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Abstract— This paper presents a novel method for classifying 

four different levels of cognitive workload. The workload levels 

are generated using visual stimuli degradation. EEG signals 

recorded from 16 subjects were used for workload classification. 

The proposed solution includes preprocessing of EEG signals and 

feature extraction based on statistical features. This is followed by 

variable selection using stepwise regression and multiclass linear 

classification. The presented method achieved an average 

classification accuracy of 93.4%. The effect of EEG channel 

selection on the classification accuracy is also investigated. In 

comparison to the existing work, we show that the proposed 

solution is more accurate and computationally less demanding. 

Index Terms—Channel selection, cognitive workload, EEG, 

stepwise regression. 

I. INTRODUCTION 

OGNITIVE workload is the amount of mental effort being 

used in the working memory while performing a mental 

task. Workload levels are affected by many factors including the 

requirements of the task, the environment in which the task is 

being performed and the perceptual capabilities and skills of the 

performer [1]. For example unskilled or novices are expected to 

experience more cognitive workload during the implementation 

of a new task than those who are more familiar with it [2]. 

Stimuli type such as visual and auditory, determines the 

conscious perception. The level of stimulus saliency has a great 

effect on the amount of mental resources needed to process 

information. Additionally, anticipation or having a priori 

knowledge of the stimulus can influence the time to perceive 

information, and consequently reduce the amount of cognitive 

workload placed on the brain [3]. 

There is a serious need to accurately quantify the level of 

cognitive workload. Many jobs are greatly influenced by 

extremely high or low cognitive workload. These jobs include 

military, clinical, industrial, computer-based assistance [4], or 

even driving and gaming. An optimum level of cognitive 

workload should be maintained while performing these tasks. 

Deviation from the optimum workload may lead to reduction of 

cognitive efficiency. Consequently, this will result in 

degradation in performance [5]. Such degradation can affect the 

memory, the learning process and decision-making process. 

Internal and external factors, such as the level of noise in the 

environment, can affect the current cognitive state and workload 

[6]. 

Accurately measuring cognitive workload can be a 

challenging task. In general, there are four main methods for 

assessing cognitive workload: analytical, subjective, behavioral 

and physiological methods [7]. The analytical measures are 

based on modeling of workload simulation. Subjective methods 

on the other hand rely on the subjects themselves for rating the 

different mental tasks. In the behavioral methods, the user 

performance can help in determining and assessing the cognitive 

state. Metrics used in these methods include reaction time and 

accuracy. In comparison with the other suggested methods, 

physiological methods are found to be objective and have less 

interference with the main task [8]. One very important 

physiological means for assessing cognitive workload is using 

the Electroencephalogram (EEG) signals. EEG reflects the 

voltages produced by the ionic currents of the brain neurons [9]. 

Many applications related to understanding or assessing brain 
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functionalities use EEG signals. Examples of these applications 

include sleep disorders, controlling the process of anesthesia, 

coma, epilepsy and brain death [10]. In addition, EEG signals 

are very sensitive to changes and variations in alertness and 

attention. 

EEG signals were used by Zarjam et al. in [11] to classify 

seven levels of cognitive workload. The signals contaminated 

with electrooculogram (EOG) artifacts were discarded. The 

signals were then filtered with a band-pass filter with frequency 

bandwidth of (0.5-30Hz). The classification was carried out 

using Artificial Neural Networks (ANN), and by applying 

discrete wavelet transform (DWT) for feature extraction. 

Baldwin and Penaranda in [12], used EEG signals in classifying 

three different working-memory tasks. After visually inspecting 

the EEG signals to remove noisy channels, the signals from the 

remaining channels were filtered using a (0.1- 70 Hz) band-pass 

filter. The feature vectors consisted of the spectral power 

calculated from five frequency bands, and ANN classifiers were 

used for classification. In [13], K Yu et al. used Bilinear 

Common Spatial Patterns (BCSP) feature extraction method to 

classify four levels of cognitive workload. Linear probabilistic 

support vector machine (LIBSVM) classifiers were adopted for 

classification. Signals preprocessing included a band-pass filter 

of (0.3-40 Hz), and a second-order blind identification based 

method for EOG artifact removal. The classification accuracy of 

this method reached around 87%. However, a higher 

classification accuracy would be preferred. Wireless EEG 

signals was explored in [14] to assess memory workload. The 

workload levels of n-back tasks were classified for 9 subjects. 

The system proposed in that paper included automatic artifacts 

removal, feature extraction, feature scaling, feature selection and 

classification. Four groups of feature extraction techniques were 

employed: spectral power density, statistical features (mean, 

variance, skewness, and kurtosis), morphological features 

(curve length, number of peaks and average non-linear energy), 

and time–frequency features based on four-level DWT. Wavelet 

entropy was employed for decreasing the dimensionality of the 

features. In [14], the classification system was based on a 

support vector machine, which resulted in an average 

classification accuracy of 82%. 

In our proposed work, we present a novel method for 

classifying four workload levels using EEG signals. The 

proposed method includes preprocessing of the EEG signals, 

feature extraction and classification. The objective of 

preprocessing is to include only the frequency components, 

which increase classification accuracy. Additionally, any signal 

contamination due to eye movements is removed. The second 

step is extracting feature vectors followed by variable selection 

to retain important features variables. The final step is feature 

modelling using a linear classifier. 

The rest of this paper is organized as follows. Section II, 

reviews the experimental protocol followed by a review of 

existing methods used for feature extraction and classification. 

In section III, the proposed solution for preprocessing, feature 

extraction, variable selection and classification is presented. 

Also, channel selection is explained in this section as an optional 

step in the classification system. The experimental results are 

then presented in section IV. Finally, the conclusion of this work 

is provided in section V.  

II. METHOD 

A. Experimental Protocol 

The experimental setup and data collection were performed 

as explained in [13]. The experiment included 16 healthy 

subjects. Before the experiment starts, each subject is tested for 

color blindness and has to go through dominant eye test. It is 

also insured that all participants are not on medication and have 

not experienced any neurological or cardiovascular diseases. 

Also, the participants did not suffer from any psychiatric 

disorders or hypertension. The subjective NASA Task Load 

Index (NASA-TLX) questionnaire is completed by every 

participant before and after each cognitive workload level 

throughout the experiment. NASA-TLX is an assessment 

method based on different subscales that act as sources of 

workload demand. These subscales are: Mental Demands, 

Physical Demands, Temporal Demands, Own Performance, 

Effort and Frustration [15]. 

The experiment is conducted using a 24” monitor to display 

the visual stimuli. The total time for the experiment including 

the preparation time is around 90 minutes. Four levels of 

cognitive workload are tested, with each level lasting for about 

10 minutes. During that time, and while the experiment is being 

performed, EEG signals are recorded from 62 channels with 

sampling rate of 512 Hz. Two additional channels are collected 

from the vertical electrooculogram (EOG) and the 

electrocardiogram (ECG). EEG signals are referenced to linked 

ears and grounded to the forehead. 

For each workload level, the subjects are asked to identify 

the human face image displayed in gray-level on the monitor as 

the target, by pressing the letter ‘Q’. Otherwise, if the image is 

for anything other than a human face (non-target), subjects 

should press the lfetter ‘P’. The difficulty level of each task 

increase from level 1 as the easiest to level 4 as the most difficult 

cognitive task. 

Figure 1 illustrates the sequence of the visual stimuli. Each 

trial starts by displaying a fixation cross (+) that lasts for 500 ms, 

after that a digit (Digit 1) is displayed for 300 ms, then another 

digit (Digit 2) is displayed for 300 ms. Then, an image 

(256256) is displayed for 300 ms. Finally, a maximum time 
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window of 3000 ms is left for the subjects to respond (Response) 

as fast as possible by pushing letters ‘Q’ or ‘P’. The next trial is 

then initiated immediately after the response. The previous 

sequence is repeated for all levels. Appropriate markers are also 

simultaneously recorded with the various experiment events.  

Figure 2 provides an example for each of the 4 cognitive 

workload levels. Following, is a detailed description of these 

levels: 

In Level 1: the target is simply an image of a human face. 

The target can easily be identified from the image itself 

regardless of the values of the previous digits. 

In Level 2: the target is only the human-face image that is 

preceded by two numbers that are both either odd or even.  

In Level 3: the target is the same as the previous one, 

however, the signal to noise ratio (SNR) of the images is reduced 

to 0 dB. It is hypothesized that this will increase the level of 

cognitive workload imposed on the subjects. 

Lastly, Level 4: is similar to the previous two levels, 

however, the SNR of the images is decreased further to -5dB. 

The low SNR is needed to increase the cognitive workload 

placed on the subjects. 

The trials presented to a subject are grouped based on the 

cognitive workload level. Samples of the four workload levels 

are explained and presented to each subject in sequential order 

before the experiment starts. In each workload level, a total of 

210 different stimuli sequences or trials containing only 30 

target sequences are displayed. However, it should be stress that 

each workload level is presented to the subject in random order. 

This is important as to avoid any adaptation that could affect the 

perception of the subjects during the experiment. Note that 

randomization of workload levels presented to the subjects is not 

possible because the requirements for identifying the target 

differs according to the underlying level. In addition, the subject 

has to fill in the NASA-TLX questionnaire after each workload 

level experiment. 

 
Figure 1.The sequence of visual stimuli 

The recorded EEG data is collected from 62 different 

channels referenced to the two channels recorded from the ears. 

One EOG channel, and one ECG channel are also 

simultaneously recorded. All the signals are collected and 

sampled using the ANT amplifier (ANT B.V., Enschede, 

Netherlands).  
 

 

Figure 2. Sample targets for each of the 4 workload levels  

Before data recording begins, the subject’s head and earlobes 

are cleaned with some alcohol. The cap is then manually 

positioned according to the 10-20 system. This is then followed 

by filling the electrodes with conductive gel such that the 

impedance of each electrode is less than 10 KΩ. The two earlobe 

reference electrodes are then attached and gel is injected. The 

EOG two electrodes are connected above and below the 

subject’s left eye. Some baseline EEG and EOG signals are 

recorded for few minutes before the experimental paradigm 

begins.  

B.  Existing Feature Extraction and Classification 

BCSP is a method based on conventional Common Spatial 

Patterns (CSP) method [16]. In [13], BCSP method was applied 

to extract features based on both spatial and temporal 

projections, from epoch segments starting from the onset of the 

image to 500 ms after the onset of the image. BCSP aims to 

maximize the power ratio of the two objective functions 

expressed as: 

 

𝒎𝒂𝒙
𝑾.𝑽

𝒅𝒆𝒕(𝑾𝑻𝑿+𝑽𝑽𝑻𝑿+
𝑻𝑾)

𝒅𝒆𝒕(𝑾𝑻𝑿−𝑽𝑽𝑻𝑿−
𝑻𝑾)

                        (1)  

𝒎𝒂𝒙
𝑾.𝑽

𝒅𝒆𝒕(𝑾𝑻𝑿−𝑽𝑽𝑻𝑿−
𝑻𝑾)

𝒅𝒆𝒕(𝑾𝑻𝑿+𝑽𝑽𝑻𝑿+
𝑻𝑾)

                         (2) 

Where W and V  are spatial and temporal projections, 

respectively. Xc is the EEG data of condition c which includes 

both target epochs and non-target epochs and det(•) is the 

determinant operator.  

Both of the objective functions were updated iteratively, 

until the ratio value of the objective functions converges. The 

first two spatial projections and first four temporal projections 

obtained from each objective function were kept during the 

iteration and were finally used for feature extraction. The reason 

900 ms500 ms 3000ms

+ wait for responseImageDigit 2Digit 1

https://doi.org/10.1109/JSEN.2017.2727539


 

Mahmoud, R., Shanableh, T., Bodala, I.P., Thakar, N., & Al-Nashash, H. (2017).  Novel classification system for classifying cognitive workload 

levels under vague visual stimulation.  IEEE Sensors Journal, July, DOI 10.1109/JSEN.2017.2727539 July, 2017. 

© 2017 IEEE.  Personal use of this material is permitted.  Permission from IEEE must be obtained for all other users, including 

reprinting/republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or 

lists, or reuse of any copyrighted components of this work in other works. 

 
 

for this is explained in details in [17]. Four features (two from 

each objective function) were finally obtained from the BCSP. 

The total number of feature variables for each epoch is 24. 

Linear probabilistic LIBSVM classifiers were used for 

classification. The extracted features were used for classification 

using six classifiers built for all possible pairwise combinations 

of the four conditions. 80% of the entire data was used for 

training the classifiers while the remaining 20% was used for 

testing. An average single trial accuracy of above 80% was 

achieved for all four levels. 

C.  Proposed Method 

In this section we present a novel classification algorithm 

that produces a higher classification accuracy than what is 

published in the literature. Figure 3 illustrates the general 

procedure of the proposed solution. The first step is the 

preprocessing of EEG signals using filtering techniques. The 

next step is channel selection. Such a step is considered optional 

as feature extraction and model generation are typically applied 

to all EEG channels. However, in the experimental results 

section we show that a subset of the channels is sufficient to 

generate high classification results. Channel selection is 

followed by our proposed feature extraction method, which is 

based on Discrete Wavelet Transform (DWT) and statistical 

measures. The dimensionality of the feature vectors is then 

reduced using stepwise regression. Lastly, a simple linear 

classifier is used to model and predict the cognitive workload 

levels. 

 

 
Figure 3. Proposed cognitive workload classification solution 

The collected signals are filtered to remove the low 

frequency drift or high frequency noise using the Hamming 

windowed sinc FIR filter with a pass-band of (0.1-60 Hz) [18]. 

The data segment (epoch) of each sequence/trial was extracted 

from the filtered signals. The time window of such an epoch 

starts from the onset of Digit 1 to 500 ms after the onset of the 

image, i.e. 1100 ms in total. The reference EOG signals recorded 

earlier are then used to in a second filter to remove any 

undesirable eye blink EOG artifacts using a second-order blind 

identification (SOBI) based method.  

  

Channel selection is the process of selecting the channels 

that are most relevant to the process of cognitive workload 

classification. It reduces the processing and data acquisition 

complexity. It also improves the overall performance by 

reducing utilization of unnecessary channels [19]. In this work, 

we study the effect of channel selection on the overall 

classification accuracy. We apply the channel selection 

approach reported in [20]. As illustrated in Figure 3, channel 

selection is performed prior to feature extraction and 

classification. In the experimental results section we apply the 

channel selection algorithm to our data and visualize the 

locations of the selected channels.  

In this section we review the channel selection algorithm 

proposed by [20] for completeness. The reviewed work 

proposed a channel selection algorithm with application to 

person authentication. The data set contains EEG recordings 

from 50 subjects performing six mental tasks. Feature extraction 

was applied to individual channels based on the PSD of six 8 Hz 

frequency bands. The channels were ranked based on a stability 

criterion. The stability of each channel is calculated using: 

 

𝒔𝒊 = 𝒃𝒊 − 𝒘𝒊                               (3) 

The stability of channel i is defined as the between-subject 

distance 𝑏𝑖, and within-subject distance 𝑤𝑖 . To find the latter 

distance we start by computing the average Mahalanobis 

distance between the means of the feature vectors of the 

cognitive workload levels for the same channel and subject. This 

is repeated for all subjects and the overall average distance is 

referred to as within-subject distance. Such a quantity measures 

the distance between the means of the feature vectors during 

performing tasks with different workloads within the same 

subject and same channel. The between-subject distance 𝑏𝑖 is 

calculated by finding the Mahalanobis distance between the 

means of the feature vectors of the same cognitive workload 

level and channel but for different subjects. The average over all 

cognitive workload levels is then computed. Such a quantity 

measures the distance between the means of the feature vectors 

of the same channel during performing a task with a specific 

cognitive workload but in different subjects [20]. 

D. Feature Extraction  

Figure 4 illustrates the process of feature extraction used in 

our proposed solution.  

 

Figure 4. Proposed feature extraction process 

 

The filtered signals from the 62 channels are stored in a 

matrix and treated as a 2-D image, then, a discrete 2-D wavelet 

transform (DWT) is applied. We used the Haar wavelet 

transformation for its simplicity and speed of computation. 

Applying the DWT on the EEG signals results in four frequency 

subbands. These subbands contain the approximation 

coefficients matrix (Y0,0) and the detail coefficients matrices of 
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the horizontal (Y0,1), vertical (Y1,0) and diagonal (Y1,1) edges. 

With a one level wavelet transformation, the dimensions of each 

subband is half of the input, which is 62/2 rows and 257/2 

columns. The number of columns pertains to the length of each 

epoch.  

Statistical features are then extracted from the vertical edges 

matrix (Y1,0). This matrix is chosen because it represents the 

temporal dynamics of the EEG signals.  

The extracted features included:  

i. Spatial and temporal means of the Y1,0 EEG subband. 

ii. Spatial and temporal standard deviations of the Y1,0 EEG 

subband 

iii.  Spatial and temporal entropy of the Y1,0 EEG subband. 

iv. The spatial covariance matrix of the Y1,0 EEG subband. 

Since the covariance matrix is symmetrical, then only the 

values above the main diagonal are retained and represented as 

a vector. 

The outcome of feature extraction process is a set of feature 

vectors that represent the EEG data. To ensure that the different 

feature variables are on similar scales, we use the z-score 

normalization. For a feature variable X the z-score of data point 

𝑥𝑖 is defined as: 

𝒛𝒊  =   
(𝒙𝒊  − 𝝁𝑿)

𝝈𝑿

                                (𝟒) 

In terms of implementation, the z-scores are applied to the 

training dataset only. The resultant means and standard 

deviations of which are then used to normalize the test dataset.  

 

E. Variable Selection  

The dimensionality of the resultant feature vectors is 

detailed in TABLE 1. The total length is 945 variables. Such 

dimensionality is considered high and may affect the 

performance of the classifier if not enough feature vectors are 

available in the training phase. Therefore, we used stepwise 

regression to retain the most important variables and potentially 

reduce dimensionality as a by-product. The reason we use 

stepwise regression is that it produces an initiative result, such 

that only feature variables that are needed for discriminating the 

four cognitive workload levels are retained. In the experimental 

results section we list the feature variables that are retained for 

each subject. 

TABLE 1 

DESCRIPTION OF THE FEATURE VECTOR CONTENT AND SIZE 

Feature No. of variables 

Mean of subband  Y1,0 columns 129 

Standard deviation of subband  Y1,0  columns 129 

Mean of subband  Y1,0  rows 31 

Standard deviation of subband  Y1,0  rows 31 

Entropy of subband  Y1,0  columns 129 

Entropy of subband  Y1,0  rows 31 

Spatial covariance matrix 465 

Total 945 

 Figure 5 illustrates the process of variable selection. 

Stepwise regression is applied to the feature vectors of the 

training dataset. The output from the stepwise regression is the 

indices of the retained feature variables. These indices are stored 

and used to reduce the number of features in the test dataset.  

Stepwise regression is a method of variable selection, but it 

can also be used for dimensionality reduction as proposed by 

[21]. The stepwise regression procedure includes forward 

selection and backward elimination steps. Forward selection 

starts with the simplest model of all (i.e. one feature variable), 

and adds suitable variables one at a time until the “best” model 

is reached. Backward elimination works with the most general 

model, and drops variables one at a time until the “best” model 

is reached. Stepwise, on the other hand, is a combination of both 

forward and backward methods, where variables can be dropped 

and added.  

 
Figure 5. Variable selection using stepwise regression 

 

For a set of variables x1, x2… xk that belongs to cognitive 

level y, fin is the F-random variable for adding a variable to the 

model and fout is the value of the F-random variable for removing 

a variable from the model. The stepwise regression is defined by 

the following steps [22]: 

In the first step, all variables are examined one by one, to 

generate a one-variable model in the form of: 

  𝒉(𝒙) = 𝜽𝟎 +  𝜽𝟏𝒙𝟏                                (𝟓) 

Where h(x) denotes the hypothesis that the included variables 

are needed for the classification of the cognitive level. x1 is one 

of the k variables that results in the highest F-statistics. In the 

second step, the remaining k-1 variables are examined to choose 

the second best variable such that the model in (6) gives the best 

classification result. Here, x2 is added such that its F-statistic 

 𝒇𝟐 is greater than fin. 

𝒉(𝒙) =  𝜽𝟎 + 𝜽𝟏𝒙𝟏 +  𝜽𝟐𝒙𝟐                          (𝟔) 

  𝑓2 is calculated by: 
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  𝒇𝟐 =  
𝑺𝑺𝑹(𝜽𝟏|𝜽𝟐𝜽𝟎)

𝑴𝑺𝑬(𝒙𝟏, 𝒙𝟐)
                              (𝟕) 

 𝑆𝑆𝑅  denotes the regression sum squares error and MSE 

denotes the mean square error. After x2 is chosen, the algorithm 

rechecks if x1 is to be removed. This is done by comparing 𝑓1 to 

fout. If 𝑓1is less than fout, x1 is removed from the model. Where f1 

is calculated using (8). 

 

𝒇𝟏 =  
𝑺𝑺𝑹(𝜽𝟐|𝜽𝟏𝜽𝟎)

𝑴𝑺𝑬(𝒙𝟐, 𝒙𝟏)
                                  (𝟖) 

In the third step, for the remaining (k-2) variables, the third 

best variable is included by testing 3-variables model such that 

the resulting model has the best classification result. The 

stepwise regression algorithm continues until no more variables 

can be included or removed from the model.  

 

F. Classification 

In our proposed solution, we use a simple linear classifier, as 

it proved to be efficient with the proposed feature extraction 

method. In linear classifiers, the class label is determined by a 

linear combination of features with predetermined weights. The 

weights are the attributes of the model, thus the hypothesis or 

the predicted class will be: 

𝒉(𝒙) = 𝜽𝟎  +  𝜽𝟏𝒙𝟏  +  𝜽𝟐𝒙𝟐  +  …  + 𝜽𝑵𝒙𝑵         (𝟗) 

Where θj’s are the attributes of the model. For k classes we 

can define the input matrix X as: 

𝑿 =  [𝑿𝟏, 𝑿𝟐, …  𝑿𝒌]𝑻                            (𝟏𝟎) 

Where Xi is a matrix with all the feature vectors belonging 

to class i. With M features, the size of Xi is NixM. The optimum 

set of weights for the ith class is defined as:  

𝜽𝒊
𝒐𝒑𝒕

=  𝒂𝒓𝒈𝒎𝒊𝒏𝜽𝒊
‖𝑿𝜽𝒊 − 𝒚𝒊‖𝒑                  (𝟏𝟏) 

With: 

𝒚𝒊 = [ 𝟎𝑵𝟏
, 𝟎𝑵𝟐

, . . 𝟏𝑵𝒊
, . . 𝟎𝑵𝒌

]𝑻                  (𝟏𝟐) 

Where 𝑦𝑖  is the ideal output vector for the ith class, which 

should be all zeros except when the input feature vector belongs 

to the same class. Ni is the number of training examples of the ith 

class. The ‖. ‖𝑝operator is the second norm (p=2). The closed 

form solution for (11) that gives the optimum weights is defined 

as: 

𝜽𝒊
𝒐𝒑𝒕

=  (∑ 𝑿𝒋
𝑻𝑿𝒋

𝑲

𝒋=𝟏

)−𝟏𝑿𝒊
𝑻𝟏𝒊                       (𝟏𝟑) 

Where 1i is the target vector of class i, which is comprised of 

zeros and ones, in the manner as the ideal output vector. The 

result of the training phase is four sets of weights {𝜽𝟏 ,  𝜽𝟐,
𝜽𝟑𝒂𝒏𝒅 𝜽𝟒}, a set for each cognitive level. It should be noted 

that the dimensionality of the feature vectors can cause 

numerical instability when computing the model weights in 

equation (13). More specifically, higher feature dimensionality 

can increase the condition number of the feature matrix leading 

to an ill-conditioned matrix that produces an unreliable set of 

model weights. In [23], it was reported that for non-linear 

problems, the feature vectors can be expanded into higher orders 

using polynomial expansion prior to the use of equation 13. 

However, in this work we use the first order only without feature 

vector expansion to avoid numerical instability. The condition 

number averaged over all subjects without polynomial 

expansion was 57.2. However, the condition number increased 

significantly to 1.3973E+18 and 7.1542E+18 when the feature 

matrix was expanded to the second and third polynomial orders 

respectively. In [24], it was mentioned that ridge regression 

tends to produce more stable set of weights, however this was 

not required in our work since the feature matrices are not ill-

conditioned. 

 

 In the testing phase, the features of the testing sets are 

extracted, normalized and reduced in dimension. As explained 

above, the variable selection uses the indices generated by the 

stepwise regression applied to the training dataset. Each feature 

vector from the testing set Xt is multiplied using dot product to 

calculate the set of scores {si} as follows: 

𝒔𝒊 =  𝑿𝒕𝜽𝒊
𝒐𝒑𝒕

                                      (14) 

It is important to note that such a multi-class classifier 

discriminates different cognitive workload levels against each 

other. The classifier results in 4 set of weights one for each 

cognitive workload level. 

The process of model generation and classification is 

illustrated in 

 

Figure 6. Based on the reduced feature vectors of the training 

set and their corresponding class labels, the training process 

generates the classification model. Such a model contains a 
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weight set for each of the different levels of cognitive workload. 

Features are extracted from the testing dataset using the same 

process explained in Figure 4. These vectors are then reduced in 

dimensionality using the indices of retained variables generated 

by the stepwise regression procedure. Linear classifier is then 

used for classifying the testing feature vectors using the 

generated models. The true labels of the testing feature vectors 

are then used to calculate the classification accuracy. 

Prior to presenting the classification results in the next 

sections, we summarize the steps of the proposed cognitive 

workload classification method: 

1. The EEG signals are pre-processed using band-pass filter 

(0.1-60 Hz) and SOBI filter. 

2. The signals are combined into an image of dimensions 

62x257. 

3. Statistical features are extracted from the Y1,0 subband of the 

DWT image. 

4. Feature vectors are normalized using the z-score method. 

5. Stepwise regression is applied to reduce the dimensionality 

of the feature vectors. 

A linear classifier is used for classification. 

 

 
Figure 6. Block diagram of the proposed classification system 

 

III. EXPERIMENTAL RESULTS 

In the experiments to follow, each epoch contains 62 EEG 

channels. Only the EEG signals recorded during the response 

period (500 ms) were considered in the analysis. Hence, each 

training or testing epoch contains 62 channels with 257 samples. 

Similar to the experimental setup used in [13], a randomly 

selected 80% of the data is used in the training phase; the 

remaining 20% of the data is used for testing. The process of 

selecting the training data set is repeated 5 times, generating 5 

different sets, and the average and standard deviations of the 

classification results are calculated and reported. The exact 

numbers of feature vectors for subjects 1-16 are as follows: 840, 

840, 840, 839, 840, 840, 808, 839, 840, 830, 840, 840, 840, 838, 

840 and 840 respectively. The stepwise regression procedure is 

used in our proposed solution for variable selection and 

dimensionality reduction as a by-product. The output of the 

procedure is the indices of retained features. Different number 

of feature variables are retained for different subjects, the 

minimum number of variables is 33, the maximum is 75 and the 

average is 56 variable. The exact numbers of retained features 

per subject are 63, 42, 73, 70, 61, 57, 33, 60, 57, 54, 46, 69, 55, 

43, 75 and 43. TABLE 2 provides the stepwise regression output 

for all subjects. As reported in TABLE 2, all features are 

extracted from the Y1,0 sub-band. The total number of columns 

and rows are 129 and 31 respectively, and the total number of 

variables in the covariance matrix is 465. The last row in the 

table presents the average number of variables retained per 

feature variable. It is shown that most variables are retained from 

the covariance matrix and standard deviations. Fewer variables 

are retained form the means and entropy. 

 
TABLE 2 

FEATURES RETAINED BY THE STEPWISE REGRESSION 

Sub- 

ject 

  

Mean Standard 

deviation 

Entropy  Cov. 

matrix  

Cols 

129 

Rows 

31 

Cols 

129 

Rows 

31 

Cols 

129 

Rows 

31 

  

465 

  

1 5 2 9 4 0 1 44 

2 0 0 4 5 0 0 31 

3 11 4 8 9 0 0 45 

4 6 0 2 5 0 2 51 

5 0 0 2 7 0 0 52 

6 3 0 9 7 0 0 38 

7 0 0 0 3 0 0 30 

8 0 1 1 3 4 0 52 

9 4 3 3 6 1 0 42 

10 6 0 7 4 0 0 34 

11 4 0 3 7 0 0 32 

12 0 3 4 9 0 0 56 

13 2 0 3 9 1 1 36 

14 2 1 6 6 0 0 29 

15 8 1 11 10 0 0 45 

16 2 0 4 5 0 0 31 

Avg 3.3 1 4.8 6.2 0.4 0.3 41 

 

 

The corresponding classification results are presented in 

Figure 7 for both the existing work [13] and the proposed 

solution. The x-axis represents the 16 subjects while the y-axis 

represents the average classification rate from the five runs. The 

error bars represent the standard deviations of the five runs per 
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subject. As shown in the figure, the lowest classification 

accuracy is 84.9%, while the highest is 98.8%. The average 

classification accuracy of the proposed solution for all subjects 

is 93.4%. Whereas the lowest, highest and average classification 

accuracies of the reviewed work are 80.9%, 91.5% and 87.6% 

respectively.  

In addition, we performed statistical analysis on the 

classification results presented in Figure 7. We first ran a paired 

t-test for the null hypothesis: 

- Null hypothesis: Mean_ existing - Mean_ proposed = 0 

we got a very small value p  0.05. This indicates a significant 

difference between the mean values of the existing and proposed 

methods. We then tested the alternative hypothesis:  

- Alternative: Mean_ existing -Mean_ proposed  0 

The t-statistics value was -5.61 with value p  0.05. We conclude 

that at 5% significance level, the data provide enough evidence 

to support the hypothesis that, on average, the new proposed 

method provides higher classification rate than the existing 

methods. 

 
Figure 7. Cognitive workload classification results of the 16 subjects 

 

As mentioned in Section II, a linear classifier is used for 

model generation and classification. Nonetheless, we have also 

experimented with a nonlinear classifier using a second order 

polynomial expansion, which resulted in an average 

classification result of 91.9%. This is an indication that the linear 

classifier is suitable for the task at hand. 

 

Figure 8 illustrates the average classification accuracy for 

each of the four levels, for both the proposed solution and the 

reviewed work reported in [13].  

 
Figure 8. Cognitive workload classification results of the 4 cognitive levels 

 

The error bars represents the standard deviation of the 

classification accuracy resulting from the five runs of the 

experiment. It can be seen that the overall average classification 

accuracy of the proposed method, is 93.4%. The average is 

shown in the dashed horizontal line in the figure. The lowest 

classification accuracy is 90% for Level 3, and the highest is 

96% for Level 1. In general, the accuracies of Level 1 and Level 

2 are higher than those of Level 3 and Level 4. This indicates 

that Level 1 and Level 2 are more separable than the other two 

levels. From the figure, it is clear that the proposed solution 

results in higher classification rate for each level than the 

existing work. Again, the variation between the five runs per 

subject which is represented by the error bars is also lower than 

the existing work.  

The confusion matrices of the existing work and the 

proposed method are presented in Figure 9.  The presented 

results are the average of all subjects. Considering the cases 

where the probability of confusion is more than 5%, in the 

existing work, Level 1 can be confused with Level 4 and Levels 

2-3 can be confused with Level 1. Whereas in the proposed 

solution, Level 4 can be confused with Level 3 only. In 

summary, the number of cognitive workload levels involved in 

classification confusion is reduced from 4 to 2 by using the 

proposed solution. 

 
  Predicted Cognitive level 

  L1 L2 L3 L4 
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L1 85.5% 3.8% 4.4% 5.7% 

L2 5.6% 89.9% 3.9% 3.5% 

L3 5.2% 3.6% 88% 3.3% 

L4 3.7% 2.7% 3.7% 87.5% 

(a) Reviewed work 
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L1 96.4% 2.5% 1.2% 1.5% 

L2 1.2% 95.2% 2.5% 2.1% 

L3 1.2% 1.7% 90.4% 4.3% 
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L4 1.2% 1.1% 5.9% 92.1% 

(b) Proposed solution 

 
Figure 9. Cognitive levels classification confusion matrix  

As mentioned in Section II, the Y1,0 subband of the 2D Haar 

transformation was used for feature extraction. However we 

have also experimented with other 2 subbands (i.e Y0,1,and Y1,1). 

The average classification results over the 16 subjects, are 

77.3% and 92.2%. This is a further indication that the Y1,0 

subband is most suitable for feature extraction.  

We have also experimented with 2-Level 2D-HAAR in 

which the approximation subband, Y0,0, goes through a second 

level of 2D–HAAR transformation. We then applied the feature 

extraction and classification solutions using the 3 resultant 

subbands. The classification accuracies were 65.4%, 87.9% and 

86.2%. This gives an indication that 1-Level 2D-HAAR 

transformation is most suitable for the proposed feature 

extraction and classification solutions. 

As mentioned in Section II-D, we have used the Haar 

wavelet transformation in feature extraction. It is worth 

mentioning that we have also experimented with other wavelet 

transforms like db3, db4 and db5. We found that using the Haar 

filter results in the highest classification accuracy. More 

specifically, by using various wavelet transformation filters, the 

average classification rates are 93.3%, 90.5%, 82% and 72.6% 

for Haar, db3, db4 and db5 filters respectively. It is clear that by 

using longer wavelet filters, each EEG sample is affected by 

many neighboring samples in the transformation process. This 

has an adverse effect on the true value of the EEG readings and 

therefore results in reduced classification accuracy. 

The computational time of the proposed method and the 

work presented in [13] are also measured. TABLE 3 
TIME COMPARISON BETWEEN THE EXISTING WORK AND THE PROPOSED  

presents the time required by each solution to perform feature 

extraction and classification using 5-fold cross-validation for the 

16 subjects. The time computation for the proposed solution also 

includes stepwise regression 

These measurements are conducted using MATLAB 

R2012a on an Intel core-i7 processor and 8.00 GB memory 

computer. It is shown in TABLE 3, that the proposed solution is 

much faster than the reviewed work. This is due to simple 

statistical features used in combination with a linear classifier. 

This is a clear and major improvement of the proposed algorithm 

over the existing methods. 

TABLE 3 

TIME COMPARISON BETWEEN THE EXISTING WORK AND THE PROPOSED SOLUTION 

Method Time in sec 

Reviewed work 6515.25 

Proposed method 784.75 

 

To study the effect of channel selection on cognitive 

workload classification, we start with an intuitive approach in 

which EEG channels are grouped based on their locations with 

respect to the different brain lobes. The cerebral cortex of the 

human brain consists of four lobes: frontal, parietal, occipital 

and temporal. The locations are illustrated in Figure 10 as the 

striped, dotted, white and grey electrodes, respectively. EEG 

channels in the same region comprise a subset. The Figure 

shows 16 channels for the Frontal lobe, 9 channels for the 

Parietal lobe, 10 channels for the Occipital lobe and 6 channels 

for the Temporal lobe. The Central channels are treated as a 

separate region (black) that includes 7 channels. As illustrated 

in Figure 10, there are 7 channels shared between the Frontal 

and Central regions. These were considered as part of both the 

Frontal and the Central EEG subsets. Additionally, the 7 

channels shared between the Central and the Parietal regions are 

considered as part of both the Central and the Parietal subsets.  

Thus, the total number of channels in the Frontal, Parietal, 

Occipital, temporal and Central regions are 23, 16, 10, 6 and 21, 

respectively.   

 
Figure 10. The locations of the EEG electrodes based on the lobes of the 

human brain 

In Figure 11, we repeat the same proposed solution including 

feature extraction, stepwise regression and classification using 

each subset of channels individually. The objective of this test is 

to identify the region of the brain that contributes most to the 

classification of cognitive levels. The figure shows the average 

classification rate for all subjects. It is clear that the subset of the 

Frontal channels achieved the highest classification accuracy of 

84.3% using 23 channels, which is the number of channels in the 

Frontal region. This result is consistent with the decision making 

functionality of this brain area [25]. This indicates that the EEG 

channels of the Frontal region are important in cognitive 

workload classification.  
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Figure 11. Classification results including channel subsets according the 

brain regions 

The second method of channel selection examined in this 

work is the one reported in [20] which we introduced in Section 

III-B above. The ranking of all channels based on this approach 

is listed in TABLE 4. 
TABLE 4 

RANKING OF EEG CHANNELS BASED ON STABILITY SCORE 

Rank Ch. name Rank Ch. name Rank Ch. name 

1 AF4 22 Fz 43 FCz 

2 FPz 23 FC3 44 P4 

3 FP1 24 PO6 45 FC2 

4 FP2 25 PO8 46 P5 

5 T8 26 C5 47 C1 

6 AF7 27 CP6 48 CP3 

7 01 28 Oz 49 FC4 

8 F5 29 TP8 50 Pz 

9 AF3 30 FT8 51 CP1 

10 T7 31 PO3 52 P3 

11 AF8 32 TP7 53 P2 

12 F3 33 PO7 54 Cz 

13 F7 34 P8 55 P1 

14 C6 35 PO5 56 CP2 

15 O2 36 FC1 57 C4 

16 F8 37 P7 58 C2 

17 F2 38 FC6 59 CPz 

18 F4 39 CP5 60 CP4 

19 FC5 40 POz 61 CPz 

20 PO4 41 C3 62 CP4 

21 FT7 42 P6   

 

Having ranked the EEG channels based on their stabilities 

using Equation (3), the classification is then carried out using a 

varying number of channels ranging from 1 to 62. Figure 12 

illustrates the effect of channel selection on the classification 

accuracy. In the figure, the classification results are reported 

using the proposed solution and the reviewed work. The 

maximum classification accuracy achieved by the existing work 

is 87% which requires the complete set of 62 EEG channels. On 

the other hand, the same classification accuracy is achieved by 

the proposed solution, with only 15 EEG channels. Additionally, 

considering the top-ranked 23 EEG channels, the proposed 

solution achieves 91% classification accuracy, while the 

existing work results in 72% accuracy. 
 

 
Figure 12. Classification results by varying the number of selected channels 

ranked by stability 

Figure 13 visualizes these highlighted 23 top-ranked 

channels. It is clear that most of these channels reside in the 

Frontal region. Interestingly, this confirms the result obtained by 

the intuitive channel selection approach that we reported in 

Figure 11 above.  

 

 

 

Figure 13. The locations of the top-ranked 23 channels with the highest 

stability 

 

In summary, a subset of the channels can be used for 

classifying the level of cognitive workload into 4 classes.  This 

is achieved by sorting channels according to their stability score 

[20] and using the top-ranked channels for feature extraction and 

classification. In Figure 12, it is shown that by using 44 out of 

62 channels, an average classification accuracy of 93% is 

achieved. This is very similar to the result achieved by using all 
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channels. Likewise by using the top-ranked 23 channels only, 

the classification accuracy becomes 91%. Again, selecting 

channels based on their stability score resulted in higher 

classification accuracy than using channel subsets according to 

their region in the brain as reported in Figure 11. 

IV. CONCLUSION 

Classification of four cognitive workload levels was 

examined in this work. Statistical features were extracted from 

the vertical subband of a single level 2-D DWT. The temporal 

differences contained in the vertical subband are important in 

cognitive levels classification. Since the dimensionality of the 

feature vectors was high, stepwise regression was used for 

variable selection and dimensionality reduction as a by-product. 

It is also used to retain the important feature variables as well. A 

linear classifier was then used for model generation and 

classification. With 16 subjects and 4 cognitive levels, the 

proposed system resulted in classification accuracy of 93.4%. 

Also, the proposed solution reduces the classification confusion 

between the four cognitive levels to the highest two levels only. 

In terms of computational time, we also found that the proposed 

system is 8 times faster than the existing work. This increase in 

computational speedup is due to the simple feature extraction 

and classification methods used in the proposed solution. The 

impact of EEG channel selection on cognitive workload 

classification was also studied in this paper. Using an intuitive 

approach, it was shown that the channels of the Frontal region 

are the most important in cognitive levels classification. The 

EEG channels were also ranked using a stability criterion. 

Sixteen out of the 23 top-ranked channels are from the frontal 

region of the brain which is an expected result. Using the top-

ranked 23 channels resulted in an adequate classification 

accuracy of 91%. 
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