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Abstract 

 

The High Efficiency Video Coding (HEVC) standard presents a substantial video 

compression efficiency improvement at the expense of increasing the computational 

complexity. This enhancement is primarily due to the introduction of flexible quad-

based-tree partitioning structures for motion estimation (ME) and image 

transformation. However, finding the optimum coding structure, which is done by an 

exhaustive rate-distortion optimization (RDO) process, is what contributes to 

increasing the computational complexity. In this thesis, we propose a set of early 

termination algorithms to reduce the HEVC video encoding complexity by predicting 

both the split decisions of Coding Units (CUs) and the coding modes of Prediction Units 

(PUs). A video sequence-dependent approach is used in which frames belonging to the 

video being encoded are utilized for generating a classification model. At each CU 

depth level, features representing the given CU are extracted from both the current and 

previously encoded CUs. The feature vectors (FVs) are then utilized for generating 

dimensionality reduction and classification models.  These models are in turn used at 

each coding depth to predict the split and mode decisions of subsequence CUs. In this 

work, we use stepwise regression, random forest feature importance, and Principal 

Component Analysis (PCA) for dimensionality reduction. Moreover, polynomial 

networks, random forests, and J48 decision trees are used for classification. Using 

seventeen video sequences with four different spatial resolution classes, the proposed 

solution is assessed in terms of the classification accuracy, Bjontegaard Delta bitrate 

(BD-rate), BD Peak Signal-to-Noise Ratio (BD-PSNR) and computational complexity 

reduction (CCR). On average, the CU early termination scheme achieved a CCR of 

38.5% with an average classification accuracy of 78.1% at a negligible cost of 0.539% 

and -0.021 dB in terms of BD-rate and BD-PSNR, respectively. The PU early 

termination scheme attained an overall CCR of 20.9% with an average classification 

accuracy of 86.5% at the cost of a BD-rate of 0.248% and a BD-PSNR of -0.01 dB. 

When jointly implemented, an overall CCR of 50.1% was achieved with a BD-rate 

increase of 2% and a BD-PSNR decrease of 0.079 dB. 

 

Keywords: Video coding; HEVC (High Efficiency Video Coding); Machine learning. 
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Chapter 1. Introduction 

 

In this chapter, an introduction to HEVC is presented along with the 

enhancements it introduces and the encountered drawbacks. Then, a brief summary of 

the proposed solutions and their performance evaluation methodologies is reported 

followed by the thesis contribution. Finally, a general organization of this thesis is 

outlined. 

1.1. Overview 

The HEVC standard, also known as H.265 or MPEG-H Part 2, is one of the 

successors of the well-known standard MPEG-4 AVC (H.264 or MPEG-4 Part 10). It 

is designed to target high quality digital video, Ultra High Definition (HD) content and 

low bitrate applications. The HEVC project was formally launched in January 2010, 

when a joint Call for Proposals was issued by the ITU-T Video Coding Experts Group 

(VCEG) and the ISO/IEC Moving Picture Experts Group (MPEG) [1]. When it was 

completed in January 2013, the HEVC standard was found to offer a significant 

improvement to the compression performance relative to that presented by existing 

standards. In fact, HEVC currently provides twice the compression capabilities as that 

offered by its predecessor, the Advanced Video Coding (AVC). With minimal video 

quality level losses, enhanced compression or coding efficiency is achieved by HEVC, 

where around 50% bit-rate reduction is possible given that the appropriate encoder 

settings are used [2]. Nonetheless, this improvement comes at the cost of increasing the 

encoding computational complexity, which can reach up to 40% in comparison to that 

of H.264/AVC when only essential coding tools are enabled [3]. 

The aforementioned enhancement can be contributed to a number of factors, 

which mostly involves the introduction of flexible partitioning structures. HEVC uses 

quad-tree Coding Tree Units (CTUs), Prediction Units (PUs), and residual quad-trees 

(RQTs) rather than macroblocks (MBs), which were utilized in MPEG-2 and MPEG-

4. A video frame or image is divided into CUs with a typical size of 64×64 pixels. In 

order to achieve the best configurations in terms of structure partitioning, an exhaustive 

Rate Distortion Optimization (RDO) process takes place, which greatly intensifies the 

computational complexity. Most of the encoding time involves recursively repeating 

the RDO process at each coding depth level for each structure (i.e. 64×64, 32×32, 
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16×16 and 8×8 pixels), testing every possible encoding structure combination and 

selecting the one that minimizes the rate-distortion (RD) cost [4]. Further details about 

these structures will be presented in Chapter 2.  

1.2.  Thesis Objectives 

As mentioned earlier, HEVC presents a significant coding efficiency 

improvement when compared to that of its predecessors at the cost of increasing the 

computational complexity. Thus, the prime challenge of this work involves limiting this 

computational complexity without hurting the compression efficiency. 

For this purpose, a fast partitioning decision algorithm is introduced for CUs 

and PUs. Here, the aim is to optimize the RDO process as to prevent full search from 

taking place at each CU depth level for all CTUs. The proposed system employs 

different video sequence-dependent approaches using machine learning techniques. In 

the first scheme, features are recorded for all CUs, which are used to implement an 

early termination algorithm for coding trees. In the second scheme, an early termination 

algorithm for PUs is applied using recorded attributes, which is sequentially utilized as 

the data sample. The final scheme combines both approaches to provide early 

termination for both CUs and PUs. The proposed system looks at different machine 

learning algorithms to allow for the early termination process to take place. The features 

may undergo feature selection or extraction before being fed into the selected classifier. 

The performance of the proposed solutions is evaluated using BD-rate, BD-PSNR, 

excessive bitrate, CCR, model generation time, and classification rates. 

1.3. Research Contribution 

The contributions of this research work can be summarized as follows:  

 Propose a machine learning approach to predicting the split decisions of CUs. 

 Use a video sequence-dependent approach to generate training models. 

 Extract novel feature variables for CUs from both the underlying CU and 

previously encoded ones. 

 Reduce the dimensionality of feature variables prior model training using a 

variety of dimensionality reduction techniques. 

 Propose a novel early termination algorithm for PUs using dimensionality 

reduction and classification algorithms. 
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 Combine both CU split prediction and PU mode prediction to reduce the 

HEVC’s computational complexity without significantly harming the video 

quality. 

1.4.  Thesis Organization 

The rest of the thesis is organized as follows: Chapter 2 provides background 

information on video encoding and different machine learning algorithms. Moreover, 

related work done in this field of research is discussed. The architecture of the proposed 

system is described in Chapter 3, while the experimental setup is given in Chapter 4. 

Chapter 5 focuses on the experimental results and analyses the performance of each of 

the proposed solutions. Lastly, Chapter 6 concludes this thesis and outlines possible 

future work.  
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Chapter 2. Background and Literature Review 

 

The prime focus of this thesis involves attempting to minimize the 

computational complexity introduced during HEVC encoding without sacrificing the 

compression efficiency. In this chapter, video compression or coding is first explored, 

where the architecture and components present in MPEG-2 and HEVC, two video 

coding standards, are presented. Then, different machine learning algorithms are 

discussed alongside the motivation of using them to reduce the HEVC’s computational 

complexity during the encoding phase. Additionally, the performance evaluation 

metrics are explored in this chapter. Finally, existing related work in this field of 

research is discussed.  

2.1. Encoding 

Data compression and decompression are frequently used concepts, especially 

when large amounts of data require storage and/or transmission. In a similar fashion, 

such a process takes place for audio-visual content. In multimedia systems, a number 

of stages exist during the coding process of a video, which is illustrated by the 

simplified block diagram shown in Figure 2.1. 

 

 

Figure 2.1: High-level overview of video coding as illustrated in [5]. 

 

In general terms, the raw uncompressed digital video sequence, to which pre-

processing techniques such as trimming may apply, is fed into the encoder. The encoder 

converts the digital input into a coded bitstream, which usually involves a combination 

of lossless and lossy compression in order to meet the target transmission bitrate 

constraints. The bitstream is then either stored or transmitted over a channel to the 

receiver. At the receiver, decoding takes place, where the bitstream is transformed into 

a reconstructed video sequence. As lossy compression is involved in the process, a 

reconstruction error is introduced as some bits may be omitted in the encoding process, 

affecting the compression efficiency. Transmission error can also play a role in the 
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quality of the reconstructed video, which varies based on the channel over which the 

bitstream was transmitted. Finally, post-processing schemes may be applied as 

necessary to help in improving the video’s quality. 

 

 

Figure 2.2: Block diagram showing how a block of pixels gets encoded [6]. 

 

The process of encoding, summarized in Figure 2.2, mainly involves generating 

frequency-based representations of pixel blocks of each frame in the video. Here, some 

high frequencies are usually discarded as they do not provide significant information in 

comparison to the low frequency ones. This is where lossy compression takes place and 

the bit omission mentioned earlier occurs. Regardless of which coding standard is used, 

some type of transformation algorithm such as the Discrete Cosine Transform (DCT) 

is performed on each pixel segment for all frames of the video, where pixels are 

transformed into their frequency representations. The exact partitioning manner will be 

discussed shortly once MPEG-2 and HEVC are explained. It should be noted that the 

frames are coded in what is called a coding order. After a block of pixels undergoes 

DCT, it is quantized, where lower frequency components of the transformations tend 

to be emphasized. A quantization scale is involved, where the higher its value is, the 

more information is lost. The top-left corner of the transformed block, which the zero-

frequency coefficient (DC), is delta encoded by storing the difference between its value 

and the corresponding value from the previous block. The remainder of the block, 

which is scanned in a zigzag fashion, typically contains several long runs of zeros as a 

result of quantization. Therefore, these coefficients (ACs) are compressed using run-

length encoding. The resultant of delta or differential coding and run-length coding 



22 

 

undergo Huffman coding, a variable length coding (VLC) algorithm, which is a lossless 

compression scheme to further increase the compression rate. This process is repeated, 

leading to a bitstream that is later stored or transmitted. 

2.1.1. MPEG-2. Taking the encoding process described earlier in the context 

of MPEG-2 will help in understanding the procedure in more depth. In MPEG-2, each 

frame is organized in slices, where each slice is independently coded and consists of a 

set of adjacent blocks called macroblocks (MBs). Each MB constitutes a 16×16 block 

of luminance or grayscale samples, which are divided into four 8×8 blocks, and two 

8×8 blocks of the matching chrominance (𝐶𝑏 and 𝐶𝑟), as seen in Figure 2.3. 

 

 

Figure 2.3: Structural composition of a MB structure [7]. 

 

During the coding process in MPEG-2, a raster scan is followed. Here, MB acts 

as the partitioning structure previously mentioned. A block diagram illustrating an 

overview of encoding in MPEG-2 can be seen in Figure 2.4.  

 

 
Figure 2.4: Detailed block diagram of a MPEG-2 encoder as illustrated [7]. 
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At the encoder, the first frame, which is an intra-frame (I-frame), goes through 

DCT, quantization, and VLC. The local decoder is then used to generate the 

reconstructed I-frame. This is crucial as to avoid picture drift since the reconstructed 

frame will be used at the decoder. The reconstructed I-frame is stored into the frame 

store. When the next frame enters the encoder, motion estimation and motion 

compensation (MC) take place and the motion compensated reconstructed I-frame is 

subtracted from the current frame. In more details, motion estimation in the previous I-

frame using a search window occurs, where motion vectors (MVs) are extracted. After 

that, motion compensation occurs, where a motion compensated picture of the previous 

frame is generated by taking best match location for each MB and inverting the MV 

corresponding to it. Thus, the MBs will coincide and the motion compensated picture 

can be subtracted from the current picture. Then, DCT, quantization, and VLC happen, 

and the process is repeated. It is important to note that the first frame in a video is an I-

frame, which is intra-coded. This means that it is compressed by doing DCT, 

quantization, and DC and AC coding, as previously discussed.  

The quantization scale (Qs) varies between 1 and 31 in MPEG-2, which is stored 

as the difference between the current and previous block for all blocks excluding the 

first one as the initial quantization scale factor is stored in the slice header. The 

following frames can be an I-frame, a Predicted-frame (P-frame), or a Bi-directional-

frame (B-frame). A P-frame can be predicted from a previous reference frame within a 

group of pictures (GOP), while a B-frame can be predicted using previous and future 

reference frames. Here, each MB has a choice of either using motion estimation and 

compensation, which allows inter-coding, or immediately utilizing DCT and 

quantization, which allows intra-coding. This mainly depends on the MB type. On the 

other hand, prediction, which takes place when motion estimation and compensation 

are involved, can be of the types forward, backward or interpolated/bi-directional. A 

MB can also be skipped based on some requirements. 

2.1.2. HEVC. HEVC operates in a fashion very similar to that of MPEG-2 

with a number of additions that introduces significant improvements in the encoding 

efficiency. Figure 2.5 illustrates a block diagram representing a HEVC encoder. 

One of the prime contributors to such an enhancement is the block partitioning 

structures, namely CUs, PUs, and Transform (TUs). In HEVC, each frame is also 
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divided into a set of slices, each of which is composed of equal-sized CTUs. Each CTU 

consists of one luminance coding tree block (CTB) and two chrominance CTBs. A CTU 

can be recursively further partitioned into smaller blocks called CUs, which can be of 

the sizes 64×64, which is the largest CU (LCU), 32×32, 16×16, and 8×8, which 

represents the smallest CU (SCU). This partitioning process generates a quad-tree 

structure with multiple coding depth levels, as observed in Figure 2.6. 

 

 

Figure 2.5: Detailed block diagram of a HEVC [8]. 

 

 

Figure 2.6: Block and tree representations of the CTU quad-tree structure. 
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During the splitting process, all partitioning possibilities 𝒜 are evaluated in a 

RDO scheme based on the Lagrangian bit-allocation [8] represented in (1). 

 
𝑝∗ = arg min 𝐷(𝑝) + 𝜆. 𝑅(𝑝),

∀ 𝑝 ∈ 𝒜                    
 (1) 

where 𝑝∗ represents the coding parameter that is determined by minimizing a weighted 

sum of the resultant distortion 𝐷(𝑝) and the associated number of bits 𝑅(𝑝). In other 

words, RDO denotes a measure of the amount of distortion affecting the quality of a 

video against the amount of data needed to encode that video. The Lagrange parameter 

𝜆, whose value is assigned based on the quantization scale, is a constant that determines 

the trade-off between 𝐷(𝑝) and 𝑅(𝑝). 

 

 

Figure 2.7: PU modes for (a) inter-coded CUs and (b) intra-coded CUs. 

 

Each CU can also be divided into a number of PUs, which are predicted with 

either intra-frame or inter-frame prediction. Again, the optimal PU splitting mode is 

chosen through the RDO process, where all possible partitioning modes are evaluated. 

Figure 2.7 shows all possible PU partitioning modes excluding the Merge/Skip mode 

(MSM), which differ based on the current CU depth level. They can be of a symmetric 

or asymmetric type. In 8×8 CUs, asymmetric motion partitions (AMPs) are not tested 

to prevent the PUs smaller than 4×8 or 8×4. MSM is offered for all inter-predicted CU 

sizes and 2N×2N PUs, which is very similar to the skip mode in MPEG-2. MSM allows 
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the current PU to inherit the motion information from spatially and temporally 

neighboring PUs, resulting in a larger region. 

The next structure to be evaluated is related to the transformation coding 

process, which was explained in Section 2.1, where transformation and quantization are 

involved. The quantization parameter (QP) acts in an identical manner to that of the 

quantization scale in MPEG-2. Here, each CU can be seen as the root of a quad-tree 

structure called residual quad-tree (RQT), which can be recursively partitioned into 

TUs. TU sizes can be of 32×32, 16×16, or 8×8 dimensionalities and does not depend 

on the underlying PU size. Once again, RDO determines that size for a given TU. 

As previously explained in MPEG-2, prediction refers to the process of MV 

extraction. In HEVC, there is also a concept called Reference Picture Sets (RPS), which 

is divided into List0 and List1. List0 contains a list of picture order count (POC) used 

for forward prediction, while List1 contains a list of POC used for backward prediction. 

POC refers to the fame number in output/display order. It is worth noting that the same 

reference picture can be used for bi-directional prediction. When it comes to 

representing a MV, it is in the form of {𝑑𝑥, 𝑑𝑦, POC index in List0} and {𝑑𝑥, 𝑑𝑦, POC 

index in List1}, where 𝑑𝑥 and 𝑑𝑦 are directions in the x-axis and y-axis, respectively. 

In place of ME, Advanced Motion Vector Prediction (AMVP) is used to find Motion 

Vector Predictions (MVPs). Up to two spatial candidate MVPs are derived from five 

spatial neighboring blocks and one temporal candidate MVPs is derived from two 

temporal co-located blocks in case the two spatial candidate MVPs were not available. 

2.2. Machine Learning 

Machine learning involves giving a computer or a machine the ability to learn 

and adapt without the need to explicitly program them to perform a particular task. It 

uses a set of previously collected data instances to detect patterns in this data, learn a 

predictive model, and adjust the program actions accordingly. This is done with the aim 

of optimizing a performance criterion using the data sample. Several applications where 

machine learning is found to be useful include pattern recognition, search customer 

relationship management, spam filtering, medical diagnoses, etc. Each of these 

applications poses a machine learning scenario that depends on the nature of the training 

data available, the method used in collecting the training sample, and the test data used 
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for evaluation. Two of the commonly seen learning scenarios [9] include supervised 

learning and unsupervised learning. 

Before moving any further, it is important to understand some of the key 

terminologies used in machine learning [10]. An example is simply a data item or 

instance that can be used in a machine learning algorithm. This example can be part of 

the training sample, validation sample, or testing sample. A training sample is used to 

train a learning algorithm to generate a predictive model, while a testing sample is 

needed to evaluate the performance of a learning algorithm after a model has been 

constructed. Each example in any of the samples constitutes of features or variables, 

which are basically a set of attributes that represents the various features of that 

instance. These features are also called predictors in machine learning. In classification 

problems, which falls under supervised learning as will be seen later in this section, a 

label is used to identify a category to which an instance belongs to. During the 

evaluation of a learning algorithm, given a testing example whose label is known, a loss 

function is produced to measure the prediction error using the example’s predicted label 

and its true label. In most cases, a model is to be built using the machine learning 

algorithm, which allows the generation of discriminant functions that are part of a 

hypothesis. The discriminant functions split the sample space into different regions 

representing different categories. In other words, decision boundaries imposed by 

discriminant functions are created based on which a given test example with certain 

features can successfully be mapped to the correct label with minimal error occurrence. 

After the brief explanation given on various terminologies used in machine 

learning, it will be easy to understand the previously mentioned learning scenarios. An 

overview of the machine learning algorithms explained in this section and used in this 

work can be seen in Figure 2.8. In supervised learning, a set of labeled examples are 

used for both the training and testing phases of the machine learning algorithm. This is 

usually used in classification problems, as opposed to dimensionality reduction, which 

applies unsupervised learning. This type of learning considers unlabeled examples. 

More details about classification and dimensionality reduction will be seen in the 

following subsections. 

It is crucial to understand that model generation can be a tricky process as the 

model is required to generalize well [9]. In other words, the decision boundaries 
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achieved during the training process should not be very complex to the point that over 

fits the training data, leading it to not perform well on the testing sample. Figure 2.9 

gives a simple example that illustrates the generalization issue. 

 

 

Figure 2.8: An overview of some machine learning algorithms and their learning 

scenarios. 

 

 

Figure 2.9: An illustration of different decision boundaries, where the less complex 

one (left) is likely to generalize better than the more complex one (right). 
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2.2.1. Classification models. During classification, labeled examples are 

considered, where a category is allocated to each instance. As mentioned earlier, each 

instance consists of values corresponding to the various selected features and its 

assigned label. A classification algorithm is then selected based on the nature of the 

problem to be tackled to build a predictive model. The goal is to optimize the 

discrimination between the data points from different classes represented by different 

labels, minimizing the error objective criterion. The following are the different 

classification algorithms utilized in this work. 

2.2.1.1. Decision trees.  A decision tree utilizes a “divide-and-conquer” 

approach to learn from a set of independent training instances and generate a tree-like 

model consisting of rules and possible outcomes or classes. It allows the classification 

process of a new instance to take place in a systematic manner. This tree can be 

constructed in a top-down recursive fashion [11] using algorithms such as ID3 [12] by 

Quinlan (1986), C4.5 [13] by Quinlan (1993), and CART [14] by Breiman et al. (1984). 

C4.5, which is one of the classification algorithms used in this work, is an 

evolution of the ID3 algorithm. The way this decision tree inducer works is by 

following a series of simple steps. However, before exploring these steps, it is important 

to look at the attribute selection measure that it uses as the splitting criterion. Unlike 

ID3, which uses information gain as its attribute selection measure, C4.5 uses an 

extension to information gain known as the gain ratio. The issue with the information 

gain measure is that it is biased toward selecting attributes that have a bigger range of 

values. To overcome this issue, gain ratio applies some sort of normalization to the 

result of the information gain measure. 

Let 𝑆 be the set of training samples of length 𝑠 with 𝑚 distinct classes and 𝑇 be 

the set of testing instances. To compute the gain ratio [15], based on information theory, 

the entropy or expected information needed to classify a given sample is first calculated 

and is given by 

 𝐼(𝑆) = − ∑ 𝑝𝑖 log2(𝑝𝑖)

𝑚

𝑖=1

, (2) 

where 𝑝𝑖 is the probability of a sample belonging to a particular class 𝐶𝑖. In the case of 

discrete attributes, let an attribute 𝐴 have 𝑣 distinct values, which can be represented as 
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[𝑎1, 𝑎2, … , 𝑎𝑣]. On the other hand, in the case of continuous attributes [16], whose 

values are numeric, 𝐴 ≤ 𝑡 is considered, where t represents a threshold value. This 

results in each value of 𝐴 to have two outcomes: True and False. The vector 𝐴 can be 

used to split 𝑆 into 𝑣 different subsets, denoted as 𝑆𝑗 that is split on an 𝑎𝑗 value. For 

continuous attributes, the threshold 𝑡, which is a possible split-point can be found by 

sorting the values corresponding to particular 𝐴 in the training sample and taking the 

average of adjacent values. The entropy achieved by partitioning 𝑆 into 𝑣 subsets is 

defined as 

 𝐼𝐴(𝑆) = ∑ 𝐼(𝑆𝑗)
|𝑆𝑗|

|𝑆|

𝑣

𝑗=1

. (3) 

The gained encoding information by branching on 𝐴 is 

 𝐺𝑎𝑖𝑛(𝐴) = 𝐼(𝑆) − 𝐼𝐴(𝑆). (4) 

As previously mentioned, gain ratio applies normalization to the information gain using 

a value that is given by 

 𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜𝐴(𝑆) = − ∑(|𝑆𝑗| |𝑆|⁄ ) log2(|𝑆𝑗| |𝑆|⁄ )

𝑣

𝑗=1

. (5) 

This value represents the information generated by splitting 𝑆 by A. The gain ratio can 

now be defined as 

 𝐺𝑎𝑖𝑛𝑅𝑎𝑡𝑖𝑜(𝐴) =  
𝐺𝑎𝑖𝑛(𝐴)

𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜𝐴(𝑆)
. (6) 

The attribute with the highest gain ratio is selected as the splitting attribute to partition 

the current tree. 

Moving back to discussing the way C4.5 works [17], at the beginning, the entire 

𝑆 set is placed at the root of the tree. Gain ratio is then used as the splitting criteria to 

determine the attribute that best differentiates the instances in 𝑆. The selected attribute 

is used as the value of the current tree node, which is the tree root in this case. Next, 

edges from this node are created, which represent a unique value for the chosen 

attribute. This process is repeated to further split the subsets of 𝑆 until either the number 

of instances to be split is below a certain threshold or there are no remaining attributes 

to perform further partitioning. The leaf node is denoted based on the majority class, 
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where the aim is to reduce the impurity or uncertainty in data in order to decrease the 

misclassification error. 

In order to classify a new unknown instance from the testing set 𝑇, it is routed 

down the grown tree based on attribute values. Once a leaf is reached, the instance is 

labeled according to the class assigned to that leaf. An example of a simple decision 

tree is illustrated in Figure 2.10, where only 2 attributes are considered, Feature 1 and 

Feature 2. Figure 2.10(a) demonstrates the splitting process in a 2D space with the order 

of partitioning shown. While Figure 2.10(b) shows the corresponding grown tree, which 

was done based on the splitting criterion previously discussed. In this work, J48 is used 

to build decision trees, which is an implementation of C4.5 in Waikato Environment 

for Knowledge Analysis (WEKA). 

 

 

Figure 2.10: A simple example of a growing a decision tree. 

  

2.2.1.2. Random forest.   One of the issue of decision trees such as CART and 

C4.5 is that they tend to have empirically high variance [18]. In other words, these 

decision tree inducers are quite sensitive to the data used during the training phase. If 

the training set changes, the grown tree is likely to in turn change, resulting in producing 

different predictions. It is also important to note that these decision tree inducers 

employ a greedy approach that minimizes error by selecting the optimal attribute that 

splits the dataset at each node based on a certain data partitioning criterion. 

In an effort to overcome the above, random forests [19] were introduced, where 

a random forest is an ensemble method that utilizes both bagging and decision trees. 

An ensemble method is a simple method that uses multiple machine learning algorithms 
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to enhance the classifiers’ predictive performance. Bagging or bootstrap 

aggregation [20] is a procedure that is used to minimize the high variance seen in 

decision trees. It allows the resampling of a given training dataset, where large numbers 

of same-sized smaller samples called bootstrap samples are selected with replacement 

from the original dataset. This results in growing trees that are more independent. To 

tackle the drawback imposed by applying a greedy approach such as decision trees, a 

random forest [19] does not consider all the attributes and their values at the root of 

each tree to apply the splitting criterion. Instead, each tree is assigned a set of randomly 

selected features on which the splitting measure is applied. 

Before looking at how a random forest operates, it is crucial to understand the 

splitting criterion it uses, which is the Gini index. As was the case for decision trees, let 

𝑆 be the set of training samples of length 𝑠 with 𝑚 distinct classes and 𝑇 be the set of 

testing instances. The Gini index [15], which is another impurity measure similar to the 

gain ratio, is given by 

 𝐺𝑖𝑛𝑖(𝑆) = 1 − ∑ 𝑝𝑖
2

𝑚

𝑖=1

, (7) 

where 𝑝𝑖 is the probability of a sample belonging to a particular class 𝐶𝑖. For each 

attribute 𝐴, the Gini index considers a binary split. The values of 𝐴, 𝑎𝑗, differs 

depending on its nature, which can be discrete or continuous as explained in the case 

of decision trees. Given that attribute 𝐴 has 𝑣 distinct values, the weighted sum of each 

of the partitions on 𝐴 is computed as 

 𝐺𝑖𝑛𝑖𝐴(𝑆) = ∑
|𝑆𝑗|

|𝑆|
𝐺𝑖𝑛𝑖(𝑆𝑗)

𝑣

𝑗=1

. (8) 

The subset 𝑆𝑗 that generates the minimum Gini index for 𝐴 is selected as the splitting 

attribute to partition the current tree. 

Figure 2.11 provides a visual explanation of the procedure followed to grow a 

random forest. For each tree, a random bootstrap sample of size 𝑁 with replacement 

from the training set 𝑆 is first taken [19]. Moreover, given 𝑀 predictors or attributes, a 

random sample of constant 𝑚 ≪ 𝑀 predictors is selected for each tree. Based on the 

Gini index explained earlier, the attribute that best splits the sample space 𝑆 is selected. 
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This process is repeated until the tree is as large as possible, without applying any 

pruning. It is worth noting that about one-third of the training dataset selected for a 

particular tree is left out of the sample and is called out-of-bag (OOB) data. This data 

is used to estimate the classification error as more trees are added to the forest and the 

variable importance. 

 

 

Figure 2.11: A simplified visual illustration of how to generate a random forest. 

 

To classify an instance from the testing set 𝑇, the instance is routed down each 

of the grown trees in the forest based on attribute values. The instance is then labeled 

with the class that was assigned by most of the trees in the forest. 

 

2.2.1.3. Reduced model.  A multivariate polynomial model is capable of 

describing complex nonlinear relationships; however, for an 𝑟th order model with a 𝑙 

dimensional input or FV, the number of independent adjustable parameters can 

exponentially grow to up to 𝑙𝑟 [21]. For that reason, Reduced Multivariate Polynomial 

Model (RM) is used instead, which provides approximately the same classification 

capabilities. 

In order to generate the Reduced Model, a multinomial, a special case of 

multivariate polynomials, is first considered and can be expressed as 

https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm#ooberr
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 𝑓𝑀𝑁(𝛼, 𝑥) = 𝛼0 + ∑ 𝛼𝑗(𝑥1 + 𝑥2 + ⋯ + 𝑥𝑙)𝑗

𝑟

𝑗=1

, (9) 

where all inputs are lumped within each power term. Here, 𝑟 is the degree of 

approximation, 𝛼𝑗 is the weight parameter to be estimated, and 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑙]𝑇 is 

the regressor or FV containing 𝑙 inputs. The above results in a non-linear estimation 

model with the weight parameters needing to be estimated in an unconventional 

manner. Therefore, a linearized model is considered. 

On the multinomial function that is differentiable, two point 𝛼 and 𝛼1 are 

considered [22]. Taking only the FVs into account to simplify the expression, by the 

Mean Value Theorem, the multinomial function 𝑓(𝛼) = (𝛼𝑗1𝑥1 + 𝛼𝑗2𝑥1 + ⋯ +

𝛼𝑗𝑙𝑥𝑙)
𝑗
 about reference point 𝛼1, given that 𝑗 = 2, … , 𝑟, can be re-written as 

 𝑓(𝛼) = 𝑓(𝛼1) + (𝛼 − 𝛼1)𝑇∇𝑓(𝛼̅), (10) 

where 𝛼̅ = (1 − 𝛽)𝛼1 + 𝛽𝛼 for 0 ≤ 𝛽 ≤ 1. Including the summation of the weighted 

input terms back after removing the reference point 𝛼1, the coefficients within 𝑓(𝛼) 

and the gradient ∇𝑓(𝛼̅) leads to the following multivariate model 

 

𝑓𝑅𝑀′(𝛼, 𝑥) = 𝛼0 + ∑ 𝛼𝑗𝑥𝑗

𝑙

𝑗=1

+ ∑ 𝛼𝑙+𝑗(𝑥1 + 𝑥2 + ⋯ + 𝑥𝑙)𝑗

𝑟

𝑗=1

+ ∑(𝛼𝑗
𝑇 . 𝑥)(𝑥1 + 𝑥2 + ⋯ + 𝑥𝑙)𝑗−1

𝑟

𝑗=2

, 𝑙, 𝑟 ≥ 2. 

(11) 

The above formulation can be expanded to include more individual high-order terms, 

modifying the Reduced Model to become 

 

𝑓𝑅𝑀(𝛼, 𝑥) = 𝛼0 + ∑ ∑ 𝛼𝑘𝑗𝑥𝑗
𝑘

𝑙

𝑗=1

𝑟

𝑘=1

+ ∑ 𝛼𝑟𝑙+𝑗(𝑥1 + 𝑥2 + ⋯ + 𝑥𝑙)𝑗

𝑟

𝑗=1

+ ∑(𝛼𝑗
𝑇 . 𝑥)(𝑥1 + 𝑥2 + ⋯ + 𝑥𝑙)𝑗−1

𝑟

𝑗=2

, 𝑙, 𝑟 ≥ 2, 

(12) 

where the total number of terms 𝐾 is given by 𝐾 =  1 + 𝑟 +  𝑙(2𝑟 − 1). 

(12) is used to perform the classification presented in this work. It is worth 

mentioning that the weights denoted by 𝛼 will be omitted during the expansion process. 
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Thus, the weights are recalculated using (13), which is a resultant of minimizing the 

objective function given by (14). 

 𝛼 = (𝑃𝑇𝑃 + 𝑏𝐼)−1𝑃𝑇𝑦 (13) 

 
𝑠(𝛼, 𝑥) = ∑[𝑦𝑖 − 𝑓𝑅𝑀(𝛼, 𝑥𝑖)]

2
+ 𝑏‖𝛼‖2

2
 

𝑚

𝑖=1

 

              = [𝑦 − 𝑃𝛼]𝑇[𝑦 − 𝑃𝛼] + 𝑏𝛼𝑇𝛼 

(14) 

Here, for 𝑚 data points, 𝑃 ∈ ℛ𝑚𝑥𝐾 is the Jacobian matrix related to the expanded FVs, 

𝑦 ∈ ℛ𝑚𝑥1 is the known inference vector from the training data, 𝑏 is a regularization 

constant and 𝐼 represents a 𝐾 × 𝐾 identity matrix. The ‖. ‖𝑝 operator is the second 

norm, where 𝑝 = 2.  

2.2.2. Dimensionality reduction. Dimensionality reduction is considered an 

important step, especially when the FV is relatively large since it can affect the 

classification process. In order to classify an observation correctly, it is preferable that 

the data points belonging to a particular class are clustered such that a certain density 

is reached, allowing the discrimination of those points from points belonging to a 

different class. However, maintaining the same density with more features is no easy 

task as more data points will be needed as a result, which is usually not possible. 

Consequently, feature selection and extraction algorithms are utilized during training, 

whose operation are explained in the following subsections. 

2.2.2.1. Random forest feature importance.  One of the features presented in a 

random forest classifiers is called the random forest variable importance. It analyzes 

the importance of a particular attribute in predicting the correct classification of a given 

test instance. First, for all grown trees, the number of correct classifications achieved 

using the OOB data is computed. The OOB data is the set of instances that were left 

out during the training process of a given tree in the random forest. Let A be an attribute 

having v distinct values. From the OOB data, each of the v distinct values are randomly 

permuted and tested for correct classification. The raw importance score is then given 

by  

 𝑟𝑎𝑤_𝑖𝑚𝑝𝐴 =
𝑐𝑜𝑟𝑟𝑒𝑐𝑡_𝑐𝑙𝑎𝑠𝑠 − 𝑐𝑜𝑟𝑟𝑒𝑐𝑡_𝑐𝑙𝑎𝑠𝑠𝐴

𝑡𝑟𝑒𝑒𝑠_𝑐𝑜𝑢𝑛𝑡
, (15) 
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where 𝑐𝑜𝑟𝑟𝑒𝑐𝑡_𝑐𝑙𝑎𝑠𝑠 is the number of correct classifications attained before applying 

the permutation and 𝑐𝑜𝑟𝑟𝑒𝑐𝑡_𝑐𝑙𝑎𝑠𝑠𝐴 represents the number of correct classifications 

accomplished after applying the permutation. 𝑡𝑟𝑒𝑒𝑠_𝑐𝑜𝑢𝑛𝑡 is total number of trees 

grown in the random forest. A given attribute is said to be important if it has a high raw 

importance score.  

2.2.2.2. Principal component analysis (PCA).  PCA [9] is an unsupervised 

projection method that allows projecting the training set 𝑆 on a lower dimensional 

space. Given that the original feature space 𝑑, PCA employs a feature extraction 

approach that projects 𝑆 on 𝑘 dimensions, where 𝑘 < 𝑑, with the objective of 

minimizing any information losses. This is achieved by maximizing the feature 

variance.  

Let the projection of 𝑆 in the direction of 𝜔1 be given by 𝑧1 = 𝜔1
𝑇𝑆. 

Additionally, let the variance of the projected training sample to be 𝑉𝑎𝑟(𝑧1) =

𝜔1
𝑇∑𝜔1, where ∑ denotes the covariance of 𝑆. To maximize (𝑧1) , it is important to 

subject it to ‖𝜔1‖ = 1, which is the L2-norm. This leads to a Lagrange problem that is 

expressed as 

 max
𝜔1

 𝜔1
𝑇∑𝜔1 − 𝛼(𝜔1

𝑇𝜔1 − 1) = 0. (16) 

The resultant of simplifying the above expression is ∑𝜔1 = 𝛼𝜔1, where 𝜔1 is the 

eigenvector of ∑. The eigenvector 𝜔1 with the largest eigenvalue 𝛼 maximizes 𝑉𝑎𝑟(𝑧1) 

and is selected as the first principal component. To find the second principal 

component, 𝑉𝑎𝑟(𝑧2) is maximized by subjected it to ‖𝜔2‖ = 1 and ensuring that it is 

orthogonal to 𝜔1. The expression then becomes 

 max
𝜔2

 𝜔2
𝑇∑𝜔2 − 𝛼(𝜔2

𝑇𝜔2 − 1)−𝛽(𝜔2
𝑇𝜔1 − 0) = 0. (17) 

The resultant of simplifying the above expression is ∑𝜔2 = 𝛼𝜔2, where 𝜔2 is another 

eigenvector of ∑. The eigenvector 𝜔1 with the largest eigenvalue 𝛼 that maximizes 

𝑉𝑎𝑟(𝑧2) is chosen as the second principal component. This process is usually repeated 

until the desired Proportion of Variance (PoV) explained is reached. Given that 𝛼𝑖 are 

sorted in descending order, PoV is expressed as  

 PoV =
𝛼1 + 𝛼2 + ⋯ + 𝛼𝑘

𝛼1 + 𝛼2 + ⋯ + 𝛼𝑘 + ⋯ + 𝛼𝑑
. (18) 
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Typically, PoV is taken to be greater than 90% since it results in minimum information 

loss. 

2.2.2.3. Stepwise regression.  Stepwise regression is a subset/feature selection 

algorithm, where 𝑘 of the 𝑑 FVs are chosen with the aim of increasing discrimination 

or the classification rate given that 𝑘 < 𝑑. In general, feature selection can either be 

forward, where the best feature is added at each step starting from the empty set until 

the best model is generated, or backward, where the starting point is a model with all 

features that are eliminated one-by-one, if possible, until the optimal model is reached. 

Stepwise regression is a combination of both schemes [23].  

Given a set of variables [𝑥1, 𝑥2, … , 𝑥𝑙]𝑇that belong to a class 𝑟, 𝑓𝑖𝑛 is the forward 

random (f-random) variable for adding a variable to the model and 𝑓𝑜𝑢𝑡 is the f-random 

variable for removing a variable from the model. A f-random variable is a variable with 

the largest Pearson product moment correlation with 𝑟. At first, all variables are scanned 

and the variable with the highest statistics 𝑓 is added to generate a one-variable model 

given by 

 ℎ(𝑥) = 𝛼0 +  𝛼1𝑥1, (19) 

where ℎ(𝑥) is the hypothesis and 𝑥1 is one of the 𝑘 features with the highest 𝑓 value. 

For the remaining 𝑘 − 1 variables, the variables are examined to choose the second best 

feature 𝑥2, such that a two-variable model is generated in the form of 

 ℎ(𝑥) =  𝛼0 + 𝛼1𝑥1 +  𝛼2𝑥2. (20) 

𝑥2 is added such that 𝑓2 > 𝑓𝑖𝑛, where 𝑓2 is the statistics of 𝑥2. 𝑓2 is computed as 

 𝑓2 =  
𝑆𝑆𝑅(𝛼1|𝛼2𝛼0)

𝑀𝑆𝐸(𝑥1, 𝑥2)
, (21) 

where 𝑆𝑆𝑅 represents the regression sum squares error and 𝑀𝑆𝐸 represents the mean 

square error. Next, 𝑓1 is compared to 𝑓𝑜𝑢𝑡 to check as to whether 𝑥1 should be removed, 

where 𝑓1 is calculated in a manner similar to that of 𝑓2 as follows 

 𝑓1 =  
𝑆𝑆𝑅(𝛼2|𝛼1𝛼0)

𝑀𝑆𝐸(𝑥2, 𝑥1)
. (22) 
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The same steps are repeated for the remaining 𝑘 − 2 variables until no more variables 

can be added to or removed from the model. The resultant of stepwise regression is the 

indices of the retained FVs. 

2.2.3. Normalization. In order to normalize the FVs, z-score or zero-mean 

normalization is used, which acts as a measure of the distance between a data point (𝑥𝑖) 

and the mean (𝜇) in terms of standard deviations (𝜎). It is given by 

 z =  
(𝑥𝑖  − μ)

σ  
. (23) 

Normalization is needed to standardize the range of independent features. 

Distinctive features can have different scales, which may affect the classification 

process. 

2.2.4. PSNR, BD-rate, and BD-PSNR. When it comes to images, PSNR, 

given by (24), acts as a quality metric between the original and reconstructed image. 

The higher the value of this ration, the higher is the quality of the reconstructed image. 

It uses the Mean Square Error (MSE), which presents the cumulative squared error 

between the original and reconstructed image. 

 𝑃𝑆𝑁𝑅 = 10. 𝑙𝑜𝑔10 (
𝑀𝐴𝑋𝐼

2

𝑀𝑆𝐸
) (24) 

Likewise, when it comes to video sequences, similar performance metrics exist 

to evaluate the quality of the reconstructed video in comparison to the original one. 

Bjontegaard's metrics BD-rate and BD-PSNR allow the computation of the average 

percentage saving in bitrate and the average gain in PSNR between two RD curves, 

correspondingly [24]. However, they do not take the encoder’s complexity into account. 

Ideally, as BD-rate increases, BD-PSNR should decrease. In this work, we compare our 

coding solution to the regular HEVC coding approach. We aim to reduce the BD-rate 

and increase the BD-PSNR as must as possible. These performance metrics are among 

others that are used in the evaluation of the proposed solution in this thesis.  

2.3. Related Work 

Several state-of-art early termination algorithms for optimizing the encoding 

process in HEVC can be found in the literature, where the prime aim involves reducing 

the computational complexity while minimizing any performance degradation. Among 
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many, some approaches utilize the textural or structural characteristics of a given 

CU [25]-[35], while others use machine learning techniques [36]-[45], where they 

provide a method to view the issue at hand as a classification problem. The 

optimizations were not limited to HEVC inter-coding as some also considered 

enhancing intra-coding [31], [32], [34], [36]. It is important to understand that some 

approaches attempted to implement complexity control schemes, while others tried to 

apply complexity reduction algorithms to enhance the encoding process. 

As previously mentioned, many papers focused on investigating the textural or 

structural characteristics of CUs at a given CU depth to optimize the HEVC encoding 

procedure. The work in [25] proposes an inter-prediction optimization scheme, where 

the CTU structure is analysed in a reverse order. Exploring CUs at higher depths first 

allowed the limiting of the PU modes to be tested and the speeding up of the motion 

estimation process. The encoding time was, as a result, enhanced by around 16.3% to 

36.6% with BD-rate losses of around 0.3% to 2.2%. Alternatively, a subjective-driven 

complexity control (SCC) approach is proposed by [26] to control the HEVC encoding 

complexity. The authors investigated how the maximum depth of all largest CUs 

(LCUs) affects the encoding complexity and visual distortion. Based on that, an 

optimization formulation was computed in order to control the encoding complexity of 

HEVC with minimal visual distortion. It was observed that the encoding complexity 

greatly varied, where it could reach as low as 20% with the smallest complexity bias 

being 0.2%. However, the approach excelled in terms of control accuracy and visual 

quality. Another complexity control algorithm is proposed in [27], where an early 

termination condition is defined at each CU depth. The different parameters of the 

algorithm that determines the early termination condition dynamically changes on the 

fly based on the content of the video sequence being encoded, the configuration files 

and the target complexity, which can vary over time. A target complexity reduction of 

up to 60% was attainable while maintaining good results in terms of accuracy and 

coding efficiency. 

In [28], the authors present a hierarchical structure-based fast mode decision 

scheme. The paper utilizes the depth information of co-located CUs to predict the 

current LCU’s splitting. After that, the inter-prediction residual was analysed to 

optimize the PU mode decision process. Finally, fast discrete cross difference (FCD) 
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was used to predict the dominant direction of the current CU. The results accomplished 

from the algorithm reduced the encoding time by around 54.0%-68.4% with minimal 

degradation in the videos’ quality. A fast CU decision algorithm is presented in [29], 

where the coded block flag and RD cost are checked to determine if intra- and inter- 

PUs are to be skipped. Experimental results demonstrate that the proposed algorithm 

saves around 35.39% of the encoding time with negligible losses. In [30], a two-layered 

motion estimation based fast CU decision process is proposed, which uses the latent 

Sum of Absolute Differences (SAD) estimation to extract the SAD costs for a CU and 

its sub-CUs. The relationship between the motion compensation RD cost and the SAD 

cost was then explored, from which the exponential model was generated and utilized 

to make the CU size decision. Consequently, an average encoding time saving of 52% 

and 58.4% with an average bit-rate increase of 1.61% and 2% were attained for Random 

Access (RA) and Low-Delay configuration, respectively. On the other hand, a fast 

encoding scheme is proposed in [31] to speed up the HEVC intra-coding to avoid 

running the full depth search procedure. Encoded CU depths and RD cost of co-located 

CTU were used to predict both the current CU’s depth search range and the RD cost for 

CU splitting termination. Furthermore, PU modes to be used by the RDO process were 

limited through the fast mode decision step. This led to an encoding time reduction of 

57% at the cost of a 0.6% increase in BD-rate. 

Another fast CU size selection approach for I-frames is presented in [32], where 

local texture descriptors or image characteristics were used. CU split decisions were 

determined based on the histogram comparison of the Local Binary Patterns (LBP) of 

two consecutive CU depths. The speedup achieved here ranged on average between 

5.4% and 80.2% with a performance loss of up to 0.87 dB in terms of BD-PSNR. [33] 

proposes an early texture-based inter-mode decision algorithm, where the current CU’s 

texture, which was assigned based on the entropy, and the MV of the 2Nx2N PU mode 

were used for the early skip decision for the current CU. Furthermore, symmetric 

motion partition modes were optimized via the texture features calculated. This 

approach led to a reduction in the encoding time of around 40% with minimum 

performance degradation. A fast CU size decision algorithm for HEVC intra-coding is 

presented in [34]. Based on the texture and coding information of neighbouring CUs 

and adaptive thresholds built upon texture homogeneity, the splitting of the current CU 
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was limited. A CCR of up to 67%, was reached with around 0.06 dB loss in terms of 

PSNR and 1.08% increase in bitrate. 

A spatiotemporal based CU encoding technique is explored in [35], where 

sample-adaptive-offset (SAO) parameters including the spatial encoding parameter 

were utilized to predict the texture complexity (TC) of the CU under encoding. The 

resultant was then used along with temporal encoding parameters such as MV and 

Transform Units sizes to enhance the early CU splitting decision. Moreover, RD cost 

comparisons of simple and complex TC classes, which are classified by the SAO 

parameters, were used to improve the early CU SKIP mode detection. The combined 

use of the proposed CU splitting decision and CU SKIP mode detection schemes gave 

rise to average encoding time savings of 49.6% and 42.7% with average BD-rate losses 

of 1.4% and 1.0% for RA and LD configuration, respectively. 

Other approaches utilized the Bayesian decision rule and other machine learning 

techniques to improve the time complexity of an HEVC encoder. For instance, the 

proposed scheme in [36] involves three algorithms. The first is an early skip algorithm, 

where, based on the neighbouring PUs, RD cost computations for large PUs are 

skipped. The second is a PU skip algorithm using Bayes’ rule that optimized the RD 

cost computation, while the third is a split termination algorithm that used the RD cost 

of rough mode decision (RMD) to prevent further PU splitting. An encoding time 

saving of 53.52% was achieved as a result while maintaining the same RD performance 

as that offered by the HM software. In contrast, three approaches involving a skip mode 

decision, a CU skip estimation, and an early CU termination are seen in [37]. The 

thresholds for each were allocated based on Bayes' rule with a complexity factor. The 

computational complexity was, as a result, reduced by 69% and 68% on average with 

a 2.99% and 2.46% BD-rate increase for RA and LD configuration profiles, 

respectively. 

In [38], the authors present a joint online and offline learning-based fast CU 

partitioning method that uses the Bayesian decision rule to optimize the CU partitioning 

process. The proposed method was found to reduce the computational complexity to 

53.6% on average with a 0.71% BD-rate increase for the RA configuration profile. The 

Bayesian decision theory is also utilized in [39] along with the correlation between the 

variances of the residual coefficients and the transform size to enhance the PU size 
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decision process. The algorithm was found to result in a 30-46% reduction in the 

computational complexity of transform processing with negligible coding efficiency 

losses. Alternatively, a fast CU splitting and pruning algorithm is proposed in [40], 

which is applied at each CU depth according to a Bayes decision rule method based on 

low-complexity RD costs and full RD costs. The various parameters governing this 

method are dynamically modified on the fly based on the varying signal characteristics. 

Experimental results performed using All-Intra (AI) configuration profile indicated that 

the approach could achieve around 50% complexity reduction with only 0.6% increase 

in the BD-rate. A fast CU size and PU mode prediction algorithm is provided by [41]. 

It utilizes the k-means clustering method to group 13 neighbouring CTUs into three 

classes that were used as reference CTUs to predict the current CTU’s CU depth. In 

addition, rarely used PU modes were skipped, leading to PU selection complexity 

reduction. The encoding time was consequently reduced by 56.71% and 59.76%, and 

BD-rates by 1.0517% and 0.9918% for LD and RA configurations, respectively.  

On the other hand, [42] presents an early mode decision algorithm based on 

Neyman-Pearson. In the paper, both skip mode and CU size decisions were modelled 

as binary classification problems with skip/non-skip and split/no-split class labels. The 

features used for model generation were the RD costs. Here, the Neyman-Pearson-

based rule was used to balance the RD performance losses and the complexity 

reductions through minimizing the missed detection while limiting the incorrect 

decision rate. Online training and non-parametric likelihood estimation were utilized to 

update the RD cost probability density distribution for each QP at CU depth.  The 

algorithm resulted in a CCR of 65% and 58% at the cost of a 1.29% and 1.08% increase 

in terms of BD-rate for RA and LD P configurations, respectively. In [43], a fast 

pyramid motion divergence-based CU selection algorithm is proposed, where a k-

nearest neighbours (k-NN) like method is used to determine the optimal CU size. 

Experimental results show that an average time saving of 40% is achieved for LB-Main 

configuration profile with BD-rate losses of 2.21%. Whereas, an average time saving 

of 42.8% is attained for LP-Main configuration profile with BD-rate losses of 1.9%. 

The work in [44] utilizes a machine learning-based fast CU depth decision method to 

enhance the performance of a HEVC encoder, where the quad-tree CU depth levels are 

modelled as a three-level hierarchical binary decision problem. This was then used to 
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develop a flexible CU depth decision structure that allowed the generation of a three-

output joint classifier that consists of multiple binary classifiers. Using Low Delay (LD) 

B-frame main configuration, the algorithm attained an average computational 

complexity of 51.45% with average BD-rate increase of 1.98% and BD-PSNR 

reduction of -0.061 dB. 

The work proposed in [45] implemented early termination techniques on CUs, 

PUs, and TUs with the aim of optimizing the exhaustive recursive search process to 

avoid fully running the RDO algorithm. A set of decision trees were built from data 

collected during offline encodings with the aid of Waikato Environment for Knowledge 

Analysis (WEKA) [46], an open source DM tool. Based on the HEVC partitioning 

structure, the structure partitioning decisions were formulated into a data classification 

problem consisting of two classes, which was tackled through the usage of these 

decision trees. The attributes to be utilized for building the trees were chosen through 

the information gain attribute evaluation (IGAE) method in WEKA, which determined 

the information gain a variable offers. The C4.5 algorithm, specifically the J48 

implementation, was used to train the decision trees, where best attributes or features 

were chosen and thresholds that are part of test nodes were computed. For each 

partitioning structure, observations from each class were taken to be of equal 

proportions to avoid data imbalance during training. An average CCR of up to 50% at 

the negligible cost of an increase of 0.56% in terms of BD-rate was obtained for RA 

profile when each of the schemes were separately implemented. Whereas, when jointly 

implemented, an average CCR of up to 65% was achieved with a compression 

efficiency loss of 1.36% in BD-rate. 
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Chapter 3. Methodology 

 

In this chapter, the problem involving the HEVC video encoding complexity is 

formulated. Moreover, a proposed solution is discussed, where three early termination 

schemes are presented. Two of those schemes utilize two of the prime partitioning 

structures used during HEVC encoding, namely CUs and PUs, while the third combines 

both approaches. The proposed algorithms use different dimensionality reduction and 

classification algorithms to tackle the issue at hand. 

3.1. Problem Formulation 

As mentioned at the beginning of this thesis, one of the methods in which HEVC 

enhances the coding efficiency is through the usage of three flexible partitioning 

structures, i.e. CTUs, PUs, and the RQTs. Unfortunately, this improvement comes at 

the cost of massively increasing the computational complexity. It is true that the HEVC 

standard also uses several complexity reduction techniques, including Rough Mode 

Decision (RMD) for intra-frame prediction and the early Skip Mode Decision (SMD) 

algorithm; nevertheless, the computational complexity remains relatively high. As a 

result, it is crucial to apply different techniques to attempt and limit this rise in 

computational complexity without harming the compression efficiency in terms of 

video quality and bitrate consumption. 

3.2. System Overview 

To limit the increasing computational complexity, which is the resultant of the 

exhaustive rate-distortion optimization (RDO) process, a fast partitioning decision 

algorithm is introduced for both CUs and PUs using machine learning techniques. Both 

schemes implement a video sequence-dependent approach, where 10% of a given video 

sequence is considered to train a chosen classifier. The generated classification model 

is then used throughout the rest of the video sequence for testing. A general overview 

of the video sequence-dependent approach is given in Figure 3.1. Throughout this work, 

the HM reference software [47] is used. The assumption made for using a sequence-

dependent approach is that since part of the same sequence is used for training a given 

model, the classification accuracy is likely to be higher. The behaviour of a data point 

from the training set belonging to a certain class is expected to provide a more accurate 
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methodology to predict the category to which a testing sample from the same video 

sequence belongs to. 

Before training a given model, a video sequence is encoded to record a list of 

potentially important independent variables of size 𝑙 that act as features in the form of 

a vector [𝑥1, 𝑥2, … , 𝑥l]
𝑇 and their corresponding response values 𝑟. The response 

represents the class label to which a data point with certain features belongs. Based on 

the early termination algorithm, the response can be related to a CU splitting option or 

a selected PU mode. 

 

 

Figure 3.1: Block diagram representing the sequence-dependent approach. 

 

Once all the features and class labels have been extracted from the training 

sample, dimensionality reduction is applied to select the key features needed for the 

model generation stage. The dimensionality reduction step is optional and will depend 

on the approach used. The features are then fed into the chosen classifier, where the 

model generation takes place. Using the built model, the testing sample is used to 

extract the values corresponding to the same attributes that were used during training 

and predicted responses are produced. The HEVC encoder is run again, but using the 

predicted responses and the effectiveness of the early termination algorithms is 

evaluated in terms several performance metrics, primarily BD-rate, BD-PSNR, and 

CCR. The fast partitioning decision algorithms for each partitioning structure are 

explained in more details in Sections 3.3 to 3.5. 
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3.3. Early CU Termination Scheme 

The first set of algorithms implements a video sequence-dependent approach 

for early CU termination, where a split flag is computed at different coding depth levels 

for each CTU. This split flag allows the encoder to make an early decision in terms of 

whether splitting should occur at a given CU depth level without extensively running 

the RDO process. The split flag is calculated at CU depth level 0, CU depth level 1 and 

CU depth level 2. It is not computed at CU depth level 3, where the CU size is 8×8 

pixels as this CU cannot be partitioned into four equally sized CUs. As this problem is 

viewed as a binary classification problem, the class labels considered are of the values 

0 (do not split a CU into 4 sub CUs) or 1 (split a CU into 4 sub CUs), indicating whether 

the CU structure will be partitioned at a particular depth level. 

3.3.1. Training phase. Two phases are involved in the training of the 

classification model: the data extraction stage and the model training stage, as seen in 

Figure 3.2. 

 

Figure 3.2: Flowchart representing the training phase for early CU termination 

scheme including (a) Data collection phase and (b) Model training phase.  
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During the first phase, data collected from running the unmodified encoder on 

the training sample is used, which is the first 10% of a given video sequence. As 

indicated in Figure 3.2(a), at each CU depth level, FVs are read, to which the reversed 

split flags are appended. In other words, for 64×64 sized CUs, features and their 

corresponding split flags are extracted. Based on the normal operation of the encoder, 

if the 64×64 CU structure was split for a given CTU, then features and split decision 

flags corresponding to the second depth level are computed. Again, if the 32×32 CU 

structure is split, features and split flags corresponding to the 16×16 CU sized structure 

are extracted. This process takes place recursively for all CTUs until all CUs in the 

training set have been processed. 

 

 

Figure 3.3: An example of a CTU structure. 

  

For each CTU, 21 response values or split decision are recorded. As the process 

of splitting recursively takes place in a z-scan manner, the split values are stored in 

reverse. Thus, the split at each CU depth is reversed before being used for model 

generation. For instance, given the split flag values for the CTU seen in Figure 3.3 to 

be [0 0 1 0 1 −  0 0 0 0 0 −  0 1 0 0 1 −  0 0 0 0 0 −  1], the first four numbers 

correspond to the split status of top left 16 × 16 blocks followed by split flag of the 

parent 32 × 32 block. Similarly, the next fifteen numbers act in the same way, but for 

the neighboring 32 × 32 blocks within the same CTU. The last number represents the 

split flag at depth 0. If the first block split is taken into account [0 0 1 0 1], reversing 

the split flags involves taking last number representing splitting at depth 1 and placing 

it at the beginning, which results in [1 0 0 1 0]. This is done for all other blocks at depth 

1, while the split flag at depth 0 is placed at the start of the 21 number sequence. 
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To further optimize the approach, the surrounding CTUs are analyzed and if the 

neighboring CUs are found to be mostly split, the current CTU’s CU is also split. This 

is done as a CU is likely to behave in a way similar to that of most of its surrounding. 

Before training the models, for each depth level, FVs from each class are normalized 

and re-sampled to be of almost equal proportions in order to avoid data imbalance, 

which may lead to worsening the classification accuracy. 

 

 

Figure 3.4: Flowchart representing the prediction phase for early CU termination 

scheme. 

 

During the model training phase, at each CU depth level, the output of the first 

phase in terms of the FVs and their corresponding classes is fed into a feature selection 

or extraction algorithm of choice. This results in reducing the feature space. In case the 

feature selection algorithm does not choose any feature variable, all FVs excluding the 

ones related to the surrounding CUs are used as these CUs might not exist to begin 
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with, which depends on the location of the current CTU. Again, dimensionality 

reduction is an optional step and is dependent on the algorithm used. The resultant of 

this process is a CU prediction model for each of the three CU depth levels, which will 

be used during the prediction of the testing sample. 

3.3.2. Prediction phase. After generating the CU prediction model, the testing 

sample, i.e. 90% of a given video sequence, is used to extract the values corresponding 

to the same attributes that are used in the trained model. As illustrated in Figure 3.4, at 

each CU depth level, the FVs are extracted and predicted responses are produced using 

the trained model. Based on the current depth level, the process is repeated for all sub 

CU structures until all CTUs have been processed. 

3.3.3. Dimensionality reduction and classification algorithms. In this 

approach, five different combinations of dimensionality reduction and classification 

algorithms are considered. These approaches were selected after conducting a number 

of experiments and were found to produce better results in comparison. The different 

solutions are summarized in Table 3.1. The details on the operation of each of these 

dimensionality reduction and classification algorithms is explained in Chapter 2.  

Table 3.1: Arrangement of classification solutions for CU early termination. 

 

 

 

 

 

 
3.3.3.1. Features and dimensionality reduction algorithms.  The features 

considered in the CU early termination approach are provided and explained in Table 

3.2. The first 15 features are related to the current CU; whereas, the remaining 55 

features belong to the surrounding CTUs. The total number of attributes initially 

considered for this approach is 70 features. Based on the solution, these attributes were 

either used with no modifications or reduced by either using a feature selection 

algorithm (feature importance based on random forests or stepwise regression) or a 

feature extraction algorithm (PCA). 

Solution Classifier Dimensionality reduction 

Stepwise & Polynomial 
Polynomial networks with 

second order expansion 
Stepwise regression 

PCA & Polynomial 
Polynomial networks with 

second order expansion 
PCA with PoV of 90 

R.F. Select & R.F. Random forest 
Feature importance with random 

forests 

R.F. Random forest Not used 

J48 Decision trees Not used 



50 

 

Table 3.2: Attributes for CU early termination. 

Feature/Attribute Feature count Description 

CU depth 1 Coding depth level 0 (64×64), 1 (32×32), or 2 (16×16) 

Prediction mode 1 Prediction mode 0 (inter-prediction) or 1 (intra-prediction) 

Skip RD cost, 2N×2N RD cost, 

2N×N RD cost, N×2N RD cost, 
N×N RD cost, 2N×uN RD cost, 

2N×dN RD cost, lN×2N RD 

cost, rN×2N RD cost, 2N×2N-
intra RD cost, N×N-intra RD 

cost 

11 

RD cost of choosing one of the PU splitting modes for the current 

CU structure, namely inter-PU modes (Skip, 2N×2N, 2N×N, 
N×2N, N×N, 2N×uN, 2N×dN, lN×2N, and rN×2N), and intra-PU 

modes (2N×2N and N×N) 

CTU-L distortion, CTU-UL 
distortion, CTU-U distortion, 

CTU-UR distortion, CTU-T 

distortion 

5 

Total distortion cost of each of the surrounding CTUs, namely 
Left CTU (CTU-L), Upper Left CTU (CTU-UL), Upper CTU 

(CTU-U), Upper Right CTU (CTU-UR), and the Collocated CTU 

(CTU-T) 

CTU-L avg. depth, CTU-UL 
avg. depth, CTU-U avg. depth, 

CTU-UR avg. depth, CTU-T 

avg. depth 

5 

Average depth of all CUs in each of the surrounding CTUs, 
namely Left CTU (CTU-L), Upper Left CTU (CTU-UL), Upper 

CTU (CTU-U), Upper Right CTU (CTU-UR), and the Collocated 

CTU (CTU-T) 

CTU-L std. depth, CTU-UL std. 
depth, CTU-U std. depth, CTU-

UR std. depth, CTU-T std. depth 

5 

Variance of all CUs in each of the surrounding CTUs, namely 

Left CTU (CTU-L), Upper Left CTU (CTU-UL), Upper CTU 

(CTU-U), Upper Right CTU (CTU-UR), and the Collocated CTU 
(CTU-T) 

CTU-L avg. List0-x, CTU-L 

avg. List0-y, CTU-L std. List0-

x, CTU-L std. List0-y, CTU-L 
avg. List1-x, CTU-L avg. List1-

y, CTU-L std. List1-x, CTU-L 

std. List1-y 

8 

Average and variance of MV information in Left CTU (CTU-L) 

for both horizontal and vertical directions using the reference 

picture lists (List0 and List1) 

CTU-UL avg. List0-x, CTU-UL 

avg. List0-y, CTU-UL std. 

List0-x, CTU-UL std. List0-y, 
CTU-UL avg. List1-x, CTU-UL 

avg. List1-y, CTU-UL std. 

List1-x, CTU-UL std. List1-y 

8 

Average and variance of MV information in Upper Left CTU 

(CTU-UL) for both horizontal and vertical directions using the 

reference picture lists (List0 and List1) 

CTU-U avg. List0-x, CTU-U 

avg. List0-y, CTU-U std. List0-

x, CTU-U std. List0-y, CTU-U 
avg. List1-x, CTU-U avg. List1-

y, CTU-U std. List1-x, CTU-U 

std. List1-y 

8 

Average and variance of MV information in Upper CTU (CTU-U) 

for both horizontal and vertical directions using the reference 

picture lists (List0 and List1) 

CTU-UR avg. List0-x, CTU-UR 
avg. List0-y, CTU-UR std. 

List0-x, CTU-UR std. List0-y, 

CTU-UR avg. List1-x, CTU-UR 
avg. List1-y, CTU-UR std. 

List1-x, CTU-UR std. List1-y 

8 
Average and variance of MV information in Upper Right CTU 
(CTU-UR) for both horizontal and vertical directions using the 

reference picture lists (List0 and List1) 

CTU-T avg. List0-x, CTU-T 

avg. List0-y, CTU-T std. List0-

x, CTU-T std. List0-y, CTU-T 

avg. List1-x, CTU-T avg. List1-
y, CTU-T std. List1-x, CTU-T 

std. List1-y 

8 
Average and variance of MV information in the Collocated CTU 
(CTU-T) for both horizontal and vertical directions using the 

reference picture lists (List0 and List1) 

Merge flag 1 
Merge flag status, indicating if a CU has been predicted using 

MSM PU mode 

Skip flag 1 
Skip flag status, indicating if a CU has been predicted using Skip 

PU mode 
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The result of the dimensionality reduction algorithm is three sets of indices 

corresponding to the retained feature variables, one set per each coding depth level. It 

is important to take note that these indices were also used to reduce the dimensionality 

of FVs during the testing phase. Since a video-dependent approach is used in this work, 

the number of retained FVs achieved when using a feature selection algorithm or the 

projection dimensions selected when using a feature extraction algorithm can vary from 

one video sequence to the other.  

One of the dimensionality reduction approaches utilized is based on the feature 

importance option provided by the usage of a random forest. At the beginning, a random 

forest of 100 trees is grown, where the maximum number of decision splits or branch 

nodes is set to be the initial set of 70 features. The training dataset is sampled for each 

decision tree with replacement and the feature variables selected at random for each 

decision split are chosen without replacement within the same decision tree. The 

importance of each of these features in predicting the correct classification of a test 

instance from the OOB data is computed and used to select the features whose raw 

importance score makes up 80% of the total importance score. The OOB data is the set 

of instances that were left out during the training process of a given tree in the random 

forest.  

The second feature selection approach used is stepwise regression, whose 

operation is explained in Chapter 2. At first, one feature variable is selected and its 

correlation with the split decision is computed. Then, another feature variable is added, 

whose correlation with the split decision is also computed. The significance of adding 

the second feature variable is assessed at a level of significance of 0.05. If the added 

feature variable is found significant, then it is retained, otherwise it is removed from 

the list of variables. The algorithm revisits the features included in the retained features 

list, the first feature in this case, and reassess the significance of keeping it along with 

the newly added feature. The algorithm continues adding and removing feature 

variables in the same manner until all variables have been examined. 

The final dimensionality reduction algorithm considered is the principle 

component analysis approach, which is a feature extraction algorithm. Here, an 

orthogonal transformation is used to convert the features into principle components 

based on maximizing the feature variance. The number of principle components 
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retained depends on the chosen PoV explained, which is 90% in this work. Again, the 

PCA is applied to the training dataset at 64×64, 32×32 and 16×16 coding levels. The 

resulting principle components are then stored and used for reducing the test data set. 

3.3.3.2. Classification algorithms.  Three different classifiers were used for 

early CU decision termination. The first involves applying the J48 algorithm, which is 

an implementation of C4.5 decision trees algorithm. The features proposed in [45] were 

used to generate the classification models. The J48 algorithm used is the one built in 

WEKA. The chosen confidence factor is 0.25, while the minimum number of instances 

per leaf was selected to be 2. 

The second algorithm approach proposed involves using a random forest, where 

100 trees are grown and the maximal number of decision splits or branch nodes is the 

square root of the number of retained feature variables. Based on the retained features, 

the training dataset is sampled for each decision tree with replacement. The variables 

selected at random for each decision split are then chosen within the same decision tree. 

As the purpose of growing the trees is classification, only one observation or class label 

can be seen per tree leaf. No pruning is applied to any of the grown trees as to avoid 

worsening the classification accuracy. 

The last algorithm used involves polynomial networks with second order 

expansion. The Reduced Multivariate Polynomial Model with second degree of 

approximation presented in Chapter 2 is used for this purpose to perform second order 

polynomial classification. 

3.4. Early PU Termination Scheme 

The second set of algorithms implements a video sequence-dependent approach 

for early PU termination, where a PU mode flag is computed at different CU depth 

levels for each CTU. This PU mode flag allows the encoder to make an early decision 

in terms of whether, at a given coding depth level, the PU mode is of 2N×2N 

dimensionality or less. In other words, the flag indicates if the RDO process should run 

to evaluate all PU modes for a specific CU or to just consider PU modes of size 2N×2N. 

The PU mode flag is calculated at CU depth level 0, CU depth level 1, CU depth level 

2, and CU depth level 3. As this problem is viewed as a binary classification problem, 
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the class labels considered are of the values 0 (consider PU modes of size less than 

2N×2N) or 1 (consider PU modes of size 2N×2N) at a given CU depth level.  

The reason for considering these two class labels is due to noticing that 

regardless of the video content of a given sequence, most of the time, either Skip PU 

mode, 2N×2N inter PU mode, or 2N×2N intra PU mode is chosen for any CU. 

Therefore, despite having around 11 different PU modes to consider at each CU depth 

level excluding CU depth level 3, only the abovementioned class labels were taken into 

account. Additionally, increasing the number of classes was seen to negatively affect 

the classification accuracy, leading to deteriorating the video’s quality and increasing 

the bitrate consumption. Both inter-PU and intra-PU modes were considered in this 

scheme.  

3.4.1. Training phase. Two phases are involved in the training of the 

classification model: the data extraction stage and the model training stage, as seen in 

Figure 3.5. During the first phase, data collected from running the unmodified encoder 

on the training sample is used, which is the first 10% of a given video sequence.  

As indicated in Figure 3.5(a), at each depth level, the FVs are read, to which the 

PU mode flags are appended. In other words, for 64×64 sized CUs, features and their 

corresponding PU mode flags are extracted. Based on the normal operation of the 

encoder, if the 64×64 CU structure was split into sub CUs for a given CTU, then 

features and PU mode decision flags corresponding to the second depth level are 

computed. This process is recursively repeated for 16×16 and 8×8 sized CUs for all 

CTUs until all CUs in the training set have been processed. 

Similar to the early CU termination algorithm, before training the models, FVs 

from each class are normalized and re-sampled to be of almost equal proportions in 

order to avoid data imbalance. No feature space reduction took place before generating 

the classification models. The resultant of this process is a PU mode prediction model 

for each of the four CU depth levels, which is used during the prediction of the testing 

sample. 
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Figure 3.5: Flowchart representing the training phase for early PU termination scheme 

including (a) Data collection phase and (b) Model training phase. 

 

3.4.2. Prediction phase. After generating the PU mode prediction model, the 

testing sample, i.e. 90% of a given video sequence, is used to extract the values 

corresponding to the same attributes that were used in the trained model. As illustrated 

in Figure 3.6, at each coding depth level, the FVs are extracted and predicted responses 

are produced using the trained model. Based on the current depth level, the process is 

repeated for each of the sub CU structures until all CTUs have been processed. 
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Figure 3.6: Flowchart representing the prediction phase for early PU termination 

scheme. 

 

3.4.3. Dimensionality reduction and classification algorithms. In this 

approach, two different classification algorithms are taken into account. Unlike in early 

CU termination, dimensionality reduction was not used. These approaches were 

selected after conducting a number of experiments and were found to produce better 

results in comparison. The different solutions are summarized in Table 3.3. The details 

on the operation of the classification algorithms is given in Chapter 2.  
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Table 3.3: Arrangement of classification solutions for PU early termination. 

 

 

 

 

 
 

3.4.3.1. Features.  The features considered in the PU early termination approach 

are provided and explained in Table 3.4. The total number of attributes initially 

considered for this approach is 6 features. Regardless of the approach, these attributes 

were used without applying any dimensionality reduction techniques. 

Table 3.4: Attributes for PU early termination. 

Feature/Attribute Feature count Description 

Skip RD cost 1 
RD cost of choosing Skip PU splitting mode for the current CU 
structure 

2N×2N RD cost 1 
RD cost of choosing 2N×2N inter-PU splitting mode for the 

current CU structure 

2N×2N Intra RD cost 1 
RD cost of choosing 2N×2N intra-PU splitting mode for the 

current CU structure 

N×N Intra RD cost 1 
RD cost of choosing N×N intra-PU mode for the current CU 
structure 

Best RD cost 1 
Lowest RD cost among Skip PU mode, 2N×2N inter-PU mode, 

2N×2N intra-PU mode, and N×N intra-PU mode 

Upper CU div 1 Value indicating if the CU in the upper CU depth level was split 

 

3.4.3.2. Classification algorithms.  Two different classifiers were used for early 

PU decision termination. The first involves applying the J48 algorithm, which is an 

implementation of C4.5 decision trees algorithm. The features proposed in [45] were 

used to generate the classification models. The J48 algorithm used is the one built in 

WEKA. The chosen confidence factor is 0.25, while the minimum number of instances 

per leaf was selected to be 2. 

The second approach proposed involves using a random forest, where 100 trees 

are grown and the maximal number of decision splits or branch nodes is the square root 

of the number of retained feature variables. Based on the retained features, the training 

dataset is sampled for each decision tree with replacement. The variables selected at 

random for each decision split are then chosen within the same decision tree. As the 

purpose of growing the trees is classification, only one observation or class label can 

Solution Classifier Dimensionality reduction 

R.F. Random forest Not used 

J48 Decision trees Not used 



57 

 

be seen per tree leaf. No pruning is applied to any of the grown trees as to avoid 

worsening the classification accuracy. 

3.5. Early Joint Termination Scheme 

The final scheme proposed implements a video sequence-dependent approach 

for both early CU and PU termination. It involves combining the aforementioned 

schemes to limit the RDO process. Three approaches were selected after conducting a 

number of experiments and were found to produce better results in comparison. The 

different solutions are summarized in Table 3.5. Based on the targeted structures, the 

operation of the selected algorithms is the same as that described in Sections 3.2 and 

3.3. 

Table 3.5: Arrangement of classification solutions for CU & PU early termination. 

 

 

 

  

 

 

 

  

Solution Classifier Dimensionality reduction 

R.F. 
Random forest for CU & 

PU early termination 
Not used 

J48 
Decision trees for CU & PU 

early termination 
Not used 

R.F. & J48 

Random forest for CU early 

termination & Decision 
trees for PU early 

termination 

Not used 
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Chapter 4. Experimental Setup   

 

This chapter summarizes the experimental setup, including the set of 

configurations used to achieve the experimental results.  

4.1. Testing Configurations 

The proposed solutions were implemented using the HM reference software 

version 13.0 [47] in order to encode the video sequences used for both training and 

testing purposes. The baseline profile defined as the RA temporal configuration in the 

Joint Collaborative Team on Video Coding (JCT-VC) document containing the 

recommended common test conditions (CTCs) [48] was utilized to encode all the 

videos, where the QP values were set to 22, 27, 32, and 37. A total of 17 video 

sequences are used as reported in Table 4.1, where a mixture of 8 and 10 bit coding is 

considered. 

Table 4.1: Video sequences used for the early termination approaches. 

Class category Video sequence 
Frames 

encoded 
Bit depth Frame rate Resolution 

Class D 

RaceHorses 100 8 30 384×192 

BlowingBubbles 100 8 50 384×192 

BQSquare 100 8 60 384×192 

BasketballPass 100 8 50 384×192 

Class C 

RaceHorses 100 8 30 832×448 

PartyScene 100 8 50 832×448 

BQMall 100 8 60 832×448 

BasketballDrill 100 8 50 832×448 

Class B 

ParkScene 100 8 24 1920×1024 

Kimono1 100 8 24 1920×1024 

Cactus 100 8 50 1920×1024 

BQTerrace 100 8 60 1920×1024 

BasketballDrive 100 8 50 1920×1024 

Class A 

Traffic 100 8 30 2560×1600 

PeopleOnStreet 100 8 30 2560×1600 

NebutaFestival 100 10 60 2560×1600 

SteamLocomotiveTrain 100 10 60 2560×1600 
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As per the JCT-VC document, the spatial resolutions that were used to obtain 

the experimental results are of Class A (2560×1600), Class B (1920×1080 pixels), Class 

C (832×480 pixels), and Class D (416×240 pixels). The number of frames to be 

encoded were set to be 100. It is important to note that all the video sequences 

underwent pre-processing, which involved cropping them such that the spatial 

resolution of each is a multiple of 64. This was crucial for the suggested methodologies 

to work. The experiments were conducted on a PC with an Intel Core i7-4770S, 

3.10GHz CPU and a 16-GB DDR3 RAM installed. In addition to the HM software used 

for encoding, the MATLAB software version 2015a [49] was used to both train a given 

model and predict responses based on the data available in the testing sample. In order 

to use the J48 decision trees’ implementation provided by WEKA [46], an efficient 

interface built by Dr. Sunghoon Lee, an Assistant Professor in the College of 

Information and Computer Science at the University of Massachusetts at Amherst, was 

used, which allows using WEKA in MATLAB. All schemes were first separately 

evaluated and then, a selection of them were jointly implemented.  
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Chapter 5. Results and Analysis 

 

In this chapter, the experimental results achieved through the implementation 

of the proposed schemes are presented. Furthermore, the performance evaluation of 

using those solutions are discussed. All solutions are evaluated in terms of BD-rate, 

BD-PSNR, excessive bitrate, CCR, model generation time and decision accuracy. The 

results for each solution based on the partitioning structure it is applied to are presented 

from worse to best in terms of BD-rate and BD-PSNR. Clearly, a better encoding 

efficiency is acquired as the BD-rate decreases and the BD-PSNR increases. A negative 

BD-rate indicates that less bits are needed during the compression process, while a 

positive BD-PSNR specifies higher image quality. Furthermore, the results obtained 

are analysed in detail and compared to that presented in the literature. 

5.1. Performance Metrics 

As previously mentioned, the compression efficiency is quantified in terms of 

BD-rate and BD-PSNR, whose computation is explained at the end of Chapter 2. 

Moreover, the coding time saving acquired by using the proposed solutions are 

computed and compared with the corresponding times obtained by running the 

unmodified HEVC encoder. Lastly, the accuracy of the proposed classification systems 

is presented along with the model generation time and excessive coding bitrate. 

In order to compute the encoding time savings and compare the results to that 

presented in the literature, two different equations are considered. The encoding time 

savings were computed after applying the predictive model generated by a proposed 

solution. The first formula presents the CCR achieved by a particular algorithm, which 

is given by 

 𝐶𝐶𝑅 (%) =  
𝑇𝑖𝑚𝑒𝑟𝑒𝑓 − 𝑇𝑖𝑚𝑒𝑝𝑟𝑜𝑝

𝑇𝑖𝑚𝑒𝑟𝑒𝑓
 ×  100, (25) 

where 𝑇𝑖𝑚𝑒𝑟𝑒𝑓 denotes the time taken to encode a specific video sequence using the 

HEVC model encoder and 𝑇𝑖𝑚𝑒𝑝𝑟𝑜𝑝 represents the time taken to encode the same video 

sequence using the HM software that utilizes the proposed solution. Using the variables 

given in (25), the second time saving equation is given by 
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 ∆ 𝑇𝑖𝑚𝑒 (%) =  
𝑇𝑖𝑚𝑒𝑝𝑟𝑜𝑝 − 𝑇𝑖𝑚𝑒𝑟𝑒𝑓

𝑇𝑖𝑚𝑒𝑝𝑟𝑜𝑝
 ×  100. (26) 

In order to compute the percentage of the time taken for a prediction model to 

be generated, (27) is used. Here, the total time taken to encode a specific video sequence 

using a proposed solution was added to the model generation and total prediction time. 

The model generation time was divided by this summation, resulting in 

 𝑇𝑖𝑚𝑒𝑚𝑜𝑑𝑒𝑙_𝑡(%) =  
𝑇𝑖𝑚𝑒𝑚𝑜𝑑𝑒𝑙

𝑇𝑖𝑚𝑒𝑝𝑟𝑜𝑝 + 𝑇𝑖𝑚𝑒𝑚𝑜𝑑𝑒𝑙 + 𝑇𝑖𝑚𝑒𝑝𝑟𝑒𝑑
 ×  100, (27) 

where 𝑇𝑖𝑚𝑒𝑚𝑜𝑑𝑒𝑙 denotes the model generation time, 𝑇𝑖𝑚𝑒𝑝𝑟𝑒𝑑 the total prediction 

time and 𝑇𝑖𝑚𝑒𝑝𝑟𝑜𝑝 the time taken to encode a video sequence using the proposed 

solution. 

5.2. Experimental Results 

As mentioned in Chapter 4, a number of schemes were proposed with the aim 

of optimizing the HEVC encoding process. The first five algorithms, whose results are 

presented, utilize the coding tree to enhance the encoding process. These algorithms 

involve using J48 decision trees, random forests and a second order polynomial 

classifier along with different dimensionality reduction techniques. The second set of 

algorithms improves the coding efficiency by applying J48 decision trees and random 

forests algorithms on PUs. The last solution proposed combines both approaches, which 

led to using decision trees and random forests to generate three early termination 

algorithms for both CUs and PUs. 

5.2.1. CU early termination algorithms. The results obtained by 

implementing a set of five machine learning algorithms to enhance the CU size 

selection are illustrated. These results are given in terms of BD-rate, BD-PSNR, 

excessive bitrate, computation complexity savings, model generation time, feature 

selection or extraction, and decision accuracy. 

5.2.1.1. PCA with PoV of 90% and second order polynomial classifier.  Tables 

5.1 and 5.2 show the time savings and excessive bitrate per each QP for each of the test 

sequences acquired after applying PCA with PoV of 90% to select principal 

components to be used by the second order polynomial classifier, respectively. As the 
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QP value increases, it is observed that, on average, less coding bits and time are needed 

to encode a given video sequence.  

Table 5.1: Time savings results per each QP using PCA with PoV of 90% and second 

order polynomial classifier for early CU termination. 

Video Sequence 
22 27 32 37 

CCR 

(%) 

∆Time 

(%) 

CCR 

(%) 

∆Time 

(%) 

CCR 

(%) 

∆Time 

(%) 

CCR 

(%) 

∆Time 

(%) 

RaceHorses (384×192) 14.7 -17.3 16.3 -19.4 17.9 -21.8 22.5 -29.0 

BlowingBubbles (384×192) 23.5 -30.7 21.9 -28.0 36.4 -57.2 42.9 -75.1 

BQSquare (384×192) 20.9 -26.4 33.3 -49.8 42.9 -75.2 50.8 -103.2 

BasketballPass (384×192) 20.7 -26.1 30.5 -43.9 34.0 -51.6 41.1 -69.7 

RaceHorses (832×448) 24.9 -33.2 19.8 -24.7 28.7 -40.2 38.0 -61.2 

PartyScene (832×448) 19.8 -24.7 27.1 -37.3 36.5 -57.5 43.6 -77.3 

BQMall (832×448) 23.7 -31.1 28.1 -39.1 35.5 -55.1 41.2 -70.1 

BasketballDrill (832×448) 30.0 -42.9 33.5 -50.3 39.9 -66.3 48.5 -94.1 

ParkScene (1920×1024) 28.6 -40.0 41.1 -69.9 51.0 -104.1 57.2 -133.4 

Kimono1 (1920×1024) 34.0 -51.4 41.6 -71.3 45.6 -83.7 49.6 -98.2 

Cactus (1920×1024) 26.9 -36.8 41.1 -69.8 45.4 -83.2 53.6 -115.6 

BQTerrace (1920×1024) 24.1 -31.7 43.1 -75.8 58.9 -143.5 63.9 -177.1 

BasketballDrive (1920×1024) 20.7 -26.1 37.9 -61.1 42.9 -75.2 50.7 -102.9 

Traffic (2560×1600) 34.8 -53.4 44.3 -79.5 51.4 -105.8 58.7 -142.3 

PeopleOnStreet (2560×1600) 25.5 -34.2 25.0 -33.2 23.1 -30.0 33.5 -50.4 

NebutaFestival (2560×1600) 53.0 -112.6 45.8 -84.6 36.0 -56.3 54.3 -118.9 

SteamLocomotiveTrain (2560×1600) 46.0 -85.1 48.2 -93.2 57.6 -135.9 63.3 -172.4 

Average 27.7 -41.4 34.0 -54.8 40.2 -73.1 47.8 -99.5 

 

Table 5.2: Excessive bitrate results per each QP using PCA with PoV of 90% and 

second order polynomial classifier for early CU termination. 

Video Sequence 
Excessive Bitrate (%) 

QP = 22 QP = 27 QP = 32 QP = 37 

RaceHorses (384×192) 1.06 0.43 -0.05 -0.44 

BlowingBubbles (384×192) 0.25 -0.18 -0.39 -0.40 

BQSquare (384×192) -0.19 -0.41 -0.52 -0.15 

BasketballPass (384×192) 0.56 1.47 0.22 0.98 

RaceHorses (832×448) 1.07 0.27 0.99 0.33 

PartyScene (832×448) 0.64 0.22 -0.07 -0.50 

BQMall (832×448) 0.52 0.70 0.36 0.38 

BasketballDrill (832×448) 1.01 0.74 0.53 0.61 

ParkScene (1920×1024) 0.27 -0.09 -0.38 -0.47 

Kimono1 (1920×1024) 0.15 0.35 0.06 -0.01 

Cactus (1920×1024) -0.17 -0.02 0.20 -0.07 

BQTerrace (1920×1024) -0.25 -0.72 -0.84 -0.93 

BasketballDrive (1920×1024) -0.38 0.14 0.29 0.37 

Traffic (2560×1600) -0.16 0.06 0.11 -0.26 

PeopleOnStreet (2560×1600) 2.71 1.89 2.16 0.29 

NebutaFestival (2560×1600) 0.04 0.28 -0.05 -0.09 

SteamLocomo-tiveTrain 

(2560×1600) 
0.09 -0.22 0.02 -0.25 

Average 0.42 0.29 0.16 -0.04 
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Overall, a CCR of 37.5% is attained at the cost of introducing performance 

losses of 1.355% and -0.053 dB in terms BD-rate and BD-PSNR, respectively. The 

results imply that, as the spatial resolution increases, more complexity reduction is 

accomplished. These results can be observed in Table 5.3.  

Table 5.3: BD-rate, BD-PSNR, avg. excessive bitrate, and time savings results using 

PCA with PoV of 90% and second order polynomial classifier for early CU 

termination. 

Video Sequence 
BD-rate 

(%) 

BD-

PSNR 

(dB) 

Exc. 

Bitrate 

(%) 

CCR 

(%) 

∆Time 

(%) 

BD-

rate/CCR 

(%) 

RaceHorses (384×192) 1.420 -0.068 0.25 17.8 -21.9 7.959 

BlowingBubbles (384×192) 0.874 -0.035 -0.18 31.2 -47.8 2.805 

BQSquare (384×192) 0.751 -0.035 -0.32 37.0 -63.7 2.032 

BasketballPass (384×192) 2.454 -0.112 0.81 31.6 -47.8 7.770 

Average 1.375 -0.063 0.14 29.4 -45.3 5.141 

RaceHorses (832×448) 2.094 -0.083 0.67 27.8 -39.8 7.522 

PartyScene (832×448) 1.452 -0.067 0.07 31.8 -49.2 4.570 

BQMall (832×448) 1.835 -0.076 0.49 32.1 -48.8 5.712 

BasketballDrill (832×448) 1.739 -0.071 0.72 38.0 -63.4 4.580 

Average 1.780 -0.074 0.49 32.4 -50.3 5.596 

ParkScene (1920×1024) 1.293 -0.041 -0.17 44.5 -86.8 2.908 

Kimono1 (1920×1024) 0.761 -0.025 0.14 42.7 -76.2 1.783 

Cactus (1920×1024) 1.103 -0.024 -0.02 41.8 -76.4 2.641 

BQTerrace (1920×1024) 0.906 -0.017 -0.69 47.5 -107.0 1.906 

BasketballDrive (1920×1024) 1.169 -0.026 0.11 38.1 -66.3 3.072 

Average 1.046 -0.027 -0.13 42.9 -82.5 2.462 

Traffic (2560×1600) 1.516 -0.052 -0.06 47.3 -95.2 3.205 

PeopleOnStreet (2560×1600) 3.724 -0.161 1.76 26.8 -37.0 13.919 

NebutaFestival (2560×1600) 0.041 0.000 0.05 47.3 -93.1 0.087 

SteamLocomotiveTrain 

(2560×1600) 
-0.094 0.000 -0.09 53.8 -121.6 -0.174 

Average 1.297 -0.053 0.41 43.8 -86.7 4.259 

Overall Average 1.355 -0.053 0.208 37.5 -67.2 4.253 

 

Table 5.4 summarizes the percentage of the time taken for the prediction model 

to be generated. This information is important as the proposed solution is a sequence-

dependent one. The number of principal components retained when using PCA with a 

PoV value of 90% is given in Table 5.5. This information is not easy to interpret in 

comparison to simply selecting features. The reason behind this is that a principal 

component can be seen as the combination of different features selected with the aim 

of maximizing the feature variance. On average, 26 principal components are selected 

on which a data sample is projected. 
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Table 5.4: Model generation time to encoding time using modified encoder ratios 

using PCA with PoV of 90% and second order polynomial classifier for early CU 

termination. 

Video Sequence 
𝑻𝒊𝒎𝒆𝒎𝒐𝒅𝒆𝒍_𝒕 (%) 

QP = 22 QP = 27 QP = 32 QP = 37 

RaceHorses (384×192) 0.07 0.10 0.09 0.09 

BlowingBubbles (384×192) 0.05 0.06 0.07 0.11 

BQSquare (384×192) 0.04 0.07 0.10 0.11 

BasketballPass (384×192) 0.06 0.05 0.06 0.07 

Average 0.05 0.07 0.08 0.09 

RaceHorses (832×448) 0.03 0.04 0.05 0.06 

PartyScene (832×448) 0.04 0.05 0.07 0.08 

BQMall (832×448) 0.04 0.06 0.07 0.07 

BasketballDrill (832×448) 0.04 0.05 0.07 0.08 

Average 0.04 0.05 0.07 0.07 

ParkScene (1920×1024) 0.06 0.07 0.09 0.13 

Kimono1 (1920×1024) 0.04 0.07 0.07 0.08 

Cactus (1920×1024) 0.06 0.07 0.08 0.11 

BQTerrace (1920×1024) 0.06 0.10 0.13 0.15 

BasketballDrive (1920×1024) 0.05 0.06 0.07 0.09 

Average 0.05 0.07 0.09 0.11 

Traffic (2560×1600) 0.21 5.10 11.90 0.20 

PeopleOnStreet (2560×1600) 4.15 5.74 4.94 7.34 

NebutaFestival (2560×1600) 2.83 0.06 6.51 12.17 

SteamLocomotiveTrain (2560×1600) 4.38 7.15 8.89 0.60 

Average 2.90 4.51 8.06 5.08 

Overall Average 0.718 1.112 1.956 1.267 

 

Table 5.5: Retained principal components per CU size using PCA with PoV of 90% 

and second order polynomial classifier for early CU termination. 

Video Sequence 64×64 32×32 16×16 

RaceHorses (384×192) 8 24 25 

BlowingBubbles (384×192) 20 26 26 

BQSquare (384×192) 20 22 22 

BasketballPass (384×192) 19 20 21 

Average 16 23 23 

RaceHorses (832×448) 19 30 30 

PartyScene (832×448) 29 30 30 

BQMall (832×448) 27 29 29 

BasketballDrill (832×448) 24 24 25 

Average 24 28 28 

ParkScene (1920×1024) 29 31 31 

Kimono1 (1920×1024) 29 29 27 

Cactus (1920×1024) 27 28 29 

BQTerrace (1920×1024) 31 31 32 

BasketballDrive (1920×1024) 29 29 29 

Average 29 29 29 

Traffic (2560×1600) 22 23 24 

PeopleOnStreet (2560×1600) 30 34 34 

NebutaFestival (2560×1600) 29 30 31 

SteamLocomotiveTrain (2560×1600) 28 29 30 

Average 27 29 29 

Overall Average 24 27 27 
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The decision accuracies achieved by using the proposed algorithm can be seen 

in Table 5.6. It is important to understand that the resultant CU size predictions are not 

used blindly by the modified encoder. Some checking mechanism takes place by the 

encoder when the predicted CU split flag indicates that split should take place at a given 

coding depth. A classification rate of around 83.0% is achieved by the proposed 

scheme. 

Table 5.6: Classification rates per each CU size using PCA with PoV of 90% and 

second order polynomial classifier for early CU termination. 

Video Sequence 64×64 32×32 16×16 True Overall 

RaceHorses (384×192) 51.5 72.8 74.0 75.0 

BlowingBubbles (384×192) 65.0 80.6 83.0 82.4 

BQSquare (384×192) 76.4 87.2 87.4 86.5 

BasketballPass (384×192) 81.4 83.5 83.0 82.9 

Average 68.5 81.0 81.8 81.7 

RaceHorses (832×448) 75.6 75.6 80.2 80.2 

PartyScene (832×448) 86.2 85.3 85.7 85.1 

BQMall (832×448) 86.8 80.9 81.0 80.5 

BasketballDrill (832×448) 83.1 84.6 86.0 85.0 

Average 82.9 81.6 83.2 82.7 

ParkScene (1920×1024) 84.6 85.5 88.1 86.2 

Kimono1 (1920×1024) 72.6 74.7 71.5 77.3 

Cactus (1920×1024) 86.4 84.4 84.5 83.9 

BQTerrace (1920×1024) 87.0 87.4 89.0 87.6 

BasketballDrive (1920×1024) 84.7 81.5 80.9 80.3 

Average 83.0 82.7 82.8 83.0 

Traffic (2560×1600) 84.8 87.9 90.5 88.7 

PeopleOnStreet (2560×1600) 88.1 79.6 78.7 79.2 

NebutaFestival (2560×1600) 60.2 74.8 82.9 82.1 

SteamLocomotiveTrain (2560×1600) 79.8 86.4 88.0 88.0 

Average 78.2 82.2 85.0 84.5 

Overall Average 78.5 81.9 83.2 83.0 

 

5.2.1.2. Stepwise regression and second order polynomial classifier.  Tables 

5.7 and 5.8 show the time savings and excessive bitrate per each QP for each of the test 

sequences acquired after applying stepwise regression to select the features to be used 

by the second order polynomial classifier, respectively. As the QP value increases, it is 

evident that, on average, less coding bits and time are required to encode a given video 

sequence. Overall, a CCR of 39.1% is attained at the cost of introducing performance 

losses of 1.339% and -0.054 dB in terms BD-rate and BD-PSNR, respectively. The 

results imply that, as the spatial resolution increases, more complexity reduction is 

accomplished, while increasing the BD-PSNR. These results can be observed in Table 

5.9. 
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Table 5.7: Time savings results per each QP using stepwise regression and second 

order polynomial classifier for early CU termination. 

Video Sequence 
22 27 32 37 

CCR 

(%) 

∆Time 

(%) 

CCR 

(%) 

∆Time 

(%) 

CCR 

(%) 

∆Time 

(%) 

CCR 

(%) 

∆Time 

(%) 

RaceHorses (384×192) 19.4 -24.1 22.4 -28.9 25.5 -34.1 33.6 -50.7 

BlowingBubbles (384×192) 23.5 -30.8 30.5 -44.0 36.6 -57.8 44.3 -79.5 

BQSquare (384×192) 21.1 -26.7 34.4 -52.4 43.4 -76.4 48.6 -94.4 

BasketballPass (384×192) 28.9 -40.7 30.8 -44.4 37.3 -59.3 42.3 -73.3 

RaceHorses (832×448) 20.3 -25.5 27.4 -37.7 33.7 -50.9 40.0 -66.8 

PartyScene (832×448) 23.0 -29.9 29.3 -41.5 36.2 -56.7 41.2 -70.1 

BQMall (832×448) 24.3 -32.2 34.2 -52.1 35.8 -55.7 40.1 -67.1 

BasketballDrill (832×448) 36.3 -57.0 34.8 -53.4 39.8 -66.1 47.1 -88.9 

ParkScene (1920×1024) 29.0 -40.8 38.8 -63.3 47.5 -90.6 57.4 -134.5 

Kimono1 (1920×1024) 32.2 -47.5 40.6 -68.3 43.6 -77.2 49.8 -99.1 

Cactus (1920×1024) 43.4 -76.8 37.5 -60.1 46.4 -86.6 59.2 -145.1 

BQTerrace (1920×1024) 25.5 -34.2 43.3 -76.3 57.6 -135.8 62.9 -169.5 

BasketballDrive (1920×1024) 28.8 -40.5 37.5 -59.9 43.7 -77.7 48.9 -95.8 

Traffic (2560×1600) 36.7 -58.1 47.0 -88.7 52.5 -110.3 53.1 -113.2 

PeopleOnStreet (2560×1600) 20.2 -25.2 23.9 -31.4 27.0 -36.9 43.7 -77.5 

NebutaFestival (2560×1600) 54.1 -118.1 46.7 -87.5 46.2 -85.8 54.0 -117.2 

SteamLocomotiveTrain (2560×1600) 46.1 -85.6 48.1 -92.6 57.5 -135.8 62.1 -163.7 

Average 30.2 -46.7 35.7 -57.8 41.8 -76.1 48.7 -100.4 

  

Table 5.8: Excessive bitrate results per each QP using stepwise regression and second 

order polynomial classifier for early CU termination. 

Video Sequence 
Excessive Bitrate (%) 

QP = 22 QP = 27 QP = 32 QP = 37 

RaceHorses (384×192) 0.63 0.35 -0.60 -0.93 

BlowingBubbles (384×192) -0.27 0.42 0.44 -0.47 

BQSquare (384×192) -0.13 -0.25 0.48 0.19 

BasketballPass (384×192) 1.98 1.86 3.02 0.08 

RaceHorses (832×448) 0.69 0.05 -0.06 -0.83 

PartyScene (832×448) 0.43 0.09 -0.28 -0.61 

BQMall (832×448) 0.49 0.54 0.05 -0.19 

BasketballDrill (832×448) 0.70 0.71 0.29 0.02 

ParkScene (1920×1024) -0.30 -0.31 -0.66 -0.71 

Kimono1 (1920×1024) 0.10 0.23 -0.19 -0.16 

Cactus (1920×1024) -0.35 -0.06 -0.16 -0.49 

BQTerrace (1920×1024) -0.50 -0.83 -0.86 -0.84 

BasketballDrive (1920×1024) -0.15 0.50 0.50 0.38 

Traffic (2560×1600) -0.65 -0.45 -0.50 -0.78 

PeopleOnStreet (2560×1600) 0.87 0.14 0.09 -0.11 

NebutaFestival (2560×1600) 0.03 0.27 0.16 -0.36 

SteamLocomo-tiveTrain 

(2560×1600) 
0.01 -0.22 0.14 -0.09 

Average 0.21 0.18 0.11 -0.35 
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Table 5.9: BD-rate, BD-PSNR, avg. excessive bitrate, and time savings results using 

stepwise regression and second order polynomial classifier for early CU termination. 

Video Sequence 
BD-rate 

(%) 

BD-

PSNR 

(dB) 

Exc. 

Bitrate 

(%) 

CCR 

(%) 

∆Time 

(%) 

BD-

rate/CCR 

(%) 

RaceHorses (384×192) 2.575 -0.124 -0.14 25.2 -34.5 10.202 

BlowingBubbles (384×192) 1.840 -0.073 0.03 33.7 -53.0 5.452 

BQSquare (384×192) 1.229 -0.055 0.07 36.8 -62.5 3.337 

BasketballPass (384×192) 4.338 -0.211 1.74 34.8 -54.4 12.461 

Average 2.495 -0.116 0.43 32.7 -51.1 7.863 

RaceHorses (832×448) 1.740 -0.069 -0.04 30.4 -45.2 5.731 

PartyScene (832×448) 1.036 -0.048 -0.09 32.4 -49.5 3.194 

BQMall (832×448) 1.944 -0.082 0.22 33.6 -51.8 5.781 

BasketballDrill (832×448) 1.585 -0.065 0.43 39.5 -66.4 4.012 

Average 1.576 -0.066 0.13 34.0 -53.2 4.680 

ParkScene (1920×1024) 0.828 -0.027 -0.50 43.2 -82.3 1.919 

Kimono1 (1920×1024) 0.427 -0.015 -0.01 41.5 -73.0 1.028 

Cactus (1920×1024) 0.806 -0.018 -0.27 46.6 -92.1 1.728 

BQTerrace (1920×1024) 0.749 -0.015 -0.76 47.3 -103.9 1.583 

BasketballDrive (1920×1024) 1.597 -0.035 0.31 39.7 -68.5 4.018 

Average 0.881 -0.022 -0.24 43.7 -84.0 2.055 

Traffic (2560×1600) 0.657 -0.023 -0.60 47.3 -92.6 1.388 

PeopleOnStreet (2560×1600) 1.348 -0.060 0.25 28.7 -42.7 4.704 

NebutaFestival (2560×1600) 0.105 0.000 0.03 50.2 -102.1 0.209 

SteamLocomotiveTrain 

(2560×1600) 
-0.042 0.000 -0.04 53.4 -119.4 -0.079 

Average 0.517 -0.021 -0.09 44.9 -89.2 1.556 

Overall Average 1.339 -0.054 0.038 39.1 -70.2 3.922 

 

Table 5.10: Model generation time to encoding time using modified encoder ratios 

using stepwise regression and second order polynomial classifier for early CU 

termination. 

Video Sequence 
𝑻𝒊𝒎𝒆𝒎𝒐𝒅𝒆𝒍_𝒕 (%) 

QP = 22 QP = 27 QP = 32 QP = 37 

RaceHorses (384×192) 0.08 0.12 0.11 0.11 

BlowingBubbles (384×192) 0.20 0.08 0.11 0.11 

BQSquare (384×192) 0.12 0.16 0.17 0.20 

BasketballPass (384×192) 0.10 0.14 0.09 0.15 

Average 0.13 0.12 0.12 0.14 

RaceHorses (832×448) 0.09 0.10 0.10 0.10 

PartyScene (832×448) 0.23 0.16 0.21 0.16 

BQMall (832×448) 0.11 0.17 0.13 0.13 

BasketballDrill (832×448) 0.10 0.08 0.13 0.09 

Average 0.13 0.13 0.14 0.12 

ParkScene (1920×1024) 0.15 2.23 0.24 0.26 

Kimono1 (1920×1024) 0.05 0.20 0.11 0.10 

Cactus (1920×1024) 0.26 0.19 0.15 0.39 

BQTerrace (1920×1024) 0.34 0.16 0.27 0.43 

BasketballDrive (1920×1024) 0.13 0.20 0.05 0.07 

Average 0.19 0.60 0.17 0.25 

Traffic (2560×1600) 1.39 0.26 1.76 0.21 

PeopleOnStreet (2560×1600) 0.19 1.02 0.30 0.20 

NebutaFestival (2560×1600) 0.08 0.07 0.14 0.10 

SteamLocomotiveTrain (2560×1600) 0.11 0.11 0.14 0.13 

Average 0.44 0.37 0.58 0.16 

Overall Average 0.219 0.321 0.249 0.172 
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Table 5.10 summarizes the time percentage taken for the prediction model to be 

generated. This information is important as the proposed solution is a sequence-

dependent one.  

Table 5.11: Selected features per CU size using stepwise regression and second order 

polynomial classifier for early CU termination. 

Video Sequence 64×64 32×32 16×16 

RaceHorses (384×192) 10 11 15 

BlowingBubbles (384×192) 4 13 12 

BQSquare (384×192) 7 17 17 

BasketballPass (384×192) 9 15 13 

Average 7 14 14 

RaceHorses (832×448) 7 14 19 

PartyScene (832×448) 14 27 28 

BQMall (832×448) 14 21 22 

BasketballDrill (832×448) 13 13 16 

Average 12 18 21 

ParkScene (1920×1024) 20 30 26 

Kimono1 (1920×1024) 17 16 14 

Cactus (1920×1024) 20 22 28 

BQTerrace (1920×1024) 19 24 27 

BasketballDrive (1920×1024) 16 18 23 

Average 18 22 23 

Traffic (2560×1600) 22 25 26 

PeopleOnStreet (2560×1600) 17 28 31 

NebutaFestival (2560×1600) 16 20 24 

SteamLocomotiveTrain (2560×1600) 18 20 24 

Average 18 23 26 

Overall Average 14 19 21 

 

Table 5.12: Classification rates per each CU size using stepwise regression and 

second order polynomial classifier for early CU termination. 

Video Sequence 64×64 32×32 16×16 True Overall 

RaceHorses (384×192) 67.6 82.1 82.4 83.2 

BlowingBubbles (384×192) 75.5 83.7 84.1 83.9 

BQSquare (384×192) 80.6 86.4 88.7 87.1 

BasketballPass (384×192) 84.6 86.2 86.3 85.7 

Average 77.1 84.6 85.4 85.0 

RaceHorses (832×448) 80.4 83.9 85.5 85.5 

PartyScene (832×448) 89.1 87.5 87.4 86.8 

BQMall (832×448) 90.1 86.8 86.1 85.7 

BasketballDrill (832×448) 87.0 88.0 88.8 87.8 

Average 86.6 86.6 87.0 86.5 

ParkScene (1920×1024) 88.9 90.3 89.4 88.4 

Kimono1 (1920×1024) 80.2 76.6 78.6 81.2 

Cactus (1920×1024) 89.0 86.6 87.0 86.0 

BQTerrace (1920×1024) 88.0 89.9 89.7 88.7 

BasketballDrive (1920×1024) 86.3 84.1 85.5 84.5 

Average 86.5 85.5 86.0 85.7 

Traffic (2560×1600) 89.9 91.2 91.2 89.9 

PeopleOnStreet (2560×1600) 90.3 86.7 82.8 83.7 

NebutaFestival (2560×1600) 64.4 80.3 87.5 87.6 

SteamLocomotiveTrain (2560×1600) 83.5 86.0 88.6 88.4 

Average 82.0 86.0 87.5 87.4 

Overall Average 83.2 85.7 86.4 86.1 
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The number of features retained when using stepwise regression is given in 

Table 5.11. On average, 18 features are selected, which are used to determine the 

dimensions over which a data sample is projected. The decision accuracies achieved by 

using the proposed algorithm can be seen in Table 5.12. A classification rate of around 

86.1% is attained by the proposed scheme. 

5.2.1.3. J48 decision trees classifier.  Table 5.13 and 5.14 show the time savings 

and excessive bitrate per each QP for each of the test sequences acquired by applying 

the J48 classifier, respectively. As the QP value increases, it is observed that, on 

average, less coding bits and time are needed to encode a given video sequence. Overall, 

a CCR of 41.2% is attained at the cost of introducing performance losses of 0.745% 

and -0.029 dB in terms BD-rate and BD-PSNR, respectively. The results imply that, as 

the spatial resolution increases, more complexity reduction is accomplished, while an 

increase is seen in BD-rate. These results can be observed in Table 5.15. 

Table 5.13: Time savings results per each QP using J48 decision trees classifier for 

early CU termination. 

Video Sequence 
22 27 32 37 

CCR 

(%) 

∆Time 

(%) 

CCR 

(%) 

∆Time 

(%) 

CCR 

(%) 

∆Time 

(%) 

CCR 

(%) 

∆Time 

(%) 

RaceHorses (384×192) 19.4 -24.1 21.8 -27.9 22.9 -29.6 35.5 -55.0 

BlowingBubbles (384×192) 21.6 -27.5 34.0 -51.4 36.4 -57.3 49.6 -98.5 

BQSquare (384×192) 20.6 -25.9 37.6 -60.1 48.5 -94.0 55.5 -124.6 

BasketballPass (384×192) 21.1 -26.7 31.4 -45.7 33.6 -50.6 48.2 -93.3 

RaceHorses (832×448) 28.7 -40.3 25.9 -35.0 34.8 -53.2 41.9 -72.2 

PartyScene (832×448) 24.0 -31.6 30.1 -43.0 39.9 -66.3 47.8 -91.6 

BQMall (832×448) 22.6 -29.2 33.8 -51.2 39.3 -64.7 44.7 -80.8 

BasketballDrill (832×448) 32.2 -47.5 40.6 -68.3 40.6 -68.2 49.1 -96.5 

ParkScene (1920×1024) 34.4 -52.4 44.2 -79.3 53.2 -113.6 63.0 -169.9 

Kimono1 (1920×1024) 24.3 -32.1 33.5 -50.5 44.6 -80.4 38.9 -63.7 

Cactus (1920×1024) 40.5 -67.9 41.6 -71.2 51.5 -106.0 60.9 -155.6 

BQTerrace (1920×1024) 23.7 -31.1 50.6 -102.6 63.1 -170.7 67.5 -207.3 

BasketballDrive (1920×1024) 35.3 -54.6 39.6 -65.5 46.5 -86.7 52.5 -110.5 

Traffic (2560×1600) 36.4 -57.2 51.2 -105.1 60.2 -151.0 66.2 -196.0 

PeopleOnStreet (2560×1600) 23.9 -31.4 24.6 -32.7 27.5 -38.0 38.9 -63.7 

NebutaFestival (2560×1600) 61.1 -156.8 46.6 -87.1 47.6 -91.0 61.6 -160.1 

SteamLocomotiveTrain (2560×1600) 44.9 -81.5 54.4 -119.2 64.3 -179.8 69.8 -231.5 

Average 30.3 -48.1 37.7 -64.4 44.4 -88.3 52.4 -121.8 
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Table 5.14: Excessive bitrate results per each QP using J48 decision trees classifier 

for early CU termination. 

Video Sequence 
Excessive Bitrate (%) 

QP = 22 QP = 27 QP = 32 QP = 37 

RaceHorses (384×192) 0.25 -0.04 -0.06 -0.13 

BlowingBubbles (384×192) -0.42 -0.11 -0.28 -0.28 

BQSquare (384×192) -0.25 -0.32 -0.54 0.22 

BasketballPass (384×192) 0.02 0.14 -0.18 -0.25 

RaceHorses (832×448) 0.54 0.00 -0.03 -0.31 

PartyScene (832×448) 0.15 -0.07 -0.36 -0.18 

BQMall (832×448) -0.15 -0.19 -0.49 -0.14 

BasketballDrill (832×448) -0.01 -0.13 -0.08 -0.30 

ParkScene (1920×1024) -0.28 -0.19 -0.39 -0.51 

Kimono1 (1920×1024) 0.01 0.13 0.01 -0.14 

Cactus (1920×1024) -0.21 -0.22 -0.12 -0.09 

BQTerrace (1920×1024) -0.29 -0.43 -0.39 -0.21 

BasketballDrive (1920×1024) -0.38 0.05 -0.05 0.17 

Traffic (2560×1600) -0.36 -0.30 -0.11 -0.24 

PeopleOnStreet (2560×1600) 0.64 0.16 0.18 0.10 

NebutaFestival (2560×1600) 0.47 0.46 0.33 -0.19 

SteamLocomo-tiveTrain 

(2560×1600) 
-0.28 -0.28 -0.33 -0.55 

Average -0.03 -0.08 -0.17 -0.18 

 

Table 5.15: BD-rate, BD-PSNR, avg. excessive bitrate, and time savings results using 

J48 decision trees classifier for early CU termination. 

Video Sequence 
BD-rate 

(%) 

BD-

PSNR 

(dB) 

Exc. 

Bitrate 

(%) 

CCR 

(%) 

∆Time 

(%) 

BD-

rate/CCR 

(%) 

RaceHorses (384×192) 2.279 -0.106 0.01 24.9 -34.2 9.154 

BlowingBubbles (384×192) 1.207 -0.049 -0.27 35.4 -58.7 3.410 

BQSquare (384×192) 0.568 -0.026 -0.22 40.5 -76.2 1.400 

BasketballPass (384×192) 0.720 -0.036 -0.07 33.6 -54.1 2.145 

Average 1.193 -0.054 -0.14 33.6 -55.8 4.027 

RaceHorses (832×448) 1.772 -0.070 0.05 32.8 -50.2 5.398 

PartyScene (832×448) 0.666 -0.030 -0.12 35.4 -58.1 1.880 

BQMall (832×448) 0.551 -0.024 -0.24 35.1 -56.5 1.570 

BasketballDrill (832×448) 0.749 -0.031 -0.13 40.6 -70.1 1.844 

Average 0.935 -0.039 -0.11 36.0 -58.7 2.673 

ParkScene (1920×1024) 0.348 -0.011 -0.34 48.7 -103.8 0.715 

Kimono1 (1920×1024) 0.446 -0.015 0.00 35.3 -56.7 1.262 

Cactus (1920×1024) 0.512 -0.010 -0.16 48.6 -100.2 1.054 

BQTerrace (1920×1024) 0.558 -0.010 -0.33 51.2 -127.9 1.090 

BasketballDrive (1920×1024) 0.612 -0.014 -0.05 43.5 -79.3 1.408 

Average 0.495 -0.012 -0.18 45.5 -93.6 1.106 

Traffic (2560×1600) 0.598 -0.020 -0.25 53.5 -127.3 1.117 

PeopleOnStreet (2560×1600) 1.124 -0.050 0.27 28.7 -41.4 3.910 

NebutaFestival (2560×1600) 0.306 0.000 0.27 54.2 -123.7 0.564 

SteamLocomotiveTrain 

(2560×1600) 
-0.343 0.000 -0.36 58.4 -153.0 -0.588 

Average 0.421 -0.017 -0.02 48.7 -111.4 1.251 

Overall Average 0.745 -0.029 -0.115 41.2 -80.7 2.196 
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Table 5.16: Model generation time to encoding time using modified encoder ratios 

using J48 decision trees classifier for early CU termination. 

Video Sequence 
𝑻𝒊𝒎𝒆𝒎𝒐𝒅𝒆𝒍_𝒕 (%) 

QP = 22 QP = 27 QP = 32 QP = 37 

RaceHorses (384×192) 0.09 0.11 0.13 0.15 

BlowingBubbles (384×192) 0.10 0.15 0.15 0.18 

BQSquare (384×192) 0.12 0.14 0.16 0.21 

BasketballPass (384×192) 0.19 0.12 0.15 0.16 

Average 0.12 0.13 0.15 0.18 

RaceHorses (832×448) 0.08 0.09 0.09 0.09 

PartyScene (832×448) 0.08 0.03 0.11 0.10 

BQMall (832×448) 0.07 0.09 0.09 0.16 

BasketballDrill (832×448) 0.08 0.10 0.10 0.10 

Average 0.08 0.08 0.10 0.11 

ParkScene (1920×1024) 0.12 0.64 0.23 0.83 

Kimono1 (1920×1024) 0.10 1.51 0.51 0.12 

Cactus (1920×1024) 0.44 0.10 0.18 1.26 

BQTerrace (1920×1024) 0.27 0.63 0.33 0.29 

BasketballDrive (1920×1024) 0.38 0.14 0.10 0.25 

Average 0.26 0.60 0.27 0.55 

Traffic (2560×1600) 0.19 0.17 0.31 0.44 

PeopleOnStreet (2560×1600) 0.17 0.34 0.14 0.39 

NebutaFestival (2560×1600) 0.21 0.39 0.41 0.42 

SteamLocomotiveTrain (2560×1600) 0.22 0.12 0.62 0.14 

Average 0.20 0.26 0.37 0.35 

Overall Average 0.170 0.286 0.224 0.310 

 

Table 5.16 summarizes the percentage of the time taken for the prediction model 

to be generated. This information is important as the proposed solution is a sequence-

dependent one. The decision accuracies achieved by using the proposed algorithm can 

be seen in Table 5.17. A classification rate of around 87% is attained by the proposed 

scheme. 

Table 5.17: Classification rates per each CU size using J48 decision trees classifier for 

early CU termination. 

Video Sequence 64×64 32×32 16×16 True Overall 

RaceHorses (384×192) 64.3 82.7 81.7 77.1 

BlowingBubbles (384×192) 79.9 82.8 83.2 84.3 

BQSquare (384×192) 82.1 88.8 87.0 88.9 

BasketballPass (384×192) 87.8 87.4 84.4 86.9 

Average 78.5 85.4 84.1 84.3 

RaceHorses (832×448) 83.5 83.6 86.0 85.8 

PartyScene (832×448) 88.8 87.8 87.2 87.8 

BQMall (832×448) 90.7 87.2 85.6 87.0 

BasketballDrill (832×448) 87.2 87.4 87.4 88.6 

Average 87.5 86.5 86.5 87.3 

ParkScene (1920×1024) 89.1 90.3 89.1 90.1 

Kimono1 (1920×1024) 80.3 74.2 77.4 82.3 

Cactus (1920×1024) 88.2 85.7 86.7 87.8 

BQTerrace (1920×1024) 87.9 89.2 88.2 89.4 

BasketballDrive (1920×1024) 86.2 82.0 84.9 85.9 

Average 86.3 84.3 85.3 87.1 

Traffic (2560×1600) 90.0 91.2 91.8 92.2 

PeopleOnStreet (2560×1600) 91.3 86.9 82.5 84.2 

NebutaFestival (2560×1600) 61.7 78.7 87.1 89.1 

SteamLocomotiveTrain (2560×1600) 82.0 85.8 89.8 91.1 

Average 81.2 85.7 87.8 89.1 

Overall Average 83.6 85.4 85.9 87.0 
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5.2.1.4. Random forest feature importance and Random forest classifier.  

Tables 5.18 and 5.19 show the time savings and excessive bitrate attained per each QP 

for each of the test sequences, respectively. As the QP value increases, less coding bits 

and time are needed on average to encode a given video sequence. Overall, a CCR of 

39.2% is attained at the cost of introducing performance losses of 0.558% and -0.022 

dB in terms BD-rate and BD-PSNR, respectively. The results imply that, as the spatial 

resolution increases, more complexity reduction is accomplished, while a reduction is 

seen in BD-rate. These results can be observed in Table 5.20.  

Table 5.18: Time savings results per each QP using random forest feature importance 

and random forest classifier for early CU termination. 

Video Sequence 
22 27 32 37 

CCR 

(%) 

∆Time 

(%) 

CCR 

(%) 

∆Time 

(%) 

CCR 

(%) 

∆Time 

(%) 

CCR 

(%) 

∆Time 

(%) 

RaceHorses (384×192) 16.3 -19.4 23.0 -29.9 25.3 -33.8 34.5 -52.5 

BlowingBubbles (384×192) 20.2 -25.3 28.9 -40.6 36.2 -56.9 42.6 -74.3 

BQSquare (384×192) 19.8 -24.7 30.2 -43.2 41.0 -69.5 49.9 -99.6 

BasketballPass (384×192) 22.5 -29.1 26.6 -36.1 35.0 -53.7 38.4 -62.2 

RaceHorses (832×448) 26.0 -35.2 26.5 -36.0 34.3 -52.2 40.0 -66.6 

PartyScene (832×448) 24.8 -33.0 28.3 -39.4 35.3 -54.5 44.0 -78.5 

BQMall (832×448) 24.2 -31.8 30.4 -43.6 35.2 -54.4 42.4 -73.5 

BasketballDrill (832×448) 31.6 -46.2 36.3 -57.1 41.5 -71.0 47.3 -89.7 

ParkScene (1920×1024) 30.2 -43.3 39.9 -66.3 49.2 -96.8 56.2 -128.5 

Kimono1 (1920×1024) 40.6 -68.3 36.8 -58.2 45.1 -82.2 54.0 -117.2 

Cactus (1920×1024) 28.0 -38.9 36.6 -57.7 48.7 -95.0 51.8 -107.3 

BQTerrace (1920×1024) 25.2 -33.7 44.5 -80.2 59.0 -143.6 65.1 -186.3 

BasketballDrive (1920×1024) 34.1 -51.8 41.4 -70.6 45.3 -82.8 49.4 -97.7 

Traffic (2560×1600) 34.9 -53.6 46.7 -87.8 54.3 -118.7 59.0 -143.8 

PeopleOnStreet (2560×1600) 26.9 -36.8 30.1 -43.0 26.9 -36.7 38.7 -63.1 

NebutaFestival (2560×1600) 54.2 -118.2 46.4 -86.5 47.6 -91.0 58.8 -142.7 

SteamLocomotiveTrain (2560×1600) 45.8 -84.4 52.4 -110.0 58.0 -138.2 64.3 -179.8 

Average 29.7 -45.5 35.6 -58.0 42.2 -78.3 49.2 -103.7 

 

Table 5.19: Excessive bitrate results per each QP using random forest feature 

importance and random forest classifier for early CU termination. 

Video Sequence 
Excessive Bitrate (%) 

QP = 22 QP = 27 QP = 32 QP = 37 
RaceHorses (384×192) 0.11 -0.23 -0.32 -0.67 

BlowingBubbles (384×192) -0.57 -0.48 -0.31 -0.37 

BQSquare (384×192) -0.16 -0.29 -0.26 -0.12 

BasketballPass (384×192) 0.14 -0.06 0.03 -0.44 

RaceHorses (832×448) 0.17 -0.15 -0.31 -0.61 

PartyScene (832×448) 0.15 -0.24 -0.32 -0.57 

BQMall (832×448) -0.24 -0.27 -0.48 -0.40 

BasketballDrill (832×448) 0.12 -0.10 -0.06 -0.46 

ParkScene (1920×1024) -0.44 -0.45 -0.67 -0.81 

Kimono1 (1920×1024) 0.17 0.21 -0.14 -0.06 

Cactus (1920×1024) -0.39 -0.28 -0.18 -0.32 

BQTerrace (1920×1024) -0.52 -0.95 -0.89 -0.53 

BasketballDrive (1920×1024) -0.50 -0.11 -0.16 -0.15 

Traffic (2560×1600) -0.73 -0.55 -0.45 -0.71 

PeopleOnStreet (2560×1600) 0.35 0.01 0.02 -0.07 

NebutaFestival (2560×1600) 0.02 0.18 0.07 -0.29 

SteamLocomo-tiveTrain 

(2560×1600) 
-0.05 -0.31 -0.13 -0.46 

Average -0.14 -0.24 -0.27 -0.41 
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Table 5.20: BD-rate, BD-PSNR, avg. excessive bitrate, and time savings results using 

random forest feature importance and random forest classifier for early CU 

termination. 

Video Sequence 
BD-rate 

(%) 

BD-

PSNR 

(dB) 

Exc. 

Bitrate 

(%) 

CCR 

(%) 

∆Time 

(%) 

BD-

rate/CCR 

(%) 

RaceHorses (384×192) 1.583 -0.075 -0.28 24.8 -33.9 6.397 

BlowingBubbles (384×192) 0.572 -0.023 -0.43 32.0 -49.3 1.790 

BQSquare (384×192) 0.460 -0.021 -0.21 35.2 -59.3 1.306 

BasketballPass (384×192) 0.334 -0.017 -0.08 30.6 -45.3 1.092 

Average 0.737 -0.034 -0.25 30.6 -46.9 2.646 

RaceHorses (832×448) 0.835 -0.033 -0.23 31.7 -47.5 2.635 

PartyScene (832×448) 0.687 -0.032 -0.25 33.1 -51.4 2.076 

BQMall (832×448) 0.484 -0.021 -0.35 33.0 -50.8 1.466 

BasketballDrill (832×448) 0.520 -0.021 -0.13 39.2 -66.0 1.328 

Average 0.632 -0.027 -0.24 34.2 -53.9 1.876 

ParkScene (1920×1024) 0.630 -0.020 -0.59 43.9 -83.7 1.436 

Kimono1 (1920×1024) 0.468 -0.016 0.05 44.1 -81.5 1.061 

Cactus (1920×1024) 0.561 -0.014 -0.29 41.3 -74.7 1.359 

BQTerrace (1920×1024) 0.478 -0.010 -0.72 48.4 -111.0 0.987 

BasketballDrive (1920×1024) 0.458 -0.010 -0.23 42.6 -75.7 1.075 

Average 0.519 -0.014 -0.36 44.1 -85.3 1.184 

Traffic (2560×1600) 0.540 -0.019 -0.61 48.7 -101.0 1.108 

PeopleOnStreet (2560×1600) 1.066 -0.047 0.08 30.6 -44.9 3.481 

NebutaFestival (2560×1600) 0.047 0.000 0.00 51.7 -109.6 0.091 

SteamLocomotiveTrain 

(2560×1600) 
-0.234 0.000 -0.24 55.1 -128.1 -0.424 

Average 0.355 -0.017 -0.19 46.5 -95.9 1.064 

Overall Average 0.558 -0.022 -0.265 39.2 -71.4 1.663 

 

Table 5.21: Model generation time to encoding time using modified encoder ratios 

using random forest feature importance and random forest classifier for early CU 

termination. 

Video Sequence 
𝑻𝒊𝒎𝒆𝒎𝒐𝒅𝒆𝒍_𝒕 (%) 

QP = 22 QP = 27 QP = 32 QP = 37 

RaceHorses (384×192) 8.52 8.39 12.27 15.06 

BlowingBubbles (384×192) 10.42 14.07 16.93 20.07 

BQSquare (384×192) 12.93 16.62 19.99 25.17 

BasketballPass (384×192) 12.25 13.98 16.68 19.20 

Average 11.03 13.26 16.47 19.88 

RaceHorses (832×448) 4.18 4.30 5.00 5.47 

PartyScene (832×448) 4.82 5.33 6.27 7.22 

BQMall (832×448) 4.50 5.14 5.51 6.10 

BasketballDrill (832×448) 4.86 4.83 5.94 6.36 

Average 4.59 4.90 5.68 6.29 

ParkScene (1920×1024) 3.33 3.25 3.08 2.80 

Kimono1 (1920×1024) 2.08 1.76 1.87 2.27 

Cactus (1920×1024) 3.40 2.76 2.77 2.65 

BQTerrace (1920×1024) 3.44 3.65 3.71 3.31 

BasketballDrive (1920×1024) 2.23 1.90 1.84 1.93 

Average 2.90 2.66 2.65 2.59 

Traffic (2560×1600) 4.40 4.24 4.62 3.90 

PeopleOnStreet (2560×1600) 7.40 5.24 3.87 3.96 

NebutaFestival (2560×1600) 1.18 1.18 1.88 2.77 

SteamLocomotiveTrain (2560×1600) 2.83 2.93 2.87 2.86 

Average 3.95 3.40 3.31 3.38 

Overall Average 5.459 5.857 6.771 7.712 
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Table 5.22: Selected features per CU size using random forest feature importance and 

random forest classifier for early CU termination. 

Video Sequence 64×64 32×32 16×16 

RaceHorses (384×192) 14 11 13 

BlowingBubbles (384×192) 8 13 10 

BQSquare (384×192) 12 14 14 

BasketballPass (384×192) 12 13 14 

Average 11 12 12 

RaceHorses (832×448) 9 14 14 

PartyScene (832×448) 15 15 15 

BQMall (832×448) 13 14 14 

BasketballDrill (832×448) 14 15 13 

Average 12 14 14 

ParkScene (1920×1024) 15 14 14 

Kimono1 (1920×1024) 15 14 14 

Cactus (1920×1024) 15 15 12 

BQTerrace (1920×1024) 15 15 14 

BasketballDrive (1920×1024) 15 15 14 

Average 15 14 13 

Traffic (2560×1600) 15 15 15 

PeopleOnStreet (2560×1600) 14 14 14 

NebutaFestival (2560×1600) 13 13 14 

SteamLocomotiveTrain (2560×1600) 15 15 14 

Average 14 14 14 

Overall Average 13 14 13 

 

Table 5.21 summarizes percentage of the time taken for the prediction model to 

be generated. This information is important as the proposed solution is a sequence-

dependent one. The number of features retained when using the feature importance 

option accessible through the usage of the random forest algorithm is given in Table 

5.22. 

Table 5.23: Classification rates per each CU size using random forest feature 

importance and random forest classifier for early CU termination. 

Video Sequence 64×64 32×32 16×16 True Overall 

RaceHorses (384×192) 79.0 83.8 83.0 83.9 

BlowingBubbles (384×192) 85.1 84.7 83.7 83.9 

BQSquare (384×192) 82.6 87.7 87.2 86.6 

BasketballPass (384×192) 87.1 88.1 83.6 84.7 

Average 83.4 86.1 84.4 84.8 

RaceHorses (832×448) 85.3 84.7 86.0 86.2 

PartyScene (832×448) 89.7 88.3 87.8 87.4 

BQMall (832×448) 91.6 87.7 85.2 85.5 

BasketballDrill (832×448) 89.1 88.9 87.7 87.4 

Average 88.9 87.4 86.7 86.6 

ParkScene (1920×1024) 88.4 90.6 89.7 88.9 

Kimono1 (1920×1024) 80.3 77.0 82.3 83.3 

Cactus (1920×1024) 89.1 86.4 88.2 88.6 

BQTerrace (1920×1024) 88.1 90.1 89.6 88.9 

BasketballDrive (1920×1024) 86.6 83.8 86.6 85.5 

Average 86.5 85.5 87.3 87.0 

Traffic (2560×1600) 89.6 91.1 91.2 90.2 

PeopleOnStreet (2560×1600) 91.3 87.4 83.4 84.4 

NebutaFestival (2560×1600) 64.0 80.5 88.3 89.0 

SteamLocomotiveTrain (2560×1600) 82.7 87.0 90.7 90.0 

Average 81.9 86.5 88.4 88.4 

Overall Average 85.3 86.3 86.7 86.7 
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On average, 14 features are selected, which are used to determine the 

dimensions over which a data sample is projected. The decision accuracies achieved by 

using the proposed algorithm can be seen in Table 5.23. A classification rate of around 

86.7% is attained by the proposed scheme. 

5.2.1.5. Random forest classifier.  Tables 5.24 and 5.25 show the time savings 

and excessive bitrate per each QP for each of the test sequences that are acquired by 

applying the random forest classifier, respectively. As the QP value increases, it is 

observed that, on average, less coding bits and time are required to encode a given video 

sequence. Overall, a CCR of 38.9% is attained at the cost of introducing performance 

losses of 0.539% and -0.021 dB in terms BD-rate and BD-PSNR, respectively. The 

results imply that, as the spatial resolution increases, more complexity reduction is 

accomplished, while a reduction is seen in BD-rate. These results can be observed in 

Table 5.26. 

Table 5.24: Time savings results per each QP using random forest classifier for early 

CU termination. 

Video Sequence 
22 27 32 37 

CCR 

(%) 

∆Time 

(%) 

CCR 

(%) 

∆Time 

(%) 

CCR 

(%) 

∆Time 

(%) 

CCR 

(%) 

∆Time 

(%) 

RaceHorses (384×192) 20.0 -25.1 21.6 -27.5 25.4 -34.0 34.1 -51.8 

BlowingBubbles (384×192) 21.9 -28.0 28.7 -40.2 34.3 -52.2 42.2 -73.0 

BQSquare (384×192) 18.0 -22.0 32.6 -48.4 42.0 -72.4 50.1 -100.1 

BasketballPass (384×192) 24.3 -32.0 28.7 -40.2 35.5 -55.0 39.5 -65.4 

RaceHorses (832×448) 25.4 -34.0 27.6 -38.1 32.6 -48.3 38.6 -62.8 

PartyScene (832×448) 24.5 -32.4 26.1 -35.3 38.3 -62.1 44.7 -80.9 

BQMall (832×448) 22.8 -29.5 28.9 -40.7 36.3 -56.9 40.5 -68.1 

BasketballDrill (832×448) 32.5 -48.2 35.2 -54.3 40.2 -67.3 45.8 -84.4 

ParkScene (1920×1024) 29.4 -41.6 40.6 -68.5 48.0 -92.3 56.3 -129.0 

Kimono1 (1920×1024) 40.0 -66.8 39.4 -64.9 40.9 -69.2 50.5 -102.2 

Cactus (1920×1024) 22.2 -28.6 38.7 -63.1 42.3 -73.2 52.1 -108.7 

BQTerrace (1920×1024) 31.1 -45.1 44.6 -80.4 58.1 -138.4 65.2 -187.4 

BasketballDrive (1920×1024) 32.1 -47.4 38.4 -62.3 45.3 -82.8 49.4 -97.5 

Traffic (2560×1600) 34.6 -52.8 47.8 -91.7 51.8 -107.5 60.7 -154.6 

PeopleOnStreet (2560×1600) 21.8 -27.9 23.2 -30.2 30.0 -42.9 36.5 -57.4 

NebutaFestival (2560×1600) 56.5 -129.7 50.1 -100.3 47.5 -90.3 57.4 -134.8 

SteamLocomotiveTrain (2560×1600) 48.5 -94.3 53.1 -113.0 57.8 -136.8 64.3 -180.4 

Average 29.7 -46.2 35.6 -58.8 41.5 -75.4 48.7 -102.3 
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Table 5.25: Excessive bitrate results per each QP using random forest classifier for 

early CU termination. 

Video Sequence 
Excessive Bitrate (%) 

QP = 22 QP = 27 QP = 32 QP = 37 

RaceHorses (384×192) 0.39 -0.07 -0.36 -0.70 

BlowingBubbles (384×192) -0.35 -0.28 -0.28 -0.50 

BQSquare (384×192) -0.14 -0.72 -0.45 -0.05 

BasketballPass (384×192) 0.11 -0.07 -0.13 0.08 

RaceHorses (832×448) 0.35 -0.12 -0.32 -0.66 

PartyScene (832×448) 0.09 -0.38 -0.31 -0.68 

BQMall (832×448) -0.14 -0.25 -0.29 -0.57 

BasketballDrill (832×448) 0.00 -0.09 -0.08 -0.47 

ParkScene (1920×1024) -0.44 -0.45 -0.68 -0.85 

Kimono1 (1920×1024) 0.14 0.09 -0.20 -0.20 

Cactus (1920×1024) -0.37 -0.31 -0.22 -0.45 

BQTerrace (1920×1024) -0.46 -0.84 -0.87 -0.56 

BasketballDrive (1920×1024) -0.47 -0.12 -0.07 -0.11 

Traffic (2560×1600) -0.71 -0.50 -0.50 -0.81 

PeopleOnStreet (2560×1600) 0.38 0.03 0.01 -0.20 

NebutaFestival (2560×1600) 0.02 0.26 0.17 -0.33 

SteamLocomo-tiveTrain 

(2560×1600) 
-0.07 -0.27 -0.19 -0.59 

Average -0.10 -0.24 -0.28 -0.45 

 

Table 5.26: BD-rate, BD-PSNR, avg. excessive bitrate, and time savings results using 

random forest classifier for early CU termination. 

Video Sequence 
BD-rate 

(%) 

BD-

PSNR 

(dB) 

Exc. 

Bitrate 

(%) 

CCR 

(%) 

∆Time 

(%) 

BD-

rate/CCR 

(%) 

RaceHorses (384×192) 1.478 -0.071 -0.19 25.3 -34.6 5.848 

BlowingBubbles (384×192) 0.525 -0.021 -0.35 31.8 -48.4 1.653 

BQSquare (384×192) 0.419 -0.019 -0.34 35.7 -60.7 1.174 

BasketballPass (384×192) 0.504 -0.025 0.00 32.0 -48.2 1.575 

Average 0.732 -0.034 -0.22 31.2 -48.0 2.563 

RaceHorses (832×448) 0.782 -0.031 -0.19 31.0 -45.8 2.520 

PartyScene (832×448) 0.508 -0.024 -0.32 33.4 -52.7 1.521 

BQMall (832×448) 0.384 -0.016 -0.31 32.1 -48.8 1.197 

BasketballDrill (832×448) 0.581 -0.024 -0.16 38.4 -63.5 1.511 

Average 0.564 -0.024 -0.25 33.7 -52.7 1.687 

ParkScene (1920×1024) 0.621 -0.020 -0.61 43.6 -82.8 1.426 

Kimono1 (1920×1024) 0.379 -0.013 -0.04 42.7 -75.8 0.887 

Cactus (1920×1024) 0.522 -0.012 -0.34 38.8 -68.4 1.345 

BQTerrace (1920×1024) 0.686 -0.013 -0.68 49.7 -112.8 1.379 

BasketballDrive (1920×1024) 0.500 -0.010 -0.19 41.3 -72.5 1.211 

Average 0.542 -0.014 -0.37 43.2 -82.5 1.250 

Traffic (2560×1600) 0.449 -0.016 -0.63 48.7 -101.6 0.921 

PeopleOnStreet (2560×1600) 0.981 -0.044 0.06 27.9 -39.6 3.519 

NebutaFestival (2560×1600) 0.112 0.000 0.03 52.9 -113.8 0.212 

SteamLocomotiveTrain 

(2560×1600) 
-0.265 0.000 -0.28 55.9 -131.1 -0.474 

Average 0.319 -0.015 -0.21 46.3 -96.5 1.045 

Overall Average 0.539 -0.021 -0.267 38.9 -70.7 1.613 

 

Table 5.27 summarizes percentage of the time taken for the prediction model to 

be generated. This information is important as the proposed solution is a sequence-

dependent one. The decision accuracies achieved by using the proposed algorithm can 
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be seen in Table 5.28. A classification rate of around 86.5% is attained by the proposed 

scheme. 

Table 5.27: Model generation time to encoding time using modified encoder ratios 

using random forest classifier for early CU termination. 

Video Sequence 
𝑻𝒊𝒎𝒆𝒎𝒐𝒅𝒆𝒍_𝒕 (%) 

QP = 22 QP = 27 QP = 32 QP = 37 

RaceHorses (384×192) 13.06 12.53 18.32 22.00 

BlowingBubbles (384×192) 16.88 20.84 24.44 29.05 

BQSquare (384×192) 17.99 23.99 28.03 33.24 

BasketballPass (384×192) 18.51 21.71 24.46 28.09 

Average 16.61 19.77 23.81 28.09 

RaceHorses (832×448) 6.07 6.22 7.00 7.46 

PartyScene (832×448) 6.92 7.19 8.56 10.13 

BQMall (832×448) 6.33 7.29 7.71 8.56 

BasketballDrill (832×448) 7.03 6.95 8.06 9.19 

Average 6.59 6.91 7.83 8.83 

ParkScene (1920×1024) 4.82 4.60 4.25 4.03 

Kimono1 (1920×1024) 2.68 2.42 2.28 2.51 

Cactus (1920×1024) 4.91 4.04 4.04 3.82 

BQTerrace (1920×1024) 4.95 4.74 5.21 8.84 

BasketballDrive (1920×1024) 3.16 2.46 2.52 2.40 

Average 4.10 3.65 3.66 4.32 

Traffic (2560×1600) 5.97 4.79 4.06 3.55 

PeopleOnStreet (2560×1600) 5.56 4.86 4.42 4.35 

NebutaFestival (2560×1600) 0.96 1.11 1.68 2.55 

SteamLocomotiveTrain (2560×1600) 2.96 2.77 2.51 2.23 

Average 3.86 3.38 3.17 3.17 

Overall Average 7.574 8.147 9.268 10.705 

Table 5.28: Classification rates per each CU size using random forest classifier for 

early CU termination. 

Video Sequence 64×64 32×32 16×16 True Overall 

RaceHorses (384×192) 91.1 83.8 83.2 83.9 

BlowingBubbles (384×192) 84.1 84.5 84.2 83.9 

BQSquare (384×192) 82.9 87.8 87.6 86.7 

BasketballPass (384×192) 89.4 88.5 84.2 85.0 

Average 86.9 86.1 84.8 84.9 

RaceHorses (832×448) 85.8 84.6 86.0 86.0 

PartyScene (832×448) 90.0 88.5 87.7 87.3 

BQMall (832×448) 91.5 87.4 84.9 85.1 

BasketballDrill (832×448) 89.4 89.1 87.7 87.2 

Average 89.2 87.4 86.6 86.4 

ParkScene (1920×1024) 89.1 90.9 89.6 88.8 

Kimono1 (1920×1024) 80.5 77.7 81.5 82.6 

Cactus (1920×1024) 89.4 86.7 87.3 86.4 

BQTerrace (1920×1024) 88.5 90.3 89.9 89.0 

BasketballDrive (1920×1024) 86.4 83.6 86.5 85.2 

Average 86.8 85.8 87.0 86.4 

Traffic (2560×1600) 90.3 91.2 91.3 90.2 

PeopleOnStreet (2560×1600) 91.7 87.5 82.9 84.1 

NebutaFestival (2560×1600) 62.9 81.1 90.0 89.5 

SteamLocomotiveTrain (2560×1600) 82.5 87.0 90.5 89.7 

Average 81.8 86.7 88.7 88.4 

Overall Average 86.2 86.5 86.8 86.5 

 

5.2.1.6. Summary of CU split prediction results.  Tables 5.29-5.32 illustrate a 

summary of the overall averages of each of the proposed early CU termination schemes. 
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Table 5.29: BD-rate, BD-PSNR, avg. excessive bitrate, and time savings results for 

the proposed early CU termination algorithms. 

Proposed early CU 

termination 

algorithms 

BD-

rate 

(%) 

BD-

PSNR 

(dB) 

Exc. 

Bitrate 

(%) 

CCR 

(%) 

∆Time 

(%) 

BD-

rate/CCR 

(%) 
PCA90+RM2 1.355 -0.053 0.208 37.5 -67.2 4.253 

Stepwise+RM2 1.339 -0.054 0.038 39.1 -70.2 3.922 

DecisionTrees 0.745 -0.029 -0.115 41.2 -80.7 2.196 

RFselect+RF 0.558 -0.022 -0.265 39.2 -71.4 1.663 

RF 0.539 -0.021 -0.267 38.9 -70.7 1.613 

 

Table 5.30: Model generation time to encoding time using modified encoder ratios for 

all proposed early CU termination algorithms. 

Proposed early CU 

termination algorithms 

𝑻𝒊𝒎𝒆𝒎𝒐𝒅𝒆𝒍_𝒕 (%) 

QP = 22 QP = 27 QP = 32 QP = 37 

PCA90+RM2 0.718 1.112 1.956 1.267 

Stepwise+RM2 0.219 0.321 0.249 0.172 

DecisionTrees 0.170 0.286 0.224 0.310 

RFselect+RF 5.459 5.857 6.771 7.712 

RF 7.574 8.147 9.268 10.705 

 

Table 5.31: Selected features per CU size for proposed early CU termination 

algorithms that utilize feature selection. 

Proposed early CU 

termination algorithms 
64×64 32×32 16×16 

Stepwise +RM2 14 19 21 

RFselect+RF 13 14 13 

Table 5.32: Classification rates per each CU size for all proposed early CU 

termination algorithms. 

Proposed early CU 

termination algorithms 
64×64 32×32 16×16 True Overall 

PCA90+RM2 78.5 81.9 83.2 83.0 

Stepwise+RM2 83.2 85.7 86.4 86.1 

DecisionTrees 83.6 85.4 85.9 87.0 

RFselect+RF 85.3 86.3 86.7 86.7 

RF 86.2 86.5 86.8 86.5 

 

Based on the overall averages of these solutions, it is evident that the scheme 

that utilizes the random forest approach outperforms the rest in terms of BD-rate, BD-

PSNR and excessive bitrate. Its usage resulted in a BD-rate of 0.539%, BD-PSNR of -

0.021 dB, and bitrate reduction of 0.267%. Nonetheless, this led to introducing a CCR 

of 38.9%, which does not represent the highest attained time saving in comparison to 

the other proposed schemes. Utilizing its predictive model led to a decision accuracy of 

86.5%, which is very close to the highest overall true accuracy offered by one of the 

solutions proposed, i.e. the J48 decision trees. Nonetheless, the time needed to generate 

these model is significantly higher than that of other solutions. Random forest model 

generation time is significantly higher due to using the entire set of initial features and 
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not applying any pruning to the built trees. Relative to the other approaches, J48 

decision trees resulted in the highest CCR, the least time needed to generate the 

predictive models and the highest true overall decision accuracy. However, its 

performance in terms of BD-rate, BD-PSNR and excessive bitrate was average in 

comparison to that of other proposed schemes. On the other hand, the least performance 

enhancement was seen when combining PCA with the second order polynomial 

classifier, resulting in a DB-rate of 1.355%, DB-PSNR of -0.053 dB, excessive bitrate 

of 0.208%, an overall decision accuracy of 83% and a CCR of 37.5%. 

5.2.2. PU early termination algorithms. The results obtained by 

implementing two machine learning algorithms to enhance the PU mode selection are 

presented. These results are given in terms of BD-rate, BD-PSNR, excessive bitrate, 

computation complexity savings, model generation time, feature selection or extraction, 

and decision accuracy. 

5.2.2.1. Random forest classifier.  Tables 5.33 and 5.34 show the time savings 

and excessive bitrate per each QP for each of the test sequences that are acquired by 

applying the random forest classifier, respectively. As the QP value increases, it is 

evident that, on average, less coding bits and time are needed to encode a given video 

sequence. 

Table 5.33: Time savings results per each QP using random forest classifier for early 

PU termination. 

Video Sequence 
22 27 32 37 

CCR 

(%) 

∆Time 

(%) 

CCR 

(%) 

∆Time 

(%) 

CCR 

(%) 

∆Time 

(%) 

CCR 

(%) 

∆Time 

(%) 

RaceHorses (384×192) 15.2 -17.9 22.8 -29.6 31.5 -46.0 31.2 -45.3 

BlowingBubbles (384×192) 16.2 -19.3 22.6 -29.3 30.3 -43.4 35.1 -54.1 

BQSquare (384×192) 14.1 -16.4 28.6 -40.1 28.9 -40.6 41.2 -70.1 

BasketballPass (384×192) 19.6 -24.3 25.4 -34.1 33.6 -50.7 36.1 -56.4 

RaceHorses (832×448) 14.2 -16.5 32.4 -47.9 23.4 -30.6 37.9 -61.0 

PartyScene (832×448) 16.7 -20.0 29.9 -42.6 30.2 -43.2 32.4 -47.9 

BQMall (832×448) 17.9 -21.8 24.9 -33.2 31.2 -45.4 35.7 -55.4 

BasketballDrill (832×448) 16.5 -19.7 31.3 -45.6 34.1 -51.8 38.5 -62.7 

ParkScene (1920×1024) 20.9 -26.5 30.1 -43.0 29.4 -41.7 47.6 -90.7 

Kimono1 (1920×1024) 21.0 -26.6 27.0 -37.0 29.6 -41.9 39.4 -64.9 

Cactus (1920×1024) 14.0 -16.3 15.3 -18.1 29.1 -41.1 41.0 -69.4 

BQTerrace (1920×1024) 21.9 -28.0 40.7 -68.7 41.8 -71.9 44.3 -79.4 

BasketballDrive (1920×1024) 15.1 -17.7 18.8 -23.1 31.9 -46.7 36.9 -58.4 

Traffic (2560×1600) 28.2 -39.3 33.7 -50.9 45.9 -84.7 46.3 -86.3 

PeopleOnStreet (2560×1600) 25.6 -34.5 14.9 -17.5 28.4 -39.6 32.0 -47.1 

NebutaFestival (2560×1600) 10.2 -11.3 12.7 -14.5 13.3 -15.3 57.0 -132.6 

SteamLocomotiveTrain (2560×1600) 19.2 -23.8 26.7 -36.4 37.3 -59.5 52.1 -108.8 

Average 18.0 -22.4 25.8 -36.0 31.2 -46.7 40.3 -70.0 
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Table 5.34: Excessive bitrate results per each QP using random forest classifier for 

early PU termination. 

Video Sequence 
Excessive Bitrate (%) 

QP = 22 QP = 27 QP = 32 QP = 37 
RaceHorses (384×192) 1.02 0.86 0.54 -0.11 

BlowingBubbles (384×192) 0.07 0.03 0.06 -0.14 

BQSquare (384×192) -0.03 -0.14 -0.18 0.07 

BasketballPass (384×192) 0.02 0.10 0.08 0.46 

RaceHorses (832×448) 0.10 1.21 0.34 0.24 

PartyScene (832×448) 0.31 0.34 0.11 0.16 

BQMall (832×448) 0.04 -0.02 -0.23 0.11 

BasketballDrill (832×448) 0.02 0.11 -0.08 -0.23 

ParkScene (1920×1024) 0.00 0.07 -0.09 0.00 

Kimono1 (1920×1024) 0.06 0.06 -0.02 0.18 

Cactus (1920×1024) -0.12 0.08 0.01 0.12 

BQTerrace (1920×1024) 0.02 -0.09 -0.11 0.09 

BasketballDrive (1920×1024) 0.08 -0.05 -0.09 0.14 

Traffic (2560×1600) -0.06 0.01 0.08 0.01 

PeopleOnStreet (2560×1600) 0.11 0.02 0.09 -0.06 

NebutaFestival (2560×1600) 0.05 0.19 0.01 0.07 

SteamLocomo-tiveTrain 

(2560×1600) 
-0.10 -0.02 0.23 0.33 

Average 0.09 0.16 0.04 0.08 

 

Overall, a CCR of 28.8% is attained at the cost of introducing performance 

losses of 0.437% and -0.264 dB in terms BD-rate and BD-PSNR, respectively. The 

results imply that, as the spatial resolution increases, more complexity reduction is 

accomplished, while a reduction in BD-rate and an increase in BD-PSNR is seen. These 

results can be observed in Table 5.35. 

Table 5.35: BD-rate, BD-PSNR, avg. excessive bitrate, and time savings results using 

random forest classifier for early PU termination. 

Video Sequence 
BD-rate 

(%) 

BD-

PSNR 

(dB) 

Exc. 

Bitrate 

(%) 

CCR 

(%) 

∆Time 

(%) 

BD-

rate/CCR 

(%) 

RaceHorses (384×192) 1.500 -0.074 0.58 25.2 -34.7 5.956 

BlowingBubbles (384×192) 0.538 -0.021 0.01 26.1 -36.5 2.067 

BQSquare (384×192) 0.192 -4.213 -0.07 28.2 -41.8 0.681 

BasketballPass (384×192) 0.494 -0.025 0.17 28.7 -41.4 1.723 

Average 0.681 -1.083 0.17 27.0 -38.6 2.607 

RaceHorses (832×448) 1.381 -0.054 0.47 27.0 -39.0 5.121 

PartyScene (832×448) 0.626 -0.029 0.23 27.3 -38.4 2.295 

BQMall (832×448) 0.242 -0.010 -0.03 27.4 -39.0 0.882 

BasketballDrill (832×448) 0.240 -0.010 -0.05 30.1 -45.0 0.797 

Average 0.622 -0.026 0.16 27.9 -40.3 2.274 

ParkScene (1920×1024) 0.537 -0.017 -0.01 32.0 -50.5 1.679 

Kimono1 (1920×1024) 0.078 -0.003 0.07 29.2 -42.6 0.267 

Cactus (1920×1024) 0.211 -0.004 0.02 24.9 -36.2 0.849 

BQTerrace (1920×1024) 0.462 -0.009 -0.02 37.2 -62.0 1.243 

BasketballDrive (1920×1024) 0.165 -0.003 0.02 25.6 -36.5 0.643 

Average 0.291 -0.007 0.02 29.8 -45.6 0.936 

Traffic (2560×1600) 0.287 -0.009 0.01 38.5 -65.3 0.745 

PeopleOnStreet (2560×1600) 0.298 -0.013 0.04 25.2 -34.7 1.181 

NebutaFestival (2560×1600) 0.070 0.000 0.08 23.3 -43.4 0.299 

SteamLocomotiveTrain 

(2560×1600) 
0.108 0.000 0.11 33.8 -57.1 0.318 

Average 0.191 -0.005 0.06 30.2 -50.1 0.636 

Overall Average 0.437 -0.264 0.096 28.8 -43.8 1.573 
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Table 5.36 summarizes the time percentage taken for the prediction model to be 

generated. This information is important as the proposed solution is a sequence-

dependent one. 

Table 5.36: Model generation time to encoding time using modified encoder ratios 

using random forest classifier for early PU termination. 

Video Sequence 
𝑻𝒊𝒎𝒆𝒎𝒐𝒅𝒆𝒍_𝒕 (%) 

QP = 22 QP = 27 QP = 32 QP = 37 

RaceHorses (384×192) 5.01 5.88 6.81 7.12 

BlowingBubbles (384×192) 5.50 6.22 7.56 8.77 

BQSquare (384×192) 5.16 6.43 7.79 9.16 

BasketballPass (384×192) 5.42 6.31 7.62 8.39 

Average 5.27 6.21 7.44 8.36 

RaceHorses (832×448) 1.65 3.01 3.23 3.71 

PartyScene (832×448) 2.15 3.18 3.23 3.19 

BQMall (832×448) 2.37 2.74 3.08 3.65 

BasketballDrill (832×448) 2.53 3.42 3.35 3.24 

Average 2.17 3.09 3.22 3.45 

ParkScene (1920×1024) 1.75 2.07 2.23 2.19 

Kimono1 (1920×1024) 1.46 2.53 2.20 2.23 

Cactus (1920×1024) 0.62 1.38 2.01 1.65 

BQTerrace (1920×1024) 1.27 1.80 2.18 1.87 

BasketballDrive (1920×1024) 1.89 1.69 1.95 1.45 

Average 1.40 1.89 2.12 1.88 

Traffic (2560×1600) 1.08 1.07 1.16 0.83 

PeopleOnStreet (2560×1600) 0.86 0.71 0.94 0.83 

NebutaFestival (2560×1600) 0.43 0.68 0.99 1.50 

SteamLocomotiveTrain (2560×1600) 0.96 1.63 1.96 1.94 

Average 0.83 1.02 1.26 1.27 

Overall Average 7.574 8.147 9.268 10.705 
 

The decision accuracies achieved by using the proposed algorithm can be seen 

in Table 5.37. A classification rate of around 69.0% is attained by the proposed scheme. 

Table 5.37: Classification rates per each CU size using random forest classifier for 

early PU termination. 

Video Sequence 64×64 32×32 16×16 8×8 True Overall 

RaceHorses (384×192) 74.0 58.1 66.0 69.1 66.8 

BlowingBubbles (384×192) 69.3 64.3 69.3 67.8 67.7 

BQSquare (384×192) 72.7 65.2 69.8 73.3 70.3 

BasketballPass (384×192) 72.3 71.2 75.1 73.0 72.9 

Average 72.1 64.7 70.0 70.8 69.4 

RaceHorses (832×448) 67.5 63.6 63.9 64.1 64.8 

PartyScene (832×448) 65.6 66.2 67.4 70.1 67.3 

BQMall (832×448) 74.5 70.6 71.7 68.6 71.3 

BasketballDrill (832×448) 69.8 67.7 71.9 77.1 71.6 

Average 69.3 67.0 68.7 70.0 68.7 

ParkScene (1920×1024) 68.7 67.3 67.8 72.8 69.1 

Kimono1 (1920×1024) 69.0 67.9 70.3 71.6 69.7 

Cactus (1920×1024) 72.5 73.0 74.9 75.9 74.1 

BQTerrace (1920×1024) 65.4 61.0 61.6 57.9 61.5 

BasketballDrive (1920×1024) 66.5 64.1 66.5 69.9 66.7 

Average 68.4 66.6 68.2 69.6 68.2 

Traffic (2560×1600) 65.5 68.9 73.9 74.3 70.6 

PeopleOnStreet (2560×1600) 72.1 73.3 74.9 75.8 74.0 

NebutaFestival (2560×1600) 73.4 66.4 68.4 67.0 68.8 

SteamLocomotiveTrain (2560×1600) 66.1 62.8 64.0 69.2 65.5 

Average 69.3 67.8 70.3 71.5 69.7 

Overall Average 69.7 66.5 69.2 70.4 69.0 
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5.2.2.2. J48 decision trees classifier.  Tables 5.38 and 5.39 show the time 

savings and excessive bitrate per each QP for each of the test sequences that are attained 

by applying the J48 classifier, respectively. As the QP value increases, it can be seen 

that less coding bits and time are needed on average to encode a given video sequence. 

Overall, a CCR of 20.9% is attained at the cost of introducing performance losses of 

0.248% and -0.010 dB in terms BD-rate and BD-PSNR, respectively. The results imply 

that, as the spatial resolution increases, more complexity reduction is accomplished, 

while a reduction is seen in BD-rate. These results can be observed in Table 5.40. 

Table 5.38: Time savings results per each QP using J48 decision trees classifier for 

early PU termination. 

Video Sequence 
22 27 32 37 

CCR 

(%) 

∆Time 

(%) 

CCR 

(%) 

∆Time 

(%) 

CCR 

(%) 

∆Time 

(%) 

CCR 

(%) 

∆Time 

(%) 

RaceHorses (384×192) 15.6 -18.5 14.0 -16.3 14.2 -16.5 16.3 -19.4 

BlowingBubbles (384×192) 9.0 -9.8 15.1 -17.8 21.6 -27.5 29.3 -41.4 

BQSquare (384×192) 11.9 -13.5 20.8 -26.3 23.9 -31.4 33.3 -49.9 

BasketballPass (384×192) 13.7 -15.9 19.7 -24.5 21.5 -27.4 30.6 -44.1 

RaceHorses (832×448) 5.9 -6.2 11.8 -13.4 15.9 -18.9 18.9 -23.3 

PartyScene (832×448) 9.1 -10.0 13.4 -15.5 20.5 -25.8 30.2 -43.3 

BQMall (832×448) 15.1 -17.7 19.5 -24.2 24.0 -31.5 28.4 -39.6 

BasketballDrill (832×448) 14.1 -16.5 20.4 -25.6 26.9 -36.9 32.8 -48.8 

ParkScene (1920×1024) 13.6 -15.7 19.5 -24.3 27.0 -37.0 35.9 -55.9 

Kimono1 (1920×1024) 12.4 -14.2 20.7 -26.1 20.2 -25.3 28.7 -40.2 

Cactus (1920×1024) 15.7 -18.7 26.0 -35.1 33.1 -49.4 38.4 -62.4 

BQTerrace (1920×1024) 10.6 -11.9 21.2 -26.9 25.3 -33.8 29.9 -42.7 

BasketballDrive (1920×1024) 15.6 -18.5 13.4 -15.5 20.6 -26.0 28.2 -39.3 

Traffic (2560×1600) 20.3 -25.5 27.1 -37.3 34.8 -53.3 42.0 -72.4 

PeopleOnStreet (2560×1600) 8.2 -9.0 12.8 -14.6 19.3 -23.9 23.7 -31.1 

NebutaFestival (2560×1600) 10.8 -12.2 9.9 -11.0 17.2 -20.8 29.6 -42.0 

SteamLocomotiveTrain (2560×1600) 18.3 -22.5 18.2 -22.3 23.7 -31.1 28.9 -40.6 

Average 12.9 -15.1 17.9 -22.1 22.9 -30.4 29.7 -43.3 

 

Table 5.39: Excessive bitrate results per each QP using J48 decision trees classifier 

for early PU termination. 

Video Sequence 
Excessive Bitrate (%) 

QP = 22 QP = 27 QP = 32 QP = 37 
RaceHorses (384×192) 2.60 0.94 0.24 0.31 

BlowingBubbles (384×192) 0.08 -0.04 -0.27 0.03 

BQSquare (384×192) 0.13 -0.18 -0.19 0.25 

BasketballPass (384×192) 0.00 -0.21 0.00 -0.02 

RaceHorses (832×448) 0.02 0.60 0.30 -0.27 

PartyScene (832×448) 0.19 0.06 0.01 -0.12 

BQMall (832×448) -0.04 -0.04 0.02 -0.04 

BasketballDrill (832×448) 0.02 0.03 0.11 -0.14 

ParkScene (1920×1024) 0.04 0.02 -0.15 0.12 

Kimono1 (1920×1024) 0.06 0.07 0.01 0.24 

Cactus (1920×1024) -0.04 -0.02 -0.10 0.05 

BQTerrace (1920×1024) 0.01 0.02 0.07 0.10 

BasketballDrive (1920×1024) 0.08 -0.03 0.01 0.21 

Traffic (2560×1600) -0.03 0.00 -0.03 -0.04 

PeopleOnStreet (2560×1600) 0.03 0.00 -0.03 -0.14 

NebutaFestival (2560×1600) 0.02 0.17 -0.05 -0.15 

SteamLocomo-tiveTrain 

(2560×1600) 
-0.04 0.09 0.14 -0.06 

Average 0.18 0.09 0.01 0.02 
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Table 5.40: BD-rate, BD-PSNR, avg. excessive bitrate, and time savings results using 

J48 decision trees classifier for early PU termination. 

Video Sequence 
BD-rate 

(%) 

BD-

PSNR 

(dB) 

Exc. 

Bitrate 

(%) 

CCR 

(%) 

∆Time 

(%) 

BD-

rate/CCR 

(%) 

RaceHorses (384×192) 1.247 -0.062 1.02 15.0 -17.7 8.312 

BlowingBubbles (384×192) 0.162 -0.006 -0.05 18.8 -24.1 0.864 

BQSquare (384×192) 0.187 -0.008 0.00 22.5 -30.3 0.832 

BasketballPass (384×192) 0.145 -0.008 -0.06 21.4 -28.0 0.678 

Average 0.435 -0.021 0.23 19.4 -25.0 2.672 

RaceHorses (832×448) 0.652 -0.026 0.16 13.1 -15.5 4.976 

PartyScene (832×448) 0.113 -0.006 0.04 18.3 -23.6 0.618 

BQMall (832×448) 0.214 -0.008 -0.03 21.7 -28.3 0.986 

BasketballDrill (832×448) 0.214 -0.009 0.01 23.6 -31.9 0.908 

Average 0.298 -0.012 0.04 19.2 -24.8 1.872 

ParkScene (1920×1024) 0.248 -0.008 0.01 24.0 -33.2 1.033 

Kimono1 (1920×1024) 0.286 -0.010 0.10 20.5 -26.5 1.395 

Cactus (1920×1024) 0.133 -0.002 -0.03 28.3 -41.4 0.470 

BQTerrace (1920×1024) 0.043 -0.001 0.05 21.8 -28.8 0.198 

BasketballDrive (1920×1024) 0.221 -0.004 0.07 19.5 -24.8 1.135 

Average 0.186 -0.005 0.04 22.8 -30.9 0.846 

Traffic (2560×1600) 0.091 -0.004 -0.03 31.1 -47.1 0.293 

PeopleOnStreet (2560×1600) 0.192 -0.009 -0.04 16.0 -19.6 1.200 

NebutaFestival (2560×1600) 0.000 0.000 0.00 16.9 -21.5 -0.001 

SteamLocomotiveTrain 

(2560×1600) 
0.060 0.000 0.03 22.3 -29.1 0.269 

Average 0.086 -0.003 -0.01 21.6 -29.3 0.440 

Overall Average 0.248 -0.010 0.074 20.9 -27.7 1.422 

 

Table 5.41 summarizes percentage of the time taken for the prediction model to 

be generated. This information is important as the proposed solution is a sequence-

dependent one. 

Table 5.41: Model generation time to encoding time using modified encoder ratios 

using J48 decision trees classifier for early PU termination. 

Video Sequence 
𝑻𝒊𝒎𝒆𝒎𝒐𝒅𝒆𝒍_𝒕 (%) 

QP = 22 QP = 27 QP = 32 QP = 37 

RaceHorses (384×192) 0.11 0.11 0.20 0.19 

BlowingBubbles (384×192) 0.22 0.12 0.21 0.24 

BQSquare (384×192) 0.11 0.15 0.21 0.25 

BasketballPass (384×192) 0.12 0.13 0.13 0.23 

Average 0.14 0.13 0.19 0.23 

RaceHorses (832×448) 0.09 0.13 0.14 0.16 

PartyScene (832×448) 0.11 0.13 0.16 0.25 

BQMall (832×448) 0.13 0.13 0.19 0.21 

BasketballDrill (832×448) 0.14 0.15 0.16 0.15 

Average 0.12 0.14 0.16 0.19 

ParkScene (1920×1024) 0.53 0.19 0.20 0.31 

Kimono1 (1920×1024) 0.56 0.36 0.41 0.36 

Cactus (1920×1024) 0.14 0.46 0.18 1.12 

BQTerrace (1920×1024) 0.60 0.28 0.71 0.79 

BasketballDrive (1920×1024) 0.34 0.93 0.40 0.87 

Average 0.43 0.44 0.38 0.69 

Traffic (2560×1600) 0.81 0.54 0.62 1.29 

PeopleOnStreet (2560×1600) 0.46 0.49 0.97 0.87 

NebutaFestival (2560×1600) 0.47 0.81 1.24 4.36 

SteamLocomotiveTrain (2560×1600) 0.69 1.35 1.81 1.35 

Average 0.61 0.80 1.16 1.97 

Overall Average 0.331 0.380 0.467 0.765 
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The decision accuracies achieved by using the proposed algorithm can be seen 

in Table 5.42. A classification rate of around 78.1% is attained by the proposed scheme. 

Table 5.42: Classification rates per each CU size using J48 decision trees classifier for 

early PU termination. 

Video Sequence 64×64 32×32 16×16 8×8 True Overall 

RaceHorses (384×192) 85.5 68.8 69.3 68.4 73.0 

BlowingBubbles (384×192) 83.0 75.1 77.1 74.3 77.3 

BQSquare (384×192) 79.1 77.9 80.1 76.6 78.4 

BasketballPass (384×192) 81.8 79.6 82.0 79.8 80.8 

Average 82.3 75.3 77.1 74.8 77.4 

RaceHorses (832×448) 85.4 72.5 69.9 66.9 73.7 

PartyScene (832×448) 83.8 80.9 79.7 74.7 79.8 

BQMall (832×448) 87.2 80.7 82.2 78.7 82.2 

BasketballDrill (832×448) 79.6 78.8 79.9 80.8 79.8 

Average 84.0 78.2 77.9 75.3 78.8 

ParkScene (1920×1024) 79.2 79.5 81.0 77.4 79.3 

Kimono1 (1920×1024) 78.6 76.2 77.8 75.3 77.0 

Cactus (1920×1024) 85.2 83.0 83.9 81.2 83.3 

BQTerrace (1920×1024) 78.4 79.9 80.8 74.9 78.5 

BasketballDrive (1920×1024) 76.3 75.2 74.6 73.0 74.8 

Average 79.5 78.7 79.6 76.3 78.6 

Traffic (2560×1600) 78.2 80.3 83.8 82.8 81.3 

PeopleOnStreet (2560×1600) 86.0 79.9 76.3 73.3 78.9 

NebutaFestival (2560×1600) 77.4 67.6 68.5 66.6 70.0 

SteamLocomotiveTrain (2560×1600) 80.1 81.2 82.1 77.7 80.3 

Average 80.4 77.3 77.7 75.1 77.6 

Overall Average 81.4 77.5 78.2 75.4 78.1 

 

5.2.2.3. Summary of PU split prediction results.  Tables 5.43-5.45 illustrate a 

summary of the overall averages of each of the proposed early PU termination schemes. 

Table 5.43: BD-rate, BD-PSNR, avg. excessive bitrate, and time savings results for 

the proposed early PU termination algorithms. 

Proposed early PU 

termination 

algorithms 

BD-

rate 

(%) 

BD-

PSNR 

(dB) 

Exc. 

Bitrate 

(%) 

CCR 

(%) 

∆Time 

(%) 

BD-

rate/CCR 

(%) 
RF 0.437 -0.264 0.096 28.8 -43.8 1.573 

DecisionTrees 0.248 -0.010 0.074 20.9 -27.7 1.422 

 

Table 5.44: Model generation time to encoding time using modified encoder ratios for 

all proposed early PU termination algorithms. 

Proposed early PU 

termination algorithms 

𝐓𝐢𝐦𝐞𝐦𝐨𝐝𝐞𝐥_𝐭 (%) 

QP = 22 QP = 27 QP = 32 QP = 37 

RF 7.574 8.147 9.268 10.705 

DecisionTrees 0.331 0.380 0.467 0.765 

 

Table 5.45: Classification rates per each CU size for all proposed early PU 

termination algorithms. 

Proposed early PU 

termination algorithms 
64×64 32×32 16×16 8×8 True Overall 

RF 69.7 66.5 69.2 70.4 69.0 

DecisionTrees 81.4 77.5 78.2 75.4 87.1 
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Based on the overall averages of the proposed solutions, it is evident that the 

scheme that utilizes J48 decision trees outperforms the random forest approach in terms 

of almost all aspects. Its usage resulted in a BD-rate of 0.248%, BD-PSNR of -0.010 

dB and excessive bitrate of 0.074%. Nonetheless, this led to introducing a CCR of 

20.9%, which is lower than that demonstrated by utilizing random forests. However, 

the time needed to generate the predictive model was significantly less and it displayed 

a higher accuracy of 78.1%. Random forest model generation time is significantly 

higher due to using the entire set of initial features and not applying any pruning to the 

built trees. 

5.2.3. CU and PU early termination algorithms. The results obtained by 

combining the previous two approaches to enhance the CU size and PU mode selection 

are displayed. These results are given in terms of BD-rate, BD-PSNR, excessive bitrate, 

and computation complexity savings. 

5.2.3.1. Random forest classifier for CU and PU predictions.  Tables 5.46 and 

5.47 show the time savings and excessive bitrate per each QP for each of the test 

sequences that are acquired by applying the random forest classifier for both CU and 

PU predictions, respectively. As the QP value increases, it is observed that, on average, 

less coding bits and time are required to encode a given video sequence.  

Table 5.46: Time savings results per each QP using random forest classifier for CU 

and PU predictions. 

Video Sequence 
22 27 32 37 

CCR 

(%) 

∆Time 

(%) 

CCR 

(%) 

∆Time 

(%) 

CCR 

(%) 

∆Time 

(%) 

CCR 

(%) 

∆Time 

(%) 

RaceHorses (384×192) 39.3 -64.8 46.3 -86.1 47.5 -90.5 54.0 -117.5 

BlowingBubbles (384×192) 34.0 -51.5 45.1 -82.3 51.2 -104.9 55.0 -122.0 

BQSquare (384×192) 33.1 -49.5 45.9 -84.9 53.9 -116.7 64.1 -178.3 

BasketballPass (384×192) 36.0 -56.2 43.3 -76.5 51.8 -107.1 59.0 -143.7 

RaceHorses (832×448) 41.1 -69.7 55.2 -123.4 53.1 -113.0 61.8 -161.9 

PartyScene (832×448) 40.0 -66.5 49.2 -96.9 51.4 -105.9 55.6 -125.1 

BQMall (832×448) 30.8 -44.4 45.6 -83.9 55.4 -124.0 64.0 -177.9 

BasketballDrill (832×448) 41.9 -72.2 56.3 -128.8 60.9 -155.5 66.9 -201.6 

ParkScene (1920×1024) 43.7 -77.7 52.9 -112.5 61.5 -160.0 77.8 -350.1 

Kimono1 (1920×1024) 53.5 -115.1 57.4 -134.8 59.2 -145.3 67.1 -203.6 

Cactus (1920×1024) 37.9 -60.9 53.9 -117.0 63.0 -170.2 73.5 -276.7 

BQTerrace (1920×1024) 44.6 -80.6 56.6 -130.2 71.2 -247.7 81.1 -430.0 

BasketballDrive (1920×1024) 50.8 -103.1 50.2 -100.6 59.5 -147.0 66.0 -194.1 

Traffic (2560×1600) 51.1 -104.3 60.4 -152.4 73.7 -279.5 77.9 -351.9 

PeopleOnStreet (2560×1600) 47.1 -88.9 41.2 -70.0 46.0 -85.2 58.1 -138.6 

NebutaFestival (2560×1600) 62.9 -169.5 58.9 -143.4 57.4 -134.7 81.3 -434.6 

SteamLocomotiveTrain (2560×1600) 61.2 -157.8 62.4 -165.9 70.4 -238.0 80.6 -416.4 

Average 44.1 -84.3 51.8 -111.2 58.1 -148.5 67.3 -236.7 
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Table 5.47: Excessive bitrate results per each QP using random forest classifier for 

CU and PU predictions. 

Video Sequence 
Excessive Bitrate (%) 

QP = 22 QP = 27 QP = 32 QP = 37 
RaceHorses (384×192) 4.51 4.33 2.10 0.67 

BlowingBubbles (384×192) 0.82 0.72 0.62 0.08 

BQSquare (384×192) 0.19 -0.14 -0.16 0.48 

BasketballPass (384×192) 1.39 1.61 0.53 0.40 

RaceHorses (832×448) 1.93 3.09 2.21 0.88 

PartyScene (832×448) 1.25 0.82 0.58 -0.20 

BQMall (832×448) 0.45 1.20 1.31 0.82 

BasketballDrill (832×448) 0.56 0.72 0.59 0.15 

ParkScene (1920×1024) 0.28 0.38 -0.15 -0.40 

Kimono1 (1920×1024) 0.56 0.83 0.41 0.01 

Cactus (1920×1024) -0.22 0.24 0.39 -0.10 

BQTerrace (1920×1024) -0.19 -0.87 -0.88 -0.74 

BasketballDrive (1920×1024) -0.11 0.38 0.21 0.39 

Traffic (2560×1600) -0.13 0.26 0.17 -0.34 

PeopleOnStreet (2560×1600) 2.24 1.59 1.73 1.45 

NebutaFestival (2560×1600) 0.19 0.72 0.66 -0.33 

SteamLocomo-tiveTrain 

(2560×1600) 
0.18 0.17 0.18 -0.34 

Average 0.82 0.94 0.62 0.17 

 

Table 5.48: BD-rate, BD-PSNR, avg. excessive bitrate, and time savings results using 

random forest classifier for CU and PU predictions. 

Video Sequence 
BD-rate 

(%) 

BD-

PSNR 

(dB) 

Exc. 

Bitrate 

(%) 

CCR 

(%) 

∆Time 

(%) 

BD-

rate/CCR 

(%) 

RaceHorses (384×192) 9.351 -0.434 2.90 46.8 -89.7 19.989 

BlowingBubbles (384×192) 3.964 -0.157 0.56 46.3 -90.2 8.557 

BQSquare (384×192) 1.684 -0.078 0.09 49.3 -107.4 3.419 

BasketballPass (384×192) 3.426 -0.164 0.98 47.5 -95.9 7.209 

Average 4.606 -0.208 1.13 47.5 -95.8 9.794 

RaceHorses (832×448) 6.512 -0.251 2.03 52.8 -117.0 12.337 

PartyScene (832×448) 3.028 -0.139 0.61 49.0 -98.6 6.174 

BQMall (832×448) 3.363 -0.139 0.95 48.9 -107.6 6.870 

BasketballDrill (832×448) 2.337 -0.095 0.51 56.5 -139.5 4.137 

Average 3.810 -0.156 1.02 51.8 -115.7 7.380 

ParkScene (1920×1024) 2.395 -0.076 0.03 59.0 -175.1 4.060 

Kimono1 (1920×1024) 1.692 -0.055 0.45 59.3 -149.7 2.853 

Cactus (1920×1024) 2.077 -0.048 0.08 57.1 -156.2 3.641 

BQTerrace (1920×1024) 1.719 -0.033 -0.67 63.4 -222.1 2.712 

BasketballDrive (1920×1024) 1.579 -0.035 0.22 56.6 -136.2 2.790 

Average 1.892 -0.049 0.02 59.1 -167.9 3.211 

Traffic (2560×1600) 2.538 -0.086 -0.01 65.7 -222.0 3.861 

PeopleOnStreet (2560×1600) 4.429 -0.194 1.75 48.1 -95.7 9.211 

NebutaFestival (2560×1600) 0.505 0.000 0.31 65.1 -220.5 0.775 

SteamLocomotiveTrain 

(2560×1600) 
0.092 0.000 0.05 68.7 -244.5 0.134 

Average 1.891 -0.070 0.53 61.9 -195.7 3.495 

Overall Average 2.982 -0.117 0.637 55.3 -145.2 5.808 

 

Overall, a CCR of 55.3% is attained at the cost of introducing performance 

losses of 2.982% and -0.117 dB in terms BD-rate and BD-PSNR, respectively. The 

results imply that, as the spatial resolution increases, more complexity reduction is 

accomplished, while a reduction is seen in BD-rate. These results can be observed in 

Table 5.48.  
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5.2.3.2. J48 decision trees classifier for CU and PU predictions.  Tables 5.49 

and 5.50 show the time savings and excessive bitrate per each QP for each of the test 

sequences that are acquired by applying the J48 classifier for both CU and PU 

predictions, respectively. As the QP value increases, it is observed that, on average, less 

coding bits and time are needed to encode a given video sequence.  

Table 5.49: Time savings results per each QP using J48 decision trees classifier for 

CU and PU predictions. 

Video Sequence 
22 27 32 37 

CCR 

(%) 

∆Time 

(%) 

CCR 

(%) 

∆Time 

(%) 

CCR 

(%) 

∆Time 

(%) 

CCR 

(%) 

∆Time 

(%) 

RaceHorses (384×192) 41.2 -69.9 33.5 -50.3 32.8 -48.8 45.2 -82.6 

BlowingBubbles (384×192) 28.9 -40.6 37.2 -59.3 52.5 -110.3 58.9 -143.5 

BQSquare (384×192) 30.4 -43.6 44.3 -79.5 59.9 -149.5 66.1 -195.3 

BasketballPass (384×192) 33.5 -50.4 41.6 -71.3 47.6 -90.9 59.5 -147.0 

RaceHorses (832×448) 33.3 -49.9 44.7 -80.8 47.4 -90.1 50.1 -100.3 

PartyScene (832×448) 32.2 -47.6 38.7 -63.2 46.8 -87.9 59.0 -143.8 

BQMall (832×448) 35.7 -55.5 43.7 -77.5 50.9 -103.4 60.4 -152.5 

BasketballDrill (832×448) 41.8 -71.9 48.3 -93.5 54.0 -117.3 60.7 -154.5 

ParkScene (1920×1024) 40.7 -68.8 52.0 -108.4 60.3 -152.1 68.3 -215.8 

Kimono1 (1920×1024) 40.3 -67.6 48.3 -93.3 55.2 -123.0 59.3 -145.8 

Cactus (1920×1024) 38.2 -61.8 52.8 -111.9 63.7 -175.5 67.3 -205.5 

BQTerrace (1920×1024) 36.8 -58.2 56.0 -127.4 69.9 -232.0 73.6 -278.5 

BasketballDrive (1920×1024) 48.1 -92.6 47.1 -89.1 54.7 -120.7 61.1 -156.7 

Traffic (2560×1600) 47.6 -90.9 59.9 -149.5 69.1 -223.9 76.2 -319.9 

PeopleOnStreet (2560×1600) 33.2 -49.6 33.8 -51.1 43.0 -75.5 50.5 -102.1 

NebutaFestival (2560×1600) 67.3 -205.7 51.4 -105.9 52.8 -111.8 70.7 -241.0 

SteamLocomotiveTrain (2560×1600) 53.5 -115.0 62.1 -163.5 71.0 -244.9 76.3 -322.4 

Average 40.2 -72.9 46.8 -92.7 54.8 -132.8 62.5 -182.8 

 

Table 5.50 Excessive bitrate results per each QP using J48 decision trees classifier for 

CU and PU predictions. 

Video Sequence 
Excessive Bitrate (%) 

QP = 22 QP = 27 QP = 32 QP = 37 

RaceHorses (384×192) 5.47 2.40 0.55 0.55 

BlowingBubbles (384×192) 0.11 0.17 0.20 0.20 

BQSquare (384×192) 0.10 0.12 -0.01 -0.01 

BasketballPass (384×192) 0.94 0.94 0.66 0.66 

RaceHorses (832×448) 1.14 2.02 1.54 1.54 

PartyScene (832×448) 0.68 0.40 0.01 0.01 

BQMall (832×448) 0.68 0.92 0.70 0.70 

BasketballDrill (832×448) 0.41 0.40 0.25 0.25 

ParkScene (1920×1024) 0.01 0.07 -0.23 -0.23 

Kimono1 (1920×1024) 0.34 0.54 0.38 0.38 

Cactus (1920×1024) -0.15 0.16 0.22 0.22 

BQTerrace (1920×1024) -0.24 -0.41 -0.29 -0.29 

BasketballDrive (1920×1024) 0.03 0.30 0.27 0.27 

Traffic (2560×1600) -0.08 0.12 0.19 0.19 

PeopleOnStreet (2560×1600) 1.70 1.15 0.98 0.98 

NebutaFestival (2560×1600) 0.61 0.75 0.30 0.30 

SteamLocomo-tiveTrain 

(2560×1600) 
-0.22 -0.15 -0.04 -0.04 

Average 0.68 0.58 0.33 0.33 
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Overall, a CCR of 51.1% is attained at the cost of introducing performance 

losses of 2.189% and -0.086 dB in terms BD-rate and BD-PSNR, respectively. The 

results imply that, as the spatial resolution increases, more complexity reduction is 

accomplished, while a reduction is seen in BD-rate. These results can be observed in 

Table 5.51. 

Table 5.51: BD-rate, BD-PSNR, avg. excessive bitrate, and time savings results using 

J48 decision trees classifier for CU and PU predictions. 

Video Sequence 
BD-rate 

(%) 

BD-

PSNR 

(dB) 

Exc. 

Bitrate 

(%) 

CCR 

(%) 

∆Time 

(%) 

BD-

rate/CCR 

(%) 

RaceHorses (384×192) 6.878 -0.316 2.08 38.2 -62.9 18.026 

BlowingBubbles (384×192) 2.896 -0.115 0.15 44.4 -88.4 6.526 

BQSquare (384×192) 1.463 -0.067 0.06 50.2 -117.0 2.917 

BasketballPass (384×192) 2.881 -0.139 0.56 45.6 -89.9 6.322 

Average 3.530 -0.159 0.71 44.6 -89.6 8.448 

RaceHorses (832×448) 4.908 -0.190 1.12 43.9 -80.3 11.189 

PartyScene (832×448) 1.778 -0.082 0.26 44.2 -85.6 4.023 

BQMall (832×448) 2.734 -0.114 0.75 47.7 -97.2 5.737 

BasketballDrill (832×448) 1.607 -0.065 0.31 51.2 -109.3 3.138 

Average 2.757 -0.113 0.61 46.7 -93.1 6.022 

ParkScene (1920×1024) 1.312 -0.042 -0.12 55.4 -136.3 2.370 

Kimono1 (1920×1024) 1.269 -0.041 0.34 50.8 -107.4 2.500 

Cactus (1920×1024) 1.771 -0.039 0.09 55.5 -138.7 3.191 

BQTerrace (1920×1024) 1.185 -0.022 -0.30 59.1 -174.0 2.006 

BasketballDrive (1920×1024) 1.377 -0.030 0.19 52.7 -114.8 2.611 

Average 1.383 -0.035 0.04 54.7 -134.2 2.536 

Traffic (2560×1600) 1.798 -0.062 0.06 63.2 -196.1 2.844 

PeopleOnStreet (2560×1600) 3.246 -0.143 1.15 40.1 -69.6 8.089 

NebutaFestival (2560×1600) 0.328 0.000 0.29 60.5 -166.1 0.542 

SteamLocomotiveTrain 

(2560×1600) 
-0.215 0.000 -0.27 65.7 -211.5 -0.327 

Average 1.289 -0.051 0.30 57.4 -160.8 2.787 

Overall Average 2.189 -0.086 0.394 51.1 -120.3 4.806 

 

5.2.3.3. Random forest classifier for CU predictions and J48 decision trees 

classifier PU predictions.  Tables 5.52 and 5.53 show the time savings and excessive 

bitrate per each QP for each of the test sequences that are acquired by predicting CUs 

using the random forest classifier and predicting PUs using the J48 classifier, 

respectively. As the QP value increases, it is observed that, less overall coding bits and 

time are required to encode a given video sequence. Overall, a CCR of 50.1% is attained 

at the cost of introducing performance losses of 2.007% and -0.079 dB in terms BD-

rate and BD-PSNR, respectively. The results imply that, as the spatial resolution 

increases, more complexity reduction is accomplished, while reduction is seen in BD-

rate. These results can be observed in Table 5.54. 
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Table 5.52: Time savings results per each QP using random forest classifier for CU 

predictions and J48 decision trees classifier PU predictions. 

Video Sequence 
22 27 32 37 

CCR 

(%) 

∆Time 

(%) 

CCR 

(%) 

∆Time 

(%) 

CCR 

(%) 

∆Time 

(%) 

CCR 

(%) 

∆Time 

(%) 

RaceHorses (384×192) 38.1 -61.4 36.6 -57.7 34.6 -52.9 43.9 -78.1 

BlowingBubbles (384×192) 28.6 -40.2 36.8 -58.2 48.1 -92.8 49.1 -96.2 

BQSquare (384×192) 40.9 -69.1 44.9 -81.7 53.6 -115.3 63.4 -172.9 

BasketballPass (384×192) 33.3 -49.8 39.6 -65.6 47.1 -89.1 57.4 -134.6 

RaceHorses (832×448) 28.8 -40.4 42.1 -72.7 45.9 -84.9 48.8 -95.2 

PartyScene (832×448) 30.6 -44.0 39.5 -65.3 46.3 -86.3 56.7 -131.1 

BQMall (832×448) 35.7 -55.5 41.7 -71.4 50.0 -99.8 56.8 -131.4 

BasketballDrill (832×448) 39.1 -64.2 46.6 -87.2 53.8 -116.4 61.2 -157.5 

ParkScene (1920×1024) 38.6 -62.8 49.5 -98.1 58.8 -142.9 67.9 -211.7 

Kimono1 (1920×1024) 50.4 -101.5 50.8 -103.2 53.7 -115.8 61.6 -160.7 

Cactus (1920×1024) 37.4 -59.8 51.8 -107.5 59.7 -147.9 66.9 -202.1 

BQTerrace (1920×1024) 31.2 -45.3 58.1 -138.7 70.0 -233.1 72.9 -269.4 

BasketballDrive (1920×1024) 47.7 -91.3 45.4 -83.1 52.3 -109.6 58.8 -142.7 

Traffic (2560×1600) 47.2 -89.5 57.6 -135.8 65.9 -193.1 73.5 -276.6 

PeopleOnStreet (2560×1600) 30.5 -43.8 35.3 -54.6 42.9 -75.0 50.4 -101.6 

NebutaFestival (2560×1600) 64.0 -178.1 55.0 -122.1 55.0 -122.1 70.2 -236.0 

SteamLocomotiveTrain (2560×1600) 54.6 -120.5 60.1 -150.6 66.3 -196.6 73.0 -270.6 

Average 39.8 -71.6 46.6 -91.4 53.2 -122.0 60.7 -168.7 

 

Table 5.53: Excessive bitrate results per each QP using random forest classifier for 

CU predictions and J48 decision trees classifier PU predictions. 

Video Sequence 
Excessive Bitrate (%) 

QP = 22 QP = 27 QP = 32 QP = 37 

RaceHorses (384×192) 5.34 2.52 0.44 -0.13 

BlowingBubbles (384×192) 0.24 0.01 -0.35 -0.23 

BQSquare (384×192) 0.04 -0.18 -0.36 -0.02 

BasketballPass (384×192) 1.16 0.88 0.28 0.47 

RaceHorses (832×448) 0.93 1.72 1.08 -0.24 

PartyScene (832×448) 0.58 0.22 -0.11 -0.42 

BQMall (832×448) 0.65 0.79 0.66 0.30 

BasketballDrill (832×448) 0.28 0.33 0.36 -0.04 

ParkScene (1920×1024) -0.11 -0.13 -0.59 -0.62 

Kimono1 (1920×1024) 0.47 0.63 -0.01 -0.13 

Cactus (1920×1024) -0.29 0.02 0.16 -0.22 

BQTerrace (1920×1024) -0.45 -0.89 -0.81 -0.79 

BasketballDrive (1920×1024) -0.08 0.19 0.11 0.10 

Traffic (2560×1600) -0.37 -0.01 -0.17 -0.50 

PeopleOnStreet (2560×1600) 1.38 0.99 1.06 0.64 

NebutaFestival (2560×1600) 0.21 0.60 0.19 -0.54 

SteamLocomo-tiveTrain 

(2560×1600) 
-0.05 -0.11 -0.12 -0.51 

Average 0.58 0.45 0.11 -0.17 
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Table 5.54: BD-rate, BD-PSNR, avg. excessive bitrate, and time savings results using 

random forest classifier for CU predictions and J48 decision trees classifier PU 

predictions. 

Video Sequence 
BD-rate 

(%) 

BD-

PSNR 

(dB) 

Exc. 

Bitrate 

(%) 

CCR 

(%) 

∆Time 

(%) 

BD-

rate/CCR 

(%) 

RaceHorses (384×192) 6.217 -0.289 2.04 38.3 -62.5 16.242 

BlowingBubbles (384×192) 2.263 -0.090 -0.08 40.7 -71.9 5.566 

BQSquare (384×192) 1.256 -0.058 -0.13 50.7 -109.7 2.477 

BasketballPass (384×192) 2.620 -0.125 0.70 44.3 -84.8 5.910 

Average 3.089 -0.141 0.63 43.5 -82.2 7.549 

RaceHorses (832×448) 4.000 -0.156 0.87 41.4 -73.3 9.665 

PartyScene (832×448) 1.729 -0.080 0.07 43.3 -81.7 3.995 

BQMall (832×448) 2.679 -0.111 0.60 46.0 -89.5 5.821 

BasketballDrill (832×448) 1.597 -0.065 0.23 50.2 -106.3 3.184 

Average 2.501 -0.103 0.44 45.2 -87.7 5.666 

ParkScene (1920×1024) 1.550 -0.050 -0.36 53.7 -128.9 2.886 

Kimono1 (1920×1024) 1.258 -0.042 0.24 54.1 -120.3 2.324 

Cactus (1920×1024) 1.690 -0.037 -0.08 54.0 -129.3 3.133 

BQTerrace (1920×1024) 1.168 -0.022 -0.74 58.0 -171.6 2.012 

BasketballDrive (1920×1024) 0.988 -0.021 0.08 51.0 -106.7 1.935 

Average 1.331 -0.034 -0.17 54.2 -131.4 2.458 

Traffic (2560×1600) 1.741 -0.059 -0.26 61.0 -173.7 2.853 

PeopleOnStreet (2560×1600) 3.338 -0.147 1.02 39.8 -68.8 8.395 

NebutaFestival (2560×1600) 0.200 0.000 0.12 61.1 -164.6 0.327 

SteamLocomotiveTrain 

(2560×1600) 
-0.170 0.000 -0.20 63.5 -184.6 -0.267 

Average 1.277 -0.052 0.17 56.3 -147.9 2.827 

Overall Average 2.007 -0.079 0.242 50.1 -113.4 4.498 

 

5.3. Performance Evaluation 

The coding efficiency of both the individual and joint algorithms are analysed.  

The proposed solutions involve algorithms applied to perform early CU size and PU 

mode decisions. For RA configuration profile, the compression efficiency of each 

algorithm is evaluated in terms of the complexity reduction attained at the cost of some 

BD-rate and BD-PSNR losses. These are the most important metric to be considered as 

they directly affect the quality of the encoded video sequence. BD-rate to CCR ratio is 

also considered as it provides a good indication as to the improvement introduced by 

utilizing the proposed solution. The smaller this ratio is, the more enhancement is likely 

seen in the HEVC encoder. 

5.3.1. Analysis of the proposed algorithms. Both Figure 5.1 and Table 5.55 

present a comparison between all the proposed solutions in terms of the complexity 

reduction accomplished and the corresponding compression efficiency degradation. 

The table illustrates that the joint schemes combining both CU and PU early termination 

approaches yield the largest CCR, ranging between 50.1% to 55.3%. The justification 
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to such large reductions can be due to trying to limit the RDO process on both CUs and 

PUs, two main contributors to the massive computational complexity seen during 

HEVC encoding. However, this reduction negatively impacted the RD results, leading 

to BD-rate values ranging between 2% to 2.9% and BD-PSNR losses ranging between 

0.079 dB and 0.117 dB. The algorithm that utilizes random forests for CU predictions 

and J48 for PU predictions is observed to outperform the other joint approaches with a 

BD-rate to CCR ratio of 4.5%. 

 

 

Figure 5.1: A comparison between all the proposed solutions. 

 

Table 5.55: A comparison between all the proposed solutions in terms of the CCR and 

compression efficiency degradation. 

Proposed early 

termination algorithms 

BD-rate 

(%) 

BD-PSNR 

(dB) 
CCR (%) 

BD-rate/CCR 

(%) 

CU 

RF 0.539 -0.021 38.9 1.613 

RFselect+RF 0.558 -0.022 39.2 1.663 

DecisionTrees 0.745 -0.029 41.2 2.196 

Stepwise+RM2 1.339 -0.054 39.1 3.922 

PCA90+RM2 1.355 -0.053 37.5 4.253 

PU 
DecisionTrees 0.248 -0.010 20.9 1.422 

RF 0.437 -0.264 28.8 1.573 

CU + PU 

RF+DecisionTrees 2.007 -0.079 50.1 4.498 

DecisionTrees 2.189 -0.086 51.1 4.806 

RF 2.982 -0.117 55.3 5.808 

 



92 

 

As seen in the results presented in Section 5.2, high resolution videos usually 

displayed huge complexity reductions. This can be attributed to the structural 

characteristics of the video sequence, which usually contains large homogeneous areas, 

resulting in having large CUs. Consequently, the splitting of the CU is discouraged, 

which enhances the time in comparison to running the unmodified HM software. 

On the other hand, the smallest CCR is seen when separately considering the 

PU early termination algorithms, which led to CCR ranging between 20.9% to 28.8%. 

The improvement these algorithms display depends on the motion characteristics of the 

video, which might explain the reason behind the limited gain. Video sequences 

containing slow-motion scenes allows the selection of MSM/Skip or 2Nx2N inter-

prediction modes. This limits the RDO process from checking other PU modes that are 

likely to rarely take place. In return, this approach resulted in very small performance 

degradations of 0.248% to 0.437% in terms of BD-rate and -0.010 dB to -0.264 dB in 

terms of BD-PSNR. RaceHorses (384×192) mostly reflecting the worst RD efficiency 

can be attributed not only to its small spatial resolution, which was further reduced 

during the pre-processing of the video sequence, but also to the nature of motion seen 

in the video. The algorithm that utilizes J48 for PU predictions is observed to 

outperform the other approach with a BD-rate to CCR ratio of 1.4%. A CCR of 38.9% 

is seen when using random forests for CU predictions with a BD-rate increase of 

0.539% and BD-PSNR reduction of -0.021 dB. 

Figures 5.2 and 5.3 show the RD efficiency of the three proposed schemes for 

two video sequences encoded with different bitrates. The two video sequences were 

chosen based on their RD efficiency results, where RaceHorses displayed the one of 

the highest RD losses in comparison to other sequences and insignificant RD losses are 

seen in Traffic. The curves represent the results for the unmodified reference encoder 

(HM 13.0), and the best performing algorithm from each of the individual and joint 

schemes. It is notified that for both video sequences, the proposed schemes present very 

good results as their curves overlap with that of the original encoder. Nonetheless, when 

applying the CU+PU scheme to the RaceHorses video sequence, it is observed that the 

RD efficiency is not as good as that achieved by using the original encoder. 



93 

 

 
Figure 5.2: RD efficiency for RaceHorses (384×192) video sequence encoded with 

the unmodified HM 13.0 software and three early termination schemes. 

 
Figure 5.3: RD efficiency for Traffic (2560×1600) video sequence encoded with the 

unmodified HM 13.0 software and three early termination schemes. 

 

5.3.2. Comparison with existing work. Various related work in this field are 

analysed and compared to the schemes proposed in this thesis in terms of BD-rate and 

complexity reduction values. To allow a fair comparison, only those solutions that used 

QPs 22, 27, 32, and 37, RA temporal configuration, and were tested on at least eight 

video sequences belonging to at least four different spatial resolutions were considered. 
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The BD-rate to complexity reduction ratio combines the evaluation metrics, introducing 

an appropriate measure that is used to compare the proposed solutions with that of other 

work. Thus, the analysis is done in terms of the RD efficiency losses encountered when 

a certain amount of complexity reduction is attained. The smaller this value is, the more 

computational complexity saved, the less RD efficiency loss seen, or both. 

Table 5.56: Comparison with related work that use (25) to compute complexity 

reduction. 

Category Related Work BD-rate (%) CCR (%) BD-rate/CCR (%) 

CU early termination 

[31] 2.000 58.4 3.425 

[36] 1.400 49.6 2.823 

[38] 1.430 62.0 2.306 

[46] 0.280 37.0 0.757 

Proposed 0.539 38.9 1.386 

PU early termination 
[46] 0.560 50.0 1.120 

Proposed 0.248 20.9 1.187 

CU+PU early termination 

[42] 0.992 59.8 1.660 

[43] 1.290 65.1 1.981 

[46] 1.330 63.0 2.111 

Proposed 2.007 50.1 4.006 

 

A number of related work considered used (25) to compute the CCR. The results 

are illustrated in Table 5.56. These results are categorized based on the partitioning 

structure it targets. The best performing proposed solution in each category is utilized 

for the comparison done in this section. When it comes to the CU early termination 

category, the best performing related work solution [46] produced a BD-rate/CCR ratio 

of 0.757, which is smaller than the one produced by the proposed scheme. Nevertheless, 

it is important to take note that the CCR achieved by the proposed scheme is slightly 

higher, which resulted in the increase of the performance losses. Additionally, only 8 

sequences were used in common. On the other hand, the proposed work evidently 

outperforms the other solutions presented in this category. The proposed PU early 

termination scheme produces a BD-rate/CCR ratio that is very similar to that seen in 

[46]. The seemingly small complexity reduction seen when using the proposed 

algorithm is at the cost of reducing performance losses. Unfortunately, despite the high 

computational complexity introduced when using the proposed solution that combines 

both the CU and PU approaches in comparison to the other proposed algorithms, the 

BD-rate to CCR ratio is significantly higher than that illustrated by related work. 
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Table 5.57: Comparison with related work that use (26) to compute complexity 

reduction. 

Related Work BD-rate (%)  ΔTime (%) BD-rate/ΔTime (%) 

[30] 0.820 -37.4 2.193 

[39] 0.710 -53.6 1.325 

[41] 0.700 -46.7 1.499 

[44] 1.540 -45.1 3.415 

Proposed 0.539 -70.7 0.762 

 

Other related work in this field used (26) to compute the reduction in time 

complexity and a CU early termination approach. The comparison is presented in Table 

5.57. It is evident that the proposed CU early termination solution outperforms all the 

solutions presented in the table by a great margin. It is important to note that, unlike the 

first set of related works presented in this section, these solutions use all the video 

sequences used in this work. 
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Chapter 6. Conclusion and Future Work 

 

In comparison to its predecessors, HEVC introduced a significant improvement 

in terms of the coding efficiency, but at the cost of increasing the computational 

complexity. The proposed schemes in this thesis aim to counter this computational 

complexity by proposing a fast partitioning decision algorithm for CUs and a fast mode 

selection for PUs using dimensionality reduction and classification techniques. A video 

sequence-dependent approach was considered, where the CU split decision was treated 

as a 2-class problem. Different evaluation metrics were considered to evaluate the 

schemes, including the classification accuracy, BD-rate, BD-PSNR and CCR. 

Experimental results illustrated that a CCR of 38.5% at the negligible cost of 0.539% 

and -0.021 dB in terms of BD-rate and BD-PSNR, respectively, was achieved for the 

best performing CU early termination scheme proposed. The best performing PU early 

termination scheme proposed attained an overall CCR of 20.9% at the cost of a BD-

rate of 0.248% and a BD-PSNR of -0.01 dB. When jointly implemented, an overall BD-

rate increase of 2.007% and BD-PSNR decrease of 0.079 dB was observed, leading to 

a CCR of 50.1%. In comparison to existing work, it was shown that the proposed 

solutions are superior in terms of coding efficiency as evident in the DB-rate and DB-

PSNR results. The proposed solutions are also superior in terms of time savings when 

it comes to applying the generated models to predict the CU split and PU coding modes. 

In future work, the proposed algorithms can be tested in a video sequence- 

independent setting. In this case, a comprehensive set of video sequences can be used 

for offline training and model generation. The generated models can then be used to 

optimize the encoding of any other video sequence. Likewise, for video-dependent 

training models, a future work direction can focus on repeating the training whenever 

a scene cut is deducted. The complexity of such solutions should be analysed carefully 

as the retraining time might be significant. Additionally, this thesis only focused on 

testing the proposed schemes using RA profile configuration. As future work, more test 

conditions can be considered, including Low Delay with P-frames and Low Delay with 

B-frames configurations. Lastly, a fast decision algorithm can be implemented for TU 

structures and combined with the individual algorithms proposed in this work.  
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