

INCREMENTAL AND HEURISTIC ALGORITHMS FOR DERIVING ADAPTIVE

DISTINGUISHING TEST CASES FOR NONDETERMINISTIC FINITE STATE

MACHINES

by

Ayat Saleh

A Thesis presented to the Faculty of the

American University of Sharjah

College of Engineering

In Partial Fulfillment

 of the Requirements

for the Degree of

Master of Science in

Computer Engineering

Sharjah, United Arab Emirates

September 2017

© 2017 Ayat Saleh. All rights reserved.

Approval Signatures

We, the undersigned, approve the Master‟s Thesis of Ayat Saleh.

Thesis Title: Incremental and Heuristic Algorithms for Deriving Adaptive

Distinguishing Test Cases for Nondeterministic Finite State Machines.

Signature Date of Signature

 (dd/mm/yyyy)

___________________________ _______________

Dr. Khaled El-Fakih

Associate Professor, Department of Computer Science and Engineering

Thesis Advisor

___________________________ _______________

Dr. Rana Ahmed

Associate Professor, Department of Computer Science and Engineering

Thesis Committee Member

___________________________ _______________

Dr. Usman Tariq

Assistant Professor, Department of Electrical Engineering

Thesis Committee Member

___________________________ _______________

Dr. Fadi Aloul

Head, Department of Computer Science and Engineering

___________________________ _______________

Dr. Ghaleb Husseini

Associate Dean for Graduate Affairs and Research

College of Engineering

___________________________ _______________

Dr. Richard Schoephoerster

Dean, College of Engineering

___________________________ _______________

Dr. Mohamed El-Tarhuni

Vice Provost for Graduate Studies

Acknowledgements

I would like to thank my thesis advisor, Dr. Khaled El-Fakih, for his guidance

and patience at every step throughout the thesis.

I am also very grateful to the Department of Computer Engineering and the

American University of Sharjah for giving me the opportunity to work as a graduate

teaching assistant, while doing my master‟s.

At the end, I would also like to thank my father who taught me to be strong,

and if he was alive he would have been very proud of me, my mother for her prayers

and encouragement, my husband Izz-ideen for his support and love, and my little son

Ziad.

 .

5

Abstract

Many methods are proposed for the construction of distinguishing test cases

(DTCs) based on a specification given in the form of a Finite State Machine (FSM).

In FSM-based testing, we have a black-box FSM Implementation Under Test (IUT)

about which we lack some information, and we want to conclude this information by

using the applied input sequences of DTCs to the IUT, then by observing the output

responses to the applied input sequences final conclusions about the IUT are drawn. A

DTC is adaptive if the next input of a DTC is selected based on the previously

observed outputs. In this thesis, we propose an incremental approach, called Inc, for

the construction of an adaptive DTC for a given set of states of a nondeterministic

FSM. In addition, two heuristics are proposed for the derivation of adaptive DTCs.

The first heuristic, called H, uses depth first search for a given fixed height while

appropriately utilizing hashing to speed up the search for a DTC. The second

heuristic, called Hc, is similar to the first; however, it uses a cost function for ordering

the inputs to be considered while conducting the search. Comprehensive experiments

are conducted, using both real and randomly generated FSMs, to assess the existence

of DTCs and compare the performance of the proposed approaches. According to

these experiments, in terms of execution time, Inc usually outperforms an existing

non-incremental algorithm, called A, when a DTC does not exist. However, in

contrary to the H and Hc methods, both A and Inc do not scale well for large size

FSMs. Both H and Hc have comparable execution time; however, for large size

FSMs, in terms of quality of obtained solutions (length of obtained DTC), usually Hc

outperforms H.

Search Terms: Model Based Testing, Distinguishing Test case, Incremental

Algorithms, Heuristics.

6

Table of Contents

Abstract……………………………………………………………………………….5

List of Figures………………………………………………………………………...8

List of Tables…………………………………………………………………………9

List of Abbreviations………………………………………………………………..10

Chapter 1 : Introduction and Related Work……………………………………...11

1.1 Introduction…………………………………………………………………....11

1.2 Related Work………………………………………………………………….14

Chapter 2 : Preliminaries………………………………………………………......17

2.1 Preliminaries…………………………………………………………………...17

2.2 The Exact Algorithm A for Deriving a Distinguishing Test Case………….....20

Chapter 3 : An Incremental Algorithm for Deriving Distinguishing Test Cases22

3.1 Incremental Composition Operator…………………………………………....22

3.2 Inc Algorithm………………………………………………………………......24

3.3 Inc(k) Implementations…………………………………………………….......26

Chapter 4 : A Heuristic Approach for Deriving Distinguishing Test Cases….....27

4.1 Rules for Constructing a DTC…………………………………………………27

4.2 H and Hc Methods………………………………………………………….....28

Chapter 5 : Experimental Evaluation……………………………………………..32

5.1 Existence of DTCs…………………………………………………………......33

5.2 A versus Incremental…………………………………………………….….....33

i) Representative example…………………………………………………….....34

ii) Summary of all conducted experiments……………………………………...35

5.3 Execution Time of A, H, and Hc Algorithms………………………………....37

i) Representative example………………………………………………….……37

ii) Summary of all conducted experiments……………………………………...38

5.4 Comparison between H and Hc Over Large Machines……………………......40

5.5 Comparison of A, H, and Hc in Terms of the Quality of Obtained Solutions ... 41

5.6 Experiments with Real Machines ... 42

5.6.1 Existence of DTCs………………………………………………………...43

5.6.2 A versus Incremental……………………………………………………...44

5.6.3 Execution time of A, H, and Hc algorithms………………………………47

Chapter 6 : Conclusion and Summary of Obtained Results…………………….50

References………………………………………………………………………..…52

7

Vita………………………………………………………………………………….55

8

List of Figures

Figure ‎4-1: Tree obtained of applying the H method starting from the pair 30

Figure ‎4-2: Tree obtained by applying the Hc method starting from the pair 31

Figure ‎5-1: Existence of DTCs when b = S for deterministic and nondeterministic

FSMs. ... 33

Figure ‎5-2: A vs Inc, Inc(2), Inc(3), Inc(4), Inc(8) when there is DTC. 34

Figure ‎5-3: A vs Inc, Inc(2), Inc(3), Inc(4), Inc(8) when there is no DTC. 35

Figure ‎5-4: A and incremental when a DTC exists. ... 36

Figure ‎5-5: A and incremental when there is no DTC. .. 37

Figure ‎5-6: Average time vs number of states to distinguish (A vs H vs HC) when

there is DTC. .. 38

Figure ‎5-7: Average time vs number of states to distinguish (A vs H vs HC) when

there is no DTC. ... 38

Figure ‎5-8: Average time vs number of transitions when there is a DTC and | b | = 2.

.. 39

Figure ‎5-9: Average time vs. number of states when there is DTC and b = S. 39

Figure ‎5-10: Average time vs number of states when there is no DTC and | b | = 2. .. 40

Figure ‎5-11: Average time vs number of transitions when there is a DTC. 41

Figure ‎5-12: Average length when number of states to distinguish equals | b | = 2, 5,

10, and 15. .. 42

Figure ‎5-13: Existence of DTCs when | b | = S. ... 43

 Figure ‎5-14: Average time in (ms) versus number of states that we want to

distinguish with DTC for “log” machine. .. 44

Figure ‎5-15: Average time in (ms) versus number of states that we want to distinguish

when there is no DTC for “s1a” machine. ... 45

Figure ‎5-16: Average time versus number of states to distinguish when a DTC exists.

.. 46

Figure ‎5-17: Execution time versus number of states to distinguish when there is no

DTC.. 47

Figure ‎5-18: Average time in (ms) versus number of states that we want to distinguish

when there is DTC. .. 47

Figure ‎5-19: Average time in (ms) versus number of states that we want to distinguish

when there is no DTC. ... 48

Figure ‎5-20: Average time versus number states to distinguish when there is a DTC.

.. 48

Figure ‎5-21: Average time in versus number to distinguish when there is no DTC. .. 49

9

List of Tables

Table ‎2-1: Tabular representation of FSM S. .. 18

Table ‎2-2: Tabular representation of FSM Sdist. .. 19

Table ‎2-3 : Tabular representation of a distinguishing test case for FSM S. 19

Table ‎3-1: Tabular representation of FSM S{1,2,3}-dist = S{1,2}-dist  S{3}-dist. 23

Table ‎3-2: Tabular representation of FSM S{1,2}-dist. .. 26

Table ‎3-3: Tabular representation of FSM S{1,2,3,4}-dist = S{1,2,3}_dist  S{4}-dist. 26

Table ‎4-1: Tabular representation of FSM S1. ... 30

Table ‎5-1: Real machines... 43

10

List of Abbreviations

A The (Exact) Adaptive Algorithm

ADS

b

Adaptive Distinguishing Sequence

Subset of States of S that we want to distinguish

CPU Central Processing Unit

DTC

DFS

Distinguishing Test Case

Depth First Search

FSM Finite State Machine

H Heuristic Algorithm

Hc

I

Inc

Heuristic Algorithm with Cost Function

Set of Inputs of an FSM

Incremental Algorithm

Inc(k) Incremental Algorithm(k), k = 2,3,4,8

IUT Implementation Under Testing

MBT

 O

Model Based Testing

Set of Outputs of an FSM

QA

S

Quality Assurance

Set of States of an FSM

SDL Standard Description Language

UML Unified Modeling Language

11

Chapter 1 : Introduction and Related Work

1.1 Introduction

As a result of continuous advancements in computer technology, systems have

become larger so they can fulfill more demanding and complicated tasks.

Consequently, systems become vulnerable, and less reliable [1]. This makes software

testing an important part of software development. By 1968, the first conference was

held which had the goal of “the establishment and use of sound engineering principles

in order to obtain reliable, efficient and economically viable software” [2]. This

conference came up with the conclusion that applying quality assurance to products,

process, components, and materials is so important. However, quality assurance and

testing is a critical and an expensive process. In 1970, quality assurance of any typical

programming project could cost more than 50 percent of the total cost; it also could

take 50 percent of the whole time spent on that project. For the time being, the time

and cost of software testing are the same [3, 4].

Model-Based Testing (MBT) is the most famous approach for reducing the

cost and time of testing. Prominent state based models include (Mealy) Finite State

Machines (FSMs), labeled transition systems, finite state automata. In this thesis, we

consider systems modeled as FSMs. An FSM consists of states, inputs, outputs, and

transitions between states each labeled by an input/output pair. FSMs are the

underlying models for essential description techniques, such as the Standard

Description Language (SDL), Statecharts, and the Unified Modeling Language

(UML) [5].

Test derivation from FSMs provides a rigor approach for functional testing of

interactive systems and communication protocols [6, 7, 8], web services [9-13],

software design [14], sequential circuits [15], lexical analysis [16], graphical user

interfaces [17], object oriented systems [18, 19], embedded systems [20, 21], and

industrial projects [22].

A fundamental FSM-based testing problem deals with the derivation of

distinguishing sequences that can identify the initial state of an FSM describing the

behavior of a black-box Implementation Under Test (IUT) [7, 8, 14]. An input

sequence is adaptive if the selection of the next input to be applied to an IUT is based

12

on the observed outputs of the IUT to the previous inputs, and an input sequence is

preset if it is a single input sequence that is fixed before performing the experiment.

An adaptive distinguishing sequence is usually realized from a special FSM, which

can be thought as a rooted decision tree, called a distinguishing test case (DTC) or an

adaptive distinguishing sequence (ADS).

In fact, since the seminal paper by Moore [23], the distinguishability problem

is still under further investigation for various classes of FSMs. For more detailed

information, the reader may refer to the related studies and textbooks reported by Alur

et al. [24], Dorofeeva et al. [22], Gill [25], Güniçen et al. [26], Güniçen et al. [27],

Hierons and Türker [28], Kohavi [29], Kushik et al. [30, 31], Lee and Yannakakis

[32], Mathur [33], Spitsyna et al. [34], Türker and Yenigün [35], and Türker et al.

[36].

We note that well-studied classes of FSMs include complete or partial FSMs

depending upon whether there exists an outgoing transition under each input at each

state or not; deterministic if at each state under each input there is at most a single

outgoing transition under the input or nondeterministic if at some state(s) there exists

many outgoing transitions under the input. A nondeterministic FSM is observable if at

for every state found in the machine has maximum one transition for every

input/output pair; else, the FSM is called non-observable. Almost all the studies

focused on observable FSMs because any non-observable specification FSM can be

transformed into an observable FSM with the same behavior. In this thesis, we

consider complete observable nondeterministic FSMs. We note that non-determinism

occurs due to various reasons such as performance, flexibility, limited controllability,

and/or abstraction [24, 37, 38].

In general, as mentioned above, the distinguishability problem is studied

assuming either a preset or adaptive testing mode. In the former, a distinguishing

sequence is derived in advance and all the inputs of the distinguishing sequence are

applied to the given IUT FSM while in the latter, the selection of the next input to

apply is based on the observed outputs to the previous inputs. Accordingly, an

adaptive experiment is usually represented by a special FSM with a tree structure that

is usually called a DTC.

13

Contribution: In this thesis, we target the problem of deriving a

distinguishing test case DTC for a set of states of a (complete and observable)

nondeterministic FSM. In [39], a procedure, called A, is provided for checking the

existence of a distinguishing test case for a set of states of an FSM. In particular,

given an FSM S and a set b of several states, based on some established construction

rules, a special distinguishing machine Sb-dist that includes all distinguishing test cases

(if any) for the set b is derived. Then, using the FSM Sb-dist , the procedure returns a

message indicating that the set b has no DTC (i.e., the set is not adaptively

distinguishing), or a message indicating that the set is adaptively distinguishing (i.e.

there exists a DTC for the set). If a DTC exists for the set b, then a simple procedure

for constructing a DTC is provided. As the complexity of deriving the distinguishing

machine Sb-dist significantly depends on the cardinality of the subset b, in this thesis,

we propose an incremental approach (strategy), called Inc, for checking the existence

of a DTC for a given set b of several states of an FSM. Instead of considering all the

states of b at once, as done in [39], we start by partitioning the set b into disjoint

subsets of states. Then, given a subset c of the partition, a distinguishing machine Sc-

dist is derived for c. If there is no DTC for subset c, then the algorithm directly

terminates concluding that the given set b has no DTC. Otherwise, another subset c of

the partition is incrementally added to the so-far selected subsets. That is, again a

distinguishing machine for c is derived that is composed of the already obtained

composition of the distinguishing machines for the previously considered subsets. The

process is repeated till the procedure terminates at some iteration as there is no DTC

for a current subset of the partition, or the procedure terminates declaring that the

given set of states b has a DTC. It should be noted that basically, in order to be able to

incrementally consider subsets (of the partition) of states for checking the existence of

a DTC, a commutative and associative composition operator is proposed over already

constructed machines Sc-dist which represent corresponding sets of test cases. We

experiment with the algorithm while initially considering two states of the subset of b,

then incrementally considering the other states of b one after the other. However, we

also experiment with different partitions of the set b, namely, we study the effect

splitting b into two, three, four, and eight disjoint subsets of the same cardinality. A

lot of experiments are conducted to assess the performance of A and the incremental

implementations.

14

In addition, as the A [39] and Inc algorithms do not scale well in terms of

execution time for large size machines. In the second part of this thesis, two heuristic

approaches for the derivation of a DTC for a given set b are proposed. The first

approach, called H, is based on traversing the truncated successor tree, used for

constructing a DTC, using Depth First Search (DFS) for the given fixed height L

while appropriately utilizing hashing to speed up the search process. The second

approach, called Hc, is the same as the first; however, it uses a cost function for

ordering the inputs to be considered in while conducting the search. A comprehensive

assessment of H and Hc implementations in terms of execution time and quality of

obtained solutions (height of obtained DTC) is provided. In theory, H (and Hc) may

not provide a solution while a solution exists as its search is restricted by fixed height

L; accordingly, L is set appropriately such that H (Hc) always find a solution for the

considered experiments. A detailed summary of the obtained experiments is provided

in the Conclusion section.

1.2 Related Work

“Gedanken experiments” paper by Moore was the first step in research on

distinguishing experiments for deterministic FSMs [23]. More surveys about FSM

experiments and related algorithms can be found in [30-32, 36].

Previous research on distinguishability focuses on two aspects, (i) establishing

the theoretic upper bound on the height of a DTC (i.e. the complexity); height of a

DTC means the maximum length that can input sequence reach during an experiment.

Height of the experiment is usually used for representing how much the experiment is

complex. Finding the tight upper bound is an important constituent of any intended

experiment. (ii) Other research on distinguishability, as the one considered in this

thesis, focuses on providing procedures for the derivation of DTCs.

Gill [25] and Lee and Yannakakis [32] presented methods for deriving

adaptive distinguishing experiments with the evaluation of the height of these

experiments. Kohavi [29] showed that the upper bound on the height of a preset

experiment is exponential with respect to the number of states of a given machine,

while Sokolovskii, as reported in [40], has shown that such an upper bound for

adaptive distinguishing experiments is polynomial. For deterministic FSMs El-Fakih

15

et al. [41] presented heuristics, including a genetic algorithm, for deriving preset

distinguishing sequences for observable nondeterministic FSMs.

For research related to adaptive experiments with complete observable

nondeterministic specifications, Alur et al. [24] proved that for two states for a

complete observable machine that has n states, the shortest length is maximum n(n –

1)/2. When n > 2 states, Kushik et al. [31] showed that 2
n
 – n – 1 is the maximum

height or (upper bound of the height) of any a shortest DTC. El-Fakih et al. [31, 39]

showed that this exponential bound is tight.

On the derivation of DTCs, a method is presented in [39] for checking the

existence of DTC; and if it exists then a DTC is derived. The work presented in this

thesis extends previous work in [39] by introducing and assessing incremental

approach for deriving DTCs. In addition, in this thesis, a heuristic approach is

proposed and assessed for efficient deriving DTCs considering very large size FSMs.

It should be noted that recently, Türker et al. [36] presented and assessed effective

algorithms for constructing minimum cost DTCs, but they were for deterministic

FSMs

In addition, it is worth mentioning that there is lately a new research direction

in solving distinguishability problems. Some work has been proposed for using state-

of-the-art parallel technologies for efficiently solving some distinguishability

problems. For instance, Hierons and Türker [42] presented parallel algorithms for

deriving DTCs for observable nondeterministic FSMs using Graphical Processing

Units (GPU) and El-Fakih et al. [43] proposed two GPU based implementations and a

Network-of-Workstations based implementation for the derivation of all the

successors of all pairs of states of an observable nondeterministic FSM. This is done

in order to reduce the time and efforts of deriving sequences for distinguishing (states

of) nondeterministic FSMs.

In summary, in this thesis, adaptive distinguishing experiments for

nondeterministic FSMs are studied. The main objective is to reduce the execution

time of deriving an experiment, as execution time increases drastically as the size of

the FSM increases (i.e., the number of transitions of a machine). The work presented

in this thesis extends previous work in [39] by introducing and assessing incremental

16

approach for deriving DTCs. In addition, in this thesis, two heuristic approach are

proposed and assessed for efficient deriving DTCs considering very large size FSMs.

This thesis is organized as follows; Chapter 2 discusses the notions and

definitions used in the thesis and it also includes the exact algorithm [39]. Chapter 3

explains the incremental approach for deriving a distinguishing test case. It also

discusses the composition operator used by the incremental algorithm. Chapter 4

includes the proposed two heuristic algorithms H and Hc. Chapter 5 includes

experimental evaluation of the proposed work and Chapter 6 concludes this thesis and

includes a detailed summary of the obtained results.

17

Chapter 2 : Preliminaries

In this chapter, the notions and terminologies used throughout the thesis. In

addition, the exact algorithm, called A, given in [39], for checking the existence and

deriving a distinguishing test case for a subset of states of a nondeterministic FSM is

introduced.

2.1 Preliminaries

A finite state machine (FSM), or simply a machine, is a 4-tuple S = (S, I, O,

hS), where S is a finite nonempty set of states; I and O are finite input and output

alphabets; and hS  S  I  O  S is a (behavior) transition relation. An FSM is

nondeterministic if for some pair (s, i)  S  I there exist several pairs (o, s)  O  S

such that (s, i, o, s)  hS. If the FSM has the designated initial state then the FSM is

an initialized FSM, written (S, I, O, hS, s0). An FSM S is complete if for each pair (s, i)

 S  I there exists (o, s) O  S such that (s, i, o, s)  hS. FSM S is observable

if for each two transitions (s, i, o, s1), (s, i, o, s2)  hS. It holds that s1 = s2. FSM S is

single-input if at each state, there is at most one defined input at the state, and S is

output-complete if for each pair (s, i)  S  I such that the input i is defined at state

s. For every output o  O, there exists a transition from s with the input i and output

o. An initialized FSM S is acyclic if the FSM transition diagram has no cycles. An

initialized FSM S is (initially) connected if each state is reachable from the initial

state. See Table ‎2-1 as an example of FSM S. The machine has four states named 1, 2,

3, and 4, three inputs a, b, and c, two outputs named 0 and 1. Each transition is

labeled with an input/output pair. S is nondeterministic because at state 1 under the

input a, the machine takes us either to state 2 while producing the output 1, or to state

3 with the output 0.

18

Table ‎2-1: Tabular representation of FSM S.

Input\State 1 2 3 4

a 2 / 1, 3 / 0 2 / 0 2 / 0, 4 / 1 3 / 1

b 1 / 0 2 / 1 3 / 0 2 / 1

c 2/0 3 / 0 4 / 1 2 / 1

In this thesis, the use of adaptive distinguishing experiments is considered

with complete nondeterministic observable FSMs which are non-initialized. A

distinguishing experiment for a subset of states of a non-initialized FSM can be

described using an initialized single-input output-complete FSM with an acyclic

transition graph that is usually referred to as a test case [39, 44].

Test Case: Given an input alphabet I and an output alphabet O, a test case is

an initialized initially connected single-input output-complete observable initialized

FSM P with an acyclic transition graph.

A state of test case P with no outgoing transitions is a deadlock state. By

definition, at each intermediate state of P, only a single input is defined with all

outputs. A test case over alphabets I and O defines an adaptive experiment with any

complete FSM S over the alphabets I and O.

In general, given a test case P, the height of the test case P is determined as the

length of a longest trace from the initial state to a deadlock state of P and it specifies

the length of a longest input sequence that can be applied to an FSM S during the

experiment.

A trace of S at state s is a sequence of input/output pairs of sequential

transitions starting from state s and the set of all traces of S at state s includes the

empty trace. As an example, the machine S is considered. In Table 2-1, a/0 b/1 and

a/0 b/0 are two traces at the initial state 1. For state s and a sequence   (IO)* of

input-output pairs, the -successor of state s is the set of all states that can be reached

from s by . If  is not a trace at state s then the -successor of state s is the empty set

and in this case, we sometimes say that the -successor of s does not exist. For an

observable FSM S, the -successor of any state s has at most one item. Given a subset

19

b of states of S and a sequence   (IO)*, the -successor of b is the union of -

successors over all states of b. As examples, considering the FSM in Table 2-1, the

a/0- successor of state 1 is state 2 and the a/1- successor of state 1 is state 3.

Considering the set of states b = {1, 2, 3, 4}, it can be concluded that the c/0-

successor of b is the set {2, 3}, see Table 2-2.

Table ‎2-2: Tabular representation of FSM Sdist.

input\states (1,2,3,4) (2,3) (2,4) F

a F / 0 , 1 F / 0 , 1 - F / f

b F / 0, 1 - F / 1 F / f

c (2,3) / 0 , (2, 4) /

1

- - F / f

 Let S = (S, I, O, hS) be a complete observable possibly nondeterministic FSM

and b be a subset of states of S.

Throughout the thesis, the notations s and mss ,...,1 are used for representing a

singleton {s} and a subset {s1, …, sm} of states of an FSM.

Distinguishing test case: A test case P over input and output alphabets I and O

is a distinguishing test case (DTC) for the subset b if every trace from the initial state

of P to a deadlock state of P is a trace at most at one state of the set b. If there exists a

distinguishing test case for the subset b then the set b is a distinguishable set, or the

set b is distinguishable. If there exists a distinguishing test case for the set b = S, then

the FSM S is distinguishable. See Table ‎2-3 which depicts a tabular representation of

a distinguishing test case for FSM S in Table ‎2-1.

Table ‎2-3 : Tabular representation of a distinguishing test case for FSM S.

input\states ̅̅ ̅̅ ̅̅ ̅̅ ̅ ̅̅ ̅̅ ̅̅ ̅̅

a - - D / 0 , D / 1

b - D / 0 , D / 1 -

c ̅̅ ̅̅ / 0 , ̅̅ ̅̅ / 1 - -

20

Here, the construction for the so-called distinguishing machine for a set b used

by the A procedure [39] and by our incremental method, proposed in the following

chapter, is included.

2.2 The Exact Algorithm A for Deriving a Distinguishing Test Case:

Derivation of the distinguishing machine Sb-dist for set b: Given a complete

observable FSM S = (S, I, O, hS) and a subset b of S, the machine Sb_dist is constructed

in the following way. States of Sb_dist are non-empty subsets of S union, the designated

state F and f is the designated output that is not in the set O. The initial state of Sb_dist

is state b and the machine has the smallest set of transitions which can be constructed

using the following:

 (1) A transition at state F under each input is a self-loop labeled with the output f.

 (2) For each subset g, label a transition from state g under input i as an undefined

transition (denoted as „-„ at g), if for each o  O, the non-empty io-successors of

every two different states of the set g do not coincide and each non-empty io-

successor of g is a singleton. The input i is an undefined input at g.

 (3) There is a transition (g, i, o, d) where d  F and d is not a singleton, if and only

if for every o  O, the non-empty io-successors of every two different states of

the set g do not coincide and d is the non-empty io-successor of the set g.

 (4) There is a transition (g, i, o, F) if and only if the io-successor of the set g is not

empty and there exists o  O such that the non-empty io-successors of two

different states of the set g coincide.

The procedure A [39] is used. It takes the FSMs S and Sb_dist as an input and

returns a message “The set b is not adaptively distinguishable” when an adaptive

distinguishing test case for the set b does not exist. In fact, A is mainly based on

iteratively determining and deleting states with undefined inputs of Sb_dist to check the

existence of a DTC. If a DTC for the set b exists, then A uses a simple procedure for

constructing the test case.

Exact Algorithm (A):

First, the existence of a distinguishing test case for a complete observable

nondeterministic FSM is checked.

21

Input: FSMs S and Sdist.

Output : The message “FSM S is not adaptively distinguishing” or the set UN of

undefined input at deleted states.

UN := ; k := 1;

Step 1. For each state c of Sdist with an undefined input, an undefined input ̅ at c

should be considered and this input should be added to the UN;

If there are no states with undefined transitions then

Return the message “FSM S is not adaptively distinguishing”

 Step 2.

 Remove from Sdist each state c with an undefined input ̅ and all incoming

transitions to this state;

If the initial state of Sdist is deleted then Return the set UN ;

 k++ and Go-to Step 1 ;

After that a DTC is derived from derived from S and Sdist .

Example 2.1. As an example, consider the machine Sdist in Table ‎2-2 with the

initial state S = {1, 2, 3, 4} derived from the FSM S in Table ‎2-1. For the obtained

machine Sdist each of the states ̅̅ ̅̅ and ̅̅ ̅̅ has an undefined input, and the initial

state does not have an undefined input. Thus, by applying the iterative process at Step

1, we delete from Sdist states ̅̅ ̅̅ and ̅̅ ̅̅ and their incoming transitions, and then the

initial state will have an undefined transition under the input c. As the initial state is

deleted, the FSM Sdist has no complete submachine and thus S is adaptively

distinguishing and the set UN contains ̅̅ ̅̅
 = a, ̅̅ ̅̅

 = b, and ̅̅ ̅̅ ̅̅ ̅̅ ̅
 = c. After

applying procedure 1, and as a DTC exists for this example, Procedure 2 in [39] is

used to derive the DTC shown in.

22

Chapter 3 : An Incremental Algorithm for Deriving Distinguishing Test Cases

In this chapter, we propose an incremental algorithm Inc for deriving a DTC

for a set b of states of a given FSM. This algorithm considers the states of the set b;

one after the other utilizing the following proposed composition operator.

3.1 Incremental Composition Operator:

 In order to decide if a set of states has a distinguishing test case incrementally,

we propose a special composition operator, denoted as , over two FSMs Sb-dist and

Sc-dist, where b and c are disjoint subsets of S, that produces the machine Sbc_dist. It is

also noted that when b (or c) is a singleton, hereafter, Sb-dist is used to denote S with

the initial state b (c).

Given disjoint subsets b and c of states of a complete observable FSM S =

(S, I, O, hS) and the machines Sb-dist and Sc-dist derived according to construction rules

(1) to (4) given in the previous chapter, the machine Sb-dist  Sc-dist is derived in the

following way. The machine Sb-dist  Sc-dist = (Q, (b, c), I, O  { f }, h) is the smallest

machine Q = (Q, (b, c), I, O  { f }, hQ) with the initial state (b , c) that can be

derived using the rules given below. States of Sb-dist  Sc-dist are either pairs of

(subsets of) states Sb-dist and Sc-dist where these subsets can both be non-empty, or only

one of them is the empty subset, or a state of Sb-dist  Sc-dist can be the designated F

state. The output f is the designated output that is not in the set O.

 (a) A transition at the state F under each input is a self-loop labeled with the output f.

 (b) There is a transition ((m, n), i, o, (d, g)), d, g  F, in the FSM Sb_dist  Sc_dist if

and only if

 1) FSM Sb-dist has no transition (m, i, f, F) and FSM Sc-dist has no transition (n, i, f,

F);

 2) For every o  O, the non-empty io-successors of m and n do not intersect ;

 3) d is the non-empty io-successor of the set m and g is the non-empty io-

successor of the set n.

23

 (c) There is a transition ((m, n), i, o, (, g)), g  F, in the FSM Sb_dist  Sc_dist if and

only if the non-empty io-successor g exists only for the state n and FSM Sb-dist

has no transition (m, i, f, F)

 (d) There is a transition ((m, n), i, o, (d, ), d  F, in the FSM Sb_dist  Sc_dist if and

only if the non-empty io-successor d exists only for the state m and FSM Sc_dist

has no transition (n, i, f, F)

 (e) There is a transition ((m, n), i, f, F) in the FSM Sb-dist  Sc_dist if and only if

there is a transition (m, i, f, F) in FSM Sb or there is a transition (n, i, f, F) in

FSM Sc_dist ; or there exists o  O such that the non-empty io-successors of

subsets m and n in FSM S intersect.

Each state (b, c) of the FSM Q obtained after applying construction rules (a) to

(e) above is replaced by the union b  c. The obtained FSM is the FSM Sbc-dist.

shows how S{1,2,3}-dist = S{1,2}-dist  S{3}-dist is derived using the above rules.

Table ‎3-1: Tabular representation of FSM S{1,2,3}-dist = S{1,2}-dist  S{3}-dist.

Input\State ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ̅̅ ̅̅ ̅ ̅̅ ̅̅ ̅ 2 3 4

a

2 / 0

3 / 1

 ̅̅ ̅̅ ̅ / 0

 ̅̅ ̅̅ ̅ / 1

2 / 0 2 / 0,

4 / 1

3 / 1

b ̅̅ ̅̅ ̅̅ /0

2 / 1

2 /1

3 / 0

 ̅̅ ̅̅ ̅ / 0

2 / 1 3 / 0 2 / 1

c ̅̅ ̅̅ ̅̅ / 0

4 / 1

3 / 0

4 / 1

2 / 0

2 / 1

2 / 0

4 / 1

3 / 0 4 / 1 2 / 1

24

3.2 Inc Algorithm

Here, we present the incremental algorithm Inc for deriving a DTC for a set of

state b of an FSM is introduced. We also define the derivatives Inc(k) of Inc, where

the set b is partitioned into k subsets, k = 2, 3, 4, and 8.

Incremental Algorithm (Inc). Deriving a distinguishing test case incrementally

Input : FSM S = (S, I, O, hS), subset b = {1, …, m}  S, m  3

Output : The message “The set b is not adaptively distinguishing” or a distinguishing

test case R for the set b

Step 1. Partition b into disjoint subsets b1… bl where |b1|  2 ;

k := 1 ;

Derive the FSM Sb(k)-dist using the rules (1) to (4) given before A algorithm in the

previous chapter.

Call Procedure A for Sb(k)-dist ;

 If Procedure A returns the message “The set b(k) is not adaptively distinguishing”

then Return the message “The set b is not adaptively distinguishing”

Step 2. While k < l

Derive the FSM Sb(k+1)-dist using rules (1) to (4) given in A algorithm;

 If |b(k+1)| > 1 and Procedure A returns the message “The set b(k+1) is not

adaptively distinguishing”

then Return the message “The set b is not adaptively distinguishing”

Derive the FSM Sc-dist = Sb(k)-dist  Sb(k+1)-dist ;

Call Procedure A for Sc-dist ;

 If Procedure A returns the message “The set c is not adaptively distinguishing”

25

then Return the message “The set b is not adaptively distinguishing”

 k++ ;

 Sb(k)-dist = Sc-dist ;

 EndWhile

Step 3. Construct the test case R for the set c as given in [39];

End Inc

Example 3.1. Considering the machine S in Table ‎2-1, the set b = {1, 2, 3, 4},

and the partition b1 = {1, 2}, b2 = {3}, and b3 = {4} of b. At Step 1 of Inc, starting

with the pair b1 obtained, by rules (1) to (4), the FSM S{1,2}-dist in Table ‎3-2. As the

initial state ̅̅ ̅̅ has an adaptive distinguishing test case for states 1 and 2, then, at Step

2, in the first iteration of the while-loop, the machine S{1,2,3}-dist = S{1,2}-dist  S{3} in

Table ‎3-1 is derived. As the set ̅̅ ̅̅ ̅̅ has a DTC, in the second iteration of the loop,

the machine S{1,2,3,4}-dist (in Table ‎3-3) is constructed, and afterwards at Step 3 a test

case is constructed for the set ̅̅ ̅̅ ̅̅ ̅̅ ̅ as given in [39] It is noted if at Step 1 there is

no DTC for the pair {1, 2}, or if after the first iteration of the loop there is no DTC for

the set {1, 2, 3}, then the incremental procedure would terminate declaring that there

is no DTC for the considered set b. As another application of Inc, we could consider

the partition b1 = {1, 2} and b2 = {3, 4} of the set b. In this case, after deriving S{1,2}-

dist at Step 1, at Step 2, the machine S{3,4}-dist is derived and as the set ̅̅ ̅̅ has a DTC,

in the second iteration of the loop, the machine S{1,2,3,4}-dist is constructed and

afterwards as the set {1, 2, 3, 4} is adaptively distinguishing, a DTC for the set b is

derived.

26

Table ‎3-2: Tabular representation of FSM S{1,2}-dist.

Table ‎3-3: Tabular representation of FSM S{1,2,3,4}-dist = S{1,2,3}_dist  S{4}-dist.

Input\States (1,2,3,4) (2,3) (2,4) 1 2 3 4 F

a F / 0 , 1 F / 0 , 1 - - - - - F / f

b F / 0, 1 - F / 1 - - - - F / f

c ̅̅ ̅̅ ̅ / 0 , ̅̅ ̅̅ ̅ /

1

- - - - - - F / f

3.3 Inc(k) Implementations

As Inc starts from a given partition b1…, bl of a set b = {1, 2,… sm}  S of

the specification machine S, | b | = m  n = |S|, then it would be interesting to assess

the performance of Inc considering various ways of partitioning the set b. We

consider the following types of partitions and rename Inc accordingly to simplify

discussions. Namely, hereafter, Inc is used when the set b is partitioned into | b | - 1

subsets as indicated in the algorithm, i.e., b1 = {1, 2} and for every i = 2, …, l, bi is a

singleton, i.e., bi = {si+1}. We use Inc(k), k = 2, 3, 4, or 8, when b is partitioned into k

subsets {b1}, … {bk-1}, { bk}. We experiment with two values of m, namely, m = 5

and m = | S |.

Input\State ̅̅ ̅̅ ̅ ̅̅ ̅̅ ̅ 1 2 3 4 F

a ̅̅ ̅̅ / 0

2 / 1

F / f 2 / 1

3 / 0

2 / 0 2 / 0

4 / 1

3 / 1 F / f

b 1 / 0

2 / 1

2 / 1

3 / 0

1 / 0 2 / 1 3 / 0 2 / 1 F / f

c ̅̅ ̅̅ ̅ / 0 3 / 0

4 / 1

2 / 0 3 / 0 4 / 1 2 / 1 F / f

27

Chapter 4 : A Heuristic Approach for Deriving Distinguishing Test Cases

In this chapter, some rules that can be used for constructing a DTC for a set of

states of a specification FSM are presented. The first approach, called H, uses the

depth first search techniques for a given fixed height while appropriately utilizing

hashing to speed up the search process. The second approach, called Hc, is the same

as the first; however, it uses a cost function for ordering the inputs to be considered in

the search. Experimental evaluation of these approaches is provided in Chapter 5.

4.1 Rules for Constructing a DTC

Given a specification FSM S, an approach is presented here for constructing a

DTC for a given set b of states based on Depth-First-Search (DFS) traversal of a

truncated successor tree of height L ≥ 1 that is derived using the following rules. The

truncated successor tree of height L is constructed using the following rules:

(a) The root node of the tree is labeled with the set b and an edge between two

nodes of the tree is labeled by an input-output i/o pair.

(b) At each non-leaf (or non-terminal) node of the tree, there exist | O |

outgoing transitions only under the same input i  I. A terminal leaf node

has no outgoing transitions.

(c) Given a non-leaf (or non-terminal) node labeled with a set of states c and

an input i, for each output o  O, there is a transition (c, i/o, d) where d is

the io-successor of the set c or the empty set.

(d) Given a node labeled (with the subset) d with parent c and transition (c,

i/o, d), node d is called a bad terminal node if there are two different states

of c where the non-empty io-successors of these states coincide. By

definition, a bad terminal node has no outgoing transitions.

(e) Given a node d with parent c and transition (c, i/o, d), node d is called a

good terminal leaf node if the io-successor of c is a singleton or the empty

set and d is not a bad node.

(f) Given a non-leaf node c such that for each input i there is an edge to a bad

node, then the c is also a bad node.

28

(g) Given a node c at the L-th level of the tree starting from the initial root, if c

is not labeled with a singleton or the empty set (i.e., c is not a good

terminal node), then c is labeled as a bad node (due to the height);

otherwise, c is a good terminal leaf node. This rule is added to limit the

search up to a certain height L, where the value of L is appropriately set

according to conducted experiments.

If there exists a finite tree derived using rules (a) to (g) such that each leaf

node of the tree is a good terminal leaf node then this tree represents a DTC for the set

b, written DTCb. By definition, a subtree DTCb with the root node labeled with the set

c, denoted DTCc, represents a DTC for the set c.

4.2 H and Hc Methods

Two DFS based versions of the above rules are implemented; both

implementations use the same rules for an ordered list of inputs while exploring the

tree. This list provides the order that will be used to derive the i-successors of a

current subset c. The difference between these implementations is that the first

version, hereafter named H, uses the (same) predefined order i1, i2, . . , ik-1, ik, k = | I |,

of inputs at each node of the tree; while the second implementation, named Hc, uses a

cost function that provides an order among the inputs of I at each node of the tree.

More precisely, at a current node c we consider the ordered list of inputs i1, i2, . . , ik-1 ,

ik, k = | I | and the following rules:

(h) Let i be the current input of the ordered list:

If there exists an output o such that there are two different states of c

where non-empty io-successors of these states coincide or the i/o

successor of c is a bad node, then:

 (1) Node c is labeled as a bad node under input i ;

 The input i is deleted from the ordered list of inputs attached to

node c ;

29

 If the list of inputs at c is empty (there are no more inputs

to consider at c), then c is labeled as a bad node (i.e., node

c is bad under all inputs), outgoing transitions of c are

deleted.

(i) If node d is labeled as a bad node, consider the transition from the parent

node c leading to the bad node d over the input i, then apply (1) above to node

c.

The cost function for the Hc implementation is calculated as follows:

Hc Cost function: The order list of inputs at a node is labeled with the subset

of states c for each input i in I. The cost of i under c is calculated as the total number

of the io-successors of c over all outputs o in O.

On Speeding up the search process: Speeding up the search process is

achieved by hashing the good nodes that lead us to solution. Then afterwards if during

the search an io-successor of a current state c is found to be d, then no further search

is carried out from d; node c is labeled as bad node under i, and handling node c is

done as described in rules (h) and (i) above. Furthermore, if during the search, a DTCd

is established for a subset of states say d, then d is hashed as a good node and DTCd is

saved. In this case, if afterwards during the search node d is encountered again, no

further search is carried out of d as it is considered as a good terminal leaf node since

a DTC for the subset d is already derived.

Example 4.1. As an application example of the H approach, consider the FSM

S1 in Table ‎4-1 with inputs {a, b}, outputs {0, 1}, and states {1, 2, 3, 4}. The H

method is applied starting from the set of states b = ̅̅ ̅̅ using the order a/0, a/1, b/0,

b/1 for input/output pairs at tree nodes. First, as none of the non-empty a0 -

successors of state 0 and a/0 - successors of state 1 coincide, then node n2 labeled by

the a0-sucessor of ̅̅ ̅̅ = ̅̅ ̅̅ is added to the tree (Figure ‎4-1). Then at n2, considering

the input a, as the a/0-successors of states 1 and 2 coincide, then input a is considered

as a bad input at ̅̅ ̅̅ , and we proceed to the second input b. Then, as none of the

non-empty b/0-successors of state 1 and b/1-successors of 2 coincide, then b/0-

successor ̅̅ ̅̅ (node n3) of ̅̅ ̅̅ is derived. The a/0-sucessor of ̅̅ ̅̅ is the singleton

{1}, then as this a/0-sucessor is a terminal leaf node, the a/1-sucessor ̅̅ ̅̅ is derived,

30

and the process repeats until the tree, which represents a DTC for ̅̅ ̅̅ , given in

Table ‎4-1 is obtained.

Note that for this example, if hashing is used as illustrated above, it is

observed that the tree with root node n5 labeled by ̅̅ ̅̅ represents a DTC for ̅̅ ̅̅ , and

thus ̅̅ ̅̅ is hashed as a DTC for ̅̅ ̅̅ , then later in the search as the a/1-sucessor of ̅̅ ̅̅

is ̅̅ ̅̅ (node n12), thus, no further exploration is done from node n12 i.e., the nodes n13,

n14, and n15, are not generated, and this speeds up the search process. Further, if we

assume that the maximum height L equals 2, then, while conducting the search, node

n3 becomes a leaf node and thus we do not obtain a DTC (of height 2) for the pair

 ̅̅ ̅̅ .

Table ‎4-1: Tabular representation of FSM S1.

Input\State 0 1 2 3 4

a 1 / 0, 1 / 1 2 / 0, 3 / 1 2 / 0 , 3 / 1 3 / 2 3 / 1

b 2 / 0 0 / 0 4 / 0 3 / 0 4 / 2

Figure ‎4-1: Tree obtained of applying the H method starting from the pair ̅̅ ̅̅ .

Example 4.2. Here we apply the Hc method to the set machine described in

previous example again considering the same set of state b = ̅̅ ̅̅ . First, at the initial

node, as the cost of the a-sucessors of ̅̅ ̅̅ = 4 and that of the b-sucessors of ̅̅ ̅̅ = 2,

the order b (namely, b/0; b/1) followed by a (namely, a/0; a/1) is used when

31

searching from a node labeled with ̅̅ ̅̅ . Afterwards, node n3 is derived and again the

order b/0; b/1; a/0; a/1 is established for this node, then the process repeats till the tree

in

Figure ‎4-2, which also represents a DTC for the set is obatained. For this

example, it is clear that Hc even for the height L = 4 derives much smaller tree than

that of the H method.

Figure ‎4-2: Tree obtained by applying the Hc method starting from the pair ̅̅ ̅̅ .

32

Chapter 5 : Experimental Evaluation

This chapter includes the experiments conducted for assessing the A, H, and

Hc methods in terms of execution time and quality of obtained solutions (height of

obtained DTCs). Experiments are conducted to study how often a DTC exists

depending on some FSM attributes and a number of states to be distinguished. Thus,

according to the conducted experiments, H and Hc significantly outperform A in

terms of execution time. H and Hc execution time is then assessed over large size

machines. The execution time of A and its incremental implementations are also

compared as both always find a solution when a solution exists. It is also interestingly

observed that, for the conducted experiments that both H and Hc never missed finding

a solution when a solution existed, and never declared that there is no solution where

in fact a solution exists. In other words, the maximum search space of H and Hc is set

appropriately to obtain such results.

Experiments were conducted using randomly generated (complete) machines

with various combinations of attributes including a number of states | S |, inputs | I |,

outputs | O |, minimum min and maximum max degrees of non-determinism. The

minimum or maximum degree of non-determinism represents the minimum or

maximum number of transitions that are going from each state under each input of the

generated machine. In addition, we also conducted experiments using some real

machines and obtained the same pattern as random machines.

In general, depending on the assessment objective, as illustrated below,

experiments are conducted to assess performance when:

| b | = 2 , i.e. when the number of states to distinguish in the set b equals two, or

b = S and thus | b | = | S | , i.e., when the objective is to distinguish all states of the

machine.

In some cases, several values of | b | are considered. It is noted that for each

considered combination of attributes and a considered value of | b |, we run five

different experiments and then calculate and depict the average of the obtained results

in the corresponding figures. The experiments were obtained using an Intel(R)

33

Core
(TM)

 i5 3337U CPU @1.80GHz with 4 GB RAM machine under Windows 7 (32

bit).

5.1 Existence of DTCs

Here the existence of a DTC depending on the number of state, outputs, and

the degree of non-determinism is checked. Experiments are conducted using machines

with the following combinations attributes | S | = 40, 80, 120, | I | = 6, | O | = 4, 6,

15, 20, | S | / 2, | S | / 2 + 10 , min = 1, 2 and max = 2.

Existence when | b | = 2: DTCs were always obtained in all conducted

experiments when the objective was to distinguish a randomly selected pair of states

of the machine.

Existence when b = S: In general, according to the results depicted in

Figure ‎5-1, as the number of outputs increases, for the same considered number of

inputs, the possibility of finding a DTC for all states of the machine increases.

Figure ‎5-1: Existence of DTCs when b = S for deterministic and nondeterministic

FSMs.

5.2 A versus Incremental

Here the performance of A, Inc(k) described in previous sections, k could be 2,

3, 4, 8 states is assessed. It is noted that every point found in the figures below

0 0

100 100 100

0

25

75

0

100 100

0 0

25

0

100

0
0

10

20

30

40

50

60

70

80

90

100

4 6 15 20 30 4 6 15 20 40 50 4 6 15 20 60 70

40 80 120

P
e

rc
e

n
ta

ge
 o

f
e

xi
st

an
ce

No. outputs:

No. of states of machine:

34

corresponds to the average results of the experiments done for the machines with the

same values of attributes.

i) Representative example: We will have two parts of representative results;

results when we have DTC, and when there is no such DTC.

a) Results when a DTC exist: For experiments with distinguishing sequences,

we use machine with the following specifications: | S | = 50, | I | = 6, | O | = 40, min =

1, max = 2 the result in Figure ‎5-2, Inc is the slowest one because of the exhaustive

use of composition operator which is very expensive and consumes a lot of time. The

fastest one is A, then Inc(2), Inc(3), Inc(4), then Inc(8). This means the less usage of

composition operator, the faster the algorithm is when there is a DTC.

Figure ‎5-2: A vs Inc, Inc(2), Inc(3), Inc(4), Inc(8) when there is a DTC.

b) Results when there is no DTC: Here we use machine with | S | = 50, | I | =

6, | O | = 5, min = 3, max = 3. In Figure ‎5-3 results showed that Incremental

outperforms A when the goal is to distinguish small numbers like b = 5, but when b =

10, not all incrementals have better performance because when we use Inc(2) which

has the slowest performance, the composition operator consumes a lot of time,

because it builds a tree here when the division is 2 which makes it very slow. Inc(3)

also was slow. The order of algorithms is as follows: Inc, Inc(4), Inc(8) have the same

21

12

30

82 78

510

40

20

60
93

38

80
99

50

100 88
130

1

10

100

1000

5 10 50(all)

A
ve

ra
ge

 t
im

e
 (

m
s)

 in
 lo

g 1
0

sc
al

e

Number of states to distinguish

A

Inc

Inc(2)

Inc(3)

Inc(4)

Inc(8)

35

performance , then Inc(3), followed by A, then Inc(2). While when b = S ; A, Inc(2),

Inc(3), Inc(4), followed by Inc, then Inc(8). Inc(8) is the slowest one, which means

the composition operator here is used a lot.

Figure ‎5-3: A vs Inc, Inc(2), Inc(3), Inc(4), Inc(8) when there is no a DTC.

ii) Summary of all conducted experiments: This summary reports results

over all machines used when we have DTC, and when we don‟t have.

a) Results when a DTC exist: Machines with the following attributes are used:

| S | = 50, 100, 150, | I | = 6, | O | = 40, 45, min = 1, max = 2. According to the results

shown in Figure ‎5-4, when | b | = 5 or b = S (all states of the machine), A outperforms

all others followed by Inc(2), Inc(3), Inc(4), Inc(8), where Inc has the worst

performance. The reason is that the composition operator used in the incremental

implementations is expensive and thus when there is a DTC, the incremental takes

more time than A. Thus, the less number of times the composition is performed, the

better, i.e., Inc (2) is better than Inc (3), etc.

1.23E+06
799851

2

471

148 150
298

1.05E+06

2

301

6113

2

386

144

2

152

982623

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

5 10 50(all)

A
ve

ra
ge

 t
im

e
 (

m
s)

 in
 lo

g 1
0

sc
al

e

Number of states to distinguish

A

Inc

Inc(2)

Inc(3)

Inc(4)

Inc(8)

36

Figure ‎5-4: A and incremental when a DTC exists.

b) Results when there is no DTC: Here machines with the following attributes

are used: | S | = 50, 100, 150, | I | = 3, | O | = 3, min = 2, max = 2, and we consider the

cases when | b | = 5 and b = S. According to the obtained results in Figure ‎5-5, when |

b | = 5 and there is no DTC for the set b, Inc(4), inc(3), Inc, Inc(2) have a comparable

performance; followed by A. A did not produce results when | S | = 150. When b = S,

A, Inc(2), Inc(3), Inc(4) obtained comparable performance, followed by Inc, followed

by Inc(8).

Thus, it is clear that the incremental outperforms A when the objective is to

distinguish a small number of states, here | b | = 5; however, when the objective is to

distinguish a large number of states, namely, all states, A and Inc(k), k = 2, 3, or 4

showed comparable results as usually all detect faster, than when considering | b | =

5, that there is no DTC. However, Inc and Inc(8) did not perform as good as others as

Inc considers the states of the set b one by one and Inc(k) divides the set into many

subsets; and thus both Inc and Inc(8) used the composition operator more than other

methods.

21 20

40

80
56

11
82

510

158

2020

249

4660

40
50

82

150 134

220

93 80

167 200
310 300

99 90

233

200

314 350

120

290
460

1

10

100

1000

10000

5 50(all) 5 100(all) 5 150(all)

50 100 150

A
ve

ra
ge

 t
im

e
 (

m
s)

 in
 lo

g
10

 s
ca

le

A Inc Inc(2) Inc(3) Inc(4) Inc(8)

No. of states
to distinguish:

No. of states
of machine:

37

Figure ‎5-5: A and incremental when there is no a DTC.

5.3 Execution Time of A, H, and Hc Algorithms

i) Representative example: There are two parts of representative results;

results when there is DTC, and when there is no such DTC.

a) Results when a DTC exist: Representative example: Here we used machine

with: | S | = 50, | I | = 6, | O | = 26, min = 1, max = 2, and Figure ‎5-6 shows that the

execution time increases as the number of states that we want to distinguish increases

of experiments (FSMs) with distinguishing sequences. It shows that H, Hc performs

much better than A.

20354

2

2.84E+06

2 2

64
40

328

50

1304

240

78

2

532

2

1983

2

42

2

256

2

938

2

44

2

254

2

918

2

9160

5.12E+06

1

10

100

1000

10000

100000

1000000

10000000

5 50(all) 5 100(all) 5 150(all)

50 100 150

A
ve

ra
ge

 t
im

e
 (

m
s)

 in
 lo

g 1
0

sc
al

e

A Inc Inc(2) Inc(3) Inc(4) Inc(8)

No. of states to distinguish:

No. of states of machine:

38

Figure ‎5-6: Average time vs number of states to distinguish (A vs H vs HC) when

there is a DTC.

b) Results when there is no DTC: We used | S | = 50, | I | = 6, | O | = 5, min =

3, max = 3. Figure ‎5-7 shows the execution time as the number of states that I want to

distinguish increases of experiments (FSMs) without distinguishing sequences.

According to these experiments, H, Hc always outperforms A from 2 to 10 states;

after that A has the same performance as H and Hc.

Figure ‎5-7: Average time vs number of states to distinguish (A vs H vs HC) when

there is no a DTC.

ii) Summary of all conducted experiments: it reports results over all

machines used when we have DTC, and when we don‟t have.

a) Results when a DTC exist: Results when | b | = 2: Here we used machines

with the following specifications:| S | = 50, 70, 80, 100, 200, 250, 300, 350, 400, 450,

184.2

3670.6
9901.2 15708.2 16326.8

2 2 2 3 6
2 2 2 2 4

1

100

10000

2 3 4 5 10

A
ve

ra
ge

 t
im

e
 (

m
s)

 in

lo
g 1

0
 s

ca
le

Number of states to distinguish

A

Hc

H

159

6019

256404
720062 799851

2 2 2 2

10 8
4 6

2 2 2 2 2

42 42 36 34
10

2 2 2 2

1

10

100

1000

10000

100000

1000000

2 3 4 5 10 15 20 25 50

A
ve

ra
ge

 t
im

e
 (

m
s)

 in
 lo

g 1
0

 s
ca

le

Number of states to distinguish

A

Hc

H

39

500, 550, 600, 650, | I | = 10, | O | = 10, min = 5, max = 5. From Figure ‎5-8 we can see

that H, and Hc always outperform A when | b | = 2, and in general Hc is faster than H.

Figure ‎5-8: Average time vs number of transitions when there is a DTC and | b | = 2.

Results when b = S : In order to compare results when the DTC is over b = S,

we used machines with:| S | = 20, 40, 80, 120, | I | = 6, | O | = 4, 6, 15, 20, | S | / 2, | S |

/ 2 + 10, min = 1, and max = 2. Figure 3-8 showed that H, and Hc always outperforms

A when b = S. Also, Hc is faster than H. Figure ‎5-9 showed that H, and Hc always

outperform A when b = S. Also, Hc is faster than H.

Figure ‎5-9: Average time vs. number of states when there is a DTC and b = S.

546
1168 1627

3097

30104
63442

145396
257330

477512
913561 1.51E+06

2.17E+06 2.89E+06
4.87E+06 5.68E+06

45 54 38
90 92

38
92

715

226
406 474

246

1492
798

232

52 44 38 42
108

30
94

478 538
352 289

146

807 959

235

1

10

100

1000

10000

100000

1000000

10000000

A
ve

ra
ge

 t
im

e
 (

m
s)

 in
 lo

g 1
0

sc
al

e

Number of transitions of considered machines

A H Hc

2 2

10 10 10 10

40 40

70 80

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

4 4

1

10

100

122 125 126 248 247 248 497 495 739 745A
ve

ra
ge

 t
im

e
(m

s)
 in

 lo
g 1

0
sc

al
e

Number of transitions of considered machines

A

Hc

H

40

b) Results when there is no DTC: Here we used machines with the following

specifications: | S | = 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, | I | =

10, | O | = 10, min = 7, max = 7.

Results when | b | = 2: Figure ‎5-10 showed that when we want to find DTC

for | b | = 2, H, and Hc outperforms A, while the execution time for A increases

dramatically when the number of transitions increases.

Figure ‎5-10: Average time vs number of states when there is no a DTC and | b | = 2.

Results when b = S: All H, Hc, and A all have the same performance here.

5.4 Comparison between H and Hc Over Large Machines

Here we assess the performance of H and Hc considering large size machines.

We consider machines with the following attributes: | S | = 1000, 2000, 3000, 4000,

5000, 6000, 7000, 8000, 9000, 10000, 11000, 12000, 13000, 14000, 15000, 16000,

17000, 18000, 19000, 20000, | I | = 10, | O | = 10, min = 5, max = 5, and | b | = 2.

According to the obtained results depicted in Figure ‎5-11, it is clear that both methods

can handle big machines; however, Hc almost always outperforms H in terms of

execution time.

606

3954

14787

43398.2
103173

254244
474932

954367

2.77E+06
4.54E+06 5.80E+06

116 118 133 110 135 124 150 132 134 118 122
78

106 116 128 114 122 124 120 137 128 130

1

10

100

1000

10000

100000

1000000

10000000

3500 7000 10500 14000 17500 21000 24500 28000 35000 38500 42000

A
ve

ra
ge

 t
im

e
 (

m
s)

 in
 lo

g 1
0

 s
ca

le

Number of transitions

A H Hc

41

Figure ‎5-11: Average time vs number of transitions when there is a DTC.

5.5 Comparison of A, H, and Hc in Terms of the Quality of Obtained Solutions

A drawback of the H and Hc methods is that, by construction, they might miss

a solution when a solution exists; i.e., they might declare that there is no DTC when in

fact, there is a DTC. This is due to the fact that the search of these methods is carried

out up to a fixed depth. In order to avoid encountering this problem, the value L is

appropriately set, based on the conducted experiments, in such a way that H and Hc

always find a solution when such a solution exists. More precisely, for small and

medium size machines, up to 40000 transitions, the value of L is set according to the

longest DTC obtained by A over all conducted experiments. For large size machines,

we experimented with larger depth values and had set L appropriately according to the

longest obtained length.

In order to compare the results of A, H, Hc in terms of average length of

obtained adaptive sequences (the quality of obtained solutions) when | b | = 2,

machines with the following combinations of attributes are used, | S | = 100, 150, 200,

250, 300, 350, 400, 450, 500, 550, 650, | I | = 10, | O | = 10, min = 5, max = 5. The

average length of obtained sequences using the A, H, and Hc are 5.25, 5.7, and 5.3,

respectively; thus, A, H and Hc return sequences of comparable length. We can see

from Figure ‎5-12, if we want to compare 5 states, the gap between H, and Hc will

606
497

184

1308

46

307
403

485

1112

181

388

554
660

268

746 740

256

1550

40

423
509

1223

1812

253

832
942 908

311

0
200
400
600
800

1000
1200
1400
1600
1800
2000

A
ve

ra
ge

 t
im

e
 (

m
s)

 in
 lo

g
1

0
sc

al
e

Number of Transitions

Hc H

42

increase. And so on for 10 and 15 states. This means Hc does not only enhance the

time, but it also enhances the length.

Figure ‎5-12: Average length when number of states to distinguish equals | b | = 2, 5,

10, and 15.

 In order to compare the quality of solutions when b = S, machines with the

following attributes are used: | S | = 20, 40, 80, 120, | I | = 6, | O | = 4, 6, 15, 20, | S | /

2, | S | / 2 + 10, min = 1, and max = 2. For all conducted experiments, A, H, and Hc

return DTCs of average length 2.1 when a DTC exists. In other words, when b = S and

a DTC exist, the DTC length is usually small.

5.6 Experiments with Real Machines

In this part, we compare between A, Inc, IncA(2), H, Hc in terms of execution

time using real FSMs taken from the ACM/SIGDA benchmarks [45].

5.2 5.7

23.2

32.9

38.0

5.3

21.6

29.8

33.6

0

5

10

15

20

25

30

35

40

2 5 10 15

A
ve

ra
ge

 le
n

gt
h

Number of states to distinguish

A

H

Hc

43

Table ‎5-1: Real machines.

5.6.1 Existence of DTCs: Here we check the existence of a DTC depending

on the number of states. Experiments were conducted using these machines: s386,

s1a, log, s1488, sse, pma.

Existence when | b | = 2: DTCs were always obtained over all conducted

experiments when the objective was to distinguish a randomly selected pair of states

of the machine. Except for s1a, it doesn‟t have sequence.

Existence when | b | = S: According to the results depicted in Figure ‎5-13

when | b | = S, the possibility of finding a DTC for all states of the machine decreases.

Figure ‎5-13: Existence of a DTCs when | b | = S.

0 0 0

100 100 100

0

100

s386 s1a sse log s1488 pma

P
e

rc
e

n
ta

ge
 o

f
e

xi
st

an
ce

Machine name

Name Number of

states

Number of

transitions

Number of

inputs

Number of

outputs

s1488 48 12288 256 64

log 17 8704 512 17

s1a 20 5120 20 256

s386 13 1664 128 11

pma 24 3728 244 24

sse 16 5264 128 22

44

5.6.2 A versus Incremental: Here we assess the performance of A, Inc and

Inc(k) described in previous sections.

i) Representative example: We will have two parts of representative results;

results when we have DTC, and when there is no such DTC.

 a) Results when a DTC exist: Here we use machine “log” with specifications

| S | = 17, number of transitions | T | = 8704, | I | = 512, | O | = 17.

Figure ‎5-14 shows that when | b | = 5 or | b | = 10 or | b | = S. A has the best

performance over all algorithms, then Inc(2), followed by, Inc(3), then Inc(4), then

Inc(8), Inc comes at the last.

Figure ‎5-14: Average time in (ms) versus number of states that we want to distinguish

with a DTC for “log” machine.

b) Results when there is no DTC: we use machine “s1a”, | S | = 20, number

of transitions | T | = 5120, | I | = 20, | O | = 256. It gives us results with no sequence.

Figure ‎5-15 showed when | b | = 5, Inc(k) outperform A, but after that A has the best

performance, because other Incrementals divide the subset b into more smaller parts

and that means the composition operator will be used a lot.

2642
3371

9940 9833

22957

48078

5606 5805

12576
19792

13645
17198 16768 17086

19342
32497 32073

1

10

100

1000

10000

100000

5 10 17(all)

A
ve

ra
ge

 t
im

e
 (

m
s)

 in
 lo

g 1
0

 s
ca

le

Number of states to distinguish for log

A Inc Inc(2) Inc(3) Inc(4) Inc(8)

45

Figure ‎5-15: Average time in (ms) versus number of states that we want to distinguish

when there is no a DTC for “s1a” machine.

ii) Summary of all conducted experiments: it reports results over all machines

used when we have DTC, and when we don‟t have.

a) Results when a DTC exist: According to the results shown in Figure ‎5-16,

when | b | = 5 or b = S (all states of the machine), A outperforms all others followed

by Inc(2), Inc(3), Inc(4), Inc(8), where Inc has the worst performance. The reason is

that the composition operator used in the incremental implementations is expensive

and thus when there is a DTC, the incremental takes more time than A. Thus, the less

number of times the composition is performed the better, i.e., Inc(2) is better than

Inc(3), etc.

1357

2

10

699 694 733 706

2216

10

919

227

50

939
749

2314

955
742

1

10

100

1000

10000

5 10 20(all)

A
ve

ra
ge

 t
im

e
(m

s)
 in

 lo
g 1

0
 s

ca
le

Number of states to distinguish for s1a

A

Inc

Inc(2)

Inc(3)

Inc(4)

Inc(8)

46

Figure ‎5-16: Average time versus number of states to distinguish when a DTC exists.

b) Results when there is no DTC: Machines that are used here have a small

number of states, so the arrangements of algorithms for small machines will have

some differences than those random machines. So for s386 and sse, they both have the

same performance. We can see that from Figure 3-17, when | b | = 5 and there is no

DTC for the set b, A, followed by Inc(2), followed by Inc, followed by Inc(3), and

Inc(4). Inc(3) and Inc(4) both have comparable performance. When b = S, (A, Inc(2))

have comparable performance; followed by Inc(3), and Inc(4); they both have

comparable performance, followed by Inc, then followed by Inc(8). We can see here

that A is better than the Incremental algorithms because of the exhaustive use of

composition operator in the incremental algorithms. For s1a, we can see that from

Figure ‎5-17, when | b | = 5 and there is no DTC for the set b, Inc(4), inc(3), Inc, Inc(2)

have the comparable performance; followed by A. When b = S, A, Inc(2), obtained

comparable performance, followed by Inc(3), followed by Inc, Inc(8), followed by

Inc(4). It is clear that more usage of composition operator means more execution time

of the algorithm. In addition, the bigger the machine is, the more useful incremental

algorithms are.

1

10

100

1000

10000

100000

1000000

5 5 17(all) 5 48(all) 5 5 24(all)

s386 log s1488 sse pma

A
ve

ra
ge

 t
im

e
 (

m
s)

 in
 lo

g 1
0

sc
al

e

A Inc Inc(2) Inc(3) Inc(4) Inc(8)

No. of states to
distinguish:

Machines:

47

Figure ‎5-17: Execution time versus number of states to distinguish when there is no a

DTC.

5.6.3 Execution time of A, H, and Hc algorithms:

Here we compare the execution time for the three algorithms A, H, and Hc.

i) Representative example: We will have two parts of representative results;

results when we have DTC, and when there is no such DTC.

a) Results when a DTC exist: we use machine” log”, with specifications | S | =

17, | T | = 8704, | I | = 512, | O | = 17, Figure ‎5-18 shows that H, Hc have the best

performance.

Figure ‎5-18: Average time in (ms) versus number of states that we want to distinguish

when there is a DTC.

2 2

1357

10 10

2

330
450

699 733 861
1070

190

2

706

10

450

10

423

200

919

50

1080

480 422

202

939

2314

1060

450 541
742 680

1

10

100

1000

10000

5 13(all) 5 20(all) 5 16(all)

s386 s1a sse

A
ve

ra
ge

 t
im

e
(m

s)
 in

 lo
g 1

0
sc

al
e

A Inc Inc(2) Inc(3) Inc(4) Inc(8)

No. of states to distinguish:

Machines:

2541 2642 3371 9940

2 2 2

10

2 2 2 2

1

10

100

1000

10000

2 5 10 17(all)A
ve

ra
ge

 t
im

e
 (

m
s)

 in

lo
g 1

0
sc

al
e

Number of states to distinguish for log

A

H

Hc

48

b) Results when there is no DTC: We used machine”s1a” | S | = 20, | T | =

5120, | I | = 20, | O | = 256. It gives us results with no sequence. Figure ‎5-19 shows

that H, and Hc always have the best performance.

Figure ‎5-19: Average time in (ms) versus number of states that we want to distinguish

when there is no a DTC.

ii) Summary of all conducted experiments: In the following we report results

over all machines with or without DTCs.

a) Results when a DTC exists: As we can see here from Figure ‎5-20, H and

Hc always outperform A when there is DTC.

Figure ‎5-20: Average time versus number states to distinguish when there is a DTC.

770 1357

2
10

36

500

2
7

40

505

2 2

1

10

100

1000

10000

2 5 10 20(all)A
ve

ra
ge

 t
im

e
 (

m
s)

 in

lo
g1

0
 s

ca
le

Number of states to distinguish for s1a

A

H

Hc

146.4

2541

9940 6659 8861

259.2
540.8 490

2 2

10

2

20

2 2 2 2 2 2 2

30

2 2 2

1

10

100

1000

10000

2 2 17(all) 2 48(all) 2 2 24(all)

s386 log s1488 sse pma

A
ve

ra
ge

 t
im

e
 (

m
s)

 in
 lo

g1
0

A H Hc

No. of states to distinguish:

Machines:

49

b) Results when there is no DTC: From Figure ‎5-21, when | b | = 2 or | b | = 5

for s1a and there is no DTC for the set b, H and Hc outperform A, but for s386 they

are all have the same performance. Also when b = S, A, H, and Hc can have the same

performance as s386 and sse, or faster than A as s1a.

Figure ‎5-21: Average time in versus number to distinguish when there is no a DTC.

2 2

770
1357.2

10 10

2 2 2

36

500

7

2 2 2 2

40

505

2 2 2

1

10

100

1000

10000

5 13(all) 2 5 20(all) 5 16(all)

s386 s1a sse

A
ve

ra
ge

 t
im

e
 (

m
s)

 in
 lo

g 1
0

sc
al

e

A H Hc

No. of states to distinguish:

Machines:

50

Chapter 6 : Conclusion and Summary of Obtained Results

This thesis targets the problem of deriving adaptive distinguishing test cases

(DTCs) for a subset b of states of an observable nondeterministic finite state machine

(FSM) with | S | states. An incremental approach named Inc is proposed based on the

non-incremental approach named A given in [39]. Inc considers the states of the set b

incrementally one after the other while checking the existence of a DTC. Experiments

are conducted to assess A in comparison with the proposed algorithm Inc and many of

its implementations named Inc(k), k = 2, 3, 4, 8, where the subset b is partitioned into

k increments.

In addition, in this thesis, an efficient heuristic approach, called H, is proposed

for deriving DTCs. The approach searches for a solution using a special traversal of a

successor tree based on some established rules and an appropriate use of hashing to

speed up the search process. An implementation of the H approach, called Hc, that

utilizes a cost function while conducting the search is also provided. Comprehensive

experiments are conducted to assess and compare the performance of the proposed

work. A summary of all the conducted experiments is reported below:

 A versus Inc: When | b | = 5 and a DTC exists, A and Inc(k) have

comparable performance (execution time), followed by Inc. However, when a DTC

does not exist, all Inc(k) have comparable performance, followed by A. When | b | = |

S | and a DTC exists, A and Inc(k) have comparable performance, followed by Inc.

When a DTC does not exist, A, Inc(2), Inc(3), Inc(4) have comparable performance,

followed by Inc, followed by Inc(8).

 H versus Hc for very large machines: When | b | = 2 and a DTC exists, Hc

usually outperforms H in terms of execution time. However, when a DTC does not

exist, both H and Hc have comparable execution time as both converge fast to a

solution. When | b | = S (if a DTC or it does not exist), H and Hc both are comparable

as they converge very fast to a solution.

 In terms of quality of obtained solutions (length of obtained DTC) as

assessed for small and medium size machines, all methods almost have comparable

51

performance. For large machines, in most cases, Hc outperforms H. Also, Hc

enhances the quality of obtained solutions. When the number of states to distinguish

increases, Hc provides solutions with better lengths than H.

 By construction, H and Hc might miss a solution even when a solution

exists; however, according to the conducted experiments, it is shown that these

methods are scalable to very large machines. On the contrary, A and Inc do not miss

solutions, yet in general, for example when DTCs exist, these methods are not

scalable to very large machines.

It is clear from the above analysis that there is no clear indication that using a

particular method is always better than using the others. However, the above analysis

helps a test engineer in selecting an appropriate method according the above analysis.

By construction, the incremental approach Inc(k) handles each of the subsets

corresponding to the k partitions of the set b independently of each other. Thus, the

development of parallel implementations of Inc(k) could be straightforward and it

would be interesting to develop and assess such implementations considering recent

state-of-the-art parallel technologies. In this case, the previous related work

summarized in the Introduction section could be a good start for such a work.

52

References

[1] D. Lee and M. Yannakakis, "Principles and methods of testing finite state

machines-a survey," Proceedings of the IEEE, vol. 84, no. 8, pp. 1090-1123,

1996.

[2] T. Repasi, "Software testing - State of the art and current research challanges,"

International Symposium on Applied Computational Intelligence and

Informatics, Timisoara, pp. 47-50, 2009.

[3] G. J. Myers, C. Sandler, and T. Badgett, The Art of Software Testing. John

Wiley and Sons, 2013.

[4] P. C. Jorgensen, Software testing: a craftsman’s approach: CRC press, 2013.

[5] A. Abdurazik, P. Ammann, W. Ding, and J. Offutt, "Evaluation of three

specification-based testing criteria," in Proceedings of the Sixth IEEE

International Conference on Engineering of Complex Computer Systems, pp.

179-187, 2000.

[6] R. Lai, "A survey of communication protocol testing," Journal of Systems and

Software, vol. 62, no. 1, pp. 21-46, 2002.

[7] G. V. Bochmann and A. Petrenko, "Protocol testing: review of methods and

relevance for software testing," in Proceedings of the 1994 ACM SIGSOFT

International Symposium on Software Testing and Analysis, pp. 109-124,

1994.

[8] R. Dorofeeva, K. El-Fakih, S. Maag, A. R. Cavalli, and N. Yevtushenko,

"FSM-based conformance testing methods: a survey annotated with

experimental evaluation," Information and Software Technology, vol. 52, no.

12, pp. 1286-1297, 2010.

[9] A. Benharref, R. Dssouli, M. A. Serhani, A. En-Nouaary, and R. Glitho, "New

approach for EFSM-based passive testing of web services," Testing of

Software and Communicating Systems, pp. 13-27, 2007.

[10] S. Hallé and R. Villemaire, "Runtime monitoring of web service

choreographies using streaming XML," in Proceedings of the ACM

symposium on Applied Computing, pp. 2118-2125, 2009.

[11] G. Morales, S. Maag, A. Cavalli, W. Mallouli, E. M. De Oca, and B. Wehbi,

"Timed extended invariants for the passive testing of web services," in IEEE

International Conference on Web Services (ICWS), pp. 592-599, 2010.

[12] J. Simmonds, "Dynamic analysis of webservices," Ph.D. thesis Graduate

Department of Computer Science, University of Toronto, 2011.

[13] M. Haydar, A. Petrenko, and H. Sahraoui, "Formal verification of web

applications modeled by communicating automata," in International

Conference on Formal Techniques for Networked and Distributed Systems,

pp. 115-132, 2004.

[14] T. S. Chow, "Testing software design modeled by finite-state machines," IEEE

Transactions on Software Engineering, vol. 4, no. 3, pp.178-187, 1978.

[15] A. D. Friedman and P. R. Menon, Fault Detection in Digital Circuits. Prentice

Hall, 1971.

[16] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: principles, techniques, and

tools. Addison-Wesley Longman Publishing Co., Inc., p. 796, 1986.

[17] F. Belli, "Finite state testing and analysis of graphical user interfaces," in

Proceedings of the 12th International Symposium on Software Reliability

Engineering, pp. 34-43, 2001.

53

[18] I. Burdonov, A. Kossatchev, A. Petrenko, and D. Galter, "Kvest: Automated

generation of test suites from formal specifications," in FM’99—Formal

Methods, ed: Springer, pp. 608-621, 1999.

[19] R. Binder, Testing object-oriented systems: models, patterns, and tools:

Addison-Wesley Professional, 2000.

[20] Y. Dong, Z. Li, Y. Cheng, and H. Zhao, "A model driven testing solution for

embedded system with Simulink/stateflow model," in Proceedings of the 2nd

International Conference on Trustworthy Systems and Their Applications, pp.

24-29, 2015.

[21] K. El-Fakih and N. Yevtushenko, "Test translation for embedded finite state

machine components," The Computer Journal, vol. 59, pp. 1805-1816, 2016.

[22] W. Grieskamp, N. Kicillof, K. Stobie, and V. Braberman, "Model-based

quality assurance of protocol documentation: tools and methodology," Softw.

Test. Verif. Reliab., vol. 21, no. 1, pp. 55-71, 2011.

[23] E. F. Moore, "Gedanken-experiments on sequential machines," Automata

studies, Priceton Univeristy Press, volume 34, pp. 129-153, 1956.

[24] R. Alur, C. Courcoubetis, and M. Yannakakis, "Distinguishing tests for

nondeterministic and probabilistic machines," Proceedings of the Twenty-

Seventh Annual ACM Symposium on Theory of Computing, pp. 363-372, 1995.

[25] A. Gill, "State-identification experiments in finite automata," Information and

Control, volume 4, issues 2-3, pp. 132-154, 1961.

[26] C. Güniçen, K. Inan, U. C. Türker, and H. Yenigün, "The relation between

preset distinguishing sequences and synchronizing sequences," Formal

Aspects of Computing, vol. 26, pp. 1153-1167, 2014.

[27] C. Güniçen, G.-V. Jourdan, and H. Yenigün, "Using Multiple Adaptive

Distinguishing Sequences for Checking Sequence Generation," in Testing

Software and Systems, ed: Springer, pp. 19-34, 2015.

[28] R. M. Hierons and U. C. Türker, "Distinguishing sequences for partially

specified FSMs," in NASA Formal Methods, pp. 62-76, 2014.

[29] Z. Kohavi, Switching and finite automata theory. New York: McGraw-Hill,

1978.

[30] N. Kushik, K. El-Fakih, and N. Yevtushenko, "Preset and adaptive homing

experiments for nondeterministic finite state machines," Proceedings of the

Sixteenth International Conference on Implementation and Application of

Automata, Lecture Notes in Computer Science 6807, pp. 215-224, 2011.

[31] N. Kushik, K. El-Fakih, N. Yevtushenko, and A. R. Cavalli, "On adaptive

experiments for nondeterministic finite state machines," Int. J. Softw. Tools

Technol. Transf., vol. 18, no. 3, pp. 251-264, 2016.

[32] D. Lee and M. Yannakakis, "Testing finite-state machines: State identification

and verification," IEEE Transactions on Computers, volume 43, issue 3, pp.

306-320, 1994.

[33] A. Mathur, A Foundations of Software Testing. Addison Wesley, 2008.

[34] N. Spitsyna, K. El‐Fakih, and N. Yevtushenko, "Studying the separability

relation between finite state machines," Software Testing, Verification and

Reliability, volume 17, issue 4, pp. 227-241, 2007.

[35] U. C. Türker and H. Yenigün, "Hardness and inapproximability of minimizing

adaptive distinguishing sequences," Formal Methods in System Design, vol.

44, pp. 264-294, 2014.

54

[36] U. C. Türker, T. Ünlüyurt, and H. Yenigün, "Effective algorithms for

constructing minimum cost adaptive distinguishing sequences," Information

and Software Technology, vol. 74, pp. 69-85, 2016.

[37] A. Bianco and L. De Alfaro, "Model checking of probabilistic and

nondeterministic systems," in Foundations of Software Technology and

Theoretical Computer Science, pp. 499-513, 1995.

[38] R. M. Hierons, "Testing from a nondeterministic finite state machine using

adaptive state counting," IEEE Transactions on Computers, vol. 53, pp. 1330-

1342, 2004.

[39] K. El-Fakih, N. Yevtushenko, and N. Kushik, "Adaptive distinguishing

experiments for nondeterministic finite state machines: Test Case Derivation

and Constructive Approach for Establishing the Tight Upper Bound,"

Submitted to Formal Aspects of Computing Journal, Submission Date:

14/1/2017.

[40] M. N. Sokolovskii, "Diagnostic experiments with automata," Cybernetics and

Systems Analysis, vol. 7, pp. 988-994, 1971.

[41] K. El-Fakih, A. R. Haddad, N. Aleb, and N. Yevtushenko, "Heuristics for

deriving distinguishing experiments of nondeterministic finite state machines,"

Applied Soft Computing, vol. 49, pp. 1175-1184, 2016.

[42] R. M. Hierons and U. Turker, "Parallel algorithms for generating

distinguishing sequences for observable non-deterministic FSMs," ACM

Transactions on Software Engineering and Methodology, vol. 26, pp. 1-37,

2017

[43] K. El-Fakih, G. Barlas, M. Ali, and N. Yevtushenko, "Parallel algorithms for

reducing derivation time of distinguishing experiments for nondeterministic

finite state machines," International Journal of Parallel, Emergent and

Distributed Systems, pp. 1-14, 2017.

[44] A. Petrenko, N. Yevtushenko, "Adaptive testing of deterministic

implementations specified by nondeterministic FSMs," International

Conference on Testing Software and Systems, pp. 162-178, 2011.

[45] F. Brglez. (2017, Jan. 15). ACM/SIGMOD benchmark dataset. Available:

http://www.cbl.ncsu.edu/benchmarks/Benchmarks-upto-1996.html

http://www.cbl.ncsu.edu/benchmarks/Benchmarks-upto-1996.html

55

Vita

Ayat was born on January 26, 1988, in Saudi Arabia. She studied at Al Najah

National University in Nablus, Palestine, where she graduated in 2010 with a

Bachelor‟s Degree in Computer Engineering.

Mrs. Ayat worked as a PHP programmer for a year. After that, she moved to

the United Arab Emirates in 2012, where she worked as a computer engineer at

Sharjah American International School (SAIS) for a year and half. Then she joined

the Master‟s program in Computer Engineering at the American University of

Sharjah.

