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Abstract 

Many methods are proposed for the construction of distinguishing test cases 

(DTCs) based on a specification given in the form of a Finite State Machine (FSM). 

In FSM-based testing, we have a black-box FSM Implementation Under Test (IUT) 

about which we lack some information, and we want to conclude this information by 

using the applied input sequences of DTCs to the IUT, then by observing the output 

responses to the applied input sequences final conclusions about the IUT are drawn. A 

DTC is adaptive if the next input of a DTC is selected based on the previously 

observed outputs. In this thesis, we propose an incremental approach, called Inc, for 

the construction of an adaptive DTC for a given set of states of a nondeterministic 

FSM. In addition, two heuristics are proposed for the derivation of adaptive DTCs. 

The first heuristic, called H, uses depth first search for a given fixed height while 

appropriately utilizing hashing to speed up the search for a DTC. The second 

heuristic, called Hc, is similar to the first; however, it uses a cost function for ordering 

the inputs to be considered while conducting the search. Comprehensive experiments 

are conducted, using both real and randomly generated FSMs, to assess the existence 

of DTCs and compare the performance of the proposed approaches. According to 

these experiments, in terms of execution time, Inc usually outperforms an existing 

non-incremental algorithm, called A, when a DTC does not exist. However, in 

contrary to the H and Hc methods, both A and Inc do not scale well for large size 

FSMs. Both H and Hc have comparable execution time; however, for large size 

FSMs, in terms of quality of obtained solutions (length of obtained DTC), usually Hc 

outperforms H.   

 

Search Terms: Model Based Testing, Distinguishing Test case, Incremental 

Algorithms, Heuristics.  
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Chapter 1 : Introduction and Related Work 

 

1.1 Introduction 

As a result of continuous advancements in computer technology, systems have 

become larger so they can fulfill more demanding and complicated tasks. 

Consequently, systems become vulnerable, and less reliable [1]. This makes software 

testing an important part of software development. By 1968, the first conference was 

held which had the goal of “the establishment and use of sound engineering principles 

in order to obtain reliable, efficient and economically viable software” [2]. This 

conference came up with the conclusion that applying quality assurance to products, 

process, components, and materials is so important. However, quality assurance and 

testing is a critical and an expensive process. In 1970, quality assurance of any typical 

programming project could cost more than 50 percent of the total cost; it also could 

take 50 percent of the whole time spent on that project. For the time being, the time 

and cost of software testing are the same [3, 4]. 

Model-Based Testing (MBT) is the most famous approach for reducing the 

cost and time of testing. Prominent state based models include (Mealy) Finite State 

Machines (FSMs), labeled transition systems, finite state automata. In this thesis, we 

consider systems modeled as FSMs. An FSM consists of states, inputs, outputs, and 

transitions between states each labeled by an input/output pair. FSMs are the  

underlying models for essential description techniques, such as the Standard 

Description Language (SDL), Statecharts, and the Unified Modeling Language 

(UML) [5]. 

Test derivation from FSMs provides a rigor approach for functional testing of 

interactive systems and communication protocols [6, 7, 8], web services [9-13], 

software design [14], sequential circuits [15], lexical analysis [16], graphical user 

interfaces [17], object oriented systems [18, 19], embedded systems [20, 21], and 

industrial projects [22]. 

A fundamental FSM-based testing problem deals with the derivation of 

distinguishing sequences that can identify the initial state of an FSM describing the 

behavior of a black-box Implementation Under Test (IUT) [7, 8, 14]. An input 

sequence is adaptive if the selection of the next input to be applied to an IUT is based 
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on the observed outputs of the IUT to the previous inputs, and an input sequence is 

preset if it is a single input sequence that is fixed before performing the experiment. 

An adaptive distinguishing sequence is usually realized from a special FSM, which 

can be thought as a rooted decision tree, called a distinguishing test case (DTC) or an 

adaptive distinguishing sequence (ADS).  

In fact, since the seminal paper by Moore [23], the distinguishability problem 

is still under further investigation for various classes of FSMs. For more detailed 

information, the reader may refer to the related studies and textbooks reported by Alur 

et al. [24], Dorofeeva et al. [22], Gill [25], Güniçen et al. [26], Güniçen et al. [27], 

Hierons and Türker [28], Kohavi [29], Kushik et al. [30, 31], Lee and Yannakakis 

[32], Mathur [33], Spitsyna et al. [34], Türker and Yenigün [35], and Türker et al. 

[36].  

We note that well-studied classes of FSMs include complete or partial FSMs 

depending upon whether there exists an outgoing transition under each input at each 

state or not; deterministic if at each state under each input there is at most a single 

outgoing transition under the input or nondeterministic if at some state(s) there exists 

many outgoing transitions under the input. A nondeterministic FSM is observable if at 

for every state found in the machine has maximum one transition for every 

input/output pair; else, the FSM is called non-observable. Almost all the studies 

focused on observable FSMs because any non-observable specification FSM can be 

transformed into an observable FSM with the same behavior. In this thesis, we 

consider complete observable nondeterministic FSMs. We note that non-determinism 

occurs due to various reasons such as performance, flexibility, limited controllability, 

and/or abstraction [24, 37, 38].  

In general, as mentioned above, the distinguishability problem is studied 

assuming either a preset or adaptive testing mode. In the former, a distinguishing 

sequence is derived in advance and all the inputs of the distinguishing sequence are 

applied to the given IUT FSM while in the latter, the selection of the next input to 

apply is based on the observed outputs to the previous inputs. Accordingly, an 

adaptive experiment is usually represented by a special FSM with a tree structure that 

is usually called a DTC.  
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Contribution: In this thesis, we target the problem of deriving a 

distinguishing test case DTC for a set of states of a (complete and observable) 

nondeterministic FSM. In [39], a procedure, called A, is provided for checking the 

existence of a distinguishing test case for a set of states of an FSM. In particular, 

given an FSM S and a set b of several states, based on some established construction 

rules, a special distinguishing machine Sb-dist that includes all distinguishing test cases 

(if any) for the set b is derived. Then, using the FSM Sb-dist , the procedure returns a 

message indicating that the set b has no DTC (i.e., the set is not adaptively 

distinguishing), or a message indicating that  the set is adaptively distinguishing (i.e. 

there exists a DTC for the set). If a DTC exists for the set b, then a  simple procedure 

for constructing a DTC is provided. As the complexity of deriving the distinguishing 

machine Sb-dist significantly depends on the cardinality of the subset b, in this thesis, 

we propose an incremental approach (strategy), called Inc, for checking the existence 

of a DTC for a given set b of several states of an FSM. Instead of considering all the 

states of b at once, as done in [39], we start by partitioning the set b into disjoint 

subsets of states. Then, given a subset c of the partition, a distinguishing machine Sc-

dist  is derived for c. If there is no DTC for subset c, then the algorithm directly 

terminates concluding that the given set b has no DTC. Otherwise, another subset c of 

the partition is incrementally added to the so-far selected subsets. That is, again a 

distinguishing machine for c is derived that is composed of the already obtained 

composition of the distinguishing machines for the previously considered subsets. The 

process is repeated till the procedure terminates at some iteration as there is no DTC 

for a current subset of the partition, or the procedure terminates declaring that the 

given set of states b has a DTC. It should be noted that basically, in order to be able to 

incrementally consider subsets (of the partition) of states for checking the existence of 

a DTC, a commutative and associative composition operator is proposed over already 

constructed machines Sc-dist  which represent corresponding sets of test cases. We  

experiment with the algorithm while initially considering two states of the subset of b, 

then incrementally considering the other states of b one after the other. However, we 

also experiment with different partitions of the set b, namely, we study the effect 

splitting b into two, three, four, and eight disjoint subsets of the same cardinality. A 

lot of experiments are conducted to assess the performance of A and the incremental 

implementations.  
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In addition, as the A [39] and Inc algorithms do not scale well in terms of 

execution time for large size machines. In the second part of this thesis, two heuristic 

approaches for the derivation of a DTC for a given set b are proposed. The first 

approach, called H, is based on traversing the truncated successor tree, used for 

constructing a DTC, using Depth First Search (DFS) for the given fixed height L 

while appropriately utilizing hashing to speed up the search process. The second 

approach, called Hc, is the same as the first; however, it uses a cost function for 

ordering the inputs to be considered in while conducting the search. A comprehensive 

assessment of H and Hc implementations in terms of execution time and quality of 

obtained solutions (height of obtained DTC) is provided. In theory, H (and Hc) may 

not provide a solution while a solution exists as its search is restricted by fixed height 

L; accordingly, L is set appropriately such that H (Hc) always find a solution for the 

considered experiments. A detailed summary of the obtained experiments is provided 

in the Conclusion section. 

1.2 Related Work 

“Gedanken experiments” paper by Moore was the first step in research on 

distinguishing experiments for deterministic FSMs [23]. More surveys about FSM 

experiments and related algorithms can be found in [30-32, 36]. 

Previous research on distinguishability focuses on two aspects, (i) establishing 

the theoretic upper bound on the height of a DTC (i.e. the complexity); height of a 

DTC means the maximum length that can input sequence reach during an experiment. 

Height of the experiment is usually used for representing how much the experiment is 

complex. Finding the tight upper bound is an important constituent of any intended 

experiment. (ii) Other research on distinguishability, as the one considered in this 

thesis, focuses on providing procedures for the derivation of DTCs. 

Gill [25] and Lee and Yannakakis [32] presented methods for deriving 

adaptive distinguishing experiments with the evaluation of the height of these 

experiments. Kohavi [29] showed that the upper bound on the height of a preset 

experiment is exponential with respect to the number of states of a given machine, 

while Sokolovskii, as reported in [40], has shown that such an upper bound for 

adaptive distinguishing experiments is polynomial. For deterministic FSMs El-Fakih 
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et al. [41] presented heuristics, including a genetic algorithm, for deriving preset 

distinguishing sequences for observable nondeterministic FSMs. 

For research related to adaptive experiments with complete observable 

nondeterministic specifications, Alur et al. [24] proved that for two states for a 

complete observable machine that has n states, the shortest length is maximum n(n – 

1)/2. When n > 2 states, Kushik et al. [31] showed that 2
n
 – n – 1 is the maximum 

height or ( upper bound of the height) of  any a shortest DTC. El-Fakih et al. [31, 39] 

showed that this exponential bound is tight.  

On the derivation of DTCs, a method is presented in [39] for checking the 

existence of DTC; and if it exists then a DTC is derived. The work presented in this 

thesis extends previous work in [39] by introducing and assessing incremental 

approach for deriving DTCs. In addition, in this thesis, a heuristic approach is 

proposed and assessed for efficient deriving DTCs considering very large size FSMs. 

It should be noted that recently, Türker et al. [36] presented and assessed effective 

algorithms for constructing minimum cost DTCs, but they were for deterministic 

FSMs 

In addition, it is worth mentioning that there is lately a new research direction 

in solving distinguishability problems. Some work has been proposed for using state-

of-the-art parallel technologies for efficiently solving some distinguishability 

problems. For instance, Hierons and Türker [42] presented parallel algorithms for 

deriving DTCs for observable nondeterministic FSMs using Graphical Processing 

Units (GPU) and El-Fakih et al. [43] proposed two GPU based implementations and a 

Network-of-Workstations based implementation for the derivation of all the 

successors of all pairs of states of an observable nondeterministic FSM. This is done 

in order to reduce the time and efforts of deriving sequences for distinguishing (states 

of) nondeterministic FSMs.  

In summary, in this thesis, adaptive distinguishing experiments for 

nondeterministic FSMs are studied. The main objective is to reduce the execution 

time of deriving an experiment, as execution time increases drastically as the size of 

the FSM increases (i.e., the number of transitions of a machine). The work presented 

in this thesis extends previous work in [39] by introducing and assessing incremental 
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approach for deriving DTCs. In addition, in this thesis, two heuristic approach are 

proposed and assessed for efficient deriving DTCs considering very large size FSMs. 

This thesis is organized as follows; Chapter 2 discusses the notions and 

definitions used in the thesis and it also includes the exact algorithm [39]. Chapter 3 

explains the incremental approach for deriving a distinguishing test case. It also 

discusses the composition operator used by the incremental algorithm. Chapter 4 

includes the proposed two heuristic algorithms H and Hc. Chapter 5 includes 

experimental evaluation of the proposed work and Chapter 6 concludes this thesis and 

includes a detailed summary of the obtained results.  
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Chapter 2 : Preliminaries  

 

In this chapter, the notions and terminologies used throughout the thesis. In 

addition,  the exact algorithm, called A,  given in [39], for checking the existence and 

deriving a distinguishing test case for a subset of states of a nondeterministic FSM is 

introduced.  

2.1 Preliminaries 

A finite state machine (FSM), or simply a machine, is a 4-tuple S = (S, I, O, 

hS), where S is a finite nonempty set of states; I and O are finite input and output 

alphabets; and hS  S  I  O  S is a (behavior) transition relation. An FSM is 

nondeterministic if for some pair (s, i)  S  I there exist several pairs (o, s)  O  S 

such that (s, i, o, s)  hS. If the FSM has the designated initial state then the FSM is 

an initialized FSM, written (S, I, O, hS, s0). An FSM S is complete if for each pair (s, i) 

 S   I  there exists (o, s) O   S  such that (s, i, o, s)  hS. FSM S is observable 

if for each two transitions (s, i, o, s1), (s, i, o, s2)   hS. It holds that s1 = s2. FSM S is 

single-input if at each state, there is at most one defined input at the state, and S is 

output-complete if for each pair (s, i)   S   I  such that the input i is defined at state 

s. For every output o  O, there exists a transition from s with the input i and output 

o. An initialized FSM S is acyclic if the FSM transition diagram has no cycles. An 

initialized FSM S is (initially) connected if each state is reachable from the initial 

state. See Table ‎2-1 as an example of FSM S. The machine has four states named 1, 2, 

3, and 4,  three inputs a, b, and c, two outputs named 0 and 1. Each transition is 

labeled with an input/output pair. S  is nondeterministic because at state 1 under the 

input a, the machine  takes us either to state 2 while producing the output 1, or to state 

3 with the output 0. 
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Table ‎2-1: Tabular representation of FSM S. 

Input\State 1 2 3 4 

a 2 / 1, 3 / 0 2 / 0 2 / 0, 4 / 1 3 / 1 

b 1 / 0 2 / 1 3 / 0 2 / 1 

c 2/0 3 / 0 4 / 1 2 / 1 

 

In this thesis, the use of adaptive distinguishing experiments is considered 

with complete nondeterministic observable FSMs which are non-initialized. A 

distinguishing experiment for a subset of states of a non-initialized FSM can be 

described using an initialized single-input output-complete FSM with an acyclic 

transition graph that is usually referred to as a test case [39, 44].  

Test Case: Given an input alphabet I and an output alphabet O, a test case is 

an initialized initially connected single-input output-complete observable initialized 

FSM P with an acyclic transition graph.  

A state of test case P with no outgoing transitions is a deadlock state. By 

definition, at each intermediate state of P, only a single input is defined with all 

outputs. A test case over alphabets I and O defines an adaptive experiment with any 

complete FSM S over the alphabets I and O.  

In general, given a test case P, the height of the test case P is determined as the 

length of a longest trace from the initial state to a deadlock state of P and it specifies 

the length of a longest input sequence that can be applied to an FSM S during the 

experiment.  

A trace of S at state s is a sequence of input/output pairs of sequential 

transitions starting from state s and the set of all traces of S at state s includes the 

empty trace. As an example, the machine S is considered. In Table 2-1, a/0 b/1 and 

a/0 b/0 are two traces at the initial state 1. For state s and a sequence   (IO)* of 

input-output pairs, the -successor of state s is the set of all states that can be reached 

from s by . If  is not a trace at state s then the -successor of state s is the empty set 

and in this case, we sometimes say that the -successor of s does not exist. For an 

observable FSM S, the -successor of any state s has at most one item. Given a subset 
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b of states of S and a sequence   (IO)*, the -successor of b is the union of -

successors over all states of b. As examples, considering the FSM in Table 2-1, the 

a/0- successor of state 1 is state 2 and the a/1- successor  of state 1 is state 3. 

Considering the set of states b = {1, 2, 3, 4}, it can be concluded that the c/0-

successor of b is the set {2, 3}, see Table 2-2. 

Table ‎2-2: Tabular representation of FSM Sdist. 

input\states (1,2,3,4) (2,3) (2,4) F 

a F / 0 , 1 F / 0 , 1 - F / f 

b F / 0, 1 - F / 1 F / f 

c (2,3) / 0 , (2, 4) / 

1 

- - F / f 

 

  Let S = (S, I, O, hS) be a complete observable possibly nondeterministic FSM 

and b be a subset of states of S. 

Throughout the thesis, the notations s  and mss ,...,1  are used for representing a 

singleton {s} and a subset {s1, …, sm} of states of an FSM.  

Distinguishing test case: A test case P over input and output alphabets I and O 

is a distinguishing test case (DTC) for the subset b if every trace from the initial state 

of P to a deadlock state of P is a trace at most at one state of the set b. If there exists a 

distinguishing test case for the subset b then the set b is a distinguishable set, or the 

set b is distinguishable. If there exists a distinguishing test case for the set b = S, then 

the FSM S is distinguishable. See Table ‎2-3 which depicts a tabular representation of 

a distinguishing test case for FSM S in Table ‎2-1. 

Table ‎2-3 : Tabular representation of a distinguishing test case for FSM S. 

input\states        ̅̅ ̅̅ ̅̅ ̅̅ ̅     ̅̅ ̅̅      ̅̅ ̅̅  

a - - D / 0 , D / 1 

b - D / 0 , D / 1 - 

c    ̅̅ ̅̅  / 0 ,     ̅̅ ̅̅  / 1 - - 
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Here, the construction for the so-called distinguishing machine for a set b used 

by the A procedure [39] and by our incremental method, proposed in the following 

chapter, is included.  

2.2 The Exact Algorithm A for Deriving a Distinguishing Test Case:  

Derivation of the distinguishing machine Sb-dist for set b: Given a complete 

observable FSM S = (S, I, O, hS) and a subset b of S, the machine Sb_dist is constructed 

in the following way. States of Sb_dist are non-empty subsets of S union, the designated 

state F and f is the designated output that is not in the set O. The initial state of Sb_dist 

is state b and the machine has the smallest set of transitions which can be constructed 

using the following: 

 (1) A transition at state F under each input is a self-loop labeled with the output f.  

 (2) For each subset g, label a transition from state g under input i as an undefined 

transition (denoted as „-„ at g), if for each o  O, the non-empty io-successors of 

every two different states of the set g do not coincide and each non-empty io-

successor of g is a singleton. The input i is an undefined input at g. 

 (3) There is a transition (g, i, o, d) where d  F and d is not a singleton, if and only 

if for every o  O, the non-empty io-successors of every two different states of 

the set g do not coincide and d is the non-empty io-successor of the set g.  

 (4) There is a transition (g, i, o, F) if and only if the io-successor of the set g is not 

empty and there exists o  O such that the non-empty io-successors of two 

different states of the set g coincide.  

The procedure A [39] is used. It takes the FSMs S and Sb_dist as an input and 

returns a message “The set b is not adaptively distinguishable” when an adaptive 

distinguishing test case for the set b does not exist. In fact, A is mainly based on 

iteratively determining and deleting states with undefined inputs of Sb_dist to check the 

existence of a DTC. If a DTC for the set b exists, then A uses a simple procedure for 

constructing the test case. 

Exact Algorithm (A):  

First, the existence of a distinguishing test case for a complete observable 

nondeterministic FSM is checked. 
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Input:    FSMs S and Sdist. 

Output : The message “FSM S is not adaptively distinguishing” or the set UN of 

undefined input at deleted states. 

UN := ; k := 1;  

Step 1. For each state c of Sdist with an undefined input, an undefined input    ̅ at c 

should be considered and this input should be added to the UN;  

If there are no states with undefined transitions then  

Return the message “FSM S is not adaptively distinguishing”  

  Step 2.  

         Remove from Sdist each state c with an undefined input    ̅ and all incoming 

transitions to this state;  

If the initial state of Sdist is deleted then Return the set UN ; 

     k++ and Go-to Step 1 ;  

After that a DTC is derived from derived from S  and Sdist . 

 

Example 2.1. As an example, consider the machine Sdist in Table ‎2-2 with the 

initial state S = {1, 2, 3, 4} derived from the FSM S in Table ‎2-1. For the obtained 

machine Sdist each of the states     ̅̅ ̅̅   and    ̅̅ ̅̅   has an undefined input, and the initial 

state does not have an undefined input. Thus, by applying the iterative process at Step 

1, we delete from Sdist states    ̅̅ ̅̅   and    ̅̅ ̅̅   and their incoming transitions, and then the 

initial state will have an undefined transition under the input c. As the initial state is 

deleted, the FSM Sdist has no complete submachine and thus S is adaptively 

distinguishing and  the set UN contains      ̅̅ ̅̅
 = a,      ̅̅ ̅̅

 = b, and          ̅̅ ̅̅ ̅̅ ̅̅ ̅
 = c.  After 

applying procedure 1, and as a DTC exists for this example, Procedure 2 in [39] is 

used to derive the DTC shown in. 
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Chapter 3 : An Incremental Algorithm for Deriving Distinguishing Test Cases 

 

In this chapter, we propose an incremental algorithm Inc for deriving a DTC 

for a set b of states of a given FSM. This algorithm considers the states of the set b; 

one after the other utilizing the following proposed composition operator.  

3.1 Incremental Composition Operator:  

 In order to decide if a set of states has a distinguishing test case incrementally, 

we propose a special composition operator, denoted as , over two FSMs Sb-dist and 

Sc-dist, where b and c are disjoint subsets of S,  that produces the machine Sbc_dist. It is 

also noted that when b (or c) is a singleton, hereafter, Sb-dist is used to denote S with 

the initial state b (c).  

Given disjoint subsets b and c of states of a complete observable FSM S = 

(S, I, O, hS) and the machines Sb-dist and Sc-dist derived according to construction rules 

(1) to (4)  given in the previous chapter, the machine Sb-dist   Sc-dist is derived in the 

following way. The machine Sb-dist   Sc-dist = (Q, (b, c), I, O  { f }, h) is the smallest 

machine Q = (Q, (b, c), I, O  { f }, hQ) with the initial state (b , c) that can be 

derived using the rules given below. States of Sb-dist   Sc-dist are either pairs of 

(subsets of) states Sb-dist and Sc-dist where these subsets can both be non-empty, or only 

one of them is the empty subset, or a state of Sb-dist   Sc-dist can be the designated F 

state. The output f is the designated output that is not in the set O.  

  (a) A transition at the state F under each input is a self-loop labeled with the output f.  

  (b) There is a transition ((m, n), i, o, (d, g)), d, g  F, in the FSM Sb_dist   Sc_dist if 

and only if  

        1) FSM Sb-dist has no transition (m, i, f, F) and FSM Sc-dist has no transition (n, i, f, 

F);  

        2) For every o  O, the non-empty io-successors of m and n do not intersect ;  

        3) d is the non-empty io-successor of the set m and g is the non-empty io-

successor of the set n.  
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  (c) There is a transition ((m, n), i, o, (, g)), g  F, in the FSM Sb_dist   Sc_dist if and 

only if the non-empty io-successor g exists only for the state n and FSM Sb-dist 

has no transition (m, i, f, F) 

  (d) There is a transition ((m, n), i, o, (d, ), d  F, in the FSM Sb_dist   Sc_dist if and 

only if the non-empty io-successor d exists only for the state m and FSM Sc_dist 

has no transition (n, i, f, F)  

  (e) There is a transition ((m, n), i, f, F) in the FSM Sb-dist   Sc_dist if and only if        

there is a transition (m, i, f, F) in FSM Sb or there is a transition (n, i, f, F) in 

FSM Sc_dist ; or there exists o  O such that the non-empty io-successors of 

subsets m and n in FSM S intersect. 

Each state (b, c) of the FSM Q obtained after applying construction rules (a) to 

(e) above is replaced by the union b  c. The obtained FSM is the FSM Sbc-dist. 

 

shows how S{1,2,3}-dist = S{1,2}-dist  S{3}-dist  is derived using the above rules.  

Table ‎3-1: Tabular representation of FSM S{1,2,3}-dist  = S{1,2}-dist   S{3}-dist. 

Input\State      ̅̅ ̅̅ ̅̅ ̅̅     ̅̅ ̅̅ ̅    ̅̅ ̅̅ ̅    ̅̅ ̅̅ ̅ 2 3 4 

a     

 

    

 

2 / 0 

3 / 1 

   ̅̅ ̅̅ ̅ / 0 

   ̅̅ ̅̅ ̅ / 1 

2 / 0 2 / 0,  

4 / 1 

3 / 1 

b     ̅̅ ̅̅ ̅̅ /0 

2 / 1 

2 /1 

3 / 0 

      

 

   ̅̅ ̅̅ ̅ / 0 

 

2 / 1 3 / 0 2 / 1 

c     ̅̅ ̅̅ ̅̅ / 0 

4 / 1 

3 / 0 

4 / 1 

2 / 0 

2 / 1 

2 / 0 

4 / 1 

3 / 0 4 / 1 2 / 1 
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3.2 Inc Algorithm  

Here, we present the incremental algorithm Inc for deriving a DTC for a set of 

state b of an FSM is introduced. We also define the derivatives Inc(k) of Inc, where 

the set b is partitioned into k subsets, k = 2, 3, 4, and 8. 

Incremental Algorithm (Inc).  Deriving a distinguishing test case incrementally 

Input    : FSM S = (S, I, O, hS), subset b = {1, …, m}  S, m  3  

Output : The message “The set b is not adaptively distinguishing” or a distinguishing 

test case R for the set b 

Step 1. Partition b into disjoint subsets b1… bl where  |b1|  2 ; 

k := 1 ;  

Derive the FSM Sb(k)-dist using the rules (1) to (4) given before A algorithm in the 

previous chapter.  

Call Procedure A for Sb(k)-dist  ;  

       If Procedure A returns the message “The set b(k) is not adaptively distinguishing” 

then Return the message “The set  b is not adaptively distinguishing” 

 

Step 2. While k < l 

Derive the FSM Sb(k+1)-dist using rules (1) to (4)  given in A algorithm;    

      If |b(k+1)| > 1 and Procedure A returns the message “The set b(k+1) is not 

adaptively distinguishing” 

then Return the message “The set  b is not adaptively distinguishing” 

Derive the FSM Sc-dist = Sb(k)-dist  Sb(k+1)-dist ;    

Call Procedure A for Sc-dist  ;  

      If Procedure A returns the message “The set c is not adaptively distinguishing” 
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then Return the message “The set  b is not adaptively distinguishing” 

      k++ ; 

      Sb(k)-dist =  Sc-dist  ;  

        EndWhile  

Step 3. Construct the test case R for the set c as given in [39];  

End Inc  

Example 3.1. Considering the machine S in Table ‎2-1, the set b = {1, 2, 3, 4}, 

and the partition b1 = {1, 2}, b2 = {3}, and b3 = {4} of b. At Step 1 of Inc, starting 

with the pair b1 obtained, by rules (1) to (4), the FSM S{1,2}-dist in Table ‎3-2. As the 

initial state    ̅̅ ̅̅  has an adaptive distinguishing test case for states 1 and 2, then, at Step 

2, in the first iteration of the while-loop, the machine S{1,2,3}-dist = S{1,2}-dist  S{3} in 

Table ‎3-1 is derived. As the set      ̅̅ ̅̅ ̅̅   has a DTC, in the second iteration of the loop, 

the machine S{1,2,3,4}-dist (in Table ‎3-3) is constructed,  and afterwards at Step 3 a test 

case is constructed for the set        ̅̅ ̅̅ ̅̅ ̅̅ ̅  as given in [39] It is noted if at Step 1 there is 

no DTC for the pair {1, 2}, or if after the first iteration of the loop there is no DTC for 

the set {1, 2, 3}, then the incremental procedure would terminate declaring that there 

is no DTC for the considered set b. As another application of  Inc, we could consider 

the partition b1 = {1, 2} and b2 = {3, 4} of the set b. In this case, after deriving S{1,2}-

dist at Step 1, at  Step 2, the machine S{3,4}-dist is derived and as the set    ̅̅ ̅̅    has a DTC, 

in the second iteration of the loop, the machine S{1,2,3,4}-dist is constructed and 

afterwards as the set {1, 2, 3, 4} is adaptively distinguishing, a DTC for the set b is 

derived. 
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Table ‎3-2: Tabular representation of FSM S{1,2}-dist. 

 

Table ‎3-3: Tabular representation of FSM S{1,2,3,4}-dist  = S{1,2,3}_dist  S{4}-dist. 

Input\States (1,2,3,4) (2,3) (2,4) 1 2 3 4 F 

a F / 0 , 1 F / 0 , 1 - - - - - F / f 

b F / 0, 1 - F / 1 - - - - F / f 

c    ̅̅ ̅̅ ̅  / 0 ,    ̅̅ ̅̅ ̅  / 

1 

- - - - - - F / f 

 
 

3.3 Inc(k) Implementations 

As Inc starts from a given partition b1…, bl of a set b = {1, 2,… sm}  S of 

the specification machine S, | b | = m  n = |S|, then it would be interesting to assess 

the performance of Inc considering various ways of partitioning the set b. We 

consider the following types of partitions and rename Inc accordingly to simplify 

discussions. Namely, hereafter, Inc is used when the set b is partitioned into | b | - 1 

subsets as indicated in the algorithm, i.e., b1  = {1, 2} and for every i = 2, …, l, bi is a 

singleton, i.e., bi = {si+1}. We use Inc(k), k = 2, 3, 4, or 8, when b is partitioned into k 

subsets {b1}, … {bk-1}, { bk}. We experiment with two values of m, namely, m = 5 

and m = | S |.   

  

Input\State    ̅̅ ̅̅ ̅    ̅̅ ̅̅ ̅ 1 2 3 4 F 

a    ̅̅ ̅̅  / 0 

2 / 1 

F / f 2 / 1  

3 / 0 

2 / 0 2 / 0  

4 / 1 

3 / 1 F / f 

b 1 / 0 

2 / 1 

2 / 1 

3 / 0 

1 / 0 2 / 1 3 / 0 2 / 1 F / f 

c    ̅̅ ̅̅ ̅ / 0 3 / 0 

4 / 1 

2 / 0 3 / 0 4 / 1 2 / 1 F / f 
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Chapter 4 : A Heuristic Approach for Deriving Distinguishing Test Cases 

 

In this chapter, some rules that can be used for constructing a DTC for a set of 

states of a specification FSM are presented. The first approach, called H, uses the 

depth first search techniques for a given fixed height while appropriately utilizing 

hashing to speed up the search process. The second approach, called Hc, is the same 

as the first; however, it uses a cost function for ordering the inputs to be considered in 

the search. Experimental evaluation of these approaches is provided in Chapter 5. 

4.1 Rules for Constructing a DTC  

Given a specification FSM S, an approach is presented here for constructing a 

DTC for a given set b of states based on Depth-First-Search (DFS) traversal of a 

truncated successor tree of height L ≥ 1 that is derived using the following rules. The 

truncated successor tree of height L is constructed using the following rules: 

(a) The root node of the tree is labeled with the set b and an edge between two 

nodes of the tree is labeled by an input-output i/o pair.  

(b) At each non-leaf (or non-terminal) node of the tree, there exist | O | 

outgoing transitions only under the same input i  I.  A terminal leaf node 

has no outgoing transitions.  

(c) Given a non-leaf (or non-terminal) node labeled with a set of states c and 

an input i, for each output o  O, there is a transition (c, i/o, d) where d is 

the io-successor of the set c or the empty set.  

(d) Given a node labeled (with the subset) d with parent c and transition (c, 

i/o, d), node d is called a bad terminal node if there are two different states 

of c where the non-empty io-successors of these states coincide. By 

definition, a bad terminal node has no outgoing transitions.  

(e) Given a node d with parent c and transition (c, i/o, d), node d is called a 

good terminal leaf node if the io-successor of c is a singleton or the empty 

set and d is not a bad node.  

(f) Given a non-leaf node c such that for each input i there is an edge to a bad 

node, then the c is also a bad node.  
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(g) Given a node c at the L-th level of the tree starting from the initial root, if c 

is not labeled with a singleton or the empty set (i.e., c is not a good 

terminal node), then c is labeled as a bad node (due to the height); 

otherwise, c is a good terminal leaf node. This rule is added to limit the 

search up to a certain height L, where the value of L is appropriately set 

according to conducted experiments. 

 

If there exists a finite tree derived using rules (a) to (g) such that each leaf 

node of the tree is a good terminal leaf node then this tree represents a DTC for the set 

b, written DTCb. By definition, a subtree DTCb with the root node labeled with the set 

c, denoted DTCc, represents a DTC for the set c.  

4.2 H and Hc Methods  

Two DFS based versions of the above rules are implemented; both 

implementations use the same rules for an ordered list of inputs while exploring the 

tree. This list provides the order that will be used to derive the i-successors of a 

current subset c. The difference between these implementations is that the first 

version, hereafter named H, uses the (same) predefined order i1, i2, . . , ik-1,  ik,  k = | I |, 

of inputs at each node of the tree; while the second implementation, named Hc, uses a 

cost function that provides an order among the inputs of I at each node of the tree.  

More precisely, at a current node c we consider the ordered list of inputs i1, i2, . . , ik-1 ,  

ik, k = | I | and the following rules:  

(h) Let i be the current input of the ordered list: 

If there exists an output o such that there are two different states of c 

where non-empty io-successors of these states coincide or the i/o 

successor of c is a bad node, then: 

   (1)  Node c is labeled as a bad node under input i ; 

         The input i is deleted from the ordered list of inputs attached to 

node c ; 
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       If the list of inputs at c is empty (there are no more inputs 

to consider at c), then c is labeled as a bad node (i.e., node 

c is bad under all inputs), outgoing transitions of c are 

deleted. 

(i) If node d is labeled as a bad node, consider the transition from the parent 

node c leading to the bad node d over the input i, then apply (1) above to node 

c.        

The cost function for the Hc implementation is calculated as follows: 

Hc Cost function: The order list of inputs at a node is labeled with the subset 

of states c for each input i in I. The cost of i under c is calculated as the total number 

of the io-successors of c over all outputs o in O. 

On Speeding up the search process: Speeding up the search process is 

achieved by hashing the good nodes that lead us to solution. Then afterwards if during 

the search an io-successor of a current state c is found to be d, then no further search 

is carried out from d; node c is labeled as bad node under i, and handling node c is 

done as described in rules (h) and (i) above. Furthermore, if during the search, a DTCd 

is established for a subset of states say d, then d is hashed as a good node and DTCd is 

saved. In this case, if afterwards during the search node d is encountered again, no 

further search is carried out of d as it is considered as a good terminal leaf node since 

a DTC for the subset d is already derived. 

Example 4.1. As an application example of the H approach, consider the FSM 

S1 in Table ‎4-1 with inputs {a, b}, outputs {0, 1}, and states {1, 2, 3, 4}. The H 

method is applied starting from the set of states b =     ̅̅ ̅̅  using the order a/0, a/1, b/0, 

b/1 for input/output pairs at tree nodes. First, as none of the non-empty a0 - 

successors of state 0 and a/0 - successors of state 1 coincide, then node n2 labeled by 

the a0-sucessor of    ̅̅ ̅̅   =    ̅̅ ̅̅  is added to the tree (Figure ‎4-1). Then at n2, considering 

the input a, as the a/0-successors of states 1 and 2 coincide, then input a is considered 

as a bad input at     ̅̅ ̅̅  , and we proceed to the second input b. Then, as none of the 

non-empty b/0-successors of state 1 and b/1-successors of 2 coincide, then b/0-

successor    ̅̅ ̅̅   (node n3) of     ̅̅ ̅̅  is derived. The a/0-sucessor of    ̅̅ ̅̅   is the singleton 

{1}, then as this a/0-sucessor is a terminal leaf node, the a/1-sucessor    ̅̅ ̅̅  is derived, 
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and the process repeats until the tree, which represents a DTC for    ̅̅ ̅̅ , given in 

Table ‎4-1 is obtained. 

Note that for this example, if hashing is used as illustrated above, it is 

observed that the tree with root node n5 labeled by    ̅̅ ̅̅  represents a DTC for     ̅̅ ̅̅ , and 

thus     ̅̅ ̅̅  is hashed as a DTC for    ̅̅ ̅̅ , then later in the search as the a/1-sucessor of    ̅̅ ̅̅  

is    ̅̅ ̅̅  (node n12), thus, no further exploration is done from node n12 i.e., the nodes n13, 

n14, and n15, are not generated, and this speeds up the search process. Further, if we 

assume that the maximum height L equals 2, then, while conducting the search, node 

n3 becomes a leaf node and thus we do not obtain a DTC (of height 2) for the pair  

   ̅̅ ̅̅ .  

Table ‎4-1: Tabular representation of FSM S1. 

Input\State 0 1 2 3 4 

a 1 / 0,  1 / 1 2 / 0,  3 / 1 2 / 0 ,  3 / 1 3 / 2 3 / 1 

b 2 / 0 0 / 0 4 / 0 3 / 0 4 / 2 

 

 

Figure ‎4-1: Tree obtained of applying the H method starting from the pair      ̅̅ ̅̅ . 

 

Example 4.2. Here we apply the Hc method to the set machine described in 

previous example again considering the same set of state b =     ̅̅ ̅̅ . First, at the initial 

node, as the cost of the a-sucessors of    ̅̅ ̅̅  = 4 and that of the b-sucessors of    ̅̅ ̅̅  = 2, 

the order b (namely, b/0; b/1 ) followed by a (namely, a/0; a/1) is used when 
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searching from a node labeled with    ̅̅ ̅̅  . Afterwards, node  n3 is derived and again the 

order b/0; b/1; a/0; a/1 is established for this node, then the process repeats till the tree 

in 

Figure ‎4-2, which also represents a DTC for the set     is obatained. For this 

example, it is clear that Hc even for the height L = 4 derives much smaller tree than 

that of the H method. 

 

Figure ‎4-2: Tree obtained by applying the Hc method starting from the pair     ̅̅ ̅̅ . 
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Chapter 5 : Experimental Evaluation 
 

This chapter includes the experiments conducted for assessing the A, H, and 

Hc methods in terms of execution time and quality of obtained solutions (height of 

obtained DTCs). Experiments are conducted to study how often a DTC exists 

depending on some FSM attributes and a number of states to be distinguished. Thus, 

according to the conducted experiments, H and Hc significantly outperform A in 

terms of execution time. H and Hc execution time is then assessed over large size 

machines. The execution time of A and its incremental implementations are also 

compared as both always find a solution when a solution exists. It is also interestingly 

observed that, for the conducted experiments that both H and Hc never missed finding 

a solution when a solution existed, and never declared that there is no solution where 

in fact a solution exists. In other words, the maximum search space of H and Hc is set 

appropriately to obtain such results. 

Experiments were conducted using randomly generated (complete) machines 

with various combinations of attributes including a number of states | S |, inputs | I |, 

outputs | O |, minimum min and maximum max degrees of non-determinism. The 

minimum or maximum degree of non-determinism represents the minimum or 

maximum number of transitions that are going from each state under each input of the 

generated machine. In addition, we also conducted experiments using some real 

machines and obtained the same pattern as random machines. 

In general, depending on the assessment objective, as illustrated below, 

experiments are conducted to assess performance when: 

| b | = 2 , i.e. when the number of states to distinguish in the set b equals two, or 

b = S and thus | b | = | S | , i.e., when the objective is to distinguish all states of the 

machine. 

In some cases, several values of | b | are considered. It is noted that for each 

considered combination of attributes and a considered value of | b |, we run five 

different experiments and then calculate and depict the average of the obtained results 

in the corresponding figures. The experiments were obtained using an Intel(R) 
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Core
(TM)

 i5 3337U CPU @1.80GHz with 4 GB RAM machine under Windows 7 (32 

bit). 

5.1 Existence of DTCs 

Here the existence of a DTC depending on the number of state, outputs, and 

the degree of non-determinism is checked. Experiments are conducted using machines 

with the following combinations attributes | S | = 40,  80,  120,  | I | = 6, | O | = 4, 6, 

15, 20, | S | / 2, | S | / 2 + 10 , min = 1, 2  and max = 2.  

Existence when | b | = 2: DTCs were always obtained in all conducted 

experiments when the objective was to distinguish a randomly selected pair of states 

of the machine. 

Existence when b = S: In general, according to the results depicted in 

Figure ‎5-1, as the number of outputs increases, for the same considered number of 

inputs, the possibility of finding a DTC for all states of the machine increases.  

 

Figure ‎5-1: Existence of DTCs when b = S for deterministic and nondeterministic 

FSMs. 

 

5.2 A versus Incremental 

Here the performance of A, Inc(k) described in previous sections, k could be 2, 

3, 4, 8 states is assessed. It is noted that every point found in the figures below 
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corresponds to the average results of the experiments done for the machines with the 

same values of attributes. 

i) Representative example: We will have two parts of representative results; 

results when we have DTC, and when there is no such DTC. 

a) Results when a DTC exist: For experiments with distinguishing sequences, 

we use machine with the following specifications: | S | = 50, | I | = 6, | O | = 40, min = 

1, max = 2 the result in Figure ‎5-2, Inc is the slowest one because of the exhaustive 

use of composition operator which is very expensive and consumes a lot of time. The 

fastest one is A, then Inc(2), Inc(3), Inc(4), then Inc(8). This means the less usage of 

composition operator, the faster the algorithm is when there is a DTC. 

 

Figure ‎5-2: A vs Inc, Inc(2), Inc(3), Inc(4), Inc(8) when there is a DTC. 

 

b) Results when there is no DTC: Here we use machine with | S | = 50, | I | = 

6, | O | = 5, min = 3, max = 3. In Figure ‎5-3 results showed that Incremental 

outperforms A when the goal is to distinguish small numbers like b = 5, but when b = 

10, not all incrementals have better performance because when we use Inc(2) which 
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performance , then Inc(3), followed by A, then Inc(2). While when b = S ; A, Inc(2), 

Inc(3), Inc(4), followed by Inc, then Inc(8). Inc(8) is the slowest one, which means 

the composition operator here is used a lot.  

 

Figure ‎5-3: A vs Inc, Inc(2), Inc(3), Inc(4), Inc(8) when there is no a DTC. 

 

ii) Summary of all conducted experiments: This summary reports results 
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Figure ‎5-4: A and incremental when a DTC exists. 
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Figure ‎5-5: A and incremental when there is no a DTC. 
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Figure ‎5-6: Average time vs number of states to distinguish (A vs H vs HC) when 

there is a DTC. 

 

b) Results when there is no DTC: We used | S | = 50, | I | = 6, | O | = 5, min = 

3, max = 3. Figure ‎5-7 shows the execution time as the number of states that I want to 

distinguish increases of experiments (FSMs) without distinguishing sequences. 

According to these experiments, H, Hc always outperforms A from 2 to 10 states; 

after that A has the same performance as H and Hc. 
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500, 550, 600, 650, | I | = 10, | O | = 10, min = 5, max = 5. From Figure ‎5-8 we can see 

that H, and Hc always outperform A when | b | = 2, and in general Hc is faster than H. 

 

Figure ‎5-8: Average time vs number of transitions when there is a DTC and | b | = 2. 
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b) Results when there is no DTC: Here we used machines with the following 

specifications: | S | = 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, | I | = 

10, | O | = 10, min = 7, max = 7. 

Results when | b | = 2: Figure ‎5-10 showed that when we want to find DTC 

for | b | = 2, H, and Hc outperforms A, while the execution time for A increases 

dramatically when the number of transitions increases.  

 

Figure ‎5-10: Average time vs number of states when there is no a DTC and | b | = 2. 

 

Results when b = S: All H, Hc, and A all have the same performance here. 
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Figure ‎5-11: Average time vs number of transitions when there is a DTC. 
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increase. And so on for 10 and 15 states. This means Hc does not only enhance the 

time, but it also enhances the length. 

 

Figure ‎5-12: Average length when number of states to distinguish equals | b | = 2, 5, 

10, and 15. 
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Table ‎5-1: Real machines. 

 

 

 

 

 

5.6.1 Existence of DTCs:  Here we check the existence of a DTC depending 

on the number of states. Experiments were conducted using these machines: s386, 

s1a, log, s1488, sse, pma. 

Existence when | b | = 2: DTCs were always obtained over all conducted 

experiments when the objective was to distinguish a randomly selected pair of states 

of the machine. Except for s1a, it doesn‟t have sequence. 

Existence when | b | = S: According to the results depicted in Figure ‎5-13 

when | b | = S, the possibility of finding a DTC for all states of the machine decreases.  

 

Figure ‎5-13: Existence of a DTCs when | b | = S. 
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5.6.2 A versus Incremental: Here we assess the performance of A, Inc and 

Inc(k) described in previous sections. 

i) Representative example: We will have two parts of representative results; 

results when we have DTC, and when there is no such DTC. 

 a) Results when a DTC exist: Here we use machine “log” with specifications 

| S | = 17, number of transitions | T | = 8704, | I | = 512, | O | = 17.  

Figure ‎5-14 shows that when | b | = 5 or | b | = 10 or | b | = S. A has the best 

performance over all algorithms, then Inc(2), followed by, Inc(3), then Inc(4), then 

Inc(8), Inc comes at the last. 

 

Figure ‎5-14: Average time in (ms) versus number of states that we want to distinguish 

with a DTC for “log” machine. 

 

b) Results when there is no DTC:  we use machine “s1a”, | S | = 20, number 

of transitions | T | = 5120, | I | = 20, | O | = 256. It gives us results with no sequence. 

Figure ‎5-15 showed when | b | = 5, Inc(k) outperform A, but after that A has the best 

performance, because other Incrementals divide the subset b into more smaller parts 

and that means the composition operator will be used a lot.  
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Figure ‎5-15: Average time in (ms) versus number of states that we want to distinguish 

when there is no a DTC for “s1a” machine. 
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Figure ‎5-16: Average time versus number of states to distinguish when a DTC exists. 
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Figure ‎5-17: Execution time versus number of states to distinguish when there is no a 

DTC. 

 

5.6.3 Execution time of A, H, and Hc algorithms:  

Here we compare the execution time for the three algorithms A, H, and Hc. 

i) Representative example: We will have two parts of representative results; 

results when we have DTC, and when there is no such DTC. 

a) Results when a DTC exist: we use machine” log”, with specifications | S | = 

17, | T | = 8704, | I | = 512, | O | = 17, Figure ‎5-18 shows that H, Hc have the best 

performance. 

 

Figure ‎5-18: Average time in (ms) versus number of states that we want to distinguish 

when there is a DTC. 
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b) Results when there is no DTC: We used machine”s1a” | S | = 20, | T | = 

5120, | I | = 20, | O | = 256. It gives us results with no sequence. Figure ‎5-19 shows 

that H, and Hc always have the best performance. 

 

Figure ‎5-19: Average time in (ms) versus number of states that we want to distinguish 

when there is no a DTC. 

 

ii) Summary of all conducted experiments: In the following we report results 
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Figure ‎5-20: Average time versus number states to distinguish when there is a DTC. 
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b) Results when there is no DTC: From Figure ‎5-21, when | b | = 2 or  | b | = 5 

for s1a and there is no DTC for the set b, H and Hc outperform A, but for s386 they 

are all have the same performance. Also when b = S, A, H, and Hc can have the same 

performance as s386 and sse, or faster than A as s1a. 

 

Figure ‎5-21: Average time in versus number to distinguish when there is no a DTC. 
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Chapter 6 : Conclusion and Summary of Obtained Results 

 

This thesis targets the problem of deriving adaptive distinguishing test cases 

(DTCs) for a subset b of states of an observable nondeterministic finite state machine 

(FSM) with | S | states. An incremental approach named Inc is proposed based on the 

non-incremental approach named A given in [39]. Inc considers the states of the set b 

incrementally one after the other while checking the existence of a DTC. Experiments 

are conducted to assess A in comparison with the proposed algorithm Inc and many of 

its implementations named Inc(k), k = 2, 3, 4, 8, where the subset b is partitioned into 

k increments. 

In addition, in this thesis, an efficient heuristic approach, called H, is proposed 

for deriving DTCs. The approach searches for a solution using a special traversal of a 

successor tree based on some established rules and an appropriate use of hashing to 

speed up the search process. An implementation of the H approach, called Hc, that 

utilizes a cost function while conducting the search is also provided. Comprehensive 

experiments are conducted to assess and compare the performance of the proposed 

work. A summary of all the conducted experiments is reported below: 

 A versus Inc: When | b | = 5 and a DTC exists, A and Inc(k) have 

comparable performance (execution time), followed by Inc. However, when a DTC 

does not exist, all Inc(k) have comparable performance, followed by A. When | b | = | 

S | and a DTC exists, A and Inc(k) have comparable performance, followed by Inc. 

When a DTC does not exist, A, Inc(2), Inc(3), Inc(4) have comparable performance, 

followed by Inc, followed by Inc(8). 

 H versus Hc for very large machines: When | b | = 2 and a DTC exists, Hc 

usually outperforms H in terms of execution time. However, when a DTC does not 

exist, both H and Hc have comparable execution time as both converge fast to a 

solution. When | b | = S (if a DTC or it does not exist), H and Hc both are comparable 

as they converge very fast to a solution. 

 In terms of quality of obtained solutions (length of obtained DTC) as 

assessed for small and medium size machines, all methods almost have comparable 
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performance. For large machines, in most cases, Hc outperforms H. Also, Hc 

enhances the quality of obtained solutions. When the number of states to distinguish 

increases, Hc provides solutions with better lengths than H. 

 By construction, H and Hc might miss a solution even when a solution 

exists; however, according to the conducted experiments, it is shown that these 

methods are scalable to very large machines. On the contrary, A and Inc do not miss 

solutions, yet in general, for example when DTCs exist, these methods are not 

scalable to very large machines.  

It is clear from the above analysis that there is no clear indication that using a 

particular method is always better than using the others. However, the above analysis 

helps a test engineer in selecting an appropriate method according the above analysis. 

By construction, the incremental approach Inc(k) handles each of the subsets 

corresponding to the k partitions of the set b independently of each other. Thus, the 

development of parallel implementations of Inc(k) could be straightforward and it 

would be interesting to develop and assess such implementations considering recent 

state-of-the-art parallel technologies. In this case, the previous related work 

summarized in the Introduction section could be a good start for such a work. 
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