the SAD costs for a CU and

its sub-CUs. The relationship between the motion compensation RD cost and the SAD

cost was then explored, from which the exponential model was generated and utilized

to make the CU size decision. Consequently, an average encoding time saving of 52%

and 58.4% with an average bit-rate increase of 1.61% and 2% were attained for Random

Access (RA) and Low-Delay configuration, respectively. On the other hand, a fast

encoding scheme is proposed in [31] to speed up the HEVC intra-coding to avoid

running the full depth search procedure. Encoded CU depths and RD cost of co-located

CTU were used to predict both the current CU’s depth search range and the RD cost for

CU splitting termination. Furthermore, PU modes to be used by the RDO process were

limited through the fast mode decision step. This led to an encoding time reduction of

57% at the cost of a 0.6% increase in BD-rate.

Another fast CU size selection approach for I-frames is presented in [32], where

local texture descriptors or image characteristics were used. CU split decisions were

determined based on the histogram comparison of the Local Binary Patterns (LBP) of

two consecutive CU depths. The speedup achieved here ranged on average between

5.4% and 80.2% with a performance loss of up to 0.87 dB in terms of BD-PSNR. [33]

proposes an early texture-based inter-mode decision algorithm, where the current CU’s

texture, which was assigned based on the entropy, and the MV of the 2Nx2N PU mode

were used for the early skip decision for the current CU. Furthermore, symmetric

motion partition modes were optimized via the texture features calculated. This

approach led to a reduction in the encoding time of around 40% with minimum

performance degradation. A fast CU size decision algorithm for HEVC intra-coding is

presented in [34]. Based on the texture and coding information of neighbouring CUs

and adaptive thresholds built upon texture homogeneity, the splitting of the current CU

41

was limited. A CCR of up to 67%, was reached with around 0.06 dB loss in terms of

PSNR and 1.08% increase in bitrate.

A spatiotemporal based CU encoding technique is explored in [35], where

sample-adaptive-offset (SAO) parameters including the spatial encoding parameter

were utilized to predict the texture complexity (TC) of the CU under encoding. The

resultant was then used along with temporal encoding parameters such as MV and

Transform Units sizes to enhance the early CU splitting decision. Moreover, RD cost

comparisons of simple and complex TC classes, which are classified by the SAO

parameters, were used to improve the early CU SKIP mode detection. The combined

use of the proposed CU splitting decision and CU SKIP mode detection schemes gave

rise to average encoding time savings of 49.6% and 42.7% with average BD-rate losses

of 1.4% and 1.0% for RA and LD configuration, respectively.

Other approaches utilized the Bayesian decision rule and other machine learning

techniques to improve the time complexity of an HEVC encoder. For instance, the

proposed scheme in [36] involves three algorithms. The first is an early skip algorithm,

where, based on the neighbouring PUs, RD cost computations for large PUs are

skipped. The second is a PU skip algorithm using Bayes’ rule that optimized the RD

cost computation, while the third is a split termination algorithm that used the RD cost

of rough mode decision (RMD) to prevent further PU splitting. An encoding time

saving of 53.52% was achieved as a result while maintaining the same RD performance

as that offered by the HM software. In contrast, three approaches involving a skip mode

decision, a CU skip estimation, and an early CU termination are seen in [37]. The

thresholds for each were allocated based on Bayes' rule with a complexity factor. The

computational complexity was, as a result, reduced by 69% and 68% on average with

a 2.99% and 2.46% BD-rate increase for RA and LD configuration profiles,

respectively.

In [38], the authors present a joint online and offline learning-based fast CU

partitioning method that uses the Bayesian decision rule to optimize the CU partitioning

process. The proposed method was found to reduce the computational complexity to

53.6% on average with a 0.71% BD-rate increase for the RA configuration profile. The

Bayesian decision theory is also utilized in [39] along with the correlation between the

variances of the residual coefficients and the transform size to enhance the PU size

42

decision process. The algorithm was found to result in a 30-46% reduction in the

computational complexity of transform processing with negligible coding efficiency

losses. Alternatively, a fast CU splitting and pruning algorithm is proposed in [40],

which is applied at each CU depth according to a Bayes decision rule method based on

low-complexity RD costs and full RD costs. The various parameters governing this

method are dynamically modified on the fly based on the varying signal characteristics.

Experimental results performed using All-Intra (AI) configuration profile indicated that

the approach could achieve around 50% complexity reduction with only 0.6% increase

in the BD-rate. A fast CU size and PU mode prediction algorithm is provided by [41].

It utilizes the k-means clustering method to group 13 neighbouring CTUs into three

classes that were used as reference CTUs to predict the current CTU’s CU depth. In

addition, rarely used PU modes were skipped, leading to PU selection complexity

reduction. The encoding time was consequently reduced by 56.71% and 59.76%, and

BD-rates by 1.0517% and 0.9918% for LD and RA configurations, respectively.

On the other hand, [42] presents an early mode decision algorithm based on

Neyman-Pearson. In the paper, both skip mode and CU size decisions were modelled

as binary classification problems with skip/non-skip and split/no-split class labels. The

features used for model generation were the RD costs. Here, the Neyman-Pearson-

based rule was used to balance the RD performance losses and the complexity

reductions through minimizing the missed detection while limiting the incorrect

decision rate. Online training and non-parametric likelihood estimation were utilized to

update the RD cost probability density distribution for each QP at CU depth. The

algorithm resulted in a CCR of 65% and 58% at the cost of a 1.29% and 1.08% increase

in terms of BD-rate for RA and LD P configurations, respectively. In [43], a fast

pyramid motion divergence-based CU selection algorithm is proposed, where a k-

nearest neighbours (k-NN) like method is used to determine the optimal CU size.

Experimental results show that an average time saving of 40% is achieved for LB-Main

configuration profile with BD-rate losses of 2.21%. Whereas, an average time saving

of 42.8% is attained for LP-Main configuration profile with BD-rate losses of 1.9%.

The work in [44] utilizes a machine learning-based fast CU depth decision method to

enhance the performance of a HEVC encoder, where the quad-tree CU depth levels are

modelled as a three-level hierarchical binary decision problem. This was then used to

43

develop a flexible CU depth decision structure that allowed the generation of a three-

output joint classifier that consists of multiple binary classifiers. Using Low Delay (LD)

B-frame main configuration, the algorithm attained an average computational

complexity of 51.45% with average BD-rate increase of 1.98% and BD-PSNR

reduction of -0.061 dB.

The work proposed in [45] implemented early termination techniques on CUs,

PUs, and TUs with the aim of optimizing the exhaustive recursive search process to

avoid fully running the RDO algorithm. A set of decision trees were built from data

collected during offline encodings with the aid of Waikato Environment for Knowledge

Analysis (WEKA) [46], an open source DM tool. Based on the HEVC partitioning

structure, the structure partitioning decisions were formulated into a data classification

problem consisting of two classes, which was tackled through the usage of these

decision trees. The attributes to be utilized for building the trees were chosen through

the information gain attribute evaluation (IGAE) method in WEKA, which determined

the information gain a variable offers. The C4.5 algorithm, specifically the J48

implementation, was used to train the decision trees, where best attributes or features

were chosen and thresholds that are part of test nodes were computed. For each

partitioning structure, observations from each class were taken to be of equal

proportions to avoid data imbalance during training. An average CCR of up to 50% at

the negligible cost of an increase of 0.56% in terms of BD-rate was obtained for RA

profile when each of the schemes were separately implemented. Whereas, when jointly

implemented, an average CCR of up to 65% was achieved with a compression

efficiency loss of 1.36% in BD-rate.

44

Chapter 3. Methodology

In this chapter, the problem involving the HEVC video encoding complexity is

formulated. Moreover, a proposed solution is discussed, where three early termination

schemes are presented. Two of those schemes utilize two of the prime partitioning

structures used during HEVC encoding, namely CUs and PUs, while the third combines

both approaches. The proposed algorithms use different dimensionality reduction and

classification algorithms to tackle the issue at hand.

3.1. Problem Formulation

As mentioned at the beginning of this thesis, one of the methods in which HEVC

enhances the coding efficiency is through the usage of three flexible partitioning

structures, i.e. CTUs, PUs, and the RQTs. Unfortunately, this improvement comes at

the cost of massively increasing the computational complexity. It is true that the HEVC

standard also uses several complexity reduction techniques, including Rough Mode

Decision (RMD) for intra-frame prediction and the early Skip Mode Decision (SMD)

algorithm; nevertheless, the computational complexity remains relatively high. As a

result, it is crucial to apply different techniques to attempt and limit this rise in

computational complexity without harming the compression efficiency in terms of

video quality and bitrate consumption.

3.2. System Overview

To limit the increasing computational complexity, which is the resultant of the

exhaustive rate-distortion optimization (RDO) process, a fast partitioning decision

algorithm is introduced for both CUs and PUs using machine learning techniques. Both

schemes implement a video sequence-dependent approach, where 10% of a given video

sequence is considered to train a chosen classifier. The generated classification model

is then used throughout the rest of the video sequence for testing. A general overview

of the video sequence-dependent approach is given in Figure 3.1. Throughout this work,

the HM reference software [47] is used. The assumption made for using a sequence-

dependent approach is that since part of the same sequence is used for training a given

model, the classification accuracy is likely to be higher. The behaviour of a data point

from the training set belonging to a certain class is expected to provide a more accurate

45

methodology to predict the category to which a testing sample from the same video

sequence belongs to.

Before training a given model, a video sequence is encoded to record a list of

potentially important independent variables of size 𝑙 that act as features in the form of

a vector [𝑥1, 𝑥2, … , 𝑥l]
𝑇 and their corresponding response values 𝑟. The response

represents the class label to which a data point with certain features belongs. Based on

the early termination algorithm, the response can be related to a CU splitting option or

a selected PU mode.

Figure 3.1: Block diagram representing the sequence-dependent approach.

Once all the features and class labels have been extracted from the training

sample, dimensionality reduction is applied to select the key features needed for the

model generation stage. The dimensionality reduction step is optional and will depend

on the approach used. The features are then fed into the chosen classifier, where the

model generation takes place. Using the built model, the testing sample is used to

extract the values corresponding to the same attributes that were used during training

and predicted responses are produced. The HEVC encoder is run again, but using the

predicted responses and the effectiveness of the early termination algorithms is

evaluated in terms several performance metrics, primarily BD-rate, BD-PSNR, and

CCR. The fast partitioning decision algorithms for each partitioning structure are

explained in more details in Sections 3.3 to 3.5.

46

3.3. Early CU Termination Scheme

The first set of algorithms implements a video sequence-dependent approach

for early CU termination, where a split flag is computed at different coding depth levels

for each CTU. This split flag allows the encoder to make an early decision in terms of

whether splitting should occur at a given CU depth level without extensively running

the RDO process. The split flag is calculated at CU depth level 0, CU depth level 1 and

CU depth level 2. It is not computed at CU depth level 3, where the CU size is 8×8

pixels as this CU cannot be partitioned into four equally sized CUs. As this problem is

viewed as a binary classification problem, the class labels considered are of the values

0 (do not split a CU into 4 sub CUs) or 1 (split a CU into 4 sub CUs), indicating whether

the CU structure will be partitioned at a particular depth level.

3.3.1. Training phase. Two phases are involved in the training of the

classification model: the data extraction stage and the model training stage, as seen in

Figure 3.2.

Figure 3.2: Flowchart representing the training phase for early CU termination

scheme including (a) Data collection phase and (b) Model training phase.

47

During the first phase, data collected from running the unmodified encoder on

the training sample is used, which is the first 10% of a given video sequence. As

indicated in Figure 3.2(a), at each CU depth level, FVs are read, to which the reversed

split flags are appended. In other words, for 64×64 sized CUs, features and their

corresponding split flags are extracted. Based on the normal operation of the encoder,

if the 64×64 CU structure was split for a given CTU, then features and split decision

flags corresponding to the second depth level are computed. Again, if the 32×32 CU

structure is split, features and split flags corresponding to the 16×16 CU sized structure

are extracted. This process takes place recursively for all CTUs until all CUs in the

training set have been processed.

Figure 3.3: An example of a CTU structure.

For each CTU, 21 response values or split decision are recorded. As the process

of splitting recursively takes place in a z-scan manner, the split values are stored in

reverse. Thus, the split at each CU depth is reversed before being used for model

generation. For instance, given the split flag values for the CTU seen in Figure 3.3 to

be [0 0 1 0 1 − 0 0 0 0 0 − 0 1 0 0 1 − 0 0 0 0 0 − 1], the first four numbers

correspond to the split status of top left 16 × 16 blocks followed by split flag of the

parent 32 × 32 block. Similarly, the next fifteen numbers act in the same way, but for

the neighboring 32 × 32 blocks within the same CTU. The last number represents the

split flag at depth 0. If the first block split is taken into account [0 0 1 0 1], reversing

the split flags involves taking last number representing splitting at depth 1 and placing

it at the beginning, which results in [1 0 0 1 0]. This is done for all other blocks at depth

1, while the split flag at depth 0 is placed at the start of the 21 number sequence.

48

To further optimize the approach, the surrounding CTUs are analyzed and if the

neighboring CUs are found to be mostly split, the current CTU’s CU is also split. This

is done as a CU is likely to behave in a way similar to that of most of its surrounding.

Before training the models, for each depth level, FVs from each class are normalized

and re-sampled to be of almost equal proportions in order to avoid data imbalance,

which may lead to worsening the classification accuracy.

Figure 3.4: Flowchart representing the prediction phase for early CU termination

scheme.

During the model training phase, at each CU depth level, the output of the first

phase in terms of the FVs and their corresponding classes is fed into a feature selection

or extraction algorithm of choice. This results in reducing the feature space. In case the

feature selection algorithm does not choose any feature variable, all FVs excluding the

ones related to the surrounding CUs are used as these CUs might not exist to begin

49

with, which depends on the location of the current CTU. Again, dimensionality

reduction is an optional step and is dependent on the algorithm used. The resultant of

this process is a CU prediction model for each of the three CU depth levels, which will

be used during the prediction of the testing sample.

3.3.2. Prediction phase. After generating the CU prediction model, the testing

sample, i.e. 90% of a given video sequence, is used to extract the values corresponding

to the same attributes that are used in the trained model. As illustrated in Figure 3.4, at

each CU depth level, the FVs are extracted and predicted responses are produced using

the trained model. Based on the current depth level, the process is repeated for all sub

CU structures until all CTUs have been processed.

3.3.3. Dimensionality reduction and classification algorithms. In this

approach, five different combinations of dimensionality reduction and classification

algorithms are considered. These approaches were selected after conducting a number

of experiments and were found to produce better results in comparison. The different

solutions are summarized in Table 3.1. The details on the operation of each of these

dimensionality reduction and classification algorithms is explained in Chapter 2.

Table 3.1: Arrangement of classification solutions for CU early termination.

3.3.3.1. Features and dimensionality reduction algorithms. The features

considered in the CU early termination approach are provided and explained in Table

3.2. The first 15 features are related to the current CU; whereas, the remaining 55

features belong to the surrounding CTUs. The total number of attributes initially

considered for this approach is 70 features. Based on the solution, these attributes were

either used with no modifications or reduced by either using a feature selection

algorithm (feature importance based on random forests or stepwise regression) or a

feature extraction algorithm (PCA).

Solution Classifier Dimensionality reduction

Stepwise & Polynomial
Polynomial networks with

second order expansion
Stepwise regression

PCA & Polynomial
Polynomial networks with

second order expansion
PCA with PoV of 90

R.F. Select & R.F. Random forest
Feature importance with random

forests

R.F. Random forest Not used

J48 Decision trees Not used

50

Table 3.2: Attributes for CU early termination.

Feature/Attribute Feature count Description

CU depth 1 Coding depth level 0 (64×64), 1 (32×32), or 2 (16×16)

Prediction mode 1 Prediction mode 0 (inter-prediction) or 1 (intra-prediction)

Skip RD cost, 2N×2N RD cost,

2N×N RD cost, N×2N RD cost,
N×N RD cost, 2N×uN RD cost,

2N×dN RD cost, lN×2N RD

cost, rN×2N RD cost, 2N×2N-
intra RD cost, N×N-intra RD

cost

11

RD cost of choosing one of the PU splitting modes for the current

CU structure, namely inter-PU modes (Skip, 2N×2N, 2N×N,
N×2N, N×N, 2N×uN, 2N×dN, lN×2N, and rN×2N), and intra-PU

modes (2N×2N and N×N)

CTU-L distortion, CTU-UL
distortion, CTU-U distortion,

CTU-UR distortion, CTU-T

distortion

5

Total distortion cost of each of the surrounding CTUs, namely
Left CTU (CTU-L), Upper Left CTU (CTU-UL), Upper CTU

(CTU-U), Upper Right CTU (CTU-UR), and the Collocated CTU

(CTU-T)

CTU-L avg. depth, CTU-UL
avg. depth, CTU-U avg. depth,

CTU-UR avg. depth, CTU-T

avg. depth

5

Average depth of all CUs in each of the surrounding CTUs,
namely Left CTU (CTU-L), Upper Left CTU (CTU-UL), Upper

CTU (CTU-U), Upper Right CTU (CTU-UR), and the Collocated

CTU (CTU-T)

CTU-L std. depth, CTU-UL std.
depth, CTU-U std. depth, CTU-

UR std. depth, CTU-T std. depth

5

Variance of all CUs in each of the surrounding CTUs, namely

Left CTU (CTU-L), Upper Left CTU (CTU-UL), Upper CTU

(CTU-U), Upper Right CTU (CTU-UR), and the Collocated CTU
(CTU-T)

CTU-L avg. List0-x, CTU-L

avg. List0-y, CTU-L std. List0-

x, CTU-L std. List0-y, CTU-L
avg. List1-x, CTU-L avg. List1-

y, CTU-L std. List1-x, CTU-L

std. List1-y

8

Average and variance of MV information in Left CTU (CTU-L)

for both horizontal and vertical directions using the reference

picture lists (List0 and List1)

CTU-UL avg. List0-x, CTU-UL

avg. List0-y, CTU-UL std.

List0-x, CTU-UL std. List0-y,
CTU-UL avg. List1-x, CTU-UL

avg. List1-y, CTU-UL std.

List1-x, CTU-UL std. List1-y

8

Average and variance of MV information in Upper Left CTU

(CTU-UL) for both horizontal and vertical directions using the

reference picture lists (List0 and List1)

CTU-U avg. List0-x, CTU-U

avg. List0-y, CTU-U std. List0-

x, CTU-U std. List0-y, CTU-U
avg. List1-x, CTU-U avg. List1-

y, CTU-U std. List1-x, CTU-U

std. List1-y

8

Average and variance of MV information in Upper CTU (CTU-U)

for both horizontal and vertical directions using the reference

picture lists (List0 and List1)

CTU-UR avg. List0-x, CTU-UR
avg. List0-y, CTU-UR std.

List0-x, CTU-UR std. List0-y,

CTU-UR avg. List1-x, CTU-UR
avg. List1-y, CTU-UR std.

List1-x, CTU-UR std. List1-y

8
Average and variance of MV information in Upper Right CTU
(CTU-UR) for both horizontal and vertical directions using the

reference picture lists (List0 and List1)

CTU-T avg. List0-x, CTU-T

avg. List0-y, CTU-T std. List0-

x, CTU-T std. List0-y, CTU-T

avg. List1-x, CTU-T avg. List1-
y, CTU-T std. List1-x, CTU-T

std. List1-y

8
Average and variance of MV information in the Collocated CTU
(CTU-T) for both horizontal and vertical directions using the

reference picture lists (List0 and List1)

Merge flag 1
Merge flag status, indicating if a CU has been predicted using

MSM PU mode

Skip flag 1
Skip flag status, indicating if a CU has been predicted using Skip

PU mode

51

The result of the dimensionality reduction algorithm is three sets of indices

corresponding to the retained feature variables, one set per each coding depth level. It

is important to take note that these indices were also used to reduce the dimensionality

of FVs during the testing phase. Since a video-dependent approach is used in this work,

the number of retained FVs achieved when using a feature selection algorithm or the

projection dimensions selected when using a feature extraction algorithm can vary from

one video sequence to the other.

One of the dimensionality reduction approaches utilized is based on the feature

importance option provided by the usage of a random forest. At the beginning, a random

forest of 100 trees is grown, where the maximum number of decision splits or branch

nodes is set to be the initial set of 70 features. The training dataset is sampled for each

decision tree with replacement and the feature variables selected at random for each

decision split are chosen without replacement within the same decision tree. The

importance of each of these features in predicting the correct classification of a test

instance from the OOB data is computed and used to select the features whose raw

importance score makes up 80% of the total importance score. The OOB data is the set

of instances that were left out during the training process of a given tree in the random

forest.

The second feature selection approach used is stepwise regression, whose

operation is explained in Chapter 2. At first, one feature variable is selected and its

correlation with the split decision is computed. Then, another feature variable is added,

whose correlation with the split decision is also computed. The significance of adding

the second feature variable is assessed at a level of significance of 0.05. If the added

feature variable is found significant, then it is retained, otherwise it is removed from

the list of variables. The algorithm revisits the features included in the retained features

list, the first feature in this case, and reassess the significance of keeping it along with

the newly added feature. The algorithm continues adding and removing feature

variables in the same manner until all variables have been examined.

The final dimensionality reduction algorithm considered is the principle

component analysis approach, which is a feature extraction algorithm. Here, an

orthogonal transformation is used to convert the features into principle components

based on maximizing the feature variance. The number of principle components

52

retained depends on the chosen PoV explained, which is 90% in this work. Again, the

PCA is applied to the training dataset at 64×64, 32×32 and 16×16 coding levels. The

resulting principle components are then stored and used for reducing the test data set.

3.3.3.2. Classification algorithms. Three different classifiers were used for

early CU decision termination. The first involves applying the J48 algorithm, which is

an implementation of C4.5 decision trees algorithm. The features proposed in [45] were

used to generate the classification models. The J48 algorithm used is the one built in

WEKA. The chosen confidence factor is 0.25, while the minimum number of instances

per leaf was selected to be 2.

The second algorithm approach proposed involves using a random forest, where

100 trees are grown and the maximal number of decision splits or branch nodes is the

square root of the number of retained feature variables. Based on the retained features,

the training dataset is sampled for each decision tree with replacement. The variables

selected at random for each decision split are then chosen within the same decision tree.

As the purpose of growing the trees is classification, only one observation or class label

can be seen per tree leaf. No pruning is applied to any of the grown trees as to avoid

worsening the classification accuracy.

The last algorithm used involves polynomial networks with second order

expansion. The Reduced Multivariate Polynomial Model with second degree of

approximation presented in Chapter 2 is used for this purpose to perform second order

polynomial classification.

3.4. Early PU Termination Scheme

The second set of algorithms implements a video sequence-dependent approach

for early PU termination, where a PU mode flag is computed at different CU depth

levels for each CTU. This PU mode flag allows the encoder to make an early decision

in terms of whether, at a given coding depth level, the PU mode is of 2N×2N

dimensionality or less. In other words, the flag indicates if the RDO process should run

to evaluate all PU modes for a specific CU or to just consider PU modes of size 2N×2N.

The PU mode flag is calculated at CU depth level 0, CU depth level 1, CU depth level

2, and CU depth level 3. As this problem is viewed as a binary classification problem,

53

the class labels considered are of the values 0 (consider PU modes of size less than

2N×2N) or 1 (consider PU modes of size 2N×2N) at a given CU depth level.

The reason for considering these two class labels is due to noticing that

regardless of the video content of a given sequence, most of the time, either Skip PU

mode, 2N×2N inter PU mode, or 2N×2N intra PU mode is chosen for any CU.

Therefore, despite having around 11 different PU modes to consider at each CU depth

level excluding CU depth level 3, only the abovementioned class labels were taken into

account. Additionally, increasing the number of classes was seen to negatively affect

the classification accuracy, leading to deteriorating the video’s quality and increasing

the bitrate consumption. Both inter-PU and intra-PU modes were considered in this

scheme.

3.4.1. Training phase. Two phases are involved in the training of the

classification model: the data extraction stage and the model training stage, as seen in

Figure 3.5. During the first phase, data collected from running the unmodified encoder

on the training sample is used, which is the first 10% of a given video sequence.

As indicated in Figure 3.5(a), at each depth level, the FVs are read, to which the

PU mode flags are appended. In other words, for 64×64 sized CUs, features and their

corresponding PU mode flags are extracted. Based on the normal operation of the

encoder, if the 64×64 CU structure was split into sub CUs for a given CTU, then

features and PU mode decision flags corresponding to the second depth level are

computed. This process is recursively repeated for 16×16 and 8×8 sized CUs for all

CTUs until all CUs in the training set have been processed.

Similar to the early CU termination algorithm, before training the models, FVs

from each class are normalized and re-sampled to be of almost equal proportions in

order to avoid data imbalance. No feature space reduction took place before generating

the classification models. The resultant of this process is a PU mode prediction model

for each of the four CU depth levels, which is used during the prediction of the testing

sample.

54

Figure 3.5: Flowchart representing the training phase for early PU termination scheme

including (a) Data collection phase and (b) Model training phase.

3.4.2. Prediction phase. After generating the PU mode prediction model, the

testing sample, i.e. 90% of a given video sequence, is used to extract the values

corresponding to the same attributes that were used in the trained model. As illustrated

in Figure 3.6, at each coding depth level, the FVs are extracted and predicted responses

are produced using the trained model. Based on the current depth level, the process is

repeated for each of the sub CU structures until all CTUs have been processed.

55

Figure 3.6: Flowchart representing the prediction phase for early PU termination

scheme.

3.4.3. Dimensionality reduction and classification algorithms. In this

approach, two different classification algorithms are taken into account. Unlike in early

CU termination, dimensionality reduction was not used. These approaches were

selected after conducting a number of experiments and were found to produce better

results in comparison. The different solutions are summarized in Table 3.3. The details

on the operation of the classification algorithms is given in Chapter 2.

56

Table 3.3: Arrangement of classification solutions for PU early termination.

3.4.3.1. Features. The features considered in the PU early termination approach

are provided and explained in Table 3.4. The total number of attributes initially

considered for this approach is 6 features. Regardless of the approach, these attributes

were used without applying any dimensionality reduction techniques.

Table 3.4: Attributes for PU early termination.

Feature/Attribute Feature count Description

Skip RD cost 1
RD cost of choosing Skip PU splitting mode for the current CU
structure

2N×2N RD cost 1
RD cost of choosing 2N×2N inter-PU splitting mode for the

current CU structure

2N×2N Intra RD cost 1
RD cost of choosing 2N×2N intra-PU splitting mode for the

current CU structure

N×N Intra RD cost 1
RD cost of choosing N×N intra-PU mode for the current CU
structure

Best RD cost 1
Lowest RD cost among Skip PU mode, 2N×2N inter-PU mode,

2N×2N intra-PU mode, and N×N intra-PU mode

Upper CU div 1 Value indicating if the CU in the upper CU depth level was split

3.4.3.2. Classification algorithms. Two different classifiers were used for early

PU decision termination. The first involves applying the J48 algorithm, which is an

implementation of C4.5 decision trees algorithm. The features proposed in [45] were

used to generate the classification models. The J48 algorithm used is the one built in

WEKA. The chosen confidence factor is 0.25, while the minimum number of instances

per leaf was selected to be 2.

The second approach proposed involves using a random forest, where 100 trees

are grown and the maximal number of decision splits or branch nodes is the square root

of the number of retained feature variables. Based on the retained features, the training

dataset is sampled for each decision tree with replacement. The variables selected at

random for each decision split are then chosen within the same decision tree. As the

purpose of growing the trees is classification, only one observation or class label can

Solution Classifier Dimensionality reduction

R.F. Random forest Not used

J48 Decision trees Not used

57

be seen per tree leaf. No pruning is applied to any of the grown trees as to avoid

worsening the classification accuracy.

3.5. Early Joint Termination Scheme

The final scheme proposed implements a video sequence-dependent approach

for both early CU and PU termination. It involves combining the aforementioned

schemes to limit the RDO process. Three approaches were selected after conducting a

number of experiments and were found to produce better results in comparison. The

different solutions are summarized in Table 3.5. Based on the targeted structures, the

operation of the selected algorithms is the same as that described in Sections 3.2 and

3.3.

Table 3.5: Arrangement of classification solutions for CU & PU early termination.

Solution Classifier Dimensionality reduction

R.F.
Random forest for CU &

PU early termination
Not used

J48
Decision trees for CU & PU

early termination
Not used

R.F. & J48

Random forest for CU early

termination & Decision
trees for PU early

termination

Not used

58

Chapter 4. Experimental Setup

This chapter summarizes the experimental setup, including the set of

configurations used to achieve the experimental results.

4.1. Testing Configurations

The proposed solutions were implemented using the HM reference software

version 13.0 [47] in order to encode the video sequences used for both training and

testing purposes. The baseline profile defined as the RA temporal configuration in the

Joint Collaborative Team on Video Coding (JCT-VC) document containing the

recommended common test conditions (CTCs) [48] was utilized to encode all the

videos, where the QP values were set to 22, 27, 32, and 37. A total of 17 video

sequences are used as reported in Table 4.1, where a mixture of 8 and 10 bit coding is

considered.

Table 4.1: Video sequences used for the early termination approaches.

Class category Video sequence
Frames

encoded
Bit depth Frame rate Resolution

Class D

RaceHorses 100 8 30 384×192

BlowingBubbles 100 8 50 384×192

BQSquare 100 8 60 384×192

BasketballPass 100 8 50 384×192

Class C

RaceHorses 100 8 30 832×448

PartyScene 100 8 50 832×448

BQMall 100 8 60 832×448

BasketballDrill 100 8 50 832×448

Class B

ParkScene 100 8 24 1920×1024

Kimono1 100 8 24 1920×1024

Cactus 100 8 50 1920×1024

BQTerrace 100 8 60 1920×1024

BasketballDrive 100 8 50 1920×1024

Class A

Traffic 100 8 30 2560×1600

PeopleOnStreet 100 8 30 2560×1600

NebutaFestival 100 10 60 2560×1600

SteamLocomotiveTrain 100 10 60 2560×1600

59

As per the JCT-VC document, the spatial resolutions that were used to obtain

the experimental results are of Class A (2560×1600), Class B (1920×1080 pixels), Class

C (832×480 pixels), and Class D (416×240 pixels). The number of frames to be

encoded were set to be 100. It is important to note that all the video sequences

underwent pre-processing, which involved cropping them such that the spatial

resolution of each is a multiple of 64. This was crucial for the suggested methodologies

to work. The experiments were conducted on a PC with an Intel Core i7-4770S,

3.10GHz CPU and a 16-GB DDR3 RAM installed. In addition to the HM software used

for encoding, the MATLAB software version 2015a [49] was used to both train a given

model and predict responses based on the data available in the testing sample. In order

to use the J48 decision trees’ implementation provided by WEKA [46], an efficient

interface built by Dr. Sunghoon Lee, an Assistant Professor in the College of

Information and Computer Science at the University of Massachusetts at Amherst, was

used, which allows using WEKA in MATLAB. All schemes were first separately

evaluated and then, a selection of them were jointly implemented.

60

Chapter 5. Results and Analysis

In this chapter, the experimental results achieved through the implementation

of the proposed schemes are presented. Furthermore, the performance evaluation of

using those solutions are discussed. All solutions are evaluated in terms of BD-rate,

BD-PSNR, excessive bitrate, CCR, model generation time and decision accuracy. The

results for each solution based on the partitioning structure it is applied to are presented

from worse to best in terms of BD-rate and BD-PSNR. Clearly, a better encoding

efficiency is acquired as the BD-rate decreases and the BD-PSNR increases. A negative

BD-rate indicates that less bits are needed during the compression process, while a

positive BD-PSNR specifies higher image quality. Furthermore, the results obtained

are analysed in detail and compared to that presented in the literature.

5.1. Performance Metrics

As previously mentioned, the compression efficiency is quantified in terms of

BD-rate and BD-PSNR, whose computation is explained at the end of Chapter 2.

Moreover, the coding time saving acquired by using the proposed solutions are

computed and compared with the corresponding times obtained by running the

unmodified HEVC encoder. Lastly, the accuracy of the proposed classification systems

is presented along with the model generation time and excessive coding bitrate.

In order to compute the encoding time savings and compare the results to that

presented in the literature, two different equations are considered. The encoding time

savings were computed after applying the predictive model generated by a proposed

solution. The first formula presents the CCR achieved by a particular algorithm, which

is given by

 𝐶𝐶𝑅 (%) =
𝑇𝑖𝑚𝑒𝑟𝑒𝑓 − 𝑇𝑖𝑚𝑒𝑝𝑟𝑜𝑝

𝑇𝑖𝑚𝑒𝑟𝑒𝑓
 × 100, (25)

where 𝑇𝑖𝑚𝑒𝑟𝑒𝑓 denotes the time taken to encode a specific video sequence using the

HEVC model encoder and 𝑇𝑖𝑚𝑒𝑝𝑟𝑜𝑝 represents the time taken to encode the same video

sequence using the HM software that utilizes the proposed solution. Using the variables

given in (25), the second time saving equation is given by

61

 ∆ 𝑇𝑖𝑚𝑒 (%) =
𝑇𝑖𝑚𝑒𝑝𝑟𝑜𝑝 − 𝑇𝑖𝑚𝑒𝑟𝑒𝑓

𝑇𝑖𝑚𝑒𝑝𝑟𝑜𝑝
 × 100. (26)

In order to compute the percentage of the time taken for a prediction model to

be generated, (27) is used. Here, the total time taken to encode a specific video sequence

using a proposed solution was added to the model generation and total prediction time.

The model generation time was divided by this summation, resulting in

 𝑇𝑖𝑚𝑒𝑚𝑜𝑑𝑒𝑙_𝑡(%) =
𝑇𝑖𝑚𝑒𝑚𝑜𝑑𝑒𝑙

𝑇𝑖𝑚𝑒𝑝𝑟𝑜𝑝 + 𝑇𝑖𝑚𝑒𝑚𝑜𝑑𝑒𝑙 + 𝑇𝑖𝑚𝑒𝑝𝑟𝑒𝑑
 × 100, (27)

where 𝑇𝑖𝑚𝑒𝑚𝑜𝑑𝑒𝑙 denotes the model generation time, 𝑇𝑖𝑚𝑒𝑝𝑟𝑒𝑑 the total prediction

time and 𝑇𝑖𝑚𝑒𝑝𝑟𝑜𝑝 the time taken to encode a video sequence using the proposed

solution.

5.2. Experimental Results

As mentioned in Chapter 4, a number of schemes were proposed with the aim

of optimizing the HEVC encoding process. The first five algorithms, whose results are

presented, utilize the coding tree to enhance the encoding process. These algorithms

involve using J48 decision trees, random forests and a second order polynomial

classifier along with different dimensionality reduction techniques. The second set of

algorithms improves the coding efficiency by applying J48 decision trees and random

forests algorithms on PUs. The last solution proposed combines both approaches, which

led to using decision trees and random forests to generate three early termination

algorithms for both CUs and PUs.

5.2.1. CU early termination algorithms. The results obtained by

implementing a set of five machine learning algorithms to enhance the CU size

selection are illustrated. These results are given in terms of BD-rate, BD-PSNR,

excessive bitrate, computation complexity savings, model generation time, feature

selection or extraction, and decision accuracy.

5.2.1.1. PCA with PoV of 90% and second order polynomial classifier. Tables

5.1 and 5.2 show the time savings and excessive bitrate per each QP for each of the test

sequences acquired after applying PCA with PoV of 90% to select principal

components to be used by the second order polynomial classifier, respectively. As the

62

QP value increases, it is observed that, on average, less coding bits and time are needed

to encode a given video sequence.

Table 5.1: Time savings results per each QP using PCA with PoV of 90% and second

order polynomial classifier for early CU termination.

Video Sequence
22 27 32 37

CCR

(%)

∆Time

(%)

CCR

(%)

∆Time

(%)

CCR

(%)

∆Time

(%)

CCR

(%)

∆Time

(%)

RaceHorses (384×192) 14.7 -17.3 16.3 -19.4 17.9 -21.8 22.5 -29.0

BlowingBubbles (384×192) 23.5 -30.7 21.9 -28.0 36.4 -57.2 42.9 -75.1

BQSquare (384×192) 20.9 -26.4 33.3 -49.8 42.9 -75.2 50.8 -103.2

BasketballPass (384×192) 20.7 -26.1 30.5 -43.9 34.0 -51.6 41.1 -69.7

RaceHorses (832×448) 24.9 -33.2 19.8 -24.7 28.7 -40.2 38.0 -61.2

PartyScene (832×448) 19.8 -24.7 27.1 -37.3 36.5 -57.5 43.6 -77.3

BQMall (832×448) 23.7 -31.1 28.1 -39.1 35.5 -55.1 41.2 -70.1

BasketballDrill (832×448) 30.0 -42.9 33.5 -50.3 39.9 -66.3 48.5 -94.1

ParkScene (1920×1024) 28.6 -40.0 41.1 -69.9 51.0 -104.1 57.2 -133.4

Kimono1 (1920×1024) 34.0 -51.4 41.6 -71.3 45.6 -83.7 49.6 -98.2

Cactus (1920×1024) 26.9 -36.8 41.1 -69.8 45.4 -83.2 53.6 -115.6

BQTerrace (1920×1024) 24.1 -31.7 43.1 -75.8 58.9 -143.5 63.9 -177.1

BasketballDrive (1920×1024) 20.7 -26.1 37.9 -61.1 42.9 -75.2 50.7 -102.9

Traffic (2560×1600) 34.8 -53.4 44.3 -79.5 51.4 -105.8 58.7 -142.3

PeopleOnStreet (2560×1600) 25.5 -34.2 25.0 -33.2 23.1 -30.0 33.5 -50.4

NebutaFestival (2560×1600) 53.0 -112.6 45.8 -84.6 36.0 -56.3 54.3 -118.9

SteamLocomotiveTrain (2560×1600) 46.0 -85.1 48.2 -93.2 57.6 -135.9 63.3 -172.4

Average 27.7 -41.4 34.0 -54.8 40.2 -73.1 47.8 -99.5

Table 5.2: Excessive bitrate results per each QP using PCA with PoV of 90% and

second order polynomial classifier for early CU termination.

Video Sequence
Excessive Bitrate (%)

QP = 22 QP = 27 QP = 32 QP = 37

RaceHorses (384×192) 1.06 0.43 -0.05 -0.44

BlowingBubbles (384×192) 0.25 -0.18 -0.39 -0.40

BQSquare (384×192) -0.19 -0.41 -0.52 -0.15

BasketballPass (384×192) 0.56 1.47 0.22 0.98

RaceHorses (832×448) 1.07 0.27 0.99 0.33

PartyScene (832×448) 0.64 0.22 -0.07 -0.50

BQMall (832×448) 0.52 0.70 0.36 0.38

BasketballDrill (832×448) 1.01 0.74 0.53 0.61

ParkScene (1920×1024) 0.27 -0.09 -0.38 -0.47

Kimono1 (1920×1024) 0.15 0.35 0.06 -0.01

Cactus (1920×1024) -0.17 -0.02 0.20 -0.07

BQTerrace (1920×1024) -0.25 -0.72 -0.84 -0.93

BasketballDrive (1920×1024) -0.38 0.14 0.29 0.37

Traffic (2560×1600) -0.16 0.06 0.11 -0.26

PeopleOnStreet (2560×1600) 2.71 1.89 2.16 0.29

NebutaFestival (2560×1600) 0.04 0.28 -0.05 -0.09

SteamLocomo-tiveTrain

(2560×1600)
0.09 -0.22 0.02 -0.25

Average 0.42 0.29 0.16 -0.04

63

Overall, a CCR of 37.5% is attained at the cost of introducing performance

losses of 1.355% and -0.053 dB in terms BD-rate and BD-PSNR, respectively. The

results imply that, as the spatial resolution increases, more complexity reduction is

accomplished. These results can be observed in Table 5.3.

Table 5.3: BD-rate, BD-PSNR, avg. excessive bitrate, and time savings results using

PCA with PoV of 90% and second order polynomial classifier for early CU

termination.

Video Sequence
BD-rate

(%)

BD-

PSNR

(dB)

Exc.

Bitrate

(%)

CCR

(%)

∆Time

(%)

BD-

rate/CCR

(%)

RaceHorses (384×192) 1.420 -0.068 0.25 17.8 -21.9 7.959

BlowingBubbles (384×192) 0.874 -0.035 -0.18 31.2 -47.8 2.805

BQSquare (384×192) 0.751 -0.035 -0.32 37.0 -63.7 2.032

BasketballPass (384×192) 2.454 -0.112 0.81 31.6 -47.8 7.770

Average 1.375 -0.063 0.14 29.4 -45.3 5.141

RaceHorses (832×448) 2.094 -0.083 0.67 27.8 -39.8 7.522

PartyScene (832×448) 1.452 -0.067 0.07 31.8 -49.2 4.570

BQMall (832×448) 1.835 -0.076 0.49 32.1 -48.8 5.712

BasketballDrill (832×448) 1.739 -0.071 0.72 38.0 -63.4 4.580

Average 1.780 -0.074 0.49 32.4 -50.3 5.596

ParkScene (1920×1024) 1.293 -0.041 -0.17 44.5 -86.8 2.908

Kimono1 (1920×1024) 0.761 -0.025 0.14 42.7 -76.2 1.783

Cactus (1920×1024) 1.103 -0.024 -0.02 41.8 -76.4 2.641

BQTerrace (1920×1024) 0.906 -0.017 -0.69 47.5 -107.0 1.906

BasketballDrive (1920×1024) 1.169 -0.026 0.11 38.1 -66.3 3.072

Average 1.046 -0.027 -0.13 42.9 -82.5 2.462

Traffic (2560×1600) 1.516 -0.052 -0.06 47.3 -95.2 3.205

PeopleOnStreet (2560×1600) 3.724 -0.161 1.76 26.8 -37.0 13.919

NebutaFestival (2560×1600) 0.041 0.000 0.05 47.3 -93.1 0.087

SteamLocomotiveTrain

(2560×1600)
-0.094 0.000 -0.09 53.8 -121.6 -0.174

Average 1.297 -0.053 0.41 43.8 -86.7 4.259

Overall Average 1.355 -0.053 0.208 37.5 -67.2 4.253

Table 5.4 summarizes the percentage of the time taken for the prediction model

to be generated. This information is important as the proposed solution is a sequence-

dependent one. The number of principal components retained when using PCA with a

PoV value of 90% is given in Table 5.5. This information is not easy to interpret in

comparison to simply selecting features. The reason behind this is that a principal

component can be seen as the combination of different features selected with the aim

of maximizing the feature variance. On average, 26 principal components are selected

on which a data sample is projected.

64

Table 5.4: Model generation time to encoding time using modified encoder ratios

using PCA with PoV of 90% and second order polynomial classifier for early CU

termination.

Video Sequence
𝑻𝒊𝒎𝒆𝒎𝒐𝒅𝒆𝒍_𝒕 (%)

QP = 22 QP = 27 QP = 32 QP = 37

RaceHorses (384×192) 0.07 0.10 0.09 0.09

BlowingBubbles (384×192) 0.05 0.06 0.07 0.11

BQSquare (384×192) 0.04 0.07 0.10 0.11

BasketballPass (384×192) 0.06 0.05 0.06 0.07

Average 0.05 0.07 0.08 0.09

RaceHorses (832×448) 0.03 0.04 0.05 0.06

PartyScene (832×448) 0.04 0.05 0.07 0.08

BQMall (832×448) 0.04 0.06 0.07 0.07

BasketballDrill (832×448) 0.04 0.05 0.07 0.08

Average 0.04 0.05 0.07 0.07

ParkScene (1920×1024) 0.06 0.07 0.09 0.13

Kimono1 (1920×1024) 0.04 0.07 0.07 0.08

Cactus (1920×1024) 0.06 0.07 0.08 0.11

BQTerrace (1920×1024) 0.06 0.10 0.13 0.15

BasketballDrive (1920×1024) 0.05 0.06 0.07 0.09

Average 0.05 0.07 0.09 0.11

Traffic (2560×1600) 0.21 5.10 11.90 0.20

PeopleOnStreet (2560×1600) 4.15 5.74 4.94 7.34

NebutaFestival (2560×1600) 2.83 0.06 6.51 12.17

SteamLocomotiveTrain (2560×1600) 4.38 7.15 8.89 0.60

Average 2.90 4.51 8.06 5.08

Overall Average 0.718 1.112 1.956 1.267

Table 5.5: Retained principal components per CU size using PCA with PoV of 90%

and second order polynomial classifier for early CU termination.

Video Sequence 64×64 32×32 16×16

RaceHorses (384×192) 8 24 25

BlowingBubbles (384×192) 20 26 26

BQSquare (384×192) 20 22 22

BasketballPass (384×192) 19 20 21

Average 16 23 23

RaceHorses (832×448) 19 30 30

PartyScene (832×448) 29 30 30

BQMall (832×448) 27 29 29

BasketballDrill (832×448) 24 24 25

Average 24 28 28

ParkScene (1920×1024) 29 31 31

Kimono1 (1920×1024) 29 29 27

Cactus (1920×1024) 27 28 29

BQTerrace (1920×1024) 31 31 32

BasketballDrive (1920×1024) 29 29 29

Average 29 29 29

Traffic (2560×1600) 22 23 24

PeopleOnStreet (2560×1600) 30 34 34

NebutaFestival (2560×1600) 29 30 31

SteamLocomotiveTrain (2560×1600) 28 29 30

Average 27 29 29

Overall Average 24 27 27

65

The decision accuracies achieved by using the proposed algorithm can be seen

in Table 5.6. It is important to understand that the resultant CU size predictions are not

used blindly by the modified encoder. Some checking mechanism takes place by the

encoder when the predicted CU split flag indicates that split should take place at a given

coding depth. A classification rate of around 83.0% is achieved by the proposed

scheme.

Table 5.6: Classification rates per each CU size using PCA with PoV of 90% and

second order polynomial classifier for early CU termination.

Video Sequence 64×64 32×32 16×16 True Overall

RaceHorses (384×192) 51.5 72.8 74.0 75.0

BlowingBubbles (384×192) 65.0 80.6 83.0 82.4

BQSquare (384×192) 76.4 87.2 87.4 86.5

BasketballPass (384×192) 81.4 83.5 83.0 82.9

Average 68.5 81.0 81.8 81.7

RaceHorses (832×448) 75.6 75.6 80.2 80.2

PartyScene (832×448) 86.2 85.3 85.7 85.1

BQMall (832×448) 86.8 80.9 81.0 80.5

BasketballDrill (832×448) 83.1 84.6 86.0 85.0

Average 82.9 81.6 83.2 82.7

ParkScene (1920×1024) 84.6 85.5 88.1 86.2

Kimono1 (1920×1024) 72.6 74.7 71.5 77.3

Cactus (1920×1024) 86.4 84.4 84.5 83.9

BQTerrace (1920×1024) 87.0 87.4 89.0 87.6

BasketballDrive (1920×1024) 84.7 81.5 80.9 80.3

Average 83.0 82.7 82.8 83.0

Traffic (2560×1600) 84.8 87.9 90.5 88.7

PeopleOnStreet (2560×1600) 88.1 79.6 78.7 79.2

NebutaFestival (2560×1600) 60.2 74.8 82.9 82.1

SteamLocomotiveTrain (2560×1600) 79.8 86.4 88.0 88.0

Average 78.2 82.2 85.0 84.5

Overall Average 78.5 81.9 83.2 83.0

5.2.1.2. Stepwise regression and second order polynomial classifier. Tables

5.7 and 5.8 show the time savings and excessive bitrate per each QP for each of the test

sequences acquired after applying stepwise regression to select the features to be used

by the second order polynomial classifier, respectively. As the QP value increases, it is

evident that, on average, less coding bits and time are required to encode a given video

sequence. Overall, a CCR of 39.1% is attained at the cost of introducing performance

losses of 1.339% and -0.054 dB in terms BD-rate and BD-PSNR, respectively. The

results imply that, as the spatial resolution increases, more complexity reduction is

accomplished, while increasing the BD-PSNR. These results can be observed in Table

5.9.

66

Table 5.7: Time savings results per each QP using stepwise regression and second

order polynomial classifier for early CU termination.

Video Sequence
22 27 32 37

CCR

(%)

∆Time

(%)

CCR

(%)

∆Time

(%)

CCR

(%)

∆Time

(%)

CCR

(%)

∆Time

(%)

RaceHorses (384×192) 19.4 -24.1 22.4 -28.9 25.5 -34.1 33.6 -50.7

BlowingBubbles (384×192) 23.5 -30.8 30.5 -44.0 36.6 -57.8 44.3 -79.5

BQSquare (384×192) 21.1 -26.7 34.4 -52.4 43.4 -76.4 48.6 -94.4

BasketballPass (384×192) 28.9 -40.7 30.8 -44.4 37.3 -59.3 42.3 -73.3

RaceHorses (832×448) 20.3 -25.5 27.4 -37.7 33.7 -50.9 40.0 -66.8

PartyScene (832×448) 23.0 -29.9 29.3 -41.5 36.2 -56.7 41.2 -70.1

BQMall (832×448) 24.3 -32.2 34.2 -52.1 35.8 -55.7 40.1 -67.1

BasketballDrill (832×448) 36.3 -57.0 34.8 -53.4 39.8 -66.1 47.1 -88.9

ParkScene (1920×1024) 29.0 -40.8 38.8 -63.3 47.5 -90.6 57.4 -134.5

Kimono1 (1920×1024) 32.2 -47.5 40.6 -68.3 43.6 -77.2 49.8 -99.1

Cactus (1920×1024) 43.4 -76.8 37.5 -60.1 46.4 -86.6 59.2 -145.1

BQTerrace (1920×1024) 25.5 -34.2 43.3 -76.3 57.6 -135.8 62.9 -169.5

BasketballDrive (1920×1024) 28.8 -40.5 37.5 -59.9 43.7 -77.7 48.9 -95.8

Traffic (2560×1600) 36.7 -58.1 47.0 -88.7 52.5 -110.3 53.1 -113.2

PeopleOnStreet (2560×1600) 20.2 -25.2 23.9 -31.4 27.0 -36.9 43.7 -77.5

NebutaFestival (2560×1600) 54.1 -118.1 46.7 -87.5 46.2 -85.8 54.0 -117.2

SteamLocomotiveTrain (2560×1600) 46.1 -85.6 48.1 -92.6 57.5 -135.8 62.1 -163.7

Average 30.2 -46.7 35.7 -57.8 41.8 -76.1 48.7 -100.4

Table 5.8: Excessive bitrate results per each QP using stepwise regression and second

order polynomial classifier for early CU termination.

Video Sequence
Excessive Bitrate (%)

QP = 22 QP = 27 QP = 32 QP = 37

RaceHorses (384×192) 0.63 0.35 -0.60 -0.93

BlowingBubbles (384×192) -0.27 0.42 0.44 -0.47

BQSquare (384×192) -0.13 -0.25 0.48 0.19

BasketballPass (384×192) 1.98 1.86 3.02 0.08

RaceHorses (832×448) 0.69 0.05 -0.06 -0.83

PartyScene (832×448) 0.43 0.09 -0.28 -0.61

BQMall (832×448) 0.49 0.54 0.05 -0.19

BasketballDrill (832×448) 0.70 0.71 0.29 0.02

ParkScene (1920×1024) -0.30 -0.31 -0.66 -0.71

Kimono1 (1920×1024) 0.10 0.23 -0.19 -0.16

Cactus (1920×1024) -0.35 -0.06 -0.16 -0.49

BQTerrace (1920×1024) -0.50 -0.83 -0.86 -0.84

BasketballDrive (1920×1024) -0.15 0.50 0.50 0.38

Traffic (2560×1600) -0.65 -0.45 -0.50 -0.78

PeopleOnStreet (2560×1600) 0.87 0.14 0.09 -0.11

NebutaFestival (2560×1600) 0.03 0.27 0.16 -0.36

SteamLocomo-tiveTrain

(2560×1600)
0.01 -0.22 0.14 -0.09

Average 0.21 0.18 0.11 -0.35

67

Table 5.9: BD-rate, BD-PSNR, avg. excessive bitrate, and time savings results using

stepwise regression and second order polynomial classifier for early CU termination.

Video Sequence
BD-rate

(%)

BD-

PSNR

(dB)

Exc.

Bitrate

(%)

CCR

(%)

∆Time

(%)

BD-

rate/CCR

(%)

RaceHorses (384×192) 2.575 -0.124 -0.14 25.2 -34.5 10.202

BlowingBubbles (384×192) 1.840 -0.073 0.03 33.7 -53.0 5.452

BQSquare (384×192) 1.229 -0.055 0.07 36.8 -62.5 3.337

BasketballPass (384×192) 4.338 -0.211 1.74 34.8 -54.4 12.461

Average 2.495 -0.116 0.43 32.7 -51.1 7.863

RaceHorses (832×448) 1.740 -0.069 -0.04 30.4 -45.2 5.731

PartyScene (832×448) 1.036 -0.048 -0.09 32.4 -49.5 3.194

BQMall (832×448) 1.944 -0.082 0.22 33.6 -51.8 5.781

BasketballDrill (832×448) 1.585 -0.065 0.43 39.5 -66.4 4.012

Average 1.576 -0.066 0.13 34.0 -53.2 4.680

ParkScene (1920×1024) 0.828 -0.027 -0.50 43.2 -82.3 1.919

Kimono1 (1920×1024) 0.427 -0.015 -0.01 41.5 -73.0 1.028

Cactus (1920×1024) 0.806 -0.018 -0.27 46.6 -92.1 1.728

BQTerrace (1920×1024) 0.749 -0.015 -0.76 47.3 -103.9 1.583

BasketballDrive (1920×1024) 1.597 -0.035 0.31 39.7 -68.5 4.018

Average 0.881 -0.022 -0.24 43.7 -84.0 2.055

Traffic (2560×1600) 0.657 -0.023 -0.60 47.3 -92.6 1.388

PeopleOnStreet (2560×1600) 1.348 -0.060 0.25 28.7 -42.7 4.704

NebutaFestival (2560×1600) 0.105 0.000 0.03 50.2 -102.1 0.209

SteamLocomotiveTrain

(2560×1600)
-0.042 0.000 -0.04 53.4 -119.4 -0.079

Average 0.517 -0.021 -0.09 44.9 -89.2 1.556

Overall Average 1.339 -0.054 0.038 39.1 -70.2 3.922

Table 5.10: Model generation time to encoding time using modified encoder ratios

using stepwise regression and second order polynomial classifier for early CU

termination.

Video Sequence
𝑻𝒊𝒎𝒆𝒎𝒐𝒅𝒆𝒍_𝒕 (%)

QP = 22 QP = 27 QP = 32 QP = 37

RaceHorses (384×192) 0.08 0.12 0.11 0.11

BlowingBubbles (384×192) 0.20 0.08 0.11 0.11

BQSquare (384×192) 0.12 0.16 0.17 0.20

BasketballPass (384×192) 0.10 0.14 0.09 0.15

Average 0.13 0.12 0.12 0.14

RaceHorses (832×448) 0.09 0.10 0.10 0.10

PartyScene (832×448) 0.23 0.16 0.21 0.16

BQMall (832×448) 0.11 0.17 0.13 0.13

BasketballDrill (832×448) 0.10 0.08 0.13 0.09

Average 0.13 0.13 0.14 0.12

ParkScene (1920×1024) 0.15 2.23 0.24 0.26

Kimono1 (1920×1024) 0.05 0.20 0.11 0.10

Cactus (1920×1024) 0.26 0.19 0.15 0.39

BQTerrace (1920×1024) 0.34 0.16 0.27 0.43

BasketballDrive (1920×1024) 0.13 0.20 0.05 0.07

Average 0.19 0.60 0.17 0.25

Traffic (2560×1600) 1.39 0.26 1.76 0.21

PeopleOnStreet (2560×1600) 0.19 1.02 0.30 0.20

NebutaFestival (2560×1600) 0.08 0.07 0.14 0.10

SteamLocomotiveTrain (2560×1600) 0.11 0.11 0.14 0.13

Average 0.44 0.37 0.58 0.16

Overall Average 0.219 0.321 0.249 0.172

68

Table 5.10 summarizes the time percentage taken for the prediction model to be

generated. This information is important as the proposed solution is a sequence-

dependent one.

Table 5.11: Selected features per CU size using stepwise regression and second order

polynomial classifier for early CU termination.

Video Sequence 64×64 32×32 16×16

RaceHorses (384×192) 10 11 15

BlowingBubbles (384×192) 4 13 12

BQSquare (384×192) 7 17 17

BasketballPass (384×192) 9 15 13

Average 7 14 14

RaceHorses (832×448) 7 14 19

PartyScene (832×448) 14 27 28

BQMall (832×448) 14 21 22

BasketballDrill (832×448) 13 13 16

Average 12 18 21

ParkScene (1920×1024) 20 30 26

Kimono1 (1920×1024) 17 16 14

Cactus (1920×1024) 20 22 28

BQTerrace (1920×1024) 19 24 27

BasketballDrive (1920×1024) 16 18 23

Average 18 22 23

Traffic (2560×1600) 22 25 26

PeopleOnStreet (2560×1600) 17 28 31

NebutaFestival (2560×1600) 16 20 24

SteamLocomotiveTrain (2560×1600) 18 20 24

Average 18 23 26

Overall Average 14 19 21

Table 5.12: Classification rates per each CU size using stepwise regression and

second order polynomial classifier for early CU termination.

Video Sequence 64×64 32×32 16×16 True Overall

RaceHorses (384×192) 67.6 82.1 82.4 83.2

BlowingBubbles (384×192) 75.5 83.7 84.1 83.9

BQSquare (384×192) 80.6 86.4 88.7 87.1

BasketballPass (384×192) 84.6 86.2 86.3 85.7

Average 77.1 84.6 85.4 85.0

RaceHorses (832×448) 80.4 83.9 85.5 85.5

PartyScene (832×448) 89.1 87.5 87.4 86.8

BQMall (832×448) 90.1 86.8 86.1 85.7

BasketballDrill (832×448) 87.0 88.0 88.8 87.8

Average 86.6 86.6 87.0 86.5

ParkScene (1920×1024) 88.9 90.3 89.4 88.4

Kimono1 (1920×1024) 80.2 76.6 78.6 81.2

Cactus (1920×1024) 89.0 86.6 87.0 86.0

BQTerrace (1920×1024) 88.0 89.9 89.7 88.7

BasketballDrive (1920×1024) 86.3 84.1 85.5 84.5

Average 86.5 85.5 86.0 85.7

Traffic (2560×1600) 89.9 91.2 91.2 89.9

PeopleOnStreet (2560×1600) 90.3 86.7 82.8 83.7

NebutaFestival (2560×1600) 64.4 80.3 87.5 87.6

SteamLocomotiveTrain (2560×1600) 83.5 86.0 88.6 88.4

Average 82.0 86.0 87.5 87.4

Overall Average 83.2 85.7 86.4 86.1

69

The number of features retained when using stepwise regression is given in

Table 5.11. On average, 18 features are selected, which are used to determine the

dimensions over which a data sample is projected. The decision accuracies achieved by

using the proposed algorithm can be seen in Table 5.12. A classification rate of around

86.1% is attained by the proposed scheme.

5.2.1.3. J48 decision trees classifier. Table 5.13 and 5.14 show the time savings

and excessive bitrate per each QP for each of the test sequences acquired by applying

the J48 classifier, respectively. As the QP value increases, it is observed that, on

average, less coding bits and time are needed to encode a given video sequence. Overall,

a CCR of 41.2% is attained at the cost of introducing performance losses of 0.745%

and -0.029 dB in terms BD-rate and BD-PSNR, respectively. The results imply that, as

the spatial resolution increases, more complexity reduction is accomplished, while an

increase is seen in BD-rate. These results can be observed in Table 5.15.

Table 5.13: Time savings results per each QP using J48 decision trees classifier for

early CU termination.

Video Sequence
22 27 32 37

CCR

(%)

∆Time

(%)

CCR

(%)

∆Time

(%)

CCR

(%)

∆Time

(%)

CCR

(%)

∆Time

(%)

RaceHorses (384×192) 19.4 -24.1 21.8 -27.9 22.9 -29.6 35.5 -55.0

BlowingBubbles (384×192) 21.6 -27.5 34.0 -51.4 36.4 -57.3 49.6 -98.5

BQSquare (384×192) 20.6 -25.9 37.6 -60.1 48.5 -94.0 55.5 -124.6

BasketballPass (384×192) 21.1 -26.7 31.4 -45.7 33.6 -50.6 48.2 -93.3

RaceHorses (832×448) 28.7 -40.3 25.9 -35.0 34.8 -53.2 41.9 -72.2

PartyScene (832×448) 24.0 -31.6 30.1 -43.0 39.9 -66.3 47.8 -91.6

BQMall (832×448) 22.6 -29.2 33.8 -51.2 39.3 -64.7 44.7 -80.8

BasketballDrill (832×448) 32.2 -47.5 40.6 -68.3 40.6 -68.2 49.1 -96.5

ParkScene (1920×1024) 34.4 -52.4 44.2 -79.3 53.2 -113.6 63.0 -169.9

Kimono1 (1920×1024) 24.3 -32.1 33.5 -50.5 44.6 -80.4 38.9 -63.7

Cactus (1920×1024) 40.5 -67.9 41.6 -71.2 51.5 -106.0 60.9 -155.6

BQTerrace (1920×1024) 23.7 -31.1 50.6 -102.6 63.1 -170.7 67.5 -207.3

BasketballDrive (1920×1024) 35.3 -54.6 39.6 -65.5 46.5 -86.7 52.5 -110.5

Traffic (2560×1600) 36.4 -57.2 51.2 -105.1 60.2 -151.0 66.2 -196.0

PeopleOnStreet (2560×1600) 23.9 -31.4 24.6 -32.7 27.5 -38.0 38.9 -63.7

NebutaFestival (2560×1600) 61.1 -156.8 46.6 -87.1 47.6 -91.0 61.6 -160.1

SteamLocomotiveTrain (2560×1600) 44.9 -81.5 54.4 -119.2 64.3 -179.8 69.8 -231.5

Average 30.3 -48.1 37.7 -64.4 44.4 -88.3 52.4 -121.8

70

Table 5.14: Excessive bitrate results per each QP using J48 decision trees classifier

for early CU termination.

Video Sequence
Excessive Bitrate (%)

QP = 22 QP = 27 QP = 32 QP = 37

RaceHorses (384×192) 0.25 -0.04 -0.06 -0.13

BlowingBubbles (384×192) -0.42 -0.11 -0.28 -0.28

BQSquare (384×192) -0.25 -0.32 -0.54 0.22

BasketballPass (384×192) 0.02 0.14 -0.18 -0.25

RaceHorses (832×448) 0.54 0.00 -0.03 -0.31

PartyScene (832×448) 0.15 -0.07 -0.36 -0.18

BQMall (832×448) -0.15 -0.19 -0.49 -0.14

BasketballDrill (832×448) -0.01 -0.13 -0.08 -0.30

ParkScene (1920×1024) -0.28 -0.19 -0.39 -0.51

Kimono1 (1920×1024) 0.01 0.13 0.01 -0.14

Cactus (1920×1024) -0.21 -0.22 -0.12 -0.09

BQTerrace (1920×1024) -0.29 -0.43 -0.39 -0.21

BasketballDrive (1920×1024) -0.38 0.05 -0.05 0.17

Traffic (2560×1600) -0.36 -0.30 -0.11 -0.24

PeopleOnStreet (2560×1600) 0.64 0.16 0.18 0.10

NebutaFestival (2560×1600) 0.47 0.46 0.33 -0.19

SteamLocomo-tiveTrain

(2560×1600)
-0.28 -0.28 -0.33 -0.55

Average -0.03 -0.08 -0.17 -0.18

Table 5.15: BD-rate, BD-PSNR, avg. excessive bitrate, and time savings results using

J48 decision trees classifier for early CU termination.

Video Sequence
BD-rate

(%)

BD-

PSNR

(dB)

Exc.

Bitrate

(%)

CCR

(%)

∆Time

(%)

BD-

rate/CCR

(%)

RaceHorses (384×192) 2.279 -0.106 0.01 24.9 -34.2 9.154

BlowingBubbles (384×192) 1.207 -0.049 -0.27 35.4 -58.7 3.410

BQSquare (384×192) 0.568 -0.026 -0.22 40.5 -76.2 1.400

BasketballPass (384×192) 0.720 -0.036 -0.07 33.6 -54.1 2.145

Average 1.193 -0.054 -0.14 33.6 -55.8 4.027

RaceHorses (832×448) 1.772 -0.070 0.05 32.8 -50.2 5.398

PartyScene (832×448) 0.666 -0.030 -0.12 35.4 -58.1 1.880

BQMall (832×448) 0.551 -0.024 -0.24 35.1 -56.5 1.570

BasketballDrill (832×448) 0.749 -0.031 -0.13 40.6 -70.1 1.844

Average 0.935 -0.039 -0.11 36.0 -58.7 2.673

ParkScene (1920×1024) 0.348 -0.011 -0.34 48.7 -103.8 0.715

Kimono1 (1920×1024) 0.446 -0.015 0.00 35.3 -56.7 1.262

Cactus (1920×1024) 0.512 -0.010 -0.16 48.6 -100.2 1.054

BQTerrace (1920×1024) 0.558 -0.010 -0.33 51.2 -127.9 1.090

BasketballDrive (1920×1024) 0.612 -0.014 -0.05 43.5 -79.3 1.408

Average 0.495 -0.012 -0.18 45.5 -93.6 1.106

Traffic (2560×1600) 0.598 -0.020 -0.25 53.5 -127.3 1.117

PeopleOnStreet (2560×1600) 1.124 -0.050 0.27 28.7 -41.4 3.910

NebutaFestival (2560×1600) 0.306 0.000 0.27 54.2 -123.7 0.564

SteamLocomotiveTrain

(2560×1600)
-0.343 0.000 -0.36 58.4 -153.0 -0.588

Average 0.421 -0.017 -0.02 48.7 -111.4 1.251

Overall Average 0.745 -0.029 -0.115 41.2 -80.7 2.196

71

Table 5.16: Model generation time to encoding time using modified encoder ratios

using J48 decision trees classifier for early CU termination.

Video Sequence
𝑻𝒊𝒎𝒆𝒎𝒐𝒅𝒆𝒍_𝒕 (%)

QP = 22 QP = 27 QP = 32 QP = 37

RaceHorses (384×192) 0.09 0.11 0.13 0.15

BlowingBubbles (384×192) 0.10 0.15 0.15 0.18

BQSquare (384×192) 0.12 0.14 0.16 0.21

BasketballPass (384×192) 0.19 0.12 0.15 0.16

Average 0.12 0.13 0.15 0.18

RaceHorses (832×448) 0.08 0.09 0.09 0.09

PartyScene (832×448) 0.08 0.03 0.11 0.10

BQMall (832×448) 0.07 0.09 0.09 0.16

BasketballDrill (832×448) 0.08 0.10 0.10 0.10

Average 0.08 0.08 0.10 0.11

ParkScene (1920×1024) 0.12 0.64 0.23 0.83

Kimono1 (1920×1024) 0.10 1.51 0.51 0.12

Cactus (1920×1024) 0.44 0.10 0.18 1.26

BQTerrace (1920×1024) 0.27 0.63 0.33 0.29

BasketballDrive (1920×1024) 0.38 0.14 0.10 0.25

Average 0.26 0.60 0.27 0.55

Traffic (2560×1600) 0.19 0.17 0.31 0.44

PeopleOnStreet (2560×1600) 0.17 0.34 0.14 0.39

NebutaFestival (2560×1600) 0.21 0.39 0.41 0.42

SteamLocomotiveTrain (2560×1600) 0.22 0.12 0.62 0.14

Average 0.20 0.26 0.37 0.35

Overall Average 0.170 0.286 0.224 0.310

Table 5.16 summarizes the percentage of the time taken for the prediction model

to be generated. This information is important as the proposed solution is a sequence-

dependent one. The decision accuracies achieved by using the proposed algorithm can

be seen in Table 5.17. A classification rate of around 87% is attained by the proposed

scheme.

Table 5.17: Classification rates per each CU size using J48 decision trees classifier for

early CU termination.

Video Sequence 64×64 32×32 16×16 True Overall

RaceHorses (384×192) 64.3 82.7 81.7 77.1

BlowingBubbles (384×192) 79.9 82.8 83.2 84.3

BQSquare (384×192) 82.1 88.8 87.0 88.9

BasketballPass (384×192) 87.8 87.4 84.4 86.9

Average 78.5 85.4 84.1 84.3

RaceHorses (832×448) 83.5 83.6 86.0 85.8

PartyScene (832×448) 88.8 87.8 87.2 87.8

BQMall (832×448) 90.7 87.2 85.6 87.0

BasketballDrill (832×448) 87.2 87.4 87.4 88.6

Average 87.5 86.5 86.5 87.3

ParkScene (1920×1024) 89.1 90.3 89.1 90.1

Kimono1 (1920×1024) 80.3 74.2 77.4 82.3

Cactus (1920×1024) 88.2 85.7 86.7 87.8

BQTerrace (1920×1024) 87.9 89.2 88.2 89.4

BasketballDrive (1920×1024) 86.2 82.0 84.9 85.9

Average 86.3 84.3 85.3 87.1

Traffic (2560×1600) 90.0 91.2 91.8 92.2

PeopleOnStreet (2560×1600) 91.3 86.9 82.5 84.2

NebutaFestival (2560×1600) 61.7 78.7 87.1 89.1

SteamLocomotiveTrain (2560×1600) 82.0 85.8 89.8 91.1

Average 81.2 85.7 87.8 89.1

Overall Average 83.6 85.4 85.9 87.0

72

5.2.1.4. Random forest feature importance and Random forest classifier.

Tables 5.18 and 5.19 show the time savings and excessive bitrate attained per each QP

for each of the test sequences, respectively. As the QP value increases, less coding bits

and time are needed on average to encode a given video sequence. Overall, a CCR of

39.2% is attained at the cost of introducing performance losses of 0.558% and -0.022

dB in terms BD-rate and BD-PSNR, respectively. The results imply that, as the spatial

resolution increases, more complexity reduction is accomplished, while a reduction is

seen in BD-rate. These results can be observed in Table 5.20.

Table 5.18: Time savings results per each QP using random forest feature importance

and random forest classifier for early CU termination.

Video Sequence
22 27 32 37

CCR

(%)

∆Time

(%)

CCR

(%)

∆Time

(%)

CCR

(%)

∆Time

(%)

CCR

(%)

∆Time

(%)

RaceHorses (384×192) 16.3 -19.4 23.0 -29.9 25.3 -33.8 34.5 -52.5

BlowingBubbles (384×192) 20.2 -25.3 28.9 -40.6 36.2 -56.9 42.6 -74.3

BQSquare (384×192) 19.8 -24.7 30.2 -43.2 41.0 -69.5 49.9 -99.6

BasketballPass (384×192) 22.5 -29.1 26.6 -36.1 35.0 -53.7 38.4 -62.2

RaceHorses (832×448) 26.0 -35.2 26.5 -36.0 34.3 -52.2 40.0 -66.6

PartyScene (832×448) 24.8 -33.0 28.3 -39.4 35.3 -54.5 44.0 -78.5

BQMall (832×448) 24.2 -31.8 30.4 -43.6 35.2 -54.4 42.4 -73.5

BasketballDrill (832×448) 31.6 -46.2 36.3 -57.1 41.5 -71.0 47.3 -89.7

ParkScene (1920×1024) 30.2 -43.3 39.9 -66.3 49.2 -96.8 56.2 -128.5

Kimono1 (1920×1024) 40.6 -68.3 36.8 -58.2 45.1 -82.2 54.0 -117.2

Cactus (1920×1024) 28.0 -38.9 36.6 -57.7 48.7 -95.0 51.8 -107.3

BQTerrace (1920×1024) 25.2 -33.7 44.5 -80.2 59.0 -143.6 65.1 -186.3

BasketballDrive (1920×1024) 34.1 -51.8 41.4 -70.6 45.3 -82.8 49.4 -97.7

Traffic (2560×1600) 34.9 -53.6 46.7 -87.8 54.3 -118.7 59.0 -143.8

PeopleOnStreet (2560×1600) 26.9 -36.8 30.1 -43.0 26.9 -36.7 38.7 -63.1

NebutaFestival (2560×1600) 54.2 -118.2 46.4 -86.5 47.6 -91.0 58.8 -142.7

SteamLocomotiveTrain (2560×1600) 45.8 -84.4 52.4 -110.0 58.0 -138.2 64.3 -179.8

Average 29.7 -45.5 35.6 -58.0 42.2 -78.3 49.2 -103.7

Table 5.19: Excessive bitrate results per each QP using random forest feature

importance and random forest classifier for early CU termination.

Video Sequence
Excessive Bitrate (%)

QP = 22 QP = 27 QP = 32 QP = 37
RaceHorses (384×192) 0.11 -0.23 -0.32 -0.67

BlowingBubbles (384×192) -0.57 -0.48 -0.31 -0.37

BQSquare (384×192) -0.16 -0.29 -0.26 -0.12

BasketballPass (384×192) 0.14 -0.06 0.03 -0.44

RaceHorses (832×448) 0.17 -0.15 -0.31 -0.61

PartyScene (832×448) 0.15 -0.24 -0.32 -0.57

BQMall (832×448) -0.24 -0.27 -0.48 -0.40

BasketballDrill (832×448) 0.12 -0.10 -0.06 -0.46

ParkScene (1920×1024) -0.44 -0.45 -0.67 -0.81

Kimono1 (1920×1024) 0.17 0.21 -0.14 -0.06

Cactus (1920×1024) -0.39 -0.28 -0.18 -0.32

BQTerrace (1920×1024) -0.52 -0.95 -0.89 -0.53

BasketballDrive (1920×1024) -0.50 -0.11 -0.16 -0.15

Traffic (2560×1600) -0.73 -0.55 -0.45 -0.71

PeopleOnStreet (2560×1600) 0.35 0.01 0.02 -0.07

NebutaFestival (2560×1600) 0.02 0.18 0.07 -0.29

SteamLocomo-tiveTrain

(2560×1600)
-0.05 -0.31 -0.13 -0.46

Average -0.14 -0.24 -0.27 -0.41

73

Table 5.20: BD-rate, BD-PSNR, avg. excessive bitrate, and time savings results using

random forest feature importance and random forest classifier for early CU

termination.

Video Sequence
BD-rate

(%)

BD-

PSNR

(dB)

Exc.

Bitrate

(%)

CCR

(%)

∆Time

(%)

BD-

rate/CCR

(%)

RaceHorses (384×192) 1.583 -0.075 -0.28 24.8 -33.9 6.397

BlowingBubbles (384×192) 0.572 -0.023 -0.43 32.0 -49.3 1.790

BQSquare (384×192) 0.460 -0.021 -0.21 35.2 -59.3 1.306

BasketballPass (384×192) 0.334 -0.017 -0.08 30.6 -45.3 1.092

Average 0.737 -0.034 -0.25 30.6 -46.9 2.646

RaceHorses (832×448) 0.835 -0.033 -0.23 31.7 -47.5 2.635

PartyScene (832×448) 0.687 -0.032 -0.25 33.1 -51.4 2.076

BQMall (832×448) 0.484 -0.021 -0.35 33.0 -50.8 1.466

BasketballDrill (832×448) 0.520 -0.021 -0.13 39.2 -66.0 1.328

Average 0.632 -0.027 -0.24 34.2 -53.9 1.876

ParkScene (1920×1024) 0.630 -0.020 -0.59 43.9 -83.7 1.436

Kimono1 (1920×1024) 0.468 -0.016 0.05 44.1 -81.5 1.061

Cactus (1920×1024) 0.561 -0.014 -0.29 41.3 -74.7 1.359

BQTerrace (1920×1024) 0.478 -0.010 -0.72 48.4 -111.0 0.987

BasketballDrive (1920×1024) 0.458 -0.010 -0.23 42.6 -75.7 1.075

Average 0.519 -0.014 -0.36 44.1 -85.3 1.184

Traffic (2560×1600) 0.540 -0.019 -0.61 48.7 -101.0 1.108

PeopleOnStreet (2560×1600) 1.066 -0.047 0.08 30.6 -44.9 3.481

NebutaFestival (2560×1600) 0.047 0.000 0.00 51.7 -109.6 0.091

SteamLocomotiveTrain

(2560×1600)
-0.234 0.000 -0.24 55.1 -128.1 -0.424

Average 0.355 -0.017 -0.19 46.5 -95.9 1.064

Overall Average 0.558 -0.022 -0.265 39.2 -71.4 1.663

Table 5.21: Model generation time to encoding time using modified encoder ratios

using random forest feature importance and random forest classifier for early CU

termination.

Video Sequence
𝑻𝒊𝒎𝒆𝒎𝒐𝒅𝒆𝒍_𝒕 (%)

QP = 22 QP = 27 QP = 32 QP = 37

RaceHorses (384×192) 8.52 8.39 12.27 15.06

BlowingBubbles (384×192) 10.42 14.07 16.93 20.07

BQSquare (384×192) 12.93 16.62 19.99 25.17

BasketballPass (384×192) 12.25 13.98 16.68 19.20

Average 11.03 13.26 16.47 19.88

RaceHorses (832×448) 4.18 4.30 5.00 5.47

PartyScene (832×448) 4.82 5.33 6.27 7.22

BQMall (832×448) 4.50 5.14 5.51 6.10

BasketballDrill (832×448) 4.86 4.83 5.94 6.36

Average 4.59 4.90 5.68 6.29

ParkScene (1920×1024) 3.33 3.25 3.08 2.80

Kimono1 (1920×1024) 2.08 1.76 1.87 2.27

Cactus (1920×1024) 3.40 2.76 2.77 2.65

BQTerrace (1920×1024) 3.44 3.65 3.71 3.31

BasketballDrive (1920×1024) 2.23 1.90 1.84 1.93

Average 2.90 2.66 2.65 2.59

Traffic (2560×1600) 4.40 4.24 4.62 3.90

PeopleOnStreet (2560×1600) 7.40 5.24 3.87 3.96

NebutaFestival (2560×1600) 1.18 1.18 1.88 2.77

SteamLocomotiveTrain (2560×1600) 2.83 2.93 2.87 2.86

Average 3.95 3.40 3.31 3.38

Overall Average 5.459 5.857 6.771 7.712

74

Table 5.22: Selected features per CU size using random forest feature importance and

random forest classifier for early CU termination.

Video Sequence 64×64 32×32 16×16

RaceHorses (384×192) 14 11 13

BlowingBubbles (384×192) 8 13 10

BQSquare (384×192) 12 14 14

BasketballPass (384×192) 12 13 14

Average 11 12 12

RaceHorses (832×448) 9 14 14

PartyScene (832×448) 15 15 15

BQMall (832×448) 13 14 14

BasketballDrill (832×448) 14 15 13

Average 12 14 14

ParkScene (1920×1024) 15 14 14

Kimono1 (1920×1024) 15 14 14

Cactus (1920×1024) 15 15 12

BQTerrace (1920×1024) 15 15 14

BasketballDrive (1920×1024) 15 15 14

Average 15 14 13

Traffic (2560×1600) 15 15 15

PeopleOnStreet (2560×1600) 14 14 14

NebutaFestival (2560×1600) 13 13 14

SteamLocomotiveTrain (2560×1600) 15 15 14

Average 14 14 14

Overall Average 13 14 13

Table 5.21 summarizes percentage of the time taken for the prediction model to

be generated. This information is important as the proposed solution is a sequence-

dependent one. The number of features retained when using the feature importance

option accessible through the usage of the random forest algorithm is given in Table

5.22.

Table 5.23: Classification rates per each CU size using random forest feature

importance and random forest classifier for early CU termination.

Video Sequence 64×64 32×32 16×16 True Overall

RaceHorses (384×192) 79.0 83.8 83.0 83.9

BlowingBubbles (384×192) 85.1 84.7 83.7 83.9

BQSquare (384×192) 82.6 87.7 87.2 86.6

BasketballPass (384×192) 87.1 88.1 83.6 84.7

Average 83.4 86.1 84.4 84.8

RaceHorses (832×448) 85.3 84.7 86.0 86.2

PartyScene (832×448) 89.7 88.3 87.8 87.4

BQMall (832×448) 91.6 87.7 85.2 85.5

BasketballDrill (832×448) 89.1 88.9 87.7 87.4

Average 88.9 87.4 86.7 86.6

ParkScene (1920×1024) 88.4 90.6 89.7 88.9

Kimono1 (1920×1024) 80.3 77.0 82.3 83.3

Cactus (1920×1024) 89.1 86.4 88.2 88.6

BQTerrace (1920×1024) 88.1 90.1 89.6 88.9

BasketballDrive (1920×1024) 86.6 83.8 86.6 85.5

Average 86.5 85.5 87.3 87.0

Traffic (2560×1600) 89.6 91.1 91.2 90.2

PeopleOnStreet (2560×1600) 91.3 87.4 83.4 84.4

NebutaFestival (2560×1600) 64.0 80.5 88.3 89.0

SteamLocomotiveTrain (2560×1600) 82.7 87.0 90.7 90.0

Average 81.9 86.5 88.4 88.4

Overall Average 85.3 86.3 86.7 86.7

75

On average, 14 features are selected, which are used to determine the

dimensions over which a data sample is projected. The decision accuracies achieved by

using the proposed algorithm can be seen in Table 5.23. A classification rate of around

86.7% is attained by the proposed scheme.

5.2.1.5. Random forest classifier. Tables 5.24 and 5.25 show the time savings

and excessive bitrate per each QP for each of the test sequences that are acquired by

applying the random forest classifier, respectively. As the QP value increases, it is

observed that, on average, less coding bits and time are required to encode a given video

sequence. Overall, a CCR of 38.9% is attained at the cost of introducing performance

losses of 0.539% and -0.021 dB in terms BD-rate and BD-PSNR, respectively. The

results imply that, as the spatial resolution increases, more complexity reduction is

accomplished, while a reduction is seen in BD-rate. These results can be observed in

Table 5.26.

Table 5.24: Time savings results per each QP using random forest classifier for early

CU termination.

Video Sequence
22 27 32 37

CCR

(%)

∆Time

(%)

CCR

(%)

∆Time

(%)

CCR

(%)

∆Time

(%)

CCR

(%)

∆Time

(%)

RaceHorses (384×192) 20.0 -25.1 21.6 -27.5 25.4 -34.0 34.1 -51.8

BlowingBubbles (384×192) 21.9 -28.0 28.7 -40.2 34.3 -52.2 42.2 -73.0

BQSquare (384×192) 18.0 -22.0 32.6 -48.4 42.0 -72.4 50.1 -100.1

BasketballPass (384×192) 24.3 -32.0 28.7 -40.2 35.5 -55.0 39.5 -65.4

RaceHorses (832×448) 25.4 -34.0 27.6 -38.1 32.6 -48.3 38.6 -62.8

PartyScene (832×448) 24.5 -32.4 26.1 -35.3 38.3 -62.1 44.7 -80.9

BQMall (832×448) 22.8 -29.5 28.9 -40.7 36.3 -56.9 40.5 -68.1

BasketballDrill (832×448) 32.5 -48.2 35.2 -54.3 40.2 -67.3 45.8 -84.4

ParkScene (1920×1024) 29.4 -41.6 40.6 -68.5 48.0 -92.3 56.3 -129.0

Kimono1 (1920×1024) 40.0 -66.8 39.4 -64.9 40.9 -69.2 50.5 -102.2

Cactus (1920×1024) 22.2 -28.6 38.7 -63.1 42.3 -73.2 52.1 -108.7

BQTerrace (1920×1024) 31.1 -45.1 44.6 -80.4 58.1 -138.4 65.2 -187.4

BasketballDrive (1920×1024) 32.1 -47.4 38.4 -62.3 45.3 -82.8 49.4 -97.5

Traffic (2560×1600) 34.6 -52.8 47.8 -91.7 51.8 -107.5 60.7 -154.6

PeopleOnStreet (2560×1600) 21.8 -27.9 23.2 -30.2 30.0 -42.9 36.5 -57.4

NebutaFestival (2560×1600) 56.5 -129.7 50.1 -100.3 47.5 -90.3 57.4 -134.8

SteamLocomotiveTrain (2560×1600) 48.5 -94.3 53.1 -113.0 57.8 -136.8 64.3 -180.4

Average 29.7 -46.2 35.6 -58.8 41.5 -75.4 48.7 -102.3

76

Table 5.25: Excessive bitrate results per each QP using random forest classifier for

early CU termination.

Video Sequence
Excessive Bitrate (%)

QP = 22 QP = 27 QP = 32 QP = 37

RaceHorses (384×192) 0.39 -0.07 -0.36 -0.70

BlowingBubbles (384×192) -0.35 -0.28 -0.28 -0.50

BQSquare (384×192) -0.14 -0.72 -0.45 -0.05

BasketballPass (384×192) 0.11 -0.07 -0.13 0.08

RaceHorses (832×448) 0.35 -0.12 -0.32 -0.66

PartyScene (832×448) 0.09 -0.38 -0.31 -0.68

BQMall (832×448) -0.14 -0.25 -0.29 -0.57

BasketballDrill (832×448) 0.00 -0.09 -0.08 -0.47

ParkScene (1920×1024) -0.44 -0.45 -0.68 -0.85

Kimono1 (1920×1024) 0.14 0.09 -0.20 -0.20

Cactus (1920×1024) -0.37 -0.31 -0.22 -0.45

BQTerrace (1920×1024) -0.46 -0.84 -0.87 -0.56

BasketballDrive (1920×1024) -0.47 -0.12 -0.07 -0.11

Traffic (2560×1600) -0.71 -0.50 -0.50 -0.81

PeopleOnStreet (2560×1600) 0.38 0.03 0.01 -0.20

NebutaFestival (2560×1600) 0.02 0.26 0.17 -0.33

SteamLocomo-tiveTrain

(2560×1600)
-0.07 -0.27 -0.19 -0.59

Average -0.10 -0.24 -0.28 -0.45

Table 5.26: BD-rate, BD-PSNR, avg. excessive bitrate, and time savings results using

random forest classifier for early CU termination.

Video Sequence
BD-rate

(%)

BD-

PSNR

(dB)

Exc.

Bitrate

(%)

CCR

(%)

∆Time

(%)

BD-

rate/CCR

(%)

RaceHorses (384×192) 1.478 -0.071 -0.19 25.3 -34.6 5.848

BlowingBubbles (384×192) 0.525 -0.021 -0.35 31.8 -48.4 1.653

BQSquare (384×192) 0.419 -0.019 -0.34 35.7 -60.7 1.174

BasketballPass (384×192) 0.504 -0.025 0.00 32.0 -48.2 1.575

Average 0.732 -0.034 -0.22 31.2 -48.0 2.563

RaceHorses (832×448) 0.782 -0.031 -0.19 31.0 -45.8 2.520

PartyScene (832×448) 0.508 -0.024 -0.32 33.4 -52.7 1.521

BQMall (832×448) 0.384 -0.016 -0.31 32.1 -48.8 1.197

BasketballDrill (832×448) 0.581 -0.024 -0.16 38.4 -63.5 1.511

Average 0.564 -0.024 -0.25 33.7 -52.7 1.687

ParkScene (1920×1024) 0.621 -0.020 -0.61 43.6 -82.8 1.426

Kimono1 (1920×1024) 0.379 -0.013 -0.04 42.7 -75.8 0.887

Cactus (1920×1024) 0.522 -0.012 -0.34 38.8 -68.4 1.345

BQTerrace (1920×1024) 0.686 -0.013 -0.68 49.7 -112.8 1.379

BasketballDrive (1920×1024) 0.500 -0.010 -0.19 41.3 -72.5 1.211

Average 0.542 -0.014 -0.37 43.2 -82.5 1.250

Traffic (2560×1600) 0.449 -0.016 -0.63 48.7 -101.6 0.921

PeopleOnStreet (2560×1600) 0.981 -0.044 0.06 27.9 -39.6 3.519

NebutaFestival (2560×1600) 0.112 0.000 0.03 52.9 -113.8 0.212

SteamLocomotiveTrain

(2560×1600)
-0.265 0.000 -0.28 55.9 -131.1 -0.474

Average 0.319 -0.015 -0.21 46.3 -96.5 1.045

Overall Average 0.539 -0.021 -0.267 38.9 -70.7 1.613

Table 5.27 summarizes percentage of the time taken for the prediction model to

be generated. This information is important as the proposed solution is a sequence-

dependent one. The decision accuracies achieved by using the proposed algorithm can

77

be seen in Table 5.28. A classification rate of around 86.5% is attained by the proposed

scheme.

Table 5.27: Model generation time to encoding time using modified encoder ratios

using random forest classifier for early CU termination.

Video Sequence
𝑻𝒊𝒎𝒆𝒎𝒐𝒅𝒆𝒍_𝒕 (%)

QP = 22 QP = 27 QP = 32 QP = 37

RaceHorses (384×192) 13.06 12.53 18.32 22.00

BlowingBubbles (384×192) 16.88 20.84 24.44 29.05

BQSquare (384×192) 17.99 23.99 28.03 33.24

BasketballPass (384×192) 18.51 21.71 24.46 28.09

Average 16.61 19.77 23.81 28.09

RaceHorses (832×448) 6.07 6.22 7.00 7.46

PartyScene (832×448) 6.92 7.19 8.56 10.13

BQMall (832×448) 6.33 7.29 7.71 8.56

BasketballDrill (832×448) 7.03 6.95 8.06 9.19

Average 6.59 6.91 7.83 8.83

ParkScene (1920×1024) 4.82 4.60 4.25 4.03

Kimono1 (1920×1024) 2.68 2.42 2.28 2.51

Cactus (1920×1024) 4.91 4.04 4.04 3.82

BQTerrace (1920×1024) 4.95 4.74 5.21 8.84

BasketballDrive (1920×1024) 3.16 2.46 2.52 2.40

Average 4.10 3.65 3.66 4.32

Traffic (2560×1600) 5.97 4.79 4.06 3.55

PeopleOnStreet (2560×1600) 5.56 4.86 4.42 4.35

NebutaFestival (2560×1600) 0.96 1.11 1.68 2.55

SteamLocomotiveTrain (2560×1600) 2.96 2.77 2.51 2.23

Average 3.86 3.38 3.17 3.17

Overall Average 7.574 8.147 9.268 10.705

Table 5.28: Classification rates per each CU size using random forest classifier for

early CU termination.

Video Sequence 64×64 32×32 16×16 True Overall

RaceHorses (384×192) 91.1 83.8 83.2 83.9

BlowingBubbles (384×192) 84.1 84.5 84.2 83.9

BQSquare (384×192) 82.9 87.8 87.6 86.7

BasketballPass (384×192) 89.4 88.5 84.2 85.0

Average 86.9 86.1 84.8 84.9

RaceHorses (832×448) 85.8 84.6 86.0 86.0

PartyScene (832×448) 90.0 88.5 87.7 87.3

BQMall (832×448) 91.5 87.4 84.9 85.1

BasketballDrill (832×448) 89.4 89.1 87.7 87.2

Average 89.2 87.4 86.6 86.4

ParkScene (1920×1024) 89.1 90.9 89.6 88.8

Kimono1 (1920×1024) 80.5 77.7 81.5 82.6

Cactus (1920×1024) 89.4 86.7 87.3 86.4

BQTerrace (1920×1024) 88.5 90.3 89.9 89.0

BasketballDrive (1920×1024) 86.4 83.6 86.5 85.2

Average 86.8 85.8 87.0 86.4

Traffic (2560×1600) 90.3 91.2 91.3 90.2

PeopleOnStreet (2560×1600) 91.7 87.5 82.9 84.1

NebutaFestival (2560×1600) 62.9 81.1 90.0 89.5

SteamLocomotiveTrain (2560×1600) 82.5 87.0 90.5 89.7

Average 81.8 86.7 88.7 88.4

Overall Average 86.2 86.5 86.8 86.5

5.2.1.6. Summary of CU split prediction results. Tables 5.29-5.32 illustrate a

summary of the overall averages of each of the proposed early CU termination schemes.

78

Table 5.29: BD-rate, BD-PSNR, avg. excessive bitrate, and time savings results for

the proposed early CU termination algorithms.

Proposed early CU

termination

algorithms

BD-

rate

(%)

BD-

PSNR

(dB)

Exc.

Bitrate

(%)

CCR

(%)

∆Time

(%)

BD-

rate/CCR

(%)
PCA90+RM2 1.355 -0.053 0.208 37.5 -67.2 4.253

Stepwise+RM2 1.339 -0.054 0.038 39.1 -70.2 3.922

DecisionTrees 0.745 -0.029 -0.115 41.2 -80.7 2.196

RFselect+RF 0.558 -0.022 -0.265 39.2 -71.4 1.663

RF 0.539 -0.021 -0.267 38.9 -70.7 1.613

Table 5.30: Model generation time to encoding time using modified encoder ratios for

all proposed early CU termination algorithms.

Proposed early CU

termination algorithms

𝑻𝒊𝒎𝒆𝒎𝒐𝒅𝒆𝒍_𝒕 (%)

QP = 22 QP = 27 QP = 32 QP = 37

PCA90+RM2 0.718 1.112 1.956 1.267

Stepwise+RM2 0.219 0.321 0.249 0.172

DecisionTrees 0.170 0.286 0.224 0.310

RFselect+RF 5.459 5.857 6.771 7.712

RF 7.574 8.147 9.268 10.705

Table 5.31: Selected features per CU size for proposed early CU termination

algorithms that utilize feature selection.

Proposed early CU

termination algorithms
64×64 32×32 16×16

Stepwise +RM2 14 19 21

RFselect+RF 13 14 13

Table 5.32: Classification rates per each CU size for all proposed early CU

termination algorithms.

Proposed early CU

termination algorithms
64×64 32×32 16×16 True Overall

PCA90+RM2 78.5 81.9 83.2 83.0

Stepwise+RM2 83.2 85.7 86.4 86.1

DecisionTrees 83.6 85.4 85.9 87.0

RFselect+RF 85.3 86.3 86.7 86.7

RF 86.2 86.5 86.8 86.5

Based on the overall averages of these solutions, it is evident that the scheme

that utilizes the random forest approach outperforms the rest in terms of BD-rate, BD-

PSNR and excessive bitrate. Its usage resulted in a BD-rate of 0.539%, BD-PSNR of -

0.021 dB, and bitrate reduction of 0.267%. Nonetheless, this led to introducing a CCR

of 38.9%, which does not represent the highest attained time saving in comparison to

the other proposed schemes. Utilizing its predictive model led to a decision accuracy of

86.5%, which is very close to the highest overall true accuracy offered by one of the

solutions proposed, i.e. the J48 decision trees. Nonetheless, the time needed to generate

these model is significantly higher than that of other solutions. Random forest model

generation time is significantly higher due to using the entire set of initial features and

79

not applying any pruning to the built trees. Relative to the other approaches, J48

decision trees resulted in the highest CCR, the least time needed to generate the

predictive models and the highest true overall decision accuracy. However, its

performance in terms of BD-rate, BD-PSNR and excessive bitrate was average in

comparison to that of other proposed schemes. On the other hand, the least performance

enhancement was seen when combining PCA with the second order polynomial

classifier, resulting in a DB-rate of 1.355%, DB-PSNR of -0.053 dB, excessive bitrate

of 0.208%, an overall decision accuracy of 83% and a CCR of 37.5%.

5.2.2. PU early termination algorithms. The results obtained by

implementing two machine learning algorithms to enhance the PU mode selection are

presented. These results are given in terms of BD-rate, BD-PSNR, excessive bitrate,

computation complexity savings, model generation time, feature selection or extraction,

and decision accuracy.

5.2.2.1. Random forest classifier. Tables 5.33 and 5.34 show the time savings

and excessive bitrate per each QP for each of the test sequences that are acquired by

applying the random forest classifier, respectively. As the QP value increases, it is

evident that, on average, less coding bits and time are needed to encode a given video

sequence.

Table 5.33: Time savings results per each QP using random forest classifier for early

PU termination.

Video Sequence
22 27 32 37

CCR

(%)

∆Time

(%)

CCR

(%)

∆Time

(%)

CCR

(%)

∆Time

(%)

CCR

(%)

∆Time

(%)

RaceHorses (384×192) 15.2 -17.9 22.8 -29.6 31.5 -46.0 31.2 -45.3

BlowingBubbles (384×192) 16.2 -19.3 22.6 -29.3 30.3 -43.4 35.1 -54.1

BQSquare (384×192) 14.1 -16.4 28.6 -40.1 28.9 -40.6 41.2 -70.1

BasketballPass (384×192) 19.6 -24.3 25.4 -34.1 33.6 -50.7 36.1 -56.4

RaceHorses (832×448) 14.2 -16.5 32.4 -47.9 23.4 -30.6 37.9 -61.0

PartyScene (832×448) 16.7 -20.0 29.9 -42.6 30.2 -43.2 32.4 -47.9

BQMall (832×448) 17.9 -21.8 24.9 -33.2 31.2 -45.4 35.7 -55.4

BasketballDrill (832×448) 16.5 -19.7 31.3 -45.6 34.1 -51.8 38.5 -62.7

ParkScene (1920×1024) 20.9 -26.5 30.1 -43.0 29.4 -41.7 47.6 -90.7

Kimono1 (1920×1024) 21.0 -26.6 27.0 -37.0 29.6 -41.9 39.4 -64.9

Cactus (1920×1024) 14.0 -16.3 15.3 -18.1 29.1 -41.1 41.0 -69.4

BQTerrace (1920×1024) 21.9 -28.0 40.7 -68.7 41.8 -71.9 44.3 -79.4

BasketballDrive (1920×1024) 15.1 -17.7 18.8 -23.1 31.9 -46.7 36.9 -58.4

Traffic (2560×1600) 28.2 -39.3 33.7 -50.9 45.9 -84.7 46.3 -86.3

PeopleOnStreet (2560×1600) 25.6 -34.5 14.9 -17.5 28.4 -39.6 32.0 -47.1

NebutaFestival (2560×1600) 10.2 -11.3 12.7 -14.5 13.3 -15.3 57.0 -132.6

SteamLocomotiveTrain (2560×1600) 19.2 -23.8 26.7 -36.4 37.3 -59.5 52.1 -108.8

Average 18.0 -22.4 25.8 -36.0 31.2 -46.7 40.3 -70.0

80

Table 5.34: Excessive bitrate results per each QP using random forest classifier for

early PU termination.

Video Sequence
Excessive Bitrate (%)

QP = 22 QP = 27 QP = 32 QP = 37
RaceHorses (384×192) 1.02 0.86 0.54 -0.11

BlowingBubbles (384×192) 0.07 0.03 0.06 -0.14

BQSquare (384×192) -0.03 -0.14 -0.18 0.07

BasketballPass (384×192) 0.02 0.10 0.08 0.46

RaceHorses (832×448) 0.10 1.21 0.34 0.24

PartyScene (832×448) 0.31 0.34 0.11 0.16

BQMall (832×448) 0.04 -0.02 -0.23 0.11

BasketballDrill (832×448) 0.02 0.11 -0.08 -0.23

ParkScene (1920×1024) 0.00 0.07 -0.09 0.00

Kimono1 (1920×1024) 0.06 0.06 -0.02 0.18

Cactus (1920×1024) -0.12 0.08 0.01 0.12

BQTerrace (1920×1024) 0.02 -0.09 -0.11 0.09

BasketballDrive (1920×1024) 0.08 -0.05 -0.09 0.14

Traffic (2560×1600) -0.06 0.01 0.08 0.01

PeopleOnStreet (2560×1600) 0.11 0.02 0.09 -0.06

NebutaFestival (2560×1600) 0.05 0.19 0.01 0.07

SteamLocomo-tiveTrain

(2560×1600)
-0.10 -0.02 0.23 0.33

Average 0.09 0.16 0.04 0.08

Overall, a CCR of 28.8% is attained at the cost of introducing performance

losses of 0.437% and -0.264 dB in terms BD-rate and BD-PSNR, respectively. The

results imply that, as the spatial resolution increases, more complexity reduction is

accomplished, while a reduction in BD-rate and an increase in BD-PSNR is seen. These

results can be observed in Table 5.35.

Table 5.35: BD-rate, BD-PSNR, avg. excessive bitrate, and time savings results using

random forest classifier for early PU termination.

Video Sequence
BD-rate

(%)

BD-

PSNR

(dB)

Exc.

Bitrate

(%)

CCR

(%)

∆Time

(%)

BD-

rate/CCR

(%)

RaceHorses (384×192) 1.500 -0.074 0.58 25.2 -34.7 5.956

BlowingBubbles (384×192) 0.538 -0.021 0.01 26.1 -36.5 2.067

BQSquare (384×192) 0.192 -4.213 -0.07 28.2 -41.8 0.681

BasketballPass (384×192) 0.494 -0.025 0.17 28.7 -41.4 1.723

Average 0.681 -1.083 0.17 27.0 -38.6 2.607

RaceHorses (832×448) 1.381 -0.054 0.47 27.0 -39.0 5.121

PartyScene (832×448) 0.626 -0.029 0.23 27.3 -38.4 2.295

BQMall (832×448) 0.242 -0.010 -0.03 27.4 -39.0 0.882

BasketballDrill (832×448) 0.240 -0.010 -0.05 30.1 -45.0 0.797

Average 0.622 -0.026 0.16 27.9 -40.3 2.274

ParkScene (1920×1024) 0.537 -0.017 -0.01 32.0 -50.5 1.679

Kimono1 (1920×1024) 0.078 -0.003 0.07 29.2 -42.6 0.267

Cactus (1920×1024) 0.211 -0.004 0.02 24.9 -36.2 0.849

BQTerrace (1920×1024) 0.462 -0.009 -0.02 37.2 -62.0 1.243

BasketballDrive (1920×1024) 0.165 -0.003 0.02 25.6 -36.5 0.643

Average 0.291 -0.007 0.02 29.8 -45.6 0.936

Traffic (2560×1600) 0.287 -0.009 0.01 38.5 -65.3 0.745

PeopleOnStreet (2560×1600) 0.298 -0.013 0.04 25.2 -34.7 1.181

NebutaFestival (2560×1600) 0.070 0.000 0.08 23.3 -43.4 0.299

SteamLocomotiveTrain

(2560×1600)
0.108 0.000 0.11 33.8 -57.1 0.318

Average 0.191 -0.005 0.06 30.2 -50.1 0.636

Overall Average 0.437 -0.264 0.096 28.8 -43.8 1.573

81

Table 5.36 summarizes the time percentage taken for the prediction model to be

generated. This information is important as the proposed solution is a sequence-

dependent one.

Table 5.36: Model generation time to encoding time using modified encoder ratios

using random forest classifier for early PU termination.

Video Sequence
𝑻𝒊𝒎𝒆𝒎𝒐𝒅𝒆𝒍_𝒕 (%)

QP = 22 QP = 27 QP = 32 QP = 37

RaceHorses (384×192) 5.01 5.88 6.81 7.12

BlowingBubbles (384×192) 5.50 6.22 7.56 8.77

BQSquare (384×192) 5.16 6.43 7.79 9.16

BasketballPass (384×192) 5.42 6.31 7.62 8.39

Average 5.27 6.21 7.44 8.36

RaceHorses (832×448) 1.65 3.01 3.23 3.71

PartyScene (832×448) 2.15 3.18 3.23 3.19

BQMall (832×448) 2.37 2.74 3.08 3.65

BasketballDrill (832×448) 2.53 3.42 3.35 3.24

Average 2.17 3.09 3.22 3.45

ParkScene (1920×1024) 1.75 2.07 2.23 2.19

Kimono1 (1920×1024) 1.46 2.53 2.20 2.23

Cactus (1920×1024) 0.62 1.38 2.01 1.65

BQTerrace (1920×1024) 1.27 1.80 2.18 1.87

BasketballDrive (1920×1024) 1.89 1.69 1.95 1.45

Average 1.40 1.89 2.12 1.88

Traffic (2560×1600) 1.08 1.07 1.16 0.83

PeopleOnStreet (2560×1600) 0.86 0.71 0.94 0.83

NebutaFestival (2560×1600) 0.43 0.68 0.99 1.50

SteamLocomotiveTrain (2560×1600) 0.96 1.63 1.96 1.94

Average 0.83 1.02 1.26 1.27

Overall Average 7.574 8.147 9.268 10.705

The decision accuracies achieved by using the proposed algorithm can be seen

in Table 5.37. A classification rate of around 69.0% is attained by the proposed scheme.

Table 5.37: Classification rates per each CU size using random forest classifier for

early PU termination.

Video Sequence 64×64 32×32 16×16 8×8 True Overall

RaceHorses (384×192) 74.0 58.1 66.0 69.1 66.8

BlowingBubbles (384×192) 69.3 64.3 69.3 67.8 67.7

BQSquare (384×192) 72.7 65.2 69.8 73.3 70.3

BasketballPass (384×192) 72.3 71.2 75.1 73.0 72.9

Average 72.1 64.7 70.0 70.8 69.4

RaceHorses (832×448) 67.5 63.6 63.9 64.1 64.8

PartyScene (832×448) 65.6 66.2 67.4 70.1 67.3

BQMall (832×448) 74.5 70.6 71.7 68.6 71.3

BasketballDrill (832×448) 69.8 67.7 71.9 77.1 71.6

Average 69.3 67.0 68.7 70.0 68.7

ParkScene (1920×1024) 68.7 67.3 67.8 72.8 69.1

Kimono1 (1920×1024) 69.0 67.9 70.3 71.6 69.7

Cactus (1920×1024) 72.5 73.0 74.9 75.9 74.1

BQTerrace (1920×1024) 65.4 61.0 61.6 57.9 61.5

BasketballDrive (1920×1024) 66.5 64.1 66.5 69.9 66.7

Average 68.4 66.6 68.2 69.6 68.2

Traffic (2560×1600) 65.5 68.9 73.9 74.3 70.6

PeopleOnStreet (2560×1600) 72.1 73.3 74.9 75.8 74.0

NebutaFestival (2560×1600) 73.4 66.4 68.4 67.0 68.8

SteamLocomotiveTrain (2560×1600) 66.1 62.8 64.0 69.2 65.5

Average 69.3 67.8 70.3 71.5 69.7

Overall Average 69.7 66.5 69.2 70.4 69.0

82

5.2.2.2. J48 decision trees classifier. Tables 5.38 and 5.39 show the time

savings and excessive bitrate per each QP for each of the test sequences that are attained

by applying the J48 classifier, respectively. As the QP value increases, it can be seen

that less coding bits and time are needed on average to encode a given video sequence.

Overall, a CCR of 20.9% is attained at the cost of introducing performance losses of

0.248% and -0.010 dB in terms BD-rate and BD-PSNR, respectively. The results imply

that, as the spatial resolution increases, more complexity reduction is accomplished,

while a reduction is seen in BD-rate. These results can be observed in Table 5.40.

Table 5.38: Time savings results per each QP using J48 decision trees classifier for

early PU termination.

Video Sequence
22 27 32 37

CCR

(%)

∆Time

(%)

CCR

(%)

∆Time

(%)

CCR

(%)

∆Time

(%)

CCR

(%)

∆Time

(%)

RaceHorses (384×192) 15.6 -18.5 14.0 -16.3 14.2 -16.5 16.3 -19.4

BlowingBubbles (384×192) 9.0 -9.8 15.1 -17.8 21.6 -27.5 29.3 -41.4

BQSquare (384×192) 11.9 -13.5 20.8 -26.3 23.9 -31.4 33.3 -49.9

BasketballPass (384×192) 13.7 -15.9 19.7 -24.5 21.5 -27.4 30.6 -44.1

RaceHorses (832×448) 5.9 -6.2 11.8 -13.4 15.9 -18.9 18.9 -23.3

PartyScene (832×448) 9.1 -10.0 13.4 -15.5 20.5 -25.8 30.2 -43.3

BQMall (832×448) 15.1 -17.7 19.5 -24.2 24.0 -31.5 28.4 -39.6

BasketballDrill (832×448) 14.1 -16.5 20.4 -25.6 26.9 -36.9 32.8 -48.8

ParkScene (1920×1024) 13.6 -15.7 19.5 -24.3 27.0 -37.0 35.9 -55.9

Kimono1 (1920×1024) 12.4 -14.2 20.7 -26.1 20.2 -25.3 28.7 -40.2

Cactus (1920×1024) 15.7 -18.7 26.0 -35.1 33.1 -49.4 38.4 -62.4

BQTerrace (1920×1024) 10.6 -11.9 21.2 -26.9 25.3 -33.8 29.9 -42.7

BasketballDrive (1920×1024) 15.6 -18.5 13.4 -15.5 20.6 -26.0 28.2 -39.3

Traffic (2560×1600) 20.3 -25.5 27.1 -37.3 34.8 -53.3 42.0 -72.4

PeopleOnStreet (2560×1600) 8.2 -9.0 12.8 -14.6 19.3 -23.9 23.7 -31.1

NebutaFestival (2560×1600) 10.8 -12.2 9.9 -11.0 17.2 -20.8 29.6 -42.0

SteamLocomotiveTrain (2560×1600) 18.3 -22.5 18.2 -22.3 23.7 -31.1 28.9 -40.6

Average 12.9 -15.1 17.9 -22.1 22.9 -30.4 29.7 -43.3

Table 5.39: Excessive bitrate results per each QP using J48 decision trees classifier

for early PU termination.

Video Sequence
Excessive Bitrate (%)

QP = 22 QP = 27 QP = 32 QP = 37
RaceHorses (384×192) 2.60 0.94 0.24 0.31

BlowingBubbles (384×192) 0.08 -0.04 -0.27 0.03

BQSquare (384×192) 0.13 -0.18 -0.19 0.25

BasketballPass (384×192) 0.00 -0.21 0.00 -0.02

RaceHorses (832×448) 0.02 0.60 0.30 -0.27

PartyScene (832×448) 0.19 0.06 0.01 -0.12

BQMall (832×448) -0.04 -0.04 0.02 -0.04

BasketballDrill (832×448) 0.02 0.03 0.11 -0.14

ParkScene (1920×1024) 0.04 0.02 -0.15 0.12

Kimono1 (1920×1024) 0.06 0.07 0.01 0.24

Cactus (1920×1024) -0.04 -0.02 -0.10 0.05

BQTerrace (1920×1024) 0.01 0.02 0.07 0.10

BasketballDrive (1920×1024) 0.08 -0.03 0.01 0.21

Traffic (2560×1600) -0.03 0.00 -0.03 -0.04

PeopleOnStreet (2560×1600) 0.03 0.00 -0.03 -0.14

NebutaFestival (2560×1600) 0.02 0.17 -0.05 -0.15

SteamLocomo-tiveTrain

(2560×1600)
-0.04 0.09 0.14 -0.06

Average 0.18 0.09 0.01 0.02

83

Table 5.40: BD-rate, BD-PSNR, avg. excessive bitrate, and time savings results using

J48 decision trees classifier for early PU termination.

Video Sequence
BD-rate

(%)

BD-

PSNR

(dB)

Exc.

Bitrate

(%)

CCR

(%)

∆Time

(%)

BD-

rate/CCR

(%)

RaceHorses (384×192) 1.247 -0.062 1.02 15.0 -17.7 8.312

BlowingBubbles (384×192) 0.162 -0.006 -0.05 18.8 -24.1 0.864

BQSquare (384×192) 0.187 -0.008 0.00 22.5 -30.3 0.832

BasketballPass (384×192) 0.145 -0.008 -0.06 21.4 -28.0 0.678

Average 0.435 -0.021 0.23 19.4 -25.0 2.672

RaceHorses (832×448) 0.652 -0.026 0.16 13.1 -15.5 4.976

PartyScene (832×448) 0.113 -0.006 0.04 18.3 -23.6 0.618

BQMall (832×448) 0.214 -0.008 -0.03 21.7 -28.3 0.986

BasketballDrill (832×448) 0.214 -0.009 0.01 23.6 -31.9 0.908

Average 0.298 -0.012 0.04 19.2 -24.8 1.872

ParkScene (1920×1024) 0.248 -0.008 0.01 24.0 -33.2 1.033

Kimono1 (1920×1024) 0.286 -0.010 0.10 20.5 -26.5 1.395

Cactus (1920×1024) 0.133 -0.002 -0.03 28.3 -41.4 0.470

BQTerrace (1920×1024) 0.043 -0.001 0.05 21.8 -28.8 0.198

BasketballDrive (1920×1024) 0.221 -0.004 0.07 19.5 -24.8 1.135

Average 0.186 -0.005 0.04 22.8 -30.9 0.846

Traffic (2560×1600) 0.091 -0.004 -0.03 31.1 -47.1 0.293

PeopleOnStreet (2560×1600) 0.192 -0.009 -0.04 16.0 -19.6 1.200

NebutaFestival (2560×1600) 0.000 0.000 0.00 16.9 -21.5 -0.001

SteamLocomotiveTrain

(2560×1600)
0.060 0.000 0.03 22.3 -29.1 0.269

Average 0.086 -0.003 -0.01 21.6 -29.3 0.440

Overall Average 0.248 -0.010 0.074 20.9 -27.7 1.422

Table 5.41 summarizes percentage of the time taken for the prediction model to

be generated. This information is important as the proposed solution is a sequence-

dependent one.

Table 5.41: Model generation time to encoding time using modified encoder ratios

using J48 decision trees classifier for early PU termination.

Video Sequence
𝑻𝒊𝒎𝒆𝒎𝒐𝒅𝒆𝒍_𝒕 (%)

QP = 22 QP = 27 QP = 32 QP = 37

RaceHorses (384×192) 0.11 0.11 0.20 0.19

BlowingBubbles (384×192) 0.22 0.12 0.21 0.24

BQSquare (384×192) 0.11 0.15 0.21 0.25

BasketballPass (384×192) 0.12 0.13 0.13 0.23

Average 0.14 0.13 0.19 0.23

RaceHorses (832×448) 0.09 0.13 0.14 0.16

PartyScene (832×448) 0.11 0.13 0.16 0.25

BQMall (832×448) 0.13 0.13 0.19 0.21

BasketballDrill (832×448) 0.14 0.15 0.16 0.15

Average 0.12 0.14 0.16 0.19

ParkScene (1920×1024) 0.53 0.19 0.20 0.31

Kimono1 (1920×1024) 0.56 0.36 0.41 0.36

Cactus (1920×1024) 0.14 0.46 0.18 1.12

BQTerrace (1920×1024) 0.60 0.28 0.71 0.79

BasketballDrive (1920×1024) 0.34 0.93 0.40 0.87

Average 0.43 0.44 0.38 0.69

Traffic (2560×1600) 0.81 0.54 0.62 1.29

PeopleOnStreet (2560×1600) 0.46 0.49 0.97 0.87

NebutaFestival (2560×1600) 0.47 0.81 1.24 4.36

SteamLocomotiveTrain (2560×1600) 0.69 1.35 1.81 1.35

Average 0.61 0.80 1.16 1.97

Overall Average 0.331 0.380 0.467 0.765

84

The decision accuracies achieved by using the proposed algorithm can be seen

in Table 5.42. A classification rate of around 78.1% is attained by the proposed scheme.

Table 5.42: Classification rates per each CU size using J48 decision trees classifier for

early PU termination.

Video Sequence 64×64 32×32 16×16 8×8 True Overall

RaceHorses (384×192) 85.5 68.8 69.3 68.4 73.0

BlowingBubbles (384×192) 83.0 75.1 77.1 74.3 77.3

BQSquare (384×192) 79.1 77.9 80.1 76.6 78.4

BasketballPass (384×192) 81.8 79.6 82.0 79.8 80.8

Average 82.3 75.3 77.1 74.8 77.4

RaceHorses (832×448) 85.4 72.5 69.9 66.9 73.7

PartyScene (832×448) 83.8 80.9 79.7 74.7 79.8

BQMall (832×448) 87.2 80.7 82.2 78.7 82.2

BasketballDrill (832×448) 79.6 78.8 79.9 80.8 79.8

Average 84.0 78.2 77.9 75.3 78.8

ParkScene (1920×1024) 79.2 79.5 81.0 77.4 79.3

Kimono1 (1920×1024) 78.6 76.2 77.8 75.3 77.0

Cactus (1920×1024) 85.2 83.0 83.9 81.2 83.3

BQTerrace (1920×1024) 78.4 79.9 80.8 74.9 78.5

BasketballDrive (1920×1024) 76.3 75.2 74.6 73.0 74.8

Average 79.5 78.7 79.6 76.3 78.6

Traffic (2560×1600) 78.2 80.3 83.8 82.8 81.3

PeopleOnStreet (2560×1600) 86.0 79.9 76.3 73.3 78.9

NebutaFestival (2560×1600) 77.4 67.6 68.5 66.6 70.0

SteamLocomotiveTrain (2560×1600) 80.1 81.2 82.1 77.7 80.3

Average 80.4 77.3 77.7 75.1 77.6

Overall Average 81.4 77.5 78.2 75.4 78.1

5.2.2.3. Summary of PU split prediction results. Tables 5.43-5.45 illustrate a

summary of the overall averages of each of the proposed early PU termination schemes.

Table 5.43: BD-rate, BD-PSNR, avg. excessive bitrate, and time savings results for

the proposed early PU termination algorithms.

Proposed early PU

termination

algorithms

BD-

rate

(%)

BD-

PSNR

(dB)

Exc.

Bitrate

(%)

CCR

(%)

∆Time

(%)

BD-

rate/CCR

(%)
RF 0.437 -0.264 0.096 28.8 -43.8 1.573

DecisionTrees 0.248 -0.010 0.074 20.9 -27.7 1.422

Table 5.44: Model generation time to encoding time using modified encoder ratios for

all proposed early PU termination algorithms.

Proposed early PU

termination algorithms

𝐓𝐢𝐦𝐞𝐦𝐨𝐝𝐞𝐥_𝐭 (%)

QP = 22 QP = 27 QP = 32 QP = 37

RF 7.574 8.147 9.268 10.705

DecisionTrees 0.331 0.380 0.467 0.765

Table 5.45: Classification rates per each CU size for all proposed early PU

termination algorithms.

Proposed early PU

termination algorithms
64×64 32×32 16×16 8×8 True Overall

RF 69.7 66.5 69.2 70.4 69.0

DecisionTrees 81.4 77.5 78.2 75.4 87.1

85

Based on the overall averages of the proposed solutions, it is evident that the

scheme that utilizes J48 decision trees outperforms the random forest approach in terms

of almost all aspects. Its usage resulted in a BD-rate of 0.248%, BD-PSNR of -0.010

dB and excessive bitrate of 0.074%. Nonetheless, this led to introducing a CCR of

20.9%, which is lower than that demonstrated by utilizing random forests. However,

the time needed to generate the predictive model was significantly less and it displayed

a higher accuracy of 78.1%. Random forest model generation time is significantly

higher due to using the entire set of initial features and not applying any pruning to the

built trees.

5.2.3. CU and PU early termination algorithms. The results obtained by

combining the previous two approaches to enhance the CU size and PU mode selection

are displayed. These results are given in terms of BD-rate, BD-PSNR, excessive bitrate,

and computation complexity savings.

5.2.3.1. Random forest classifier for CU and PU predictions. Tables 5.46 and

5.47 show the time savings and excessive bitrate per each QP for each of the test

sequences that are acquired by applying the random forest classifier for both CU and

PU predictions, respectively. As the QP value increases, it is observed that, on average,

less coding bits and time are required to encode a given video sequence.

Table 5.46: Time savings results per each QP using random forest classifier for CU

and PU predictions.

Video Sequence
22 27 32 37

CCR

(%)

∆Time

(%)

CCR

(%)

∆Time

(%)

CCR

(%)

∆Time

(%)

CCR

(%)

∆Time

(%)

RaceHorses (384×192) 39.3 -64.8 46.3 -86.1 47.5 -90.5 54.0 -117.5

BlowingBubbles (384×192) 34.0 -51.5 45.1 -82.3 51.2 -104.9 55.0 -122.0

BQSquare (384×192) 33.1 -49.5 45.9 -84.9 53.9 -116.7 64.1 -178.3

BasketballPass (384×192) 36.0 -56.2 43.3 -76.5 51.8 -107.1 59.0 -143.7

RaceHorses (832×448) 41.1 -69.7 55.2 -123.4 53.1 -113.0 61.8 -161.9

PartyScene (832×448) 40.0 -66.5 49.2 -96.9 51.4 -105.9 55.6 -125.1

BQMall (832×448) 30.8 -44.4 45.6 -83.9 55.4 -124.0 64.0 -177.9

BasketballDrill (832×448) 41.9 -72.2 56.3 -128.8 60.9 -155.5 66.9 -201.6

ParkScene (1920×1024) 43.7 -77.7 52.9 -112.5 61.5 -160.0 77.8 -350.1

Kimono1 (1920×1024) 53.5 -115.1 57.4 -134.8 59.2 -145.3 67.1 -203.6

Cactus (1920×1024) 37.9 -60.9 53.9 -117.0 63.0 -170.2 73.5 -276.7

BQTerrace (1920×1024) 44.6 -80.6 56.6 -130.2 71.2 -247.7 81.1 -430.0

BasketballDrive (1920×1024) 50.8 -103.1 50.2 -100.6 59.5 -147.0 66.0 -194.1

Traffic (2560×1600) 51.1 -104.3 60.4 -152.4 73.7 -279.5 77.9 -351.9

PeopleOnStreet (2560×1600) 47.1 -88.9 41.2 -70.0 46.0 -85.2 58.1 -138.6

NebutaFestival (2560×1600) 62.9 -169.5 58.9 -143.4 57.4 -134.7 81.3 -434.6

SteamLocomotiveTrain (2560×1600) 61.2 -157.8 62.4 -165.9 70.4 -238.0 80.6 -416.4

Average 44.1 -84.3 51.8 -111.2 58.1 -148.5 67.3 -236.7

86

Table 5.47: Excessive bitrate results per each QP using random forest classifier for

CU and PU predictions.

Video Sequence
Excessive Bitrate (%)

QP = 22 QP = 27 QP = 32 QP = 37
RaceHorses (384×192) 4.51 4.33 2.10 0.67

BlowingBubbles (384×192) 0.82 0.72 0.62 0.08

BQSquare (384×192) 0.19 -0.14 -0.16 0.48

BasketballPass (384×192) 1.39 1.61 0.53 0.40

RaceHorses (832×448) 1.93 3.09 2.21 0.88

PartyScene (832×448) 1.25 0.82 0.58 -0.20

BQMall (832×448) 0.45 1.20 1.31 0.82

BasketballDrill (832×448) 0.56 0.72 0.59 0.15

ParkScene (1920×1024) 0.28 0.38 -0.15 -0.40

Kimono1 (1920×1024) 0.56 0.83 0.41 0.01

Cactus (1920×1024) -0.22 0.24 0.39 -0.10

BQTerrace (1920×1024) -0.19 -0.87 -0.88 -0.74

BasketballDrive (1920×1024) -0.11 0.38 0.21 0.39

Traffic (2560×1600) -0.13 0.26 0.17 -0.34

PeopleOnStreet (2560×1600) 2.24 1.59 1.73 1.45

NebutaFestival (2560×1600) 0.19 0.72 0.66 -0.33

SteamLocomo-tiveTrain

(2560×1600)
0.18 0.17 0.18 -0.34

Average 0.82 0.94 0.62 0.17

Table 5.48: BD-rate, BD-PSNR, avg. excessive bitrate, and time savings results using

random forest classifier for CU and PU predictions.

Video Sequence
BD-rate

(%)

BD-

PSNR

(dB)

Exc.

Bitrate

(%)

CCR

(%)

∆Time

(%)

BD-

rate/CCR

(%)

RaceHorses (384×192) 9.351 -0.434 2.90 46.8 -89.7 19.989

BlowingBubbles (384×192) 3.964 -0.157 0.56 46.3 -90.2 8.557

BQSquare (384×192) 1.684 -0.078 0.09 49.3 -107.4 3.419

BasketballPass (384×192) 3.426 -0.164 0.98 47.5 -95.9 7.209

Average 4.606 -0.208 1.13 47.5 -95.8 9.794

RaceHorses (832×448) 6.512 -0.251 2.03 52.8 -117.0 12.337

PartyScene (832×448) 3.028 -0.139 0.61 49.0 -98.6 6.174

BQMall (832×448) 3.363 -0.139 0.95 48.9 -107.6 6.870

BasketballDrill (832×448) 2.337 -0.095 0.51 56.5 -139.5 4.137

Average 3.810 -0.156 1.02 51.8 -115.7 7.380

ParkScene (1920×1024) 2.395 -0.076 0.03 59.0 -175.1 4.060

Kimono1 (1920×1024) 1.692 -0.055 0.45 59.3 -149.7 2.853

Cactus (1920×1024) 2.077 -0.048 0.08 57.1 -156.2 3.641

BQTerrace (1920×1024) 1.719 -0.033 -0.67 63.4 -222.1 2.712

BasketballDrive (1920×1024) 1.579 -0.035 0.22 56.6 -136.2 2.790

Average 1.892 -0.049 0.02 59.1 -167.9 3.211

Traffic (2560×1600) 2.538 -0.086 -0.01 65.7 -222.0 3.861

PeopleOnStreet (2560×1600) 4.429 -0.194 1.75 48.1 -95.7 9.211

NebutaFestival (2560×1600) 0.505 0.000 0.31 65.1 -220.5 0.775

SteamLocomotiveTrain

(2560×1600)
0.092 0.000 0.05 68.7 -244.5 0.134

Average 1.891 -0.070 0.53 61.9 -195.7 3.495

Overall Average 2.982 -0.117 0.637 55.3 -145.2 5.808

Overall, a CCR of 55.3% is attained at the cost of introducing performance

losses of 2.982% and -0.117 dB in terms BD-rate and BD-PSNR, respectively. The

results imply that, as the spatial resolution increases, more complexity reduction is

accomplished, while a reduction is seen in BD-rate. These results can be observed in

Table 5.48.

87

5.2.3.2. J48 decision trees classifier for CU and PU predictions. Tables 5.49

and 5.50 show the time savings and excessive bitrate per each QP for each of the test

sequences that are acquired by applying the J48 classifier for both CU and PU

predictions, respectively. As the QP value increases, it is observed that, on average, less

coding bits and time are needed to encode a given video sequence.

Table 5.49: Time savings results per each QP using J48 decision trees classifier for

CU and PU predictions.

Video Sequence
22 27 32 37

CCR

(%)

∆Time

(%)

CCR

(%)

∆Time

(%)

CCR

(%)

∆Time

(%)

CCR

(%)

∆Time

(%)

RaceHorses (384×192) 41.2 -69.9 33.5 -50.3 32.8 -48.8 45.2 -82.6

BlowingBubbles (384×192) 28.9 -40.6 37.2 -59.3 52.5 -110.3 58.9 -143.5

BQSquare (384×192) 30.4 -43.6 44.3 -79.5 59.9 -149.5 66.1 -195.3

BasketballPass (384×192) 33.5 -50.4 41.6 -71.3 47.6 -90.9 59.5 -147.0

RaceHorses (832×448) 33.3 -49.9 44.7 -80.8 47.4 -90.1 50.1 -100.3

PartyScene (832×448) 32.2 -47.6 38.7 -63.2 46.8 -87.9 59.0 -143.8

BQMall (832×448) 35.7 -55.5 43.7 -77.5 50.9 -103.4 60.4 -152.5

BasketballDrill (832×448) 41.8 -71.9 48.3 -93.5 54.0 -117.3 60.7 -154.5

ParkScene (1920×1024) 40.7 -68.8 52.0 -108.4 60.3 -152.1 68.3 -215.8

Kimono1 (1920×1024) 40.3 -67.6 48.3 -93.3 55.2 -123.0 59.3 -145.8

Cactus (1920×1024) 38.2 -61.8 52.8 -111.9 63.7 -175.5 67.3 -205.5

BQTerrace (1920×1024) 36.8 -58.2 56.0 -127.4 69.9 -232.0 73.6 -278.5

BasketballDrive (1920×1024) 48.1 -92.6 47.1 -89.1 54.7 -120.7 61.1 -156.7

Traffic (2560×1600) 47.6 -90.9 59.9 -149.5 69.1 -223.9 76.2 -319.9

PeopleOnStreet (2560×1600) 33.2 -49.6 33.8 -51.1 43.0 -75.5 50.5 -102.1

NebutaFestival (2560×1600) 67.3 -205.7 51.4 -105.9 52.8 -111.8 70.7 -241.0

SteamLocomotiveTrain (2560×1600) 53.5 -115.0 62.1 -163.5 71.0 -244.9 76.3 -322.4

Average 40.2 -72.9 46.8 -92.7 54.8 -132.8 62.5 -182.8

Table 5.50 Excessive bitrate results per each QP using J48 decision trees classifier for

CU and PU predictions.

Video Sequence
Excessive Bitrate (%)

QP = 22 QP = 27 QP = 32 QP = 37

RaceHorses (384×192) 5.47 2.40 0.55 0.55

BlowingBubbles (384×192) 0.11 0.17 0.20 0.20

BQSquare (384×192) 0.10 0.12 -0.01 -0.01

BasketballPass (384×192) 0.94 0.94 0.66 0.66

RaceHorses (832×448) 1.14 2.02 1.54 1.54

PartyScene (832×448) 0.68 0.40 0.01 0.01

BQMall (832×448) 0.68 0.92 0.70 0.70

BasketballDrill (832×448) 0.41 0.40 0.25 0.25

ParkScene (1920×1024) 0.01 0.07 -0.23 -0.23

Kimono1 (1920×1024) 0.34 0.54 0.38 0.38

Cactus (1920×1024) -0.15 0.16 0.22 0.22

BQTerrace (1920×1024) -0.24 -0.41 -0.29 -0.29

BasketballDrive (1920×1024) 0.03 0.30 0.27 0.27

Traffic (2560×1600) -0.08 0.12 0.19 0.19

PeopleOnStreet (2560×1600) 1.70 1.15 0.98 0.98

NebutaFestival (2560×1600) 0.61 0.75 0.30 0.30

SteamLocomo-tiveTrain

(2560×1600)
-0.22 -0.15 -0.04 -0.04

Average 0.68 0.58 0.33 0.33

88

Overall, a CCR of 51.1% is attained at the cost of introducing performance

losses of 2.189% and -0.086 dB in terms BD-rate and BD-PSNR, respectively. The

results imply that, as the spatial resolution increases, more complexity reduction is

accomplished, while a reduction is seen in BD-rate. These results can be observed in

Table 5.51.

Table 5.51: BD-rate, BD-PSNR, avg. excessive bitrate, and time savings results using

J48 decision trees classifier for CU and PU predictions.

Video Sequence
BD-rate

(%)

BD-

PSNR

(dB)

Exc.

Bitrate

(%)

CCR

(%)

∆Time

(%)

BD-

rate/CCR

(%)

RaceHorses (384×192) 6.878 -0.316 2.08 38.2 -62.9 18.026

BlowingBubbles (384×192) 2.896 -0.115 0.15 44.4 -88.4 6.526

BQSquare (384×192) 1.463 -0.067 0.06 50.2 -117.0 2.917

BasketballPass (384×192) 2.881 -0.139 0.56 45.6 -89.9 6.322

Average 3.530 -0.159 0.71 44.6 -89.6 8.448

RaceHorses (832×448) 4.908 -0.190 1.12 43.9 -80.3 11.189

PartyScene (832×448) 1.778 -0.082 0.26 44.2 -85.6 4.023

BQMall (832×448) 2.734 -0.114 0.75 47.7 -97.2 5.737

BasketballDrill (832×448) 1.607 -0.065 0.31 51.2 -109.3 3.138

Average 2.757 -0.113 0.61 46.7 -93.1 6.022

ParkScene (1920×1024) 1.312 -0.042 -0.12 55.4 -136.3 2.370

Kimono1 (1920×1024) 1.269 -0.041 0.34 50.8 -107.4 2.500

Cactus (1920×1024) 1.771 -0.039 0.09 55.5 -138.7 3.191

BQTerrace (1920×1024) 1.185 -0.022 -0.30 59.1 -174.0 2.006

BasketballDrive (1920×1024) 1.377 -0.030 0.19 52.7 -114.8 2.611

Average 1.383 -0.035 0.04 54.7 -134.2 2.536

Traffic (2560×1600) 1.798 -0.062 0.06 63.2 -196.1 2.844

PeopleOnStreet (2560×1600) 3.246 -0.143 1.15 40.1 -69.6 8.089

NebutaFestival (2560×1600) 0.328 0.000 0.29 60.5 -166.1 0.542

SteamLocomotiveTrain

(2560×1600)
-0.215 0.000 -0.27 65.7 -211.5 -0.327

Average 1.289 -0.051 0.30 57.4 -160.8 2.787

Overall Average 2.189 -0.086 0.394 51.1 -120.3 4.806

5.2.3.3. Random forest classifier for CU predictions and J48 decision trees

classifier PU predictions. Tables 5.52 and 5.53 show the time savings and excessive

bitrate per each QP for each of the test sequences that are acquired by predicting CUs

using the random forest classifier and predicting PUs using the J48 classifier,

respectively. As the QP value increases, it is observed that, less overall coding bits and

time are required to encode a given video sequence. Overall, a CCR of 50.1% is attained

at the cost of introducing performance losses of 2.007% and -0.079 dB in terms BD-

rate and BD-PSNR, respectively. The results imply that, as the spatial resolution

increases, more complexity reduction is accomplished, while reduction is seen in BD-

rate. These results can be observed in Table 5.54.

89

Table 5.52: Time savings results per each QP using random forest classifier for CU

predictions and J48 decision trees classifier PU predictions.

Video Sequence
22 27 32 37

CCR

(%)

∆Time

(%)

CCR

(%)

∆Time

(%)

CCR

(%)

∆Time

(%)

CCR

(%)

∆Time

(%)

RaceHorses (384×192) 38.1 -61.4 36.6 -57.7 34.6 -52.9 43.9 -78.1

BlowingBubbles (384×192) 28.6 -40.2 36.8 -58.2 48.1 -92.8 49.1 -96.2

BQSquare (384×192) 40.9 -69.1 44.9 -81.7 53.6 -115.3 63.4 -172.9

BasketballPass (384×192) 33.3 -49.8 39.6 -65.6 47.1 -89.1 57.4 -134.6

RaceHorses (832×448) 28.8 -40.4 42.1 -72.7 45.9 -84.9 48.8 -95.2

PartyScene (832×448) 30.6 -44.0 39.5 -65.3 46.3 -86.3 56.7 -131.1

BQMall (832×448) 35.7 -55.5 41.7 -71.4 50.0 -99.8 56.8 -131.4

BasketballDrill (832×448) 39.1 -64.2 46.6 -87.2 53.8 -116.4 61.2 -157.5

ParkScene (1920×1024) 38.6 -62.8 49.5 -98.1 58.8 -142.9 67.9 -211.7

Kimono1 (1920×1024) 50.4 -101.5 50.8 -103.2 53.7 -115.8 61.6 -160.7

Cactus (1920×1024) 37.4 -59.8 51.8 -107.5 59.7 -147.9 66.9 -202.1

BQTerrace (1920×1024) 31.2 -45.3 58.1 -138.7 70.0 -233.1 72.9 -269.4

BasketballDrive (1920×1024) 47.7 -91.3 45.4 -83.1 52.3 -109.6 58.8 -142.7

Traffic (2560×1600) 47.2 -89.5 57.6 -135.8 65.9 -193.1 73.5 -276.6

PeopleOnStreet (2560×1600) 30.5 -43.8 35.3 -54.6 42.9 -75.0 50.4 -101.6

NebutaFestival (2560×1600) 64.0 -178.1 55.0 -122.1 55.0 -122.1 70.2 -236.0

SteamLocomotiveTrain (2560×1600) 54.6 -120.5 60.1 -150.6 66.3 -196.6 73.0 -270.6

Average 39.8 -71.6 46.6 -91.4 53.2 -122.0 60.7 -168.7

Table 5.53: Excessive bitrate results per each QP using random forest classifier for

CU predictions and J48 decision trees classifier PU predictions.

Video Sequence
Excessive Bitrate (%)

QP = 22 QP = 27 QP = 32 QP = 37

RaceHorses (384×192) 5.34 2.52 0.44 -0.13

BlowingBubbles (384×192) 0.24 0.01 -0.35 -0.23

BQSquare (384×192) 0.04 -0.18 -0.36 -0.02

BasketballPass (384×192) 1.16 0.88 0.28 0.47

RaceHorses (832×448) 0.93 1.72 1.08 -0.24

PartyScene (832×448) 0.58 0.22 -0.11 -0.42

BQMall (832×448) 0.65 0.79 0.66 0.30

BasketballDrill (832×448) 0.28 0.33 0.36 -0.04

ParkScene (1920×1024) -0.11 -0.13 -0.59 -0.62

Kimono1 (1920×1024) 0.47 0.63 -0.01 -0.13

Cactus (1920×1024) -0.29 0.02 0.16 -0.22

BQTerrace (1920×1024) -0.45 -0.89 -0.81 -0.79

BasketballDrive (1920×1024) -0.08 0.19 0.11 0.10

Traffic (2560×1600) -0.37 -0.01 -0.17 -0.50

PeopleOnStreet (2560×1600) 1.38 0.99 1.06 0.64

NebutaFestival (2560×1600) 0.21 0.60 0.19 -0.54

SteamLocomo-tiveTrain

(2560×1600)
-0.05 -0.11 -0.12 -0.51

Average 0.58 0.45 0.11 -0.17

90

Table 5.54: BD-rate, BD-PSNR, avg. excessive bitrate, and time savings results using

random forest classifier for CU predictions and J48 decision trees classifier PU

predictions.

Video Sequence
BD-rate

(%)

BD-

PSNR

(dB)

Exc.

Bitrate

(%)

CCR

(%)

∆Time

(%)

BD-

rate/CCR

(%)

RaceHorses (384×192) 6.217 -0.289 2.04 38.3 -62.5 16.242

BlowingBubbles (384×192) 2.263 -0.090 -0.08 40.7 -71.9 5.566

BQSquare (384×192) 1.256 -0.058 -0.13 50.7 -109.7 2.477

BasketballPass (384×192) 2.620 -0.125 0.70 44.3 -84.8 5.910

Average 3.089 -0.141 0.63 43.5 -82.2 7.549

RaceHorses (832×448) 4.000 -0.156 0.87 41.4 -73.3 9.665

PartyScene (832×448) 1.729 -0.080 0.07 43.3 -81.7 3.995

BQMall (832×448) 2.679 -0.111 0.60 46.0 -89.5 5.821

BasketballDrill (832×448) 1.597 -0.065 0.23 50.2 -106.3 3.184

Average 2.501 -0.103 0.44 45.2 -87.7 5.666

ParkScene (1920×1024) 1.550 -0.050 -0.36 53.7 -128.9 2.886

Kimono1 (1920×1024) 1.258 -0.042 0.24 54.1 -120.3 2.324

Cactus (1920×1024) 1.690 -0.037 -0.08 54.0 -129.3 3.133

BQTerrace (1920×1024) 1.168 -0.022 -0.74 58.0 -171.6 2.012

BasketballDrive (1920×1024) 0.988 -0.021 0.08 51.0 -106.7 1.935

Average 1.331 -0.034 -0.17 54.2 -131.4 2.458

Traffic (2560×1600) 1.741 -0.059 -0.26 61.0 -173.7 2.853

PeopleOnStreet (2560×1600) 3.338 -0.147 1.02 39.8 -68.8 8.395

NebutaFestival (2560×1600) 0.200 0.000 0.12 61.1 -164.6 0.327

SteamLocomotiveTrain

(2560×1600)
-0.170 0.000 -0.20 63.5 -184.6 -0.267

Average 1.277 -0.052 0.17 56.3 -147.9 2.827

Overall Average 2.007 -0.079 0.242 50.1 -113.4 4.498

5.3. Performance Evaluation

The coding efficiency of both the individual and joint algorithms are analysed.

The proposed solutions involve algorithms applied to perform early CU size and PU

mode decisions. For RA configuration profile, the compression efficiency of each

algorithm is evaluated in terms of the complexity reduction attained at the cost of some

BD-rate and BD-PSNR losses. These are the most important metric to be considered as

they directly affect the quality of the encoded video sequence. BD-rate to CCR ratio is

also considered as it provides a good indication as to the improvement introduced by

utilizing the proposed solution. The smaller this ratio is, the more enhancement is likely

seen in the HEVC encoder.

5.3.1. Analysis of the proposed algorithms. Both Figure 5.1 and Table 5.55

present a comparison between all the proposed solutions in terms of the complexity

reduction accomplished and the corresponding compression efficiency degradation.

The table illustrates that the joint schemes combining both CU and PU early termination

approaches yield the largest CCR, ranging between 50.1% to 55.3%. The justification

91

to such large reductions can be due to trying to limit the RDO process on both CUs and

PUs, two main contributors to the massive computational complexity seen during

HEVC encoding. However, this reduction negatively impacted the RD results, leading

to BD-rate values ranging between 2% to 2.9% and BD-PSNR losses ranging between

0.079 dB and 0.117 dB. The algorithm that utilizes random forests for CU predictions

and J48 for PU predictions is observed to outperform the other joint approaches with a

BD-rate to CCR ratio of 4.5%.

Figure 5.1: A comparison between all the proposed solutions.

Table 5.55: A comparison between all the proposed solutions in terms of the CCR and

compression efficiency degradation.

Proposed early

termination algorithms

BD-rate

(%)

BD-PSNR

(dB)
CCR (%)

BD-rate/CCR

(%)

CU

RF 0.539 -0.021 38.9 1.613

RFselect+RF 0.558 -0.022 39.2 1.663

DecisionTrees 0.745 -0.029 41.2 2.196

Stepwise+RM2 1.339 -0.054 39.1 3.922

PCA90+RM2 1.355 -0.053 37.5 4.253

PU
DecisionTrees 0.248 -0.010 20.9 1.422

RF 0.437 -0.264 28.8 1.573

CU + PU

RF+DecisionTrees 2.007 -0.079 50.1 4.498

DecisionTrees 2.189 -0.086 51.1 4.806

RF 2.982 -0.117 55.3 5.808

92

As seen in the results presented in Section 5.2, high resolution videos usually

displayed huge complexity reductions. This can be attributed to the structural

characteristics of the video sequence, which usually contains large homogeneous areas,

resulting in having large CUs. Consequently, the splitting of the CU is discouraged,

which enhances the time in comparison to running the unmodified HM software.

On the other hand, the smallest CCR is seen when separately considering the

PU early termination algorithms, which led to CCR ranging between 20.9% to 28.8%.

The improvement these algorithms display depends on the motion characteristics of the

video, which might explain the reason behind the limited gain. Video sequences

containing slow-motion scenes allows the selection of MSM/Skip or 2Nx2N inter-

prediction modes. This limits the RDO process from checking other PU modes that are

likely to rarely take place. In return, this approach resulted in very small performance

degradations of 0.248% to 0.437% in terms of BD-rate and -0.010 dB to -0.264 dB in

terms of BD-PSNR. RaceHorses (384×192) mostly reflecting the worst RD efficiency

can be attributed not only to its small spatial resolution, which was further reduced

during the pre-processing of the video sequence, but also to the nature of motion seen

in the video. The algorithm that utilizes J48 for PU predictions is observed to

outperform the other approach with a BD-rate to CCR ratio of 1.4%. A CCR of 38.9%

is seen when using random forests for CU predictions with a BD-rate increase of

0.539% and BD-PSNR reduction of -0.021 dB.

Figures 5.2 and 5.3 show the RD efficiency of the three proposed schemes for

two video sequences encoded with different bitrates. The two video sequences were

chosen based on their RD efficiency results, where RaceHorses displayed the one of

the highest RD losses in comparison to other sequences and insignificant RD losses are

seen in Traffic. The curves represent the results for the unmodified reference encoder

(HM 13.0), and the best performing algorithm from each of the individual and joint

schemes. It is notified that for both video sequences, the proposed schemes present very

good results as their curves overlap with that of the original encoder. Nonetheless, when

applying the CU+PU scheme to the RaceHorses video sequence, it is observed that the

RD efficiency is not as good as that achieved by using the original encoder.

93

Figure 5.2: RD efficiency for RaceHorses (384×192) video sequence encoded with

the unmodified HM 13.0 software and three early termination schemes.

Figure 5.3: RD efficiency for Traffic (2560×1600) video sequence encoded with the

unmodified HM 13.0 software and three early termination schemes.

5.3.2. Comparison with existing work. Various related work in this field are

analysed and compared to the schemes proposed in this thesis in terms of BD-rate and

complexity reduction values. To allow a fair comparison, only those solutions that used

QPs 22, 27, 32, and 37, RA temporal configuration, and were tested on at least eight

video sequences belonging to at least four different spatial resolutions were considered.

28

30

32

34

36

38

40

0 500 1000 1500

Y-
P

SN
R

 (
d

B
)

Bitrate (kbps)

HM 13.0

CU ET

PU ET

33

34

35

36

37

38

39

40

41

42

0 5000 10000 15000

Y-
P

SN
R

 (
d

B
)

Bitrate (kbps)

HM 13.0

CU ET

PU ET

94

The BD-rate to complexity reduction ratio combines the evaluation metrics, introducing

an appropriate measure that is used to compare the proposed solutions with that of other

work. Thus, the analysis is done in terms of the RD efficiency losses encountered when

a certain amount of complexity reduction is attained. The smaller this value is, the more

computational complexity saved, the less RD efficiency loss seen, or both.

Table 5.56: Comparison with related work that use (25) to compute complexity

reduction.

Category Related Work BD-rate (%) CCR (%) BD-rate/CCR (%)

CU early termination

[31] 2.000 58.4 3.425

[36] 1.400 49.6 2.823

[38] 1.430 62.0 2.306

[46] 0.280 37.0 0.757

Proposed 0.539 38.9 1.386

PU early termination
[46] 0.560 50.0 1.120

Proposed 0.248 20.9 1.187

CU+PU early termination

[42] 0.992 59.8 1.660

[43] 1.290 65.1 1.981

[46] 1.330 63.0 2.111

Proposed 2.007 50.1 4.006

A number of related work considered used (25) to compute the CCR. The results

are illustrated in Table 5.56. These results are categorized based on the partitioning

structure it targets. The best performing proposed solution in each category is utilized

for the comparison done in this section. When it comes to the CU early termination

category, the best performing related work solution [46] produced a BD-rate/CCR ratio

of 0.757, which is smaller than the one produced by the proposed scheme. Nevertheless,

it is important to take note that the CCR achieved by the proposed scheme is slightly

higher, which resulted in the increase of the performance losses. Additionally, only 8

sequences were used in common. On the other hand, the proposed work evidently

outperforms the other solutions presented in this category. The proposed PU early

termination scheme produces a BD-rate/CCR ratio that is very similar to that seen in

[46]. The seemingly small complexity reduction seen when using the proposed

algorithm is at the cost of reducing performance losses. Unfortunately, despite the high

computational complexity introduced when using the proposed solution that combines

both the CU and PU approaches in comparison to the other proposed algorithms, the

BD-rate to CCR ratio is significantly higher than that illustrated by related work.

95

Table 5.57: Comparison with related work that use (26) to compute complexity

reduction.

Related Work BD-rate (%) ΔTime (%) BD-rate/ΔTime (%)

[30] 0.820 -37.4 2.193

[39] 0.710 -53.6 1.325

[41] 0.700 -46.7 1.499

[44] 1.540 -45.1 3.415

Proposed 0.539 -70.7 0.762

Other related work in this field used (26) to compute the reduction in time

complexity and a CU early termination approach. The comparison is presented in Table

5.57. It is evident that the proposed CU early termination solution outperforms all the

solutions presented in the table by a great margin. It is important to note that, unlike the

first set of related works presented in this section, these solutions use all the video

sequences used in this work.

96

Chapter 6. Conclusion and Future Work

In comparison to its predecessors, HEVC introduced a significant improvement

in terms of the coding efficiency, but at the cost of increasing the computational

complexity. The proposed schemes in this thesis aim to counter this computational

complexity by proposing a fast partitioning decision algorithm for CUs and a fast mode

selection for PUs using dimensionality reduction and classification techniques. A video

sequence-dependent approach was considered, where the CU split decision was treated

as a 2-class problem. Different evaluation metrics were considered to evaluate the

schemes, including the classification accuracy, BD-rate, BD-PSNR and CCR.

Experimental results illustrated that a CCR of 38.5% at the negligible cost of 0.539%

and -0.021 dB in terms of BD-rate and BD-PSNR, respectively, was achieved for the

best performing CU early termination scheme proposed. The best performing PU early

termination scheme proposed attained an overall CCR of 20.9% at the cost of a BD-

rate of 0.248% and a BD-PSNR of -0.01 dB. When jointly implemented, an overall BD-

rate increase of 2.007% and BD-PSNR decrease of 0.079 dB was observed, leading to

a CCR of 50.1%. In comparison to existing work, it was shown that the proposed

solutions are superior in terms of coding efficiency as evident in the DB-rate and DB-

PSNR results. The proposed solutions are also superior in terms of time savings when

it comes to applying the generated models to predict the CU split and PU coding modes.

In future work, the proposed algorithms can be tested in a video sequence-

independent setting. In this case, a comprehensive set of video sequences can be used

for offline training and model generation. The generated models can then be used to

optimize the encoding of any other video sequence. Likewise, for video-dependent

training models, a future work direction can focus on repeating the training whenever

a scene cut is deducted. The complexity of such solutions should be analysed carefully

as the retraining time might be significant. Additionally, this thesis only focused on

testing the proposed schemes using RA profile configuration. As future work, more test

conditions can be considered, including Low Delay with P-frames and Low Delay with

B-frames configurations. Lastly, a fast decision algorithm can be implemented for TU

structures and combined with the individual algorithms proposed in this work.

97

References

[1] G. Sullivan, J. Ohm, W. Han and T. Wiegand, “Overview of the High Efficiency

Video Coding (HEVC) Standard,” IEEE Transactions on Circuits and Systems

for Video Technology, vol. 22, no. 12, pp. 1649-1668, Sep. 2012.

[2] J. R. Ohm, G. J. Sullivan, H. Schwarz, T. K. Tan and T. Wiegand, “Comparison

of the Coding Efficiency of Video Coding Standards—Including High

Efficiency Video Coding (HEVC),” IEEE Transactions on Circuits and Systems

for Video Technology, vol. 22, no. 12, pp. 1669-1684, Dec. 2012.

[3] J. Vanne, M. Viitanen, T. D. Hamalainen, and A. Hallapuro, “Comparative

Rate-distortion-complexity Analysis of HEVC and AVC Video Codecs,” IEEE

Transactions on Circuits and Systems for Video Technology, vol. 22, no. 12, pp.

1885-1898, Dec. 2012.

[4] G. J. Sullivan and T. Wiegand, “Rate-distortion Optimization for Video

Compression,” IEEE Signal Processing Magazine, vol. 15, no. 6, pp. 74-90,

Nov. 1998.

[5] M. Wien, High Efficiency Video Coding, 1st ed. Heidelberg: Springer, 2015.

[6] T. Dutoit and F. Marques, Applied Signal Processing, 1st ed. New York:

Springer, 2009.

[7] J. McVeigh, G. K. Chen, J. Goldstein, A. Gupta, M. Keith and S. Wood, “A

Software-based Real-time MPEG-2 Video Encoder,” IEEE Transactions on

Circuits and Systems for Video Technology, vol. 10, no. 7, pp. 1178-1184, Oct.

2000.

[8] V. Sze, M. Budagavi and G. Sullivan, High Efficiency Video Coding

(HEVC):Algorithms and Architectures, 1st ed. Heidelberg: Springer, 2014.

[9] E. Alpaydın, Introduction to Machine Learning, 3rd ed. Cambridge, MA: MIT

Press, 2014.

[10] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of Machine

Learning. Cambridge, MA: MIT Press, 2012.

[11] O. Z. Maimon and L. Rokach, Data Mining and Knowledge Discovery

Handbook, 1st ed. New York: Springer, 2010.

[12] J. R. Quinlan, “Induction of Decision Trees,” Machine Learning, vol. 1, no. 1,

pp. 81-106, 1986.

[13] J. R. Quinlan, C4.5, 1st ed. San Mateo, Calif.: Morgan Kaufmann Publishers,

1993.

[14] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification and

Regression Trees. CRC press, 1984.

[15] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques, 3rd ed.

Waltham, MA: Morgan Kaufmann, 2012.

[16] J. R. Quinlan, “Improved Use of Continuous Attributes in C4.5,” Journal of

Artificial Intelligence Research, vol. 4, no. 1, pp. 77-90, Jan. 1996.

98

[17] I. H. Witten, E. Frank, and M. A. Hall, Data Mining: Practical Machine

Learning Tools and Techniques, 3rd ed. Amsterdam: Elsevier, 2011.

[18] R. E. Schapire and Y. Freund, Boosting: Foundations and Algorithms.

Cambridge, MA: MIT Press, 2014.

[19] L. Breiman, “Random Forests,” Machine Learning, vol. 45, no. 1, pp. 5-32, Jan.

2001.

[20] L. Breiman, “Bagging Predictors,” Machine Learning, vol. 24, no. 2, pp. 123-

140, Aug. 1996.

[21] C.M. Bishop, Neural Networks for Pattern Recognition. New York: Oxford

Univ. Press Inc., 1995.

[22] K. Toh, Q. Tran and D. Srinivasan, “Benchmarking a Reduced Multivariate

Polynomial Pattern Classifier,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 26, no. 6, pp. 740-755, Apr. 2004.

[23] W. Mendenhall and T. Sincich, Statistics for Engineering and the Sciences, 1st

ed. Upper Saddle River, N.J.: Pearson Prentice-Hall, 2007.

[24] G. Bjøntegaard, Calculation of Average PSNR Differences Between RD-

Curves, Technical Report VCEG-M33, ITU-T SG16/Q6, Austin, Texas, USA,

2001.

[25] Zupancic, S. G. Blasi, E. Peixoto and E. Izquierdo, “Inter-Prediction

Optimizations for Video Coding Using Adaptive Coding Unit Visiting Order,”

IEEE Transactions on Multimedia, vol. 18, no. 9, pp. 1677-1690, Sep. 2016.

[26] X. Deng, M. Xu, L. Jiang, X. Sun and Z. Wang, “Subjective-Driven Complexity

Control Approach for HEVC,” IEEE Transactions on Circuits and Systems for

Video Technology, vol. 26, no. 1, pp. 91-106, Jan. 2016.

[27] A. Jiménez-Moreno, E. Martínez-Enríquez and F. Díaz-de-María, “Complexity

Control Based on a Fast Coding Unit Decision Method in the HEVC Video

Coding Standard,” IEEE Transactions on Multimedia, vol. 18, no. 4, pp. 563-

575, Apr. 2016.

[28] W. Zhao, T. Onoye and T. Song, “Hierarchical Structure-Based Fast Mode

Decision for H.265/HEVC,” IEEE Transactions on Circuits and Systems for

Video Technology, vol. 25, no. 10, pp. 1651-1664, Oct. 2015.

[29] H. Yoo and J. Suh, “Fast Coding Unit Decision Based on Skipping of Inter and

Intra Prediction Units,” Electronics Letters, vol. 50, no. 10, pp. 750-752, Aug.

2014.

[30] J. Xiong, H. Li, F. Meng, Q. Wu and K. N. Ngan, “Fast HEVC Inter CU

Decision Based on Latent SAD Estimation,” IEEE Transactions on Multimedia,

vol. 17, no. 12, pp. 2147-2159, Dec. 2015.

[31] S. Park, “CU Encoding Depth Prediction, Early CU Splitting Termination and

Fast Mode Decision for Fast HEVC Intra-coding,” Signal Processing: Image

Communication, vol. 42, pp. 79-89, Mar. 2016.

[32] M. Radosavljević, G. Georgakarakos, S. Lafond and D. Vukobratović, “Fast

Coding Unit Selection Based on Local Texture Characteristics for HEVC Intra

99

Frame,” in 2015 IEEE Global Conference on Signal and Information

Processing (GlobalSIP), pp. 1377-1381, Orlando, FL, Dec. 2015.

[33] K. Goswami, J. Lee and B. Kim, “Fast Algorithm for the High Efficiency Video

Coding (HEVC) Encoder Using Texture Analysis,” Information Sciences, vol.

364-365, pp. 72-90, Oct. 2016.

[34] L. Shen, Z. Zhang and Z. Liu, “Effective CU Size Decision for HEVC

Intracoding,” IEEE Transactions on Image Processing, vol. 23, no. 10, pp.

4232-4241, Oct. 2014.

[35] S. Ahn, B. Lee and M. Kim, “A Novel Fast CU Encoding Scheme Based on

Spatiotemporal Encoding Parameters for HEVC Inter Coding,” IEEE

Transactions on Circuits and Systems for Video Technology, vol. 25, no. 3, pp.

422-435, Mar. 2015.

[36] K. Lim, J. Lee, S. Kim and S. Lee, “Fast PU Skip and Split Termination

Algorithm for HEVC Intra Prediction,” IEEE Transactions on Circuits and

Systems for Video Technology, vol. 25, no. 8, pp. 1335-1346, Aug. 2015.

[37] J. Lee, S. Kim, K. Lim and S. Lee, “A Fast CU Size Decision Algorithm for

HEVC,” IEEE Transactions on Circuits and Systems for Video Technology, vol.

25, no. 3, pp. 411-421, Mar. 2015.

[38] H. Kim and R. Park, “Fast CU Partitioning Algorithm for HEVC Using an

Online-Learning-Based Bayesian Decision Rule,” IEEE Transactions on

Circuits and Systems for Video Technology, vol. 26, no. 1, pp. 130-138, Jan.

2016.

[39] L. Shen, Z. Zhang, X. Zhang, P. An and Z. Liu, “Fast TU Size Decision

Algorithm for HEVC Encoders Using Bayesian Theorem Detection,” Signal

Processing: Image Communication, vol. 32, pp. 121-128, Mar. 2015.

[40] S. Cho and M. Kim, “Fast CU Splitting and Pruning for Suboptimal CU

Partitioning in HEVC Intra Coding,” IEEE Transactions on Circuits and

Systems for Video Technology, vol. 23, no. 9, pp. 1555-1564, Sep. 2013.

[41] Z. Liu, T. Lin and C. Chou, “Efficient Prediction of CU Depth and PU Mode

for Fast HEVC Encoding Using Statistical Analysis,” Journal of Visual

Communication and Image Representation, vol. 38, pp. 474-486, Jul. 2016.

[42] Q. Hu, X. Zhang, Z. Shi and Z. Gao, “Neyman-Pearson-Based Early Mode

Decision for HEVC Encoding,” IEEE Transactions on Multimedia, vol. 18, no.

3, pp. 379-391, Mar. 2016.

[43] J. Xiong, H. Li, Q. Wu and F. Meng, “A Fast HEVC Inter CU Selection Method

Based on Pyramid Motion Divergence,” IEEE Transactions on Multimedia, vol.

16, no. 2, pp. 559-564, Feb. 2014.

[44] Y. Zhang, S. Kwong, X. Wang, H. Yuan, Z. Pan and L. Xu, “Machine Learning-

Based Coding Unit Depth Decisions for Flexible Complexity Allocation in High

Efficiency Video Coding,” IEEE Transactions on Image Processing, vol. 24,

no. 7, pp. 2225-2238, Jul. 2015.

100

[45] G. Correa, P. A. Assuncao, L. V. Agostini and L. A. da Silva Cruz, “Fast HEVC

Encoding Decisions Using Data Mining,” IEEE Transactions on Circuits and

Systems for Video Technology, vol. 25, no. 4, pp. 660-673, Apr. 2015.

[46] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten,

“The WEKA Data Mining Software: An Update,” ACM SIGKDD Explorations

Newslett., vol. 11, no. 1, pp. 10-18, Jun. 2009.

[47] K. McCann, B. Bross, W. Han, I. Kim, K. Sugimoto, G. Sullivan, High

Efficiency Video Coding (HEVC) Test Model 13 (HM 13) Encoder

Description, document JCTVC-O1002, Joint Collaborative Team on Video

Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC-JCT1/SC29/WG11,

Geneva, Switzerland, Oct. 2013.

[48] Common Test Conditions and Software Reference Configurations, document

JCTVC-J110, ISO/IEC-JCT1/SC29/WG11, Stockholm, Sweden, 2012.

[49] MATLAB version 8.5.0.197613 (R2015a), The MathWorks Inc., Natick,

Massachusetts, USA, 2015.

101

Vita

Mahitab Hassan was born in 1994, in Alexandria, Egypt. She received her

primary and secondary education in Sharjah, UAE. She received her B.Sc. degree in

Computer Engineering and completed the requirements for a Computer Science minor

from the American University of Sharjah in 2015.

In September 2015, she joined the Computer Engineering master’s program in

the American University of Sharjah as a graduate teaching assistant. During her

master’s studies, she co-authored 2 papers, which were presented in local and

international conferences. Her research interests include machine learning, digital video

processing, and ubiquitous learning systems.

