
  

 

 

 

 AN IOT ARCHITECTURE FOR UBIQUITOUS CONTEXT-AWARE 

ASSESSMENTS 

  

 

by 

 

Salsabeel Yousef Shapsough 

 

 

 

A Thesis presented to the Faculty of the  

American University of Sharjah 

College of Engineering  

In Partial Fulfillment 

 of the Requirements  

for the Degree of 

 

Master of Science in  

Computer Engineering 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sharjah, United Arab Emirates 

 

 May 2017 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2017 Salsabeel Yousef Shapsough. All rights reserved. 



Approval Signatures  
 

We, the undersigned, approve the Master’s Thesis of Salsabeel Yousef Shapsough 

 

Thesis Title: An IoT Architecture for Ubiquitous Context-Aware Assessments. 

 

Signature        Date of Signature 

         (dd/mm/yyyy) 

 

___________________________     _______________ 

Dr. Imran Zualkernan 

Associate Professor, Department of Computer Science and Engineering   

Thesis Advisor 

 

 

___________________________     _______________ 

Dr. Rana Ahmed 

Associate Professor, Department of Computer Science and Engineering   

Thesis Committee Member 

 

___________________________     _______________ 

Dr. Malick Ndiaye 

Associate Professor, Department of Industrial Engineering    

Thesis Committee Member 

 

___________________________     _______________ 

Dr. Fadi Aloul 

Head, Department of Computer Science and Engineering 

 

___________________________     _______________ 

Dr. Mohamed El-Tarhuni 

Associate Dean for Graduate Affairs and Research 

College of Engineering 

 

___________________________     _______________ 

Dr. Richard Schoephoerster  

Dean, College of Engineering 

 

___________________________     _______________ 

Dr. Khaled Assaleh 

Interim Vice Provost for Research and Graduate Studies 

  



Acknowledgement 

 

I would like to thank my advisor Dr. Imran Zualkernan for providing 

knowledge, guidance, support, and motivation throughout my research stages. I’m 

deeply beholden for his great assistance, worthy discussion and suggestions. 

I would like to thank Dr. Rana Ahmed and Dr. Malick Ndiaye for serving as 

examining committee and providing me with great guidance and significant input. 

I would like to thank the professors of the Computer Engineering department 

who taught me the master level courses with mighty teaching methods and skills. I 

really appreciate their dignified advices and motivation. 

I would also like to thank the Graduate Program and the College of Engineering 

at the American University of Sharjah for offering me the Graduate Teaching 

Assistantship which allowed me to continue my higher education in Computer 

Engineering. 

  

   

 

 

 

 

 

 

 

 

 

 

 

 

 



Dedication 

 

 

To my mother, my best friend and greatest company through it all, and to whom I owe 

the woman I am today and the one I aspire to be… 

To my father, my teacher and friend, who taught me there is nothing I could not do, 

and who continues to believe so… 

To my advisor, my motivator and mentor for the past six years, and the reason I am 

the academic and engineer that I am today…



6 

 

1. Abstract 

 

Ubiquitous learning environments aim to move students out of classrooms and into the 

real world where learners can engage in experiential and tangible learning. Ubiquitous 

assessment systems are one class of learning environments that enact student learning 

in the form of teacher, peer, and system-generated assessments that incorporate physical 

aspects of objects in outdoor locations. A key component of such systems is a wireless-

enabled edge device augmented with various types of sensors to represent the state of 

physical objects and environments. Most such current systems are constructed using 

traditional Internet technologies which are not suited for this purpose and hence leading 

to cumbersome and complex designs. This thesis presents a novel generic technical 

architecture for such systems built around Internet of Things (IoT) computing 

platforms. The newly proposed architecture is designed to seamlessly incorporate 

various IoT communication protocols. A commonly used IoT edge device was used to 

implement four variants of the proposed architecture. The variants based on Advanced 

Message Queuing Protocol (AMQP), Constrained Application Protocol (CoAP), 

Message Queue Telemetry Transport (MQTT), and Extensible Messaging and Presence 

Protocol (XMPP) IoT protocols were evaluated using an experimental setup. Each 

implementation was evaluated in terms of power consumption, CPU utilization and 

RAM usage, as well as end-to-end latency and throughput in response to network 

disturbances. In addition, qualitative aspects of each implementation were analysed 

based on maximum message size, overhead, security, reliability, and ease of 

implementation and flexibility. While there were statistical differences in power 

consumption between the four implementations, the practical difference was negligible. 

CoAP proved to be the most efficient in terms of CPU and memory utilization but 

produced the lowest latency in lagged networks only. However, due to payload 

limitations and lack of reliability features, CoAP was considered ill-suited for such 

applications. Among the other three variants, MQTT and AMQP seem more 

appropriate in terms of qualitative features, although MQTT was more resource 

efficient in most technical aspects.  

Search Terms: ubiquitous learning; internet of things; assessment systems; 

application level messaging protocols  



7 

 

2. Table of Contents 

 

Abstract ................................................................................................................................ 6 

List of Figures....................................................................................................................... 9 

List of Tables ...................................................................................................................... 10 

Chapter 1. Introduction ............................................................................................. 11 

1.1. Education in the Internet of Things Era ............................................................ 11 

1.2. Problem Statement ........................................................................................... 12 

1.3. Thesis Statement .............................................................................................. 13 

1.4. Thesis Organization ......................................................................................... 13 

Chapter 2. Background and Literature Review........................................................... 14 

2.1. Ubiquitous Learning ........................................................................................ 14 

2.2. Inquiry-based learning ..................................................................................... 18 

2.3. Context-Aware Inquiry-Based Ubiquitous Learning ......................................... 21 

2.4. Suggested Architectures ................................................................................... 22 

2.5. Comparison of Existing Work .......................................................................... 24 

2.6. Standards for Assessment ................................................................................ 26 

2.6.1. QTi. .............................................................................................................. 26 

2.6.2. MOODLE. ................................................................................................... 26 

2.6.3. Moodle XML. .............................................................................................. 26 

2.6.4. Moodle XHTML. ......................................................................................... 26 

2.6.5. GIFT. ........................................................................................................... 30 

2.6.6. BLACKBOARD. ......................................................................................... 30 

2.7. Summary ......................................................................................................... 30 

Chapter 3. Methodology ............................................................................................ 32 

3.1. Problem Formulation ....................................................................................... 32 

3.2. System Definition ............................................................................................ 35 

3.3. System Architecture ......................................................................................... 38 

3.3.1. Perception Layer .......................................................................................... 39 

3.3.2. Communication Layer. ................................................................................. 44 

3.3.3. Middleware Layer. ....................................................................................... 46 

3.3.4. Application Layer. ....................................................................................... 53 

3.4. System Implementation.................................................................................... 54 

3.5. Summary ......................................................................................................... 55 

Chapter 4. Experimental Design ................................................................................ 57 

4.1. Evaluation Criteria ........................................................................................... 57 



8 

 

4.2. Evaluation Scenario ......................................................................................... 58 

4.3. Experimental Data ........................................................................................... 58 

4.4. Experiment I .................................................................................................... 60 

4.5. Experiment II................................................................................................... 62 

4.6. Evaluation Hardware ....................................................................................... 64 

Chapter 5. Results and Discussion ............................................................................. 65 

5.1. Experiment I .................................................................................................... 65 

5.1.1. Power consumption. ..................................................................................... 65 

5.1.2. CPU Utilization............................................................................................ 68 

5.1.3. Page Faults................................................................................................... 71 

5.1.4. Summary. .................................................................................................... 72 

5.2. Experiment II................................................................................................... 73 

5.2.1. Throughput. .................................................................................................. 73 

5.2.2. Latency Response to Duplicates. .................................................................. 74 

5.2.3. Latency Response to Lag. ............................................................................. 76 

5.2.4. Latency Response to Out of Order. ............................................................... 77 

5.2.5. Latency Response to Throttle. ...................................................................... 79 

5.2.6. Latency Response to Summary..................................................................... 80 

5.3. Chapter Summary ............................................................................................ 81 

Chapter 6. Qualitative Evaluation .............................................................................. 83 

6.1. Payload Size and Overhead .............................................................................. 83 

6.2. Security ........................................................................................................... 84 

6.3. Question Queuing ............................................................................................ 86 

6.4. Topic Hierarchy ............................................................................................... 87 

6.5. Chapter Summary ............................................................................................ 88 

Chapter 7. Conclusion, Limitations and Future Work ................................................ 89 

References .......................................................................................................................... 91 

Appendix A ...................................................................................................................... 103 

Appendix B ...................................................................................................................... 111 

Appendix C ...................................................................................................................... 119 

Vita ……………………………………………………………………………………..……………………… 122 

 

  



9 

 

3. List of Figures 

 

Figure 2.1: Internet of Things paradigm ......................................................................... 25 

Figure 2.2: Moodle True or False question format example: (a) Moodle XML (b) 

GIFT .................................................................................................................................. 30 

Figure 3.1: System Diagram ............................................................................................ 35 

Figure 3.2: System use case diagram .............................................................................. 37 

Figure 3.3: Scenario 1: post a question ........................................................................... 37 

Figure 3.4: Scenario 2: request a question ...................................................................... 38 

Figure 3.5: Scenario 3: request sensor readings ............................................................. 38 

Figure 3.6: Scenario 4: post an attempt .......................................................................... 38 

Figure 3.7: Edge nodes comparison ................................................................................ 44 

Figure 3.8: Pod network architecture: a) pod as a LAN client. b) pod as a hotspot host.

 ........................................................................................................................................... 45 

Figure 3.9: HTTP model .................................................................................................. 49 

Figure 3.10: CoAP "Observe" model .............................................................................. 50 

Figure 3.11: XMPP model ............................................................................................... 50 

Figure 3.12: MQTT model .............................................................................................. 51 

Figure 3.13: AMQP model .............................................................................................. 52 

Figure 3.14: System deployment diagram ...................................................................... 56 

Figure 4.1: Question size distribution - EDMS set ........................................................ 59 

Figure 4.2: EDMS multiple choice question .................................................................. 60 

Figure 4.3: Experimental setup I ..................................................................................... 62 

Figure 4.4: Experimental setup II .................................................................................... 64 

Figure 5.1: Power consumed by each protocol in Watt-hour ........................................ 67 

Figure 5.2: Maximum power consumed by each protocol in Watt-hour ...................... 67 

Figure 5.3: Average CPU utilization (%) ....................................................................... 68 

Figure 5.4: Maximum CPU utilization ........................................................................... 69 

Figure 5.5: CPU% over 5 minutes for each protocol. students=128, 

frequency=1Q/min ........................................................................................................... 70 

Figure 5.6: mean page faults per second......................................................................... 72 

Figure 5.7: Network throughput for the four protocols ................................................. 74 

Figure 5.8: Mean latency under duplicated packets ....................................................... 75 

Figure 5.9: Standard deviation of latency values under duplicated packets ................. 76 

Figure 5.10: Mean latency (ms) demonstrated by each of the four pub/sub protocols 

vs. network lag (ms). ........................................................................................................ 77 

Figure 5.11: The standard deviation of the latency values vs. network lag (ms) ......... 77 

Figure 5.12: Mean latency (ms) vs. out of order % ....................................................... 78 

Figure 5.13: Standard deviation of latency (ms) vs. out of order % ............................. 79 

Figure 5.14: Mean latency response for throttling %..................................................... 80 

Figure 5.15: Standard deviation of latency response for throttling % .......................... 80 

Figure 6.1: Simple topic hierarchy .................................................................................. 87 

 

4.  

  

file:///C:/Users/g00041619/Downloads/Salsabee_Shapsough%20backup%20(2).docx%23_Toc484458922


10 

 

5. List of Tables 

 

Table 2.1: Science and technology systems ................................................................... 27 

Table 2.2: Language and social science systems ........................................................... 28 

Table 2.3: Subject-independent systems ......................................................................... 29 

Table 3.1: Summary of popular SBCs and smart devices -Part 1 ................................. 42 

Table 3.2: Summary of popular SBCs and smart devices - Part 2 ................................ 43 

Table 3.3: Summary of popular IoT-SoCs ..................................................................... 43 

Table 3.4: Comparison of NoSQL and SQL databases ................................................. 47 

Table 3.5: Summary of the four messaging protocols ................................................... 52 

Table 3.6: Comparison between alternative web servers .............................................. 53 

Table 3.7: Comparison of native app development vs. cross-platform app 

development...................................................................................................................... 54 

Table 4.1: General criteria of evaluation ........................................................................ 58 

Table 4.2: EDMS question bank sample statistics ......................................................... 59 

Table 4.3: Experiment I independent variables .............................................................. 61 

Table 4.4: Experiment I dependent variables ................................................................. 61 

Table 4.5: Experiment I control variables ...................................................................... 61 

Table 4.6: Experimental Setup II independent variables ............................................... 63 

Table 4.7: Experimental Setup II dependent variables .................................................. 63 

Table 4.8: Experimental Setup II control variables ....................................................... 63 

Table 4.9: Edge device specifications ............................................................................. 64 

Table 5.1: Solar panel and battery sizing........................................................................ 66 

Table 5.2 Summary of Experiment I results ................................................................... 72 

Table 5.3: Throughput mean and standard deviation values for each protocol ........... 74 

Table 5.4 Effective bandwidth after adding network lag via Clumsy .......................... 76 

Table 5.5: Latency (ms) at the worst value of each network issue, per protocol ......... 81 

Table 6.1: Overhead % as measured by message size on wire ..................................... 84 

Table 6.2: Optional security features of the various protocols...................................... 85 

Table 6.3: A comparison of topic assignments for different scenarios......................... 88 

Table 6.4: Summary of qualitative evaluation ............................................................... 88 

 

  

file:///C:/Users/g00041619/Downloads/Salsabee_Shapsough%20backup%20(2).docx%23_Toc484458879
file:///C:/Users/g00041619/Downloads/Salsabee_Shapsough%20backup%20(2).docx%23_Toc484458880
file:///C:/Users/g00041619/Downloads/Salsabee_Shapsough%20backup%20(2).docx%23_Toc484458881


11 

 

Chapter 1.  Introduction 

 

This chapter begins with a brief introduction into the concept of smart education 

and how it fits into the new wave of Internet of Things technologies. The next section 

presents the problem statement. Next, we present the thesis statement as well as the 

contribution. The last chapter provides an overview of the thesis organization. 

1.1. Education in the Internet of Things Era 

The domain of learning and education is experiencing a shift in the way 

information is presented to students. Many institutes are choosing to migrate from 

lecture-based lessons towards class environments that allow for three-way interaction; 

where students, instructors, and physical surroundings take part in setting the 

curriculum and controlling the rate and the form by which the knowledge is offered. 

This is encouraged by studies that claim that when provided with the opportunity for 

an open flow of information, students gain a bigger incentive to pay attention and 

participate in class activities. Furthermore, these interactions can provide constructive 

feedback for the instructors as they will be able to improve the course material year 

after year, guided by the students’ interaction. The result is a new market for mobile 

applications that attempt to reshape and elevate the learning experience for both 

students and educators by incorporating modern computing technologies. The 

emergence of Internet of Things (IoT) and IoT-based technologies created a wave of 

innovation in various aspects of everyday life. Education is not an exception; as the 

unprecedented availability of cheap sensors, and ease of app development led to the 

outgrowth of ubiquitous learning environments [1]. Ubiquitous Learning –sometimes 

referred to as u-learning- was originally vaguely defined in literature as “learning 

anything, anywhere, anytime”. A u-learning application is designed to actualize two 

main objectives: giving students access to learning material through a platform that they 

are familiar with, and presenting the information at pace that is appropriate for them 

[2]. The recent advancements in internet computing technologies, however, have 

morphed the term into a wide umbrella under which fall various applications that 

incorporate sensing and communication technologies for a situated, context-aware 

learning environment. Using interactive elements such as RFID tags, QR-codes, and 

smart sensors, learning can take place outside classrooms and in authentic settings. 



12 

 

Over the years, dozens of environments and mobile applications have been developed 

to implement the concept of ubiquity in learning. In [3], Njoku analyzes 135 studies on 

ubiquitous learning environments conducted in the year 2015-106; retrieved from the 

seven top journals on education and learning technologies. Among the main research 

questions were: “which subjects do ubiquitous learning studies focus on the most?” and 

“at which academic level are studies more likely to participate in these studies?” 

Analyzing the 135 articles showed that most studies are aimed at undergraduate 

students enrolled in science courses; while the least considered subjects were law and 

mathematics, and the least common test group was postgraduate students. Furthermore, 

the analysis found a 100% increase in the number of publications ubiquitous learning 

studies and environments per year; compared to the number between the years 2010 

and 2013 [4]; suggesting a steadily-growing interest in the field over the past decade. 

1.2. Problem Statement 

Due to the lack of guidelines into how such applications should be built, it is 

often up to the developer to decide on an architecture for their specific learning system. 

Moreover, the abundance of classic and IoT technologies have made it even more 

challenging for the developer to select the most suitable components. This calls for the 

introduction of a generic IoT-based architecture that is designed with the needs of these 

applications in mind. Systems of this class have requirements such as real-time 

communication, high throughput, robustness, security, and low power consumption. 

They, moreover, consist of several types of hardware-based and software-based 

components that work together in delivering the content to the students and instructors. 

The developer is then left to choose the most suitable option for each component, 

integrate different components together, and ensure compatibility. Several 

organizations have presented projects that are meant to integrate computing 

technologies into educational environments, and implement a few modern pedagogies. 

However, a generic paradigm for systems of this class is yet to be developed; and 

therefore, the integration of different parts of these systems is done manually for each 

application. This not only contributes to the complexity and time needed to deploy a 

new application, but also causes a lack of compatibility between different systems 

which may be functioning in the same domain but developed by different organizations. 



13 

 

1.3. Thesis Statement 

In this thesis, we propose a unique IoT-based architecture for inquiry-based, 

ubiquitous learning platforms designed to meet the requirements of existing works and 

improve their performance. We focus on edge IoT devices as they are responsible for 

linking users at the edge with core services, and there performance therefore dictates 

the user experience, which is a vital aspect in educational platforms. We consider four 

protocols for dispensing information throughput the system; three of which are 

designed for IoT applications, while the forth protocol is a classic-internet, trusted 

messaging protocol. The rest of the system components, such as application servers and 

databases, are set as control elements for the four implementations, and chosen on 

thorough research and literature review. A number of experiments are conducted using 

four physical implementations in order to evaluate the performance of the protocols in 

terms of resource requirements and user experience. 

1.4. Thesis Organization 

This thesis is organized as follows: the first chapter provided a brief introduction 

into the domain of IoT-based ubiquitous learning platforms. The second chapter 

surveys a wide selection of ubiquitous learning platforms, and provides an analysis of 

their components based on the IoT architecture. We also survey the most popular 

standards used for assessment transfer and management. The third chapter builds an 

education-specific IoT paradigm based on the requirements, use cases, and scenarios 

extracted from existing ubiquitous learning platforms. The fourth chapter presents the 

experimental setup and elements used to evaluate the performance of edge nodes, 

focusing on the edge devices and communication. The fifth chapter presents a 

discussion of the quantitative assessment explained in chapter four, while the sixth 

chapter discusses the qualitative advantages and disadvantages of each implementation. 

Finally, conclusion and future work are presented in the eight chapter. 

  



14 

 

Chapter 2.  Background and Literature Review 

 

This chapter is organized as follows: the first section introduces ubiquitous 

learning and presents a number of case studies that investigate its effectiveness in 

different settings. The following sections survey studies and learning environments that 

implement variations of ubiquitous learning using different combinations of software 

and hardware elements. The next section in this chapter compares the technical 

components of the presented works mapped into the Internet of Things paradigm.  

Finally, the last section surveys the most popular assessment standards using in e-

learning, m-learning, and IoT-based learning systems. 

2.1. Ubiquitous Learning 

Saito et al. presents a study on basic support for ubiquitous learning (BSUL) 

environments; which they define as mobile learning environments that implements four 

important principles: light weight and simplicity, adaptiveness and customization, 

support for various learning styles, and support for collaborative learning [5]. Such 

systems have often been implemented using internet-connected PDAs and personal 

computers in coordinance with existing Learning Management Systems (LMS); thus 

allowing students to seamlessly learning experience where they have access to any 

information they need, whenever they need it. To conduct the study, a ubiquitous 

learning software was developed implementing the activities seen as most important in 

classrooms; including: report submission and attendance taking, in addition to student 

feedback and assessment response. The system was used in multiple case studies, most 

notably a Language-learning outside the classroom with handhelds (LOCH) case study 

[6] where students enrolled in a Japanese language course were asked to walk around 

town and perform certain tasks, aided by their PDAs. For example, students were asked 

to engage in conversations with locals to acquire certain information such as prices of 

different products and different outlets’ opening hours. Another type of tasks required 

them to conduct interviews with school faculty in Japanese, and use their PDA to take 

a photo of the interviewee and note down important information. The PDAs were 

connected to the internet; meaning that the instructor will be able to track students on a 

map and update them with new tasks and/or feedback. Similarly, the authors in [7] 

present the results of a study that investigates the effect of context-aware ubiquitous 



15 

 

learning environments on the performance of English learners. In the study, students 

are divided into two groups; a control group, and an experimental group. Both groups 

were asked to perform 3 activities: practice listening and speaking during their free 

time, participate in activities during class time, and perform a story relay. The control 

group was provided with classical learning aid such as printed materials, audio CDs, 

and voice recorders. The experimental group, on the other hand, was provided with 

HELLO (Handheld English Language Learning Organization); an application that runs 

on their mobile phones and presents each of the tasks in the form of a game that they 

can play outdoors. Context-awareness is implemented using area-specific QR codes; 

which students user their phones to scan and download different learning material 

depending on their location. Chen et al. introduces a personalized context-aware 

ubiquitous learning system (PCULS) that helps students learn English by focusing on 

vocabulary [8]. By taking the learner’s vocabulary level, learning time, and their 

location –acquired using wireless network positioning- the environment is able to adapt 

and customize the content in order to provide a better learning experience. 

Aside from language courses, mobile-based learning applications have also 

been popular in history classes. Museums, for example, often resort to electronic trails 

in order to provide guests with an educational experience [9]. A museum trail is 

typically a paper, brochure, or pamphlet that guides guests through different sections, 

providing brief historical facts about each object. Electronic trails provide the same 

information but in different forms, including audio and video. Electronic trails also 

allow museum visitors to add feedback and reflections in the different forms. This is 

particularly useful for visitors who wish to access the information later on; to prepare a 

presentation about their visit, for example. 

In [10], students from 10 primary schools learning about the history of 

Amsterdam were asked to walk around the city, observing various monuments and 

learning about historical characters and stories hidden within their walls. Each group of 

students was divided into a city team (CT) and a headquarter team (HQT). The CT 

students will then walk around the city and use UMTS/GPS phones to perform certain 

tasks and share new findings with the HQT students, while HQT students provided 

directions using a modern map and a medieval map of the city; with the end goal being 

a full narrative that connects various historical elements of the city. The project builds 



16 

 

on the concept of “storification”, where students are more likely to understand and 

remember historical characters and events when they are woven into a narrative. Being 

in the same vicinity as said elements adds a dimension of reality, helping students draw 

a full picture of events that took place around the city. Similarly, [11] presents the 

design and evaluation of a u-learning application designed to ease the process of editing 

ubiquitous learning material. In their work, Chin et al. present a system that consists 

mainly of a mobile application and a main server. Students walk around an area where 

certain elements have been labeled with QR-codes. A student can scan a QR-code and 

download learning content that has been previously edited and uploaded by their 

teacher. Students are then asked to use this information to perform different tasks. The 

system was used in a study where first year college students learnt about the Taiwanese 

Cultural Heritage; in which QR-code were placed on different artifacts such as statues 

and old journals. Not only did students report a higher level of enjoyment compared to 

typical learning methods, but they were able to achieve higher scores. QR codes are a 

common component of ubiquitous learning systems because they provide a cheap way 

for students to learn in an authentic setting and interact with different elements of their 

environments.  For example, [12] presents a game that combines the use of QR code 

with the concept of prompt-based learning. In this game, students studying 5th grade-

level natural science are assigned unique locations in a garden which serves as a home 

for different kinds of plants. Students move around the garden based on rolls of dice, 

and earn points by completing tasks where they are asked to locate a certain plant and 

answer questions about its characteristics using material they download by scanning 

QR codes. Scanning the QR also serves as a way to locate the student and identify their 

context, which is then used to form the next task. Hung et al. describes a similar system 

in [13] under the title Context-aware Reflection Prompt System (CRPS), with the main 

difference being the prompt and response type. This is motivated by studies that claim 

students enjoy a better learning experience when prompts are in video format rather 

than text. Not only are videos believed to be more engaging, but they fit better into real-

life narratives. 

Similar technologies to QR codes have also been adopted in other u-learning 

systems; mainly Radio Frequency IDentificaiton (RFID) and Near Field 

Communication (NFC). Liu et al. presents an environment of ubiquitous learning with 

educational resources (EULER) designed to aid students study natural sciences by 



17 

 

going to outdoor locations [14]. Students, for example, can learn about animals by 

walking around a zoo and accessing context-specific learning material at different 

zones. This is made possible by placing RFID tags at different areas and cages; where 

the student will use their devices to scan the RFID tag and download available 

information uploaded by their teacher. Groups of students then combine their findings 

into a report to be reviewed by their teacher. Another, similar system that uses QR codes 

and NFC objects to teach students about hardware components of a computer is 

presented in [15]. One thing that is emphasized in the latter but never mentioned by the 

previously is that many of these systems are what is now considered the simplest form 

of an Internet of Things application. RFID, QR codes and NFC are the some of the 

easiest and most common ways to turn everyday objects into “things”. In [15], Gomez 

et al. show how a QR code/NFC-based ubiquitous learning system can fit into the 

classical IoT paradigm; which consists of three layers: things, communication 

technologies, and a client. In this case, QR codes and NFC objects are things, 

websockets is the communication protocol, and a web-based application allows users 

to interact with the system at the client level. This leads to the question of “how much 

can IoT technologies offer to the field of ubiquitous learning?”  

With IoT-based technologies gaining momentum the recent decade or so, cheap 

wearable technologies became more readily available than ever; and subsequently 

found their way into u-learning. The usage of u-learning is not limited to literature-

based courses; as demonstrated in [16] and [17]. Prete-a-apprendre [16] is a u-learning 

system that incorporates the concept of context-aware ubiquitous learning into primary 

school mathematics, but adds an element of physical activity to it. In this system, 

students are asked to come up with three true-or-false math questions each at the 

beginning of the game. After the questions have been collected, the game begins and a 

random question is assigned to one student each round. The assignment is done using 

wearable, zigbee-equipped Lilypad microcontrollers sewn into each student’s shirt. The 

shirt also has two pressure sensor patches; one for “true”, and another for “false”. In 

each round, the shirt of the student that has been assigned a question lights up, and other 

students must try to catch them and answer the question using the pressure sensors. 

Hoodies and Barrels [17] is another, similar system where children play hide and seek 

based on mathematical constrains set either by their teacher or by themselves. The 

system also incorporates wearable technology that is used to send children rules for the 



18 

 

type of place where they can hide; e.g. behind a barrel that is 1 m2 in volume. The child 

has to formulate the rules themselves and then send it to their peers; who then use that 

rule to find them. In terms of mathematical knowledge, while Prete-a-apprendre focuses 

on theory and students doing mathematical operations on the fly, Hoodies and Barrels 

is more concerned with students’ perception of concepts such as shapes and volumes. 

The latter trait is also often the main focus of u-learning systems developed for science 

courses such as biology and geology. OBSY [18] is an excellent example of systems 

that implement context-aware u-learning which emphasize the students’ perception of 

and interaction with their physical surroundings. The developers make use of old PC 

tablets that were distributed to schools in rural Northern Thailand as a part of the One 

Tablet PC per Child policy. Each student is offered a Raspberry Pi-based sensor node 

equipped with a camera and a group on sensors that they can interact with via an 

application deployed on their tablet. The system aims to connect students to their 

environment by offering them the chance to associate their own experience with a space 

with a quantitative values acquired by sensors. Using the camera, students are also able 

to monitor elements in their environment –for example, the growth of a small plant- in 

order to add a realistic experiential value to is usually taught through textbooks. The 

student can move around campus, position their personal node (OBSY) anywhere they 

wish, and take sensor readings and footage to be used in answering different questions. 

The incorporation of smartphones’ existing sensors has been investigated in [19]. In 

their work, Shapsough et al. present the design and evaluation of an assessment system 

where students use smartphones to access and answer assessments set by their teachers. 

The use of sensor data in this particular system differs from other discussed systems 

because the readings are not involved in the students’ answers; but are relevant to 

understanding the context in the student was while answering the assessments. 

However, only few application-level modifications will be needed in order to change 

the system so that it allows students to access the sensor information and incorporate 

them in their answers. 

2.2. Inquiry-based learning 

Inquiry-based learning (IBL) refers to a student-centered educational approach 

where the majority of the class interaction is initiated by students. Students are 

encouraged to contribute to the material presented in the classroom by formulating their 

own hypothesizes, posing questions, and sharing findings and conclusions [20]. This is 



19 

 

believed to help students develop analytical thinking skills, improve social skills, and 

better the students’ understanding of the material [21]. It also encourages students to 

perceive the information presented in a critical manner and process it for any doubts, 

instead of accepting it as facts. Furthermore, when given the opportunity to construct 

and pose their own questions, students are put in a situation where they have full 

freedom –and motivation- to speak their minds and share ideas without the pressure or 

fear of standing out in class. They are also given the opportunity to consider minor 

details and use their imagination in order to come up with unique questions, which 

promotes metacognition. In many cases, a student’s scores and quality of work were 

closely related to the type and amount of interaction that took place between them and 

their peers. 

One of the first and most notable efforts to build an IBL environment is the 

PocketSchool Interactive Learning Ad-hoc Network (PSILAN); developed by the 

Stanford University School of Education in 2011 [22]. PSILAN allows students to come 

up with their own questions, combine them into a quiz, and share it with their peers. 

Students can attempt to solve quizzes posed by their peers, as well as rate them based 

on quality and usefulness. Questions are not limited to text, as a student can take a photo 

of a diagram from their textbook or an item in their environment, for example, and 

incorporate it into a question. Around three years later, SMILE was introduced. SMILE 

[23] (the Stanford Mobile Inquiry-based Learning Environment) is a mobile-based 

system that students to construct their own multiple-choice questions, answer ones 

proposed by their peers, rate each other's questions, and view question-related statistical 

data -such as most answered questions and student with most correct answers. The 

system offers extended functionalities for the teacher which allows them to control the 

flow of the activity, and view information about all the students involved. SMILE 

consists of two main components: the mobile application used by the students, and the 

management application used by the teacher. Different nodes in the system (mobile 

application entities and management application) have the option of communicating 

over either ad-hoc network or the internet. The application was tested on several test 

groups; the student groups came from different parts of the world, and belonged to 

different age groups. The tests showed that although the students expressed their 

enjoyment using the application, in order to completely utilize the inquiry-based aspect, 

the students need to be trained on how to ask questions. For example, one teacher asked 



20 

 

her class of fifth graders to give questions that require recall only a low rating, and give 

a higher rating to questions that required applying analytical skills. Through continuous 

iterations of posing questions, and then answering questions posed by others, students 

were then able to improve not only the quality and complexity of their questions, but 

also their understanding of the material and their critical thinking process. Similarly, 

Pearson’s Learning Catalytics [24] provides students with the opportunity to engage in 

peer-to-peer learning activities. Rather than being constricted to multiple-choice 

questions, however, Learning Catalytics also allows students to answer questions by 

plotting graphs, highlighting points on images, and filling in numerical values. 

In [25], the authors present the Community of Inquiry (COI) framework in a 

form of multi-player game. The COI framework is based on three main concepts: 

constructive socialization, reflection, and practical inquiry. Video game players often 

employ these skills in multi-player games that require players to either challenge each 

other or work together to achieve certain goals and unlock new traits. Based on such, 

the authors present a Virtual COI (VCOI) environment where students learn about 

Applied Thai Traditional Medicine (ATTM) by engaging in a virtual reality game. The 

game environment consists of a virtual classroom where each student, in addition to the 

teacher, controls an avatar. Students are assigned tasks that require their avatars to 

venture out from the classroom and interact with avatars and objects in the game 

universe. Students are able to customize and control their avatar just as they will in a 

normal simulation game; thus providing an element of not only fun, but also familiarity, 

which is crucial in ubiquitous learning. By moving around the virtual universe in their 

avatar, they can perform actions on objects to obtain information, and then use that 

information to form hypothesis, pose and answer questions, or engage in academic 

discussions with their peers. 

The same framework is also adopted in SimAULA, a learning environment 

designed to gamify the process of inquiry-based learning in science classrooms [26]. 

The game starts with a virtual classroom where each student, in addition to the teacher, 

controls an avatar. Students are assigned tasks that require their avatars to venture out 

from the classroom and look around for certain clues; for example. They are then asked 

to use various analysis tools offered by the environment to study the clues they have 

acquired, draw conclusions, and discuss them with their classmates. 



21 

 

In [27], chemical engineering students enrolled in a Control course where asked 

to participate in a game where they will apply what they learnt from the course in a real 

remote lab. The lab was equipped with a set of water columns controlled by remotely-

accessible panels, and each team of four was assigned a water column that they were 

responsible for. In every round, two teams will go against each other where each tries 

to keep their water column in control, while sending the opponent’s into oscillation.  

2.3. Context-Aware Inquiry-Based Ubiquitous Learning 

An excellent attempt to combine context-aware ubiquitous learning with 

inquiry-based learning is Archi-Pods [28]. In this system, students enrolled in an 

Architecture Principles university-level course are provided with web-based mobile 

applications that interact with sensor nodes distributed around campus. The nodes are 

equipped with various sensors including temperature, motion, and illumination. 

Students are asked to walk around campus, interact with sensor nodes to acquire sensor 

readings, and then incorporate this information into constructing or answering 

interesting questions about a particular space. In one task, for example, students are 

asked to locate an architectural element such as an arc. Once a students has located an 

arc, they can take a photo using their mobile phones and use it to answer the question. 

In another task, students are asked to find illumination level in a space, and relate it to 

how the space is being used. The system also allows students to rate questions, which 

in turn works as a mechanism for improving their question posing skills and elevating 

critical thinking. 

WeSPOT (Working Environment with Social, Personal and Open Technologies 

for Inquiry Based Learning) [29], [30] is another example that implements this category 

of learning systems. It is an inquiry-based learning system based on the Personal 

Learning Environment (PLE) paradigm -a learner-centric environment which provides 

tools and services for students to design their own learning experience. WeSPOT aims 

to patch the gap between different inquiry tools and services, students’ profiles, and the 

curricular con-text in order to create a cohesive learning environment tailored to the 

students’ needs. The environment offers students a game-like experience that is meant 

to mimic the sort of interaction that takes place in social media. This, the developers 

believe, motivates the students to take advantage of the system’s capabilities as they 

feel a sense of accomplishment earning points in form of badges as they reach certain 



22 

 

milestones. Students can access the system through their mobile application that they 

can download on their smartphones and proceed to pose and answer questions that fall 

under tasks specified by the instructor. The system also supports a type of tasks where 

students are asked to collect visual and audio information from their environment 

through their smartphones, which incorporates the element of personal experience into 

the learning process. Google Glass Personal Inquiry Manager (Glass PIM or GPIM) 

[31] is a Glassware (Google Glass application) that was introduced in order to elevate 

the weSPOT experience. GPIM focuses on the experimental aspect of the environment 

as students can now incorporate images, audio, and video taken by their Google Glass 

unit into their inquiries. The incorporation of Google Glass is meant to provide 

smoother flow of information between the students’ physical surroundings and the 

learning system, and makes it easier for the student to keep track of their peers’ 

contributions while working to complete their tasks, instead of having to constantly 

shift their attention between the application and their surroundings. 

2.4. Suggested Architectures 

A more technical approach was proposed in [32], as they describe ubiquitous 

learning environment they chose to call Youubi. Driven by the need for a unified 

architecture for ubiquitous learning applications, they propose a component-oriented 

reference paradigm for learning environments. Youubi not only represents a fully-

functioning ubiquitous learning application, but it also presents an environment that can 

be used to develop different applications following the ubiquitous learning approach. 

Software-wise, Youubi implements a client-server architecture, and consists of eight 

server-side components, and a client application through a service API. The application 

server is based on Java, and the communication between entities is done through HTTP 

requests, and the current mobile application is Android-based. To test the system, the 

developers of Youubi asked a group of students to use the application for a period of 

time, and compared the results with a control group. The results show that the overall 

level of engagement was almost the same between the control group and the Youubi 

group, which the developers attribute to different variables. However, the majority of 

the Youubi group found it interesting and enjoyable to read challenges posted by other 

students, and expressed interest in using the application in the future. The issue with 

Youubi, however, is that it is designed only to accommodate ubiquitous learning 

applications. The architecture specifies roles for various users and resources, but does 



23 

 

not include features for real-time communication or class interactions, neither does it 

consider interactions with the physical world. For those reasons, this architecture is not 

suitable for building the class of applications we define. 

Chen et al. propose the design of a subject-independent Ubiquitous Open-

structured Neo-tech Edutainment (u-ONE) architecture which combines learning 

robots, sensing technology, mobile computing, and wireless networks [33] to support 

children’s learning. The framework is designed based on the concepts of experiential 

and gamified learning, and can be used in instruction, collaborative learning, and 

adaptive self-learning. A total of five hardware component types are defined in an 

implementation of the system: a wireless network, an output element, a mobile 

computing element, perception elements like sensor and RFID, and a learning robot. 

The inclusion of all five elements is claimed to be essential, although the choice of 

product for each category and how they are integrated into the system is left to the 

developer. This is meant to provide flexibility in terms of customization and cost; as 

implementation may differ depending on the subject being taught, and –and more 

importantly- on the availability and affordability of different products. Each student is 

provided with one or more perception elements to help them interact with their 

surroundings, and a learning robot that serves as their access point to the system. On 

the other side of the classroom, the instructor is provided with a mobile computing 

device capable of collecting and processing student performance data, and any sort of 

output screen to display the results. For the most part, the framework mimics all of the 

systems discussed earlier; with the exception of the learning robots. In addition to 

adding a touch of fun into the learning environments, they can provide real-time one-

on-one interaction with every student and real-time feedback; thus reducing the 

pressure on the instructor who will otherwise have to divide their time, attention, and 

energy among all students. Three scenarios have been suggested for how the system 

may be used. In case of an instruction-based class period, instruction material will be 

distributed to the learning robots, and students will have equal chances to participate 

during the lecture. The same learning robot can also be used to communicate with other 

students in a collaborative learning session, or provide adaptive learning material in the 

case of self-learning. Wireless communication between different stations is most 

crucial in the first and second scenarios, but is not needed for self-learning; as most 

learning material is pre-downloaded into the station at the beginning of the session. 



24 

 

2.5. Comparison of Existing Work 

There are several published works that compared different e-learning, 

ubiquitous learning, and inquiry-based learning platforms. In addition to the ones 

previously discussed in [3] and [4], we cite the work done by Abdullah and Ward in 

[34], and Chang et al. in [35]. In both publications, the authors survey a number of e-

learning and u-learning environments -107 environments in [34] and 22 in [35]- and 

compare them in terms of technical support, and case study dimensions. Such 

comparisons are useful to acquire a general picture of the technologies involved in u-

learning environments. However, in order to bring the field of u-learning into the 

Internet of Things (IoT) paradigm, it will be more sensible to examine existing systems 

in the light of said paradigm. 

As to comply with the characteristics of an IoT application, we first define the 

architecture we base our work on. Different authors, developers, and stakeholders 

present different versions of the IoT generic architecture; which often vary in the 

number of layers defined and the classification of technologies into the layers. This 

arises from the fact that people from different backgrounds are taking part in the IoT 

revolution [36]. A corporation, for example, will define a paradigm that more based on 

supply chain and business operations, while a telecommunication institute will focus 

more on the communication technologies and topologies. For our work, we choose the 

generic architecture derived from ones proposed in [36]–[40]. The architecture consists 

of five layers: perception, network, middleware, application, and business. The 

Perception Layer (PL), sometimes referred to as the Device Layer- is provides 

interfaces between the system and the physical world, mainly identifying objects and 

context, and acquiring data. Technologies that fall under this layer are sensors, QR 

codes, RFID, smart meters, and others. The next layer is the Network Layer (NL), 

which provides communication media between PL devices and upper layers in the 

architecture. The layer covers small-scale and wide-scale networks, and employs 

wireless communication technologies such as Wi-Fi, Bluetooth, and others. On top of 

the NL is the Middleware Layer (ML), which provides management services as well as 

databases, processing services, messaging brokers, and others. The layer is responsible 

for handling the heterogeneity of the devices in the IoT system and providing a seamless 

exchange of information. Following the ML is the Application Layer (AL) which 

provides interfaces between the users and the IoT system in the form of mobile 



25 

 

applications, websites, reports, and others. The last layer is the Business Layer (BL) 

which provides services such as data management and business model management. 

The IoT architecture we present in Figure 2.1 is based on this generic architecture, 

excluding the business layer. This is to ensure an easy integration of the architecture 

with other IoT-based systems, and will be used to develop a system architecture for our 

class of applications. 

 

Figure 2.1: Internet of Things paradigm 

Based on the previous IoT architecture, we present a comparison of the 

discussed ubiquitous and inquiry-based environments as they fit into IoT paradigm. All 

of the systems proposed in Table 2.1 and Table 2.2 are custom-made; the developer is 

given the responsibility of choosing the product/technology for each element, and then 

integrate them together. This is highly inefficient considering that most systems, in 

essence, have the same requirements and are designed to achieve the same goal. A 

unified architecture for this class of systems will massively reduce the design and 

implementation time required to produce a system instance. The systems in Table 2.3 

attempt to implement said unified architecture. However, most of them are use 

technologies developed for classic internet applications to achieve what is already 

presumed to be an IoT application. IoT applications have special requirements [36], 

[41], [42] that more often than not cannot be supported by classic internet technologies; 

thus the exponential increase in IoT-specific hardware and software [38]. It is thus more 



26 

 

reasonable to propose an architecture for learning systems which employs the most 

suitable of such technologies. 

2.6. Standards for Assessment 

In this subsection, we go over the most prominent assessment standards used by 

learning organization and assessment tools. 

2.6.1. QTi. Question and Test Interoperability (QTi) [43], [44] is the most 

widely used open assessment standard for online assessments. The standard was 

developed by The IMS Global Learning Consortium in 2002, and offers an XML-based 

format for representing assessments and their corresponding results. The intention is to 

facilitate the exchange of assessment items between question repositories, test tools, 

and test delivery systems. The standard supports a wide variety of test items which 

include not only multiple choice questions, but also interactive test items which allow 

the students to select and move text and graphic objects. A JSON-ised version of QTi 

is also available, as QTILite [45]. 

2.6.2. MOODLE. Moodle [46], [47] is a free assessment platform designed to 

aid instructors in creating customized assessment environments. The platform allows 

instructors to organize and give assessments to students as well as keep track of their 

scores and progress. The tools defines two formats for assessments: Moodle XML, and 

GIFT. 

2.6.3. Moodle XML. Moodle XML [48] defines a format for importing and 

exporting assessments within Moodle, but can be used with other assessment tools that 

support XML. The format supports various question types including short answer, 

multiple choice, true or false, matching, gap fill, calculated, and essay. Since XML is a 

popular messaging and assessment format, Moodle XML items can easily be exported 

and imported between various assessment tools. 

2.6.4. Moodle XHTML. The third export format offered by Moodle is Moodle 

XHTML  [35]. It is used for exporting bulks of questions as XHTML items, while the 

answers are often excluded. It was not developed for the purpose of exporting questions 

directly to students, but for sharing collections of questions between web applications 

for modification, and auto-generating quizzes. 

 



27 

 

 

 

T
ab

le
 2

.1
: 

S
ci

en
ce

 a
n

d
 t

ec
h

n
o
lo

g
y
 s

y
st

em
s 

P
ro

je
ct

 
P

ed
ag

o
g
y

 
S

o
ft

w
ar

e 

ar
ch

it
ec

tu
re

 

A
rc

h
it

ec
tu

re
 

D
at

a 
ty

p
e
 

P
L

 

N
L

 
M

L
 

A
L

 

E
d

g
e 

d
ev

ic
e
 

S
en

si
n
g
 e

le
m

e
n
t 

A
p

p
li

ca
ti

o
n
-

le
v
el

 

co
m

m
u

n
ic

at
io

n
 

U
se

r 

A
p

p
li

ca
ti

o
n

 

D
at

a
-

b
as

e 

N
at

u
ra

l 

sc
ie

nc
e 

te
xt

 
[1

2
] 

C
A

-U
L

 
C

li
en

t-
se

rv
er

 
S

m
ar

tp
ho

ne
 

Q
R

 c
o
d
es

 
W

iF
i 

N
/S

 
H

T
T

P
 

A
n
d

ro
id

-b
as

ed
 

ap
p

 
N

/S
 

T
ex

t 

C
R

P
S

 [
1

3
] 

C
A

-U
L

 
C

li
en

t-
se

rv
er

 
S

m
ar

tp
h
o

n
e 

 
Q

R
 c

o
d
es

 
W

iF
i 

N
/S

 
H

T
T

P
 

A
n
d

ro
id

-b
as

ed
 

ap
p

 
N

/S
 

T
ex

t,
 V

id
eo

 

E
U

L
E

R
 [

1
4

] 
C

A
-U

L
 

C
li

en
t-

se
rv

er
 

R
F

ID
 

re
ad

er
, 

P
D

A
 

R
F

ID
, 
C

a
m

er
a

 
W

iF
i 

N
/S

 
H

T
T

P
 

W
eb

-b
as

ed
 

ap
p

li
ca

ti
o

n
 

S
Q

L
 

T
ex

t,
 

im
a
g
es

, 

au
d

io
, 
v

id
eo

 

Io
T

-b
as

ed
 U

L
 

[1
5
] 

C
A

-U
L

 
C

li
en

t-
se

rv
er

 
S

m
ar

tp
ho

ne
 

N
F

C
, 
Q

R
 c

o
d
e

 
W

iF
i,
 

3
G

 
N

/S
 

W
eb

S
o
ck

et
 

C
ro

ss
-p

la
tf

o
rm

 

ap
p
 

N
/S

 
T

ex
t,
 

im
a
ge

s,
 

au
d

io
, 
v

id
eo

 

O
B

S
Y

 [
1

8
] 

C
A

-U
L

 
C

li
en

t-
se

rv
er

 
R

P
i 

se
n
so

rs
, 
ca

m
er

a
 

W
iF

i 
N

/S
 

H
T

T
P

 
W

eb
-b

as
ed

 

ap
p

li
ca

ti
o

n
 

- 
T

ex
t,
 

im
a
g
es

 

P
re

te
-a

-

ap
p

re
n

d
re

 [
1

6
] 

IB
L

 
P

ee
r-

to
-p

ee
r 

A
rd

u
in

o
 

se
n
so

rs
 

W
iF

i,
 

Z
ig

B
ee

 
Z

U
L

 
H

T
T

P
, 

Z
ig

B
ee

 

P
er

so
n
a
l 

co
m

p
u

te
r 

ap
p

li
ca

ti
o

n
 

- 
T

ex
t 

H
o

o
d

ie
s 

an
d

 

B
ar

re
ls

 [
1

7
] 

C
A

-U
L

+
 

IB
L

 
P

ee
r-

to
-p

ee
r 

A
rd

u
in

o
, 

R
F

ID
 r

ea
d
er

 
se

n
so

rs
, 
R

F
ID

 
W

iF
i,
 

Z
ig

B
ee

 
Z

U
L

 
Z

ig
B

ee
 

P
er

so
n
a
l 

co
m

p
u

te
r 

ap
p
li

ca
ti

o
n

 
- 

T
ex

t 

C
o

n
tr

o
l 

la
b

 

[2
6

] 

C
A

-U
L

 +
 

IB
L

 
C

li
en

t-
se

rv
er

 
C

o
n
tr

o
l 

p
an

el
 

R
e
m

o
te

 l
ab

 

eq
u
ip

m
e
n
t 

W
iF

i,
 

G
P

R
S

 
N

/S
 

S
M

S
, 

H
T

T
P

 
W

eb
-b

as
ed

 

ap
p

li
ca

ti
o

n
 

- 
T

ex
t 

 



28 

 

 

T
ab

le
 2

.2
: 

L
an

g
u

ag
e 

a
n
d

 s
o

ci
al

 s
ci

en
ce

 s
y

st
em

s 

P
ro

je
ct

 
P

ed
ag

o
g
y

 

S
o
ft

w
ar

e 

ar
ch

it
ec

t-

tu
re

 

A
rc

h
it

e
c
tu

re
 

D
at

a 
ty

p
e
 

P
L

 

N
L

 
M

L
 

A
L

 

E
d

g
e 

d
ev

ic
e
 

S
en

si
n
g
 e

le
m

e
n
t 

A
p

p
li

ca
ti

o
n

-l
ev

el
 

co
m

m
u

n
ic

a

ti
o

n
 

U
se

r 

A
p

p
li

ca
ti

o
n

 
D

at
ab

as
e 

L
O

C
H

 [
6

] 
C

A
-U

L
 

S
O

A
 

S
m

ar
tp

h
o

n
e

 
G

P
S

, 
ca

m
er

a
, 

m
ic

 
P

H
S

 
N

/S
 

H
T

T
P

 
J2

E
E

  
W

eb
-

b
as

ed
 a

p
p
 

N
/S

 

X
M

L
: 

T
ex

t,
 

im
a
g
es

, 

a
u

d
io

 

H
E

L
L

O
 [

7
] 

C
A

-U
L

 
A

g
e
n
t-

b
as

ed
 

S
m

ar
tp

h
o

n
e

 
Q

R
 c

o
d
e
 

W
iF

i/
W

C
D

M
A

 
N

/S
 

H
T

T
P

 
W

eb
-b

as
ed

 

ap
p
 

S
Q

L
 

T
e
x
t,

 

im
a
g
es

, 

au
d
io

, 
v
id

eo
 

P
C

U
L

S
 [

8
] 

C
A

-U
L

 
A

g
e
n
t-

b
as

ed
 

S
m

ar
tp

h
o

n
e

 
T

ri
an

g
u

la
ti

o
n
 o

f 

W
L

A
N

 s
ig

n
al

 
W

iF
i 

N
/S

 
S

M
S

, 

H
T

T
P

 

W
eb

-b
as

ed
 

A
p

p
 

S
Q

L
 

T
ex

t 

M
u

se
u

m
 [

9
] 

C
A

-U
L

 
C

li
en

t-

se
rv

er
 

S
m

ar
tp

ho
ne

 
C

am
er

a
, 
m

ic
 

W
iF

i 
N

/S
 

H
T

T
P

 
W

eb
-b

as
ed

 

A
p

p
 

N
/S

 
T

e
x
t,

 

im
a
ge

s,
 

au
d

io
, 
v

id
eo

 

A
m

st
er

d
a
m

 

[1
0

] 
C

A
-U

L
 

P
ee

r-
to

-p
ee

r 
S

m
ar

tp
h
o

n
e

 
G

P
S

, 
ca

m
er

a
, 

m
ic

 
U

M
T

S
 

N
/S

 
S

M
S

, 

M
M

S
 

W
eb

 b
ro

w
se

r 
- 

T
e
x
t,

 

im
a
g
es

, 

au
d
io

, 
v
id

eo
 

 



29 

 

 

 

T
ab

le
 2

.3
: 

S
u

b
je

ct
-i

n
d

ep
en

d
en

t 
sy

st
em

s 

P
ro

je
ct

 
P

ed
ag

o
g

y
 

S
o
ft

w
ar

e 

ar
ch

i-

te
ct

u
re

 

A
rc

h
it

ec
tu

re
 

D
at

a 
ty

p
e
 

P
L

 

N
L

 
M

L
 

A
L

 

E
d

g
e 

d
ev

ic
e
 

S
en

si
n
g
 e

le
m

e
n
t 

A
p

p
-l

ev
el

 

co
m

m
u

n
ic

a

ti
o

n
 

U
se

r 
A

p
p

 
D

at
ab

as
e 

Q
R

-L
u

m
p

s 

[1
1

] 
C

A
-U

L
 

C
li

en
t-

se
rv

er
 

S
m

ar
t 

p
h
o

n
e
 

Q
R

 c
o
d
es

 
W

iF
i 

N
/S

 
H

T
T

P
 

A
n
d

ro
id

-b
as

ed
 

ap
p

, 
P

C
 

ap
p

li
ca

ti
o

n
 

N
/S

 
T

ex
t,
 i

m
a
g
es

, 

au
d

io
, 
v

id
eo

 

C
o

nt
e
xt

-

aw
ar

e 

a
ss

e
ss

m
e

n
t 

[2
8

] 

C
A

-U
L

 
P

u
b
/s

u
b

 
S

m
ar

t 
p

h
o

n
e 

 
S

en
so

rs
, 
G

P
S

 
W

iF
i 

C
u

st
o
m

 
M

Q
T

T
 

C
ro

ss
-p

la
tf

o
rm

 

ap
p

 
C

o
u

ch
D

B
 

T
ex

t 

P
S

IL
A

N
 

[2
2

] 
IB

L
 

C
li

en
t-

se
rv

er
 

- 
- 

W
iF

i 

M
o
b
iS

o
ci

al
 

Ju
n
ct

io
n
 

fr
a
m

e
w

o
rk

 

X
M

P
P

 

A
nd

ro
id

-b
as

ed
 

Ju
n
ct

io
n
 

A
ct

iv
it

y
 

D
ir

ec
to

r 

N
/S

 
T

ex
t,
 i

m
a
g
es

 

S
M

IL
E

 [
2

3
] 

IB
L

 
C

li
en

t-

se
rv

er
 

- 
- 

W
iF

i 

M
o
b
iS

o
ci

al
 

Ju
n
ct

io
n
 

fr
a
m

e
w

o
rk

 

X
M

P
P

 
W

eb
-b

as
ed

 

ap
p

li
ca

ti
o

n
 

N
/S

 
T

ex
t,
 i

m
a
g
es

 

L
ea

rn
in

g
 

C
at

al
y

ti
cs

 

[2
4
] 

IB
L

 
C

li
en

t-

S
er

v
er

 
- 

- 
W

iF
i 

N
/S

 
H

T
T

P
 

W
eb

-b
as

ed
 

ap
p
li

ca
ti

o
n

 
N

/S
 

T
ex

t,
 i

m
a
g
es

 

W
eS

p
o

t 
[2

9
] 

C
A

-U
L

 +
 

IB
L

 

C
li

en
t-

se
rv

er
 

S
m

ar
t 

p
h
o

n
e 

 
C

am
er

a
, 
m

ic
 

W
iF

i 
E

lg
g
 (

P
H

P
) 

H
T

T
P

 

W
eb

-b
as

ed
 

ap
p

li
ca

ti
o

n
, 

A
n
d

ro
id

 A
p

p
 

M
y

S
Q

L
 

T
ex

t,
 i

m
a
g
es

, 

au
d

io
, 
v

id
eo

 

G
P

IM
 [

3
1

] 
C

A
-U

L
 +

 
IB

L
 

C
li

en
t-

se
rv

er
 

G
o
o
g
le

 G
la

ss
 

se
n
so

rs
 

W
iF

i 
E

lg
g
 (

P
H

P
) 

H
T

T
P

 
G

la
ss

w
ar

e
 

M
y

S
Q

L
 

T
ex

t,
 i

m
a
ge

s,
 

au
d

io
, 
v

id
eo

 

Y
o

u
u

b
i 

[3
2

] 
C

A
-U

L
 

S
O

A
 

M
o
b
il

e
, 
S

m
ar

t 

W
at

c
h

 
G

P
S

 
E

th
er

n
et

, 

W
iF

i 
R

E
S

T
E

as
y

 
H

T
T

P
 

W
eb

-b
as

ed
 

ap
p

li
ca

ti
o

n
 

N
/S

 
T

ex
t,
 i

m
a
g
es

, 

au
d

io
, 
v

id
eo

 

u
-O

N
E

 [
3

3
] 

C
A

-U
L

 +
 

IB
L

 

P
ee

r-
to

-

p
ee

r 

L
ea

rn
in

g 

ro
b
o
t,
 R

F
ID

, 

P
D

A
, 
iP

o
d

, 

O
L

P
C

 

B
ar

co
d
e
, 
R

F
ID

, 

Q
R

, 
E

-P
e
n
, 

M
a
g
n
et

ic
 C

ar
d
, 

L
as

er
 

B
L

E
, 
W

i-
F

i,
 

Z
ig

B
ee

, 

G
ro

u
p
N

et
 

N
/S

 

B
lu

et
o

o
th

, 

H
T

T
P

, 

Z
ig

B
e
e 

P
C

 

ap
p

li
ca

ti
o

n
, 

m
o

b
il

e 
ap

p
 

N
/S

 
T

ex
t 

 



30 

 

2.6.5. GIFT. GIFT [48], on the other hand, defines a simpler, more user-friendly 

format for assessments that allows users to construct assessments using a text editor. 

The format makes the process of constructing, editing, and proofing questions into 

categories much more accessible for instructors with less-advanced technical skills. 

Furthermore, GIFT supports the same level of question type variation as Moodle XML, 

and Moodle provides conversion tools between Moodle XML and GIFT. This way, 

questions that were previously constructed in XML can later be viewed and edited as 

GIFT items. Moodle also provides a tool to quickly export and import questions 

between quizzes and question banks. In order to better understand the difference 

between the two formats, Figure 2.2 presents an example of a true or false question, 

formatted in Moodle XML and in GIFT 

 

Figure 2.2: Moodle True or False question format example: (a) Moodle XML (b) 

GIFT 

2.6.6. BLACKBOARD. Blackboard Learn [49] is one of the most popular 

online course management environments. The environment is used to manage courses, 

assessments, and student record, and is popular especially among higher education 

institutes. As a part of the environment, Blackboard Learn defines its own assessment 

format that is fundamentally based on QTI for exporting and importing assessment 

items. While the format was originally developed to facilitate sharing of records and 

material between different institutes, the environment offers tools to export files to other 

learning environment so that Blackboard Learn can still be used as a supplement in 

institutes where it is not the primary course management environment. 

2.7. Summary 

This chapter presented a survey of studies and learning environments that aim 

to implement pedagogies like ubiquitous learning, inquiry-based learning, and context-

aware learning. While some of the works were developed for specific subjects and 

settings, other were designed with the goal of providing a generic environment that can 

<question type="truefalse"> 

<answer fraction="100"> 

<text>true</text> 

<feedback><text>Correct!</text></feedback> 

</answer> 

<answer fraction="0"> 

<text>false</text> 

<feedback><text>Ooops!</text></feedback> 

</answer> 

// true/false ::Q1:: 1+1=2 {T} 

(b) (a) 



31 

 

service multiple audiences. The most interesting part was that even though all of the 

presented works were implemented organically with no unified design in mind, they all 

share common key components and structural elements. By mapping these works into 

the IoT paradigm, it is possible to design a unified architecture using IoT technologies 

that can not only serve in the place of previous systems, but also improve upon their 

performance.  



32 

 

Chapter 3.  Methodology 

 

This chapter is divided as follows: the first section defines a set of non-

functional requirements that were deduced from the works presented in Chapter 2. The 

requirements are then used to construct a system definition, which is presented in the 

second section. The second section also includes a use case diagram for the system, as 

well as functional scenarios. In the third section, the different layers of the system 

architectures are discussed one by one, along with a study of components and a 

comparison of available technology options. 

3.1. Problem Formulation 

The first step to defining an architecture that can suit and improve inquiry-

based, ubiquitous IoT application is to identify the requirements and characteristics of 

such system. The requirements are defined by examining existing systems and 

extracting the most common and critical functionalities. Once requirements and use 

cases have been defined, a system definition is constructed based on the given 

information. The system definition comprises all front end and back end hardware and 

software, which is chosen by studying and comparing different technologies, and 

selecting the most suitable ones. In principle, each one of the presented applications 

implements two or more of the pedagogies discussed earlier. However, as criteria for 

evaluation, we define sets of requirements and use cases that we believe such a learning 

environment should support. We will also use these use cases and requirements as 

guideline for our learning environment architecture; and to identify the various 

technologies required to build such environments. First of all, the system requirements 

are defined as follows: 

 Students should be able to interact with peers in real-time. A major requirement 

in inquiry-based and collaborative learning is the ability to engage in real-time 

communication with other students in the system. The communication types 

that can take place are one-to-one, and one-to-many communication. 

 Students should be able to pose questions from a defined location. Once a 

student has formulated a question, they will proceed to pose it to particular 

nodes in a physical environment. If the question is general, it should be posted 

to all nodes. But if the question is related to a certain geographical location or 



33 

 

type of space, the question should only be posted to nodes that fall under the 

specified category. This will be resolved using a principle of “topic + context”;  

where every node is not only linked to certain topics in the course material, but 

also to the physical context it exists in. 

 Teachers should be able to pose questions independently of their location. 

Unlike students, teacher need not be in a specific location in order to pose 

questions. A teacher should be able to pick pods to publish the question to form 

a list. The question should then be published to the selected pods. 

 Students should be notified once a new question has been posted. Once a 

question is available at a pod that students have access to, students should 

receive a notification through their mobile application or similar means. 

 Students should be able to retrieve a question from pods located in areas that 

relate to that question. After students receives a question through their device, 

they should walk to a physical node in case of a general question, and a specific 

node in case of a context-linked question- and retrieve the question. The 

communication between students and the node need not take place on the same 

communication network used for posting questions. 

 The teacher should be able to dynamically assign and un-assign pods to multiple 

different categories. Each pod is assigned a group of different categories and 

topics that determine whether or not the student can access a certain question 

from that pod. This should be dynamic; i.e. the teacher should have the ability 

to assign individual or pools of pods to a topic, and remove individual or pools 

of pods from that topic. 

 Students should be able to post answers. After retrieving a question, students 

should be able to attach an answer the question and send it to the node it is 

linked to. 

 Teachers should be able to see answers posted by their students. Once a new 

attempt has been posted, interested teachers should be able to view the answer. 

 Students should be able to integrate sensor readings into their questions. Sensors 

are the key component required to implement the experiential learning aspect. 

Various sensors will be used to obtain location and environment-related 

information, which will then be used within the class interaction. Sensors can 

generate analog or digital data of various sizes and formats, and the sensors 



34 

 

readings will need to be processed and reformatted before being sent to the 

application. The user should be able to retrieve real-time sensor data that can be 

used to answer the question, and also have the option to include the sensor data 

in a question or an answer. 

 Students should be able to attach or link to media files. As a part of the 

experimental learning process, the students may need to include images, audio 

files, or video files in their questions and answers. The application should allow 

the user to either attach the media file or include a link to it. 

 Students should be able to search through repository of questions. Whether to 

review old learning material, or reuse previous assessments in a new 

contribution, students should be able to search through a repository of previous 

questions and answers. 

 The pod should function as a standalone unit in case of network problems. In 

case of network problems, the user should still be able to use the application to 

pose new questions, answer questions that have been published before network 

failure, and access old contributions. The user should also be able to access last 

saved data from any sensor. 

 A new pod added to the system during operation should be able to start 

functioning right away. Adding a new pod to the system entails assigning topics 

to the pod, and replicating relevant databases so that students can begin to 

interact with it in little to no time. 

 Pods, teachers, and students should be updated with all offline interactions once 

communication is reconciled. Once communication has been restored, the user 

should be notified and be able to view questions that have been proposed by 

other users during offline time. Questions posed from the user should also be 

published to all applicable nodes and users should be notified. 

 Students and teachers should be able to access all functionalities of the system 

regardless of the type of device they own. Students and teachers should be able 

to use the application of various platforms, including mobile phones of most 

operating systems, tablets, and personal computers. 

 Teachers should have able to use the system to send data that follows the 

assessment standard of their choice. Different institutions and instructors may 

choose to have the contributions follow different assessment standards that 



35 

 

differ in format. The user should be able to use the application just the same 

regardless of the assessment standard. 

3.2. System Definition 

Figure 3.1 shows the system diagram which satisfies the use cases for the 

proposed class of educational applications. 

 

Figure 3.1: System Diagram 

The system consists of four segments: 

 Mobile application: The mobile app provides two different sets of 

functionalities for the teachers and the students. Students use the mobile app to 

communicate with the pods and receive notifications. The teacher app unlocks 

extra functionalities that allow them to monitor student activities 

 Learning pod: Pods consist of a processing unit, a communication unit, and a 

group of sensors. They serve as the students’ gateway into the network of 

interconnected pods, students, and teachers. Each pod host a webserver which 

students can POST questions and attempts to, and GET sensor readings and 

questions posted by other students. Once a new question/attempt has been 

posted, it is the pod’s responsibility to publish it to other pods as well as notify 

students so that they can retrieve it from the same or a remote pod. 



36 

 

 Main server: the main server, is responsible for providing processing related to 

student performance analytics. All new attempts are immediately published to 

the main server, and depending on the system requirements, the main server can 

make use of analysis engines in order to provide teachers with different levels 

of analytics. 

 Broker: the broker is responsible for delivering questions, notifications, and 

attempts. Whenever a student posts a question or an attempt, pods will send 

them as well as related notifications to the broker so that they can be published 

to related students, teachers, and other pods. 

The system use case diagram is shown in Figure 3.2. 

There are four main scenarios that take place in the system: 

 In the first scenario (Figure 3.3), a student connected to the same wireless 

network as the Pod poses a new question. The new question initiates a series of 

event, which include the new question being published to other pods as well as 

the main server, and notification messages being published to students. 

 In the second scenario (Figure 3.4), a student who received a question 

notification uses the question ID included in the notification to request the 

question body from a Pod. 

 In the third scenario (Figure 3.5), a student requests sensor reading from a Pod. 

The student will then use the sensor information either in posing a question, or 

answering one posted by a peer. 

 In the fourth scenario (Figure 3.6), the student POSTs an attempt to a question 

to a Pod. This scenario is similar to the first scenario, except no notifications are 

needed. Furthermore, if the type of question allows it, attempt feedback is 

provided to the student immediately and is independent from the rest of the 

process. This is possible for true-or-false, multiple-choice, and fill-in-the-blanks 

questions, but not short answer questions as an instructor has to be involved in 

the latter. 



37 

 

 

Figure 3.2: System use case diagram 

 

Figure 3.3: Scenario 1: post a question 



38 

 

 

Figure 3.4: Scenario 2: request a question 

 

Figure 3.5: Scenario 3: request sensor readings 

 

Figure 3.6: Scenario 4: post an attempt 

3.3. System Architecture 

The system is built based on the Internet of Things paradigm (shown previously 

in Figure 2.1) which consists of the Perception Layer, Communication Layer, 

Middleware Layer, and Application Layer. 



39 

 

3.3.1. Perception layer. The perception layer is represented by devices called 

information pods. Every information pod is made up of two segments. The first segment 

is responsible for sensing, and consists of an assortment of analog and digital sensors, 

and a processing unit. The sensors will vary from one system implementation to another 

depending on the curriculum. For example, an inquiry-based learning system 

implemented for an architecture course, such as the one presented in [28], will 

incorporate temperature, humidity, and illumination sensors, but will not require CO2 

sensors. The sensors connect to a processing unit which reads sensor output data upon 

request, and interprets the data into intelligible information that can then be reported 

back to the requesting user. The second segment is responsible for connecting the 

information pod to the rest of the system and managing data. It acts as a messaging 

client that receives messages from student nodes requesting physical information, 

prompts the sensing segment for sensor readings, and replies back to the requesting 

node. The second segment also includes a database which stores sensor data along with 

other information such as date and time the reading was taken. In addition to storing 

contributions, the database functions as a cache memory for sensor readings as to save 

power from repetitive requests within a short period of time. We divide available 

options for the sensing or edge computing unit into three main categories: Single Board 

Computers (SBCs), specialized IoT edge System on Chip (SoC), and smartphones and 

watches. 

SBCs refer to chips that contain of all functioning elements of a computer, 

including a CPU, memory, and Input/Output (I/O), on a single circuit board; making 

them highly popular in applications where lower cost and smaller space are favored 

over high performance. The price for an SBC can range from $9 to $180+, depending 

on the manufacturer. Some of the most popular low-cost ones include Raspberry Pi 

[50], BeagleBone [51], ODROID [52], Intel’s Edison [53], and C.H.I.P [54]. One major 

advantage of using SBCs is that they are capable of performing the roles of both the 

computing and the sensing segment. On one hand, most SBCs support variations of 

Linux-based operating systems which are capable of running and hosting most 

applications that are compatible with normal Linux systems. On the other hand, SBCs 

expose I/O functionalities, and provide tools and libraries that handle reading and 

writing to sensing modules, and communication with other embedded devices over 

various protocols. In addition to lowering the cost of the node hardware, it allows for 



40 

 

flexibility and customization in terms of which modules are to be added depending on 

the application. That being said, connecting the extra modules will require a certain 

level of technical ingenuity. This can be a disadvantage in certain settings like a primary 

school, for example, where a teacher setting up the nodes does not possess the 

appropriate technical skills. 

The second option for an edge device will be to use a consumer electronics as 

Android-based phones or smart watches as the processing/communication unit. Devices 

under this category run either Android or Tizen [55]. Tizen was designed with the 

purpose of providing an open software platform to host various applications, including 

cross-platform apps. As for Android-based devices, they are all capable of running 

native and cross-platform apps, but the more recent ones also offer the possibility to 

install and run a chroot [56] version of Linux OSs such as Debian [57]. Therefore, with 

an Android-based or a Tizen-based device as the node “brain”, it is possible to develop 

the node server application as a native/cross-platform application, or host it using 

environments that can run on Linux systems; with the help of chroots. Sensing-wise, 

smartphones and smart watches are often equipped with sensors like accelerometers, 

proximity sensors, microphones, and cameras that can easily be accessed by various 

mobile apps. However, limited sensor types are available, and therefore applications 

that requirement environmental readings such as temperature or humidity will require 

an expansion module. The expansion module be in the form of a low-cost 

microcontroller that communicates with the phone either wirelessly over WiFi and 

Bluetooth, over USB, or through the audio jack [58]–[61]. A comparison of the most 

popular devices in the SBC and consumer electronics markets is presented in Table 3.1 

and Table 3.2. 

The third option is System on Chip (IoT-SoC). By “IoT-SoC” we refer to 

Arduino-based SoCs which match two important criteria; the ability to write to and/or 

read from sensing elements, and an on-board wireless communication module. Many 

IoT-SoCs manufactures go further to provide cloud services, and software libraries that 

facilitate seamless communication with the cloud. IoT chips like Particle’s Photon and 

Electron [62], Pinoccio [63], Adafruit’s Feather Huzzah [64], and ESP8266 [65]. 

Within the context of the proposed architecture, an IoT SoC will be able to fill in for 

the sensing segment, but not the processing. Most IoT-SoCs are Arduino-based, and 



41 

 

have limited processing capabilities that cannot support required tasks such as 

application and database hosting. They can, however, function as a medium between 

sensors and the processing segment. Not only will it reduce the sensor interfacing load 

on the processing/communication unit, but it can also be used to expand the number 

and type of sensors which can be incorporated into system. A comparison of IoT-based 

SOCs and similar low level devices is shown in Table 3.1 and Table 3.2. 

Most of the devices in the first two categories of SBCs and consumer 

electronics- are capable of performing application hosting and communication, and 

sensing. This is especially true for SBCs as they are designed with the intention to 

support sensors, and various peripherals. On the other hand, while Android-based 

phones and smart watches are mostly capable of hosting applications, they pose a 

limitation on the types of sensors that can be incorporated into the system. Most of them 

have basic sensors such as temperature sensors and accelerometers on board, but do not 

natively support the integration of external sensors. IoT-SoCs complement the latter, 

by having limited support for application hosting, but supporting a wide range of analog 

and digital sensors and actuators. Accordingly, we can propose two possible general 

implementations. The first implementation consists of an SBC with an optional SoC or 

shield, but only if needed. For example, a device such as Raspberry Pi can be used as a 

standalone pod to hose an application, handle communication, and read from digital 

data. If the system requires analog sensors, however, then an ADC shield or an Arduino-

based SoC can be added. The second implementation consists of an Android-based 

phone or a smart watch to function as the first segment, which communicates with an 

SoC over audio jack or USB to read sensor information. 

Figure 3.7 provides a visual comparison between the edge nodes in terms of 

RAM size, CPU capabilities in Dhrystone Mega Instructions Per Second (DMIPS), and 

supported operating systems. Dhrystone is a benchmark program that measures the 

number of integer instructions a processor can perform in a single second.  While the 

CPU and RAM affect the performance of the system, the type of operating system is 

vital to the pod’s role in the system because it determines whether or not the pod is 

capable of hosting the application server and the database, as well as providing readings 

from sensors. The distribution of the edge devices in the figure shows the huge 

capabilities difference between SoCs, and more sophisticated devices. While the most 



42 

 

powerful SoC is the Photon with a 128kB RAM and a processor capable of 150 DMIPS, 

the smallest SBC, which is the C.H.I.P Pro, is equipped with a 256MB, and is capable 

of 2000 DMIPS. The relative price is also indicated by the size of markers, where the 

cheapest is C.H.I.P Pro at a unit price of $16, and the most expensive is SmartWatch3, 

at $135. 

Table 3.1: Summary of popular SBCs and smart devices -Part 1 

 RPi 3.0 [66] ODROID-

C2 [67] 

BeagleBone 

Black [68] 

Edison 

[53] 

CHIP 

PRO 

[69] 

Samsung Artik 710 

[70] 

Samsung Artik 

530 [71] 

CPU 4× ARM 

Cortex-A53 

1.2GHz 

4x ARM 

Cortex-

A5 

1.5GHz 

ARM 

Cortex-A8 

1GHz 

2x Intel 

Atom 

500MHz 

ARM 

Cortex-

A8 

1GHz 

8x ARM Cortex-

A53 at 1.4 GHz 

4x ARM 

Cortex-A9 

1.2GHz 

GPU Broadcom 

VideoCore 

IV 

Mali-450 

MP2 

SGX530 3D, 

20M 

Polygons/S 

 Mali-

400 

Mali T400 Mali-400 MP2 

RAM 1GB 

LPDDR2 

2GB 

DDR3 

SDRAM 

512MB 

DDR3L 

1GB 

DDR3 

256MB 

DDR3 

1 GB DDR3 512MB DDR3 

Network 10/100 

Ethernet, 

2.4GHz 

802.11n, 

Bluetooth 

4.1 LE 

10/100/10

00Mbps 

Ethernet, 

Infrared(I

R) 

Receiver 

10/100 

Ethernet 

Bluetoot

h 4.0, 

2.4/5GH

z  802.11 

a/b/g/n 

- 10/100/1000 

Ethernet , 2.4/5GHz 

802.11 a/b/g/n/ac, 

Bluetooth 4.1, BLE, 

FM Radio, Thread 

10/100/1000 

Ethernet, 

2.4/5GHz 

802.11 

a/b/g/n/ac, 

Bluetooth 4.2, 

BLE, FM 

Radio, Thread 

Storage microSD eMMC 

5.0, 

MicroSD 

4GB eMMC, 

MicroSD 

4GM 

eMMC, 

microSD 

512MB 

SLC 

NAND, 

microSD 

4GB eMMC 4GB eMMC 

Ports HDMI, 

3.5mm 

analogue 

audio-video 

jack, 4× 

USB 2.0, 

CSI, DSI 

HDMI2.0, 

HDML, 

I2S, 4× 

USB 2.0, 

GPIO / 

UART / 

I2C / 

ADC 

1x USB 2.0 - - HDMI, MIPI, PCM, 

USB 2.0, USB 3.0 

HDMI, MIPI, 

PCM, USB 2.0, 

USB 3.0 

Pins/ 

Sensors 

40pin port 

(GPIO/ 

UART/ I2C/ 

SPI) 

40pin port 

(GPIO / 

UART / 

I2C/ 

ADC/ 

I2S) 

2x 46pin port 

(GPIO/ 

UART/ I2C/ 

CAN/ SPI/ 

PWM/ ADC) 

40pin 

port 

(GPIO/ 

UART/ 

I2C/ 

SPI/ 

I2C/ 

USB/ 

PWM) 

53pin 

port 

(GPIO/ 

UART/ 

SPI/ 

PWM/ 

USB) 

(GPIO, I2C, I2S, 

SPI, UART, PWM, 

SDIO, USB 2.0, 

JTAG, ADC) 

(GPIO, I2C, 

I2S, SPI, 

UART, PWM, 

SDIO, USB 

2.0, JTAG, 

ADC) 

OS Windows, 

Android, 

Linux 

Android, 

Linux 

Android, 

Linux 

Linux Linux Linux Linux 

Price $35 $46 $55 $37.5 $16 $52.50 $59 

 

  



43 

 

Table 3.2: Summary of popular SBCs and smart devices - Part 2 

 Samsung Gear 

S [72] 

Sony 

SmartWatch 3 

[73] 

Samsung J5 [74] Samsung Artik 1020 

[75] 

Endless 

Mini [76] 

Arduino 

Yún [77] 

CPU 2x ARM 

Cortex-A7 

1.0GHz 

4x ARM 

Cortex-A7 

1.2GHz 

4x ARM Cortex-

A53 1.2GHz 

4x ARM Cortex-15 

1.5GHz + 4x ARM 

Cortext-A7 1.3GHz 

4x ARM 

Cortex-A5 

1.5GHz 

MIPS32 

24k 

400MHz 

GPU Adreno 305 Adreno 305 Adreno306 Mali-T628 MP6 Mali-450 - 

RAM 512 MB RAM 512MB RAM 1.5 GB RAM 2GB LPDDR3 1GB RAM 64MB 

Network 2.4GHz 

802.11 b/g/n, 

GSM, HSPA, 

Bluetooth 4.1 

Bluetooth 4.0 

LE, NFC 

GSM, HSPA, 

LTE, Wi-Fi 

802.11 b/g/n, Wi-

Fi Direct, hotspot, 

Bluetooth 4.1, 

GPS, NFS, Radio 

10/100/1000 Ethernet , 

2.4/5GHz 802.11 

a/b/g/n/ac, Bluetooth 

4.1, BLE, FM Radio, 

Thread 

10/100/100

0 Ethernet 

10/100 

Ethernet, 

802.11b/g

/n 

Storage 4GB eMMC 4GB eMMC microSD 16GB eMMC, SD 24GB SSD microSD, 

16MB 

flash 

Ports microUSB microUSB 3.5mm analogue 

audio, 1x 

microUSB 

HDMI, MIPI, PCM, 

USB 2.0, USB 3.0 

2x USB 

2.0, HDMI, 

3.5mm 

analogue 

audio 

LED, 

ICSP 

header 

Pins/ 

Sensors 

GPS Ambient light, 

Accelerometer

, Compass, 

Gyro, GPS 

- 51pin port (GPIO / 

ADC / UART / PCM / 

I2C / I2S / SPI / SDIO / 

JTAG) 

- 20pins 

(GPIO/ 

UART/ 

PWM/ 

ADC/ 

DAC) 

OS Linux Android Android, Linux Linux Linux Linux 

Price $115 $135 $97.5 $105 $79 $72 

Table 3.3: Summary of popular IoT-SoCs  

 Arduino Uno 

[78] 

Photon [79] Pinoccio [63] Huzzah/ESP8266 

[64], [65] 

Feather M0 

Bluefruit LE 

[80] 

processor ATmega328P 

16MHz 

ARM Cortex-M3 

120MHz 

ATmega128RFA1 

16MHz 

Tensilica Xtensa 

L106 160MHz 

Cortext-M0+ 

48MHz 

RAM 2kB 128kB 16kB 36kB 32kB 

Networking - 802.11b/g/n, soft-

AP 

802.15.4 802.11 b/g/n, Wi-Fi 

Direct (P2P), soft-AP 

BLE 

Storage 32kB flash + 1kB 

EEPROM 

1MB flash 128kB flash 4MB flash 256kB flash 

Pins 14pins (GPIO/ 

PWM/ ADC/ 

UART/ SPI/ I2C) 

24pins (GPIO/ 

PWM/ USB/ CAN/ 

SPI/ I2C/ I2S/ 

ADC/ DAC) 

32pins (GPIO/ 

PWM/ ADC/ SPI/ 

I2C/ UART) 

28pins (GPIO/ 

UART/ SPI/ I2C/ 

ADC/ USB) 

32pins (GPIO/ 

UART/ SPI/ 

I2C/ PWM/ 

ADC/ DAC/ 

USB) 

On-board 

peripherals 

LED, ICSP 

header 

RGB LED Temperature, RGB 

LED 

Red LED Red LED 

Price $22 $19 $49 $17 $30 

 



44 

 

 

Figure 3.7: Edge nodes comparison 

3.3.2. Communication layer. In terms of network scale, there are two types of 

networks over-which communication takes place: a local area network (LAN) for 

student-to-pod communication, and a wide area network (WAN) for pod-to-pods 

messaging. The importance of the student-to-pod being a LAN is to enable student 

clients to communicate with the server running on the pod locally. This functions as a 

security policy, as servers are not exposed to and accessible over the internet. LAN 

communication can also ensure that students are present at a certain location when 

communicating with pods instead of accessing it remotely; which is a major component 

of context-aware learning. On the other hand, a question or an attempt posted to one 

pod will most likely be destined for a group of remote pods. For example, a student 

may post a question that will be available for all students enrolled in Grade 5 

mathematics in all schools that follow the same curriculum. Attempts posted by 

students should also be sent to the main server if the teacher or school require 

performance analysis data. Hence, pod-to-pods communication can only sufficiently 

take place over the internet. Internet access is also important for students to receive 

notifications when a relevant question has been posted, or significant system changes 

have taken place. In terms of communication medium, allowing students to walk around 

a location freely and connect to any pod entails that communication between students 

and pods takes place wirelessly.  In addition, although the pods are not mobile, using 



45 

 

wireless technologies to connect the pod to the internet reducing cabling cost and 

minimizes inconvenience caused by extending wires through the learning location.  

Based on the previous discussion, we define two possible network architectures, shown 

in Figure 3.8. 

 

Figure 3.8: Pod network architecture: a) pod as a LAN client. b) pod as a hotspot host. 

In the first architecture, a wireless access point provides communication 

between students and local pods, and internet access for both. In this architecture, 

students can request or post questions and attempts over the wireless LAN (WLAN), 

while messages meant for remote pods, servers, and students are routed to the WAN. 

Students in this case need only to connect to the WLAN once at the beginning of the 

session in order to communicate with any pod in the area, and receive real-time 

notifications. Contrarily, the second architecture sets the Pod up as an access point, 

where the pod uses one network interface to access the internet, while the second 

interface is used to deploy a WLAN. In this case, students need to connect to a specific 

pod’s hotspot in order to communicate with the server running on it. At time when 

students are not connected to a pod, they can connect to a normal wireless access point, 

or to a 4G or 5G network. In both cases students can receive notifications as both normal 

access points and pods’ hotspots are able to provide internet access. The second options 

has the advantage of ensuring a student is at the proper location in order to connect to 

the pod and answer context-specific questions. Furthermore, all pod application servers 

can be assigned the same IP address since the hotspots are mutually exclusive. This 

enables the student app to automatically connect to the proper server without the need 



46 

 

to explicitly specify server information such as the IP address, or scan a QR code, for 

example. The downside, however, is that deploying the hotspot can cause additional 

power consumption. 

3.3.3. Middleware layer. The middleware layer accommodates technologies 

that process, transport, and store information. This includes technologies such as 

servers, database software, communication protocols, cloud computing, and any other 

technologies that transform data acquired form edge devices into information presented 

at the application layer. The proposed architecture employs three types of middleware 

layer technologies: databases, application-level messaging, and backed application 

servers. 

Questions, answers, student scores, and sensor readings must to be stored in a 

database for later access. Based on the period of time for which we will like to keep the 

information, we define two classes of database entries. The first type is information that 

should be stored indefinitely, and can be accessed at any time by any user. In [81] the 

student’s ability to integrate previous knowledge to build new knowledge, and the 

student’s ability to monitor their own progress in order to adjust their learning approach 

are underlined as two of the important learning principles. Allowing the student to 

access their own previous contributions and results allows to self-regulate their learning 

approach and adjust their learning approach so that any misconceptions or weak points 

will be tackled early on. Moreover, allowing the student to access their own and their 

peer’s old contributions enables them to build upon previously acquired knowledge in 

order to get a coherent understanding of the curriculum. For these reasons, the system 

requires that every user is equipped with a scalable database that can standalone in case 

of a network failure, and synchronize with other databases when the network is up and 

running. On the student node’s side, sensor readings need not be stored permanently. 

Since students require only the current sensor readings to integrate into questions and 

answers, the latest readings received from an information pod should replace the 

previous one. The readings also need not be replicated to other databases as sensor data 

should be acquired individually. Along the same lines, once an information node has 

received a sensing request, communicated with the sensing unit, and replied to the 

student, the information node should maintain the reading for a short period of time and 

use it to reply to other students instead of communicating with the sensing unit again. 



47 

 

This helps reduce the frequency of sensing and therefore saves power. For the choice 

of database we consider SQL-based MySQL [82] and Cassandra [83], and NoSQL-

based databases CouchDB [84] and MongoDB [85]. In [28] we presented a comparison 

between the four databases, which can be seen in Table 3.4. The heterogeneity of data 

in terms of size, format, and lifecycle gives NoSQL databases an advantage; as they are 

document-based and therefore allow room for data flexibility. SQL database are more 

constrained in terms of the data structure and therefore the data will have to undergo 

reformatting in order to be inputted into the database. The second most important 

criterion is replication. As explained earlier, the application on each student’s device 

will access a database that replicates with other databases; in order to stay updated with 

all contributions and also perform as a standalone unit in case of network failure. This 

requires master-to-master replication functionality, which allows individual users to 

perform insertion and update operations, and peer-to-peer data synchronization; which 

is available only in CouchDB and MySQL. The third criterion we consider is Map 

Reduce [86]. Map Reduce works in two steps: the map function filters documents 

according to a certain condition, and then the reduce function groups documents based 

on that condition. This enables parallel processing of large data, and boosts the 

performance of the system. Finally, since we aim for a JavaScript implementation all 

over the system as means to increase compatibility, we look for JavaScript support. 

Table 3.4: Comparison of NoSQL and SQL databases 

 CouchDB [84] MongoDB [85] Cassandra [83] MySQL [82] 

Database class document store document store column store relational DBMS 

Data format JSON JSON native, collection, 

user_defined, tuple, custom 

numeric, string, date/time, 

JSON, spatial 

Consistency eventual eventual tunable  

Scalability high high high high 

Supports 

JavaScript 

yes yes yes no 

Map Reduce yes yes yes no 

Replication master-master 

master-slave 

master-slave master-master master-master 

master-slave 

The messaging middleware is responsible for handling the inquiry aspect, which 

is the core of this work. One of the most important requirements for the messaging 

protocol is support of large scale networks. Applications of this class -inquiry-based 

learning IoT- are designed with the ultimate goal of deployment on a global scale [23], 

where a large number of students, teachers, and information nodes will be sending and 

receiving questions, answers, and reports. This places huge pressure on the messaging 



48 

 

broker as parameters such as latency and throughput become of great importance. One 

important factor that we take in mind is the communication architecture implemented 

by the protocol. This is because, as mentioned earlier, communications taking place in 

the system can be one-to-one or one-to-many. When a student proposes a question on 

a certain topic, the question should be broadcasted to all students enrolled in that class. 

On the other hand, a sensor data request made by a single student should be responded 

to by a unicast to that particular student. The second important factor is the data format 

supported by the protocol. The assessment standards considered here differ in question 

format, and while QTI and MoodleXML, for example, are based on XML, GIFT 

specifies a different format that is not necessarily supported by common 

communication protocols; in which case the conversion between different formats will 

be handled by the system. HTTP (HyperText Terminal Protocol) and XMPP 

(Extensible Messaging and Presence Protocol) are two of the most popular classic 

communication protocols, while MQTT (Message Queue Telemetry Transport), 

AMQP (Advanced Message Queuing Protocol), and CoAP (Constrained Application 

Protocol) are the most common for Wireless Smart Sensors (WSN) and IoT 

applications. Given that every node is equipped with computing device capable of 

communicating through either of the aforementioned protocols, we consider all of them 

for the messaging middleware. 

During the early discussions of IoT technology, the choice to employ HTTP 

[87] as the communication protocol was at times dismissed for reasons that included 

large overhead, and high processing power and memory requirements which were not 

available for typical IoT constrained devices. However, a few researchers began 

investigating the performance of HTTP in an IoT as a new service-oriented, social 

media-based IoT paradigm emerged; which is now commonly referred to as the Web 

of Things (WoT) [42], [88]. HTTP facilitates the integration of web services and 

resources, and its employment in IoT applications is made possible by a cross-layer 

TCP/HTTP [89] optimization that, done properly, can run the protocol on small 

constrained devices. One issue that occurs right away is that in a system which requires 

a publish/subscribe communication mechanism, specifically between student nodes, 

HTTP implements a request/response architecture (Figure 3.9). One option, in this case, 

is to shift the responsibility of updating nodes with new questions to the nodes 

themselves. Nodes will be responsible for sending GET requests at a certain frequency 



49 

 

in order to stay updated with the latest contributions. The communication between 

student nodes and information nodes, however, will be simple and direct. In terms of 

data format, HTTP supports HTML with XML and JSON. 

 

Figure 3.9: HTTP model 

CoAP [90] is a messaging protocol specifically developed with the IoT 

constrained devices in mind. The protocol implements a Representational State 

Transfer (REST) architecture [91] which gives it an advantage over other protocols; as 

it enables embedded constrained devices to use web services; combining the benefits 

of HTTP and MQTT. One common misconception is that CoAP is “compressed 

HTTP”, which is not at all the case. CoAP offers the same features as HTTP at a lower 

cost by replacing the TCP layer with UDP, and compensating for the implicated loss of 

reliability by introducing a “message layer” [92] which handles packet sequencing and 

retransmission. One downside of it, such as the case with HTTP, is that it does not 

natively support the publish/subscribe architecture [93], but the architecture can be 

implemented using “observe” streams (shown in Figure 3.10). Another downside will 

be the CoAP packet size which is set to 1152 bytes per packet, 1024 of which are for 

the payload, which poses constrains on the amount of data, especially non-textual, that 

can be included in a message. In order to handle this issue, either data compression or 

data packet segmentation must be employed, both of which could significantly affect 

the performance of the system. In order to provide security that UDP lacks, CoAP 

implements Datagram Transport Layer Security (DTLS), which provides TCP-like 

privacy and integrity using handshakes and encryption [94]. 



50 

 

 

Figure 3.10: CoAP "Observe" model 

XMPP [95] is an XML-based real time communication standard widely used by 

instant messaging applications. Despite its wide popularity among internet applications, 

it is similar to HTTP and often overlooked by IoT developers due to its complexity. 

XMPP was especially designed for web browsers and is often referred to a as a 

heavyweight protocol [96], [97]. Nonetheless, the protocol offers a superior 

performance, and its set of open XML technologies can be further-enhanced by protocol 

extensions (XEP) which offer features such as discovery, presence, and group chats. 

The latter serves as to adapt the protocol to diverse environments, which makes it a 

strong candidate for messaging in IoT environments with more complex and capable 

devices. Technically speaking, the standard follows a client-to-server-to-server-to-

client architecture -where a message sent from one node is routed to its destination 

through a group of inter-communicating server- which is often regarded as a “logical” 

peer-to-peer architecture (Figure 3.11). On the other hand, using XEP the protocol can 

easily support a publish/subscribe architecture. This implies that it can support both of 

the communication types we define in an inquiry-based learning application. 

 

Figure 3.11: XMPP model 

MQTT [37], [93], [98], [99] is a low-power, low-memory messaging protocol 

that has gained popularity in WSNs, and lately in mobile-based instant messaging 



51 

 

applications [100]. It follows a data-centric approach, meaning that the messages a user 

receives are based not on their IP addresses, but on their characteristics and interests. 

The protocol originally implements a publish/subscribe architecture which enables easy 

one-to-many messaging from one publisher to multiple subscribers based on a “topic” 

tag. However, with some careful topic customization the protocol can implement a 

peer-to-peer architecture. The model for MQTT is shown in Figure 3.12. 

 

Figure 3.12: MQTT model 

The format for MQTT message is not specified and is completely up to the 

developer to defines, which can serve as a pro and a con; as it gives the developer the 

freedom to define the format based on other components in the system, but increases 

the amount of implementation time and effort. In the TCP/IP stack, MQTT functions 

on top of the TCP layer. However, one option that is rising in popularity, especially 

among open-source projects such as HiveMQ [101] and Paho [102], is to implement 

MQTT on top of WebSockets. The upside of this option is that it makes it more 

compatible with other communication protocols, and easily integrate-able with HTML5 

applications; as there are already libraries for MQTT over WebSocket. The downside 

of it, however, is that it sacrifices the low-weight benefit of the original implementation 

by causing more overhead. 

AMQP [103]–[106] is a messaging protocol for message oriented middleware 

(MOM) originally designed for financial applications. The protocol provides 

distributed enterprise messaging with features including opaque, immutable content 

with no size limitation, reliability, and security. These features contributed to the 

adoption of AMQP for business-critical communication in a wide range of enterprise 

applications. Each AMQP message consist of pre-defined headers similar to ones 

defined by HTTP, and a message payload. The payload is a byte array, meaning it can 

be used to transport any message format as long as it is serializable. Figure 3.13 shows 

AMQP messaging model. 



52 

 

 

Figure 3.13: AMQP model 

The choice of protocol often depends on factors such as data format, development 

language, security, and others. A technical comparison of the five protocols is presented 

in Table 3.5. 

Table 3.5: Summary of the four messaging protocols 

Protocol HTTP XMPP MQTT AMQP CoAP 

Native architecture Req/Res Pub/Sub, 

Req/Res 

Pub/Sub Pub/Sub Req/Res, Pub/Sub 

using Observer 

Message format HTTP,XML, 

JSON 

XML Not defined Not defined XML, JSON, CBOR 

Transport TCP TCP TCP TCP UDP 

Default payload limit 2MB for 

Apache, 

2MB for IIS, 

adjustable 

1MB for 

OpenFire, 

changeable 

256MB 131kB, but 

segmentation 

is supported 

for larger 

messages 

1280B for IPv4/IPv6, 

127B for 6LoWPAN,  

Header Size 8kB for Apache 

26kB for IIS 

3kB 2B 8B 4B 

Security TLS (HTTPS) TLS (optional) TLS/SSL 

(optional) 

TLS, SASL, 

(optional) 

DTLS 

(optional) 

Constrained device support No No MQTT-SN Yes Yes 

In order to run the applications on all defined types of nodes, manage the 

databases, and facilitate system integration into the IoT world, an internet application 

server is needed. We consider three alternatives: Apache Tomcat, Apache + PHP, and 

Node.js+Express. All three servers are open source and are highly popular among web 

server developers. One important difference between them is the implementation 

language.  Tomcat is Java-based, the second server uses PHP while the Node.js + 

express combination is JavaScript-based. A comparison between Node.js and Apache 

+ PHP was presented in [107], while [108] compares Node.js against Java-based web 

servers. A brief comparison is presented in Table 3.6. Based on implementation 

language as well as some other criteria, we choose Node.js [109] as the web server. 

Node.js is an event-driven, non-blocking I/O server built on Chrome’s V8 runtime 

engine. It was developed to solve the C10K problem, which refers to servers’ inability 

to support more than 10,000 concurrent customers, and is efficient and lightweight, 



53 

 

which makes it an ideal for running servers on mobile phones or microcomputers. The 

fact that is based on JavaScript provides the base for unifying the development language 

across the whole system [110], making it more convenient for developers. Along with 

Node.js, we are using Express [111], a web application framework which provides URL 

routing and the freedom of selecting the storage unit of choice, thus giving us freedom 

regarding the database. It supports HTTP protocols and may also work hand-in-hand 

with Socket.io. The only downside is that NodeJS web-based applications can crash 

with rapid traffic growth. NodeJS webservers can underperform in terms of serving 

static content like images and JS files, or when load-balancing between multiple 

servers. NGINX [112], an open-source high performance web-balancer and reverse 

proxy. NGINX is implemented based on a very similar architecture to NodeJS, and is 

thus easily integrated into a NodeJS application server environment. 

Table 3.6: Comparison between alternative web servers 

 Apache Tomcat IIS + ASP.NET Apache + PHP Node.js + Express + nginx 

Programming language Java .NET PHP JavaScript 

Architecture Thread-based Thread-based Thread-based Event-driven non-blocking 

I/O using thread pools 

Robustness High High High High 

Scalability High High Low High 

Embedded devices support Low No Low High 

3.3.4. Application layer. The application layer serves as an interface between 

the users and the system. It integrates information and provides users with applications 

to monitor and interact with the system. One key requirement in the architecture we 

propose is ubiquity, the environment must be accessible on smartphones and/or tablets 

the students and instructors already own and are used to operating [113]. The first 

question we encounter at this stage is whether the application should be a native 

application or a web browser-based application. However, considering that have 

already defined the ability to function as a standalone unit as a system requirement, we 

immediately disregard the web-browser option. The second question is how the 

application should be developed, and we are offered two options: native, or cross-

platform. Native applications are developed specifically for their respective platform, 

and while that enables them to take full advantage of the device hardware, once we 

introduce multiple platforms, the process of developing and maintaining an application 

for every platform becomes less efficient and more daunting [114]. Factors such as 

choosing the best SDK, framework stability, and guaranteeing the same user experience 



54 

 

across all native applications play a great role in the development process as they 

directly affect the cost of development, updates, and marketing [115]. A more feasible 

option is to develop a cross-platform application which can be deployed all smart 

devices, with no more than a small amount of tweaking. Cross-platform development 

tools like Cordova [116] enable developers to write the main application in HTML5, 

and then deploy it on a variety of  devices with the most popular ones being those 

manufactured by Apple, Samsung, LG, and HTC [117]. The downside, however, is that 

cross-platform applications cannot necessarily access all of the mobile’s devices, which 

is why heavily-hardware-dependent applications may opt for native applications 

instead. Nevertheless, in the context of our application, we find that cross-platform 

development offers great advantages, with little to no sacrifices. For reference, a 

thorough comparison of the two approaches have been presented in [115] (seen in Table 

3.7). 

Table 3.7: Comparison of native app development vs. cross-platform app 

development 

 Native Cross-Platform 

User experience quality Excellent Good 

App quality High Medium to low 

Potential User Limited to particular platforms users Covers users of all platforms 

Development cost High Medium to low 

Security Excellent Not as good 

Ease of updating Complex Medium to complex 

App extension Yes Yes 

 

3.4. System Implementation 

The final form of the system architecture and its components is shown in Figure 

3.14. The major focus is on the edge device because it is responsible for interacting 

with and server end users, while also complying with restricting power and computation 

constraints. The pods will be distributed around the physical learning environment, 

often in locations where powering the pods using wires is infeasible. Remaining options 

will be to either power it using a portable power source; battery packs, rechargeable 

power banks, or solar chargers. Designing the pod for low power requirements reduces 

the cost of the power source, as well as the frequency at which it must be recharged or 

replaced -in the case of power banks and battery packs. As for the second constraint, 

which is computation, we refer to Figure 3.7. Among the devices compared earlier and 

shown in the figure, RPi seems to provide the best tradeoff between capabilities –



55 

 

computation, operating system, sensor interfacing- and price. The edge devices takes 

in two types of networks, which we defined earlier as the edge network, and the core 

network. Edge network here refers to the student-to-pod communication, while the 

inner network refers to pod-to-pods communication, as stated in the Communication 

Layer section. In that sense, the Pod functions as the user’s gateway to the system, and 

is required to support the type of communication dominating each network. The 

majority of communication between a pod and a student consists of the student 

requesting services. Whether the student is posting a question or an attempt, and 

retrieving a question or sensors readings, the type of communication between the 

student and the pod is natively one-to-one, request-response based. This is why, at the 

edge network, we choose to conduct communication over HTTP. This is not true for 

the core network, however. Each single question or attempt posted to a pod generates 

traffic that needs to be delivered to numerous students, teachers, and other pods. 

Furthermore, students, teachers, and pods do not know when a new question or attempt 

has been posted, but the traffic is rather generated due to the event of a new question or 

attempt. While client-server architectures can be customized to fit this communication, 

it will be highly inefficient. One-to-many, event-oriented communication is more 

naturally implemented using publish/subscribe architectures, where one or more clients 

subscribes to receive updates from one or more resources, and are automatically 

updated with new events by the broker. Thus, MQTT, AMQP, XMPP, and observer-

based CoAP are better suited for the inner network. 

3.5. Summary 

This chapter presented the proposed system architecture which is believed to 

best meet the requirements. The sections first defined the system, then explored 

possible options for each element. Based on the comparisons in each section, a selection 

of technologies was chosen to perform all of the required roles. Because the Pod is 

responsible for connecting the system elements together, while also being limited by 

certain physical constraints, it will be the focus of the evaluation process. The most 

important among the Pods’ tasks is the communication, as it transforms the system from 

a simple assessment application to a global network connecting students, instructors, 

and assessments. It is also believed to be the element that affects the Pods’ performance 

the most, in terms of hardware resources, and user experience. 



56 

 

 

 

 

 

F
ig

u
re

 3
.1

4
: 

S
y

st
e
m

 d
ep

lo
y

m
en

t 
d
ia

g
ra

m
 



57 

 

Chapter 4.  Experimental Design 

 

In this chapter, we discuss the evaluation setup used to compare the four 

implementations. Before any experiments are conducted, evaluation components must 

be described. The first component is the evaluation criteria. A set of criteria is 

determined by examining literature on ubiquitous inquiry-based systems evaluations, 

as well as studies that evaluate the protocols in other applications. Next, an evaluation 

scenario is decided upon. The evaluation can either be conducted by running all of the 

scenarios explained in Chapter 3. , or by focusing on scenario(s) where the edge device 

performance has the widest impact. While the first option provides an overall evaluation 

for the protocol’s performance in the system, by focusing on the most demanding 

scenarios, it is possible to run more repetitions of the experiments and acquire 

performance statistics. The third component is the experimental data. Different IoT 

applications generate and circulate data in all sizes and formats. Thus, using data that 

best mimic the actual application data is fundamental in finding the protocol that best 

suits the specific type of application. Finally, input and output variables must be 

defined. Using appropriate tools to generate input variables and measure outputs is 

crucial to achieving an accurate, credible evaluation. While input variable are extracted 

from possible usage scenarios, output variables are based on evaluation criteria.  The 

number, type, and range of input variables that influence the evaluation are defined are 

designed to mimic realistic situations, but also exaggerated values that stress test the 

system. The four components are then combined with software and hardware tools to 

design the experiments. 

4.1. Evaluation Criteria 

Based on the use cases presented earlier, and the evaluation of IoT applications 

presented in [93], [118], [119], we define a set of criteria for which the architecture will 

be evaluated. The criteria we evaluate for are: performance, reliability, latency, 

scalability, power efficiency, throughput, ease of implementation, and security. The 

experimental setups provides a realistic indicator of how the system will perform in a 

real life situation, and how much the system can be stressed but still achieve acceptable 

performance. The two most important advantages of physical implementation is that it 

makes it possible to measure hardware and network metrics, and get a real sense of how 



58 

 

easy or difficult it is to implement the system using the technologies. Of the given 

criteria, the metrics calculated during the experiments are power/energy, performance 

in terms of CPU and memory utilization, and network latency and throughput. 

Table 4.1: General criteria of evaluation 

Criterion Definition Type 

Performance The system’s capability of performing the required task, measured in terms of CPU and 

memory utilization 

Quantitative 

Latency The time it takes a message to reach its destination Quantitative 

Throughput The number of data bits that can correctly be communicated within a period of time Quantitative 

Scalability The system’s ability to handle a growing number of users, data, and traffic Quantitative 

Power Power consumed by the device while using the system, especially important for embedded 

devices 

Quantitative 

 

4.2. Evaluation Scenario 

The evaluation was done using the first scenario called “Post a Question”, for 

multiple reasons. Since the purpose is to evaluate the four IoT protocols, the second 

and third are not necessary; as they depend on HTTP purely. The two scenarios that can 

be used are the first and last; which are Post a Question, and Post an Attempt. The two 

scenarios are technically similar in the sense that an HTTP request from the student 

client results in the pod publishing a message to other pods. However, realistic test data 

is available for the first scenario only. Furthermore, posting a question also requires 

more work on the pod’s behalf to generate and publish a notification message, in 

addition to the original question message. The evaluation can be divided to two 

experimental setups; based on the independent variables. In the first setup, we test the 

effect changing the number of students using the system at a particular moment, and 

the frequency at which each student posts a question, on the pod’s resource 

consumption. The second setup, on the other hand, assess the system’s end-to-end 

latency in response to imperfect network conditions. In order to acquire enough data to 

perform statistical analysis and draw generalized conclusions, each test case in each 

experiment was replicated 15 times. 

4.3. Experimental Data 

Two question banks are available for the evaluation stage, used to simulate the 

“Post a Question” scenario. The first was retrieved from the Electronic Document 



59 

 

Management System (EDMS) database. The set consisted of a total of 2890 questions 

from Math, English, General Knowledge, Islamic Studies, Social Studies, and Urdu 

courses. The original questions format was XML. Because the system was implemented 

in Javascript, CouchDB accepts JSON only, and all of the protocols are capable of 

communicating serialized JSON, the questions were converted into JSON objects. 

Table 4.2 shows the question size statistics. 

Table 4.2: EDMS question bank sample statistics 

EDMS Question Size Statistics (Bytes) 

Mean 1223.10 
Standard Error 51.61 

Median 486 
Mode 232 

Standard Deviation 2774.25 

Sample Variance 7696441.75 
Kurtosis 147.06 

Skewness 9.26 
Range 65749 

Minimum 124 
Maximum 65873 

Sum 3534745 
Count 2890 

 

 

Figure 4.1: Question size distribution - EDMS set 

The questions pool includes short answer, multiple choice, and true or false. The 

questions can also be either text-based, or include a serialized media object. Figure 4.2 

shows an example of a Science multiple choice question. In such questions, the correct 

answer is included in the body of the question, but will not be displayed on the student 

6000050000400003000020000100000

2000

1500

1000

500

0

Question Size (Bytes)

F
re

q
u

e
n

cy

10000000010000000004020503814342043
89

507

2159

Histogram of Question Size (Bytes) - EDMS Question Bank



60 

 

app and will instead be used to provide automatic feedback without the need for the 

teacher’s interference. This is possible for multiple choice and true-or-false types, but 

not short answer questions. 

 

Figure 4.2: EDMS multiple choice question 

The question bank was used to assess the four implementations from 

quantitative and qualitative aspects. All of the questions from the EDMS set were pre-

uploaded to a CouchDB server running on a PC. During the experiment, student client 

simulators request a random question from the database, then proceed to POST it to the 

edge device. The sizes of the question were well-supported by all protocols but CoAP. 

The maximum payload size supported by CoAP is 1280 Bytes. Since the payload 

includes not only the question, but also the student’s information, CoAP will not be 

able to send the majority of the available questions. However, for testing purposes, the 

experiments were designed so that if the random question combined with the student 

information exceeds the limit, it will be switched for a small question. The small 

question was defined as a constant variable in the student client simulator as additional 

time caused by re-requesting another question from the database. The values for each 

metric were chosen to range from real life situation values to mimic normal operation, 

all the way to exaggerated values that were aimed to stress test the system. 

4.4. Experiment I 

The objective of the first experiment is to assess the protocols in terms of resource usage 

including power consumption, CPU utilization, and RAM usage. The energy 

consumption becomes of crucial importance in the case of information nodes because 

not only will they be spread around outdoor locations, but they will also be constantly 

receiving and replying to requests and questions. Recharging them then becomes an 

issue as it requires the node to be taken down, and the more frequent the process is, the 

worse it is for the system performance. The most efficient solution to this issue will be 

to use solar batteries. In this case, measuring energy consumption is important for 

// question: 435  name: DaysAndNights_0604052100201104 

::DaysAndNights_0604052100201104::[html]<p>The occurrence of days 

and nights is caused by the _______.<br></p>{ 

 ~<p>Earth's spin around the Moon<br></p> 

 =<p>Earth's spin on its axis<br></p> 

 ~<p>Earth's spin around the Sun<br></p> 

 ~<p>Earth's spin around Mars<br></p>} 



61 

 

calculating the size of solar cell required to support the edge device’s needs. Current 

consumption of the edge device during its operation with every protocol was measured 

using YoctoAmp [120], an isolated USB ammeter. Besides power consumption, the 

two crucial performance metrics are CPU and memory utilization. These metrics can 

be measured using nmon [121], a system performance benchmark tool for Linux-based 

systems. Nmon provides measurements of CPU utilization, memory usage, disk I/O 

reads/writes, and other metrics that can be used to compare the protocols and determine 

the most efficient one in terms of resources. The independent variables are: the number 

of students posting questions to the pod, and the frequency at which each student posts 

questions (Table 4.3). The dependent variables are shown in Table 4.4 while the control 

variables are shown in Table 4.5. 

Table 4.3: Experiment I independent variables 

Independent variable Definition Min Step Max 

Question wait The waiting time between two 

consecutive question post actions 

1Q every 4min 2x Q every min 1Q every 1min 

Number of students Number of student client processes 1 2x 128 

Table 4.4: Experiment I dependent variables 

dependent variable Definition Unit 

Power consumption Power consumed calculated based on ammeter values Watt-hour 

CPU utilization CPU% consumed by the NodeJS app server during the experiment % 

Page faults The number of times at which the system fails to retrieve data from the RAM Page fault/s 

Table 4.5: Experiment I control variables 

Control variable Definition Value 

Channel bandwidth Maximum bitrate supported by the edge device NIC 18.8 Mbps 

Channel quality Channel conditions such as lag and throttle ideal 

Server load Number of other processes using server resources N/A 

Question bank Questions are chosen randomly from a defined pool of questions  Table 4.2 

During the experiment, each student client was simulated by a NodeJS process 

which pulls a random question from a questions repository stored in CouchDB, and 

then POSTs it via http to the Express server running on the Raspberry Pi. JXCore [122] 

was used to multithread student NodeJS processes, and simulate different situations by 



62 

 

controlling the number of threads and the wait time between posting. A block diagram 

showing major components of Experiment I is shown in Figure 4.3. 

 

Figure 4.3: Experimental setup I 

4.5. Experiment II 

The objective of the second experiment (Figure 4.4) is to assess the performance 

of each protocol under imperfect network conditions. The primary metric is latency. 

We define latency as the time, in ms, required for a packet published from one pod to 

reach other pods using each of the IoT communication protocols. One way to calculate 

it is using timestamps, where “sent” and “received” timestamps are added to each 

packet depending on the moment of time it leaves the pod, and the moment it reaches 

another pod, respectively. By subtracting the two values it is then possible to get an 

estimate of the time period through-which the packet was able to travel through the 

network. The second network estimate is throughput in terms of bits/s, which can easily 

be extracted using Wireshark [123]. Clumsy [124] was used to control the network 

conditions. In order to measure a baseline channel bandwidth, Clumsy was activated to 

filter the packets without explicitly adding lag, throttling, etc. The effective bandwidth 

was then measuring using iperf [125], which is a tool for measuring the maximum 

possible bandwidth on IP networks. Measuring the bandwidth using iperf revealed that 

the original bandwidth we being our experiments with is actually around 20 Mbps, 

compared to the original value without Clumsy which was around 94 Mbps. The 20 



63 

 

Mbps bandwidth, which is in fact closer to the edge device’s WiFi speed, and also the 

bandwidth for a 4G link. Since the tool does not offer a command line interface, 

automating different values was made possible using TestComplete [126], a GUI 

testing and automation tool. Every run consisted of 16 identical clients publishing a 

question every minute each, over the period of 10 minutes, and each run was repeated 

10 times. The runs provided a total of 1600 questions with individual latency values 

that are used to identify the behavior of each protocol in each case. Independent 

variables are shown in Table 4.6, while the dependent variables are shown in Table 4.7, 

and control variables in Table 4.8. 

Table 4.6: Experimental Setup II independent variables 

Independent variable Definition Min Step Max 

Lag Hold the packets for a short period of time to emulate 

network lagging 

100ms 100ms 1000ms 

Throttle Block traffic for a given time frame, then send Them in 

a single batch 

5% 5 90% 

Duplicate Send cloned packets right after to the original one 5% 5 50% 

Out of Order Re-arrange the order of packets 5% 5 50% 

Table 4.7: Experimental Setup II dependent variables 

Dependent variable Definition Unit 

Latency Time needed for a question to travel from the publishing pod to other pods in the system ms 

Throughput Number of bits transferred per second bps 

Table 4.8: Experimental Setup II control variables 

Control variable Definition Value 

Ethernet channel bandwidth Maximum bitrate achievable by the Ethernet channel 94.3 Mbps 

Clumsy Ethernet channel bandwidth Maximum bitrate achievable by the Ethernet channel after Clumsy 

filtering has been activated, but no metric were explicitly set 

20.9 Mbps 

Server load Number of other processes using server resources N/A 

Message size Questions are chosen randomly from a defined pool of questions Table 4.2 

Publishing frequency Number of questions posted by a given student client in a minute 1Q/min 

Number of students Number of student client processes connected at any given moment 

in time 

16 students 

 



64 

 

 

Figure 4.4: Experimental setup II 

 

4.6. Evaluation Hardware 

The edge device used to build the pod in the experimental setup was a Raspberry Pi 3.0. 

However, we can assume that its behavior will apply to any edge device of the same 

specifications. The specifications for the RPi 3.0 is shown in Table 4.9. 

Table 4.9: Edge device specifications 

RPi 3.0 [66] 

CPU 4× ARM Cortex-A53 at 1.2GHz 

RAM 1 GB LPDDR2-900 SDRAM 

Ethernet speed 94.3 Mbps 

WiFi speed 20.9 Mbps 

Storage 16GB microSD 

OS Raspbian Jessie with PIXEL 

 

  



65 

 

Chapter 5.  Results and Discussion 

 

This chapter consists of a discussion of quantitative results obtained from the 

two experimental setups discussed earlier. The first section discusses resource-related 

metrics including power consumption and CPU utilization. The second section then 

discusses user experience-related metrics including communication latency and 

throughput. 

5.1. Experiment I 

This section presents an analysis of the results acquired using experimental 

setup I, which focused on the resources consumed by each protocol. The resources 

include power consumption, CPU utilization, active memory, and network reads/writes. 

5.1.1. Power consumption.  The power consumed over 24 hours for each 

protocol is shown in Figure 5.1, and the values shown in the figure represent the average 

taken over all of the replications. Power consumption is expressed in Watt-hour (Wh). 

The power consumed over a certain period of time, is calculated as  

𝑃 = 𝑉(𝑉). 𝐼(𝐴). 𝑡(ℎ)                                                       (1) 

For example, if the average device draws an average current of 300mA, given the 

average voltage is 5V, the power consumption for 24 hours will be 36Wh. The ammeter 

used in the setup provides current readings at the rate of value/second. Therefore, power 

consumption can be used by replacing the I.t value with the integration of the current 

value over the time period. In such case, equation                                                      (1) 

can also be expressed as: 

𝑃𝑑𝑎𝑦(𝑊ℎ) = 𝑉. ∑ I𝑖(𝐴)

86,400

𝑖=0
                                        (2) 

Finally, to calculate solar panel size in watts [127], simply divide the power 

consumption in a day by the number of hours in a day that the peak sun hours; i.e. the 

number of hours in a day that the panel will be exposed to peak sunshine. 

𝑃𝑎𝑛𝑒𝑙 𝑆𝑖𝑧𝑒(𝑊) =  
𝑃𝑑𝑎𝑦(𝑊ℎ)

𝑡𝑝𝑒𝑎𝑘(ℎ)
                                           (3) 



66 

 

For example, the worst case scenario in terms of sun peak hours in the United Arab 

Emirates is 4.5 hours; during January. Given the previous power consumption value of 

36Wh a day, the panel size required will be 8W. The results for the power consumption 

are shown in Figure 5.1. As expected, more power is consumed as the number of 

students and the frequency of posting questions increases. This is due to the increasing 

stress on the Pod to process, store, and publish more questions in a given minute. The 

baseline power consumption for the edge device in idle mode was measured to be 40.21 

Wh. Among the four protocols, MQTT consumes the least amount of power, with the 

maximum value at the 128-1 point (128 students publishing 1 question per minute) 

amounting to 42.6 Wh. On the other hand, the highest amount of power consumed is 

around 43.8 Wh, by XMPP and CoAP. This is consistent with the behavior exhibited 

in [128] AMQP demonstrate a power consumption behavior of 42.2 Wh at the 128-1 

point. Figure 5.2, on the other hand, shows the run with the maximum power 

consumption for each scenario. The maximum values are used to calculate the size of 

solar panel required to support even the worst-case scenario. The results from the 

maximum value runs coincide with the previous for all protocols except for CoAP. Data 

shows that CoAP experience a huge jump in power consumption in one of the 128-1 

point runs. There are two likely causes for this behavior. The first possibility is that it 

could be the results of a large number of the 128 test clients posting large questions that 

exceed the payload limit. Another possible cause, however, is an application restart. 

The CoAP library for NodeJS is prone to crashing in severe conditions; in which case 

the edge device will automatically restart the NodeJS application, which may cause a 

peak in current draw. In order to put these values into real-life perspective, one can 

calculate the size of solar panel required to power each, in order to recognize if the 

Watt-hour value difference amounts to a physical cost difference. As mentioned in 

section 4.4, the worst-case scenario for peak hours in a day in the UAE is 4.5 hours, 

which happens during January. Panel size based on peak hours is then calculated in 

Table 5.1. 

Table 5.1: Solar panel and battery sizing 

 Baseline AMQP CoAP MQTT XMPP 

Max power consumption (Wh) 40.22 43.56 44.40 42.71 44.13 

Solar panel size (W) 8.94 9.68 9.87 9.49 9.81 

Market price (solar panel + power bank [129]) ($) $10 $10 $10 $10 $10 



67 

 

 

 

Figure 5.1: Power consumed by each protocol in Watt-hour 

 

Figure 5.2: Maximum power consumed by each protocol in Watt-hour 

Based on raw numbers, MQTT, on average, seems to be the most efficient 

protocol in terms of power consumption overall, while CoAP is more efficient at lower 



68 

 

values. However, this changes once numbers are put into a real-world context. While 

MQTT consumes an average of around 1Wh less than the other protocols, the solar 

panel size required to power each of the protocols is the same. Therefore, in a real-life 

setting, the cost of powering the edge device is the same, and the difference in power 

consumption is not a strong enough justification. 

5.1.2. CPU utilization. The average and maximum percentages of CPU 

consumed by user process, i.e. NodeJS application server running on the Pod, is shown 

in Figure 5.3 and Figure 5.4, respectively. The reason we are interested in both the 

average and the maximum value is because while the maximum CPU% utilization 

might cause an issue in busy environments, the difference in average value takes into 

account the CPU% required to keep the edge device’s connection to the communication 

server alive at all times, even when idle. As expected, more processing power is 

required when increasing the number of students and the frequency of posting 

questions.  

 

Figure 5.3: Average CPU utilization (%) 



69 

 

 

Figure 5.4: Maximum CPU utilization 

Among the four protocols, CoAP consumes the least percentage of CPU on 

average. This is most likely due to the way CoAP is implemented, since it was designed 

especially to be used on constrained devices, and so requires less resources. The same 

behavior was found in [130]. It is also important here to remember than CoAP 

implements an observer-oriented architecture, while the other protocols are based on 

publish-subscribe. While both architectures can be used interchangeably to perform the 

messaging tasks required in this type of systems, the difference between them appears 

in terms of resources. Publish-subscribe protocols, like the three considered here, often 

implement a connection keep-alive mechanism by default, where even in idle state the 

client sends small packets to the server to ensure it is still connected. This is an 

important feature in environments where clients may suddenly disconnect, or simply 

no longer need updates on a certain topic. This allows the server to only publish packets 

to connected clients, and avoid flooding the network with unnecessary traffic. In CoAP, 

on the other hand, the implementation focuses on minimizing the load on the clients 

rather than the server; and so clients are able to save more resources by excluding the 

keep-alive mechanism, for the cost of the server possibly wasting resources on send 

messages to disconnected clients. This is acceptable because while the client has limited 

resources, the server station is usually not. The maximum value expresses the worst 



70 

 

case scenario. While the CPU% is not what is consumed by the application at all times, 

it is important to consider it as a CPU overload could cause the edge device to crash, 

and disrupt the system. The highest values are exhibited by XMPP, which is mostly 

likely due to the data format, as opposed to other protocols which simply send the 

question message as is, the question in XMPP is embedded into a stanza. This requires 

more processing, and is most likely the reason behind the high CPU% utilization. 

MQTT and AMQP demonstrate a similar CPU utilization behavior, while CoAP peaks 

at less than 20%; which is around the third of XMPP’s maximum utilization of around 

60%. To further clarify, Figure 5.5 shows the CPU% utilization over a 5-min-long run 

for each protocol; with 128 student clients posting a question per minute, each. 

 

Figure 5.5: CPU% over 5 minutes for each protocol. students=128, 

frequency=1Q/min 

Translated into a real-world context, given the peak CPU utilization at any point 

is around 60% of the available processing power, the edge device can be replaced with 

a cheaper Linux based system with lower processing power. Even more so if we 

consider CoAP only uses 20% of available CPU power, at max. However, the reduction 

in processing power should not go below the peak CPU utilization for a given protocol, 

if one is to avoid saturating the CPU and causing a drop in system performance. While 

this at first may indicate that CoAP is outperforming the other protocols in terms of 



71 

 

resource saving, it is vital to remember that larger questions in CoAP are replaced with 

maximum allowable payload size, due to its payload limitations. In other terms, for a 

portion of the simulation time, CoAP is not doing as much work as the other protocols.  

5.1.3. Page faults. There are numerous memory-related metrics that can be 

used to assess the usage of a Linux system. The aim from this experiment is to assess 

the performance of the RAM under each communication protocol, using page faults.  

In Linux systems, page faults happen when the system attempts to retrieve data from 

the RAM, is unable to find, which then forces it to look for the data in the disk. This 

takes place when the RAM is full and the system needs to accommodate new data, at 

which point older entries are moved to disk. IoT communication protocols are meant to 

support constrained device, which often have limited memory storage; especially in 

terms of RAM. It is therefore important that we investigate the performance of RAM 

and number of page faults as the system is increasingly being stressed out, under each 

protocol. The number of page faults in response to the number of student clients and 

question posting frequency is shown in Figure 5.6. CoAP exhibits the lowest number 

of page faults per second compared to the other three protocols, which translates into 

the best performance among the four. 

There are two possible factors that may attributed to this behavior. The first is that 

CoAP is designed to occupy as little RAM as possible, in order to maintain its light 

weight. Naturally, the smaller portion occupied in RAM, the lower the number of pages 

faults, as explained earlier. The other reason could be related to the size of questions 

carried by CoAP, compared to the questions carried by other protocols. The latter will 

be explained in the next chapter. Among the other three protocols, MQTT –once again- 

outperforms XMPP and AMQP with an average page fault rate of around 250 at the 

worst point (128-1). AMQP is the third best, with an average of around 260 at 128-1, 

while XMPP exceeds it to score 270 page faults per second. Similarly to the CPU% 

discussion, a lower page faults implies less stress on the RAM, which in some cases 

allows for giving up the edge device for a smaller, less powerful edge device. 



72 

 

 

Figure 5.6: mean page faults per second 

5.1.4. Summary. The results from the three resource-related experiments 

suggest that the protocols performance quality is in the following order: CoAP is best, 

followed by MQTT, then AMQP, and lastly XMPP. Based on numbers alone, CoAP 

may seem like the best option out of the three. However, CoAP suffers from a major 

functionality disadvantage, which may also be partially responsible for the performance 

difference between it and MQTT. CoAP has a payload size limit that prevents it from 

supporting the full extent of typical question sets. This is a vital factor to keep in mind 

when opting out for CoAP as means to employ a smaller edge device, as the cost occurs 

as usage limitation. In this case, MQTT and AMQP are quite valid alternatives, as they 

can function in a real setting, while giving leeway in terms of edge device capabilities; 

compared to XMPP. 

Table 5.2 Summary of Experiment I results 

 AMQP CoAP MQTT XMPP 

Power consumption medium medium low High 

CPU% medium low medium High 

Faults/second high low high high 



73 

 

5.2. Experiment II 

This section presents an analysis of the relative performance of each protocol 

under imperfect network conditions. The performances will be assessed based on two 

variables which are the change in time required for a message to travel from a publisher 

to a subscriber under imperfect network conditions, and the network throughput in bits 

per second (bps). 

5.2.1. Throughput. The throughput is defined as the number of bits that each 

protocol can carry, per second. Comparing pure UDP with pure TCP, UDP is 

theoretically usually faster as it does not go through reliability steps such as handshakes 

and packet acknowledgements. While TCP has to ensure the destination node is online, 

has successfully received the previous packets, and is capable of receiving more. On 

the other hand, UDP lacks the congestion control features that TCP has. While TCP 

uses buffers and attempts to send packets in the most efficient way, UDP simply pumps 

streams of data, which can possibly cause congestions and decrease the throughput of 

the link, as well as cause packet loss. While AMQP, MQTT, and XMPP follow the TCP 

specifications for the most part, CoAP is UDP-based but implements TCP-like features, 

which are expected to affect its performance. For this experiment, each protocol was 

allowed to send messages over a short period of time, over a relatively ideal network.  

It should be noted that Clumsy was actively filtering, and so the channel bandwidth was 

around 20 Mbps. The mean throughput and standard deviation for each protocol are 

shown in Table 5.3, while a visual representation is shown in Figure 5.7. The measured 

throughput values show that the highest throughput belongs to XMPP, at around 3.8  

kbps. AMQP comes second with a little under 3.8 kbps, while MQTT is slightly slower 

at 3.4 kbps. The most interesting part, however, is CoAP. While the protocol is built on 

UDP, the results indicated that the throughput is much lower than the three other 

protocols, not exceeding 1.4 kbps at best. This is most likely the result of the additional 

TCP-like features on a UDP protocol. The same behavior was noticed in [131]. 

However, in this experiment, a third factor might be at play. CoAP was designed for 

constrained devices, and its size limitations compared to the typical sizes of questions 

causes it to be transporting at maximum, or close to maximum payload for a long period 

of time. The other protocols, on the other hand, are well-below their payload limit size. 

XMPP, for example, is most ideal for 8 kb data, which is way above the maximum size 

for questions. The throughput was also measured during the other experiments. The 



74 

 

results for the throughput values at different network disturvance conditions can be 

found in Appendix C. 

Table 5.3: Throughput mean and standard deviation values for each protocol 

 Mean (bps) Stdv. (bps) Max (bps) Min (bps) 

AMQP 3781.504 713.8728 5465.393 2682.032 

CoAP 1386.872 86.33655 1532.701 1221.923 

MQTT 3436.573 719.4113 5133.64 2348.204 

XMPP 3808.966 499.0668 4550.941 2975.024 

 

 

Figure 5.7: Network throughput for the four protocols 

5.2.2. Latency response to duplicates. This set of experiments investigates the 

effect of duplicated packets arriving at the pod on the user experience. Duplicates often 

occur in noisy networks where congestions cause packets to either arrive late, not be 

properly acknowledged, or be completely dropped. In TCP protocols like MQTT, 

AMQP, and XMPP, either the source host or an intermediate node retransmits packets 

that are assumed to have been lost until an acknowledgement is received; as means of 

ensuring reliability. This, however, can cause several duplicates of the same packet to 

arrive at the receiving host. Sequence numbers are the most common technique used to 

ensure the host is able to distinguish duplicates from new data. Depending on the size 

of duplicate traffic however, this can increase the load on the receiving host. UDP 

protocols do not natively support reliable communication, and so while the sending host 

will not intentionally duplicate packets, duplicates generated by intermediate nodes will 

0

1000

2000

3000

4000

5000

6000

Mean (bps) Stdv. (bps) Max (bps) Min (bps)

Th
ro

u
gh

p
u

t (
b

p
s)

Network Throughput

AMQP CoAP MQTT XMPP



75 

 

not be detected by the receiving host, and will therefore be processed as new data. 

Unlike typical UDP, however, CoAP implements a lightweight, TCP-like layer that 

handles packet sequencing and retransmission in order to add reliability to the system. 

The aim of this section is to compare the latency cost of high duplicates percentage 

across the four protocols. The mean latency values and standard deviation are shown in 

Figure 5.8 and Figure 5.9. The latency response for all protocols remains relatively low, 

even at 50% duplicates. Among the four, however, MQTT experiences the lowest 

latency, averaging at around third of XMPP latency, which is the highest. CoAP and 

AMQP, experience similar values. Looking at the standard deviation, CoAP, MQTT, 

and AMQP demonstrate a consistent behavior, while XMPP experiences high 

fluctuation. Overall, all four protocols demonstrate a constant latency behavior that is 

unaffected by duplicates percentage. The duplicates could have influenced the latency 

in two ways: by over-writing the “arrived” time causing the latency difference to 

increase, or by causing a congestion as more duplicate traffic travels through the 

channels. Since all protocols discard duplicates at the transport layer, and the bandwidth 

is evidently large enough to drown out the effect of excess traffic, the latency was 

unaffected. 

 

Figure 5.8: Mean latency under duplicated packets 



76 

 

 

Figure 5.9: Standard deviation of latency values under duplicated packets 

5.2.3. Latency response to lag. The goal was to examine the effect of 

increasing network lag on the increase in latency demonstrated by each protocol . In 

wireless networks, lag can occur due to various reasons such as bad weather conditions, 

physical obstacles, and badly-configured or legacy intermediate network devices. The 

values of network lag were varied from 100 ms all the way to 1000 ms, which is a 

relatively high value for networks. However, as noted in the previous chapter, the 

filtering process done by Clumsy adds lag to the network even when no explicit values 

have been entered. Therefore, the average effective bandwidth for each lag value 

produced by clumsy is shown in Table 5.4. 

Table 5.4 Effective bandwidth after adding network lag via Clumsy 

Lag 100 200 300 400 500 600 700 800 900 1000 

Effective bandwidth 

(Kbits/s) 

2,420 1,930 1,280 903 814 550 446 348 281 225 

Figure 5.11 and Figure 5.11 shows the means and standard deviations of latency values 

at each network lag value. As expected, the latency increases with the increase in 

network lag. In the case of CoAP, this increase is perfectly linear with the latency 

amounting to double the network lag value. The latency is expected to be double 

because Clumsy adds the defined lag value to the link in both directions (client to 

broker, and broker to client), and so a network lag of 100 ms on each direction results 

of a latency of 200 ms; implying that no extra lag is introduced by the protocols itself. 

This, however, is not true for the other protocols. Two other distinct behaviors show in 



77 

 

the remaining protocols. XMPP starts with a higher latency, at around 1000 ms. 

However, it is less affected by the change in lag, and does not exceed 2000 ms, which 

is the same latency experienced by CoAP at the maximum lag value. AMQP and 

MQTT, on the other hand, start off with a small latency of around 100 ms latency at 

100 lag. As the lag value increases, additional latency is added to the system until it 

reaches 3000 ms of latency at 1000 lag. In other words, both AMQP and MQTT 

experience latency equal to 1.5 times the added lag value in each direction. 

 

Figure 5.10: Mean latency (ms) demonstrated by each of the four pub/sub protocols 

vs. network lag (ms). 

 

Figure 5.11: The standard deviation of the latency values vs. network lag (ms) 

 5.2.4. Latency response to out of order. This set of experiments investigates 

the performance of the protocols in networks where the packets may arrive out of order. 

This can occur in networks where different packet segments take multiple paths that 

differ in speed, resulting in some segments arriving at their destination before others. 



78 

 

This can also occur due to badly configured intermediate network devices, such as 

routers and access points that do not forward packets in a First-In/First-Out order [132], 

[133]. In the TCP/IP network stack, messages that arrive out of order cannot be 

delivered to the application layer until they have either been reassembled or 

retransmitted by at the TCP layer; using sequence numbers. This applies to MQTT, 

AMQP, and XMPP. UDP, on the other hand, does support sequence numbers, and out 

of order packets are therefore dropped. In order to avoid dropping packets, CoAP 

implements a lightweight reliability layer which handles retransmission [90]. By 

increasing the percentage of packets arriving out of order, the aim is to compare the 

cost of reassembling the packets observed by each protocol, in terms of added latency. 

The mean and standard deviation values are shown in Figure 5.12 and Figure 5.13. In 

terms of handling packets arriving out of order, MQTT and CoAP are able to keep the 

latency at a lower value compared to AMQP and XMPP. However, while MQTT, 

XMPP, and CoAP demonstrate a constant latency value regardless of the percentage of 

packets arriving out of order, the latency in AMQP shows a slight dependence on the 

percentage. This implies that among the four protocols, AMQP is the lease efficient in 

reassembling out of order packets, at it adds latency to the system. 

 

Figure 5.12: Mean latency (ms) vs. out of order % 



79 

 

 

Figure 5.13: Standard deviation of latency (ms) vs. out of order % 

5.2.5. Latency response to throttle. Changing the throttling percentage mimics 

a network bottleneck, where packets are held at a certain point for a period of time 

before being released, causing them to arrive in bulks. This can happen due to poorly-

configured or ill-suited network devices. This can also happen if the pod goes offline 

for a period of time; as once it is back on, all of the questions that were published during 

the off period will be sent to the pod in bulks. The way throttling is being simulation 

packets in clumsy is by holding the packets for a certain period of time, and then 

releasing them at once. Not all packets are held back however. The percentage indicates 

the chance of each packet being throttled or not. If the packet is throttled, it is held back 

for 30 ms by default. The higher the chance percentage, the more latency we expect to 

see as the simulated bottleneck becomes tighter. The results are show in Figure 5.14 

and Figure 5.15. All of the four protocols demonstrate a similar behavior in terms of 

latency increase. While messages experienced higher end-to-end latency as the 

throttling chance increases, the rate at which the latency increase is relatively small. 

However, once the system is stressed to a throttling percentage of 90%, while MQTT, 

AMQP, and XMPP remain consistent, CoAP latency values shoot up to an average of 

2 seconds, compared to less than 150 ms for the other three. The same jump is exhibited 

in terms of standard deviation; meaning latency values are no longer predictable. As for 

the other protocols, MQTT is the most consistence. Even though it starts off with a 

latency that is 10 ms higher than AMQP and XMPP, the slope of the mean values is flat 

compared to the other protocols, and the standard deviation is almost fixed throughout 

different throttling chance percentages; i.e. the latency is highly predictable. 



80 

 

 

Figure 5.14: Mean latency response for throttling % 

 

Figure 5.15: Standard deviation of latency response for throttling % 

5.2.6. Summary. Table 5.5 shows the worst latency for each protocol, in 

response to each network issue. When comparing the protocols’ performance under 

imperfect network conditions, CoAP demonstrated the best performance in terms of 

end-to-end latency. This is most likely due to UDP being the underlying transport layer, 

as it eliminates most mechanisms usually employed in TCP to ensure reliability such 

as handshakes and connection keep-alive. Instead, CoAP implements a minimal 

retransmission layer that can handle duplicated and out-of-order packets. The second 

best-performing protocol is MQTT, as it often demonstrated lower latency values than 

the other two; as low as CoAP in case of out of order packets. However, it is crucial to 

point out a major disadvantage of CoAP which in this case may have played a part in it 

out-performing the other protocols. The first is the very low payload size limits. While 

it was sufficient to carry a question of an average size or less, a big chunk of the 



81 

 

available questions were replaced with smaller packets, which may have contributed to 

its high performance. Taking this into consideration, we can conclude that MQTT is in 

fact the best performing out of the four protocols. More details about the latency 

distributions are available in 0 and 8. 

Table 5.5: Latency (ms) at the worst value of each network issue, per protocol 

 Duplicates (50%) Lag (1000ms) Out of Order (50%) Throttle (90%) 

AMQP 19.76 2836.76 35.41 125.49 

CoAP 22.11 2047.96 23.17 2135.20 

MQTT 11.90 2805.22 22.31 105.27 

XMPP 23.34 2193.44 39.78 132.41 

When put in real-life situation perspective, however, the difference in 

performance is not of huge significant. While there is often a clear difference between 

the protocols, the latency values in response for the variable is in the range of tens of 

milliseconds, with the exception of lag. In a real life setting when students are posting 

questions or attempts, a latency of a litter under 3 seconds for 64 students publishing a 

question every minute can pass as acceptable latency. 

5.3. Chapter Summary 

This chapter investigates the effect of different scenarios and environment 

conditions on the protocols’ performance. The first section investigates the difference 

then number of students using a pod at the same time, and the frequency at which they 

post questions, on the resource consumption of the Raspberry Pi when paired with each 

protocol. The experiments focused mainly on the power consumption, CPU utilization, 

and page fault rates. While the power consumption is required to calculate the size of 

solar panel needed to power the system, low CPU and memory utilization can that and 

edge device with less processing specifications can function as well as the edge device. 

The second section investigated the effect of network abnormalities such as high lag, 

throttling, packet duplicates, and out of order packets. The metric used to assess the 

performance was end-to-end delay, as it can directly affect the user experience. CoAP 

performed consistently better than three protocols, sometimes followed very closely by 

MQTT. This is most likely due to several factors, including the implementation being 

focused on constrained device support, UDP being the underlying transport layer, and 

the size limitation put on the question data that can be sent through CoAP specifically. 

Furthermore, the previous section focused on the technical implementation of each, 



82 

 

although it touched upon qualitative aspects such as size limitation compared to real 

questions, and question queuing. This is not enough to assess how well the protocols 

will work for the particular defined class of systems. In order to relate the discussion to 

the specific context, the next chapter investigates issues that are more specific to the 

defined class of applications. 

  



83 

 

Chapter 6.  Qualitative Evaluation 

 

This chapter presents a qualitative evaluation of the four pub/sub protocols 

under study. The qualitative analysis assesses how suitable each protocol is for 

ubiquitous learning platforms based on their specifications and implementations. The 

first section considers the maximum payload size allowed in each protocol and 

compares them to the range of questions sizes available based on the two data sets 

discussed earlier. The second section, on the other hand, considers security needs for 

ubiquitous learning platforms, and examines security features offered by each protocol, 

as well as their costs. 

6.1. Payload Size and Overhead 

An important aspect to consider is the protocol’s ability to support typical 

question sizes without the need for external segmentation by the developer. The 

majority of the protocols studied here either offer a high payload size limit, like MQTT, 

or are designed so that the payload size limit is set by and depends on the server or 

broker. This, however, is not true for CoAP. As mentioned in Table 3.5, the maximum 

payload size offered by CoAP is 1280 Bytes at best. To put this limit into perspective, 

simply refer to Table 4.2. Out of the 2890 questions available, 505 questions were too 

large for COAP payload limit. This amounts to about 17.5% of the typical questions, 

which cannot be supported by the protocol. A possible solution is to segment the 

packets at the front end, i.e. modify the pod application server so that if the question is 

too large, the app will automatically divide it down into adequately-size segments 

before sending them in multiple frames. The receiving ends must also be modified in 

to enable them to track segments and reconstruct large packets, which requires the use 

of segment IDs and other segmentation mechanisms. On the other hand, the other 

protocols, MQTT, AMQP, XMPP, and even HTTP at the edge side, do not face a size 

issue as the size limits, or lack of, are capable of supporting the maximum question 

sizes available. 

The other size-related metric is overhead. Fixed overhead size dictates the 

percentage of the packet being transported that is irrelevant to the actual contents of the 

message. In constrained environments, overhead should be minimized as much as 

possible in order to save bandwidth and increase the efficiency of communication. This 



84 

 

is why most IoT protocols aim to minimize overhead by including only the required 

information for the message to be delivered to its correct destination. In MQTT and 

AMQP, for example, information typically found in a classic communication protocol 

such as Content Type are spared by not specifying a message type at all, leaving the 

responsibility of decoding and understanding messages to the client side. In order to 

observe the actual difference the header size makes, the same message were published 

using each of the four protocols. The messages including the same questions, question 

IDs, and timestamps, and varied only in terms of extra information required by each 

protocol. The questions were chosen of sizes that relate to the mean, median, and first 

and second quartiles of each question set, as to represent the majority of the questions. 

The published messages from each protocol were captured through WireShark, to 

compare the length on wire, i.e. size of the frame at the datalink layer, with the original 

question size. The additional bytes added by each protocol are then divided over the 

total frame length in order to find the overhead percentage. The results for overhead 

experienced by questions at the mean, median, first quartile, and third quartile are 

shown in Table 6.1. 

Table 6.1: Overhead % as measured by message size on wire 

Protocol Mean 
%Overhead 

for Mean 
Q1 

%Overhead 

for Q1 
Median 

%Overhead 

for Median 
Q3 

%Overhead 

for Q3 

Original message (Bytes) 1221  296  486  1005  

MQTT (Bytes) 1294 5.64% 369 19.78% 559 13.06% 1078 6.77% 

CoAP (Bytes) 1301 6.15% 376 21.28% 566 14.13% 1085 7.37% 

AMQP (Bytes) 1340 8.88% 415 28.67% 605 19.67% 1123 10.51% 

XMPP (Bytes) 1442 15.33% 544 45.59% 730 33.42% 1233 18.49% 

 

6.2. Security 

Security is an issue rarely discussed in ubiquitous learning systems. This is most 

likely due to researchers often dedicating more efforts into the development and 

deployment of these systems, rather than securing them [134], which is common in 

novelty applications. IoT security in context ubiquitous learning applications focuses 

on two concepts: user authentication and authorization, and data integrity and 

confidentiality [135]. Authentication is concerned with verifying the identities of users. 

Once the user’s identity has been verified, they can be given authorization to access 

various resources and service in the system based on their identities. This is usually 



85 

 

done using authentication techniques such as passwords, fingerprints, voice detection, 

and others. Integrity, on the other hand, is concerned with assuring that messages travel 

from end to end arrive at their destination un-tampered. Different encrypted techniques 

can be used to protect network traffic and prevent tampering. Encryption is also used 

to provide confidentiality; i.e. protecting the contents of a message from being accessed 

by an unauthorized user. 

In relation to ubiquitous learning systems, network security plays a great part in 

maintaining a fair assessment and grading system [136]. Students earn grades by 

participating in posing and attempting assessments. It is therefore critical that students’ 

identities are verified before they are able to participate and earn grades, and 

contributions such as questions and attempts. Equally critical is securing data flowing 

through the system such as feedback and results and protecting them from unauthorized 

access and tampering. Default and optional security features in each protocol are shown 

in Table 6.2. 

Table 6.2: Optional security features of the various protocols 

Protocol Optional security feature Purpose Comments 

AMQP TLS[137] Data security and authentication may be an issue with low resource devices 

SASL[138] 

X509-certification[139] 

Data security and authentication 

Authentication 

may be an issue with low resource devices 

CoAP DTLS[140] Data security and authentication  

IPSec[141] Data security and authentication  

CoAP security options[142] Data security and authentication  

MQTT TLS Data security and authentication may be an issue with low resource devices 

TLS-PSK[143] Data security and authentication not widely supported 

X509-certification Authentication only available for MQTT over WebSockets 

XMPP TLS Data security and authentication may be an issue with low resource devices 

SASL Data security and authentication may be an issue with low resource devices 

 

The default option for all protocols is to not use a security layer, although all 

offer optional layers. Transport Layer Security (TLS) is a common security layer among 

all protocols, including CoAP, which supports a lighter version defined as Datagram 

Transport Layer Security. In MQTT, however, TLS is found to add an overhead. This 

is true because unlike AMQP and XMPP, MQTT does not natively integrate TLS into 

its original implementation. It is important to note, however, that MQTT is also 

specifically designed for constrained devices, and so the relative significance of the 



86 

 

overhead depends on the type of edge device. In other words, TLS in MQTT is costly 

in terms of computation and overhead for constrained devices where the number of 

bytes processed makes a huge difference. In non-constrained devices, however, TLS 

causes almost the same overhead to MQTT as it does to AMQP and XMPP. MQTT 

also supports Pre-Shared Key over TLS encryption, which is much lighter that TLS, 

but not as common. MQTT also supports server certificates, which help clients 

authenticate the identity of the broker in order to avoid server spoofing. While AMQP 

and XMPP do not support the latter two technologies, they do support Simple 

Authentication and Security Layer as an alternative to TLS. As for CoAP, supported 

third-party security layers are DTLS and IPSec. In order to decrease implementation 

and communication overhead, however, the protocol supports security options at the 

CoAP-layers that provide the same authentication and data security options as DTLS 

and IPSec, at a lower resource cost. 

6.3. Question Queuing 

The issue of question queuing is important in two situations: when a new pod is 

added to the system, and when a pod is cut off the network for a certain period of time. 

The introduction of a new pod to the system should be as seamless as possible in the 

aspect that previously-posted questions that will apply to a pod in that location and 

context should immediately be delivered to it. Pods can also go offline either because 

of technical issues, or because were to be moved to another location/context. Once the 

pod is reconnected, it should receive all of the previous contributions as well. As 

publish/subscribe protocols, AMQP, MQTT and XMPP support message queuing at 

the server/broker side, which means that republishing missed questions happens by 

default. With CoAP however, this is not true. The observe pattern in CoAP, while fully-

functioning for the most part, is still at draft stage, therefore does not implement all of 

the basic functionalities of a publish/subscribe protocols, including queuing. This is one 

of the situations where the difference between an observe protocols and a pub/sub 

protocol is noticeable. Unlike pub/sub protocols, observe protocols are concerned with 

the current state of a certain resource, rather than the interactions of a certain client. 

This is why even in Ponte, only the last value published by a CoAP resource/client is 

preserved. Put into the context of our applications, this means that unless a custom 

server is developed for CoAP, only the last published question is delivered to a 

new/offline pod, which is simply impractical. 



87 

 

6.4. Topic Hierarchy 

Messages in Publish/Subscribe protocols are routed based on topics. In learning 

systems, a topic can represent a grade level, subject, learning outcome, area, school, or 

classroom. Students subscribe to one or more of each type of topic depending on their 

enrollment. It is possible to implement different types of topic independently, i.e. create 

a topic for each grade level, subject, etc. However, these topics usually belong into a 

hierarchy, similar to the one shown in Figure 6.1. 

 

Figure 6.1: Simple topic hierarchy 

The one presented is by no means a definite guide of how topic hierarchies 

should look like, but rather a simplified example. A hierarchy for a real-life, global-

scale hierarchy will consist of thousands of topics, and can differ in how the topics are 

connected. The main idea, however, is the same. The communication protocol should 

be able to implement the hierarchy seamlessly. For example, messages posted to Grade 

5 should be delivered to all students subscribed to all 5 th grade students, anywhere in 

the world. School 2 students may post a general question targeted at their schoolmates. 

Alternatively, students in Country 2 may want to target a question at all students 

studying Past Tense in the country. Table 6.3 demonstrates how the topic field will look 

like in each case. This level of flexibly will reduce the number of broker topics. For 

example, a messaged posted to students in Country 2 studying Past Tense does not need 



88 

 

to include addresses of all Past Tense topics under every classroom. This is usually 

referred to as the Wildcard topic [144], [145], where only certain fields of the topic 

address will be matched. Wildcards are possible, and supported in AMQP and MQTT 

because they offer multilayered topics, where topics can be arranged into a tree. In 

addition, AMQP offers the option of using regular expressions when matching topics. 

CoAP supports multilayered topics in the form of URIs, but not wildcards. XMPP, 

however, supports none, as each topic is represented as an independent node. 

Table 6.3: A comparison of topic assignments for different scenarios 

Protocol Grade 5 Classroom 1 students All students in Country 2 studying Past Tense 

AMQP Grade5.# Grade5.Country2.District1.School2.# Grade5.Country2.*.*.*.Past_Tense 

CoAP Grade5 Grade5/Country2/District1/ School2 Grade5/Country2/District1/Classroom1/English/Past_Tense 

Grade5/Country2/District2/Classroom3/English/Past_Tense 

Grade5/Country2/District2/Classroom4/English/Past_Tense 

Grade5/Country2/District3/Classroom7/English/Past_Tense 

… 

MQTT Grade5/# Grade5/Country2/District1/ School2/# Grade5/Country2/+/+/+/Past_Tense 

XMPP Grade5 Grade5_Country2_District1_ School2 Grade5_Country2_District1_Classroom1_English_Past_Tense 

Grade5_Country2_District2_Classroom3_English_Past_Tense 

Grade5_Country2_District2_Classroom4_English_Past_Tense 

Grade5_Country2_District3_Classroom7_English_Past_Tense 

… 

 

6.5. Chapter Summary 

This chapter investigated context-related qualities of each protocol. The 

comparison between the four protocols highlighted the shortcomings of CoAP and how 

they affect the user experience and the fairness of the system. The better choice, as 

concluded in this chapter is MQTT. MQTT offers a fixed, small overhead, supports 

very large questions, implements security features at a small overhead cost, and is 

natively well-suited for this type of applications. AMQP and XMPP, are not far behind 

MQTT, it simply comes down to overhead and topic hierarchy. A summary of the 

qualitative points is shown in Table 6.4. Each protocol is assigned a relative score out 

of 5, where 5/5 represents the best performance, while 0/5 represents the worst. 

Table 6.4: Summary of qualitative evaluation 

 Small Overhead Secure Reliability Flexible Topics 

AMQP 4/5 5/5 5/5 4/5 

CoAP 2/5 5/5 0/5 2/5 

MQTT 5/5 5/5 5/5 5/5 

XMPP 3/5 5/5 5/5 0/5 

 



89 

 

Chapter 7.  Conclusion, Limitations and Future Work 

 

 In this work, we proposed four implementations of an inquiry-based ubiquitous 

learning system, built using the same Internet of Things software and hardware 

technologies, combined with one of four IoT communication protocols. The protocols 

under study were XMPP, AMQP, MQTT, and CoAP. While XMPP, MQTT and AMQP 

employ TCP at the transport layer, CoAP uses UDP. A physical implementation was 

built for each option using a Raspberry Pi running NodeJS, CouchDB, and a client for 

each protocol. The implementations were evaluated for resources usage and network 

performance. Low CPU and RAM utilization implies that the edge device used for 

testing can be replaced with a cheaper device which is lower in memory and processing 

power, while maintaining the system’s functionality. Power consumption, on the other 

hand, affects the size of the power source required to support the system. Of the four 

protocols, CoAP utilized the least amount of CPU and memory. The second best was 

MQTT, followed by AMQP and XMPP. In power consumption, however, MQTT 

proved to perform better than the other three protocols. However, when view from a 

real implementation perspective, the difference between the power consumption across 

the four protocols was negligible when viewed from a real life perspective. In terms of 

network performance, the metric used to assess the four protocols was end-to-end 

latency, as it relates directly to the user’s experience. The system was developed for 

students and teachers to exchange assessments, and high latency will cause annoyance 

to the users and disrupt the learning experience. In terms of networks, MQTT 

demonstrated the lowest end-to-end latency in all cases, except for networks with high 

lag, where CoAP outperformed all three protocols. Additionally, the implementations 

were compared from qualitative aspects such as security, overhead, and ease of 

implementation. Overall, the protocols that performed the best in the experiments were 

MQTT and CoAP, followed closely by AMQP. XMPP on the other hand demonstrated 

relatively bad results in all experiments. However, it is important to keep in mind that 

CoAP was given an unfair advantage over the other protocols by excluding questions 

too that were too large for its payload size limit of 1280kB, which in itself is a major 

downside of the protocol. Furthermore, CoAP’s performance comes at a reliability cost, 

as the protocol does not provide message queueing, which is crucial to ensure fairness 

in a system where pods are expected to go offline but not miss out on any assessments. 



90 

 

Neither MQTT nor AMQP suffers from the previous limitations, and because of how 

close their performance was, we can argue that either will be suitable for the class of 

IoT systems under study. While MQTT excels in quantitative experiments, AMQP 

offers security features, and both protocols can easily be customized for learning 

systems with hierarchies of topics, learning outcomes, and student levels.  

There are some limitations that we recognize in this work, one of which is the 

choice of application server at the backend. NodeJS was chosen based on the literature 

review conducted of different application server technologies. However, it will be 

interesting to experiment with different servers to see if and how the system 

performance will be different. Another limitation is that the test data used was in a 

specific format and had the same characteristics. There several assessment formats 

currently being used by learning systems including known data formats such as JSON 

and XML, as well as proprietary formats. Different formats may affect the performance, 

especially with CoAP, where the message size was a major limitation. It will also be 

interesting to look into IoT-specific data formats such as the Open Data Format (O-DF) 

and the possibility of implementing assessments using them. Testing the system in a 

real-life environment with a busy network and real students will also produce more 

accurate evaluation results. 

For future work, we suggest considering new network-level IoT protocols such 

as Thread and 6LoWPAN. These protocols were designed with the constraints of edge 

devices in mind, and are therefore likely to reduce resources consumption. It will also 

be interesting to test whether they are able to transport learning traffic efficiently, and 

how the user experience will be affected. Another aspect to look into is the link 

throughput. The one used in the evaluation was a 100MB Ethernet that’s been slowed 

down to 20MB to simulate the edge device’s max wireless communication speed, as 

well as the typical 4G bandwidth. We also plan to test the same system in constrained 

environments where the network can suffer from a combination of problems and 

limitations. Furthermore, we can address the limitations mentioned earlier by testing 

different application servers and databases, and converting different classic assessment 

formats to IoT data formats.  



91 

 

6. References 

 

[1] G. J. Hwang, et al., “Criteria, Strategies and Research Issues of Context-Aware 

Ubiquitous Learning,” J. Educ. Technol. Soc., vol. 11, no. 2, pp. 81–91, 2008. 

[2] S. J. H. Yang, “Context Aware Ubiquitous Learning Environments for Peer-to-

Peer Collaborative Learning,” J. Educ. Technol. Soc., vol. 9, no. 1, pp. 188–201, 

2006. 

[3] M. G. C. Njoku, “Trend Analysis of Mobile and Ubiquitous Learning: 2014-

2015,” Int. J. Mob. Learn. Organ., vol. 10, no. 3, pp. 117–128, Jan. 2016. 

[4] A. G. Gunay and I. Yakin, “The status of mobile and ubiquitous learning: A 

content review of the recent researches,” Ubiquitous Learn. Int. J., vol. 6, no. 3, 

pp. 35–45, 2014. 

[5] N. A. Saito, et al., “Supporting classroom activities with the BSUL environment,” 

in Proceedings of IEEE International Conference on Wireless and Mobile 

Technologies in Education, 2005. 

[6] H. Ogata, et al., “Supporting Classroom Activities with the BSUL System,” J. 

Educ. Technol. Soc., vol. 11, no. 1, pp. 1–16, 2008. 

[7] T. Y. Liu and Y. L. Chu, “Using ubiquitous games in an English listening and 

speaking course: Impact on learning outcomes and motivation,” Comput. Educ., 

vol. 55, no. 2, pp. 630–643, Sep. 2010. 

[8] C. M. Chen and Y. L. Li, “Personalised context-aware ubiquitous learning system 

for supporting effective English vocabulary learning,” Interact. Learn. Environ., 

vol. 18, no. 4, pp. 341–364, Dec. 2010. 

[9] R. Reynolds, et al., “Web-based museum trails on PDAs for university-level 

design students: Design and evaluation,” Comput. Educ., vol. 55, no. 3, pp. 994–

1003, Nov. 2010. 

[10] S. Akkerman, et al., “Storification in History education: A mobile game in and 

about medieval Amsterdam,” Comput. Educ., vol. 52, no. 2, pp. 449–459, Feb. 

2009. 

[11] K. Y. Chin, et al., “Impact on Student Motivation by Using a QR-Based U-

Learning Material Production System to Create Authentic Learning Experiences,” 

IEEE Trans. Learn. Technol., vol. 8, no. 4, pp. 367–382, Oct. 2015. 



92 

 

[12] C. H. Chen and G. J. Hwang, “Improving Learning Achievements, Motivations 

and Flow with a Progressive Prompt-Based Mobile Gaming Approach,” in 

Proceedings of 4th International Congress on Advanced Applied Informatics, 

2015, pp. 297–302. 

[13] I. C. Hung, et al., “A context-aware video prompt approach to improving students’ 

in-field reflection levels,” Comput. Educ., vol. 70, pp. 80–91, Jan. 2014. 

[14] T. Y. Liu, et al., “Outdoor Natural Science Learning with an RFID-Supported 

Immersive Ubiquitous Learning Environment,” J. Educ. Technol. Soc., vol. 12, 

no. 4, pp. 161–175, 2009. 

[15] J. Gómez, et al., “Interaction System based on Internet of Things as Support for 

Education,” Procedia Comput. Sci., vol. 21, pp. 132–139, 2013. 

[16] I. A. Zualkernan, et al., “Prête-à-apprendre: Design and Implementation of a 

Wearable Assessment Tag Game for Children,” in Proceedings of Fifth MIT 

International LINC Conference, Boston, Mass., USA, 2010. 

[17] I. Arroyo, et al., “Hoodies and barrels: Using a hide-and-seek ubiquitous game to 

teach mathematics,” in Proceedings of International Conference on Advanced 

Learning Technologies, 2011, pp. 295–299. 

[18] P. Putjorn, et al., “Learning IoT Without the ‘I’- Educational Internet of Things in 

a Developing Context,” in Proceedings of the 2015 Workshop on Do-it-yourself 

Networking: An Interdisciplinary Approach, New York, USA, 2015, pp. 11–13. 

[19] S. Shapsough, et al., “IoT technologies to enhance precision and response time of 

mobile-based educational assessments,” in Proceedings of International 

Conference on Computational Science and Computational Intelligence, Las 

Vegas, USA, 2016. 

[20] O. C. Acosta, et al., “Content recommendation in an inquiry-based learning 

environment,” in Proceedings of IEEE Frontiers in Education Conference, 2014, 

pp. 1–6. 

[21] J. L. Zafra-Gómez, et al., “Measuring the impact of inquiry-based learning on 

outcomes and student satisfaction,” Assess. Eval. High. Educ., vol. 40, no. 8, pp. 

1050–1069, 2015. 

[22] S. Seol, et al., “Pocketschool interactive Learning Ad-hoc Network,” in 

Proceeding of the International Conference on e-Education, Entertainment and e-

Management, 2011, pp. 70–75. 



93 

 

[23] E. Buckner and P. Kim, “Integrating technology and pedagogy for inquiry-based 

learning: The Stanford Mobile Inquiry-based Learning Environment (SMILE),” 

Prospects, vol. 44, no. 1, pp. 99–118, 2014. 

[24] “Learning CatalyticsTM.” [Online]. Available: 

https://www.pearsonhighered.com/products-and-services/course-content-and-

digital-resources/learning-applications/learning-catalytics.html. [Accessed: 03-

May-2017]. 

[25] O. Chanprasitchai and J. Khlaisang, “Inquiry-Based Learning for a Virtual 

Learning Community to Enhance Problem-Solving Ability of Applied Thai 

Traditional Medicine Students,” TOJET Turk. Online J. Educ. Technol. 

Adapazari, vol. 15, no. 4, pp. 77-87, 2016. 

[26] P. Lameras, et al., “Fostering Science Teachers’ Design for Inquiry-Based 

Learning by Using a Serious Game,” in Proceedings of IEEE 14th International 

Conference on Advanced Learning Technologies, 2014, pp. 222–226. 

[27] I. A. Zualkernan, et al., “Using Problem Posing, Problem Solving for Game-Based 

Learning in Remote Labs,” in Proceedings of IEEE 12th International Conference 

on Advanced Learning Technologies, 2012, pp. 716–717. 

[28] S. Shapsough, et al., “ARCHI-PODS: Ubiquitous Learning Technology to Teach 

Architectural Design Principles to Architecture Students,” in Proceedings of 9th 

International Technology, Education and Development Conference, 2015, pp. 

4338–4347. 

[29] A. Mikroyannidis, “weSPOT: A personal and social toolkit for inquiry-based 

learning,” in Proceedings of International Conference on Web and Open Access 

to Learning, 2014, pp. 1–4. 

[30] M. A. Bedek, et al., “User-driven Development of an Inquiry-Based Learning 

Platform: Qualitative Formative Evaluations in weSPOT,” Interact. Des. Archit., 

no. 23, pp. 122–139, 2015. 

[31] A. Suarez, et al., “GPIM: Google Glassware for inquiry-based learning,” Interact. 

Des. Archit., no. 24, pp. 100–110, 2015. 

[32] B. de Sousa Monteiro, et al., “Youubi: Open software for ubiquitous learning,” 

Comput. Hum. Behav., vol. 55, p. B, pp. 1145-1164, Feb. 2016. 



94 

 

[33] N. S. Chen, et al., “Developing Ubiquitous Learning System with Robots for 

Children’s Learning,” in Proceedings of 3rd IEEE International Conference on 

Digital Game and Intelligent Toy Enhanced Learning, 2010, pp. 61–68. 

[34] F. Abdullah and R. Ward, “Developing a General Extended Technology 

Acceptance Model for E-Learning (GETAMEL) by analysing commonly used 

external factors,” Comput. Hum. Behav., vol. 56, pp. 238–256, 2016. 

[35] H.-Y. Chang et al., “A review of features of technology-supported learning 

environments based on participants’ perceptions,” Comput. Hum. Behav., vol. 53, 

pp. 223–237, 2015. 

[36] L. Atzori, et al., “The Internet of Things: A survey,” Comput. Netw., vol. 54, no. 

15, pp. 2787–2805, Oct. 2010. 

[37] I. Mashal, et al., “Choices for interaction with things on Internet and underlying 

issues,” Ad Hoc Netw., vol. 28, pp. 68–90, 2015. 

[38] P. P. Ray, “A survey on Internet of Things architectures,” J. King Saud Univ. - 

Comput. Inf. Sci., 2016. 

[39] J. Guth, et al., “Comparison of IoT platform architectures: A field study based on 

a reference architecture,” in Proceedings of 2016 Cloudification of the Internet of 

Things, 2016, pp. 1–6. 

[40] J. Gubbi, et al., “Internet of Things (IoT): A vision, architectural elements, and 

future directions,” Future Gener. Comput. Syst., vol. 29, no. 7, pp. 1645–1660, 

Sep. 2013. 

[41] Z. Sheng, et al., “A survey on the ietf protocol suite for the internet of things: 

standards, challenges, and opportunities,” IEEE Wirel. Commun., vol. 20, no. 6, 

pp. 91–98, Dec. 2013. 

[42] S. C. Mukhopadhyay and SpringerLink, "Internet of Things: Challenges and 

Opportunities", Springer International Publishing, 2014. 

[43] “| IMS Global Learning Consortium.” [Online]. Available: 

http://www.imsglobal.org/question/index.html. [Accessed: 11-Apr-2017]. 

[44] B. Dolan, et al., “Next-Generation Assessment Interoperability Standards,” 2010. 

[45] “| IMS Global Learning Consortium.” [Online]. Available: 

/question/qtiv1p2/imsqti_litev1p2.html. [Accessed: 11-Apr-2017]. 

[46] Moodle - Open-source learning platform \textbar Moodle.org. . 



95 

 

[47] Z. F. Muhsen, et al., “Moodle and e-learning Tools,” Int. J. Mod. Educ. Comput. 

Sci., vol. 5, no. 6, pp. 1–8, 2013. 

[48] “Moodle 3.0.” [Online]. Available: https://docs.moodle.org/. [Accessed: 24-Mar-

2017]. 

[49] P. Bradford, et al., “The Blackboard Learning System,” J. Educ. Technol. Syst., 

no. 35, pp. 301–314, 2007. 

[50] "Raspberry Pi - Teach, Learn, and Make with Raspberry Pi" [Online]. Available: 

https://www.raspberrypi.org. [Accessed: 24-Mar-2017]. 

[51] “BeagleBoard.org - bone.” [Online]. Available: http://beagleboard.org/bone. 

[Accessed: 24-Mar-2017]. 

[52] “ODROID | Hardkernel.” [Online]. Available: 

http://www.hardkernel.com/main/main.php. [Accessed: 26-Mar-2017]. 

[53] “The Intel® Edison Module | IoT | Intel® Software.” [Online]. Available: 

https://software.intel.com/en-us/iot/hardware/edison. [Accessed: 25-Mar-2017]. 

[54] N. T. Co, “Get C.H.I.P. and C.H.I.P. Pro - The Smarter Way to Build Smart 

Things,” Next Thing Co. [Online]. Available: https://getchip.com/pages/chip. 

[Accessed: 25-Mar-2017]. 

[55] “Tizen | An open source, standards-based software platform for multiple device 

categories.” [Online]. Available: https://www.tizen.org/. [Accessed: 23 -Apr-

2017]. 

[56] “chroot - Debian Wiki.” [Online]. Available: https://wiki.debian.org/chroot. 

[Accessed: 24-Mar-2017]. 

[57] “ChrootOnAndroid - Debian Wiki.” [Online]. Available: 

https://wiki.debian.org/ChrootOnAndroid. [Accessed: 24-Mar-2017]. 

[58] A. Bari, et al., “Ultra-low cost vehicle data acquisition and transfer system from 

analog and digital sensors to audio channel of a phone,” in Proceedings of 16th 

International Conference on Advanced Communication Technology, 2014, pp. 

698–704. 

[59] D. Hong et al., “Demo abstract: Continuous in-situ human wellness monitoring 

and feedback using sensors embedded in earphones,” in Proceedings of 2012 

ACM/IEEE 11th International Conference on Information Processing in Sensor 

Networks, 2012, pp. 159–160. 



96 

 

[60] P. A. Shinde, et al., “Real time vehicle monitoring and tracking system based on 

embedded Linux board and android application,” in Proceedings of 2015 

International Conference on Circuits, Power and Computing Technologies, 2015, 

pp. 1–7. 

[61] H. Jiang, et al., “An Audio Jack-Based Electrochemical Impedance Spectroscopy 

Sensor for Point-of-Care Diagnostics,” IEEE Sens. J., vol. 17, no. 3, pp. 589–597, 

Feb. 2017. 

[62] “Particle.” [Online]. Available: https://www.particle.io/. [Accessed: 21-Mar-

2017]. 

[63] “Pinoccio,” Crowd Supply. [Online]. Available: 

https://www.crowdsupply.com/pinoccio/mesh-sensor-network. [Accessed: 21-

Mar-2017]. 

[64] “Adafruit Feather HUZZAH with ESP8266 WiFi ID: 2821 - $16.95 : Adafruit 

Industries, Unique & fun DIY electronics and kits.” [Online]. Available: 

https://www.adafruit.com/products/2821. [Accessed: 25-Mar-2017]. 

[65] “ESP8266EX Overview | Espressif Systems.” [Online]. Available: 

http://espressif.com/en/products/hardware/esp8266ex/overview. [Accessed: 25-

Mar-2017]. 

[66] “Raspberry Pi 3 Model B,” [Online]. Available: 

https://www.raspberrypi.org/products/raspberry-pi-3-model-b/. [Accessed: 24-

Mar-2017]. 

[67] “ODROID | Hardkernel.” [Online]. Available: 

http://www.hardkernel.com/main/products/prdt_info.php. [Accessed: 24-Mar-

2017]. 

[68] “BeagleBoard.org - black.” [Online]. Available: https://beagleboard.org/black. 

[Accessed: 26-Mar-2017]. 

[69] “NextThingCo/CHIP_Pro-Hardware,” GitHub. [Online]. Available: 

https://github.com/NextThingCo/CHIP_Pro-Hardware. [Accessed: 26-Mar-

2017]. 

[70] “Samsung ARTIK IoT Platform - ARTIK 710 IoT module.” [Online]. Available: 

https://www.artik.io/modules/artik-710/. [Accessed: 02-Apr-2017]. 

[71] “ARTIK 530 - ARTIK IoT Platform.” [Online]. Available: 

https://www.artik.io/modules/artik-530/. [Accessed: 02-Apr-2017]. 



97 

 

[72] “Gear S Watch - GPS, 3G, Wi-Fi, Bluetooth v4.1 (Blue Black) - Samsung UK.” 

[Online]. Available: http://www.samsung.com/uk/wearables/gear-s-watch-

r750/SM-R7500ZKABTU/. [Accessed: 02-Apr-2017]. 

[73] “SmartWatch 3 SWR50 | Smartphone Watch - Sony Mobile (Global UK 

English).” [Online]. Available: https://www.sonymobile.com/global-

en/products/smart-products/smartwatch-3-swr50/. [Accessed: 02-Apr-2017]. 

[74] “Samsung Galaxy J5 Quad Core 1.2GHz 5" Black,” Samsung uk. [Online]. 

Available: http://www.samsung.com/uk/smartphones/galaxy-j5-j500fn/SM-

J500FZKABTU/. [Accessed: 26-Mar-2017]. 

[75] “Samsung ARTIK IoT Platform - Samsung ARTIK 1020 IoT Module.” [Online]. 

Available: https://www.artik.io/modules/artik-1020/. [Accessed: 02-Apr-2017]. 

[76] “Endlessm.com - Official Endless Store,” Endless Store. [Online]. Available: 

https://endless-global.myshopify.com/. [Accessed: 28-Mar-2017]. 

[77] “Arduino - ArduinoBoardYun.” [Online]. Available: 

https://www.arduino.cc/en/Main/ArduinoBoardYun. [Accessed: 26-Mar-2017]. 

[78] “Arduino - ArduinoBoardUno.” [Online]. Available: 

https://www.arduino.cc/en/main/arduinoBoardUno. [Accessed: 26-Mar-2017]. 

[79] “Particle.” [Online]. Available: https://docs.particle.io/datasheets/photon-

datasheet/. [Accessed: 21-Mar-2017]. 

[80] “Adafruit Feather M0 Bluefruit LE ID: 2995 - $29.95 : Adafruit Industries, 

Unique & fun DIY electronics and kits.” [Online]. Available: 

https://www.adafruit.com/product/2995. [Accessed: 26-Mar-2017]. 

[81] D. N. Aspin, et al., Values Education and Lifelong Learning: Principles, Policies, 

Programmes. Dordrecht: Springer, 2007. 

[82] “MySQL.” [Online]. Available: https://www.mysql.com/. [Accessed: 26-Mar-

2017]. 

[83] “The Apache Cassandra Project.” [Online]. Available: 

http://cassandra.apache.org/. [Accessed: 26-Mar-2017]. 

[84] “Apache CouchDB.” [Online]. Available: http://couchdb.apache.org/.[Accessed: 

18-Mar-2017]. 

[85] “MongoDB for GIANT Ideas.” [Online]. Available: https://www.mongodb.org/.  

[Accessed: 18-Mar-2017]. 



98 

 

[86] B. Holt, Writing and Querying MapReduce Views in CouchDB. O’Reilly Media, 

Inc., 2011. 

[87] R. Fielding, Ed., J. Reschke, Ed., "Hypertext Transfer Protocol (HTTP/1.1): 

Authentication", RFC 7235, DOI 10.17487/RFC7235, June 2014. 

[88] D. Uckelmann, et al., Architecting the Internet of Things. Berlin, Heidelberg: 

Springer Berlin Heidelberg, 2011. 

[89] F. C. Delicato, et al., Middleware solutions for the internet of things. London: 

Springer, 2013. 

[90] Z. Shelby, et al.,"The Constrained Application Protocol (CoAP)", RFC 7252, DOI 

10.17487/RFC7252, June 2014. 

[91] M. Castro, et al., “Enabling end-to-end CoAP-based communications for the Web 

of Things,” J. Netw. Comput. Appl., vol. 59, pp. 230–236, Jan. 2016. 

[92] C. Bormann, et al., “CoAP: An Application Protocol for Billions of Tiny Internet 

Nodes,” IEEE Internet Comput., vol. 16, no. 2, pp. 62–67, 2012. 

[93] D. Thangavel, et al., “Performance evaluation of MQTT and CoAP via a common 

middleware,” in Proceedings of the IEEE Ninth International Conference on 

Intelligent Sensors, Sensor Networks and Information Processing, 2014, pp. 1–6. 

[94] M. H. Elgazzar, “Perspectives on M2M protocols,” in Proceedings of 2015 IEEE 

Seventh International Conference on Intelligent Computing and Information 

Systems, 2015, pp. 501–505. 

[95] P. Saint-Andre, "Extensible Messaging and Presence Protocol (XMPP): Core", 

RFC 6120, DOI 10.17487/RFC6120, March 2011. 

[96] S. Bendel, et al., “A service infrastructure for the Internet of Things based on 

XMPP,” in Proceedings of the 2013 IEEE International Conference on Pervasive 

Computing and Communications Workshops (PERCOM Workshops), 2013, pp. 

385–388. 

[97] R. Klauck and M. Kirsche, “Chatty things - Making the Internet of Things readily 

usable for the masses with XMPP,” in Proceedings of the 8th International 

Conference on Collaborative Computing: Networking, Applications and 

Worksharing (CollaborateCom), 2012, pp. 60–69. 

[98] A. Banks and R. Gupta, “MQTT Version 3.1. 1,” OASIS Stand., 2014. 

[99] U. Hunkeler, et al., “MQTT-S - A publish/subscribe protocol for Wireless Sensor 

Networks,” in Proceedings of the 2008 3rd International Conference on 



99 

 

Communication Systems Software and Middleware and Workshops, 2008, pp. 

791–798. 

[100] "Building Facebook Messenger" [Online]. Available: 

https://www.facebook.com/notes/facebook-engineering/building-facebook-

messenger/10150259350998920/. [Accessed: 14-Feb-2017]. 

[101] “HiveMQ: Enterprise MQTT Broker.” [Online]. Available: 

http://www.hivemq.com/. [Accessed: 20-Mar-2017]. 

[102] “Paho.” [Online]. Available: https://eclipse.org/paho/. [Accessed: 20-Mar-

2017]. 

[103] S. Aiyagari, et al., “Advanced Message Queuing Protocol (AMQP) Version 0-

9-1,” OASIS Standard, November 2008. 

[104] S. Appel, et al., “Towards benchmarking of AMQP,” in Proceedings of the 4th 

ACM International Conference on distributed event-based systems, 2010, pp. 99–

100. 

[105] J. E. Luzuriaga, et al., “A comparative evaluation of AMQP and MQTT 

protocols over unstable and mobile networks,” in Proceedings of the 12th Annual 

IEEE Consumer Communications and Networking Conference, 2015, pp. 931–

936. 

[106] R. Cohn, “A Comparison of AMQP and MQTT,” StormMQ White Paper, 

February 2012. 

[107] K. Lei, et al., “Performance Comparison and Evaluation of Web Development 

Technologies in PHP, Python, and Node.js,” in Proceedings of the IEEE 17th 

International Conference on Computational Science and Engineering, 2014, pp. 

661–668. 

[108] L. Griffin, et al., “Scaling Instant Messaging communication services: A 

comparison of blocking and non-blocking techniques,” in Proceedings of the 

IEEE Symposium on Computers and Communications, 2011, pp. 550–557. 

[109] “Node.js.” [Online]. Available: https://nodejs.org/. [Accessed: 20-Mar-2017]. 

[110] S. Tilkov and S. Vinoski, “Node.js: Using JavaScript to Build High-

Performance Network Programs,” IEEE Internet Comput., vol. 14, no. 6, pp. 80–

83, 2010. 

[111] "Express - Node.js web application framework." [Online]. Available: 

https://expressjs.com/. [Accessed: 21-Mar-2017]. 



100 

 

[112] “NGINX | High Performance Load Balancer, Web Server, & Reverse Proxy,” 

NGINX. [Online]. Available: https://www.nginx.com/. [Accessed: 13-Apr-2017]. 

[113] PARCC: Leveraging Open Standards to Support Next Generation Online 

Assessments. IMS Global Learning Consortium, 2015. 

[114] S. Charkaoui, et al., “Cross-platform mobile development approaches,” 

Proceedings of 3rd IEEE International Colloquium on Information Science and 

Technology, 2014, pp. 188–191. 

[115] I. Dalmasso, S. K. Datta, C. Bonnet, and N. Nikaein, “Survey, comparison and 

evaluation of cross platform mobile application development tools,” in 

Proceedings of the 2013 9th International Wireless Communications and Mobile 

Computing Conference, 2013, pp. 323–328. 

[116] “Apache Cordova.” [Online]. Available: https://cordova.apache.org/ 

[Accessed: 20-Mar-2017]. 

[117] J. Perchat, et al., “Common Framework: A Hybrid Approach to Integrate Cross-

Platform Components In Mobile Application,” J. Comput. Sci., vol. 10, no. 11, 

pp. 2165–2181, 2014. 

[118] M. A. Jazayeri, et al., “Implementation and Evaluation of Four Interoperable 

Open Standards for the Internet of Things,” Sensors, vol. 15, no. 9, pp. 24343–

24373, 2015. 

[119] X. Che and S. Maag, “Testing protocols in Internet of Things by a formal 

passive technique,” Sci. China Inf. Sci., vol. 57, no. 3, pp. 1–13, 2014. 

[120] “Yocto-Amp - Tiny isolated USB ammeter (AC/DC).” [Online]. Available: 

http://www.yoctopuce.com/EN/products/usb-electrical-sensors/yocto-amp. 

[Accessed: 27-Mar-2017]. 

[121] “nmon for Linux | Main / HomePage.” [Online]. Available: 

http://nmon.sourceforge.net/pmwiki.php. [Accessed: 27-Mar-2017]. 

[122] “JXcore,” GitHub. [Online]. Available: https://github.com/jxcore. [Accessed: 

27-Mar-2017]. 

[123] “Wireshark.” [Online]. Available: https://www.wireshark.org/. 

[124] “jagt/clumsy,” GitHub. [Online]. Available: https://github.com/jagt/clumsy. 

[Accessed: 27-Mar-2017]. 

[125] “iPerf - The TCP, UDP and SCTP network bandwidth measurement tool.” 

[Online]. Available: https://iperf.fr/. [Accessed: 04-May-2017]. 



101 

 

[126] “Automated Software Testing Made Simple | TestComplete.” [Online]. 

Available: https://smartbear.com/product/testcomplete/overview/. [Accessed: 

27-Mar-2017]. 

[127] “Calculating Your Solar Power Requirements.” [Online]. Available: 

http://www.solartechnology.co.uk/support-centre/calculating-your-solar-

requirments. [Accessed: 01-Apr-2017]. 

[128] S. Bandyopadhyay and A. Bhattacharyya, “Lightweight Internet protocols for 

web enablement of sensors using constrained gateway devices,” in Proceedings 

of 2013 International Conference on Computing, Networking and 

Communications, 2013, pp. 334–340. 

[129] “Solar Power Bank 10000mah Powerbank Portable Charger Extra External 

Battery For Mobile Phones” [Online]. Available: //www.alibaba.com/product-

detail/Solar-power-bank-10000mah-powerbank-portable_60545891943.html. 

[Accessed: 02-May-2017]. 

[130] M. Collina, et al., “Internet of Things application layer protocol analysis over 

error and delay prone links,” in Proceedings of the 7th Advanced Satellite 

Multimedia Systems Conference and the 13th Signal Processing for Space 

Communications Workshop, 2014, pp. 398–404. 

[131] A. Talaminos-Barroso, et al., “A Machine-to-Machine protocol benchmark for 

eHealth applications – Use case: Respiratory rehabilitation,” Comput. Methods 

Programs Biomed., vol. 129, pp. 1–11, Jun. 2016. 

[132] J. Perser, et al., “Packet Reordering Metrics.” [Online]. Available: 

https://tools.ietf.org/html/rfc4737#section-1.1. [Accessed: 24-Apr-2017]. 

[133] A. Jayasumana, “Improved Packet Reordering Metrics.” [Online]. Available: 

https://tools.ietf.org/html/rfc5236#ref-Pax97. [Accessed: 24-Apr-2017]. 

[134] C. Costinela-Luminiţa and C. Nicoleta-Magdalena, “E-learning Security 

Vulnerabilities,” Procedia - Soc. Behav. Sci., vol. 46, pp. 2297–2301, Jan. 2012. 

[135] S. Shapsough, et al., “Smart grid cyber security: Challenges and solutions,” in  

Proceedings of the 2015 International Conference on Smart Grid and Clean 

Energy Technologies (ICSGCE), 2015, pp. 170–175. 

[136] F. D. S. Bahry, et al., “Conceptualizing Security Measures on Mobile Learning 

for Malaysian Higher Education Institutions,” Procedia - Soc. Behav. Sci., vol. 

176, pp. 1083–1088, Feb. 2015. 



102 

 

[137] T. Dierks, “The Transport Layer Security (TLS) Protocol Version 1.2.” 

[Online]. Available: https://tools.ietf.org/html/rfc5246. [Accessed: 19-Apr-2017]. 

[138] K. D. Zeilenga and A. Melnikov, “Simple Authentication and Security Layer 

(SASL).” [Online]. Available: https://tools.ietf.org/html/rfc4422. [Accessed: 19-

Apr-2017]. 

[139] Y. Dzambasow, et al., “Internet X.509 Public Key Infrastructure: Certification 

Path Building.” [Online]. Available: https://tools.ietf.org/html/rfc4158. 

[Accessed: 19-Apr-2017]. 

[140] N. Modadugu and E. Rescorla, “Datagram Transport Layer Security.” [Online]. 

Available: https://tools.ietf.org/html/rfc4347. [Accessed: 19-Apr-2017]. 

[141] R. Atkinson and S. Kent, “IP Encapsulating Security Payload (ESP).” [Online]. 

Available: https://tools.ietf.org/html/draft-ietf-ipsec-esp-v2-05. [Accessed: 19-

Apr-2017]. 

[142] A. Yegin and Z. Shelby, “CoAP Security Options.” [Online]. Available: 

https://tools.ietf.org/html/draft-yegin-coap-security-options-00. [Accessed: 19-

Apr-2017]. 

[143] H. Tschofenig and P. Eronen, “Pre-Shared Key Ciphersuites for Transport 

Layer Security (TLS).” [Online]. Available: https://tools.ietf.org/html/rfc4279. 

[Accessed: 19-Apr-2017]. 

[144] “Part 4: RabbitMQ Exchanges, routing keys and bindings - CloudAMQP.” 

[Online]. Available: https://www.cloudamqp.com/blog/2015-09-03-part4-

rabbitmq-for-beginners-exchanges-routing-keys-bindings.html. [Accessed: 30-

Apr-2017]. 

[145] “MQTT Essentials Part 5: MQTT Topics & Best Practices.” [Online]. 

Available: http://www.hivemq.com/blog/mqtt-essentials-part-5-mqtt-topics-best-

practices. [Accessed: 30-Apr-2017]. 

 

 

  



103 

 

7. Appendix A 

This appendix presents the statistical distribution of latency values for each 

network disturbance experiments carried out during Experiment II. Each graph presents 

a comparison of the four implementations at a certain experimental value. 

A.1.  Out of Order 

 

Figure A.1: Latency distribution as response to out of order packets (5% - 30%) 



104 

 

 

 

 

Figure A.2: Latency distribution as response to out of order packets (35% - 50%) 



105 

 

A.2.  Lag 

 

 

 

Figure A.3: Latency distribution as response to network lag (100ms – 800ms) 

 



106 

 

 

 

Figure A.4: Latency distribution as response to network lag (900ms – 1000ms) 

  



107 

 

A.3.  Duplicates 

 

Figure A.5: Latency distribution as response to duplicated packets (5% – 40%) 



108 

 

 

 

Figure A.6: Latency distribution as response to duplicated packets (45% – 50%) 

  



109 

 

A.4.  Throttle 

 

Figure A.7 Latency distribution as response to throttled packets (5% – 40%) 



110 

 

 

 

Figure A.8 Latency distribution as response to throttled packets (45% – 50%) 

  



111 

 

8. Appendix B 

This appendix presents a comparison between the means for every two 

protocols, at each experimental value, for each network disturbance metric. Two-

sample T-Test was carried out for delay values found in Experiment II for p < 0.05. 

B.1. Out of Order 

Table B.1. Comparing Delay vs. Out of Order % across protocols 

Out of Order % Implementation 1mean P-value Implementation 2mean 

50 AMQP 35.4    0 

0 

0 

0.215 

0 

0 

CoAP 23.2  

AMQP MQTT 22.2  

AMQP XMPP 39.8 

CoAP MQTT 

CoAP XMPP 

MQTT XMPP 

XMPP > AMQP > MQTT = CoAP 

45 AMQP 35.5 0 

0 

0 

0.003 

0 

0 

CoAP 24.5 

AMQP MQTT 22.4 

AMQP XMPP 42.1 

CoAP MQTT 

CoAP XMPP 

MQTT XMPP 

XMPP > AMQP > CoAP > MQTT 

40 AMQP 32.3 0 

0 

0 

0 

0 

0 

CoAP 25.4 

AMQP MQTT 22.7 

AMQP XMPP 39.6 

CoAP MQTT 

CoAP XMPP 

MQTT XMPP 

XMPP > AMQP > CoAP > MQTT 

35 AMQP 33.3 0 

0 

0.001 

0.634 

0 

0 

CoAP 23.7 

AMQP MQTT 23.3 

AMQP XMPP 36.6 

CoAP MQTT 

CoAP XMPP 

MQTT XMPP 

XMPP > AMQP > MQTT = CoAP 

30 AMQP 34.0 0 

0 

0 

0 

0 

0 

CoAP 22.6 

AMQP MQTT 20.4 

AMQP XMPP 40.2 

CoAP MQTT 

CoAP XMPP 

MQTT XMPP 

XMPP > AMQP > CoAP > MQTT 

25 AMQP 33.9 0 

0 

0.005 

0.608 

0 

0 

CoAP 22.4 

AMQP MQTT 22.1 

AMQP XMPP 36.8 

CoAP MQTT 

CoAP XMPP 

MQTT XMPP 

XMPP > AMQP > MQTT = CoAP 

20 AMQP 31.4 0 

0 

0 

0 

0 

0 

CoAP 22.8 

AMQP MQTT 19.1 

AMQP XMPP 36.6 

CoAP MQTT 

CoAP XMPP 

MQTT XMPP 

XMPP > AMQP > CoAP > MQTT 

15 AMQP 31.1 0 

0 

0.001 

0 

CoAP 23.3 

AMQP MQTT 20.0 

AMQP XMPP 34.4 

CoAP MQTT 



112 

 

CoAP 0 

0 

XMPP 

MQTT XMPP 

XMPP > AMQP > CoAP > MQTT 

10 AMQP 26.0 0 

0 

0 

0 

0 

0 

CoAP 21.7 

AMQP MQTT 17.2 

AMQP XMPP 30.4 

CoAP MQTT 

CoAP XMPP 

MQTT XMPP 

XMPP > AMQP > CoAP > MQTT 

5 AMQP 21.9 0 

0 

0 

0.134 

0 

0 

CoAP 19.6 

AMQP MQTT 18.8 

AMQP XMPP 33.1 

CoAP MQTT 

CoAP XMPP 

MQTT XMPP 

XMPP > AMQP > MQTT > CoAP 

 

  



113 

 

B.2. Lag 

Table B.2. Comparing Delay vs. Out of Lag (ms) across protocols 

Lag (ms) Implementation 1mean P-value Implementation 2mean 

1000 

AMQP 0 CoAP 

AMQ 0.383 MQTT 

AMQ 0 XMPP 

CoAP 0 MQTT 

CoAP 0 XMPP 

MQTT 0 XMPP 

AMQP = MQTT > XMPP > CoAP 

900 

AMQP 0 CoAP 

AMQP 0 MQTT 

AMQP 0 XMPP 

CoAP 0 MQTT 

CoAP 0 XMPP 

MQTT 0 XMPP 

MQTT > AMQP > XMPP > CoAP 

800 

AMQP 0 CoAP 

AMQP 0 MQTT 

AMQP 0 XMPP 

CoAP 0 MQTT 

CoAP 0 XMPP 

MQTT 0 XMPP 

AMQP > MQTT > XMPP > CoAP 

700 

AMQP 0 CoAP 

AMQP 0 MQTT 

AMQP 0 XMPP 

CoAP 0 MQTT 

CoAP 0 XMPP 

MQTT 0 XMPP 

AMQP > MQTT > XMPP > CoAP 

600 

AMQP 0 CoAP 

AMQP 0.003 MQTT 

AMQP 0 XMPP 

CoAP 0 MQTT 

CoAP 0 XMPP 

MQTT 0 XMPP 

AMQP > MQTT > XMPP > CoAP 

500 

AMQP 0 CoAP 

AMQP 0.080 MQTT 

AMQP 0.015 XMPP 

CoAP 0 MQTT 

CoAP 0 XMPP 

MQTT 0.408 XMPP 

XMPP = AMQP = MQTT > CoAP 

400 

AMQP 0 CoAP 

AMQP 0 MQTT 

AMQP 0 XMPP 

CoAP 0 MQTT 

CoAP 0 XMPP 

MQTT 0 XMPP 

AMQP > MQTT > XMPP > CoAP 

300 

AMQP 0 CoAP 

AMQP 0 MQTT 

AMQP 0 XMPP 

CoAP 0 MQTT 

CoAP 0 XMPP 

MQTT 0 XMPP 

AMQP > MQTT > XMPP > CoAP 

200 

AMQP 0 CoAP 

AMQP 0 MQTT 

AMQP 0 XMPP 

CoAP 0 MQTT 

CoAP 0 XMPP 

MQTT 0 XMPP 



114 

 

AMQP > MQTT > XMPP > CoAP 

100 

AMQP 0 CoAP 

AMQP 0 MQTT 

AMQP 0 XMPP 

CoAP 0 MQTT 

CoAP 0 XMPP 

MQTT 0 XMPP 

AMQP > MQTT > XMPP > CoAP 

 

  



115 

 

B.3. Throttle 

Table B.3. Comparing Delay vs. Throttling Probability across protocols 

Throttle % Implementation 1mean P-value Implementation 2mean 

50 

AMQP 0 CoAP 

AMQP 0 MQTT 

AMQP 0.009 XMPP 

CoAP 0 MQTT 

CoAP 0 XMPP 

MQTT 0 XMPP 

XMPP>AMQP>MQTT>CoAP 

45 

AMQP 0 CoAP 

AMQP 0.197 MQTT 

AMQP 0.009 XMPP 

CoAP 0 MQTT 

CoAP 0 XMPP 

MQTT 0.075 XMPP 

XMPP>AMQP=MQTT>CoAP 

40 

AMQP 0 CoAP 

AMQP 0.264 MQTT 

AMQP 0.047 XMPP 

CoAP 0 MQTT 

CoAP 0 XMPP 

MQTT 0.002 XMPP 

AMQP=MQTT>XMPP>CoAP 

35 

AMQP 0 CoAP 

AMQP 0.004 MQTT 

AMQP 0.488 XMPP 

CoAP 0 MQTT 

CoAP 0 XMPP 

MQTT 0.003 XMPP 

MQTT>AMQP=XMPP>CoAP 

30 

AMQP 0 CoAP 

AMQP 0.046 MQTT 

AMQP 0.011 XMPP 

CoAP 0 MQTT 

CoAP 0 XMPP 

MQTT 0 XMPP 

MQTT>AMQP>XMPP>CoAP 

25 

AMQP 0 CoAP 

AMQP 0 MQTT 

AMQP 0.491 XMPP 

CoAP 0 MQTT 

CoAP 0 XMPP 

MQTT 0.004 XMPP 

MQTT>AMQP=XMPP>CoAP 

20 

AMQP 0 CoAP 

AMQP 0.009 MQTT 

AMQP 0.02 XMPP 

CoAP 0 MQTT 

CoAP 0 XMPP 

MQTT 0 XMPP 

MQTT>AMQP>XMPP>CoAP 

15 

AMQP 0 CoAP 

AMQP 0 MQTT 

AMQP 0.001 XMPP 

CoAP 0 MQTT 

CoAP 0 XMPP 

MQTT 0 XMPP 

MQTT>AMQP>XMPP>CoAP 

10 

AMQP 0 CoAP 

AMQP 0 MQTT 

AMQP 0 XMPP 

CoAP 0 MQTT 

CoAP 0.182 XMPP 

MQTT 0 XMPP 



116 

 

MQTT>AMQP>XMPP=CoAP 

5 

AMQP 0 CoAP 

AMQP 0 MQTT 

AMQP 0.27 XMPP 

CoAP 0 MQTT 

CoAP 0 XMPP 

MQTT 0 XMPP 

MQTT>AMQP=XMPP>CoAP 

 

  



117 

 

B.4. Duplicates 

Table B.4. Comparing Delay vs. Duplicates % across protocols 

Duplicate % Implementation 1mean P-value Implementation 2mean 

50 

AMQP 19.8 0 CoAP 22.1 

AMQP 0 MQTT 11.90 

AMQP 0 XMPP 23.3 

CoAP 0 MQTT 

CoAP 0.019 XMPP 

MQTT 0 XMPP 

XMPP > CoAP > AMQP > MQTT 

45 

AMQP 17.6 0 CoAP 24.0 

AMQP 0 MQTT 13.58 

AMQP 0 XMPP 25.9 

CoAP 0 MQTT 

CoAP 0.001 XMPP 

MQTT 0 XMPP 

AMPP > CoAP > AMQP > MQTT 

40 

AMQP 18.4 0 CoAP 23.7 

AMQP 0 MQTT 11.9 

AMQP 0 XMPP 24.1 

CoAP 0 MQTT 

CoAP 0.638 XMPP 

MQTT 0 XMPP 

XMPP = CoAP > AMQP > MQTT 

35 

AMQP 19.7 0.547 CoAP 19.9 

AMQP 0 MQTT 11.06 

AMQP 0 XMPP 26.5 

CoAP 0 MQTT 

CoAP 0 XMPP 

MQTT 0 XMPP 

XMPP > CoAP = AMQP > MQTT 

30 

AMQP 20.5 0 CoAP 23.1 

AMQP 0 MQTT 11.20 

AMQP 0 XMPP 28.40 

CoAP 0 MQTT 

CoAP 0 XMPP 

MQTT 0 XMPP 

XMPP > CoAP > AMQP > MQTT 

25 

AMQP 16.3 0 CoAP 21.1 

AMQP 0 MQTT 10.86 

AMQP 0 XMPP 27.3 

CoAP 0 MQTT 

CoAP 0 XMPP 

MQTT 0 XMPP 

XMPP > CoAP > AMQP > MQTT 

20 

AMQP 16.4 0 CoAP 21.2 

AMQP 0 MQTT 11.73 

AMQP 0 XMPP 27.1 

CoAP 0 MQTT 

CoAP 0 XMPP 

MQTT 0 XMPP 

XMPP > CoAP > AMQP > MQTT 

15 

AMQP 16.2 0.112 CoAP 16.8 

AMQP 0 MQTT 10.31 

AMQP 0 XMPP 26.7 

CoAP 0 MQTT 

CoAP 0 XMPP 

MQTT 0 XMPP 

XMPP > CoAP = AMQP > MQTT 

10 

AMQP 17.4 0.001 CoAP 19.1 

AMQP 0 MQTT 11.25 

AMQP 0 XMPP 24.9 

CoAP 0 MQTT 

CoAP 0 XMPP 

MQTT 0 XMPP 



118 

 

XMPP > CoAP > AMQP > MQTT 

5 

AMQP 17.0 0 CoAP 20.0 

AMQP 0 MQTT 12.13 

AMQP 0 XMPP 30.2 

CoAP 0 MQTT 

CoAP 0 XMPP 

MQTT 0 XMPP 

XMPP > CoAP > AMQP > MQTT 

 

  



119 

 

9. Appendix C 

This appendix presents average throughput values as measured by Wireshark, 

for every network disturbance metric, for Experiment II. 

 

Figure C.1: Mean throughput vs. duplicates 

 

Figure C.2: Stdv. of throughput vs. duplicates 



120 

 

 

Figure C. 3: Mean throughput vs. lag 

 

Figure C.4: Stdv. of throughput vs. lag 

 

Figure C.5: Mean throughput vs. out of order 



121 

 

 

Figure C.6: Stdv. of throughput vs. out of order 

 

Figure C.7: Mean throughput vs. throttle 

 

Figure C.8: Stdv. of throughput vs. throttle 



122 

 

10. Vita 

 

Salsabeel Yousef Shapsough was born in 1993, in Amman, Jordan. She received 

her primary school education in Nezwa, Oman. She received her secondary and high 

school education in Dubai, UAE, and Ras Al Khaimah, UAE, respectively. She 

received her B.Sc. degree in Computer Engineering from the American University of 

Sharjah in 2014. 

 In February 2015, she joined the Computer Engineering master’s program in 

the American University of Sharjah as a graduate teaching assistant. During her 

master's study, she co-authored 6 papers which were presented in international 

conferences. Her research interests are Internet of Things, smart education, Big Data, 

and cybersecurity. 


