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Abstract 

Vigilance, or sustained attention, is crucial for jobs where attentiveness for 

prolonged times is required. These jobs include air traffic control, luggage inspection, 

and surveillance jobs. Vigilance decrement can cause catastrophic consequences. 

Therefore, vigilance level assessment is a widely-researched topic. Several methods 

have been used to assess vigilance levels such as eye tracking techniques which include 

monitoring saccadic eye movements and pupil size variation. Other methods used are 

heart rate variability, and physiological data such as electrocardiogram (ECG), electro-

oculogram (EoG) and electroencephalogram (EEG). EEG data has been found to have 

strong correlations with human’s vigilance level. This thesis report presents a novel 

method for the assessment of vigilance decrement using EEG data that embarks upon 

the brain’s temporal behavior. An experiment based on a 20 to 30-minute Psychomotor 

Vigilance Task (PVT), that simulates real applications where vigilance decrement is 

observed, was carried out on 33 subjects and their EEG recordings and reaction times 

were collected. In the PVT task, subjects were required to respond to target events while 

refraining from non-target events. Vigilance reinforcement by challenge integration 

was tested where 22 out of the 33 subjects had an additional task where they had to 

respond to noisy target events. The spectral power density characteristics namely the 

delta, theta, alpha and beta waves of the EEG data are compared for low and high 

vigilance states. Furthermore, EEG source localization is utilized to monitor source 

dynamics of the brain in transition from vigilance states. Results from both methods are 

analyzed using Student’s t-test with the significance threshold set at 0.1. Power spectral 

density analysis showed that power in  AF8 electrode in delta, theta and alpha bands 

increased with vigilance decrement with p-values .023, .079 and .020 respectively. The 

source localization approach showed an increase in prefrontal source distribution with 

vigilance decrement with p-value of .015. The joint probability function of the 

prefrontal delta, theta and alpha bands as well as the source dynamics of prefrontal 

activity showed promise in constructing a vigilance assessment model to identify 

vigilance state from labeled data by yielding an 84.85% accurate detection.      

Keywords: Vigilance decrement; electroencephalogram; brainwaves; power spectral 

density; source localization. 
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Chapter 1: Introduction 

1.1 Vigilance Decrement Assessment 

Vigilance is a term with various definitions but is mostly used as sustained 

attention or tonic alertness. Vigilance implies the degree of cognitive performance. 

Many interacting neural systems affect vigilance [1]. Researchers have found that 

people who participated in sustained attention type tasks suffered a noticeable decrease 

in their ability to detect critical stimuli over time. This phenomenon is known as 

vigilance decrement. The vigilance decrement can be characterized either by a decrease 

in target stimuli detection or an increase in the reaction time to that stimulus.  

There are two opposing theories of vigilance decrement: the mindlessness 

theory and the resource depletion theory [2]. The mindlessness, or boredom, theory 

suggests that the person monitoring loses focus of attention due to the long intervals 

separating infrequent critical signals, where they start treating their vigilance 

assignment in a spontaneous automatic manner [2].  The lack of external support for 

attention during the intervals between critical signals fails to keep observers attentive 

to the task which leads to their loss of ability to properly detect target stimuli. This is 

also known as the under-load hypothesis [3]. Whereas the resource depletion, also 

known as mental fatigue or over-load, theory attributes vigilance decrement to the 

insufficient available cognitive resources as observers are required to make continuous 

discrimination between target stimuli among other noise signals under conditions of 

uncertainty. This continuous demand on information processing resources does not 

allow for replenishment of those resources which causes the decline of vigilance over 

time [3].   

Many tasks such as air traffic control, luggage screening in airports, driving 

and surveillance occupations require high vigilance levels. However, due to their 

monotonous nature, the personnel performing the task suffer from vigilance 

decrement, which can lead to disastrous penalties. This vigilance decrement due to 

monotony of tasks resembles the mindlessness theory. Therefore, this report adapts 

the under-load hypothesis by investigating methods that can measure the vigilance 

level in monotonous tasks. Various methods in assessing vigilance decrement have 

been proposed in the literature. Ranging from eye tracking techniques, to heart rate 

dynamics, and physiological tests have been used to detect changes in vigilance 
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levels. Predominately, electroencephalogram (EEG) data has been used to evaluate 

vigilance by investigating the power spectral density changes with vigilance in brain 

waves, namely: delta, theta, alpha and beta waves. In chapter 3, a detailed literature 

review of the various methods used for the assessment of vigilance decrement will be 

presented. In this thesis work, we aim to use a novel method for the assessment of 

vigilance using brain source localization.  

1.2 Brain Source Localization  

EEG signals are an example of physiological data that has been tightly 

correlated to vigilance.  EEG is a noninvasive functional neuroimaging technique that 

measures scalp potentials due to firing of neurons (brain cells) in response to different 

stimuli. EEG is useful in analysis of spatial and temporal activities in the brain. Despite 

its low spatial resolution, EEG has high temporal resolution of about a few milliseconds 

which makes it appropriate for real-time monitoring of brain activity [4]. As mentioned 

earlier, the most studied characteristic of EEG signals in accordance with alertness level 

is power spectral density of different brain waves. Additionally, EEG signals are used 

to analyze event related potentials (ERPs) which aids in studying brain activity with 

respect to certain evoked stimuli.   

To study the spatial aspect of brain activity, EEG source localization has been 

developed. In EEG source localization, first the forward problem is solved where 

volume conductor head models are used to obtain electric fields outside the scalp given 

specific neural activity. A mathematical representation of the forward problem is 

formulated where neurons producing the electric signals are modeled as current dipoles. 

However, given the electric potentials on the scalp, the source of brain activity cannot 

be uniquely calculated as many source configurations can produce the same EEG 

pattern. Therefore, a-priori assumptions on the production of EEG signals are made to 

solve the inverse problem. In order to solve the inverse problem, which involves 

localizing the source of neural activity, various techniques such as array processing and 

Bayesian methods are implemented for accurate localization. Discussion of different 

source localization methods are presented in chapter 4. 
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1.3 Motivation and problem statement 

Vigilance decrement can cause fatalities in several critical tasks such as 

monotonous driving, surveillance, and airport security. Early detection of this 

decrement can allow taking control of the situation before any appalling costs. 

Therefore, the prime objective of this work is the construction of a vigilance 

measurement model using EEG source localization. The main challenge in this effort 

is developing an accurate vigilance measuring system that can detect vigilance 

decrement in critical conditions by monitoring different neural sources and their 

corresponding current densities in real-time ensuring high temporal and spatial 

resolutions.  

1.4 Thesis Methodology and Outline  

In this work, Advanced Source Analysis (ASA-lab) software is used to collect 

and analyze EEG data from 33 subjects while performing a task that induces vigilance 

decrement under controlled conditions. The task involves the subject reacting to target 

events among other non-target events. The recorded raw EEG data is a waveform that 

not only contains brain activity, but also comprises of other random unwanted signals 

called artefacts such as eye blinks, eye movements, muscle movements, 

electromyography (EMG), and electrocardiogram (ECG). Consequently, the EEG 

signals are preprocessed to remove unwanted signals to get a clean EEG signal showing 

only the subject’s brain activity. Furthermore, the signal is filtered to keep only 

frequency components of interest which is typically 0.5-30 Hz. The spectral behavior 

of the EEG data is investigated and compared between low and high vigilance states.  

Moreover, source localization SAFFIRE algorithm, is used to examine the changing 

aspects of the sources from low and high vigilance states. Both results are used to 

produce a model for assessment of vigilance level. The rest of the report is organized 

as follows: chapter 2 presents the brain anatomy. EEG and other brain imaging 

techniques are also discussed and compared. Chapter 3 summaries previous works on 

vigilance decrement assessment. In chapter 4 source localization is introduced and the 

mathematical modelling of the forward and inverse problems is outlined along with the 

description of different source localization algorithms. The experimental setup is 

explained in chapter 5. Data preprocessing and results are presented in chapter 6. 

Finally, chapter 7 includes discussion, conclusions and future work.  
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Chapter 2: Brain Anatomy  

2.1 Brain Structure  

The brain is a complex multilayered organ divided into a hierarchical structure 

(Figure 1): the brainstem, the cerebellum, the thalamus, and the cerebrum.  The 

brainstem is located at the bottom of the brain connecting it to the spinal cord which 

branches throughout the body through neural networks. It is responsible for basic 

functions such as breathing, circulation, digestion, and other basic involuntary 

functions. It routes and filters the sensory information up to the brain and the motor 

responses back to the body through the spinal cord. The cerebellum is located at the 

lower rear of the brain where it houses motor control and motion memory. The 

thalamus, above the brainstem, acts as a router which sorts the sensory data and sends 

it across the brain where it needs to go. Below the thalamus, there is the hypothalamus 

which is responsible for homeostasis. The cerebrum is the most dominant and the 

largest part of the brain, occupying more than three quarters of the brain’s total volume 

[5]. It comprises the major brain division known as the forebrain where high order 

information processing and perception takes place. The cerebrum is divided into 

hemispheres: the left hemisphere and the right hemisphere which are linked through a 

bridge of nerve fibers called the corpus callosum.  

 

Figure 1: Brain Structure (Source: http://nbia.ca/brain-structure-function/) 

2.1.1 Cerebral Cortex. The cerebral cortex is the outer wrinkled layer of the 

cerebrum known as the grey matter where most of the high order processing occurs. 

Due to the wrinkled nature of the cortex and its thickness of 2 to 5 mm, it is made up 

of to 10 to 50 billion neurons, allowing different parts of the brain to communicate [5]. 
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The cortex and is divided into four main lobes as shown in Figure 2: the frontal, parietal, 

temporal, and occipital lobes. Each of these lobes have different functions, where the 

frontal lobe is associated with reasoning, motor skills, higher level cognition, and 

expressive language. The parietal lobe is associated with processing tactile sensory 

information. The temporal lobe is important for speech perception and memory, while 

the occipital lobe is responsible for interpreting visual stimuli and information [6].  

 

Figure 2: The cerebral cortex (Source: http://controlmind.info/human-brain/structure-

of-the-brain) 

Certain cortical regions have rather simpler functions, termed the primary cortices 

which are areas that directly receive sensory input such as: vision, hearing, somatic 

sensation, or that are directly involved in motor responses. The association cortices, 

however, serve more complex functions including memory, language, abstraction, 

creativity, judgment, emotion, and attention [6]. Regions of association cortex are 

adjacent to the primary cortices and include much of the rostral part of the frontal lobes, 

as well as regions encompassing areas of the posterior parietal lobe, the temporal lobe, 

and the anterior part of the occipital lobes [6].  

2.1.2 Brain cells. The brain is made up of two types of cells: Neurons and 

glial cells. Neurons are cells that send and receive electro-chemical signals to and 

from other neurons across the brain and the body, while glial cells provide support 

functions for the neurons and are much more abundant.  

2.1.2.1 Neurons. Neurons are nerve cells that transmit nerve signals to and from 

the brain. It consists of a soma or cell body with branching dendrites that act as signal 
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receivers from other neurons as seen in Figure 3. The axon is a projection extending 

from the cell body which conducts the nerve signal and transmits it through its terminals 

to a synapse, a gap between the axon terminal and the receiving cell, by means of 

chemical messengers called neurotransmitters.  The axon is coated by a myelin sheet 

which allows for fast transmission of action potentials (discussed in section 2.2.1). 

 

Figure 3: Neuron Structure (Source: 

http://www.enchantedlearning.com/subjects/anatomy/brain/Neuron.shtml) 

2.2 Brain Electrical Activity 

2.2.1 Nerve Impulses. The transmission of a nerve impulse along a neuron from 

one end to the other occurs due to the change in the electrical charge across its 

membrane. The membrane of an unstimulated neuron is naturally polarized. This is due 

to excess sodium ions (Na+) on the outside of the membrane and an excess of potassium 

ions (K+) on the inside which are continually leaking across the membrane through 

leakage channels. The resting or unstimulated membrane is more permeable to 

potassium ions than to sodium ions, while large negatively charged ions such as 

proteins and nucleic acids reside within the cell causing a resting potential of -70 

millivolts inside the membrane with respect to the outside [8]. 

A graded potential is one that does not travel far from its origin and usually 

occurs in cell bodies and dendrites due to a stimulus such as light, heat or 

neurotransmitters that causes Na+ gated channels to open making the membrane more 
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positive (depolarizes) or K+ gated channels to open making the membrane more 

negative (hyperpolarizes). If a depolarizing graded potential is sufficiently large that it 

exceeds the threshold potential, an action potential, or a complete depolarization (from 

-70 mV to around +30 mV) is caused [8]. This stimulates neighboring Na+ gates down 

the axon to open and thus traveling down the axon to other neurons. An action potential 

is an all or nothing event: if the threshold potential is exceeded, complete depolarization 

occurs. As a response, the K+ channels open allowing the outflow of positive potassium 

ions making the membrane hyperpolarized. During refractory period the Na+ and K+ 

ions switch places through pumps in the cell membrane until returning to original 

resting potential (Figure 4). Unlike graded potential, an action potential can travel long 

distances. 

 

Figure 4: Action Potential Initiation [5] 

Once an action potential is initiated at one point in the nerve cell axon, its peak value 

now will be about +30 mV inside with respect to the outside. Unlike charges attract, so 

the positive charge will move to the adjacent region of unmyelinated axon causing it to 

depolarize. As it depolarizes sufficiently, sodium channels in the adjacent region of the 

membrane will be opened and a new action potential will be initiated [9]. This charge 

distribution will then spread to the next region causing the action potential to propagate 

along the axon. During the recovery period depolarization cannot re-occur, therefore 

when an action potential starts it triggers further depolarization only in the direction 



18 

along the axon in which depolarization has not already occurred making action potential 

propagation unidirectional [10]. 

2.3 Neuroimaging Techniques 

To study the structure, function and behavior of the brain, methods of 

investigating brain activity arose which can be divided into two types: anatomical 

techniques and functional scanning.  

2.3.1 Anatomical Brain Imaging Techniques. Anatomical or structural brain 

imaging are techniques which deal with identifying the different structures of the brain 

and the diagnosis of large-scale intracranial disease such as tumor and injuries [11].  

Some examples of structural brain imaging methods are: computed tomography and 

magnetic resonance imaging.  

Computed tomography, also known as CT scan, is a noninvasive anatomical 

imaging technique that produces multiple images of the bodily organs using x-rays. 

Different body parts absorb the x-rays in varying degrees. This difference in absorption 

allows the body structures to be distinguished from one another on the CT electronic 

image. An advantage of CT is its ability to image bone, soft tissue and blood vessels at 

the same time in detail [12]. Therefore, CT scanning is suitable for providing anatomic 

images of head injuries, stroke, brain tumors and other brain diseases as opposed to 

regular radiographs (x-rays). However, CT does not show the functional aspect of the 

different brain regions.  

Magnetic resonance imaging (MRI) uses a strong external static magnetic field 

and radio waves to examine organs and their structures. MRI scans are used in diagnosis 

of various conditions such as tumors [13]. However, like CT, MRI scans do not indicate 

functions associated with different brain regions.  

2.3.2 Functional Brain Imaging Techniques. Functional brain imaging deals 

with the brain imaging techniques that permit visualizing brain structure and 

functionality. These techniques are used for better understanding of 

electrophysiological, hemodynamic, and neurochemical processes that describe normal 

and pathological brain functionalities [5]. It is widely used in cognitive psychology 

research as it allows the information processing in the brain to be directly visualized 

http://www.radiologyinfo.org/en/glossary/glossary.cfm?gid=246
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[11]. There are two types of functional neuroimaging namely hemodynamic and 

electromagnetic neuroimaging which are discussed below.    

Hemodynamic functional neuroimaging is one that monitors the metabolic 

activity and blood flow within the brain. Functional magnetic resonance imaging 

(fMRI) uses magnetic resonance (MR) imaging to measure the metabolic changes that 

take place in an active part of the brain. This enables the examination of the anatomy 

of the brain while monitoring which part of the brain is handling critical functions such 

as thought, speech, movement, and sensation; this is called brain mapping (Figure 5) 

[13]. This is performed by the fMRI subtraction method where images from two 

behavioral conditions are subtracted from each other to yield regions of brain activity. 

The spatial resolution of fMRI is relatively high of around 3-6 mm. However, its 

temporal resolution is in the order of seconds which is not sufficient to distinguish 

between the activation patterns associated with different stages of the rapid stimulus 

processing. This is due to hemodynamic lag which is 3-6 seconds due to the slow flow 

of blood through the brain [15].  

 

Figure 5: Function magnetic resonance images (fMRI) of active brain areas when 

subject in engaged in speech (left), finger tap (middle) and listening (right) (Source: 

http://www.mayfieldclinic.com/PE-fMRI_DTI.htm) 

Positron emission tomography (PET) uses small amounts of radioactive 

materials called radiotracers to help evaluate organs and tissue functions by identifying 

body changes at the cellular level such as blood flow, oxygen use, and 

glucose metabolism [12]. A radioactive material is injected into the subject. PET 

radioisotopes emit a positron, a positively charged electron, in the process of decay. 

When this positron collides with an electron, they produce 2 photons traveling in 

opposite directions. This induces electromagnetic radiation which can be detected 

http://www.radiologyinfo.org/en/glossary/glossary.cfm?gid=532
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externally and is used to measure the quantity and the location of the positron emitter 

[15]. This is useful in disease diagnosis as seen in Figure 6. PET scans have a spatial 

resolution of about 4mm throughout the brain but a highly degraded temporal resolution 

of 30-40 seconds. The invasive nature of PET scans and its low temporal resolution 

makes it unattractive in real-time applications such as vigilance monitoring.  

 

Figure 6: Positron emission tomography (PET) scans for disease diagnosis (Source: 

http://cognitiveconsonance.info/tag/pet-scan/) 

Electromagnetic functional neuroimaging deals with monitoring the 

electromagnetic activity within the brain. When neural networks fire in synchrony due 

to a stimulus, the electromagnetic activity can be detected and recorded outside the skull 

(Figure 7). This is due to the post-synaptic intracellular current flow along the dendrites 

of pyramidal neurons in the cerebral cortex [15], [16]. Electromagnetic neuroimaging 

includes magnetoencephalography (MEG) which measures magnetic fields and 

electroencephalography (EEG) which measures electric potentials. 

 

Figure 7: Electromagnetic activity due to intracellular currents [15] 
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Both MEG and EEG have excellent temporal resolution in the order of 

milliseconds compared to other neuroimaging techniques (Figure 8), however their 

spatial resolution is low which requires intense algorithms to localize activated areas in 

response to a particular stimulus.  

 

Figure 8: Spatial versus temporal resolutions of functional neuroimaging techniques 

in logarithmic scale (Source: 

http://www.nature.com/nature/journal/v468/n7321/fig_tab/nature09569_F1.html) 

An MEG signal is dominated by currents oriented tangential to the skull while currents 

oriented perfectly radial to the skull are missed. However, EEG signals represent 

tangentially and radially oriented currents equally [15]. The advantage of MEG over 

EEG signals is that they are more immune to inaccurate head conductor models, 

however implementation of MEG as a system requires the subjects to not move and the 

setup is not portable and more complex than EEG systems. Therefore, in this report 

EEG neuroimaging technique is utilized to study the spatiotemporal behavior of the 

brain under varying vigilance levels.  

2.4 Electroencephalography 

Electroencephalography (EEG) is a noninvasive electrophysiological 

monitoring method that records electrical activity of the brain by measuring scalp 

electrical potential differences using sensors called electrodes as seen in Figure 9.  

https://en.wikipedia.org/wiki/Electrophysiology
https://en.wikipedia.org/wiki/Brain
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Figure 9: EEG Electrode Setup [15] 

Electrode are labelled according to adjacent brain areas: F (frontal), C (central), T 

(temporal), P (posterior), and O (occipital). The letters are accompanied by odd 

numbers for electrodes on the left side of the head and even numbers for electrodes on 

the right side [16]. When neural networks fire simultaneously, electrical activity can be 

measured outside the brain producing an electroencephalogram (Figure 10).  

 

Figure 10: Electroencephalogram recording of the brain 

2.4.1 Brain waves. The spectral content of the EEG or brainwaves that are 

observed in EEG signals give indications about diagnosis to brain-related activity.  

Brainwaves are divided into bandwidths to describe their indications. Brainwaves 

change according to states of consciousness. Low frequency brainwaves are dominant 

in states of tiredness, rest, or dreamy. The higher frequencies are dominant in hyper-
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alert states and increased cognitive activity. Four main brainwaves (Figure 11) 

dominate the brain activity: delta δ, theta θ, alpha α and beta β.  

Delta waves (δ) are those of frequencies between 0.1 – 4 Hz. They are the 

slowest brainwaves but have high amplitudes. They are usually generated in deepest 

meditation and dreamless sleep [17].  They are also involved in unconscious bodily 

functions such as regulating heart beat and digestion [18]. 

Theta waves (θ) are in the frequency range 4 – 8 Hz occur most often in 

daydreaming and sleep.  It is also associated with inhibition of elicited responses and a 

state of somnolence with reduced consciousness [19]. Creativity, emotional connection, 

intuition, relaxation are some states related to theta waves [18].  

Alpha waves (α) are in the frequency range 8 – 12 Hz. Alpha is the resting state 

for the brain which mainly occurs during quietly flowing thoughts. Alpha waves aid 

overall mental coordination, calmness and alertness [17]. 

Beta waves (β) are in the frequency 12 – 30 Hz range. They are high frequency 

low amplitude brainwaves that are commonly observed when awake [18]. Beta 

brainwaves dominate our state of consciousness when attention is directed towards 

cognitive tasks. Beta is present when alert, attentive, engaged in problem solving, and 

involved in focused mental activity [17]. 

 

Figure 11: Types of brainwaves (Source: https://sccpsy101.com/home/chapter-

2/section-8/brain_waves-3/) 
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2.4.2 Event Related Potentials. An event-related potential (ERP) is a useful 

EEG characteristic, which involves averaging the EEG activity time-locked to the 

presentation of a stimulus such as: visual, somatosensory, or auditory stimuli as in 

Figure 12.  

 

Figure 12: Averaging EEG data to obtain ERP [15] 

ERP waveforms are described in terms of positive and negative peaks where typically 

negative peaks are plotted up and positive peaks are plotted down. The labeling of an 

ERP starts with a P or a N indicating the peak polarity followed by a number indicating 

the latency which is the time from stimulus onset. For example, “N100” or ‘N1’ is used 

to describe an ERP negative peak that occurs 100 milliseconds following stimulus onset 

as shown in Figure 13. 

 

Figure 13: Event-related potential (ERP) Components (Source: 

http://www.wikiwand.com/en/Event-related_potential) 

https://en.wikipedia.org/wiki/Somatosensory
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Functional descriptions of the ERPs identify the cognitive processes reflected 

by each peak. Additionally, ERP descriptions include the potential brain sources of 

observed activity. The P1 or P100 is an ERP component that is not easily identified. 

This component is usually interpreted as a neurophysiological indicator to reflect the 

general level of arousal [20]. It is largest over the occipital regions. The amplitude of 

P1 generally varies with the amount of attention [20]. N1 or N100 is easily identified 

and is believed to reflect selective attention to basic stimulus characteristics. It largest 

over the occipital region or the inferior temporal regions. N1 amplitude is typically 

larger in stimulus discrimination tasks but is reduced when the stimuli are presented at 

short intervals. However, increased amplitude is attributed to enhanced processing of 

the attended location but not to arousal. The P3 or P300 is the component which arises 

where a target stimulus is presented infrequently among more common non-target 

stimuli. The subject must pay attention and respond for a P300 to be elicited [20].  

Additionally, the ratio of target to non-target stimuli must be low to get a more visible 

peak. One factor that affects the P300 amplitude is attention, making it attractive to 

studies of populations with attention deficits.  

2.5 Attention and Brain Function 

Attention is fluctuating state of mind where the brain can concentrate on one 

aspect of the environment while ignoring others. These aspects can be internal such as 

thoughts or external stimuli such as visual, auditory, and other sensory stimuli.  Willful 

concentration in the brain is believed to reside in the prefrontal cortex with neural 

activity at low frequencies for intentional work, whereas undeliberate attention is 

mostly located in the parietal cortex with higher frequencies for automatic processing 

[21].  

The prefrontal cortex is the control center for most cognitive functions where it 

takes charge of attention in the brain and controls relevant parts of the brain 

accordingly. A part of the prefrontal cortex known as the inferior frontal junction (IFJ) 

controls visual processing areas that are responsible for recognizing a specific category 

of objects [22]. The researchers suggest that the IFJ holds onto the idea of the object 

and directs the responsible part of the brain to look for it. A study on mice in a cross-

modal task, involving visual and auditory senses where they are trained to respond 
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based on specific cues, suggest that the prefrontal cortex modifies activity in areas of 

the thalamus to shift attention towards visual information [23].  

Some human studies based on event-related fMRI, reported the role of the 

lateral prefrontal cortex in attentional selection of objects [24]. While others showed 

that ventral and orbital prefrontal lesions caused deficits in learning new visuomotor 

associations and retaining pre-learned visuomotor associations [24]. Some scientists 

suggest that the prefrontal cortex is shown to interact with the inferior temporal cortex 

in associating a visual stimulus with an action in a conditional visuomotor task [24]. 

Nevertheless, due to the associative nature of attention function, numerous studies have 

reported the participation of multiple cortical areas in attentional processes. It has been 

difficult to localize the exact source of attentive behavior in the brain.  
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Chapter 3: Monitoring and Measuring Vigilance Decrement Techniques 

Various vigilance monitoring methods have been developed recently to combat 

the penalties of vigilance decrement in critical daily tasks such as driving and 

surveillances. Some of these methods and their findings are discussed in this chapter.   

The authors of [25] used eye tracking techniques by monitoring saccadic eye 

movements to demonstrate the raise in cognitive workload by observing the changes in 

the normalized average peak saccadic velocity. Based on a 16-subject experiment 

where subjects were exposed to a degradation of visual stimuli thus increasing 

workload. Subjects’ saccadic eye movements were monitored as they went through four 

cognitive workload levels where they were to identify target image sequences from 

non-target image sequences.  They observed that the mean saccadic velocity increases 

with cognitive workload. They suggest that such method can find application in 

assessment of vigilance. However, human’s visual characteristics vary greatly with 

factors such as age, height, health, and shape of face [26]. Therefore, saccadic eye 

movements solely may not produce reliable vigilance assessment results.   

By combining eye tracking with EEG data analysis, the authors in [27] study 

the effect of integrating challenging stimuli with monotonous tasks to enhance 

vigilance. In the experiment, 12 subjects were asked to watch various activities on the 

screen and react to a target appearing by pressing a button. The experiment was divided 

into three phases where phases 1 and 3 induced vigilance decrement due to monotony, 

while an added noise to the screen in phase 2 made the task more challenging. The eye 

tracking data comprised of samples with time stamp, pupil size, eye position and eye 

velocity recorded at a sampling rate of 500Hz. EEG data was collected, and relative 

band power was calculated to estimate vigilance changes.  It was observed that upon 

introducing the challenging stimuli, the relative delta band power of EEG was 

suppressed on the fronto-parietal and occipital cortices. Additionally, frontal midline 

theta power and frontal theta to parietal alpha power ratio increased. 9 out of 12 subjects 

presented lower relative delta power at phase 2 where vigilance was enhanced. The 

saccade amplitude and saccade velocity obtained from the eye tracking data are shown 

to decrease with vigilance decrement, while blink rate increases with vigilance 

decrement. The reverse trend is observed upon challenge integration. 
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The authors of [28] designed a monotonous task to induce vigilance decrement 

across 12 subjects. Accordingly, they extract multifractal attributes of EEG data using 

wavelet leaders and select the most statistically significant attributes in classification of 

vigilance into two classes or two vigilance levels: high vigilance and low vigilance. 

They vary the time window used for feature extraction to improve classification 

accuracy. They suggest that multifractal attribute features, rather than the conventional 

power spectral density features, are feasible to differentiate vigilance levels. Finally, 

they explore the spatial distribution of self-similarity attribute and found that the most 

difference between the two vigilance levels appear on the frontal and the occipital 

cortices. This explore the topographies of the averaged multifractal attributes (self-

similarity) for the high and low vigilance states, respectively. The difference 

topography is obtained by subtracting self-similarity values of low vigilance state from 

that of high vigilance state. The self-similarity is shown to be higher on the frontal 

cortex and lower on the occipital cortex during high vigilance state. 

An EEG-based BCI system is proposed in [29] with a reduced number of EEG 

channels based on individual variability in EEG. They first collect multi-channels raw 

EEG signals labeled in two distinct vigilance states. The spectral power in the delta δ, 

theta θ alpha α and beta β and their ratios (θ+α)/β, α/β, (θ+α)/(α+β), and θ/β are 

calculated as features for vigilance classification. Fisher score is the utilized to remove 

redundant features and reduce indiscriminative channels. Then, a vigilance model is 

constructed using a Gaussian Mixture Model (GMM) clustering to assess a gradual 

vigilance changing process. Parameters, including mean and covariance, of K cluster 

model are estimated. The number of clusters K represent the resolution of the vigilance 

level; that is for a sophisticated classification of vigilance K is set to be a large value. 

However, this method claims that channel reduction is based on individual variability 

making it impractical when constructing a common vigilance model.  

Another approach of using classification in vigilance detection is presented in 

[30] where EEG data acquired from subjects performing a sleep task is divided into 

wakeful and sleepy states. Principle Component Analysis (PCA) algorithm is used to 

reduce 62 channels data to 26 principle components. They propose making use of 

several channels to extract useful features and utilize the personal feature to construct 

a self-adaptable vigilance model to eliminate individual differences. The spectral power 
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in the delta δ, theta θ alpha α and beta β and the ratios (θ+α)/β, α/β, (θ+α)/(α+β), and 

θ/β are used as features for discriminating vigilance levels. For a specific band or ratio, 

every principle component’s fisher score is calculated to discriminate the significant 

differences between sleepiness and wakefulness. Using Support Vector Machine 

(SVM) classification, it was observed that 7 out of 9 subjects showed higher θ band 

power in the central cortex at the sleepy state, while the α band power is lower in the 

occipital and parietal cortex and β band power is lower in the frontal cortex. The ratios 

θ/β and α/β are lower at the sleepy state in the parietal cortex, and α/β is lower in the 

occipital and temporal cortex. The ratio (θ+α)/(α+β) in the entire cerebral cortex is 

higher at sleepy state. According to their findings, in the frontal cortex the most 

difference is found in the δ band and the (θ+α)/(α+β) ratio. In the temporal cortex, the 

significant difference is found in the δ and α bands and the (θ+α)/(α+β) and α/β ratios. 

In the parietal cortex, the significant difference is found in the δ and α bands and the 

θ/β and α/β ratios. In the occipital lobe, the significant difference is found in the β bands 

and the θ/β ratio.  

In [31], the authors propose a single EEG-channel system for detecting low 

vigilance states during flights. They initially collected two channel derivations (C3-

M2) and (O1-M2) for 14 pilots during long-haul flights. The spectral power was 

calculated for the δ, θ, α and β bands and their ratios relative to the total EEG power. 

They then performed classification by comparing the normalized value of the relative 

power of moving windows. They classify a greater relative θ and α power or a lower 

relative β power than a threshold as a sleepy state.  The threshold, λ, was set 

automatically using a fixed 60 s window recorded before the flight where the pilot is 

asked to stay seated, quiet and awake with eyes opened. A membership function, 

defined using the theory of fuzzy sets, is used to classify into sleepy or awake states. 

The performance level of the algorithm was compared to the results obtained by the 

classification performed by two experts for 1000 different λ values and the true positive 

rate (TPrate) was plotted in function of false positive rate (FPrate). They conclude that 

the (θ+α)/β ratio in the O1-M2 channel provide the best classification.  
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Chapter 4: Brain Source Localization 

EEG signals reflect neural activity in real time leading to its high temporal 

resolution. However, EEG signals are measured on the surface of the scalp, thus they 

do not indicate where the brain activity is. Source localization algorithms were 

formulated to use EEG signals to localize and possibly reconstruct the signal emitted 

from the specific brain region.  

A mathematical model that describes the electromagnetic activity of the brain 

is developed where the head is modeled as a conductive sphere. Firing neurons are 

modeled as current dipoles by making use of volume conductor head models assumed 

to have a specific current density configuration that produces the EEG signals, this is 

called the forward problem. Because we have the scalp potentials while the specific 

current densities are not available, a-priori assumptions are made to estimate the sources 

that generated that specific EEG signal pattern and their locations; this is known as the 

inverse problem.  

4.1 Forward Problem 

The forward problem involves computing scalp potentials given a specific 

neural activity configuration which is modeled as [32]: 

Vij = ∫ 𝐿𝑖𝑗
𝑀 (𝑟). 𝐽𝑃(𝑟)𝑑V (1) 

Where Vij denotes the potential difference measured between electrodes i and j. 𝐿𝑖𝑗
𝑀(𝑟) 

is the leadfield for electrode pairs i and j which is dependent on the location and 

configuration of the electrodes and is expressed in Ω/m. JP(r) represents the current 

density originating from a source at location r and is expressed in A/m2. For a given 

current density and a known leadfield matrix a unique solution for the electric potentials 

can be obtained making the forward problem well-posed.  

4.1.1 Neural Generation of Electromagnetic Fields. Considering Maxwell 

equations for the electromagnetic field: 

∇ × 𝐸 =  −
𝜕𝐵

𝜕𝑡
 (2) 

∇ × 𝐻 =  
𝜕𝐷

𝜕𝑡
+ 𝐽 (3) 
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Where E is the electric field intensity (V/m), B is the magnetic flux intensity (W/m2), 

D is the electric flux intensity (C/m2), and H is the magnetic field intensity (A/m).  

Since EEG signals are below 1 kHz, quasi-static approximation can be applied to the 

Maxwell equations by eliminating time dependency such that equation (2) become as 

follows:  

∇ × 𝐸 =  0 (4) 

Taking the divergence of both sides of (3) while eliminating time dependence: 

∇. (∇ × 𝐻) =  ∇. 𝐽 (5) 

Leading to the following: 

  ∇. 𝐽 =  0 (6) 

The total current density 𝑱 produced by the neural activity which compromises of 

primary current 𝑱𝑷 density generated by neural activity in neurons which is to be 

localized and secondary currents or return currents 𝑱𝜴 that flows passively in the 

conductive medium: 

𝑱 =  𝑱𝑷 + 𝑱𝜴 (7) 

where the return currents 𝑱𝜴 can be represented as: 

𝑱𝜴 = σ 𝐄 (8) 

4.1.2 Neural source modeled as a current dipole. The coherent activation of 

a large number of individual neurons in a small volume of the brain can be accurately 

modeled as a current dipole localized to one site [33].  

Neural activity in a small area of the cortex modeled as a current dipole with charge Q 

at 𝒓𝑸 can be considered as a concentration of primary currents Jp(r) to a single point 

[32]: 

𝑱𝒑(𝒓) = 𝑸 𝛿(𝒓 − 𝒓𝑸) (9) 

Due to the quasi-static approximation in (6), by using the identity of the electric field 

expressed in terms of scalar potential 𝑬 =  − ∇ 𝑉 then applying divergence to both 

sides of (7), the primary currents can be expressed in terms of the potential: 

𝛁. 𝑱𝒑 = 𝛁. (σ ∇ 𝑉) (10) 
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Equation (10) can be solved for 𝑉 either numerically with finite element techniques or 

analytically in special cases under proper boundary conditions [32].  

4.1.3 Head models are volume conductor models that explain the propagation 

of the currents through the head in terms of geometry and conductivity [34]. Accurate 

representation of the forward problem necessitates proper modelling of head geometry 

and conductivity properties of the head tissues. Mathematically, these properties are 

expressed in the leadfield matrix. To solve the inverse problem, this leadfield matrix is 

multiplied with the estimated sources or the current density vector to produce the scalp 

potentials, the forward solution [35]. Some common head models used are: 

Single Sphere Model is the simplest form of head model where the head is 

modeled as a sphere with uniform conductivity assumed across the head. However, 

despite the simplicity and ease of calculation of this model, its source localization 

accuracy is very limited. A spherical head model estimates the location of the seizure 

with error up to 2-3 cm [36].  

Multiple Spheres Head Model as its name suggests is a model which divides 

the head to multiple concentric spheres where each sphere has homogeneous 

conductivity. This model was developed to overcome the shortcomings of single sphere 

model. The return currents associated with primary currents were used to fit spherical 

head models for individual MEG sensors to produce a more realistic head model as a 

set of overlapping spheres, rather than a single sphere [35]. A three-sphere head model 

considers three layers representing the scalp, skull, and brain. Each layer is assumed to 

have homogenous conductivity. Multiple spheres head model is considered a more 

accurate representation of the head model compared to a single sphere head model. 

Sphere shaped head models are computationally efficient in forward problem 

formulation and estimation since they allow using analytical solutions [34].  

Realistic Head Model yields increased accuracy in modelling head geometry 

by tessellation of the head compartments from anatomical MRI images [37]. The 

forward problem is solved using Boundary Element Method (BEM) approach and 

surface meshes are used to obtain piece-wise homogenous head models. That is, BEM 

uses planer triangular tessellations of the interfaces between sections of equal isotropic 

conductivities as a geometric model [35]. Another method used in obtaining realistic 
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head models is Finite Element Method (FEM). FEM solves the forward problem using 

volume tetrahedrons meshes to approximate anisotropy properties of tissue conductivity 

[35]. In contrast to BEM, the FEM tessellates the whole head volume not just the 

surfaces thus considering individual, anisotropic conductivities for each element [35].  

4.2 Inverse Problem 

The inverse problem involves constructing a model with infinitely many 

degrees of freedom using a finite set of data. Hence, the inverse problem has no unique 

solution as there are countless models that can explain the data equally. In EEG source 

localization, the inverse problem constitutes the estimation of sources of neural activity 

from a given set of potentials. Source localization typically works by first finding the 

scalp potentials that would result from assumed dipoles or current distribution by 

solving the forward problem and obtaining the leadfield matrix. Then the inverse 

problem is solved by using the actual measured EEG data to work back and estimate 

the sources that fit these measurements. EEG source localization is ill-posed since many 

source configurations in the brain can produce the same scalp potentials. Given that the 

number of unknowns is much larger than the number of sensors or electrodes, the 

problem is severely underdetermined, and regularization methods are essential to 

restrict the range of allowable solutions [38].  

4.2.1 Mathematical Formulation. Assuming multiple dipole sources, due to 

the principle of superposition, an electrode positioned on the scalp at position vector r 

will have a potential 𝑚(𝒓) of: 

𝑚(𝒓) = ∑ 𝑔(𝒓, 𝒓ⅆ𝑖
, 𝒅𝑖)

𝑖
=  ∑ 𝑔(𝒓, 𝒓ⅆ𝑖

)
𝑖

 𝒅𝑖 (11) 

where 𝑖 = 1, … , 𝑝 dipoles and 𝑔(𝒓, 𝒓ⅆ𝑖
, 𝒅𝑖) is the potential at electrode positioned at r 

due to a single dipole moment 𝒅𝑖 and 𝒅𝑖 = (𝑑𝑖𝑥, 𝑑𝑖𝑦, 𝑑𝑖𝑧) is a vector consisting of the 

three dipole magnitude components [39]. The potential calculated is the referenced 

potential either to another electrode or an average reference. For N electrodes and p 

dipoles and T discrete time samples: 
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𝐌 = [
𝑚(𝒓1, 1) ⋯ 𝑚(𝒓1, 𝑇)

⋮ ⋱ ⋮
𝑚(𝒓𝑁, 1) ⋯ 𝑚(𝒓𝑁, 𝑇)

] =

[

𝑔(𝒓1, 𝒓ⅆ𝑖𝑝1
)𝒆1 ⋯ 𝑔 (𝒓1, 𝒓ⅆ𝑖𝑝𝑝

) 𝒆𝑝

⋮ ⋱ ⋮

𝑔(𝒓𝑁 , 𝒓ⅆ𝑖𝑝1
)𝒆1 ⋯ 𝑔 (𝒓1, 𝒓ⅆ𝑖𝑝𝑝

) 𝒆𝑝

] [

𝑑1,1 ⋯ 𝑑1,𝑇

⋮ ⋱ ⋮
𝑑𝑝,1 ⋯ 𝑑𝑝,1

] = 𝐆𝐃  

(12) 

where 𝐌 is the matrix of data measurements at different time samples, 𝐆 is the leadfield 

matrix which describes the current flow for a given electrode through each dipole 

position 𝒓ⅆ𝑖𝑝𝑖
 with orientation 𝒆𝑖. Each column of 𝐆 relates a dipole to the array of 

electrode measurements. 𝐃 is the matrix of dipole moments to be localized at different 

time samples. Dipole moments are assumed to be normal to the surface due to the 

normal orientation of apical dendrites to the surface which produce the magnetic field 

[39]. This reduces the elements of the dipole matrix 𝐃 to merely dipole amplitudes. 

Equation (12) expresses the measurements as an explicit function of primary current 

activity whereas the passive volume currents due to the macroscopic electric fields are 

implicitly embedded in the lead field matrix [40]. 

Considering that the recorded scalp potentials are perturbed with noise, an additive 

noise matrix 𝐧  is added to the measurements matrix 𝐌: 

𝐌 = 𝐆𝐃 + 𝐧 (13) 

The inverse problem involves finding an estimate of the dipole magnitude or current 

distribution matrix 𝐃̂ given the measurements matrix 𝐌 and using the matrix 𝐆 

calculated in the forward problem. 

4.2.2 Source localization methods. Two approaches for localization are 

generally used: parametric techniques and non-parametric techniques. 

Parametric methods, also referred to as equivalent current dipole methods, 

concentrated source or spatiotemporal dipole fit models, the number of dipoles are 

assumed to be fixed whose location and orientation are unknown. Since the location 

and orientation are to be estimated the problem is non-linear. These models vary in 

complexity from a single dipole in a spherical head model, to multiple dipoles in a 

realistic head model [39]. Some parametric methods are discussed below.  
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Non-linear Least-Squares Source Estimation is the earliest and most 

straightforward method which minimizes the squared error between the measured data 

and the potentials computed from the estimated hypothetical sources using the forward 

model. Each dipole represented in matrix 𝐆 is associated with six parameters: three 

location parameters (x, y, z), two orientation parameters (elevation and azimuth angles); 

and one amplitude parameter. To solve this optimization problem, non-linear 

minimization of the cost function ‖𝐌 − 𝐆({𝒓𝒋, 𝒓𝒅𝒊𝒑𝒊
})𝑫‖ (𝒓𝒋 is position of electrode 𝒋) 

over all the parameters (𝒓𝒅𝒊𝒑𝒊
, 𝑫) [39]. For 𝑝 dipoles, the measure of fit in the least-

square (LS) sense as the square of the Frobenius norm is: 

𝑱𝑳𝑺({𝒓𝒋, 𝒓𝒅𝒊𝒑𝒊
}, 𝑫) = ‖𝐌 − 𝐆({𝒓𝒋, 𝒓𝒅𝒊𝒑𝒊

})𝑫‖
𝐹

2
  (14) 

A trivial but highly computationally demanding approach to solving (14) is to use a 

non-linear search program to minimize 𝑱𝑳𝑺 over all parameters (𝒓𝒅𝒊𝒑𝒊
, 𝑫) 

simultaneously. However, to reduce the computational burden we select any 𝒓𝒅𝒊𝒑𝒊
 

which describes all six parameters associated with a dipole 𝒊, the matrix 𝑫 that will 

minimize 𝑱𝑳𝑺 is: 

𝑫̂ =  𝑮+𝐌 (15) 

where 𝑮+ is the pseudoinverse of 𝐆. The adjusted cost function in (13) can be then be 

minimized to solve for 𝒓𝒅𝒊𝒑𝒊
: 

𝑱𝑳𝑺({𝒓𝒋, 𝒓𝒅𝒊𝒑𝒊
})=‖𝐌 − 𝐆(𝑮+𝐌)‖𝐹

2  (16) 

The LS problem can be optimally solved in the limited set of non-linear parameters 

embedded in 𝒓𝒅𝒊𝒑𝒊
 with an iterative minimization procedure. Using (15), the linear 

parameters in 𝑫 are estimated.  

When the least-squares model is applied to the whole block of data, the dipole 

locations are fixed over the entire interval; this is called the “fixed dipole’ model. 

However, when the least-squares model is applied sequentially to a set of individual 

time instants it is called a “moving dipole” model, since the location is not constrained. 

The fixed and moving dipole models are widely used in processing experimental and 

clinical EEG data [38]. A disadvantage of the LS method is that the number of dipoles 

must be assumed a-priori. Additionally, increased number of sources may lead to 

nonconvexity of the cost function risking being trapped in a local minimum [38].  
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Beamforming Techniques [38], [39], also known as spatial filters are originally 

developed in radar signal processing applications but have been found as a useful 

method in EEG source localization. Beamformers perform spatial filtering on data 

coming from a sensor array (electrodes in EEG setup) to differentiate signals coming 

from location of interest among other signals. For an 𝑁 sensor or electrodes array, the 

output three element vector of the beamformer 𝒚(𝑡) represents the neural activity of 

each dipole 𝒅 and is computed as follows: 

𝒚(𝑡) = 𝑾𝑇𝒎(𝑡) (17) 

where 𝑾𝑇 is the 3 × 𝑁 spatial filtering matrix with rows equivalent to Cartesian axis 

and 𝒎(𝑡) is the signal at the sensor array at time 𝑡 which corresponds to the discretized 

rows of the measurements matrix 𝐌 in (12).  If the location of interest is 𝒓ⅆ𝑖𝑝, the spatial 

filter would ideally be defined to pass only signals with a unity gain within a small 

distance δ of this location: 

𝑾𝑇(𝒓ⅆ𝑖𝑝)𝑮(𝒓) = { 
 𝑰, ‖𝒓 − 𝒓ⅆ𝑖𝑝‖ < δ

0, ‖𝒓 − 𝒓ⅆ𝑖𝑝‖ ≥ δ
 (18) 

where 𝑮(𝒓) = [𝐠(𝐫, 𝒆𝑥), 𝐠(𝐫, 𝒆𝑦), 𝐠(𝐫, 𝒆𝑧)] is the 𝑁 × 3 forward matrix for three 

orthogonal dipoles at location 𝒓 having orientation vectors 𝒆𝑥, 𝒆𝑦 and 𝒆𝑧 respectively. 

In the previous formulation, however, a strong stop-band constraint over the entire brain 

volume cannot be attained due to inadequate degrees of freedom. Therefore, fixed 

spatial filter is impractical for this application. Adaptive spatial filtering methods, such 

as linearly constrained minimum variance (LCMV) beamforming have been proposed 

to overcome this limitation. In LCMV beamforming, nulls are placed at positions of 

other neural sources at locations other than that of interest (𝒓ⅆ𝑖𝑝); that is δ is set to zero. 

The LCMV problem can be written as: 

min
𝑾𝑇

 𝑇𝑟(𝑾𝑇𝐸[𝒎𝒎𝑇]𝑾)   subject to   𝑾𝑇(𝒓ⅆ𝑖𝑝)𝑮(𝒓) = 𝑰 (19) 

The optimization in (19) minimizes the beamformer output energy 𝑾𝑇𝐸[𝒎𝒎𝑇]𝑾 

under the constraint that only the dipole 𝒓ⅆ𝑖𝑝 is active at a time. This attenuates the stop 

band at sources at other locations. The spatial filter that satisfies (19) can be obtained 

using Lagrange multipliers as shown in appendix of [39]. The obtained filter 𝑾(𝒓ⅆ𝑖𝑝) 

is applied to each of the rows in 𝐌 to obtain an estimate of the dipole moment at 𝒓ⅆ𝑖𝑝. 

This approach assumes that any source can be explained as a weighted combination of 
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dipoles and can produce an estimate of the neural activity at any location by changing 

𝒓ⅆ𝑖𝑝. An advantage of the LCMV approach, unlike the LS method, is that it does not 

require any prior assumptions about the number of dipoles as the localization is 

performed using the spatial covariance of the surface potentials [41]. Furthermore, 

distributed sources can be identified given adequate signal-to-noise ratio (SNR) [41]. 

The limitation of LCMV technique is that due to nulling forced by the constraint in (19) 

might result in partial cancellation of desired signal due to the often-correlated nature 

of neural activity in different parts of the brain. However, evaluations on real data seem 

to indicate LCMV based beamforming methods are robust to moderate levels of source 

correlation [38]. Nonetheless, applications such as vigilance decrement assessment 

usually studies the brain activity in association brain regions which are typically highly 

correlated.   

Signal subspace methods in array processing exploits the Eigen structure of the 

measured data matrix for localizing multiple sources [42]. These methods process the 

EEG data prior to performing source localization. Similar to beamforming techniques, 

the number of dipoles are not required to be known a priori. However, these methods 

can be more accurate than beamforming methods since they take into consideration the 

signal noise when performing dipole localization [39]. 

Multiple signal classification (MUSIC) is one of the commonly studied 

subspace methods. The advantage of MUSIC is that it provides computational 

advantages over direct least squares methods in which all sources are located 

simultaneously. However, MUSIC allows for exhaustive searches over the parameter 

space for each source in turn which also is more robust than the LS method in the 

problem of being trapped in local minima when searching for multiple sources over a 

nonconvex error surface [42]. 

For the case of fixed orientation dipoles model, a signal subspace is first 

estimated from the data by finding the singular value decomposition (SVD) of the 

measurements matrix: 𝐌 = 𝐔𝚺𝑽𝑇. Assuming that the number of sensors 𝑁 is greater 

than number of dipoles 𝑝, SNR is sufficiently large, and noise is independent and 

identically distributed (i.i.d), the column vectors of the subspace matrix 𝐔 can be 

divided into signal and noise subspaces. The first 𝑝 left singular vectors in 𝐔 is an 

orthonormal basis for the subspace spanned by the data, 𝐔𝒔. The approximation of 𝐌 
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in terms of signal subspace is given by 𝐌𝒔 = (𝐔𝒔𝐔𝒔
𝑇) 𝐌 and 𝐏𝒔

⊥ = 𝑰 − (𝐔𝒔𝐔𝒔
𝑇) is the 

orthogonal projector onto the noise subspace. The MUSIC algorithm minimizes the 

cost function: 

𝑱𝑴𝑼𝑺𝑰𝑪({𝒓, 𝒆})= 
‖𝐏𝒔

⊥ 𝐠(𝒓,𝒆)‖
2

‖𝐠(𝒓,𝒆)‖2  (20) 

where 𝒓  and 𝒆 refer to the dipole position and orientation vectors respectively.  The 

cost function in (20) is zero when  𝐠(𝒓, 𝒆) corresponds to one of the true source 

locations and orientations 𝒓 =  𝒓𝒅𝒊𝒑𝒊
 and 𝒆 = 𝒆𝑖,  for 𝑖 = 1, … , 𝑝.  

Since errors in the estimate of the signal subspace 𝐌𝒔 restricts localization accuracy of 

multiple sources, recursively applied and projected (RAP) MUSIC was developed to 

improve the performance of the MUSIC algorithm by forming an intermediate array 

gain matrix after each located source. It then projects the array manifold and the signal 

subspace estimate into its orthogonal complement. MUSIC is then applied to find the 

next source in this reduced subspace [42]. This procedure projects the signal subspace 

away from the gain vectors corresponding to the sources already found [38]. 

Non-parametric source localization methods, also called distributed source 

models or imaging methods, assume several dipole sources are distributed in the whole 

brain volume or cortical surface. Dipoles are assumed to have fixed locations and 

possibly fixed orientation which are set to be normally aligned as mentioned earlier. 

The amplitudes and direction of these sources are to be estimated. Non-parametric 

methods are linear since the dipole location is not estimated [39]. Generally, the number 

of dipoles considered is much larger than the number of electrodes in these methods.  

Minimum norm (MN) was developed in [43] as a solution for the inverse 

problem: minimum norm estimates for the source current distribution. The authors 

propose that a linear combination of magnetometer leadfields can be used as an estimate 

for the current distribution in the brain by applying estimation theory to the inverse 

problem. Similarly, potential measurements on the scalp can be used as they are 

generated by the same currents generating the magnetic fields outside the head. The 

linear relationship between the potential measurements 𝐌, current distribution 𝑫 and 

the lead field 𝑮 is shown in equation (12), then the shortest current vector required to 

explain the measurements can be defined as: 



39 

𝑫̂ = 𝑮+𝑴 (21) 

where 𝑮+ = 𝑮𝑻(𝑮𝑮𝑻)+ denotes the Moore–Penrose generalized inverse.  

Although the minimum norm provides good results in terms of resolution it fails to give 

weight to deep sources. This due to the harmonic solution of the MN minimum norm 

for EEG/MEG (∇2𝑱 = 0) as the harmonic functions are maximum at the boundaries of 

their domain; which in this case is outermost cortex [44]. Furthermore, the MN assumes 

that the 3D current distribution should have minimum overall intensity which is not 

necessarily physiologically valid [45]. Therefore, the algorithm favors weak localized 

patterns thus bypasses deeper sources. Consequently, weighted minimum norm 

(WMN) methods were proposed which use different weighting strategies to overcome 

favoring boundary sources in MN [45]. 

Low resolution electromagnetic tomography (LORETA) is another 

nonparametric method which computes the current distribution throughout the full 

brain volume by assuming that the excitation of neighboring neurons is correlated. It 

selects the solution with a smooth spatial distribution by minimizing the Laplacian of 

the weighted sources [45]. The inverse problem for the LORETA can be expressed 

mathematically as: 

𝐦𝐢𝐧
𝑫

 𝑭𝑾 =  ‖𝐌 − 𝑮 𝑫‖𝟐 + 𝛼 𝑫𝑻𝑾𝑫 (22) 

In equation (22), the Tikhonov regularization parameter ˛ 𝛼 > 0 is the control parameter 

used for controlling of relative importance between penalty for being unfaithful to the 

measurements and a penalty for a large current density norm [44]. 

The solution is: 

𝑫̂𝑾 =  𝑻𝑾 𝑴 (23) 

The value of 𝑻𝑾  can be calculated by: 

𝑻𝑾 =  𝑾−𝟏𝑮𝑻(𝑮𝑾−𝟏𝑮𝑻 + 𝛼 𝐻)+ (24) 

 

where 𝐻 is the average reference operator defined as [44]: 

𝐻 = 𝐼𝑁 −
1

𝑁
1𝑁1𝑁

𝑇  (25) 
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where 𝐼𝑁 denotes the 𝑁 × 𝑁 identity matrix and 1𝑁 is a 𝑁 × 1 matrix composed of 

ones. 

LORETA provides smooth and better localization for deep sources with less 

localization errors but with low spatial resolution and over-smoothed localized images 

as compared to MN method. 

Standardized LORETA (sLORETA) is an extension of LORETA. It is based on 

the assumption of the standardization of the current density which considers both the 

variance of the noise in the EEG measurements and the biological variance in the actual 

signal considered [46]. This biological variance is assumed as independent uniformly 

distributed across the brain resulting in a linear imaging localization technique having 

zero-localization error [45]. The mathematical formulation for sLORETA is:  

𝐅 =  ‖𝐌 − 𝑮 𝑫‖𝟐 + 𝛼 ‖𝑫‖ (26) 

This function (26) is to be minimized with respect to 𝑫 for given 𝑮, 𝑴 and 𝛼.  

The solution 𝑫̂ =  𝑻 𝑴, where: 

𝑻 =  𝑮(𝑮𝑮𝑻 + 𝛼 𝐻)+ (27) 

The simulations in [46] demonstrate that sLORETA has far better quality with exact 

localization and zero-error localization as compared with minimum norm. In a Monte-

Carlo analysis, comparing WMN, LORETA, sLORETA among other algorithms, 

showed that sLORETA gives the best solution for different noise levels and different 

simulated source depths for single source localization, in terms of both localization 

error and ghost sources [39]. However, for multiple sources, it has low spatial 

performance with blurred localized images which fails to resolve proximate sources 

that are simultaneously active. 

Focal under determined system solution (FOCUSS) [44], [47] is an 

initialization-dependent algorithm proposed as a solution to the low-resolution methods 

mentioned above. It uses a forward model that utilizes a predetermined reconstruction 

region and assigns a current to each element within that region.  It is recursive where 

the weights are iterated at each step from the solution of previous step. It uses a low-

resolution initial estimate which is refined through an iterative process to yield a sparse 

solution. The weighted minimum norm method dictates the mathematical calculations 
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for the recursive steps in FOCUSS. The expression for an unknown current element 𝑰 

can be given as: 

𝑰 =  𝑾(𝑮𝑾)+𝑀 (28) 

where 𝑀 is a N× 1 vector containing N radial scalp measurements at the EEG sensors 

and W is a dimensionless 𝑛 × 𝑛 matrix whose diagonal elements are set to be the 

previous iterative step solution: 

𝑊𝑘 = [
𝐼1𝑘−1 … 0

… … …
0 … 𝐼𝑛𝑘−1

] (29) 

Where 𝐼𝑖𝑘−1 represents the 𝑖th element of the vector 𝑰 at the (𝑘 − 1)th iteration, and 𝑘 

is the index of the current iteration step. The next weight matrix can be calculated by 

multiplying 𝑊𝑘−1 by 𝑊𝑘.  

Compared to true, minimum norm, unbiased minimum norm for near-surface, mid-

depth sources and deep source, the FOCUSS algorithm provides better localization 

capability and can handle non-uniquely defined localized energy sources. Additionally, 

FOCUSS algorithm got better spatial resolution and is more stable [47]. 

Source Affine Image Reconstruction (SAFFIRE) is an algorithm based on an 

iterative minimum mean square estimation (MMSE) formulation. It aims to reduce the 

vulnerability to initialization bias by employing a matched filter for initialization 

purpose. It assumes that measurements at N electrodes is a result of superposition of 

contributions of M sources modeled as current dipoles on an equidistant grid throughout 

the brain where each source has three spatial components [48]. The MMSE problem is 

solved by minimizing the cost function: 

𝐽 =  𝐸{||D − D̂||
2

=  𝐸{||D − 𝐖T𝑌||
2

} (30) 

where D is the 3𝑀 × 𝑄 vector of dipole component strengths, 𝐖 is the  𝑁 × 3𝑀 MMSE 

filter bank, and 𝑌 = 𝑮D + n  is the 𝑁 × 𝑄 sensor measurements at 𝑄 time samples at 

which active sources are assumed to be stationary. The norms of the columns of the 

leadfield matrix 𝑮  are relatively large for regions close to the sensors which causes the 

biasness of MNE initializations toward superficial sources. SAFFIRE operates in an 

affine transformed space in which the norm variations are removed, by transforming 𝑮 

by transformation matrix  
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𝐓 = ([𝐆𝐓𝑮] ⊙ 𝐈)1/2  (31) 

𝑌 = 𝑮𝐓−𝟏𝑇D + n =  𝑮𝒂D𝑎 + n   (32) 

where 𝑮𝒂 has unit column norms and D𝑎 is the dipole strength components scaled by 

the column norms of 𝑮. 

The cost function in (30) can be minimized by differentiating 𝐽 with respect to the 

matrix 𝐖 yielding: 

𝐖 = (𝐸{𝑌𝑌𝑇}−1) =  𝐸{𝑌𝐷𝑇} (33) 

After affine transformation, the MMSE filter bank becomes: 

𝐖 = (𝑮𝒂 𝐸{D𝑎D𝑎
𝑇}𝑮𝒂

𝑇 + 𝐸{𝑛𝑛𝑇})−1 𝑮𝒂 𝐸{D𝑎D𝑎
𝑇} (34) 

where  𝑹𝒏 = 𝐸{𝑛𝑛𝑇} is the noise correlation matrix,  𝑷 = 𝐸{D𝑎D𝑎
𝑇} is the source 

correlation matrix which is not known a priori. An iterative strategy using direction-

of-arrival (DOA) estimation approximates (34) as follows: 

𝐖̂(𝑘) = (𝑮𝒂𝐏̂(𝑘 − 1)𝑮𝒂
𝑇 +  𝑹𝒏)

−1
𝑮𝒂𝐏̂(𝑘 − 1)  (35) 

where 

𝐏̂(𝑘 − 1) =
[D𝑎̂(𝑘 − 1)D𝑎

𝑇(𝑘 − 1)] ⊙ 𝐈

Q
 (36) 

In which ⊙ is the Hadamard product and 𝐈 is the identity matrix and D𝑎̂(0) = 𝑮𝒂
𝑇𝑌. 

The dipole component strength estimates at the 𝑘th recursion is: 

D̂(𝑘) = 𝐓−𝟏𝐖̂𝑇(𝑘)𝑌 (37) 

The iteration process is repeated 𝐾 times where 𝐾 is chosen to compromise computation 

time and a stable source distribution solution.  
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Chapter 5: Experimental Setup 

5.1 Task Choice  

An experiment that induced vigilance decrement was carried out using a 

Matlab-generated attention test. As aforementioned, two hypothesis that explain 

vigilance decrement phenomenon are: the ‘under-load hypothesis’ states that vigilance 

decrement occurs due to lack of stimulation cause by minimal workload, while 

‘resource depletion theory’, states that intense mental workload in a task causes 

vigilance decrement. In this experiment, the ‘under-load hypothesis’ was taken up to 

simulate real life applications such as driving, luggage inspection, air traffic control, 

quality control, and surveillance jobs. To cause vigilance decrement in an underload 

hypothesis, the subject should experience an event rate lower than 24 events per minute 

[49]. Additionally, the target events should not exceed 10% of the total events [50]. The 

Matlab-generated attention test that was chosen for this purpose is the Psychomotor 

Vigilance Task (PVT) based on weighted evaluation shown in Table 1. 

Table 1: Evaluation of different vigilance tests 

Method Accuracy 

35% 

Ease of 

Implementation 

35% 

Time to 

induce 

VD 

20% 

Availability 

of 

supporting 

literature 

data 

10% 

Overall 

Score 

Bakan vigilance 

test 

 

6 

 

7 

 

6 

 

10 

 

6.75 

Mackworth clock 8 5 8 7 5.67 

Temple abbreviated 

test 

 

10 

 

7 

 

7 

 

7 

 

8.05 

Counting breaths 2 10 10 5 6.7 

 

PVT test 

 

10 

 

8 

 

9 

 

6 

 

8.7 
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5.2 Task Description  

In the PVT experiment, 33 participants are presented with visual numerical 

targets among other non-targets, and are required to respond to the assigned target by 

pressing space bar for a span of 20 minutes in phase 1 of the experiment while recording 

their brain activity. This is to test the hypothesis that a person’s vigilance decrement 

due to performing a repetitive task such as detecting a target may be correlated to 

physiological data such as EEG recordings.  In phase 2 of the experiment, we attempt 

to raise vigilance by challenge integration where 22 out of 33 subjects are presented 

with same task but with a noisy screen background for an additional 5 minutes. The 

interfaces for both phases are shown in Figure 14. 

 

Figure 14: (a) Phase 1 test interface (b) Phase 2 test interface 

The most common causes of vigilance drop are internal and external 

distractions. The subjects not only suffer from vigilance decrement because of 

prolonged attention on one task, but also their attention is often shifted to task-unrelated 

thoughts or activities around them. This highlights the need for adding an element of 

mild distraction. An audio file was used to serve this purpose by simulating sound 

distractions occurring in daily life. Nevertheless, the audio is chosen in such a way that 

the speaker’s tone, the topic, and the language used are all not engaging and lack any 

form of mental stimulation. In this way, the presence of the distraction will have little 

or no effect on the nature of the resulting EEG signal. 

5.2.1 Task Protocol. Numbers from 0 to 9 appear on the screen. Each number 

appears for 0.4 seconds and then disappears, leaving the blank grey background for 1.6 

Press any key Press any key 

(a)                                                          (b)  
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seconds, and then another numbers appears. This means that 30 numbers appear per 

minute. The activity lasts for 20 to 30 minutes, making the total number of events 

occurring per subject equal to 600 to 900. Out of those events, 30 to 40 targets will 

appear, once every 19 events (5.26% target percentage). The target is number 3, and 

the subject is instructed to respond to the target by pressing the space bar as fast as they 

can, and not to respond to the appearance of any other number. The subject is not given 

any instructions regarding the audio file. Throughout the task, the subject is listening to 

the audio file. 

5.2.2 Equipment Setup. The equipment used in this experiment is as follows:  

• 64 electrode EEG cap  

• EEG amplifier   

• Two PCs: 1 for the ASAlab software, and 1 for the Matlab-generated test (test 

terminal) 

• ASAlab software (v4.9) 

• Matlab-generated PVT attention test on PC  

The subject undergoing the experiment was fitted with 64 electrodes EEG cap 

on the head and the EEG data was recorded at a sampling frequency of 500 Hz using 

Advanced Source Analysis (ASA) lab software. The subject was also fitted an ECG 

(electrocardiogram) and an EOG (electrooculogram) electrodes for heart activity and 

eye movements respectively. The EEG cap is connected to the recording computer 

through an EEG amplifier. This amplifier is connected to the 64 electrode EEG cap as 

well as the electrodes 65 and 66 used to measure EOG and ECG signals. The block 

diagram of the setup is shown in Figure 15. 

 

Figure 15: Experiment Setup block diagram 
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Chapter 6: Experimental Results 

6.1 Data Overview 

This chapter presents the analysis of the data recorded during the experiment. 

To identify vigilance decrement of subjects undergoing the attention task behavioral 

data and EEG physiological data are collected during the experiment for analysis. 

Behavioral data are obtained from the reaction time, time between the occurrence of 

the event and the subject’s response, using Matlab. In attention tasks where the aim is 

to identify a target among non-target events, an increase in reaction time or the number 

of errors is a direct sign of vigilance decrement. The points at which any event occurs, 

whether a target or a non-target, is marked on the EEG signal along with the time at 

which a subject responds in order to correlate behavioral data and EEG data. 

The reaction time of subjects’ response to target stimuli is used as a proof of 

vigilance decrement concept. Advanced Source Analysis (ASA) lab software and 

Brainstorm software were used to study the PSD of the EEG signals by comparing the 

first and last 5 minutes of the data before challenge integration, which are labeled as 

awake and drowsy states respectively. Finally, 5 minutes of the challenging task is 

compared to the other two states. The recorded data is analyzed using two approaches: 

power spectral density (PSD) and source localization SAFFIRE algorithm.  

In PSD approach, the spectral behavior of different brainwaves is compared 

between awake and drowsy states across different regions of the brain, as well as their 

relation to the reaction time. Due to the unknown nature of the number of sources in 

relation to vigilance, nonparametric source localization methods are adopted. SAFFIRE 

algorithm is chosen as the best candidate for this application due to its iterative nature 

leading to its high spatial resolution while circumventing initialization bias. The P300 

component among other ERP components mentioned in section 2.4.2 are to be localized 

for awake, drowsy and challenge states. The source density distribution across the head 

is compared for both states to construct a vigilance assessment model.  

6.2 Data Preprocessing 

The recorded unprocessed EEG data comprises of random unwanted signals 

called artefacts (Figure 16) such as eye blinks and eye movements. Accordingly, the 

EEG signals are preprocessed to remove these artifacts to get a clean EEG signal 

showing only the brain activity. This can be achieved using the artefact correction 
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feature in ASAlab which corrects the data for artefacts using a Principle Component 

Analysis (PCA) method by modelling the brain signal and artefact subspaces. 

 

Figure 16: Sample EEG recording before processing 

The PCA method separates brain signal from artefacts based on their 

topographies and subsequently removes the artefacts without significant distortion to 

the brain signal [51]. The separation is achieved by means of a data interval with a clear 

artefact activity selected by the user (Figure 17). The marked artefacts should be typical 

in shape, length, and spatial distribution (electrode channels) to specify the artefact 

topography. The method determines which part of the data are considered brain signal 

or data subspace using two criteria. The first criterion specifies the highest permitted 

amplitude of the brain signal while the second criterion specifies the highest correlation 

between brain signal and artefact topography permitted. Then, Principal Components 

Analysis method is used to determine the topographies of the brain activity signals and 
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the artefact signals, thus removing signal portions with the artefact components leaving 

a signal with only brain activity (Figure 18).  

 

Figure 17: EEG signal with selected artefact events 

 

Figure 18: EEG signal after artefact removal 
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After the artifact removal, EEG signal is passed through high pass and low pass 

filters in series with cut-off frequencies 0.5 Hz and 30 Hz respectively to get rid of 

noisy signals outside the band of interest where brainwaves are dominant. Additionally, 

the EEG signal is passed through a 50 Hz and 150 Hz notch filter to attenuate the mains 

interference as seen in Figure 19– 21.   

 

Figure 19: Power spectral density (PSD) of unfiltered EEG signal 

 

Figure 20: Filtered EEG signal 
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Figure 21: Power spectral density (PSD) of Filtered EEG Signal 

6.3 Experimental Vigilance Assessment 

In this section, the behavioral data and the preprocessed EEG data are analyzed. 

First, the average reaction time for all subjects is observed as an indication of success 

of PVT task in inducing vigilance decrement. Second, two techniques of analyzing 

changes in the EEG physiological data with vigilance decrement are presented: power 

spectral density (PSD) and EEG source localization.  

6.3.1 Reaction Time. Vigilance decrement can be observed by an increase in reaction 

time, the time taken to respond to a target stimulus. The reaction time to target 

stimulus of 22 subjects was recorded during the experiment. The average reaction 

time among all subjects was plotted against time as seen in  

Figure 22. The general trend shows an increase in reaction time as the task 

progresses.  
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Figure 22: Average reaction time 

 In order to signify the difference in reaction time between the awake and drowsy 

states, a Student’s paired t-test was performed on the reaction time in the first and last 

5 minutes in phase 1 of the task. For each subject, the average reaction time in the first 

5 minutes (t1) and the last 5 minutes (t2) were calculated and compared using the t-test. 

The results are summarized in Table 2. 

Table 2: Reaction time t-test for awake and drowsy states 

t2 – t1  Hypothesis (h) p-value 

Two-tailed t-test 1 0.0067 

Right-tailed t-test 1 0.0034 

Left-tailed t-test 0 0.9966 

 

The two-tailed t-test above tests the null hypothesis that the mean difference between 

t1 and t2 is zero. Where the right-tailed t-test tests whether the mean or t2 – t1 > 0, and 

the left-tailed t-test tests whether the mean or t2 – t1 < 0. h = 1 indicates the rejection of 

the null hypothesis while h = 0 indicates a failure to reject the null hypothesis. The 

results above show that the mean difference is more than 0 with 0.34 % probability that 

the null hypothesis is valid. This shows a clear increase in the reaction time for drowsy 

state.  

The reaction time for 10 subjects out of the 22 subjects who participated in 

phase 2 of the experiment was recorded. A paired t-test is performed between the 

drowsy state (t2) and the challenge state (t3). The results are summarized in Table 3. 

Table 3: Reaction time t-test drowsy and challenge states 

t2 – t3  Hypothesis (h) p-value 

Two-tailed t-test 1 0.0367 

Right-tailed t-test 0  0.9817  

Left-tailed t-test 1 0.0183 

 

The left-tailed t-test shows that t2 < t3; the mean reaction time for challenge state 

increased. In [52], the reaction time was shown to increase with increase mental 

workload. Therefore, this increase could be due to the necessary increase in the 
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individual’s processing of the noisy background thus increasing the time to react in a 

blurred vision environment.  

6.3.2 Power Spectral Density (PSD). The spectral content in the EEG signal 

has been widely examined in works monitoring vigilance. Fast Fourier Transform 

(FFT) analysis is performed on processed EEG signals across different electrodes. The 

head electrode configuration was tessellated into 9 different regions, from which the 

center electrode was to be analyzed as a reflection of the other electrodes in the region. 

The electrodes chosen for analysis are shown in Figure 23. These electrodes include: 

AF7, Fpz, and AF8 which are located on the left, center and right prefrontal region 

respectively. Electrodes C5, Cz and C6 are located on the left, center and right central 

region respectively.  While electrodes PO5, POz, and PO6 are located on the left, center 

and right parieto-occipital region.  

 

Figure 23: Electrodes chosen for power spectral density (PSD) analysis 
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For each electrode, the evoked-related potential (ERP) signal for target and non-

target events in the awake, drowsy and challenge states is analyzed for power in delta 

δ, theta θ, alpha α and beta β bands for all subjects. Initially, the null hypothesis is 

assumed which states that the mean difference band power between states is zero. A 

paired-sample t-test is then performed across subjects to validate changes in brainwaves 

power in different brain sensors. To combat noise in EEG signals, event segments are 

averaged for each state to obtain a clean ERP signal. Two different latencies, 500ms 

and 1400ms, for averaged ERPs are used to reinforce obtained results and ensure 

consistency. The null hypothesis is only rejected if both latencies shared the same 

direction in the t-test with an acceptable p-value, which is chosen to be 0.1. The results 

are presented in Table 4 – 7. 

Table 4: Power spectral density (PSD) analysis for delta band 

Electrode 
ERP 

Latency 

Target Non-Target 

Drowsy – Awake  
Drowsy – 

Challenge  
Drowsy – Awake  

Drowsy – 

Challenge  

h 
p-

value 
Tail h 

p-

value 
Tail h 

p-

value 
Tail h 

p-

value 
Tail 

Fpz 
500 ms 1 0.052 Right 1 0.091 Right 0 0.116 Right 0 0.195 Left 

1400 ms 1 0.046 Right 0 0.347 Right  0 0.101 Right 0 0.142 Right 

Cz 
500 ms 0 0.288 Right 0 0.324 Right 0 0.444 Right 1 0.014 Left 

1400 ms 0 0.160 Right 0 0.291 Right  0 0.360 Left 0 0.223 Left 

POz 
500 ms 0 0.485 Right 0 0.398 Left 0 0.308 Left 0 0.374 Right 

1400 ms 0 0.411 Right 0 0.334 Right 0 0.134 Right 0 0.200 Left 

AF7 
500 ms 1 0.070 Right 1 0.075 Right 0 0.162 Right 0 0.387 Left 

1400 ms 1 0.027 Right 1 0.043 Right 1 0.029 Right 0 0.144 Right 

AF8 
500 ms 1 0.023 Right 1 0.005 Right 0 0.459 Right 0 0.247 Left 

1400 ms 1 0.032 Right 0 0.136 Right 0 0.119 Right 0 0.286 Right 

C5 
500 ms 0 0.269 Right 0 0.121 Right 0 0.195 Left 0 0.252 Right 

1400 ms 0 0.374 Right  0 0.241 Right 0 0.404 Right 0 0.254 Right 

C6 
500 ms 0 0.160 Left 1 0.022 Right 0 0.274 Left 0 0.148 Left 

1400 ms 1 0.082 Left  1 0.083 Right 0 0.346 Left 1 0.096 Left 

PO5 
500 ms 0 0.430 Right 0 0.395 Left 0 0.421 Left 0 0.216 Left 

1400 ms 0 0.135 Right 1 0.052 Right 0 0.280 Left 0 0.358 Left 

PO6 
500 ms 0 0.162 Left 1 0.098 Left 1 0.079 Left 0 0.235 Left 

1400 ms 1 0.017 Left 0 0.471 Left 0 0.432 Left 0 0.240 Right 

 

The delta power shows a significant increase in drowsy state for target events 

in three electrodes Fpz, AF7 and AF8 which are located on the prefrontal cortex. While 
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electrodes AF7 and C6 show a lower delta power for challenge state than drowsy state. 

For non-target events, no consistent trend was shown across the electrodes. 

Table 5: Power spectral density (PSD) analysis for theta band 

Electrode 
ERP 

Latency 

Target Non-Target 

Drowsy – Awake  
Drowsy – 

Challenge  
Drowsy – Awake  

Drowsy – 

Challenge  

h 
p-

value 
Tail h 

p-

value 
Tail h 

p-

value 
Tail h 

p-

value 
Tail 

Fpz 
500 ms 1 0.075 Right 1 0.067 Right 0 0.411 Left 0 0.185 Right 

1400 ms 1 0.019 Right 0 0.234 Right 0 0.150 Left 0 0.358 Left 

Cz 
500 ms 1 0.100 Right 0 0.179 Left 0 0.406 Left 0 0.201 Left 

1400 ms 0 0.394 Left  0 0.388 Right 1 0.006 Left 0 0.119 Left 

POz 
500 ms 1 0.085 Right 0 0.126 Right 1 0.004 Left 1 0.054 Right 

1400 ms 1 0.086 Right 1 0.027 Right  0 0.113 Left 0 0.466 Right 

AF7 
500 ms 1 0.051 Right 1 0.063 Right 0 0.411 Right 1 0.034 Right 

1400 ms 0 0.407 Right 1 0.052 Left 1 0.083 Right 0 0.113 Right 

AF8 
500 ms 1 0.079 Right 1 0.087 Right 1 0.079 Right 0 0.238 Right 

1400 ms 1 0.011 Right 0 0.466 Left  0 0.155 Right 0 0.460 Left 

C5 
500 ms 1 0.030 Right 1 0.052 Right 1 0.017 Left 0 0.453 Left 

1400 ms 1 0.035 Right 1 0.096 Right 0 0.123 Left 0 0.343 Right 

C6 
500 ms 0 0.462 Left 1 0.013 Right 1 0.073 Left 1 0.022 Right 

1400 ms 0 0.364 Left 1 0.098 Right 0 0.316 Left 0 0.390 Left 

PO5 
500 ms 0 0.104 Right 0 0.364 Right 1 0.067 Left 0 0.230 Right 

1400 ms 1 0.015 Right 1 0.084 Right 1 0.036 Left 0 0.498 Left 

PO6 
500 ms 1 0.038 Left 0 0.255 Right 0 0.180 Left 0 0.446 Right 

1400 ms 1 0.009 Right 0 0.124 Right 0 0.139 Left 0 0.220 Left 

 

In the theta band, an increase for drowsy state is observed in Fpz, POz, AF8 and 

C5 electrodes. Additionally, theta decreased for challenge state in the C5 and C6 

electrodes. Non-target events show a decrease in theta for drowsy state in PO5 sensor.  
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Table 6: Power spectral density (PSD) analysis for alpha band 

Electrode 
ERP 

Latency 

Target Non-Target 

Drowsy – Awake  
Drowsy – 

Challenge  
Drowsy – Awake  

Drowsy – 

Challenge  

h 
p-

value 
Tail h 

p-

value 
Tail h 

p-

value 
Tail h 

p-

value 
Tail 

Fpz 
500 ms 0 0.206 Right 0 0.110 Right 0 0.365 Left 1 0.038 Right 

1400 ms 1 0.038 Right 0 0.198 Left 0 0.280 Right 0 0.191 Right 

Cz 
500 ms 0 0.200 Right 0 0.411 Left 0 0.181 Left 1 0.077 Right 

1400 ms 1 0.081 Right 0 0.479 Left 0 0.319 Right 0 0.467 Right 

POz 
500 ms 1 0.094 Right 0 0.412 Right 1 0.038 Left 1 0.013 Right 

1400 ms 1 0.017 Right 1 0.058 Left 0 0.305 Right 0 0.422 Left 

AF7 
500 ms 1 0.009 Right 1 0.005 Right 0 0.370 Right 1 0.027 Right 

1400 ms 1 0.001 Right  1 0.026 Right   0 0.258 Right 1 0.042 Right 

AF8 
500 ms 1 0.020 Right 1 0.109 Right 0 0.108 Right 0 0.214 Right 

1400 ms 1 0.022 Right 1 0.084 Right 0 0.259 Right 0 0.304 Left 

C5 
500 ms 1 0.053 Right 0 0.313 Right 0 0.377 Left 0 0.243 Right 

1400 ms 1 0.002 Right 0 0.189 Left 0 0.435 Left 0 0.300 Left 

C6 
500 ms 1 0.050 Right 1 0.083 Right 1 0.010 Left 1 0.067 Right 

1400 ms 0 0.264 Right 0 0.443 Right 1 0.083 Left 0 0.329 Left 

PO5 
500 ms 0 0.370 Right 0 0.388 Right 0 0.255 Left 1 0.024 Right 

1400 ms 0 0.164 Right 0 0.173 Left 0 0.491 Left 1 0.041 Right 

PO6 
500 ms 0 0.350 Right 0 0.310 Right 0 0.491 Left 1 0.058 Right 

1400 ms 1 0.041 Right 0 0.405 Left 0 0.147 Right 0 0.353 Left 

 

For alpha band, a higher power is observed in drowsy state than the other two 

states in the AF7 and AF8 electrodes. POz and C5 also show an increase in for drowsy 

alpha in compared to awake alpha, but show no change for challenge state. A decrease 

in C6 electrode for drowsy state is observed in non-target events. The electrode AF7 

and PO5 show a decrease for non-target events in challenge theta power as compared 

to drowsy state.  
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Table 7: Power spectral density (PSD) analysis for beta band 

Electrode 
ERP 

Latency 

Target Non-Target 

Drowsy – Awake  
Drowsy – 

Challenge  
Drowsy – Awake  

Drowsy – 

Challenge  

h 
p-

value 
Tail h 

p-

value 
Tail h 

p-

value 
Tail h 

p-

value 
Tail 

Fpz 
500 ms 1 0.014 Right 0 0.357 Left 0 0.393 Left 0 0.300 Right 

1400 ms 1 0.042 Right 0 0.237 Left 1 0.014 Right 0 0.215 Left 

Cz 
500 ms 0 0.444 Left 0 0.422 Right 1 0.009 Left 1 0.012 Right 

1400 ms 1 0.101 Right 0 0.217 Left 0 0.239 Right 0 0.115 Right 

POz 
500 ms 0 0.384 Right 0 0.477 Right 0 0.273 Left 1 0.053 Right 

1400 ms 1 0.070 Right 0 0.197 Right  0 0.237 Right 0 0.136 Right 

AF7 
500 ms 1 0.010 Right 0 0.411 Left 1 0.066 Right 0 0.169 Left 

1400 ms 1 0.001 Right  0 0.218 Left 1 0.002 Right 0 0.271 Left 

AF8 
500 ms 0 0.115 Right 0 0.157 Left 1 0.100 Right 0 0.165 Left 

1400 ms 0 0.121 Right 0 0.152 Left 0 0.120 Right 0 0.158 Left 

C5 
500 ms 1 0.093 Right 0 0.281 Right 1 0.051 Right 0 0.108 Right 

1400 ms 1 0.076 Right 0 0.211 Right 1 0.090 Right 1 0.092 Right 

C6 
500 ms 1 0.061 Right 0 0.122 Right 1 0.023 Left 0 0.182 Left 

1400 ms 0 0.275 Right 0 0.160 Right  0 0.343 Left 0 0.491 Left 

PO5 
500 ms 0 0.412 Left 0 0.369 Right 1 0.040 Left 1 0.001 Right 

1400 ms 0 0.200 Left 0 0.147 Left 0 0.123 Right 0 0.233 Right 

PO6 
500 ms 0 0.396 Left 0 0.225 Left 1 0.006 Left 0 0.214 Right 

1400 ms 0 0.353 Right 0 0.192 Left 1 0.071 Right 1 0.026 Right 
 

Beta power increased in drowsy state for Fpz, AF7 and C5. AF7 and C5 also 

show an increase in beta power for non-target events. Change for challenge state is 

inconsistent.  

The electrodes with highest sensitivity to drowsy state in most bands are shown 

to be the prefrontal electrodes AF7, Fpz, and AF8 and left central electrode C5 as shown 

in Table 8. 

Table 8: Electrode sensitivity analysis 

Electrode Delta Theta Alpha Beta Total 

Fpz 1 1 0 1 3 

Cz 0 0 0 0 0 

POz 0 1 1 0 2 

AF7 1 0 1 1 3 

AF8 1 1 1 0 3 

C5 0 1 1 1 3 

C6 0 0 0 0 0 

PO5 0 0 0 0 0 

PO6 0 0 0 0 0 
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6.3.3 Source Localization. In this approach source localization SAFFIRE 

algorithm is applied to awake and drowsy states for all subjects, where the P300 

component and/or any other ERP components are to be localized. In order to obtain an 

ERP signal, the EEG signal is to be averaged across all target events. The events in 

EEG data are labeled with vertical green lines associated with a label number for each 

distinct event as seen in Figure 24. The labels 51 and 101 represent appearance of the 

target number and a true positive respectively. A true positive event is when the target 

number appears, and the subject correctly responds to it.  

 

Figure 24: Event labels in EEG signal 

We are interested in the brain behavior once it recognizes the target event, 

consequently, the EEG signal is averaged for awake and drowsy states over the target 

event appearances labeled as 51. The resulted signal is the ERP to be localized as seen 

in Figure 25. This averaging yielded the P300 signal with a latency of around 270 

milliseconds in predominantly frontal to parietal electrodes as stated in [53]. 

 

Figure 25: ERP obtained from averaged EEG signal 
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To perform localization, a realistic volume head conductor model is necessary 

for an accurate solution of the forward problem; that is the leadfield matrix. Using 

Brainstorm software, boundary element method (BEM) was utilized to produce a 

numerical forward solution that account for the individual shape of the head layers. The 

BEM was performed on the MRI of the Collins brain (Collins 27 or ICBM 27); which 

is a standard MRI consisting of 27 T1-weighted scans of the same person. The 

alternative was to scan the individual MRI head images of all 33 subjects which is 

infeasible. This head model is used in solving the inverse problem for localizing the 

ERP signal obtained.  

To solve the inverse problem, SAFFIRE algorithm was used to localize 

averaged ERPs for awake, drowsy and challenge states for each subject. The brain 

region was tessellated into an equidistant grid with 15000 voxels where a dipole or a 

source is assumed at each voxel. As aforementioned, dipoles are assumed to be normal 

to the surface due to the normal orientation of apical dendrites to the surface [39]. This 

reduces the solution of the inverse problem to merely dipole amplitudes at each voxel.  

A tradeoff between computational time and convergence to a stable solution 

necessitates choosing the number of iterations carefully. A superficial source is 

assumed in the left prefrontal cortex as show in Figure 26(a).  Using the forward 

problem previously obtained, scalp potentials are computed. SAFFIRE algorithm is 

used to localize the fabricated scalp potentials, and the number of iterations K= 15 was 

shown to give an accurate solution as shown in Figure 26(b). 

  

Figure 26: (a) Superficial brain source (b) Localized sources using SAFFIRE 

algorithm 
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SAFFIRE algorithm is used to localize averaged ERPs for target events in awake, 

drowsy and challenge states respectively. The solution yields a power at each of the 

15000 voxels. The brain is divided into 7 regions: prefrontal, frontal, central, parietal, 

right temporal, left temporal and occipital (Figure 27). Accordingly, the magnitude of 

the powers in each region were added. Two approaches were used; the first, the absolute 

powers were added within a region for each state and compared using a t-test. Second, 

the powers across states for each subject were normalized to eliminate subject 

variability in EEG measurements. The results are summarized in Table 9. 

 

Figure 27: Brain regions for source localization 

Table 9: Source localization t-test in different regions 

Region 
Power 

Magnitude 

Drowsy - Awake Drowsy - Challenge 

h p-value Tail h p-value Tail 

Prefrontal 
Absolute 1 0.015 Right 1 0.067 Right 

Normalized 1 0.099 Right 0 0.148 Right 

Frontal 
Absolute 1 0.020 Right 0 0.131 Right 

Normalized 1 0.008 Right 0 0.462 Right 

Central 
Absolute 1 0.068 Right 1 0.024 Right 

Normalized 0 0.155 Right 1 0.032 Right 

Parietal 
Absolute 0 0.138 Left 0 0.173 Left 

Normalized 0 0.101 Left 0 0.153 Left 

Right 

Temporal 

Absolute 1 0.084 Left 0 0.318 Right 

Normalized 0 0.248 Left 0 0.115 Right 

Left 

Temporal 

Absolute 0 0.211 Right 1 0.088 Right 

Normalized 0 0.482 Left 0 0.202 Right 

Occipital 
Absolute 0 0.122 Right 1 0.026 Right 

Normalized 1 0.049 Right 1 0.024 Right 
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As can be seen from Table 9, the prefrontal and frontal areas show a clear 

increase in power in drowsy state in comparison to awake state. An increase in central 

region is shown for the absolute power, but is less evident for normalized power. 

Similarly, occipital lobe shows a slight increase in activity. The parietal region shows 

a slight decreased activity with p-values 0.138 and 0.101 for absolute and normalized 

powers respectively. Right and left temporal show inconsistent results for absolute and 

normalized powers. However, for challenge state the power in central and occipital 

regions are shown to decrease in comparison with drowsy state which is opposite to the 

changes in these areas from awake to drowsy states.  

For visualization of the number of sources dominant in each state, the powers 

across subjects were averaged and normalized for all three states. The power greater 

than 30% of the maximum was projected on the brain as seen in Figure 28. Each point 

represents a source at the corresponding voxel. It is apparent that the number of sources 

and their intensity increased in drowsy state, then decreased again in challenge state.  

In order to categorize the power distribution for different regions, the power 

magnitudes’ histogram was shown to resemble a Rayleigh distribution. The power 

magnitudes were normalized by 10−5 for visualization. The fitted model for awake, 

drowsy and challenge states are shown in Figure 29. There is a significant shift to the 

right in the distribution from awake to drowsy state in prefrontal and frontal regions. 

The central and occipital regions show a slight increase, while the parietal shows a 

slight decrease in the mean value. The right temporal shows a decrease in activity from 

awake to drowsy states, while the left temporal shows no change across all states. It is 

observed that the challenge state distribution is close to that of the awake state; this 

could indicate the success in inducing vigilance enhancement. 
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Figure 28: Front view of brain activity: each point represents a source at the 

corresponding voxel and the dot color represents its normalized power value 

according to the color map. 
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Figure 29: Power probability density function for awake, drowsy and challenge states 
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6.3.4 Vigilance Measurement Model. To quantify vigilance level, many 

brain dynamics must be taken into consideration. The significant shifts in the delta, 

theta and alpha bands along with the clear source dynamics of the prefrontal cortex 

can be used in conjunction to construct an initial vigilance assessment model.  

From previous results, the delta, theta, and alpha brainwaves showed an increase 

in the AF8 electrode for drowsy state for both latencies. For these bands, Rayleigh 

distribution models for target events in awake and drowsy states are fitted for the 500 

ms averaged ERP in AF8 electrode (Figure 30). This latency is chosen to reduce 

computational time in real-time applications. Power for these bands were normalized 

by 10−12 for proper visualization.  

 

Figure 30: Delta, theta and alpha power probability distribution for awake and drowsy 

states 

The Rayleigh distribution has a probability density function defined as: 

𝑓(𝑥|𝑏) =
𝑥

𝑏2
𝑒

−
𝑥2

2𝑏2 (38) 
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Where 𝑏 is the distribution parameter which is a function of the mean 𝑚 where  

𝑚 = 𝑏√
𝜋

2
 (39) 

The parameters of the Rayleigh distributions above, along with the prefrontal cortex 

distribution, are summarized in Table 10. 

Table 10: Rayleigh distribution parameters for different EEG variables 

Variable 𝑏𝑎𝑤𝑎𝑘𝑒 

 

 

𝑚𝑎𝑤𝑎𝑘𝑒 

 

  
𝑏ⅆ𝑟𝑜𝑤𝑠𝑦 

 

  
𝑚ⅆ𝑟𝑜𝑤𝑠𝑦 

 

Delta power (𝑥1) 7.0318E-12 8.813E-12 1.22E-11 1.5261E-11 

Theta power (𝑥2) 
1.08E-12 1.3474E-12 1.71E-12 2.1447E-12 

Alpha power (𝑥3) 
5.34E-13 6.6975E-13 1.07E-12 1.3348E-12 

Prefrontal magnitude 

(𝑥4) 

2.94E-05 3.6893E-05 5.34E-05 6.695E-05 

 

In order to assess the vigilance level 1 or 2, awake and drowsy respectively, we 

must compute the joint probability distribution of the variables for each vigilance level.  

we can write the probability for vigilance level 𝑖 as: 

P𝑖(𝑥1, 𝑥2, 𝑥3, 𝑥4|𝑏𝑖1, 𝑏𝑖2, 𝑏𝑖3, 𝑏𝑖4) =
𝑥1𝑥2𝑥3𝑥4

(𝑏𝑖1𝑏𝑖2𝑏𝑖3𝑏𝑖4)2 𝑒
−(

𝑥1
2

2𝑏𝑖1
2 + 

𝑥2
2

2𝑏𝑖2
2 + 

𝑥3
2

2𝑏𝑖3
2 + 

𝑥4
2

2𝑏𝑖4
2)

  (40) 

Using maximum likelihood estimation (MLE) we can test for a specific data point for 

all levels and decide for the one with the highest probability. The decision process is: 

P𝑖 >  P𝑗   for ∀ 𝑗 ≠ 𝑖    we assign the vigilance level 𝑖 (41) 

The above algorithm was performed on the labeled data for awake state where 28 out 

of 33 subjects (84.85%) were correctly identified to be vigilant.  

An assumption that can be made in this model is that the variables’ mean values are 

linear with vigilance decrement. That is, by regression we can assume, for example, 

that the mean values for the vigilance level 3 is following a Rayleigh distribution with 

mean linearly spaced from 𝑚2 by  |𝑚1 −  𝑚2| where 𝑚3 = 𝑚2 + |𝑚1 −  𝑚2|.  Further 

experiments with longer task durations can be conducted to validate this assumption.  

 

  



65 

Chapter 7: Discussion, Conclusions and Future work 

7.1 Discussion  

The increase in the average reaction time assumes the vigilance decrement 

phenomena. The results obtained using PSD approach showed an increase in delta δ 

predominantly in the prefrontal cortex with vigilance decrement which could be due its 

relaxing nature. Furthermore, delta power decreases again with vigilance enhancement 

in the AF7 electrode on the left frontal region of the brain which agrees with findings 

in [27]. The power in theta band increased across most brain regions with vigilance 

decrement like results in [27] and [30] . In vigilance enhancement phase, the theta 

power decreased specifically in central regions, C5 and C6 electrodes. The similarity 

between awake and challenge states, suggest that vigilance is associated with lower 

delta and theta powers. In [54], lower arousal state is linked to higher amplitudes in low 

frequency waves delta and theta. The electrodes that show reliable trends in delta and 

theta powers are AF7 and C5 respectively.  

A lower alpha is also observed in AF7 and AF8 electrodes in awake and 

challenge states, which increases with vigilance decrement in frontal areas. A study, 

indicated that alpha waves can be used to predict errors, where MEG measurements 

showed up to 25% increase in alpha waves before a mistake occurred [55]. After the 

subjects noticed the mistake, they started paying more attention to the task where a 

decrease in alpha waves was observed [55]. The logic behind this observation could be 

that alpha waves are associated with calmness and are prominent when a person starts 

doing a task automatically without paying much focus. The power for beta band 

increased in left frontal and central areas in Fpz, AF7 and C5 electrodes. A possible 

explanation for this increase is the increase in mental effort required while experiencing 

vigilance decrement. Narcolepsy patients experienced an increase in beta power due to 

exerting more effort to do normal daily functions [56]. Beta power is associated with 

cognitive functions demanding higher allocation of attentional resources. There is a 

possibility that vigilance decrement causes a depletion of these resources for prolonged 

obligatory simple tasks.  

The source localization method shows an increase in prefrontal and frontal 

region activities with vigilance decrement. The increase in the overall power could 

account for the higher brain waves powers, as well as the association of increased 
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prefrontal activity with increases in mental workload [57]. Previous fMRI, Transcranial 

Doppler sonography (TCD), lesion and split-brain studies suggest that the control of 

vigilance resides in the right frontal cortex [57], [58].  In figure 28, the increase is shown 

to be more noticeable in the left frontal region which could mean that despite the 

increased sources in drowsy state, the brain is ineffective in utilizing the right frontal 

region for higher vigilance control. Studies investigating brain areas responsible for 

vigilance maintenance have shown inconsistent findings. However, [59] attributes the 

inconsistency due to the difference in experimental paradigms and stimuli that mostly 

included cognitive tasks requiring a high cognitive load; that is the resource depletion 

theory. Therefore, the authors of [59] conducted a simple d2-test that does not require 

significant mental workload to find brain areas where EEG activity is correlated with 

fluctuations in vigilance over prolonged time. They suggest that left prefrontal cortex 

is significantly correlated with vigilance variation. 

The central and occipital regions show a slight increase in activity for low 

vigilance state. Their activity decreases again with challenge enhancement. A lower 

occipital activity at high vigilance state was also reported in [28]. The reverse trend for 

vigilance enhancements adds assurance to the occipital correlation to vigilance 

variations. The parietal shows a decrease with vigilance decrement. In [60], patients 

with parietal lesions as a group showed a significant impairment in processing speed, 

which could explain this decrease with vigilance decrement.  

7.2 Conclusions 

Vigilance decrement in tasks that resemble the under-load hypothesis can lead 

to serious penalties. Therefore exploring methods in continuous monitoring of 

vigilance can be of great importance.  In this work, PSD and EEG source localization 

were used to investigate brain areas and aspects that are highly correlated to vigilance. 

It has been shown that the greatest indication of vigilance decrement lies in the 

prefrontal and frontal cortices. Additionally, electrodes with most sensitivity were 

found to be on the prefrontal cortex. Four EEG variables were used to construct an 

initial measurement model where 84.45% of prelabeled data were correctly identified. 

However, in order to improve the reliability of the vigilance measurement model, 

given the complexity of the neural circuits involved in maintaining vigilance, more 

brain dynamics can be used in conjunction to monitor vigilance fluctuations in 
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individuals undergoing monotonous tasks. Incorporating more variables and 

conducting longer experiments can lead to greater vigilance decrement and thus more 

accurate regression models for a more sensitive vigilance assessment.   

7.3 Future Work 

This report presented an insight on brain behavior dynamics in vigilance tasks 

using power spectral density and source localization analysis. The main purpose of this 

work is to construct a vigilance assessment model that can serve as a metric for 

quantifying vigilance levels in daily activities. In order to further improve the accuracy 

of the results, array processing algorithms that are robust to perturbations in leadfield 

matrix can be applied with the help of calibration techniques to improve localization 

and possibly reconstruct the signal emitted from the localized source. The nature of 

reconstructed signal from source localization can be studied with vigilance decrement. 

Further studies on ERPs behavior are to be applied to give insight about attention levels, 

such as magnitude and latency variations. The nature of localized sources coupled with 

power spectral density behavior of brainwaves can lead to an accurate vigilance 

assessment model. Integrating infrequent target signals in jobs with monotonous nature 

can be studied to facilitate monitoring vigilance levels. Additionally, for feasibility of 

implementation in daily activities, methods for analyzing single evoked response are to 

be considered.  

  



68 

References 

 

[1] B. Oken, M. Salinsky, and S. Elsas, “Vigilance, alertness, or sustained attention: 

physiological basis and measurement,” Clinical Neurophysiology, vol. 117, no. 

9, pp. 1885–1901, 2006. 

[2] W. S. Helton and P. N. Russell, “Feature absence–presence and two theories of 

lapses of sustained attention,” Psychological Research, vol. 75, no. 5, pp. 384–

392, 2010. 

[3] W. S. Helton and P. N. Russell, “Working memory load and the vigilance 

decrement,” Experimental Brain Research, vol. 212, no. 3, pp. 429–437, Apr. 

2011. 

[4] N. Cao, I. Yetik, A. Nehorai, C. Muravchik, and J. Haueisen, “Estimating 

Parametric Line-Source Models With Electroencephalography,” IEEE 

Transactions on Biomedical Engineering, vol. 53, no. 11, pp. 2156–2165, 2006. 

[5] R. Carter, The Human Brain Book, 2nd ed. New York: DK Publishing, 2014, pp 

50-70. 

[6] K. Cherry, "A Guide to the Anatomy of the Brain," Verywell, Aug. 30, 2016. 

[Online]. Available: https://www.verywell.com/the-anatomy-of-the-brain-

2794895. [Accessed: Dec. 6, 2016]. 

[7] R. S. Swenson, "Cerebral cortical organization," in Review of clinical and 

functional neuroscience, Dartmouth Medical School, 2006 [On-line]. Available: 

http://www.dartmouth.edu/~rswenson/NeuroSci/index.html [Accessed: Dec. 5, 

2016].  

[8] "Transmission of Nerve Impulses," cliffnotes.com, [Online]. Available: 

https://www.cliffsnotes.com/study-guides/anatomy-and-physiology/nervous-

tissue/transmission-of-nerve-impulses [Accessed: Dec. 6, 2016] 

[9] “Propagation of the Action Potential,” The University of Texas Medical School 

at Houston. [Online]. Available: 

http://neuroscience.uth.tmc.edu/s1/chapter03.html. [Accessed: 26-Dec-2016]. 

[10] Raven, “Action potential propagation in an unmyelinated Axon,” Biology Eighth 

Edition. [Online]. Available: 

https://highered.mheducation.com/sites/9834092339/student_view0/chapter44/

action_potential_propagation_in_an_unmyelinated_axon.html. [Accessed: 15-

Dec-2016]. 

[11] “Brain Imaging Techniques.” Boundless Psychology, Aug. 08, 2016. 

https://www.boundless.com/psychology/textbooks/boundless-psychology-. 

[Accessed: 17-Jan-2017]. 

[12] “Positron Emission Tomography - Computed Tomography 

(PET/CT),” Radiologyinfo.org. [Online]. Available: 

http://www.radiologyinfo.org/en/info.cfm?pg=pet. [Accessed: 19-Dec-2016]. 

[13] “MRI Scans,” MedlinePlus.com. [Online]. Available: 

https://medlineplus.gov/mriscans.html. [Accessed: 16-Jan-2017]. 

[14]  “Magnetic Resonance, Functional (fMRI)-Brain,” Radiologyinfo.org. [Online]. 

Available: http://www.radiologyinfo.org/en/pdf/fmribrain.pdf. [Accessed: 16-

Jan-2017]. 

https://www.verywell.com/the-anatomy-of-the-brain-2794895
https://www.verywell.com/the-anatomy-of-the-brain-2794895
https://www.cliffsnotes.com/study-guides/anatomy-and-physiology/nervous-tissue/transmission-of-nerve-impulses
https://www.cliffsnotes.com/study-guides/anatomy-and-physiology/nervous-tissue/transmission-of-nerve-impulses
http://www.radiologyinfo.org/en/pdf/fmribrain.pdf


69 

[15] “Functional Neuroimaging,” NYU Psychology. [online]. Available:  

http://www.psych.nyu.edu/pylkkanen/Neural_Bases/07_slides/05_Methods.pdf

. [Accessed: 16-Jan-2017]. 

[16] M. Teplan, “Fundamentals of EEG Measurement,” Measurement Science 

Review, vol. 2, 2002. 

[17] “What are Brainwaves,” Brainworksneurotherapy.com. [Online]. Available: 

http://www.brainworksneurotherapy.com/what-are-brainwaves. [Accessed: 6-

Jan-2017]. 

[18] “Brain Waves Frequencies,” Mental Health Daily, Nov. 18, 2015. [Online]. 

Available: http://mentalhealthdaily.com/2014/04/15/5-types-of-brain-waves-

frequencies-gamma-beta-alpha-theta-delta/. [Accessed: 06-Jan-2017]. 

[19] “Brainwaves,” DoctorHugo.org. [Online]. Available: 

http://www.doctorhugo.org/brainwaves/brainwaves.html. [Accessed: 6-Jan-

2017]. 

[20] A. P. F. Key, G. O. Dove, and M. J. Maguire, “Linking Brainwaves to the Brain: 

An ERP Primer,” Developmental Neuropsychology, vol. 27, no. 2, pp. 183–215, 

2005. 

[21] “What is attention and where is it in the brain?,” Inside the brain, Mar. 07, 2013. 

[Online]. Available: https://inside-the-brain.com/2013/03/07/what-is-attention-

and-where-is-it-in-the-brain/. [Accessed: 04-Oct-2017]. 

[22] A. Trafton, “How the brain pays attention,” McGovern Institute for Brain 

Research at MIT, Apr. 10, 2014. [Online]. Available: 

http://mcgovern.mit.edu/news/news/how-the-brain-pays-attention/. [Accessed: 

06-Oct-2017]. 

[23] “Mapping brain circuits involved in attention,” National Institutes of Health, 

Aug. 04, 2016. [Online]. Available: https://www.nih.gov/news-events/nih-

research-matters/mapping-brain-circuits-involved-attention. [Accessed: 07-Oct-

2017]. 

[24] J. Tanji and E. Hoshi, “Role of the Lateral Prefrontal Cortex in Executive 

Behavioral Control,” Physiological Reviews, vol. 88, no.1, pp. 37-57, 2008. 

[Online]. Available: American Physiological Society, 

http://physrev.physiology.org. [Accessed: Oct. 15, 2017].  

[25] I. P. Bodala, Y. Ke, H. Mir, N. V. Thakor, H. Al-Nashash, "Cognitive workload 

estimation due to vague visual stimuli using saccadic eye movements," Annual 

International Conference Of The IEEE Engineering In Medicine And Biology 

Society. IEEE Engineering In Medicine And Biology Society. Annual 

Conference, 2014, 2993-6. doi:10.1109/EMBC.2014.6944252 

[26] Q. Ji, P. Lan, and C. Looney, “A probabilistic framework for modeling and real-

time monitoring human fatigue,” IEEE Transactions on Systems, Man, and 

Cybernetics - Part A: Systems and Humans, vol. 36, no. 5, pp. 862–875, 2006. 

[27] I. P. Bodala, J. Li, N. V. Thakor, H. Al-Nashash, "EEG and Eye Tracking 

Demonstrate Vigilance Enhancement with Challenge Integration," Frontiers In 

Human Neuroscience, June, 2016. [Online]. Available: 

https://www.worldcat.org [Accessed: Dec. 6, 2016]. 

[28] J. Li, I. Prasad, J. Dauwels, N. V. Thakor, and H. Ai-Nashash, “Vigilance 

Differentiation from EEG Complexity Attributes,” Neural Information 

Processing Lecture Notes in Computer Science, pp. 199–206, 2015. 

http://www.psych.nyu.edu/pylkkanen/Neural_Bases/07_slides/05_Methods.pdf
http://www.psych.nyu.edu/pylkkanen/Neural_Bases/07_slides/05_Methods.pdf


70 

[29] H. Ji, J. Li, L. Cao, and D. Wang, “A EEG-Based Brain Computer Interface 

System towards Applicable Vigilance Monitoring,” Advances in Intelligent and 

Soft Computing Foundations of Intelligent Systems, pp. 743–749, 2011. 

[30] C. Lei et al., "EEG-based vigilance analysis by using fisher score and PCA 

algorithm," in 2010 IEEE International Conference on Progress in Informatics 

and Computing, 2010, pp. 175-179. 

[31] F. Sauvet, C. Bougard, M. Coroenne, L. Lely, P. V. Beers, M. Elbaz, M. Guillard, 

D. Leger, M. Chennaoui, " In-Flight Automatic Detection of Vigilance States 

Using a Single EEG Channel," IEEE Transactions on Biomedical Engineering, 

2014, vol. 61, no. 12, p. 2840. 

[32] M. Hämäläinen, R. Hari, R. J. Ilmoniemi, J. Knuutila, and O. V. Lounasmaa, 

"Magnetoencephalography—theory, instrumentation, and applications to 

noninvasive studies of the working human brain," Reviews of Modern Physics, 

vol. 65, no. 2, pp. 413-497, 1993. 

[33] J. Mosher, P. Lewis, and R. Leahy, “Multiple dipole modeling and localization 

from spatio-temporal MEG data,” IEEE Transactions on Biomedical 

Engineering, vol. 39, no. 6, pp. 541–557, 1992. 

[34] F. Vatta, F. Meneghini, F. Esposito, S. Mininel, and F. D. Salle, “Realistic and 

Spherical Head Modeling for EEG Forward Problem Solution: A Comparative 

Cortex-Based Analysis,” Computational Intelligence and Neuroscience, vol. 

2010, pp. 1–11, 2010. 

[35] C.M. Michel, M. M. Murray, G. Lantz, S. Gonzalez, L. Spinelli, and R. Grave 

de Peralta, "EEG Source Imaging," Clinical Neurophysiology: Official Journal 

of the International Federation of Clinical Neurophysiology, vol. 115, no. 10, 

pp. 2195-222, 2004. 

[36] Z. A. Acar, S. Makeig, and G. Worrell, “Head modeling and cortical source 

localization in epilepsy,” 2008 30th Annual International Conference of the 

IEEE Engineering in Medicine and Biology Society, 2008. 

[37] S. Baillet, J. J. Riera, G. Marin, J. F. Mangin, J. Aubert, and L. Garnero, 

“Evaluation of inverse methods and head models for EEG source localization 

using a human skull phantom,” Physics in Medicine and Biology, vol. 46, no. 1, 

pp. 77–96, 2000. 

[38] S. Baillet, J. Mosher, and R. Leahy, “Electromagnetic brain mapping,” IEEE 

Signal Processing Magazine, vol. 18, no. 6, pp. 14–30, 2001. 

[39] R. Grech, T. Cassar, J. Muscat, K. P. Camilleri, S. G. Fabri, M. Zervakis, P. 

Xanthopoulos, V. Sakkalis, and B. Vanrumste, “Review on solving the inverse 

problem in EEG source analysis,” Journal of NeuroEngineering and 

Rehabilitation, vol. 5, no. 1, p. 25, 2008. 

[40] J. Mosher and R. Leahy, “Recursive MUSIC: A framework for EEG and MEG 

source localization,” IEEE Transactions on Biomedical Engineering, vol. 45, no. 

11, pp. 1342–1354, 1998. 

[41] B. V. Veen, W. V. Drongelen, M. Yuchtman, and A. Suzuki, “Localization of 

brain electrical activity via linearly constrained minimum variance spatial 

filtering,” IEEE Transactions on Biomedical Engineering, vol. 44, no. 9, pp. 

867–880, 1997. 

[42] J. Mosher and R. Leahy, “Source localization using recursively applied and 

projected (RAP) MUSIC,” IEEE Transactions on Signal Processing, vol. 47, no. 

2, pp. 332–340, 1999. 



71 

[43] M. S. Hämäläinen and R. J. Ilmoniemi, “Interpreting magnetic fields of the brain: 

minimum norm estimates,” Medical & Biological Engineering & Computing, 

vol. 32, no. 1, pp. 35–42, 1994.  

[44] M. A. Jatoi, N. Kamel, A. S. Malik, I. Faye, and T. Begum, "A survey of methods 

used for source localization using EEG signals," Biomedical Signal Processing 

and Control, vol. 11, pp. 42-52, 5, 2014. 

[45] K. Kaiboriboon, H. O. Luders, M. Hamaneh, J. Turnbull, and S. D. Lhatoo, "EEG 

source imaging in epilepsy-practicalities and pitfalls," Nature Reviews 

Neurology, vol. 8, no. 9, pp. 498-507, 2012. 

[46] M. A. Jatoi, N. Kamel, A. S. Malik, and I. Faye, “EEG based brain source 

localization comparison of sLORETA and eLORETA,” Australasian Physical & 

Engineering Sciences in Medicine, vol. 37, no. 4, pp. 713–721, 2014.  

[47] I. F. Gorodnitsky, J. S. George, and B. D. Rao, “Neuromagnetic source imaging 

with FOCUSS: a recursive weighted minimum norm 

algorithm,” Electroencephalography and Clinical Neurophysiology, vol. 95, no. 

4, pp. 231–251, 1995. 

[48] M. Popescu, S. D. Blunt, and T. Chan, "Magnetoencephalography source 

localization using the source affine image reconstruction (SAFFIRE) algorithm," 

(in eng), IEEE Trans Biomed Eng, vol. 57, no. 7, pp. 1652-62, Jul 2010. 

[49] N. N. Boutros and I. Ebrary, “Standard electroencephalography in clinical 

psychiatry: a practical handbook,”. Hoboken, NJ; Chichester, West Sussex; 

Wiley-Blackwell, 2011. 

[50] J. G. Temple, J. S. Warm, W. N. Dember, K. S. Jones, C. M. LaGrange, and G. 

Matthews, "The effects of signal Salience and caffeine on performance, 

workload, and stress in an abbreviated vigilance task," Human Factors: The 

Journal of the Human Factors and Ergonomics Society, vol. 42, no. 2, pp. 183–

194, Jun. 2000. 

[51] “Asa User Manual”, Ant Neuro Inspiring Technology. ver. 4.10.1, July, 2016. 

[52] K Yu, I Prasad, H Mir, N Thakor, Hasan Al-Nashash, “Cognitive Workload 

Modulation Through Degraded Visual Stimuli: a Single-Trial EEG Study” 

Journal of Neural Engineering, vol 12, no. 9, June 2015. 

[53] J. Polich, “Updating P300: An Integrative Theory of P3a and P3b,” Clinical 

neurophysiology: official journal of the International Federation of Clinical 

Neurophysiology, vol. 118, no. 10, pp. 2128-2148, 2007. 

doi:10.1016/j.clinph.2007.04.019.  

[54] D. Timmers, “Treating Attention Deficits and Impulse Control,” Clinical 

Neurotherapy, pp. 139–169, 2014. 

[55] L. Greensfelder, “Brain Wave Patterns Can Predict Blunders, New Study Finds,” 

UCDavis.edu, Jan. 23, 2016. [Online]. Available: 

https://www.ucdavis.edu/news/brain-wave-patterns-can-predict-blunders-new-

study-finds. [Accessed: 05-Nov-2017]. 

[56] “Vigilance and the Brain,” Tuck Sleep. [Online]. Available: 

https://www.tuck.com/vigilance/. [Accessed: 05-Nov-2017]. 

[57] R. Parasuraman, and G. Caggiano, “Neural and genetic assays of mental 

workload”. In D. McBride and D. Schmorrow Ed. Quantifying Human 

Information Processing, pp 123–155, 2005. Lanham, MD: Rowman & 

Littlefield.  



72 

[58] T.H. Shaw, J. S. Warm, V. Finomore, L. Tripp, G. Matthews, E. Weiler, & R. 

Parasuraman,“Effects of sensory modality on cerebral blood flow velocity during 

vigilance,” Neuroscience Letters 461, pp. 207-211, 2009. 

[59] J. H. Kim, D.W. Kim, and C.H. Im, “Brain Areas Responsible for Vigilance: An 

EEG Source Imaging Study,” Brain Topography, Jan-2017. doi: 

10.1007/s10548-016-0540-0. 

[60] P. V. Peers, C.J.H. Ludwig, C. Rorden, R. Cusack, C. Bonfiglioli, C. Bundesen, 

J. Driver, N. Antoun and J. Duncan, “Attentional functions of parietal and frontal 

cortex,” Cerebral Cortex, vol. 15, pp. 1469- 1484, 2005.   

  



73 

Vita 

Salma was born in 1993, in Cairo, Egypt. She received her primary and 

secondary education in Cairo, Egypt. She finished her high school studies in Dubai 

UAE. She received her B.Sc. degree in Electrical Engineering from the American 

University in Sharjah in 2015.  

In September 2015, she joined the Electrical Engineering master's program in 

the American University of Sharjah as a graduate teaching assistant. Her research 

interests are in signal processing, machine learning, and applied estimation. 

 


