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Abstract 

Brain source localization allows us to localize different brain regions that are 

activated during neural activity. Several imaging modalities can be used for recording 

neural activity and are essential in clinical applications. One of these clinical 

applications is epilepsy diagnosis and localization. Structural or/and functional 

imaging techniques are used for patients to investigate epilepsy, classify seizures, and 

in pre-surgical evaluation.  This report summarizes the most common imaging 

techniques for epilepsy diagnosis. It will then make use of electroencephalography 

(EEG) readings to localize epileptogenic regions in the brain, as it is a noninvasive 

technique with high temporal resolution. In addition, EEG requires low-cost hardware 

when compared with the other modalities such as functional Magnetic Resonance 

Imaging (fMRI), Positron Emission Tomography (PET), and Single Photon Emission 

Computed Tomography (SPECT). Moreover, the most common source models are 

discussed along with the used signal processing based techniques for source 

localization. In this work, distributed sources dipole model algorithms including the 

SAFFIRE and sLORETA are discussed and applied to simulated epileptic spikes. 

Upon examination of these algorithms, their potential in epilepsy source localization 

was proven with relatively low localization errors of 6.25 cm and 3.55 cm for 

sLORETA and SAFFIRE algorithms respectively. The SAFFIRE algorithm 

performance is investigated on epilepsy real data where the localized epileptogenic foci 

were consistent to the suggested locations by neurologists.   Furthermore, the effect of 

reducing the number of electrodes on the source localization error was investigated on 

simulated epileptic spikes. The source localization error increased by 2.18 cm when 

reducing the number of electrodes from 256 down to 128. Then it increased by 3.7 mm 

when going from 128 electrodes to 64 electrodes.  In conclusion, the localization error is 

inversely proportional to the number of electrodes used for recording brain potentials. 

Search Terms: Epilepsy, EEG, Brain source model, Brain source localization, 

inverse problem, SAFFIRE algorithm. 
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1 Chapter 1. Introduction 

1.1 Brain Source Localization  

Brain Source Localization techniques are becoming important in clinical 

applications due to their role in improving the understanding and treatment of serious 

neurological and neurophysiological disorders such as Epilepsy, Parkinson’s 

Disorder, Schizophrenia, and Alzheimer [1, 2]. Moreover, they help relating specific 

areas of the brain and functions they serve with the activated regions in the brain.  

Modern structural and functional brain imaging methodologies proved a high 

level of anatomical and metabolic data that impact the diagnosis and management of 

epilepsy. Usually, the diagnosis of epileptic seizures is based on clinical history and 

physical evaluation. However, inadequate history and the presence or absence of a 

single symptom may lead to the misdiagnoses of this particular disorder. Thus, brain 

imaging provides supplementary evidence of the clinical suspicion. Besides the 

accurate assessment, these methodologies define the structural abnormalities that 

underlie seizure disorders. Moreover, patients who do not respond optimally to 

medical treatment might be candidates for epilepsy surgery. Therefore, brain imaging 

methodologies are essential to localize and lateralize epileptogenic areas accurately 

[3].  

The Electroencephalography (EEG) source imaging technique has been 

developed as an identifier of the source of neuronal activity. It is a noninvasive 

technique that is used to measure electric potentials caused by any neural activity in 

the brain directly. Due to its high temporal resolution, low hardware costs, and direct 

measurements of electric potentials, EEG provides a complement (or a replacement) 

to other neuroimaging techniques, such as positron emission tomography (PET), 

single photon emission computed tomography (SPECT), and functional magnetic 

resonance imaging (fMRI). Furthermore, when it comes to investigating seizures, it is 

required to measure neuronal activity before, during, and after a seizure. Since it is 

possible to measure neuronal activity in real time using EEG, it is very useful in 

epilepsy diagnosis. 

In order to perform EEG source localization, two problems should be solved: 

the forward and the inverse problems. In the forward problem, appropriate head 

models are used to obtain electric potentials on the scalp that are produced by 

neurons. Neurons on the other hand, are modeled as current dipoles. To solve this 
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problem, a mathematical model that approximates the primary current density of the 

source is developed. The approximated current density represents the brain activity to 

be localized by solving the inverse problem. 

However, measuring signals on the surface of the scalp does not directly 

indicate the location of the activated neuron. This is because different source 

configurations may produce the same measured electric fields on the scalp.  As a 

result, the only way to localize electric sources is by making prior assumptions on the 

generation of EEG signals. This is known as the inverse problem which involves 

locating the sources of neural activity. The inverse problem is then solved by 

implementing array processing based methods to reduce source localization error. 

Array processing methods provide a potent signal processing tool for solving 

the inverse problem. Depending on the assumption made for sources that generate the 

electric fields, different algorithms can be utilized for source localization. A well-

known source localization algorithm is the Low-Resolution Electromagnetic 

Tomography (LORETA) which is used to localize multiple distributed active sources. 

This algorithm assumes that neighboring neural populations are probable to undergo 

synchronous depolarization during evoked response or a discharge than the non-

neighboring neurons. Another commonly used algorithm is the Source Affine Image 

Reconstruction (SAFFIRE). It is based on assuming that collected measurements via 

an array of sensors can be modeled as the superposition of independent contribution 

from distributed sources. A detailed discussion of different source localization 

methods, mathematical interpretation, and the advantages and limitation of each 

algorithm are presented in Chapter 3. 

1.2 Motivation and Problem Statement 

An epileptic seizure is defined as a temporary disruption of brain functions due 

to the hypersynchronous, the abnormal firing of cortical neurons. Epileptic seizures 

are sudden, transient, and usually brief. Approximately 1% of the population suffers 

from epilepsy, which makes it the second most common neurologic disorder after 

strokes [4]. Epilepsy is often controlled by a wide variety of medication. However, a 

number of patients will not respond optimally to medical treatment with either 

continued seizures or unacceptable side effects. As it is known, the temporal and 

frontal lobes are the usual locations of the epileptogenic zone. Thus, it is reasonable to 

assume that epilepsy treatment may affect the creative process since any mechanism 
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affecting chemical and structural connectivity in the brain has the potential to affect 

cognition, motivation, and talent. Some anti-seizure drugs lower arousal and 

motivation, making them counterproductive to the creative process [5]. 

Therefore, Surgery is recommended in these cases where the affected 

epileptogenic area is identified and surgically removed [3, 6]. Other surgeries that 

involve disconnecting pathways between parts of the brain are made to prevent the 

seizure from spreading to other parts of the brain [3]. Surgery outcomes are optimal 

when seizures are demonstrated to arise from one well-defined area that can be 

removed without functional compromise. Many imaging techniques have improved 

the pre-surgical structural analysis and surgery outcomes [3]. 

The grand challenge of this work is the accurate source localization of 

epileptogenic zones that need to be removed. Hence, the objectives of this thesis are 

to use the EEG source localization technique in order to determine epileptic sources 

with high temporal and spatial resolutions and to study the effect of reducing EEG 

sensors dimensionality in Source localization performance. 

1.3 Research Methodology and Outline 

In this report, the forward problem solution is obtained using two software 

packages called Advanced Source Analysis (ASA-lab) and Brainstorm. Boundary 

Element Method (BEM) is available in these softwares in order to model a realistic 

head using MRI image. Furthermore, the raw EEG data is a complex waveform that 

contains not only brain activity, but also random electromagnetic noise and unwanted 

electrical activities of nearby muscles (e.g. Heartbeats, eyeblinks, eye movement, 

etc.). Therefore, several pre-processing techniques are applied to the raw EEG in 

order to remove unwanted signals. Starting with removing and correcting artifacts, 

signals that have not originated from the brain are removed from the EEG data. Next, 

low-pass and high-pass filters are used to remove unwanted random noise 

frequencies. Recorded EEG signals of an evoked response (ERP) are analyzed using 

the ASA-lab software. Standard head model and MRI images are used to display 

potentials recorded by each electrode sensor and sources of the brain’s neural activity. 

The head model, MRI image, and processed EEG signals are used for the purpose of 

localization. 

Finally, Distributed sources based algorithm LORETA that can localize 

multiple simultaneously active sources, is investigated. This algorithm provides 
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smooth and better localization for deep sources with less localization error. At the 

end, LORETA is performed and the source of ERP signal is determined.  

The rest of the thesis is organized as follows: Chapter 2 provides brief 

information about brain anatomy and neurons physiology, epilepsy as one of the 

major neurological disorders of the nervous system, and different imaging techniques 

used in the diagnosis of epilepsy. Chapter 3 outlines EEG source imaging (ESI) 

technique, its contribution in epilepsy diagnosis, and the steps towards solving the 

forward and inverse problems for accurate source localization. Moreover, it includes 

the literature review done on various existing dipole models and signal processing 

techniques used to solve the inverse problem. Three approaches for source modeling, 

which are the single, multiple, and distributed dipole models are introduced and 

prominent algorithms for each approach are reviewed. The advantages, drawbacks, 

and proposed enhancements of each of these models and signal processing techniques 

are also mentioned in this chapter. Chapter 4 includes EEG data processing and 

analysis procedure followed by LORETA localization results. Simulated and real 

epilepsy data source localization is performed using SAFFIRE and sLORETA 

methods in chapter 5. Furthermore, Epilepsy source localization using SAFFIRE 

algorithm is investigated on epilepsy clinical data and results are compared with 

medical reports in chapter 6. The effect of reducing the number of electrodes on 

localization performance is studied and future work is presented in chapters 7 and 8 

respectively.  
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2 Chapter 2. Epilepsy Imaging Techniques 

Epilepsy is a common disorder with recurrent and unprovoked seizures. 

Although symptoms of seizures may affect any part of the body, the electrical events 

that produce seizures occur in the brain. Evaluating patients with epilepsy depends on 

determining the seizure’s type and causes. Number of steps is performed towards 

accurate diagnosis of epilepsy such as medical history, blood tests, and brain imaging. 

Brain imaging is an important part of the diagnostic process not only to confirm a 

diagnosis of epilepsy, but also to determine epileptogenic regions. 

In this chapter, anatomy and physiology of the human brain is provided along 

with information on epilepsy as well as different brain imaging techniques that are 

used in epilepsy diagnosis. 

2.1 Brain Anatomy 

The brain is considered as the main and the most complex part of human body. 

It consists of three main parts which are the cerebrum, cerebellum, and the brain stem 

as shown in Figure  2-1. These parts work together to control every action in our daily 

life. However, each part has its own function. The cerebrum or cortex is associated 

with thought and action functions, and it is split into four sections called lobes. The 

cerebellum, which is similar to the cerebrum, is associated with movement 

coordination, posture, and balance regulation. The brain stem is responsible for vital 

life functions such as breathing, blood pressure, heartbeat, hormone secretion, etc. 

 
Figure  2-1 Brain components [7]. 
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In the early history of neuroscience, observing the brain meant visually 

examining its anatomy, which involves the convolutions of the cerebral hemisphere, 

the nerve fibers, gray matter regions, and neurons structure. However, in the later 

twentieth century, electrical activity of neural tissue began to appear, and the nature of 

propagated signal began to reveal [8]. Electrical currents flowing in the brain’s 

neurons are produced and cause electric and magnetic fields inside the brain. Neurons 

affect and are affected by other neurons through communication using chemical and 

electrical signals. Neurons comprise of dendrites, cell body (soma), axon and the 

myelin [9]. In simple words, the dendrites collect information from other neurons, 

then the information is received by the cell body which produces an electric signal 

that is called the action potential. The action potential propagates in the axon. Then, 

chemical signals are released into the synaptic cleft. These signals are called 

neurotransmitters, which latch onto the receptors of the target neuron. The received 

signal may cause an increase or decrease of the membrane potential of the target 

neuron. 

 
Figure  2-2 Communication between neurons [7]. 

Most of the major discoveries regarding the nature of neural activity were 

obtained with electrophysiological recordings of neurons. These recordings allow 

direct observation of electrical currents and potentials generated by single nerve cells 

with high spatial and temporal resolution [8]. Different techniques and imaging 

methods can be used for recording neural activity such as electroencephalography 

(EEG), magnetoencephalography (MEG), functional magnetic resonance imaging 

(fMRI), and Positron emission tomography (PET). 

15 
  



Structural, biochemical, or electrical abnormalities in the brain or other nerves 

can cause a neurological disorder of the nerves system. There are many recognized 

neurological disorders. Epilepsy is considered as the most common serious 

neurological disorder in the world [10]. 

2.2 Epilepsy 

Epilepsy is the condition of recurrent, usually unprovoked seizures, it cannot be 

considered a single disease but rather an extensive collection of conditions with a 

range of underlying etiologies and pathologies sharing the fundamental characteristics 

of these recurrent seizures [10]. 

Diagnosis of epilepsy depends on the correct classification of epileptic seizures 

and epilepsy syndromes. A wide range of conditions must be considered in the 

diagnosis process since the misidentification of non-epileptic conditions as epilepsy 

may lead to unnecessary treatments that are for sure may be harmful and can delay the 

start of appropriate therapy. The first step in epilepsy diagnosis is essentially clinical 

evaluation, which is based on the detailed description of the events experienced by the 

patient before, during and after a seizure. In addition to patient medical and social 

history, routine blood tests should be performed to detect cardiac arrhythmias and 

conduction abnormalities. 

2.3 Imaging Techniques for Epilepsy Diagnosis 

Many investigational technologies are used to support the clinical diagnosis of 

epilepsy and help with the classification of seizures [10]. Brain imaging is one of the 

basic steps towards accurate clinical evaluation and diagnostic. It can be divided into 

structural and functional imaging. Structural imaging of the brain looks for underlying 

structural abnormalities, while functional imaging identifies focal abnormalities in 

cerebral physiology. In spite of the fact that functional imaging has a limited role in 

epilepsy diagnosis, it is considered to be very useful in the workup for epilepsy 

surgery. 

2.3.1 Structural Imaging 

Magnetic Resonance Imaging. It is considered to be the modal of choice in the 

surgical planning and postoperative follow up drug-resistant focal epilepsy which 

consist are 20 to 30% of epilepsy cases [11]. The choice of MRI is because of its high 

sensitivity and specificity in comparison with Computed Tomography (CT) for 
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identifying structural lesions. Once, CT accepted as the first imaging modality to be 

performed, but now it is considered supplementary in the detection of calcification as 

in the case of epileptogenic tumors. However, CT should be performed if MRI is 

unavailable and in patients with cardiac pacemakers or severe claustrophobia that 

result a contraindicated MRI. 

 The principle role of MRI is to define structural abnormalities that may be a 

cause of disorders like epilepsy. Figure  2-3 shows multiple gray matter heterotopia 

which may cause recurring seizers. 

There are number of factors affect the success of MRI in detecting 

abnormalities, they can be determined by the scanner and applied techniques, the 

experience of the radiologist and, of course, the nature of epileptogenic lesions [12]. 

Computational post-processing of structural MRI techniques is used to quantify brain 

morphological features and allow the use of statistical inferences instead of visual 

inspection to identify abnormalities. 

The first goal of MRI in epilepsy patients is the detection of epileptogenic 

regions. With careful MRI reading, lesions are visible without additional contrast 

medium injections which are usually needed to characterize a lesion but not to find it 

[13]. A number of epilepsy-relevant features that can be measured with brain MRI 

scan are local gray matter volume, cortical thickness, sulcus depth, blurring of the 

boundary between gray and white matter in the cortex and more exotic measures that 

quantify local spatial properties of tissues such as cortical gyrification and texture 

analysis. 

 
Figure  2-3 MRI scan shows multiple gray matter heterotopia [10]. 
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Increasing spatial resolution requires a development of better hardware, the 

most standard methods is the use of higher field MRI scanners. However, there is still 

limited evidence that the use of this imaging technique is useful for imaging 

nonlesional epilepsy cases which is due to the limited availability high-field scanners, 

appropriate acquisition sequences and lack of systematic studies [14]. In children with 

EEG findings pointing to a genetic epilepsy syndrome, the use of MRI is typically 

unrevealing. Because some non-genetic epilepsies may sometimes resemble these 

genetic epilepsy syndromes, MRI is recommended in these patients if they present 

with any atypical features such as abnormal neurologic or intellectual development, 

difficult-to-treat seizures, or unusual course. Also, for children with focal, possibly 

drug-resistant epilepsy syndromes, the effort to generate high-quality MRI is greatest. 

Because these patients may be uncooperative and unable to tolerate sequences lasting 

around 5 min, hence, anesthesia including sedation and intubation is needed [15]. 

Functional Magnetic Resonance Imaging. Because of the lack of 

ionizing radiation in MRI scanners, functional MRI has come out as one of the 

popular means of visualizing brain activity. Its primary use has been in localizing 

activation in response to sensorimotor or cognitive tasks. And since epilepsy is a 

functional disorder that –in many cases- may not be accompanied with outrageous 

abnormalities in structural imaging, fMRI has received attention and used to examine 

regional changes in brain functions that are associated with ictal or interictal states. 

Furthermore, fMRI has been used as a part of preoperative evaluation for epilepsy 

surgery to assess localization of language, memory, and other functions. It is simply 

MRI scanning with blood flow and/or metabolism attribution in significant tissue 

contrast. The changes are on the order of precent or less of the overall signal intensity, 

however, modern MRI scanners are stable to measure such small changes in a reliable 

way [16]. 

Patients are instructed to perform specific tasks following a strict protocol, the 

intracerebral localization of the tested function is determined via a surrogate 

parameter (spatial distribution of activation-related cerebral perfusion changes). As a 

response to the task execution, neural activity and oxygen consumption are elevated 

in areas associated with the performed task. There are two main reasons to perform 

fMRI studies in epilepsy patients, first, it is used to evaluate the relationship of a 

lesion with eloquent cortex. And the second reason is to assess hemispheric 

dominance. 
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Mainly there are two primary contrast mechanisms used for fMRI which are 

blood oxygen level dependent (BOLD) contrast and perfusion contrast. BOLD 

contrast reflects a complex interaction between blood flow, blood volume and 

hemoglobin oxygenation [17]. While perfusion contrast is obtained using arterial spin 

labeling which uses magnetically labeled arterial blood water as flow tracer. 

Figure  2-4 shows BOLD contrast as a response to inter-ictal epileptic activity. BOLD 

contrast mechanism has been raised as the method of choice for imaging brain activity 

using fMRI because it is easy to obtain and provides higher signal-to-noise ratio for 

task-specific activation. 

 

Figure  2-4  fMRI shows BOLD activation on one gyrus beyond the right frontal [17]. 

All fMRI studies use time-series data acquired by using snapshot imaging 

method, where the entire brain volume is sampled every 1-3 s. This method places 

high demands on hardware performance and data processing speed. Most of them 

have used multiple blocked-trial designs with alternating epochs of task and control 

conditions. Sensitivity is maximized through this approach because large signal 

changes are sustained [16]. 

Recently, the spread of high field scanners with high-performance gradient 

systems have provided high sensitive fMRI which improved the quality and reliability 

of fMRI results. BOLD fMRI methods can be used to localize seizure foci during 
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clinical or subclinical seizures as in [18, 19], where reports showed transit focal 

activation that correlated with clinically determined seizure foci. 

When compared to EEG spatial resolution property, fMRI has an excellent 

spatial resolution and allows the localization of brain regions by taking advantage of 

the change of neuronal activity during an experimental perturbation compared to 

control conditions.  This change is combined with a modification of the ratio of the 

concentration of oxy and de-oxy hemoglobin in the blood that is measured through 

the BOLD effect. In contrast to EEG, fMRI has a poor temporal resolution, the 

measures of neuronal currents on the order of seconds not milliseconds.  

Hence, EEG-fMRI combined recording exploit the complementary features of 

the two techniques to overcome the limitations of each. But it is extremely 

challenging to record EEG signals during fMRI scanning because of the large currents 

induced in electrodes due to the magnetic field-gradient pulsation required for MRI. 

On the other hand, electrodes can serve as a conduit for radio frequency noise that 

may degrade MRI data. To overcome these challenges several methods have evolved 

over the past years. As in [20], EEG-triggered fMRI is used to localize changes in 

regional brain activity associated with paroxysmal electrographic activity but it did 

not obtain these modalities simultaneously. Furthermore, as in [21-23], high-

resolution digitization and post-processing strategies are used to allow the intense and 

reproducible gradient artifacts to be eliminated, providing interpretable EEG data 

during scanning. As a result, this allowed the fMRI correlates of spike foci and other 

paroxysmal events to be even more convincingly demonstrated as in [24-26]. 

In many cases of drug-resistant focal seizures, standard magnetic resonance 

imaging (MRI) scans on patients for pre-surgical evaluation- fail to visualize a clear 

epileptic seizure source, thus an introductory noninvasive EEG analysis is required. 

Combined EEG and fMRI records are considered to be a less invasive alternative 

since they provide high spatial and temporal resolution of brain regions generating 

inter-ictal epileptiform activity [27]. 

In the general fMRI study involving sensory, motor and cognitive functions, 

experimental and control conditions are identified based on the task. In epilepsy 

studies, the control conditions occur when the EEG is at the baseline and the 

experimental condition corresponds to the presence of epileptic discharge [28]. 
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2.3.2 Functional Imaging  

The main technologies which are used for functional imaging are single 

photon emission computed tomography (SPECT) and positron emission tomography 

(PET). As mentioned before, these functional imaging modalities have a role in the 

pre-surgical evaluation of epilepsies as they are able to detect epileptogenic foci in 

morphologically unnoticeable areas. In addition, they provide a better understanding 

of the neurobiology of epilepsy.  

Single photon emission computed tomography. According to the fact 

that SPECT demonstrates the functional activity through measuring blood flow inside 

the brain, it is considered to be valuable for diagnosis and localizing several 

neurological disorders including epilepsy [29]. Its application in epilepsy is based on 

the assumption that the increased ictal neuronal activity occurring during epileptic 

seizures is associated with an increase in metabolism and regional cerebral blood flow 

(rCBF) [30].  

Figure  2-5 shows a SPECT images for a patient with right hippocampal 

epilepsy. 

 

Figure  2-5 Ictal SPECT shows increased perfusion in the right temporal lobe [3]. 

Iodine-123 and technetium-99-m-labeled radiopharmaceutical are 

commercially available and used as a tracer for brain perfusion SPECT. Their small 
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molecular size and lipophilicity cause the ability to cross the intact blood-brain barrier 

rapidly and to be distributed proportionally to the blood flow in cerebral tissue, then 

to remain in the brain for a sufficient time (greater than 30 minutes) to permit image 

acquisition [31]. 123I-labeled amines were initially used but it was found that these 

tracers reach peak brain activity after injection by 20 minutes and show redistribution 

over time, which results in reuptake into the cerebral cortex that is not proportional to 

rCBF. To overcome this problem 99mTc-hexamethylpropyleneamine-oxime (99mTc-

HMPAO) and 99mTc-ethyl cysteinate dimer (99mTc-ECD) are used for investigating 

rCBF and they are considered to be the most frequently used tracers. In comparison 

with 123I-labeled, they have a quicker initial uptake in brain and reach the peak within 

2 minutes of injection without redistribution. Hence the initial tracer uptake and 

distributed correspond to rCBF at the time of injection and remains unchanged up to 

at least 2 hours independent of rCBF variation occurring after fixation time. 

Therefore, after injecting the radiotracer into the patient, rCBF images reflecting the 

distribution at the moment of seizure occurrence can be acquired later with SPECT 

camera after the recovery from the seizure. This technique rendered to be useful and 

affordable for clinical routines because of the appropriate hold-time of technetium, 

which is 6 hours, and the stability of the tracer [30].  

Many researchers have agreed that epileptic foci are localized in a reliable 

manner with a subtraction SPECT image. This image is created via the information 

from individual studies, interictal SPECT and ictal SPECT. Where interictal SPECT 

study illustrates the brain when it is not undergoing an epileptic seizure and the ictal 

illustrates the brain during the epileptic event. As stated in [32] Ictal SPECT has 

shown to be more accurate for localization of temporal lobe seizures when the 

radiotracer is injected immediately after the seizer. However, the injection of the 

tracer is performed after the seizure start and takes time before it gets to the brain, this 

delay should be overcome. Therefore, the increased in rCBF showed by ictal SPECT 

that is related to seizure might also indicate propagation from the area of ictal onset. 

Moreover, when the delay between seizure onset and tracer application is too long, 

false localization of the ictal seizure can be observed. This phenomenon is called 

“postictal switch” [33]. 

Several studies have demonstrated that ictal SPECT has better quality when 

compared to interictal SPECT in identifying the location or the lateralization of 

epileptic seizures of a patient with temporal lobe epilepsy (TLE). [34-37] indicated a 
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sensitivity between 73 and 97% for ictal SPECT and only 50% for interictal SPECT. 

As cited by medical experts in [38], probable epileptic foci often display behaviors 

between and during epileptic events regarding blood flow in the tissues. 

Although SPECT image subtraction is effective at demonstrating changes in 

perfusion between studies, there are some constraints in its utility. Many interactive 

processing steps are required to obtain subtracted SPECT images which require input 

from users familiar with brain dynamics. Also, Programming tools used for SPECT 

image analysis are not fully automated. Another limitation and the most important one 

is that the image obtained through SPECT subtraction does not always depict a 

localized epileptic focus localization. 

A factor that limits the quality of the reconstructed image is the tissue 

attenuated due to the nonlinear relation between the ray sums of activity in the patient 

and the gamma ray emissions collected by the SPECT system. In addition to that, 

spatial resolution, scattered radiation, and image noise affect the quality and accuracy 

of the acquired image projections [39].  

To overcome these limits better instrumentation or better correction 

algorithms are required. Authors of [40] have made a contribution to the automation 

of the processing and interpretation of SPECT images. It was determined that for the 

ten sets of patient SPECT image data, the automated SPECT image analysis algorithm 

obtained 91.3% average rate of accuracy for epileptic focus. Since the projection 

information required for SPECT is acquired by gamma ray detector, the quality of the 

projection will depend on the accuracy of the detector. Hence the detectors should be 

of good energy resolution, good spatial resolution. 

In spite that SPECT continues to progress with major improvements in 

instrumentation and reconstruction, the limits of spatial resolution and sensitivity have 

not yet been reached for clinical devices [39]. 

Positron Emission Tomography. PET is considered to be an important 

tool for identifying the ictal zone and understanding neurobiology and functional 

alteration associated with different types of epilepsy. Many PET studies, such as 

measurements of glucose, serotonin and oxygen metabolism, cerebral blood flow and 

receptor bindings are available for epilepsy. 18Fluoro-2-deoxyglucose (18F-FDG) 

PET imaging of the brain is a prominent and widely available technique. It allows 

quantification of cerebral glucose metabolism and it’s an indirect marker of neuronal 

23 
  



activity. Epileptogenic regions can be detected as interictal hypometabolic regions as 

in Figure  2-6. 

 
Figure  2-6 PET shows interictal hypo metabolism over the left temporal and occipital 

areas [10]. 

FDG PET is the most commonly utilized technique in routine clinical practice. 

In comparison with SPECT studies, researches have demonstrated that the sensitivity 

of interictal FDG-PET is higher than interictal SPECT. And for the lateralization and 

localization of epileptogenic foci, FGE-PET is similar to ictal SPECT in pre-surgical 

patients’ who have noncontributory EEG and MRI. In addition, FDG-PET provides 

additional important information on the functional status of the rest of the brain [41].  

Interictal FDG PET can also be of some value when there is possibly more than one 

focal ictal zone or when clinical data are discordant with EEG findings. FDG PET 

yield can be improved by using statistical analysis methods, such as statistical 

parametric mapping (SPM) as well as by PET/MRI co-registration on a clinical level 

which improves sensitivity [2]. 

However, the main limitation of interictal FDG-PET is that it cannot define 

the surgical margin exactly as the area of hypometabolism usually extends beyond the 

epileptogenic zone. 

It is important for the spread of epileptic activity to quantify the specific 

ligand-receptor relationships which are allowed by PET. Several PET receptors 

ligands have been used in epilepsy diagnosis to investigate its neurochemical basis 

[30]. PET receptor imaging technique have partially entered clinical routine and it can 
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be used to investigate new treatment approaches. However, it is performed in limited 

centers and requires well-experienced staff as well as on-site equipment. On the other 

hand, practical limitations of using any of these radiotracers include the lack of 

commercially available radiotracers, short half-life that necessitates an onsite 

cyclotron, moderate signal-to-noise ratio, and the need for arterial blood sampling to 

model tracer-binding features. In addition, to date, none has demonstrated a clear 

clinical role in nonlesional epilepsy [41]. 

Electroencephalography. Electroencephalography recording is used to 

measure the difference in potentials between two electrodes placed in an array across 

the scalp. It carries high specificity for epilepsy for which the cardinal symptoms are 

hard to be mistaken for others and are rarely seen in conditions outside epilepsy as 

noticed in Figure  2-7. However, its ability to confirm epilepsy in patients who have it 

is considered to be limited. Therefore many techniques have been arisen for EEG to 

help elicit epileptic abnormalities and hence helping clinicians in the diagnosis of 

epilepsy [4]. More detail about EEG and its uses in epilepsy source localization will 

be discussed next chapter. 

 
Figure  2-7 EEG recording shows seizure onset from the right frontal region (F4) [6]. 

Magnetoencephalography. Magnetoencephalography (MEG) where 

magnetic field associated with intracellular current flows within neurons are measured 

between seizures. It is usually used for patients with normal neuroimaging results. 

When combining MEG with structural imaging (MRI) it is known as magnetic source 

imaging (MSI) which considered to be one of the noninvasive tools for epilepsy 

localization [42].  

Since MEG measures extracranial magnetic fields perpendicular to the 

direction of intracellular electrical currents in active cortical neurons, it is sensitive to 

currents flowing tangential to the scalp which is corresponding to sulcal activation. 

Based on the fact that magnetic field measured by MEG is less affected by 
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intervening tissue layers, MEG is a useful clinically usable tool in pre-surgical 

localization of epileptogenic foci and allows reliable localization of brain activity [43] 

as shown in Figure  2-8. In addition, MEG can be estimated using simple spherical 

head model since it is less susceptible to the irregularities of head geometry. The 

systematic review done in [43] has shown that the sensitivity and/or specificity of 

MEG as a primary diagnostic tool has not been consistently high and the effectiveness 

of MEG in impacting epilepsy surgery outcome is still lacking. 

 
Figure  2-8 MEG signal shows left fronto-temporal interictal spikes [44]. 

There are two approaches used to confirm the accuracy and clinical validity of 

MEG in the localization of epilepsy, which are the direct and indirect approaches. 

Direct approaches reflect work done with implanted dipoles using special intracranial 

IC electrodes or simultaneous EEG and MEG recording. Whereas indirect methods 

come from studies that demonstrate colocalization with epileptogenic regions that are 

visible or confirmed through structural or functional imaging, subsequent intracranial 

EEG and successful surgical outcomes [45]. 

As mentioned previously, investigating epileptic syndromes determining whether 

it is epileptic seizure or not requires many steps toward accurate diagnosis and 

localization of epileptic area. The imaging capabilities provided through the 

integration of SPECT, PET, MRI, EEG, and MEG are often used. This multimodality 
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imaging which combines structural and functional information helps in improving the 

ability to detect and define epileptogenic lesions. The most sensitive methods for 

identifying relevant epilepsy-related brain regions will likely involve a combination of 

the above-mentioned features [14]. 
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3 Chapter 3. EEG Source Imaging In Epilepsy 

3.1 EEG Source Imaging Technique 

As we mentioned before, EEG is a functional brain imaging technique that 

records the brain’s electrical activity. Electrodes are placed in contact with the scalp at 

selected locations above cortical regions. EEG measures the potential difference 

between pairs of electrodes. EEG has many clinical uses and it is considered an 

important tool to measure neural activity and identify the area of cortex that is 

responsible for generating spikes and epileptic seizures. 

Usually, to identify the type of epilepsy, a clinician relies on simple visual 

analysis of EEG recordings. However, when it comes to epilepsy surgery evaluation, 

computational techniques are used to more precisely identify the cortical locations 

that cause abnormal seizures. Therefore, EEG source imaging (ESI) technique have 

been developed as an identifier of the source of evoked potentials. 

In routine EEGs, more than 50% of patients with epilepsy will have a normal 

trace. However, with repeated recordings, epilepsy can be better diagnosed. It is 

preferable to detect interictal and ictal events in case of negative routine EEG using 

portable equipment to allow prolonged recording in the patient’s usual environment. 

Moreover, it is possible to achieve behavioral correlation in patients by video 

monitoring during the EEG. Video monitoring is considered to be an integral part of 

the evaluation of epilepsy and may be the only way to distinguish epileptic from non-

epileptic seizures. 

Recent technology developments have allowed simultaneous EEG recordings 

with fMRI so that interictal EEG changes can be spatially localized to provide better 

understanding of the spatiotemporal mechanism of the generation of epileptiform 

activity in the brain.  

The development of mathematical techniques is required for EEG 

measurements analysis in order to understand the spatiotemporal activities in the 

brain. However, it is impossible to determine the exact location of an electrical source 

in the brain from only recorded EEG data. To overcome this, the characteristics of the 

head and internal structure and the location of sources should be modeled to predict 

the scalp voltage field. This operation is so called the forward problem. After solving 

the forward problem, it becomes possible to estimate current sources from which 

neural activity originate by solving the inverse problem. 
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3.2 Forward Problem 

The forward problem for EEG is complicated by the difficulty of predicting the 

surface field for a given source within the head structures. To solve this problem, a set 

of known conditions for the head model is specified and then the potential at the 

recording electrodes is calculated. Generally, for a specified source, only one field 

potential is possible on the surface of the head, which results a unique forward 

solution [46]. To offer the best forward solution, a realistic head model can be 

achieved using an individual’s MRI. 

Mathematically, the forward problem can be modeled as, [47] 

 𝑉𝑉𝑖𝑖𝑖𝑖 = �𝐿𝐿𝑖𝑖𝑖𝑖𝑀𝑀 (𝑟𝑟) .  𝐽𝐽𝑝𝑝(𝑟𝑟) 𝑑𝑑𝑑𝑑 (1) 

where 𝑉𝑉𝑖𝑖𝑖𝑖 denotes the potential difference measured between electrode i and j. 𝐿𝐿𝑖𝑖𝑖𝑖𝑀𝑀 is 

the leadfield for electrode pairs i and j and is expressed in Ω/m. It depends on the 

location configuration of the electrodes.   𝐽𝐽𝑝𝑝(𝑟𝑟) represents the primary current density 

produced by a source in location r. As long as the approximated leadfields and 

primary current densities are known, a unique solution for the electric potential can be 

obtained. Hence, the forward problem is considered to be well posed. 

3.2.1 Quasi-static Approximation of Maxwell’s Equations 

Since the useful frequency spectrum for EEG signal is found to be below 1 

KHz, quasi-static approximation can be applied to Maxwell equations by eliminating 

the terms with time dependency. Therefore, Maxwell equations for electric and 

magnetic fields E and H respectively can be written as: 

 ∇ ×  𝑬𝑬 = 0 (2) 

 ∇ ×  𝑯𝑯 = 𝑱𝑱 (3) 

Where E is the electric field intensity (V/m), H is the magnetic field intensity (H/m) 

and J is the current density (A/m2). 

By taking divergence of both sides of (3) the resulted equation is, 

 ∇. (∇ ×  𝑯𝑯) = ∇. 𝑱𝑱 (4) 

Applying the identity ∇. (∇ ×  𝑭𝑭) = 0 , the left-hand side of (4) will be, 

 ∇. 𝑱𝑱 = 0 (5) 
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The total current density produced by neural activity in the brain is the sum of 

primary current density 𝑱𝑱𝒑𝒑 generated by neural activity and secondary currents 

densities 𝑱𝑱Ω that flow passively in the conductive medium as in (6). 

 𝐉𝐉 = 𝑱𝑱𝒑𝒑 +  𝑱𝑱Ω (6) 

As stated before, the source of brain activity is characterized by the primary current 

density 𝑱𝑱𝒑𝒑. Nevertheless, localization accuracy is improved by modeling the volume 

currents. 

3.2.2 Current Dipole as a Source 

An excitatory postsynaptic potential may be induced when the axon of a 

presynaptic neuron synapse with basal dendrites of a postsynaptic pyramidal neuron. 

The postsynaptic potential can be represented by a current dipole. However, the 

dipole model is valid when assuming that neuronal activity is dominant in a small 

brain area. 

 For a small region of activated cortex, current dipole 𝑸𝑸 at 𝒓𝒓𝑸𝑸 can be 

considered as a concentration of the primary current density 𝑱𝑱𝒑𝒑 to a single point[47]:  

 𝑱𝑱𝒑𝒑(𝒓𝒓) = 𝑸𝑸 𝛿𝛿(𝒓𝒓 − 𝒓𝒓𝑸𝑸) (7) 

where 𝛿𝛿(𝑟𝑟) is the Dirac delta function. As mentioned, the forward problem involves 

calculating scalp potential (V) from a given current distribution within the brain. 

Therefore, 𝑬𝑬 can be represented to satisfy equation (2) as follows 

 𝑬𝑬 = −∇ 𝑉𝑉 (8) 

Based on the constitutive relations between the electric field quantities,  

 𝑫𝑫 = 𝜖𝜖𝑬𝑬 (9) 

 𝑱𝑱 = 𝜎𝜎𝑬𝑬 (10) 

where the 𝜖𝜖 and 𝜎𝜎 are the permittivity (F/m) and conductivity (S/m) of the medium 

respectively. The volume secondary current density is represented as, 

 𝑱𝑱Ω  = 𝜎𝜎𝑬𝑬 (11) 

 𝑱𝑱Ω  = −𝜎𝜎∇ 𝑉𝑉 (12) 

From (6) we obtain, 

 𝐉𝐉 = 𝑱𝑱𝒑𝒑 − 𝜎𝜎∇ 𝑉𝑉 (13) 
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As we before stated in equation (5) and by applying divergence on both sides of 

equation (13) 

 ∇. 𝑱𝑱𝒑𝒑 = ∇. (𝜎𝜎∇ 𝑉𝑉) (14) 

Equation (14) can be solved for V either numerically implementation of finite element 

techniques, or analytically by using appropriate boundary conditions [47]. 

3.2.3 Head Models 

To solve the inverse problem, an accurate head model is required. It basically 

determines the way sources are located in the brain. It includes the geometrical and 

electromagnetic properties of the volume and can be mathematically expressed in the 

leadfield matrix. The leadfield matrix (or Gain matrix) resulted from solving the 

forward problem represents the linear relation between the sources and measurements. 

Single Sphere Head Model. This head model is the simplest and often used head 

model [48]. It assumes uniform conductivity and its analytical solution is easy and 

fast to calculate. However, in reality, the head is inhomogeneous and the uniform 

conductivity assumption does not suffice. Also, source localization accuracy is found 

to be limited and insufficient when considering certain regions of the brain like the 

frontal and frontal-temporal regions [49]. 

Multiple Spheres Head Model. Multiple spheres model consists of three 

layers with different conductivities. Each layer is assumed to be concentric, 

homogenous spherical shell to represent head compartments (scalp, skull, and brain). 

This Model is used in the most clinical and research applications related to EEG 

source localization. 

Realistic Head Model. Anisotropic, inhomogeneous and non-spherical heads 

can be obtained using realistic volume conductor model. The lead-field matrix is 

accurate and results in high localization accuracy. The most common modeling 

techniques used for realistic head modeling are Boundary Element Method (BEM) 

and Finite Element Method (FEM). 

BEM assumes homogeneity and isotropy within each region of the head. 

Whereas FEM takes into account the individual anisotropic conductivities for each 

element. FEM head model is shown in Figure  3-1. 
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Figure  3-1 Realistic head model using FEM. 

3.3 Inverse Problem 

The inverse problem of EEG involves locating the sources of the primary current 

densities  𝐽𝐽𝑝𝑝(𝑟𝑟) and it requires a set of measured potentials and approximated lead-

field obtained by solving the forward problems. Hence, modeling the forward 

problem with priori assumptions of the source and head structure is required to solve 

the inverse problem. These assumptions can substantially influence the outcome of 

source localization using ESI, and they are considered important in determining 

whether the solutions can only explain the data or it can provide neurophysiological 

information regarding the source [46]. Various signal processing based techniques are 

used to solve this problem and estimate source locations and amplitudes. 

3.4 Brain Source Models 

As mentioned earlier, neuronal activity source is modeled as a dipole. Three 

approaches are stated in the literature and will be discussed along with the common 

source localization algorithms in the following subsections. 

3.4.1 Single Source Dipole Model 

The single equivalent current dipole is the most commonly used source model 

in the clinical setting. It is based on the assumption that at any given time instant, the 

detected potential represents activity from a single, infinitely small cortex area [46]. 

Hence, the dipole model will never reflect biological fact and reality will be 

approximated in a limited number of conditions, such as epileptic spikes or the early 

component of the auditory evoked potential [46]. 

The most common algorithm for this model is the Least Squares source 

estimation (LS) where six parameters are assigned to each dipole: one parameter for 

the magnitude, three location parameters (x, y, z) and two orientation parameters 

(azimuth and elevation). This algorithm works as follows: First, the number of dipoles 

and their initial locations are selected. Second, the electric potential is computed for 
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the provided dipole parameters, i.e. solving the forward problem. After that, the 

computed electric potential is compared with the actual electric potential and the 

squared error is calculated. The measure of fit in the LS is defined by Frobenius norm 

as in equation (15) [2]. An iterative non-linear search algorithm is applied to minimize 

the squared error over all dipole parameters until some minimization criteria are met. 

 𝐹𝐹𝐿𝐿𝐿𝐿({𝑟𝑟, Θ𝑖𝑖}, 𝑆𝑆) = ‖𝑽𝑽 − 𝑲𝑲({𝒓𝒓, 𝚯𝚯𝑖𝑖})𝑱𝑱𝑇𝑇‖2 (15) 

where 𝑽𝑽 is the measured potential and 𝑲𝑲({𝒓𝒓,𝚯𝚯𝑖𝑖}) is the gain matrix (leadfield 

matrix) that relates a set of dipoles to a set of locations, where 𝒓𝒓 is the three location 

parameters and 𝚯𝚯𝑖𝑖 is the two orientation parameters. 𝑱𝑱 is the generalized matrix of 

sources amplitudes. 

There are three mostly used dipole models: the fixed dipole model, the moving 

dipole model, and the rotating dipole model. These dipole models are used with most 

EEG clinical and experimental data [2].  The Least-square approach (LS) can be 

applied to these models. In the fixed dipole model, the dipole magnitude is estimated 

assuming constant location and orientation within a given interval. On the other hand, 

the moving dipole model results when the dipole location is not fixed, hence, LS 

model is applied to each time interval for varying dipole parameters. In the rotating 

dipole model, orientations and magnitudes of the dipole are allowed to vary, but, the 

location of the dipole is constrained to one point. 

The least-square model has a number of drawbacks. The main one is that the 

number of dipole sources must be determined by the user before applying the 

algorithm. Moreover, as the number of dipole sources increases, the least-square cost 

function becomes nonconvex which results in local minima. 

3.4.2 Multiple Sources Dipole Model 

In this model, it is assumed that the recorded voltage field using EEG can 

represent activities from more than one source. Hence, a more advanced dipole 

model, such as the spatiotemporal multiple source model, is applied. In this technique, 

the entire block of data is used to calculate the least square fit under the assumption of 

fixed locations and orientations of numerous dipoles over a given time interval.  The 

multiple dipole model goal is to identify the lowest number of dipoles that can explain 

the measured scalp potential over time. Moreover, the correct estimation of the 

number of sources is a critical issue for multiple dipole models.  
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Many techniques have been developed and are able to scan brain sources 

without a priori knowledge of the optimal number of dipoles over a given data period. 

Multiple signal classification (MUSIC) is a technique for localizing multiple sources. 

It can provide computational advantages over LS methods. In addition, it allows 

complete searches over space parameter of each source that results in avoiding 

problems with local minima experienced in searching for multiple sources over a 

nonconvex surface [50]. In this technique, data covariance matrix is decomposed into 

signal and noise subspace using Eigen decomposition. It is performed under the 

assumption that sources are located at a position where the dipole forward solution is 

orthogonal to noise subspace [2]. The received data vector is a linear combination of 

the leadfield matrix through, 

 𝒚𝒚(n) = 𝑺𝑺𝑺𝑺(𝑛𝑛) + 𝒗𝒗(𝑛𝑛) (16) 

Where 𝑺𝑺 is a normalized leadfield matrix, 𝒙𝒙(𝑛𝑛) is a source vector and 𝒗𝒗(𝑛𝑛) is a zero-

mean additive White Gaussian noise vector. The spatial covariance matrix is 

computed by assuming uncorrelation between the signal vector 𝒙𝒙(𝑛𝑛) and the noise 

vector  𝒗𝒗(𝑛𝑛). The spatial covariance of the observation is represented as, 

 𝑹𝑹 = 𝐸𝐸 [ 𝒚𝒚(𝑛𝑛)𝒚𝒚(𝑛𝑛)𝐻𝐻] = 𝐸𝐸 [ �𝑺𝑺𝑺𝑺(𝑛𝑛) + 𝒗𝒗(𝑛𝑛)� �𝑺𝑺𝑺𝑺(𝑛𝑛) + 𝒗𝒗(𝑛𝑛)�
𝐻𝐻

 ] (17) 

 𝑹𝑹 = 𝑺𝑺 𝐸𝐸[𝒙𝒙(𝑛𝑛)𝒙𝒙(𝑛𝑛)𝑯𝑯]𝑺𝑺𝑯𝑯 + 𝐸𝐸[𝒗𝒗(𝑛𝑛)𝒗𝒗(𝑛𝑛)𝑯𝑯] (18) 

 𝑹𝑹 = 𝑺𝑺 𝑹𝑹𝒙𝒙𝒙𝒙𝑺𝑺𝑯𝑯 + 𝜎𝜎2𝑰𝑰 (19) 

where E is the statistical expectation, 𝑹𝑹𝒙𝒙𝒙𝒙 and 𝜎𝜎2𝑰𝑰 are the source and noise correlation 

matrices, respectively. Furthermore, the eigen decomposition of R is represented as, 

 𝑹𝑹 = 𝑬𝑬𝑺𝑺 𝚲𝚲𝑺𝑺𝑬𝑬𝑺𝑺𝑯𝑯 + 𝜎𝜎2𝑬𝑬𝑵𝑵 𝑬𝑬𝑵𝑵𝑯𝑯 (20) 

where 𝑬𝑬𝑺𝑺 and 𝑬𝑬𝑵𝑵 denote the signal and noise subspace and 𝚲𝚲𝑺𝑺 represents the diagonal 

matrix of the signal that contains eigenvalues that corresponds to the signal subspace. 

MUSIC algorithm searches for the deepest local minima of, 

 η𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝒔𝒔𝒌𝒌𝑻𝑻𝑬𝑬�𝑵𝑵𝑬𝑬�𝑵𝑵
𝑻𝑻𝒔𝒔𝒌𝒌 (21) 

Each column of the leadfield matrix is the steering vector 𝒔𝒔𝒌𝒌 of the signal at source K. 

𝑬𝑬�𝑵𝑵 is the estimation of noise eigen vectors since in reality the eigenvectors are not 

known a-priori and must be estimated from the received signal. 

The partitioning of signal and noise subspace is much easier to perform on 

averaged data, and it may be difficult to implement on online data. In addition, 

MUSIC assumes white noise and discrete, uncorrelated signals that are less in number 

compared to the sensors [51]. 
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In practice, two problems usually arise. First, it might be difficult to 

differentiate “true” from “false” peaks in the MUSIC metric due to errors in 

estimating the signal subspace. Second, as the dimension of source subspace 

increases, it becomes difficult to find several local maxima automatically in MUSIC 

metric [50]. 

Recent modifications of this methods are performed such as Recursively 

applied and projected (RAP)-MUSIC to overcome these problems by using a 

recursive procedure in which each source is located projected out before repeating the 

scanning procedure [51]. 

Beamforming is another developed technique, in which data recorded from a 

sensor array is passed through a spatial filter, which passes signals originated from the 

location of interest and ideally rejects signals from elsewhere. In brain source 

localization, the location of interest is scanned throughout the brain and all possible 

source locations are monitored. Ideally, the spatial filter will pass signals of small 

distance δ of the location of interest 𝑟𝑟𝑞𝑞while nulling other signals as [2], 

 
𝐖𝐖𝑇𝑇 𝑲𝑲(𝒓𝒓) =  �

𝑰𝑰 �𝒓𝒓 − 𝒓𝒓𝑞𝑞� ≤  𝛿𝛿 ; 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝟎𝟎 �𝒓𝒓 − 𝒓𝒓𝑞𝑞� >  𝛿𝛿 ; 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

 (22) 

where 𝑾𝑾 is the spatial filter matrix and 𝑲𝑲(𝑟𝑟) = [𝒌𝒌(𝒓𝒓, 𝚯𝚯1), 𝒌𝒌(𝒓𝒓, 𝚯𝚯2), 𝒌𝒌(𝒓𝒓,𝚯𝚯3)] is the 

lead field matrix for three orthogonal dipoles at location r. 

This spatial filtering technique is widely used not only to estimate the location 

of neuron sources but also to estimate its dynamics without a prior knowledge of the 

number of active sources [52]. There are two noteworthy drawbacks of beamforming. 

To start with, it requires an accurate forward solution, which is essential when applied 

to EEG recordings because of conductivity and anisotropy of the head tissues. 

Second, the performance of beamforming degrades severely if the sources have the 

same dynamics e.g. their time-courses of activity are highly correlated within a certain 

period of time [52]. It is not possible to place a strong stopband filter over the entire 

brain region because of insufficient degrees of freedom. Hence, a fixed spatial filter 

for this application is not useful and an adaptive filter is instead used. 

 Linearly constrained minimum variance (LCMV) beamforming is an 

implemented adaptive technique that uses a limited number of degrees of freedom to 

nullify unwanted interfering signals by placing nulls at their positions whereas the 

desired location is represented with a unity gain constraint [2].  
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 min 𝑡𝑡𝑡𝑡 �𝐶𝐶𝑦𝑦�  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡 𝐖𝐖𝑇𝑇 𝑲𝑲�𝒓𝒓𝒒𝒒� = 𝑰𝑰 (23) 

Where y is the computed output of the beamformer formed as the product of the 

spatial filter 𝑾𝑾𝑻𝑻 with the signal v(t) at the array at time t. 𝑪𝑪𝒚𝒚 = 𝐸𝐸[𝒚𝒚𝒚𝒚𝑻𝑻] =  𝑾𝑾𝑻𝑻𝑪𝑪𝒗𝒗𝑾𝑾 , 

𝑪𝑪𝒗𝒗 = 𝐸𝐸[𝒗𝒗𝒗𝒗𝑻𝑻]. A solution to equation (23) is obtained using the method of Lagrange 

multipliers  

 𝐖𝐖 = [(𝑲𝑲𝑻𝑻�𝑟𝑟𝑞𝑞�𝑪𝑪𝑣𝑣−1𝑲𝑲�𝑟𝑟𝑞𝑞�]−1𝑲𝑲𝑇𝑇𝑪𝑪𝑣𝑣−1 (24) 

However, LCMV has a number of limitations. The most important one in this 

application is the localization of sources with correlated signals. In this case LCMV 

will results in partial cancellation of the signal of interest. 

Different approaches have been developed to help in improving source 

reconstruction of correlated sources. One of the methods is to calculate the second 

spatial derivative which is called the surface Laplacian (SL) and allows for increased 

spatial resolution of EEG. 

Authors of [52] incorporate the Laplacian forward solution in the EEG LCMV 

beamforming. In [52] proposed method, the surface Laplacian acts as a filter that 

allows spatial separation of sources which overlap in raw scalp EEG recordings. 

Lately, spatiotemporal beamforming methods have been proposed for 

localization of instantaneous or evoked brain responses. In [53] an event-related 

beamformer (ERB) algorithm was applied to localize source power throughout the 

brain for individual interictal spike data. They described the use of ERB as a new tool 

for source localization of interictal discharges in patients with intractable neocortical 

epilepsy. 

3.4.3 Distributed Sources Dipole Model 

Another commonly used approach to solve the inverse problem is the 

distributed source model. It is assumed that multiple sources can be simultaneously 

active at any given time and across many locations. It is worth mentioning that this 

method does not require an a priori assumption on the number of dipoles. Cerebral 

activity is reconstructed at each point in the solution space. Each point represents a 

mini-dipole, these dipoles have fixed positions but their orientations and strength 

vary. However, an infinite number of dipole combinations can lead to the generation 

of a similar scalp potential map. Therefore, distributed models require further 

assumption in order to identify the optimal or most likely sources [46]. 
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One of the most recently developed methods to localize multiple distributed 

cortical sources is low resolution electromagnetic tomography (LORETA). It is based 

on the assumption that neighboring neural populations are likely to undergo 

synchronous depolarization during an evoked response or a discharge than the non-

neighboring neurons.  

The generalized problem of LORETA is expressed mathematically as in [54], 

 min𝐹𝐹𝑤𝑤            𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝐹𝐹𝑤𝑤 = ‖𝑽𝑽 − 𝑲𝑲𝑲𝑲‖2 +  𝛼𝛼𝑱𝑱𝑇𝑇 𝑾𝑾𝑾𝑾 (25) 

the Tikhonov parameter  𝛼𝛼 > 0 is the control parameter and 𝑾𝑾 is the weight matrix 

that is used to implement the spatial Laplacian operator, the solution to equation (25) 

is, 

 Ĵ = 𝑻𝑻𝑊𝑊𝑽𝑽 (26) 

where 𝑻𝑻𝑊𝑊 =  𝑾𝑾−1𝑲𝑲𝑇𝑇(𝑲𝑲𝑲𝑲−1 + 𝛼𝛼𝑯𝑯)+. 𝑯𝑯 is average reference operator and defined 

as 

𝑯𝑯 = 𝑲𝑲𝑲𝑲 where 𝑻𝑻 is the generalized inverse of the leadfield matrix 𝑲𝑲. 

 The generated solution is blurred since the neighborhood sources are assumed to 

have similar strength. LORETA provides smooth and better localization for deep 

sources with less localization error. However, spatial resolution is relatively low. 

An advanced version of LORETA is the standardized LORETA (sLORETA) in 

which current distribution throughout brain volume is computed. Also, the biological 

variance in the actual signal and the variance of EEG measurement noise are taken 

into account [48].  

sLORETA can be expressed mathematically as in [55], 

 min𝐹𝐹𝐽𝐽            𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝐹𝐹𝐽𝐽 = ‖𝑽𝑽 − 𝑲𝑲𝑲𝑲‖2 +  𝛼𝛼‖𝑱𝑱‖2 (27) 

The source estimation is 

 Ĵ = 𝑻𝑻𝐽𝐽𝑽𝑽 (28) 

where 𝑻𝑻𝐽𝐽 =  𝑲𝑲𝑇𝑇(𝑲𝑲𝑲𝑲𝑇𝑇 + 𝛼𝛼𝑰𝑰)−1. Although sLORETA algorithm can correctly localize 

sources, the produced image is also blurred. 

Further development is made to minimize localization error by choosing weight 

matrix to give more importance to deep sources. Exact LORETA (eLORETA) 

provides the exact localization with zero error in presence of measurement and 

biological noise. But, still it suffers from low spatial resolution just as LORETA and 

sLORETA [48]. 
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Another high-resolution estimation method is the Source Affine Image 

Reconstruction (SAFFIRE) algorithm which is the neuroimaging application of the 

adaptive Re-iterative super-resolution (RISR). RISR is based on the recursive 

implementation of the MMSE solution. It is also based on assuming that the collected 

measurement can be modeled as a superposition of independent contribution from 

arbitrarily distributed sources. The received EEG signal measurements as in equation 

(16) 

 𝒚𝒚(n) = 𝑺𝑺𝑺𝑺(𝑛𝑛) + 𝒗𝒗(𝑛𝑛) (29) 

Basically, SAFFIRE searches for an adaptive filter bank that minimizes the following 

cost function, 

 𝑓𝑓 =  E {‖𝒙𝒙(𝑛𝑛) − 𝒙𝒙�(𝑛𝑛)‖2} =  E {‖𝒙𝒙(𝑛𝑛) −𝑾𝑾𝑻𝑻(𝑛𝑛)𝒚𝒚(𝑛𝑛)‖2} (30) 

where 𝒙𝒙�(𝑛𝑛) is the MMSE estimate of 𝒙𝒙(𝑛𝑛). The minimization of the cost function 𝑓𝑓 is 

found by taking its derivative with respect to W and equating it to zero, 

 E {2𝒚𝒚(𝑛𝑛) [𝒙𝒙(𝑛𝑛) −𝑾𝑾𝑻𝑻(𝑛𝑛)𝒚𝒚(𝑛𝑛)]} = 0 (31) 

therefore, 

 𝑾𝑾(n) = (𝐸𝐸{𝒚𝒚(𝑛𝑛)𝒚𝒚𝑻𝑻(𝑛𝑛)})−1𝐸𝐸{𝒚𝒚(𝑛𝑛)𝒙𝒙𝑻𝑻(𝑛𝑛)} (32) 

Substituting equation (32) in (29) with assuming that source amplitudes and noise are 

uncorrelated, the filter bank is found to be [56], 

 𝑾𝑾(n) = (𝑺𝑺𝐸𝐸{𝒙𝒙(𝑛𝑛)𝒙𝒙𝑻𝑻(𝑛𝑛)}𝑺𝑺𝑻𝑻 +  𝐸𝐸{𝒗𝒗(𝑛𝑛)𝒗𝒗𝑻𝑻(𝑛𝑛)})−1𝑺𝑺𝐸𝐸{𝒙𝒙(𝑛𝑛)𝒙𝒙𝑻𝑻(𝑛𝑛)} (33) 

 𝑾𝑾(n) = (𝑺𝑺𝑺𝑺𝑺𝑺𝑻𝑻 +  𝑹𝑹𝒗𝒗)−1𝑺𝑺𝑺𝑺 (34) 

where P is the spatial power distribution and 𝑹𝑹𝒗𝒗 is the noise correlation matrix. 

𝑹𝑹𝒗𝒗 can be determined from the time samples of a baseline, however P is not known a-

priori and must be estimated using matched filter bank initializations [56]: 

 𝑿𝑿�𝒐𝒐 = 𝑺𝑺𝑻𝑻𝒀𝒀 (35) 

 𝑷𝑷�𝒐𝒐 = 𝐸𝐸 �𝑿𝑿�𝒐𝒐𝑿𝑿�𝒐𝒐
𝑻𝑻�⨀𝑰𝑰𝐾𝐾×𝐾𝐾 (36) 

where, ⨀ is the Hadamard product, and 𝑰𝑰 corresponds to the identity matrix which 

makes sources temporally uncorrelated. 

Non-coherent Integration. To solve temporal correlation issue, the 

algorithm operates on each time sample individually or the power estimates are 

combined through non-coherent integration. The iterative steps of the SAFFIRE 

algorithm is as follows: 

In order to determine N source amplitudes, the aggregate filter bank is in 

equation (34) 
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 𝑾𝑾���(n) = (𝑺𝑺𝑷𝑷�𝑺𝑺𝑻𝑻 + 𝑹𝑹𝒗𝒗)−1𝑺𝑺𝑷𝑷� (37) 

the initialization is done as in equations (35) and (36). Then, the estimations of source 

amplitudes and average spatial power distribution for N time samples are,  

 𝑿𝑿� = 𝑾𝑾���𝑻𝑻𝒀𝒀 (38) 

 
𝑷𝑷� =

1
𝑁𝑁
�𝑿𝑿�(𝑛𝑛 + 𝜏𝜏)𝑿𝑿�(𝑛𝑛 + 𝜏𝜏)𝑻𝑻
𝑁𝑁−1

𝜏𝜏=0

⨀𝑰𝑰𝐾𝐾×𝐾𝐾 (39) 

Equations (37), (38) and (39) encompass the SAFFIRE algorithm iterative steps 

which converge in 15 iterations. The number of sources, their amplitudes and 

locations are estimated via the peaks of 𝑿𝑿�. The estimate of the amplitude distribution 

can be obtained from the diagonal elements of the matrix √𝑷𝑷� . 

The main advantages of SAFFIRE are that it can operate on very low sample 

support and can determine the number of sources automatically. Furthermore, it does 

not require eigen decomposition and it offers good robustness temporal correlation. 

To summarize, several studies have shown that EEG source imaging has made an 

extremely good progress to provide neurophysiological interpretation of scalp 

recordings. The first step in estimating the sources underlying electric fields at the 

scalp is the analysis of these electric fields where both temporal and spatial dimension 

of brain activity are considered simultaneously. 

In general, EEG is a noninvasive technique with high temporal resolution in 

comparison with other functional techniques such as PET and fMRI along with low 

hardware cost [57]. Moreover, multichannel EEG systems have become affordable for 

all clinical and research laboratories. Notably, EEG is a direct method to measures 

brain’s electrical activity unlike other methods which are indirect markers for activity 

in the brain and it can measure neuronal activity in real time when investigating 

temporal properties of the brain. 

On the other hand, EEG spatial resolution is relatively poor since the 

measurements taken by each electrode are in fact the sum of electric field produced by 

a large number of neurons, which yield in detecting strong electrical activity by 

neighboring electrodes as well. As a result, the exact source of activity using EEG is 

difficult to determine.  
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4 Chapter 4. Experimental Data 

4.1 Data Overview 

A dataset [58] containing EEG data was used to demonstrate source 

reconstruction of the N170 ERP of face perception.  

ERP relates recorded signal with stimulus events, which is done by focusing on 

the change in the electrophysiological signal immediately after the stimulus event 

[59]. ERP waveforms are described in terms of positive and negative peaks (to be 

more specific, the most positive and the most negative deflections in the wave). The 

naming for ERP components can be identified by the sequence in which the peak 

occurs with the polarity being indicated. For example, N1 and P2 indicate the first 

negative peak and the second positive peak in the waveform respectively. Moreover, 

labeling can also identify the positive and negative peaks by their latency.  On the 

other hand, a functional description of ERP peaks refers to their physiological 

interpretation, which, in general, identify specific cognitive processes reflected by 

each peak. In addition to the latency measurements and functional interpretation, ERP 

descriptors include topographical scalp distributions or identify electrodes where 

maximum amplitudes are observed.  

N170 refers to the negative peak that occurs 170 milliseconds following 

stimulus onset, and it is associated with the visual processing of human faces. The 

topographic distribution of the N170 component for both familiar and unfamiliar 

faces is the largest over the occipitotemporal regions [60-63]. 

The demonstration below involves localizing the N170 using the distributed 

source method, LORETA. The EEG data were acquired on a 128 channel, sampled at 

2048 Hz in addition to two channels, to measure HEOG and VEOG. The 128 

channels are divided into four groups and every 32 channels measure electric 

potentials of a specific area in the scalp. These channels are named A (Back), B 

(Right), C (Front), and D (Left). 

To proceed with the data analysis and ERP extraction, Advanced Source 

Analysis (ASA) lab software was used to analyze EEG signals and reconstruct 

sources using different source localization functions. ASA-lab software is a complete 

system used to acquire and analyze EEG/MEG signals. 

40 
  



4.2 Data Pre-processing 

As a first step towards analyzing, EEG data was loaded to ASA-Lab along with 

electrode positions file that contains the coordinates of each electrode sensor position. 

A standard head model and MRI images were also used in the analysis. Next, Artifact 

activity was determined manually and corrected by spatial filtering to separate brain 

signals from artifacts based on their topography and remove it without altering brain 

signals. Principle Component Analysis (PCA) method was used to determine 

topographies of the artifact signals and the artifact-free brain signals. PCA is a 

statistical procedure that converts a set of observations with correlated variables into a 

set of linearly orthogonal variables called principle components. EEG epoch is 

decomposed into components that model either brain or artifact activity where each 

component consists of a waveform and a topography vector. The waveform describes 

the time course of the modeled activity whereas the vector describes how waveform 

contributes to each recorded signal. From a large artifact-free subset of the data 

segment to be corrected, brain signal topographies are determined by a relevant 

number of principle components topographies. The subset is obtained by 

automatically excluding sample vectors from the original data segment if they exceed 

a certain amplitude in one or more channels or exceed a specific correlation with the 

vector space spanned by the predefined artifact topographies. In Amplitude criterion, 

artifacts with amplitudes above the normal amplitude range of EEG are identified. 

The correlation criterion can detect sample vectors of artifact that have not been 

identified by the amplitude criterion in which the similarity between the measured 

topography and the predefined tomography is calculated, and a correlation threshold 

is set.  When decomposing by PCA, only the first p of PCA topographies sorted from 

highest to lowest explained variance are used as the brain activity estimation, where p 

is a particular number that has to be determined empirically [64].  

Artifact correction was performed as follows. First, a number of segments of the 

recorded EEG was selected and classified visually as artifact activity as in Figure  4-1. 

These segments were used to specify artifact topography. Then, the mean of selected 

data interval was used to achieve the separation. At the end, artifact components were 

removed as shown in Figure  4-2. 
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Figure  4-1 Highlighted window specifies artifacts events. 

 

Figure  4-2 EEG data after artifact correction. 

After the artifact correction, the EEG signal was passed through high pass and 

low pass filters in series with cut-off frequencies 0.5 Hz and 30 Hz respectively. The 

filtered EEG signal is shown in Figure  4-3. 

 
Figure  4-3 EEG signal after passing through lowpass and high-pass filters. 
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The paradigm involved the presentation of 172 faces and 172 scrambled faces; 

hence, these events were labeled to represent stimulus conditions using the 

conditioning method in ASA-lab. The final step in processing the data was averaging 

EEG sections, which are defined by events or conditioning markers. 

 
Figure  4-4 Voltage map of the averaged events at time 117 milliseconds. 

 

Figure  4-5 EEG data view of averaged events. 

Figure  4-5 represents the averaged events across each channel which are clear 

ERP signals. For example, if we displayed the extracted ERP signal at channel D12 as 

in Figure  4-6, it is obvious that the negative peak is at 160 milliseconds. 

4.3 Forward Problem Solution 

As mentioned previously in this report, an appropriate forward solution is 

required to solve the inverse problem accurately. Basically, a volume head conductor 

model is assumed to represent the sources’ activity in the brain. 

The forward problem was obtained using ASA-lab software. An individual MRI 

image was used and anatomical landmarks were used to define a head-based 
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coordinate frame or other locations in the MRI. Nasion, left ear, and right ear markers 

were required to define head-based coordinate frame for the MRI. After that, the MRI 

image was split into head compartments (scalp, skull, brain) as in Figure  4-7.  

 

 
Figure  4-6 ERP at channel A28. 

 

Figure  4-7 MRI segmentation of scalp, skull and brain. 

The next step after the segmentation of head compartments is to generate a 

realistic head model. As mentioned before, the realistic head model takes into account 

the different conductivities of the head compartments. The technique used for head 

modeling is Boundary Element Method (BEM). The lead-field matrix was computed 

at the end of head model generation procedure. 
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Figure  4-8 Head model using BEM. 

4.4 Inverse Problem Solution 

LORETA source localization was used to reconstruct sources of the N170 EEG 

signal for a single subject. 

 

Figure  4-9 Visualization of Source localization results. 

Sources are illustrated as arrows with different lengths and orientations to 

represent dipoles. The dipole is activated and displayed as a source by comparing the 

activation magnitude of each dipole with the magnitude exhibited by its 16 nearest 

neighbors. When none of these neighbors has a magnitude higher than that of the 

dipole, then this dipole is activated. Figure  4-9 represent sources reconstructed using 

LORETA algorithm.  
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4.5 Discussion 

As shown in Figure  4-9, the most dominant activated dipoles were located in the 

frontal area and they all correspond to the event of displaying face. As known, the 

frontal region is responsible for cognition activity in the brain. However, as 

mentioned earlier, N170 distribution is dominant in the occipitotemporal region. By 

investigating the data set, we found that the two events (face and scrambled) carry the 

exact same data and can be clearly shown in Figure  4-5. This can be due to an error in 

labeling events or a redundancy in data since the total number of both events is 172 as 

in [58] and events’ labels should be updated as the condition label file. Also, the 

electrode locations present in the dataset were based on channel labels and may not be 

precise enough. It may even be completely wrong because sometimes electrodes are 

not placed in the correct locations for the corresponding channel labels. Hence, this 

can be corrected by importing individually measured electrode locations. 
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5 Chapter 5. Source Localization with Exact Knowledge of the Leadfield 
Matrix 

5.1 Simulated Data 

Simulated EEG signals were produced for a 256-electrode system. The 

distributed sources space was obtained from a subject’s structural T1-weighted MRI 

with Freesurfer. It consists of a mesh of the 8000 vertices. Dipoles were located at 

each vertex and oriented radially to the surface [65]. 

The forward problem solution was obtained in a 3-layer realistic head model 

using the Boundary Element Method (BEM) implemented in Brainstorm software. 

The EEG simulations were generated from a single network located in the inferior 

parietal region. A total number of 30 epileptic spikes were simulated in 20 epochs of 

60 s at 512 Hz as shown in Figure  5-1. Furthermore, the simulated data was imported 

to brainstorm for sources analysis. 

To solve the inverse problem, two source localization algorithms, sLORETA 

and SAFFIRE, were applied to the non-averaged spikes EEG signal in order to locate 

the sources with the largest power spectrum peaks.  

 
Figure  5-1 Simulated Epileptic spikes. 
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5.1.1 Source Localization using SAFFIRE 

The SAFFIRE Algorithm was applied on the simulated epileptic spikes with 

the knowledge of the exact Leadfield matrix. Figure  5-2 shows the obtained SAFFIRE 

power spectrum. 

 
Figure  5-2 SAFFIRE power spectrum of sources for simulated epileptic spikes. 

A threshold of 0.25 was applied in order to find the strongest sources amongst 

them. Figure  5-3 displays the strongest sources plotted in red that were located in the 

left parietal region as in [65]. The blue sources displayed in Figure  5-3 are the actual 

(ground truth) region that has been used to simulate epileptic spikes.  

Due to the randomness of the detected sources, localization error will be 

calculated from the mean of the detected sources and the mean of the ground truth. 

Figure  5-4 demonstrates the mean of the true location as a blue dot whereas the mean 

of the detected sources as a red dot. 
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Figure  5-3 The strongest detected active sources along with the true locations of 

sources. 

 

Figure  5-4 The mean of detected active sources along with the mean of true locations 
of sources. 

5.1.2 Source Localization using sLORETA 

sLORETA algorithm was obtained on the time of epileptic peaks. First, the 

most energetic signal was selected to find peaks locations. Figure  5-5 and Figure  5-7 

show the signal with maximum energy recorded by channel CP5 and the epileptic 

peaks respectively. On the other hand, Figure  5-6 shows 256 electrodes in yellow and 

the one in red which recorded the most energetic signal. 
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Figure  5-5 The signal with the maximum energy. 

 

Figure  5-6 256 electrodes system projected on the head model 

Next, BEM was used to generate a realistic head model. The sLORETA 

function was applied to the simulated epileptic data using Brainstorm software. A 

back and a left side views of source mapping on cortex are displayed in Figure  5-8 

and Figure  5-9 respectively at one of the peaks times found from the previous step. 

The ground truth is mapped with a red circle in Figure  5-9. 

As a step towards calculating source localization error, the power spectrum of 

the sources was used to select sources with the highest power. Next, the mean of the 

detected sources was calculated as well as the mean of the ground truth.  
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Figure  5-7 The 30 peaks in the most energetic signal. 

 

Figure  5-8 sLORETA source localization mapping on cortex at peak time 24.029 s. 
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Figure  5-9 Side view of sLORETA mapping at peak time 24.029 s. 

 

Figure  5-10 The strongest detected active sources along with the true locations of 
sources. 

5.1.3 Discussion 

By comparing sLORETA and SAFFIRE results, it was found that both resulted 

sources were consistent and map the same regions, However, when comparing these 

detected regions and the actual true regions, sLORETA resulted in a source 

localization error of 6.25 cm from the mean of the ground truth whereas SAFFIRE 

source localization error was 3.55 cm. Therefore, localization using SAFFIRE was 

more efficient since it is a high-resolution algorithm as mentioned in section  3.4.3. It 

is worth to note that this localization error will decrease to 7.44 mm when 
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thresholding for higher powers and considering the highest power sources resulted 

from SAFFIRE algorithm. 

5.2 Experimental Data 

The real epileptic data in [65] were collected from a patient during pre-surgical 

evaluation for drug-resistant focal epilepsy. The MRI showed a focal cortical 

dysplasia in the mesial aspect of the orbitofrontal region. Dense-256 channels EEG 

was recorded for 1 h, at 1000 Hz. A total of 85 spikes were selected visually after 

artifacts correction. The sources of interictal spikes were spread over the left frontal 

and temporal regions as displayed in Figure  5-11. Source localization using 

sLORETA and SAFFIRE was applied on averaged spikes shown in Figure  5-12. 

Realistic head model was also obtained in brainstorm using Boundary Element 

Method before solving the inverse problem. 

 
Figure  5-11 Left frontal and temporal poles regions on cortex. 

5.2.1 Source Localization using SAFFIRE 

The SAFFIRE Algorithm was applied to the real epilepsy data and the used 

leadfield matrix was assumed to be accurate. The power spectrum of the sources was 

obtained as in Figure  5-13. In order to determine the strongest active sources, a 

threshold of 0.2 was applied. 

The detected sources of scalp EEG recordings were plotted in blue on the cortex 

as in Figure  5-14. The highest activity sources were located the left frontal and 

temporal regions. Also, sources with substantial activation were detected in right 

frontal poles as in [65]. 
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Figure  5-12 Averaged real epileptic data. 

 

Figure  5-13 SAFFIRE power spectrum of real epileptic spikes. 
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Figure  5-14 The strongest active sources resulted from SAFFIRE algorithm for real 

epileptic spikes. 

5.2.2 Source Localization using sLORETA 

In order to perform sLORETA algorithm, Brainstorm software was used. 

Subject’s MRI image and electrodes position file were uploaded to the software. Next, 

BEM was used to generate a 3-layer realistic head model. Noise covariance was 

estimated from a baseline data recorded for 1 s. Sources were estimated for the 

averaged real data described in Figure  5-15 which displays the epileptic spikes that 

were generated from left frontal and temporal regions. The maximum sources’ 

activation were found in frontal and orbitofrontal regions whereas sources with less or 

substantial activation were found in left temporal and right frontal regions as [65]. 

 

Figure  5-15 Front view of sLORETA source localization mapping on cortex for real 
data. 
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5.2.3 Discussion 

As concluded in section  5.1.3, source localization error when using SAFFIRE 

algorithm is much less than using the sLORETA algorithm to solve the inverse 

problem. Hence, detected sources resulted from SAFFIRE algorithm can be thought 

of as the ground truth of multifocal epileptic zone to calculate the performance of 

sLORETA algorithm since the exact location of sources vertices is unknown. 

In order to find the source localization error for the sLORETA algorithm, the 

power spectrum density generated from Figure  5-15 with a threshold of 0.5 was 

compared with SAFFIRE power spectrum in Figure  5-13 to find the sources’ 

locations in brain cortex.  

Due to the randomness of the detected sources, a statistical analysis of the 

mean and variance is obtained to calculate the source localization error when applying 

the sLORETA algorithm. An error of 29.05% was found for detecting left frontal 

sources. On the other hand, 84.9% and 24.98% error for detecting left temporal and 

right frontal sources respectively. 

The normalized power of each source was thresholded by keeping the indices 

with highest strength values. This procedure was used to detect the sources of the 

maximum activity using the two inverse methods.  Different threshold values were 

used to study the effect of this threshold. It was found that higher threshold values 

will increase right frontal and left temporal source localization errors for both 

SAFFIRE and sLORETA inverse methods and both methods will not be able to detect 

right sources.  
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6 Chapter 6. Epilepsy Source Localization   

As mentioned before, EEG is the most important tool in the diagnosis and 

management of epilepsy. However, it must be properly performed and carefully 

interpreted by experienced specialists to provide an accurate assessment. EEG 

recordings have been used to localize epileptogenic regions for pre-surgical 

evaluation and are used to identify specific physiological abnormalities. The presence 

of signal change on interictal and ictal EEG can be good predictors of the 

epileptogenic zone for surgical resections purposes. Therefore, we sought to estimate 

epileptogenic zone using SAFFIRE source localization algorithm to validate 

epileptogenic zones suggested by specialists. 

6.1 Patients and Data Acquisition 

Three medically diagnosed patients with focal epilepsy were studied for 

source localization as approved by Rashid Hospital at Dubai. All EEG recordings 

were carried out using the 10-20 international electrode system. Figure  6-1, Figure  6-2 

and Figure  6-3 display recorded EEG for the three patients respectively with some 

labeled spikes. Neurologists had specified the epileptogenic foci for each patient 

along with other neurological abnormalities after investigating the EEG records. 

 
Figure  6-1 EEG recording of patient 1 with some spikes labelled in green. 
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Figure  6-2 EEG recording of patient 2 with some spikes labelled in green. 

 

Figure  6-3 EEG recording of patient 3 with some spikes labelled in green. 

6.2 Clinical Data Analysis 

Distributed sources dipole was calculated using SAFFIRE algorithm. BEM 

was used to obtain a realistic head model as a step to solve the forward solution. The 

generated head model is composed of three layers that represent the scalp, skull, and 

brain as demonstrated in Figure  6-4, it was obtained using a standard MRI image due 

to the unavailability of MRI images of each patient. 
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Figure  6-4 realistic 3-layer head model. 

Figure  6-5 shows the standard electrode cap that has been used in the EEG analysis 

since the actual electrode positions were not available 

 

Figure  6-5 Projected electrodes on head. 

After solving the inverse problem, the sources that correspond to the 

maximum signals were projected to the cortical surface to determine the epileptogenic 

foci. Figure  6-6 shows the main four lobes of the human brain cortex. 
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Figure  6-6 Cerebral cortex lobes in the brain. 
6.3 Results  

It was necessary to determine if the inverse solution of SAFFIRE algorithm 

for locating epileptogenic foci is similar to the medical diagnoses done by 

neurologists for each patient. Therefore, the SAFFIRE algorithm was applied to the 

EEG recording of each patient after generating the head model and the lead-field 

matrix (solving the forward problem). For patient 1, the clinical interpretation 

suggested a tendency for focal epilepsy with the left frontotemporal potential 

epileptogenic focus. SAFFIRE normalized power generated by each source is shown 

in Figure  6-7. A Threshold of 0.2 was applied to map the sources with the highest 

power. 

The reconstructed maximum sources were mapped to the cortical as in 

Figure  6-8 where the detected sources were in a bilateral front region. As a side note, 

the detected sources with maximum power were active in the left frontal region as 

suggested by the neurologist. 

Patient 2 EEG recordings showed focal bilateral fronto-centro-temporal 

epileptiform discharges. The same procedure was performed to the EEG data and the 

resulted normalized power generated by each source after applying SAFFIRE 

algorithm on the recorded EEG is shown in Figure  6-9. In this case, a Threshold of 

0.1 was used to map the sources with the highest power which were scattered in the 

fronto-central temporal regions as reported in the medical report of this patient. 
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Figure  6-8 Epilepsy source localization for patient 1. 

However, for a higher threshold, the sources were mapped to bilateral 

frontotemporal regions as in Figure  6-10. It is worth to mention that there were active 

sources corresponds to visual activity as reported by neurologists, and hence it was 

expected to have sources mapped in the occipital region since it is the center of visual 

processing. 

For patient 3, the clinical interpretation of EEG record shows focal bilateral 

frontotemporal epileptiform discharges. Figure  6-11 illustrates SAFFIRE normalized 

power generated by each source. A Threshold of 0.4 was used to map the sources with 

the highest power. 

Figure  6-7 SAFFIRE power spectrum of EEG 
recording- patient 1. 
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Figure  6-9 SAFFIRE power spectrum of EEG recording - patient 2. 

 
Figure  6-10 Epilepsy source localization for patient 2. 

The detected sources were mapped to brain cortex and as demonstrated by 

Figure  6-12, they were scattered in the bilateral frontal lobes with one active source in 

the occipital region that could be due to a visual activity. 

The threshold is then increased to 0.6 and the maximum power sources were 

active in the frontal region only as illustrated in Figure  6-13. 
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Figure  6-11 SAFFIRE power spectrum of EEG recording - patient 3. 

 
Figure  6-12 Epilepsy source localization for patient 3 – power threshold 0.4. 

 

Figure  6-13 Epilepsy source localization for patient 3 – power threshold 0.6. 
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6.4 Discussion 

Our results validate that EEG recordings have an important role in localizing 

epileptogenic regions. It also revealed that it is possible to determine the location of 

epilepsy source using the SAFFIRE estimation algorithm. The localized epileptogenic 

foci were consistent to the suggested locations by neurologists and may even be more 

precise. However, these localized regions can be more accurate if the provided EEG 

was perfectly tailored to the need of localization. In other words, physicians should 

have the knowledge about EEG features that are only related to epileptic seizures 

during the examination. For example, epilepsy spikes should be marked by physicians 

during examination and reported with all related information. These events should be 

used in the analysis and pre-processing of EEG records so that the results do not 

misinterpret with other abnormalities than epilepsy. Providing that the EEG is 

technically correct and made for the purpose of localization, the most important factor 

that affects localization results is the obtained head model. Although a realistic BEM 

head model was used, localization would be more accurate if an exact head model that 

is generated from patient’s MRI image was used. Moreover, the exact electrode 

locations for each patient may be a factor that helps in increasing localization 

accuracy.  

In conclusion, it was shown that SAFFIRE estimation algorithm has 

succeeded to localized epileptogenic regions using EEG recordings and gave 

reasonable accurate results that were consistent with the medical records. A further 

improvement in source localization can be done by providing the above mentioned 

missing data and better analysis of EEG recordings.  

64 
  



7 Chapter 7. Sensors Dimensionality Reduction Effect on Epileptic Source 

Localization Performance 

As mentioned in chapter 3, The use of EEG source localization can aid in 

presurgical evaluation in epilepsy patients. Many researches have conducted 

experiments to study the efficiency of using EEG for epilepsy source analysis and it 

has indicated the capability of localizing epileptogenic regions with acceptable 

precision using EEG. 

 Accurate forward and inverse solutions are considered to be successful steps 

toward better performance and reduced localization error. However, one major 

concern is determining the minimum number of electrodes to prevent poor 

performance. This issue has been studied in previous researches as [66] that 

concluded an improvement in source localization as the number of electrodes 

increased. However, there is still a need to relate clearly the localization error and the 

number of EEG electrodes and determine the number of electrodes required for 

accurate localization [66]. 

 In this chapter, the localization error is inspected when the number of 

electrodes is reduced from 256 electrodes down to 32 electrodes. The localization 

error is calculated based on the statistical mean of the true location of sources and the 

mean of detected localized sources using different electrodes number. 

7.1 Data Analysis 

The simulated epilepsy data used in section  5.1 was also used in this 

performance study. Starting from 256 EEG recording, the 128 subset electrodes were 

selected by comparing electrodes labels and ANT Neuro EEG cap naming scheme. 

The scalp potential recordings for the selected electrodes were used. SAFFIRE 

method was used to calculate the inverse solution of the distributed dipole model 

using an updated normalized leadfield matrix by selecting only the steering vectors 

that correspond to the selected electrodes. In order to calculate the source localization 

error, the distance between the mean of the true location of sources and the mean of 

the reconstructed sources. 

The same procedure was repeated to reduce sensor dimensionality from 128 

down to 64, and 32 electrodes. 

65 
  



7.2 Results 

Since the SAFFIRE algorithm was performed for each dataset individually, it 

was necessary to consider all sources of significant power and then average the 

location of the detected sources. 

Starting with applying SAFFIRE on the selected 128 EEG channels, sources 

with power higher than 0.25 of the maximum power were considered as detected 

sources. The mean of the detected sources and the mean of the ground truth were 

plotted on cortex as in Figure  7-2 and used to calculate source localization error. 

 
Figure  7-1 SAFFIRE power spectrum of 128 channels. 

Next, 64 EEG channels were selected from the 128 channels. The potential 

recorded by these channels were applied on SAFFIRE with the corresponding steering 

vectors from the leadfield matrix.  Figure  7-3 and Figure  7-4 show SAFFIRE power 

spectrum and the mean location of the detected source respectively. 
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Figure  7-2 The mean of detected active sources from 128 Ch. along with the mean of 

true locations of sources. 

 

Figure  7-3 SAFFIRE power spectrum of 64 channels. 

By repeating the above-mentioned procedure, 32 EEG channels were selected 

also according to ANT Neuro naming scheme. Figure  7-5 and Figure  7-6 show 

SAFFIRE power spectrum resulted from 32 EEG channels and detected sources mean 

plotted on brain cortex respectively. 
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Figure  7-4 The mean of detected active sources from 64 Ch. along with the mean of 

true locations of sources. 

 

Figure  7-5 SAFFIRE power spectrum of 32 channels. 
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Figure  7-6 The mean of detected active sources from 32 Ch. along with the mean of 

true locations of sources. 

7.3 Discussion 

The relationship between the number of electrodes and epilepsy source 

localization error have been examined for a simulated data of epileptic spikes. As it 

can be seen from Figure  7-7, the source localization error for the simulated epileptic 

data had generally increased when the number of electrodes decreased. The most 

dramatic increase can be seen when reducing the number of electrodes from 256 

down to 128 where the localization error increased by 2.18 cm. Then it increased by 

3.7 mm when going from 128 electrodes to 64 electrodes. However, localization error 

decreased by 5.1 mm when reducing the number of electrodes to 32 electrodes. 

 

Figure  7-7 Source Localization Error for different electrode numbers. 
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The effect of noises on EEG channels is not uniform, this may be the reason 

behind the reduction in source localization error for 32 electrodes system. One way to 

improve source localization error is to find the channels that are least affected by 

noise. A system in [67] is represented to analyze EEG signals and avoid channels 

averaging by finding the least affected channels by noise and reduce the number of 

channels. 

Moreover, the relationship between localization error and electrode numbers 

can be investigated by performing a series of simulations and clinical data analysis for 

a number of patients. Another way to improve the localization error calculations is to 

perform error analysis on each spike individually then average the localization errors. 
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8 Chapter 8. Conclusion and Future Work 

8.1 Conclusion 

The main focus of this thesis is to investigate source localization algorithm in 

epilepsy as it is the most common neurological disorder. Different imaging techniques 

that are used to diagnose epilepsy are addressed and compared together. 

Electroencephalography (EEG) was chosen since it is the most common imaging 

technique and considered to be a direct method to measure brain’s electrical activity 

with high temporal resolution in comparison with other functional techniques. The 

first step in estimating the sources underlying electric potentials on the scalp is the 

analysis of these electric fields. Then, solving the forward problem and obtaining a 

head model that resembles patient’s head.  After that, sources are detected by 

assuming a distributed source model and solving the inverse problem.   

SAFFIRE algorithm was used in this thesis for the purpose of epilepsy source 

localization. This iterative algorithm assumes that the collected measured potentials 

can be modeled as a superposition of independent contribution from a number of 

sources distributed arbitrarily. The iterative steps estimate source power distribution. 

The performance of SAFFIRE algorithm was compared with sLORETA in the 

knowledge of exact source locations of a simulated epilepsy data. The detected 

sources resulted from SAFFIRE algorithm were considered to be more accurate than 

detected sources by the sLORETA algorithm. Also, the algorithm was tested on 

clinical EEG data collected from three patients in order to determine epileptogenic 

foci for each case. The strongest detected sources were mapped in brain regions that 

are consistent with the clinical interpretation suggested by neurologists. 

The final part of this thesis investigated the effect of reducing electrodes 

number on epilepsy source localization error. SAFFIRE algorithm was applied to a 

simulated data and the number of electrodes was reduced from 256 to 128 and from 

128 to 64 and finally to 32. The source localization error of simulated data generally 

increased when the number of electrodes decreased. However, as mentioned earlier 

this relationship can be affected by EEG channel noises and needs more investigations 

on series of simulations and clinical data to confirm the trend.  

8.2 Future Work 

This research work can be extended in various ways. Although the used 

algorithms in this thesis resulted in a reasonable epilepsy source localization, 
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algorithms performance can be improved by using an exact lead-field matrix and 

further analysis of EEG records before applying algorithms. Further investigations on 

the localization of epileptic regions using SAFFIRE algorithm for EEG data of 

epilepsy patients can be done. Collected EEG data from hospitals and research centers 

should include the full needed information about seizures, marked spikes, patients’ 

MRI and detailed medical diagnoses reports.  

Moreover, the effect of electrodes number on the performance of source 

localization algorithm can be explored for acquired data from different patients and 

different electrode sensors set. It would be beneficial cost wise to reduce the number 

of used electrode sensors for EEG recording, hence, different techniques can be used 

to select the channels that will result in a more accurate source localization with less 

computational and processing time. 

Nonetheless, it is important and interesting to estimate lesions size. This can be 

done by improving the inverse algorithm so it will be more accurate and less blurred. 

Furthermore, new brain source localization algorithms can be applied to the 

clinical data based on sLORETA and SAFFIRE results in order to get a higher spatial 

resolution.   

Since EEG provides high temporal resolution and fMRI provides excellent 

spatial resolution, integrating EEG and fMRI will be a good step in order to provide a 

more accurate source localization that could not be achieved with either imaging 

technique alone.  
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